
LEARNING PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

USING ABSTRACT ACTIONS

by

HAMED JANZADEH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2012

Copyright c© by HAMED JANZADEH 2012

All Rights Reserved

To my family.

ACKNOWLEDGEMENTS

First of all, I would like to express the deepest appreciation to my supervising

professor, Dr. Manfred Huber. His deep knowledge of the topic has made him my

main source of education throughout this research project. His patience and skill

in teaching, his enthusiasm in learning and his kindness and understanding in all

situations will always be a great role model of my life.

I am grateful to my thesis committee members Dr. Farhad Kamangar and Dr.

Vassilis Athitsos for their interest in my research and for taking time to serve in my

thesis committee. I like to thank Dr. Gergely Zaruba, Mr. David Levine, Dr. Victoria

Chen, Dr. Dick Schoech and Dr. Manfred Huber for giving me the opportunity to

serve as a member in the Luminant and the Teleherence projects. I also like to thank

Dr. Bahram Khalili, the graduate advisor, who has always been helpful and kind

towards me and all other students.

Finally, I would like to express my deep gratitude to my parents, Hossein and

Zahra, my sister Niloofar and my brother in law Syamak for their supportive role and

for enduring my absence during all these years. I like to express an special thank to

Bahar who made it possible for me to have an ease of mind and work on my thesis by

helping me with my personal life and also by preparing the graphs and figures used

in this document.

November 25, 2012

iv

ABSTRACT

LEARNING PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

USING ABSTRACT ACTIONS

HAMED JANZADEH, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Manfred Huber

Transfer learning and Abstraction are among the new and most interesting re-

search topics in AI and address the use of learned knowledge to improve learning

performance in subsequent tasks. While there has been significant recent work on

this topic in fully observable domain, it has been less studied for Partially Observable

MDPs. This thesis addresses the problem of transferring skills from the previous ex-

periences in POMDP models using high-level actions (Options) in two different kind

of algorithms: value iteration and expectation maximization. To do this, this thesis

first proves that the optimal value function remains piecewise-linear and convex when

policies are made of high-level actions, and explains how value iteration algorithms

should be modified to support options. The resulting modifications could be applied

to all existing variations of the value iteration and its benefit is demonstrated in an

implementation with a basic value iteration algorithm. While the value iteration algo-

rithm is useful for the smaller problems, it is strongly dependent on knowledge of the

model. To address this, a second algorithm is developed. In particular, expectation

maximization algorithm is modified to learn faster from a set of sampled experiments

v

instead of using exact inference calculations. The goal here is not only to accelerate

learning but also to reduce the learner’s dependence on complete knowledge of the

system model. Using this framework, it is also explained how to plug options in the

model when learning the POMDP using a hierarchical EM algorithm. Experiments

show how adding options could speed up the learning process.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

Chapter Page

1. INTRODUCTION . 1

1.1 Markov Models . 3

1.1.1 MDPs . 4

1.1.2 POMDPs . 5

1.2 POMDP Policies . 7

1.2.1 Belief State Mapping . 8

1.2.2 Finite State Controllers . 9

1.3 Skill Abstraction and Options . 10

2. RELATED WORK: LEARNING POMDP POLICIES 12

2.1 Value Iteration Algorithm . 13

2.1.1 Modeling the Value Function using α-vectors 13

2.1.2 Calculation of α-vectors . 15

2.2 Expectation Maximization Algorithm 15

2.2.1 Modeling the Problem using Bayesian Networks 16

2.2.2 Learning the Optimal Policy using EM 18

3. LEARNING ABSTRACT POMDP POLICIES 22

3.1 POMDP Options . 22

3.1.1 Belief State Mapping Options 23

vii

3.1.2 Finite State Controller Options 24

3.2 Value Iteration for Abstract Policies 25

3.2.1 Generalized Belief State Update Function 25

3.2.2 Value Function for the Optimal Abstract Policy 27

3.2.3 Value Iteration Algorithm . 31

3.3 Expectation Maximization for Abstract Policies 32

3.3.1 Realtime Learning for Model-less POMDPs using Sampling . . 33

3.3.2 Hierarchical Policy . 36

4. EXPERIMENTAL RESULTS . 38

4.1 The Ambulance Problem . 38

4.2 Value Iteration . 40

4.2.1 Implementation . 40

4.2.2 Evaluation . 41

4.3 Expectation Maximization . 43

4.3.1 Implementation . 43

4.3.2 Evaluation . 46

5. CONCLUSION . 49

REFERENCES . 51

BIOGRAPHICAL STATEMENT . 53

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 A sample Finite State Controller . 9

