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Abstract 
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The University of Texas at Arlington, 2013 

 

 

Supervising Professor: Dong-Jun Seo   

 

Precipitation estimation is a very important topic from the societal perspective as 

heavy precipitation can cause flooding from which loss of lives and damage to properties 

can occur. In current practice, a number of spatial interpolation techniques are used for 

precipitation estimation using rain gauge data. Most of them are based on minimizing 

error variance but none of them consider Type-II conditional bias. As such, the existing 

techniques work well in the mid ranges of the precipitation distribution but tend to under- 

and overestimate large and small precipitation amounts, respectively. Conditional bias- 

penalized kriging (CBPK) adds a penalty term for Type-II conditional bias in addition to 

the error variance to improve estimation of large precipitation amounts. CBPK, however, 

tends to produce negative estimates in areas of very small or no precipitation. This 

problem is addressed in this work by an extension of CBPK, referred to as extended 

conditional bias-penalized kriging (ECPBK). For comparative evaluation, several real 

world experiments have been carried out using hourly rain gauge data. Also, synthetic 

experiments have been carried out for MAP analysis using the Stage IV data as truth and 
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by creating synthetic gauge networks within the Stage IV precipitation field. The cross 

validation results of ECBPK are compared with those of the Single Optimal Estimation 

technique used in the NWS’s Multisensor Precipitation Estimator.  
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Chapter 1 

Introduction 

1.1 Background 

For its obvious importance, quantitative precipitation estimation (QPE) has been a topic 

of active research for over a century (Thiessen 1911). Whether it is based on gauge-only or 

multisensor estimation, QPE generally involves spatial prediction using statistical or dynamical-

statistical models. Statistical models, by far the more widely used of the two to date, use optimal 

(in some sense of the word) estimation, of which various types of linear and nonlinear 

techniques are available (see e.g. Creutin and Obled (1982), Tabios and Salas (1985) and 

references therein). For example, the algorithms used operationally in the National Weather 

Service (NWS) for gauge-only and radar-gauge analyses in their Multisensor Precipitation 

Estimator (MPE, Seo et al. 2010) are variants of kriging and cokriging, respectively (Seo 

1998a,b). More recently, artificial neural networks (Bellerby et al. 2000, Grimes et al. 2003, Hsu 

et al. 2007, Chiang et al. 2007) and support vector regression (Chen et al. 2011) have been 

added to the list as potential techniques for QPE. 

Real-time QPE demands accurate estimation particularly of large amounts as they 

represent greater hazards to lives and properties. In flood forecasting, what matters most for 

QPE is the ability to estimate large amounts of precipitation as accurately as possible over the 

range of spatiotemporal scales of aggregation associated with the size and response time of 

the basin. Kriging or its variants do produce, as theoretically expected, precipitation estimates 

that are unbiased and of minimum error variance in the unconditional sense. In the conditional 

sense, however, these so-called optimal estimation techniques very often severely 

underestimate heavy precipitation and overestimate light precipitation (Seo and Breidenbach 

2002, Ciach et al. 2000, Habib et al. 2012). These results arise because, to achieve 

(unconditional) minimum error variance, it is necessary to reduce the error variance associated 

with light to moderate precipitation, which occurs frequently and over large areas, even if it may 
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increase the error variance associated with heavy precipitation, which occurs relatively rarely 

and generally over small areas. For accurate estimation of large amounts, however, it is more 

important to reduce conditional bias (CB), in particular Type-II CB, than to minimize 

unconditional error variance. QPE for flood forecasting is a prime example of that. In the above, 

Type-II CB is defined as xxXXE −= ]|ˆ[  where X , X̂  and x  denote the unknown truth, the 

estimate, and the realization of X , respectively (Joliffe and Stephenson 2003).  

Recently, Seo (2012) has demonstrated in the context of gauge-only QPE that the 

potential impact of reducing Type-II CB (hereafter referred to as CB for short) at sub-daily and 

mean areal precipitation (MAP) scales (O(100)~O(103) km2) is substantial. The synthetic 

experiments suggest that the margin of improvement for estimating heavy precipitation from 

reducing CB may exceed that from greatly increasing the density of the rain gauge network or, 

equivalently in multisensor estimation, that from significantly improving the quality of the 

remotely sensed data or scale-compatible numerical weather prediction (NWP) precipitation 

analysis. Often, lack of performance by linear estimators has been attributed to their linear (as 

opposed to nonlinear) nature. Experimental and empirical evidences suggest, however, that the 

marginal improvement by nonlinear estimation is rather small (see e.g. Azimi-Zonooz et al. 

1989, Seo 1996), and that CB may be a much more important limiting factor than linearity in 

estimation of heavy-to-extreme precipitation. 

Seo (2012) extended classic optimal linear estimation theory in which, in addition to 

error variance, CB is explicitly minimized. The resulting Fisher-like solution may also serve as 

an alternative or complementary observation equation for a range of Fisher solution-based 

static or dynamic filters, such as Kalman filter and its variants. When cast in the form of well-

known kriging or its variants used in the Multisensor Precipitation Estimator (MPE) (Seo et al. 

2010) of the NWS, the proposed methodology yields a new kriging estimator, referred to as CB-

penalized kriging (CBPK). CBPK, however, yields estimates that may be significantly negative 

in areas of light precipitation. To address this, an extension of CBPK, referred to herein as 
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extended CB-penalized kriging (ECBPK), has been developed.  In this work, ECBPK is 

described and comparatively evaluated with ordinary kriging (OK) (Journel and Huijbregts 

1978), a variant of which is used in MPE for gauge-only precipitation estimation. The evaluation 

is carried out for estimation of point and MAP through real-world and synthetic experiments, 

respectively, for a number of heavy-to-extreme precipitation events in Oklahoma, the Southeast 

and Texas. 

 

1.2 Objective 

 The main objective of this study is to improve the estimation procedure for heavy to 

extreme precipitation. Conventional estimation techniques including currently popular OK do not 

consider Type-II CB and focus primarily on minimizing error variance. As a consequence, these 

techniques tend to work better in estimating light to moderate precipitation than in estimating 

large precipitation amounts. CBPK which minimizes Type-II CB in addition to error variance 

shows substantial improvement in estimating heavy precipitation but produces inferior 

estimates than OK for light to moderate precipitation. This study aims at combining these two 

techniques to obtain best possible estimates in all ranges of the distribution for both point and 

MAP. The second goal of this study is to carry out a comparative evaluation between the newly 

proposed technique with OK using both synthetic experiments and real world case studies.  

 

1.3 Outline of the Thesis 

Chapter 1 presents the background of the study and the statement of the problem, 

specific objectives of the study and thesis organization. 

Chapter 2 reviews the literature on the geostatistical and non-geostatistical spatial 

interpolation techniques, CB and key findings from relevant previous studies in precipitation 

estimation.  
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Chapter 3 provides mathematical representation and description of the proposed new 

technique ECBPK.  

Chapter 4 discusses the data used for evaluation and also different quality control 

measures used in this study. 

 Chapter 5 describes the real world case studies and synthetic experiments carried out 

for evaluation of the newly proposed technique. 

Chapter 6 presents the results of the real world and synthetic experiments. 

Chapter 7 presents the conclusion and suggests recommendations for further 

improvement of the proposed technique. 
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Chapter 2 

Literature Review 

2.1 Spatial Interpolation Techniques 

 Many types of spatial interpolation techniques have been developed and used in 

different fields. One of the common problems in spatial interpolation is to estimate the variable 

of interest at an ungauged location or where the data is missing. Sometimes, these spatial 

interpolation techniques are also modified and tailored to serve specific purposes in different 

fields. In hydrology, precipitation estimation is an age-old problem for which numerous studies 

have been carried out in different times for improvement. Because precipitation is a highly-

variable stochastic phenomenon, estimating precipitation at an ungauged location using 

available gauge data is a challenge. Many researchers have applied a wide range of different 

interpolation techniques with varying degrees of complexity to improve spatial estimation of 

precipitation. Many of these techniques may be categorized as geostatistical or non-

geostatistical. Some of them are briefly discussed here to provide a background to the newly 

proposed technique. 

 

2.1.1 Non-Geostatistical Methods 

 Non-geostatistical methods do not use any geostatistical information in the estimation 

procedure. The Thiessen polygon (Thiessen, 1911), isohyetal (Linsley et al. 1949), arithmetic 

mean (Paulhus and Kohler, 1952), normal ratio (Paulhus and Kohler, 1952) and inverse 

distance weight method (Wei and Mcguinness, 1973) can be categorized as non-geostatistical 

techniques. The Thiessen polygon method is not flexible for the users as a new Thiessen 

network needs to be constructed each time for any change in the gauge network although it can 

produce more accurate estimates than many other non-geostatistical methods mentioned 

above (Chow et al. 2004). The isohyetal method is flexible but requires a dense gauge network 

for accurate construction of the isohyets for complex storms (Chow et al. 2004). The arithmatic 
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mean and normal ratio methods are not effective if the gauge network is not uniformly 

distributed. All these non-geostatistical methods may give a comparable result for long-term 

accumulations (e.g. at annual scale) but their estimates may vary by a large margin when 

applied for a smaller time scale i.e. hourly or daily precipitation (Chow et al. 2004). 

 

2.1.2 Geostatistical Method 

Geostatistical approaches may be used to estimate the spatial patterns or mean areal 

quantifies of precipitation or any other random phenomena and to model the uncertainty 

associated with them. 

Kriging is a popular optimal geostatistical estimation technique first introduced by Danie 

G. Krige (1951) and further developed by the French mathematician George Matheron (1963). 

Many researchers have utilized and compared various kriging techniques for precipitation 

estimation: e.g. Chua and Bras (1982); Cruetin and Obled (1982); Bastin et al.(1984); Tabios 

and Salas (1985); Seo et al.(1990); Barancourt and Cruetin (1992). Cruetin and Obled (1982) 

noted that kriging and objective analysis may give better estimates when the precipitation is 

highly variable. Bastin et al.(1984) presented a simple technique to estimate in real time mean 

areal precipitation (MAP) by calculating both seasonal and time-invariant variograms. Tabios 

and Salas (1985) compared the applicability of different spatial interpolation techniques for 

estimating annual precipitation at ungauged locations in the north-central United States. Their 

analysis included the Thiessen polygon method, polynomial interpolation, the inverse distance 

method, multiquadratic interpolation and kriging. The comparison was made based on different 

error statistics. It was found that kriging and optimal interpolators provided the best estimates 

among all techniques considered. 

Numerous studies have been carried out for improving precipitation estimation using 

kriging. But very few works have been done regarding heavy precipitation estimation. Accurate 

estimation of heavy to extreme precipitation is very important in the sense that heavy 
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precipitation may produce large runoff and cause inundation of low lands and floods. By 

improving the analysis of heavy to extreme precipitation, streamflow prediction and flood 

forecasting can be improved significantly. In this work, a new kriging technique will be 

presented to improve the estimation of heavy precipitation by combining the estimates of two 

kriging techniques. 

 Kriging can be described as an interpolation method that linearly weights the 

observations. In general, the linear kriging estimators aim to achieve unbiasedness and 

minimum error variance. If linear, such an estimator is referred to as the best linear unbiased 

estimator (BLUE). Unbiasedness is achieved when the expected value of the estimate is equal 

to the expected value of the unknown truth. The weights are a function of the correlation 

structure of the precipitation field, the spatial geometry of the rain gauges used in the estimation 

and the point at which an estimate is desired.  

There are many different types of kriging. Based on the mathematical form of the 

estimator, a kriging method can be described as linear or non-linear. Also, kriging can be used 

to estimate the variable of interest over a specific area or at a particular point. Some of the 

kriging methods are listed below: 

1) Simple kriging 

2) Ordinary kriging 

3) Indicator kriging 

4) Universal kriging 

5) Block kriging 

6) Disjunctive kriging 

When multiple variables are involved, kriging is referred to as cokriging (Journel and 

Huijbregts, 1978). Among all these techniques, OK, simple kriging (SK) and indicator kriging 

(IK) are of particular relevance to this work. The new technique proposed in this work is an 

extension of conditional bias-penalized kriging (CBPK) (Seo, 2012) which is illustrated using 
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SK. Currently, OK is one of the most widely used kriging techniques, including precipitation 

estimation. As such, in this study, a comparative evaluation is carried out between OK and the 

newly proposed technique. Indicator variables have been used in this work to examine the 

spatial variability in intermittency of precipitation. IK may be used to estimate probabilistic 

quantiles such as the probability of precipitation (PoP) by evaluation the expectation of an 

indicator variable. These three kriging techniques are briefly discussed below: 

 

2.1.1.1 Ordinary Kriging (OK) 

OK is used when no priori information is available about the mean of the unknown truth. 