2.1 A sample optimal value function for a two state POMDP problem . . 14

2.2 A Bayesian Network that defines the probability of receiving a boolean

reward at time-step T . 16

3.1 A single slice of the Bayesian network for an abstract policy with op-

tions used for calculating the reward probability. The original Bayesian

network was illustrated in Figure 2.2 36

4.1 A sample Ambulance problem with two civilians 39

4.2 The computation times for learning an Ambulance-3x3 problem . . . 42

4.3 The computation times for learning an Ambulance-4x4 problem . . . 42

4.4 Optimal policy’s utility vs. computation time on a problem with 100

states. The dashed curve shows the performance of the EM method with

exact inference and the solid line is for the EM method with sampling 47

ix

CHAPTER 1

INTRODUCTION

Nowadays, computers are playing a major role in solving our everyday problems

and it is no longer possible to accomplish most of our routine tasks without their aid.

The way we solve our real-life problems using computers is through first modeling

the problems in some mathematical form and second developing computer algorithms

to solve the formalized problems. Among all the different mathematical models we

have to formalize our problems, the Markov processes are very useful when it comes

to planning or decision making under uncertainty. This makes it very important

to develop effective methods for mapping problems into these models and to design

efficient learning algorithms to solve them.

The Partially Observable Markov Decision Processes (POMDPs) provide a

broader definition and a better modeling of the uncertainties in the environment

compared to MDPs. As a result, POMDPs are usually better models for formaliz-

ing the real-world problems and there already exist a significant number of different

kinds of learning algorithms for these models, including, Value Iteration [1], Policy

Gradient [2], Expectation Maximization algorithms [3], etc. However, almost all of

these algorithms are still not effective for problems with more than a few thousand

states. On the other hand, real-world problems usually require a huge (if not infinite)

number of states if directly modeled as a Markov process.

While developing faster algorithms is effective for addressing this issue, another

approach is to re-evaluate the methods we use to formalize our problems. Abstraction

and Transfer Learning [4] are among the most interesting new topics in AI that

1

take advantage of this concept and help in solving more complicated problems using

the existing algorithms but through systematic down-scaling of the problem size and

reusing of already learned skills.

Unfortunately, Abstraction and Transfer Learning are not well studied topics

for POMDPs so far. In this thesis, we show how transferring knowledge and abstrac-

tion is possible in the POMDP models through use of high-level actions (Options) and

we present two different algorithms to learn optimal policies for these models created

from high-level actions. The first learning algorithm we introduce is based on the

conventional value iteration algorithms that currently exist for POMDPs. Some vari-

ations of the value iteration algorithm are among the fastest algorithms that exist for

learning POMDPs. The second algorithm is an Expectation Maximization method.

In this new approach we show how to learn high-level policies for model-less POMDP

problems. In a model-less problem there is no knowledge of the environment’s prob-

ability functions including those for state transition, observations and rewards.

In this work, a new POMDP problem is also introduced which is a simplified

version of the Robocup Rescue Simulation[5] problem. This problem is very scalable

and could be a useful testbed for evaluating abstraction methods on POMDPs.

Throughout the rest of this chapter, we explain some well-known re-enforcement

learning concepts like Markov models, belief states, finite state controllers and op-

tions. Chapter 2 gives a review of some existing learning algorithms for the POMDP

models that are related to this research work. In Chapter 3, we explain our two learn-

ing algorithms for abstract POMDP policies. Finally, the simulation environment,

the implementation of the algorithms and the experimental results are explained in

Chapter 4.