It is one of the most widely used kriging techniques. In OK, the weights given to the 

observations are obtained by minimizing the error variance under the constraint that the sum of 

the weights equal to unity. By applying this constraint, the unbiasedness of the OK estimates is 

ensured. The error variance (σ2) is defined as: 

σ2 = 𝑉𝑎𝑟[𝑍0∗ − 𝑍0]                                                                                           (2.1) 

where 𝑍0∗ and 𝑍0 denote the estimate and the truth, respectively at location 𝑥0 . The OK 

estimator can be expressed by the following equations: 

𝑍0∗ =   ∑ 𝜆𝑖𝑍𝑖𝑛
𝑖=1                                                                                                  (2.3) 

            ∑ 𝜆𝑖𝑛
𝑖=1 = 1                                                                                                       (2.4) 

where 𝑍0∗ denotes the estimate at the ungauged location 𝑥0, 𝑍𝑖 denotes the observation at 

location 𝑥𝑖, n denotes the number of observations, and 𝜆𝑖 denotes the weight to the ith 

observation. In OK, to obtain the weights, one minimizes:  

            𝐹 =  𝜎2 + 2𝜇 (∑ 𝜆𝑖𝑛
𝑖=1 − 1)                                                                                            (2.5) 

where 𝜎2 denotes the error variance (see Eq.(2.1)) and 𝜇 denotes the Lagrange multiplier 

(Isaak and Srivastava, 1989)  which converts the constrained minimization problem to an 

unconstrained minimization problem. 
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2.1.1.2 Simple Kriging (SK) 

In SK, it is assumed that the mean of the variable to be estimated is known. The 

weights assigned to the observations are obtained by minimizing the error variance (Eq.(2.1)). 

The SK estimator, which is equivalent to the Bayesian optimal linear estimator with perfect 

observations can be expressed as: 

𝑍0∗ =  𝑚 +  ∑ 𝜆𝑖[𝑍𝑖𝑛
𝑖=1 − 𝑚]                                                                                (2.2) 

where 𝑍0∗ denotes the estimate at the ungauged location 𝑥0, 𝑚 denotes the known mean 

assumed constant over the entire domain in this example, 𝑍𝑖 denotes the observation at 

location 𝑥𝑖, n denotes the number of observations and 𝜆𝑖 denotes the weight given to the ith 

observation. 

SK does not use an unbiasedness constraint as the information about mean is already 

known. In comparison to OK, SK assumes more information and hence, gives a smaller 

estimation variance than OK. 

 

2.1.1.3 Indicator Kriging (IK) 

IK is a non-linear kriging method. In IK, a set of thresholds for the variable of interest is 

chosen and each observation is rendered as a binary variable of 0 and 1, referred to as 

indicator variable, depending on whether it is above or below each threshold. The indicator 

variable can be expressed as: 

      𝐼( 𝑥0; 𝑧𝑘) = �0, 𝑖𝑓 𝑍0 ≤ 𝑧𝑘
1, 𝑖𝑓  𝑍0 > 𝑧𝑘

                                                                                     (2.6) 

where 𝑧𝑘 denotes the fixed threshold and 𝐼( ) denotes the indicator variable. IK gives an 

estimate of the conditional cumulative distribution function (ccdf) of the variable of interest at 

location 𝑥0. The IK estimator is given by: 

                    𝐼(𝑥0; 𝑧𝑘)∗ = 𝐸�𝐼(𝑥0;𝑧𝑘�𝑝�  

                                =𝑃𝑟𝑜𝑏(𝑍0 > 𝑧𝑘|𝑝)                                                                              (2.7)    



 

10 

where 𝐼(𝑥0; 𝑧𝑘)∗ denotes the IK estimate at location 𝑥0 at threshold 𝑧𝑘 and p denotes the 

conditional events in the neighborhood of location 𝑥0 . 

 

2.2 Conditional Bias (CB) 

Most of the conventional precipitation estimation techniques produce unbiased 

estimates having minimum error variance in the unconditional sense. But in the conditional (on 

the magnitude of the truth being estimated) sense, these techniques tend to underestimate 

heavy precipitation and overestimate light to moderate precipitation (Seo, 2012). There are two 

types of CB.  

1) Type-I conditional bias (Type-I CB) 

2) Type-II conditional bias (Type-II CB)  

There is a widespread confusion about CB in the literature and among the practitioners 

of geostatistics (Mclennan and Duestch, 2003). Isaak (2004) stated that CB is poorly 

understood even though it is a well-recognized problem in geostatistics. Lack of distinction 

between Type-I and Type-II CB in the literature may be one of the main sources of such 

confusion (Seo, 2012).  

 

2.2.1 Type-I CB 

Type-I CB is defined as: 

𝐸[𝑋|𝑋∗] − 𝑋∗ 

where 𝑋∗ and 𝑋 denote the estimate and the truth, respectively. Type-I CB occurs when the 

estimate is biased against the expected value of the true precipitation conditional on the 

estimate. 

 

2.2.2 Type-II CB 

 Type-II CB is defined as: 
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𝐸[𝑋∗|𝑋] − 𝑋 

Type-II CB exists when the expected value of the estimate given the truth differs from the truth. 

This study is concerned with reducing Type-II CB. Different scientists and 

geostatisticians discuss the problem of Type-II CB in different contexts e.g. in those of mining 

and radar rainfall estimation.  

Brown and Seo (2012) proposed a new non-parametric technique to minimize Type-II 

CB in streamflow prediction. This technique is analogous to indicator cokriging (ICK) and is 

called conditional bias-penalized indicator cokriging (CBP-ICK). It is found that CBP-ICK 

successfully reduce Type-II CB and produce estimates that are more skillful than the estimates 

from other post processors used in hydrologic prediction.  