2

1.1 Markov Models

Consider the problem of navigating a robot in a room or a hallway. The robot

has several actions to execute, including, move forward, turn left, turn right and

etc. The aim could be to find the exit doorway or to search for an object in the

environment.

The robot actions are not necessarily accurate. For example, the robot could

try to move 10 inches forward but it is not able to do that accurately all the time. It

could end up moving a little bit more or a little less than 10 inches. The robot could

also diverge from moving in a straight line.

In this world, let us assume the time is discrete and each step of the time is

called a time-step. The robot takes an action in each time-step and each action takes

exactly one time-step to be executed. The robot has to make decisions about which

action to take at each time-step in order to reach the defined goal and the method it

uses to choose actions is called its policy.

In each problem, all different parameters that define what the world looks like

at each time-step are called the world state. For example, the location of the robot

and the obstacles in the environment could define the state of the world in the robot

navigation problem. Each time a robot takes an action the world transits from one

state to another state according to some probability distributions defined for this

specific world or environment. As explained earlier, these state transitions are not

necessarily deterministic because a robot could end up in different world states after

executing an action because the action execution is not accurate.

The environment or the world also provides rewards to the robot at each time-

step. The reward is simply a number and defines how well the robot has performed

in each time-step and the robot is trying to maximize the total reward it receives or

its utility. Using a reward system reduces the specific problem of designing a robot

3

that learns performing a particular task into the general problem of making a robot

that maximizes the total reward it gains. In the navigation problem, the robot could

receive a big positive reward when it finds the exit doorway or the object it is looking

for and a reward of zero at any other time. It could also receive a small negative

reward for the non-rewarding situations. The negative rewards could persuades the

robot to find the goal as soon as possible if it wants to maximize its total reward.

The amount of reward the robot receives depends on the action and the current state

of the world.

A reward could also be discounted which means the reward for a given state

and action is going to be less significant if it happens further in the future. With a

discounted reward system, the robot could be motivated to find the goal as soon as

possible even without adding negative rewards for actions. This means it makes the

robot solve the problem efficiently. A discounted reward utility also has some other

nice mathematical properties that will be discussed later.

A world like the one just explained is a Markov model, if the probability of

the next state of the world depends only on the current state and the action chosen

by the robot at the current time-step [6]. For example, in the navigation problem,

the location of the robot in the next time-step should depend merely on the current

location and the type of action chosen by the robot at the current time-step. If the

next location depend on where the robot was or what have happened in the past, the

model is not Markov.

1.1.1 MDPs

A specific type of Markov models which is called a Markov Decision Process

(MDP) [6] is one in which the robot knows the state of the world accurately in each

4

time-step. In the robot navigation problem, the world is a MDP if the robot knows

all the world parameters, e.g. its current location, very accurately all the time.

MDPs are not very realistic but they have really nice properties. A problem

that is modeled by an MDP could be very easily solved using a significant number of

efficient learning algorithms already developed for these models [7].

A finite MDP is formally defined by the tuple < S,A, T,R, γ > where:

• S is a finite set of all the states of the world;

• A is a finite set of all the actions available to the agent;

• T : S × A → Π(S) is the State Transition Probability Function and T sa
s′ =

P (st+1 = s′|st = s, at = a) is the probability of transiting to the state s′ after

taking the action a in the state s;

• R : S × A → R is the Reward Function and Rsa = R(s, a) is the reward to

receive after taking the action a in the state s;

• γ ∈ [0, 1] is a discount factor. Discount factor defines how much a potential

reward loses its value at each time-step. For example, if the discount factor is

0.8 and there is a reward of 10 for an specific state-action pair, the reward’s

effect on the utility of the agent is going to be equal to 8 if it happens in the

second time-step, equal to 0.64 if it happens in the third time-step and so on.

1.1.2 POMDPs

A Partially Observable Markov Decision Process (POMDP) uses a broader def-

inition of the Markov models. The difference with MDPs is that the world state

is not known by the agent in a POMDP model; instead, probabilistic observations

corresponding to the underlying state are received from the environment after taking

each action.