Seo (2012) proposed and described a new estimation technique, CBPK, which is an 

extension of SK. CBPK adds a penalty term for Type-II CB in addition to error variance. Seo 

(2012) evaluated CBPK using normal and lognormal synthetic experiments and found that 

CBPK successfully reduces Type-II CB for large precipitation amounts. Seo (2012) also 

described a Fisher-like solution of CBPK. 
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Chapter 3 

Methodology 

In this section, the proposed procedure, extended CBPK or ECBPK is described. It 

builds on CBPK (Seo, 2012) and uses as its theoretical basis a procedure that combines 

estimates from two different estimators. 

3.1 Conditional Bias-Penalized Kriging 

CBPK may be considered as an extension of SK in which the objective function is 

made of not only error variance but also CB. The SK estimator (see e.g. Journel and Huijbregts 

1978) is given by: 

  𝑍0∗ = 𝑚0 + � 𝜆𝑖(𝑍𝑖 − 𝑚𝑖)
𝑛
𝑖=1                                                                   (3.1) 

where 𝑍0∗ denotes the SK estimate for 𝑍0, 𝑚0 denotes the mean of 𝑍0, 𝜆𝑖 denotes the weight 

assigned to 𝑍𝑖, 𝑚𝑖 denotes the mean of 𝑍𝑖 and n denotes the number of neighbors used in 

estimation.  In SK, the weights are obtained by minimizing the error variance of the estimate, 

JSK: 
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where the expectation operations are with respect to the variables subscripted. In CBPK, the 

CB penalty term, or the unconditional expectation of CB squared, is added to the objective 

function as follows: 
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where 𝑧0 denotes the experimental values of 𝑍0 and )( 00
zfZ  denotes the marginal probability 

density function (pdf) of 𝑍0. The CBPK system results from minimizing JCBPK:         

niiijijiij
n

j j ,...,1,2)( 00001
==+∑ =

σσρσσρρρλ                              (3.4) 
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where 𝜌𝑖𝑗 denotes the correlation between 𝑍𝑖 and 𝑍𝑗 , and iσ  denotes the standard deviation of 

𝑍𝑖. When minimizing JCBPK, we may constrain the weights to sum to unity and arrive at the OK 

analogue of CBPK. Throughout this paper, by CBPK, we mean the OK analogue. The above 

formulation has also been used successfully in the form of CBP-ICK for post-processing of 

streamflow predictions (Brown and Seo, 2012). For nonnegative variables such as precipitation, 

however, the raw CBPK estimates may be significantly negative, particularly in areas of no to 

light precipitation. To address this, we formulate a procedure to combine estimates from two 

different estimators. Below, we describe the procedure in the context of combining OK and 

CBPK estimates which provides the theoretical basis for ECBPK. 

 

3.2 Combining Estimates from Two Different Estimators 

While CBPK is superior to OK over the tail ends of the distribution, it is inferior over the 

mid-ranges (Seo, 2012). One may combine the OK and CBPK estimates in such a way that the 

combined estimate is close to the more accurate of the two, depending on the magnitude of the 

precipitation amount being estimated. Toward that end, we write the estimate, 

],...,|[ 110 nn zZzZZE == , as a combination of OK and CBPK estimates: 

]|Pr[],|[]|[ 00010 •∈∈•=• ∑ = kk
K

k
AZAZZEZE                   (3.7) 

where the event { • } denotes the event { nn zZzZ == ,...,11 }, Ak’s denote the sub-ranges of the 

truth the union of which encompasses the entire range of the truth, and Pr[ ] denotes the 

probability of occurrence of the event bracketed. We rewrite the conditional expectation in 

Eq.(3.7) as: 

],|Pr[],,|[

],|Pr[],,|[],|[

0
**

00

0
**

0000

kk

kkk

AZCBPKCBPKAZZE
AZOKOKAZZEAZZE

∈•∈•+

∈•∈•=∈•
                (3.8) 
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where OK* or CBPK* denotes the event that the OK or CBPK estimate is more accurate than 

the CBPK or OK estimate, respectively. Because we do not know which sub-range may enclose 

the truth, we approximate the conditional expectations in Eq.(3.8) as 

],|[],,|[ *
0

*
00 OKZEOKAZZE k •≈∈•  and ],|[],,|[ *

0
*

00 CBPKZECBPKAZZE k •≈∈• . For 

evaluation of the conditional probabilities in Eq.(3.8), one may consider { kAZ ∈0 } to be more 

informative than {• } and approximate them as ]|Pr[],|Pr[ 0
*

0
*

kk AZOKAZOK ∈≈∈•  and 

]|Pr[],|Pr[ 0
*

0
*

kk AZCBPKAZCBPK ∈≈∈• . With these approximations, Eq.(3.7) may be written 

as: 

],|[)1(],|[]|[ *
0

*
00 CBPKZEwOKZEwZE OKOK •−+•≈•                               (3.9) 

where the weight for the OK estimate, wOK, is given by: 

]|Pr[]|Pr[ 00
*

1
•∈∈=∑ = kk

K

kOK AZAZOKw                  (3.10) 

In Eq.(3.10), ]|Pr[ 0
*

kAZOK ∈  may be estimated from cross validation and ]|Pr[ 0 •∈ kAZ  may 

be estimated via indicator kriging or cokriging (Journel 1983, Seo 1996). It can be easily shown 

that the estimation variance associated with ]|[ 0 •ZE  in Eq.(3.9) is given by: 

2*
0

*
0

*
0

*
00

]},|[],|[){1(

],|[)1(],|[]|[

CBPKZEOKZEww
CBPKZVarwOKZVarwZVar

okok

okok

•−•−+

•−+•=•
               (3.11) 

 

3.3 Extended Conditional Bias-Penalized Kriging (ECBPK) 

To address negative CBPK estimates, we apply the above results but employ only two 

conditioning events, }0{}{ 010 ==∈ ZAZ  and }0{}{ 020 >=∈ ZAZ , and replace OK with a 

trivial estimator, ZERO, whose estimate is always zero. We then have 0],|[ *
0 =• ZEROZE  

where ZERO* denotes the event that an estimate of zero is more accurate than the CBPK 

estimate. With the above simplification, one may rewrite Eq.(3.9) as: 
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],|[]|[ *
00 CBPKZEZE •=• γ                   (3.12) 

In the above, CBPK* denotes the event that the CBPK estimate is more accurate than 

ZERO* (i.e. an estimate of zero) and the scaling coefficient γ is given by: 

]0|Pr[]|0Pr[]|Pr[ 0
*

0
* >•>≈•= ZCBPKZCBPKγ                (3.13) 

In arriving at the approximation for γ above, we used 0]0|Pr[ 0
* ==ZCBPK . In 

practice, it is difficult to use Eq. (3.7) directly because it is difficult to estimate the two terms in 

the above approximation for γ with accuracy. Instead, one may estimate γ empirically by noting 

that the approximation for γ is a function of the conditional PoP, and that the final estimate, 

]|[ 0 •ZE , must be unbiased in the unconditional mean sense: 

PoPlconditionaoflevelsdifferentfor
CBPK
CBPK

trunc

raw
e ,=γ               (3.14) 

In the above, the overbar denotes the sample mean over some spatiotemporal scale 

(see below), rawCBPK  denotes the raw CBPK estimate and truncCBPK  is defined as: 



 <

=
otherwiseCBPK

CBPKif
CBPK

raw

raw
trunc

00                  (3.15) 

 With the above, the ECBPK estimate is then given by: 

                           trunceCBPKECBPK γ=               (3.16) 

where  eγ  is a function of the conditional PoP.  The estimation variance is obtained by 

multiplying 2
eγ  to the CBPK estimation variance. 

In the above, the conditional PoP may be estimated, e.g., from indicator kriging or 

cokriging (Journel 1983, Seo et al. 1996). To avoid additional computational burden, however, 

here we use the fractional coverage defined as the number of precipitation-reporting 

neighboring gauge observations divided by the total number of neighboring gauge 

observations. The fractional coverage is already calculated in the Multisensor Precipitation 
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Estimator (MPE) used by the National Weather Service (NWS) (Seo et al. 2010) by the Single 

Optimal Estimator (Seo 1998) against which ECBPK is evaluated. In practice, the sample size 

may not be large enough to estimate 
eγ  in a time-varying and location-specific manner. In this 

work, we assume that eγ  is constant in space and time for simplicity. It is possible to relax this 

assumption and estimate spatially-varying eγ  over some time scale (e.g. daily, weekly, 

monthly, seasonal, etc.) following Seo et al. (1999, 2000). Fig 3-1 shows an example of the 

scaling coefficient, eγ , as a function of the fractional coverage as estimated via Eq.(3.13) for 

estimation of hourly precipitation over Oklahoma (see Fig 3-1). Note that, as suggested by the 

approximation for γ above, the smaller the fractional coverage (i.e. the conditional PoP) is, the 

larger the downward adjustment of the CBPK estimate is. As described above, the ECBPK 

algorithm is computationally no more expensive than an OK algorithm and requires only an 

extremely simple addition of updating the multiplicative adjustment factor, eγ , in real time. 

                       

Fig 3-1 Scaling coefficient vs. probability of precipitation. 
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Chapter 4 

Data Used 

4.1 Hourly Gauge Precipitation Data 

For evaluation of point precipitation estimation, hourly rain gauge data from three 

different regions in the United States are used. The selected three regions are the Lower 

Colorado River Basin Authority’s (LCRA) service area in Texas, Southeastern part of the United 

States and the Arkansas-Red Basin River Forecast Center’s (ABRFC) service area in 

Oklahoma and vicinity. The data was obtained from the LCRA, the National Climatic Data 

Center and ABRFC. 

 

4.1.1 Arkansas-Red Basin River Forecast Center (ABRFC) Service Area 

ABRFC is one of the 13 River Forecast Centers (RFC) in the United States situated in 

Tulsa, Oklahoma. The ABRFC service area covers almost 208,000 square miles including 

entire state of Oklahoma and parts of six other states. The gauge network under the ABRFC 

service area used for this study consists of approximately 400 gauges (based on the collected 

data). The gauge network includes tipping buckets and weighing gauges. ABRFC routinely 

quality-controls the gauge data for their real-time operations. In this study, the rain gauge data 

are quality-controlled using the radar precipitation data and the spatial consistency check 

algorithm (Kondragunta et al. 2005). The hourly data used in this work covers the years 1995 

through 2000. 
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Fig 4-1 ABRFC service area gauge network. 

 

4.1.2 Southeastern United States 

A catastrophic precipitation event occurred in Southeastern part of US in September, 

2009. Parts of five different states, Georgia, Alabama, Tennessee and South and North 

Carolinas were affected by devastating flooding. Eleven people died and property damage and 

economic loss ware enormous. The total precipitation in that month was almost 300 to 600 

percent of normal precipitation for that region (NOAA, 2010). An area of 600 km x 600 km 

(360000 km2) in the Southeastern United States has been selected as the analysis domain and 

hourly precipitation gauge data within this domain for the month of September in 2009 were 

collected and processed. This gauge network consists of nearly 500 gauges (based on the 
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collected data). The rain gauge data collected for this event were quality- controlled by two 

procedures (See section 4.3).  

 

Fig 4-2 Gauge network of Southeastern US.  

 

4.1.3 Lower Colorado River Authority (LCRA) Service Area 

The Lower Colorado River Authority maintains a rain gauge network of nearly 240 

gauges (LCRA, 2007). Hourly precipitation data from this network are used for the period of 

2001-2007.  
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Fig 4-3 Gauge network of LCRA service area. 

 

4.2 Hourly Stage IV Data 

Stage IV is the final mosaicked version over the continental US (CONUS) of the 

regional MPE data which is hourly radar-rain gauge estimates of precipitation produced by 12 

RFCs in CONUS (Lin and Mitchell, 2005). The MPE and hence Stage IV data are on a 4km x 

4km grid known as the Hydrologic Rainfall Analysis Project (HRAP) grid (Greene et al. 1982). 

The mosaicking for the Stage IV data is performed at the National Centers for Environmental 

Protection (NCEP). 