5

The POMDP version of the robot navigation problem could be the robot not

knowing its current location by default; instead, the robot could receive observations

from the environment. For example, the robot bumper could sense when it hits an

obstacle or the robot could have a radar sensor that measures its distance from the

wall or any object in front of it. It is important to note that the observations could

also be inaccurate in the same way as the state transitions. In the robot navigation

problem, for example, the distance sensors might have a measurement error. This

could be modeled by a probability distribution.

Compared to MDPs, POMDP models are more realistic representations of real-

world environments and therefore being able to solve POMDP problems is a positive

step towards solving more realistic problems.

A finite POMDP is formally defined by the tuple < S,A,Ω, I, T, Z,R, γ >

where:

• S is a finite set of all the states of the world;

• A is a finite set of all the actions available to the agent;

• Ω is a finite set of all the observations the agent could receive from the environ-

ment;

• I : Π(S) is the Initial State Probability Function and Is is the probability of the

world starting in state s;

• T : S × A → Π(S) is the State Transition Probability Function and T sa
s′ =

P (st+1 = s′|st = s, at = a) is the probability of transiting to the state s′ after

taking the action a in the state s;

• Z : S × A→ Π(Ω) is the Observation Probability Function. This defines Zsa
z =

P (zt = z|st = s, at−1 = a) the probability of receiving the observation z after

taking the action a and ending up in the state s;

6

• R : S × A → R is the Reward Function and Rsa = R(s, a) is the reward to

receive after taking the action a in the state s;

• γ ∈ [0, 1] is the Discount Factor.

1.2 POMDP Policies

As explained through examples, the main reason for modeling an environment

with a Markov model is to find a way to learn how to perform a task. Learning here

means determining what action to take at each time-step in order to perform the

task. This is called the agent’s policy. A policy π therefore is a function that returns

a choice of action at each time-step. An optimal policy is one that makes the optimal

action choices to finish the task efficiently or in other words optimizes the expected

utility.

In a MDP model, the agent can make decisions based on the current state of the

world which is known to it. Therefore, the policy can be defined as a mapping from

the world states to actions. A deterministic policy π : S → A is a direct mapping

from the states to actions and a stochastic policy π : S → Π(A) is a mapping from

each of the states to a probability distribution on all actions Π(A).

In a POMDP, on the other hand, the world state is not known by the agent and

it can therefore not define policies by mapping states to actions. That is why there

should be a different way to model policies for POMDP models. Defining policies as

a mapping from Belief States to actions [8] and also as a mapping from the agent’s

Memory States to actions (using Finite State Controllers) [9] are two of the most

important methods that address this problem and that we also use in our work.

7

1.2.1 Belief State Mapping

A Belief State b is a probability distribution over all the world states. Belief

state defines the probability of being at each of the individual states. In a discrete

and finite Markov model, a belief state b is a vector of length |S| of probability values

and bs = P (s|b) defines the sth element of this vector which is the probability of being

in state s given b.

When the world starts in a POMDP model, the agent has an Initial Belief State

I which is defined by the POMDP model. The initial belief state could be a uniform

probability distribution over all the world states which means the robot has no idea

where it is in the beginning.

The agent updates its belief state over time as it explores the world and receives

observations. It can do this updating because the agent has the POMDP model,

so it knows all the world states, the state transition probabilities, the observation

probabilities, etc. Hence, when the agent takes and action and receives an observation,

using inference it could update its assumptions about the probability of being in

different states of the world. For example, when the navigating robot’s world is an

empty room and it hits an object, the robot figures it should be somewhere next to

one of the walls and could update its belief state accordingly.

Formally, a belief state b is updated to the belief state b′ or T (b, a, z) after

taking action a and receiving observation z as defined below:

Ts′(b, a, z) = b′s′ =

∑

s bsT
sa
s′ Z

s′a
z

∑

s′′

∑

s bsT
sa
s′′Z

s′′a
z

(1.1)

Now, a POMDP policy can be defined as a function that maps from the current

belief state to actions. This makes the policy function very complex because it is

defined over the infinite space of belief states instead of the finite space of the world

states. However, at least, it defines a way to model POMDP policies.