In this study, the hourly Stage IV data are used in two ways. Firstly, it is used for 

analysis of MAP and for generation of random gauge networks in the synthetic experiments 

(See section 5.2). Secondly, spatial correlation scales of precipitation are estimated using this 
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data. The entire CONUS is covered by a 1121 x 881 HRAP grid. An analysis domain of a 150 x 

150 HRAP grid was used for the Southeast extreme event.  

 

4.3 Quality Control of Rain Gauge Data 

In this study, the rain gauge data used for Southeastern US were quality controlled by 

the following two procedures. First, the rain gauge data were compared with the Stage IV data. 

Then spatial continuity check (Kondragunta et al. 2005) was performed to eliminate the suspect 

rain gauge data. 

 

4.3.1 Comparison with Stage IV 

The Stage IV data is considered to be the closest representation of truth. The following 

procedure was applied to screen out suspect rain gauge observations. 

1) If the rain gauge data reports positive precipitation but the Stage IV data shows no 

precipitation at that location, the rain gauge data is thrown out. 

2) If the rain gauge data reports no precipitation but the Stage IV data at the same 

location reports positive precipitation, the rain gauge was considered stuck and thrown 

out. 

 

4.3.2 Spatial Consistency Check 

After the quality control using the Stage IV data, a spatial consistency check was 

performed for rain gauge data using an algorithm developed in NWS (Kondragunta et al. 2005). 

This algorithm identifies suspected outliers that show large differences than the other rain 

gauges in the vicinity. In the spatial consistency check algorithm, rain gauge observations in the 

screening area are selected and sorted for the median, 25th percentile and 75th percentile. Then 

the differences between the observation and the three percentiles for each observation are 

calculated and a quality control (QC) index is calculated by using Eq.(4.1) or (4.2). 
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If the 25th and 75th percentiles are not equal: 

𝑄𝐶 𝐼𝑛𝑑𝑒𝑥 = |𝑀𝑒𝑑𝑖𝑎𝑛−𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|
 75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 −25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

                                      (4.1) 

If the 25th and 75th percentiles are equal: 

𝑄𝐶 𝐼𝑛𝑑𝑒𝑥 = |𝑀𝑒𝑑𝑖𝑎𝑛−𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑜𝑛𝑠

                                         (4.2) 

The QC index is compared to a threshold index of the user’s choice and any 

observation showing a higher index than the threshold is identified as an outlier and thrown out. 

In this study, the threshold index used is 1.5. This means, any rain gauge observation showing 

an index higher than 1.5 is thrown out for inconsistency. 
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Chapter 5 

Evaluation 

In this study, a comparative evaluation is carried out between the newly proposed 

technique ECBPK and the currently widely-used technique OK. For evaluation of point 

precipitation estimation, cross validation is performed for both OK and ECBPK using the hourly 

rain gauge data for all three cases mentioned in the previous section. Synthetic experiments 

are carried out for comparatively evaluating MAP estimates for OK and ECBPK. Spatial 

correlation functions are estimated from the Stage IV data and used in both the real-world 

cases and the synthetic experiments. 

 

5.1 Real World Cases 

5.1.1 Spatial Correlation Structure 

The real world cases include multiple heavy precipitation events over the ABRFC 

service area in Oklahoma, the 2009 Southeast extreme event, and three tropical storm events 

over the LCRA service area in Texas. For each case, the spatial conditional and indicator 

correlation scales (Seo and Smith, 1996) were calculated using the Stage IV data (Seo et al. 

2010). Conditional correlograms characterize the spatial variability of precipitation within the 

precipitation area. Indicator correlograms characterize the spatial variability in intermittency of 

precipitation. The conditional (on occurrence of precipitation) and indicator correlograms were 

calculated in eight different directions of 0⁰, 26.6⁰, 45⁰, 63.4⁰, 90⁰, 116.6⁰, 135⁰ and 153.4⁰ 

(counterclockwise from due east) which were then fitted to the exponential, gaussian and 

spherical models (Journel and Huijbregts 1978). For all  cases, exponential model provides the 

best fit for both conditional and indicator correlograms. 

If the correlation scale is similar in all directions, the correlation structure is said to be 

isotropic. If it varies depending on the direction, the correlation structure is anisotropic. The 

directional correlograms (Figs 5-1 & 5-2), do not show any significant directional preferences. 
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As such, their correlation structures are considered isotropic and an average of all directional 

spatial correlation scales is used for each case as the representative isotropic correlation scale. 

Table 5-1 shows all conditional and indicator correlation scales used in this study. 

 

Table 5-1 Conditional and indicator correlation scales used for different cases 

 

 

  
Fig 5-1 Conditional correlograms of the Southeast extreme event along (A) 0 degree and (B) 

26.6 degrees for hourly precipitation. 

 

 

  Case Conditional Correlation Scale  

(km) 

Indicator Correlation Scale 

(km) 

Oklahoma 14 82.5 

Texas 22 92 

Southeast extreme event 19.8 77.5 

(A) (B) 



 

25 

       
 

          

Fig 5-2 Conditional correlograms of the Southeast extreme event along (C) 45 degrees, (D) 

63.4 degrees, (E) 90 degrees and (F) 116.6 degrees for hourly precipitation. 

 

(C) (D) 

(E) (F) 
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Fig 5-3 Conditional correlograms of the Southeast extreme event along (G) 135 degrees and 

(H) 153.4 degrees for hourly precipitation. 

Some of the directional Indicator correlograms (Fig 5-4, Fig 5-5 and Fig 5-6) show 

outlier correlation values at very small lag distances. They have been considered as plotting 

artifacts and ignored. 

       

Fig 5-4 Indicator correlograms of the Southeast extreme event along (A) 0 degree and (B) 26.6 

degrees for hourly precipitation. 

(G) (H) 

(A) (B) 
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Fig 5-5 Indicator correlograms of the Southeast extreme event along (C) 45 degrees, (D) 63.4 

degrees, (E) 90 degrees and (F) 116.6 degrees for hourly precipitation. 

 

(C) (D) 

(E) (F) 
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Fig 5-6 Indicator correlograms of the Southeast extreme event along (G) 135 degree and (H) 

153.4 degree for hourly precipitation. 

 

5.1.2 Cross Validation 

For comparative evaluation of ECBPK, several real world experiments have been 

carried out using hourly gauge precipitation data for the three precipitation cases in the United 

States. For evaluation, cross validation was carried out for the real world experiments for both 

OK and ECBPK. Cross validation allows comparison between the estimated and true values 

using the available data set (Isaacs and Srivastava,1989). In cross validation, an observed data 

is withheld and then a set of neighboring data are used to estimate the value at the withheld 

location. Accordingly, if there are 500 gauge observations, cross validation yields 500 

estimates. In this study, the number of neighbors used in the cross validation is 30 for all the 

real world cases. 

 

(G) (H) 
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5.2 Synthetic Experiment 

In order to evaluate the MAP estimates using ECBPK, the hourly Stage IV data were 

used for the Southeast extreme event. The Stage IV data are considered to be the most 

accurate and it is reasonable to assume that they represent a plausible realization of the truth at 

the HRAP scale. The procedure for the synthetic experiment using the Stage IV data is 

described below: 

1) Generate synthetic rain gauge networks of varying density by randomly selecting grid 

boxes from the 150x150 HRAP domain for the Southeast extreme event. Nine different 

traces of randomly selected gauge networks are created to reduce the sampling 

uncertainty. The densities used are 125, 500, 1,000, 2,000 and 4,000 gauges in the 

domain. In the United States, the hourly rain gauge network density is about 1/700 km2 

(Kim et al. 2009). This is very close to the density of 500 gauges in a 150 x 150 HRAP 

or 600 x 600 km2 area used for the synthetic experiment in this study. 

2) Perform estimation for all the HRAP grid cells and then calculate the MAP for different 

square basin areas of 4 x 4, 8 x 8, 16 x 16, 32 x 32 and 64 x 64 km2 for OK and CBPK 

estimates. Implicit in the above procedure in which, the Stage IV estimates over HRAP 

grid boxes are used as point gauge precipitation is the assumption that there is no 

microscale variability in precipitation, and that variability at point scale is comparable to 

that at the HRAP scale. 
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Chapter 6 

Results and Discussion 

6.1 Point Estimation 

The Single Optimal Estimator (SOE), currently used by NWS is a variant of OK. In this 

section, comparative results between ECBPK and OK are presented for both point and MAP 

estimation. 

 

6.1.1 RMSE  

The root mean squared error (RMSE) is one of the most widely used error statistics for 

comparing estimates with observations: 

𝑅𝑀𝑆𝐸 = �∑ (𝑍 − 𝑍′)2𝑛
𝑖=1

𝑛
 

where 𝑍 and 𝑍′ denote the observation and the estimate, respectively and n denotes the total 

number of observations. 

In this study, RMSE’s were calculated for OK and ECBPK estimates for different 

thresholds of true precipitation. For all true values equal to or greater than the cutoff (i.e. 

threshold), the corresponding OK and ECBPK estimates are used to calculate the RMSE. Fig 6-

1 shows the percent reduction in RMSE by ECBPK over OK at different cutoff values of truth. 

Note that the ECBPK estimates are more accurate than the OK estimates for cutoff larger than 

5 to10 mm. The figure indicates that, for large cutoff values, reduction in RMSE by ECBPK over 

OK is almost 9 to 14 percent. For very small thresholds, however, negative reduction is seen. 
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Fig 6-1 Percent reduction in RMSE by ECBPK over OK for the (A) LCRA service area in Texas 

(B) ABRFC service area in Oklahoma and (C) Southeast extreme event. 

 

Fig 6-2 shows the scatter plots of the OK estimates vs the observations; note the 

underestimation for precipitation larger than 40 mm to 60 mm. The ECBPK estimates, on the 

other hand, significantly reduce underestimation for large precipitation amounts for all three 

cases. 

 

(A) (B) 

(C) 
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Fig 6-2 Scatter plots of the OK and ECBPK estimates vs. the observed for (A) LCRA service 

area in Texas (B) ABRFC service area in Oklahoma and (C) Southeast extreme event. 

(A) 

(B) 

 (C) 
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6.1.2 Conditional Mean 

 Conditional mean of the observed, OK-estimated and ECPK-estimated precipitation 

are calculated for different thresholds of hourly observed precipitation (i.e. truth). Fig 6-3 shows 

that the conditional mean of the ECBPK estimates is significantly less conditionally-biased than 

that of the OK estimates.     

     

 

Fig 6-3 Conditional mean of the observed and estimated precipitation for (A) LCRA service area 

in Texas (B) ABRFC service area in Oklahoma and (C) Southeast extreme event. 

(A) (B) 

(C) 
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Figure 6-3 indicates that, for the LCRA service area, the margin of improvement 

increases as the threshold increases. For the other cases, o the other hand, the margin of 

improvement remains steady for larger thresholds. To investigate the variation in the margin of 

improvement, the histograms of the average distance to the gauge observations used in the 

estimation are examined. Fig 6-4 shows that the LCRA network is the densest which results in 

the largest margin of percent reduction in Type-II CB by ECBPK. On the other hand, the 

ABRFC gauge network is the sparsest in the mean sense and shows the smallest percent 

reduction in Type-II CB by ECBPK (see Fig 6-3).   

.                    

 

Fig 6-4 Histograms of average distances to the neighboring gauges for (A) LCRA service area 

in Texas (B) ABRFC service area in Oklahoma and (C) Southeast extreme event. 

(A) (B) 

(C) 
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6.1.3 Conditional Bias and Correlation 

Fig 6-5 is similar to Fig 6-4 and shows the Type-II CB in the ECBPK and OK estimates 

for different thresholds of precipitation amount. Fig 6-6 shows that the ECBPK estimates also 

have slightly larger correlation with the observed than the OK estimates for large thresholds. 

                                                                             

Fig 6-5 Type-II CB for (A) LCRA service area in Texas (B) ABRFC service area in Oklahoma 

and (C) Southeast extreme event. 

(A) (B) 

(C) 
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Fig 6-6 Correlation coefficient for (A) LCRA service area in Texas (B) Southeast extreme event 

and (C) ABRFC service area in Oklahoma. 

 

6.1.4 Hourly Precipitation Maps 

Figure 6-7 shows examples of the hourly ECBPK- and OK-estimated precipitation 

fields. Also shown for comparison is the hourly Stage IV precipitation field. These precipitation 

(A) (B) 

(C) 
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fields in the figure represent the total precipitation accumulation for the Southeast extreme 

event that occurred in September, 2009. As the Stage IV precipitation field is the closest 

representation of the truth, it provides a sense of how good OK and ECBPK estimates are in 

comparison with truth.  

     

    

Fig 6-7 Event-total precipitation fields for the Southeast extreme event for hourly analysis of  

(A) OK (B) ECBPK and (C) Stage IV data and (D) percent difference between OK and 

ECBPK precipitation fields. 

Precipitation fields in Figure 6-7 show that the ECBPK estimates are better than the OK 

estimates in three different ways. Firstly, ECBPK picks up the large precipitation values better 

than OK.  ECBPK also does better in estimating very small precipitation. In addition, ECBPK 

captures the natural pattern of precipitation better than OK.  

(A) (B) 

(C) (D) 
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6.2 Estimation of MAP 

Estimation of MAP was evaluated by performing synthetic experiments using the hourly 

Stage IV data for the Southeast extreme precipitation event for both OK and ECBPK. Cross 

validation was carried out for thirty different combinations of the rain gauge network density and 

the basin scale. The smallest basin scale was 16 km2 (4 km x 4 km) and the largest was 4,096 

km2 (64 km x 64 km). The simulation was performed for five different synthetic gauge network 

densities ranging from 125 to 4,000 in a 600 x 600 km2 area. RMSE’s were calculated for all 

thirty combinations at varying thresholds of MAP. Figure 6-8 shows the percent reduction in 

RMSE as a function of the basin scale for different rain gauge network densities. The figure 

shows that reduction in RMSE by ECBPK over OK tends to increase with increasing gauge 

network density and basin scale. The maximum reduction in percent RMSE was found at a 

basin scale of 256 km2.  

   

Fig 6-8 Percent reduction in RMSE by ECBPK over OK for estimation of MAP for different 

gauge densities for basin sizes of (A) 64 km2 and (B) 256 km2.  

(A) (B) 
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As the basin size increases, the margin of improvement starts to fall (see Fig 6-9). This 

is due to the decreasing fractional coverage of precipitation within the basin. The fractional 

coverage of precipitation gets increasingly smaller as the basin size increases. Note that, when 

the fractional coverage is large (close to 1), ECBPK does exceedingly well.  Despite this 

limitation for large basins, it is clearly seen that ECBPK improves estimation of very large MAP 

over OK significantly (See the upper end of the scatter plots in Fig 6-10).  

 

   

Fig 6-9 Percent reduction in RMSE by ECBPK over OK for estimation of MAP for different 

gauge network densities for basin sizes of (A) 1,024 km2 and (B) 4,096 km2.  

 

 

 

 

(A) (B) 
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Fig 6-10 Scatter plots of OK and ECBPK estimates vs. the true MAP’s for a 4,096 km2 basin 

with 500, 1,000 and 2,000 gauges. 
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Fig 6-11 Conditional mean of the observed and estimated MAP for a 4,096 km2 basin with 

gauge network density of (A) 500 gauges, (B) 1000 gauges and (C) 2000 gauges. 

Fig 6-11 shows that, for MAP analysis, conditional means of ECBPK estimates are 

much closer to the truth in compared to the conditional means of OK estimates. This means, 

even though ECBPK estimates show negative percent reduction in RMSE over OK estimates 

for large basin scales, ECBPK is superior in estimating conditional mean for large precipitation. 

(A) (B) 

(C) 
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Chapter 7 

Conclusion and Future Recommendation 

 
A new precipitation analysis technique, extended conditional bias-penalized kriging 

(ECBPK) has been developed which explicitly reduces Type-II CB. It is shown that, in 

comparison with OK of which the current multi-sensor precipitation estimator (MPE) algorithm 

used by the National Weather Service (NWS) is a variant, ECBPK improves estimation of heavy 

to extreme precipitation at points and over a range of catchment scale.  

In this study, real world and synthetic experiments are carried out for the evaluation of 

point and mean areal precipitation using the newly proposed technique ECBPK. Real world 

cases include several heavy precipitation events in Lower Colorado River Authority’s (LCRA) 

service area, Arkansas-Red Basin River forecast Center’s (ABRFC) service area and 

Southeastern US. Synthetic experiments are carried out using the Stage IV data. The main 

findings of the real world and synthetic experiments are summarized below: 

1)  For estimation of point precipitation, ECBPK reduces RMSE over OK almost 9 to 14 

percent for precipitation larger than 20 to 30 mm though negative reduction is seen for 

very small precipitation (less than 5 mm). 

2) The OK estimates show increasing underestimation for precipitation larger than 25-30 

mm. The ECBPK estimates show much smaller underestimation for large precipitation 

amounts. 

3) When compared to that from OK, the conditional mean of point precipitation estimates 

from ECBPK at varying thresholds of observed precipitation is much closer to the truth. 

It is also found that a denser gauge network is able to produce more accurate 

estimates in terms of conditional mean. 

4) The ECBPK precipitation fields are able to capture the natural pattern of precipitation 

better than the OK precipitation fields. 



 

43 

5) The ECBPK estimates show slightly larger correlation with observed precipitation in 

comparison with the OK estimates for large amounts of precipitation. 

6) Type-II CB in ECBPK estimates is 20 to 35 percent smaller than that in OK estimates. 

7)  The ECBPK estimates show significant improvement over OK for basin areas ranging 

from 16 km2 to 256 km2. The largest improvement was found for the basin scale of 256 

km2 where the reduction in RMSE by ECBPK over OK reaches almost 30 percent. For 

basin size larger than 256 km2, the marginal reduction is limited.   

For future research, it is recommended that multivariate extension of ECBPK and CB-

penalized linear filter be explored. In the context of multisensor QPE, ECBPK is expected to 

provide improvement when the auxiliary variable(s) are not very skillful. Such technique is 

hence particularly applicable when merging rain gauge data with satellite QPE, NWP analysis 

and/or cool-season radar QPE. In the context of linear filtering, one may expect the CB-

penalized approach to improve filter performance when the observations and/or the dynamical 

model used is susceptible to CB. 
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