8

Figure 1.1 A sample Finite State Controller.

1.2.2 Finite State Controllers

Using Finite State Controllers (FSCs) is another well-known method to model

POMDP policies. A FSC policy is a state machine with a finite number of states called

Memory States. The agent has an internal memory and takes actions according to

its memory state. Therefore, the function that maps the memory states to actions

defines the policy. There is also a memory state transition function involved. The

current memory state transits to another memory state at each time-step, based on

the observation received from the environment. Figure 1.1 shows a sample finite state

controller with 6 states.

Formally, a FSC is defined by the tuple < M,A,Ω, π, µ, ν, η > where:

• M is a finite set of memory states;

• A is the finite set of actions;

• Ω is the finite set of observations;

• π is the action probability function and πm
a = P (at = a|mt = m) is the proba-

bility of taking action a in memory state m;

9

• µ is thememory state transition function and µmz
m′ = P (mt+1 = m′|mt = m, zt = z)

is the probability of transiting from memory state m to memory state m′ if ob-

servation z is received;

• ν is the initial memory state probability function and νm = P (m0 = m) is the

probability of starting in memory state m; and

• η is the termination probability function and ηm = P (Terminate|m) is the

probability of terminating in memory state m.

1.3 Skill Abstraction and Options

There has been a significant amount of research on how to optimize the learning

algorithms for planning on Markov models, yet most of the problems that can be

solved in a reasonable time using the existing algorithms are still relatively small

problems with at most a few thousand states. This is no way close to solving real-

world problems like those we solve in our every day life as human beings. Out of the

reasons, one could say maybe the learning algorithms are still very slow and that’s

true to some extent. However, the other important factor to consider is that humans

are very efficient at abstracting problem models before planning. We make high-level

decisions on how to reach a goal and then we plan for the details hierarchically, or we

might already know how to handle some of the details from our past experience.

Abstraction is fortunately studied in the AI world too, although, mostly as

part of traditional planning and on MDPs. For the later, Precup, Sutton, and Singh

in 1998 [10], introduce abstract actions for the Semi-MDP models which they call

Options. An option is an already learned policy for performing a sub-task that could

be transferred and used in solving other problems as an additional action in the MDP

model. For example, when a robot learns how to go from one room to another room,

10

it could use that as one of its skills or actions when learning to plan for another

problem like cleaning the house.

Learning the optimal policy for the MDPs when options are added is very simi-

lar to the original case. Each option is a regular policy that uses lower-level actions to

execute. For each option, after being learned, some statistics including the expected

reward and transition probability functions are calculated and preserved. The ex-

pected reward function Rso defines the expected sum of the discounted rewards that

could be obtained if executing the option o in state s and before the option termi-

nates. The state transition function T so
s′ gives the probability of option o terminating

in state s′ if executed at the state s. These functions obviously look very similar to

those of the regular actions, and with slight modifications to the algorithms and the

model, options can be added to the model’s set of actions and used for learning of

future problems.

The only reason options could not be directly applied to the MDPs is that they

take longer than a single time-step to execute. In fact, an option could take a variable

amount of time - from one time-step to infinitely long - before terminating. This

contradicts the definition of the Markov models and disturbs the reward discounting.

Semi Markov Decision Processes (SMDPs) [11], however, redefine the state probability

dependency and allow the options to be used in the model without any contractions.

The discounting problem is also solvable if the discount factor is included in the

option’s state transition function. At this point, the Bellman equations of the regular

MDPs with a small modification can be used again to benefit from options.

11

CHAPTER 2

RELATED WORK: LEARNING POMDP POLICIES

The previous section explained how POMDP policies could be represented for-

mally. However, the actual goal is to find the Optimal Policy. The optimal policy is

a policy that maximizes the agent’s utility.

We explained earlier that a policy which optimizes the expected total reward

or expected utility is equivalent to the one that performs the task optimally if the

reward function is defined properly for the given task. As a result, we are trying to

address the problem of finding the policy that maximizes the expected utility. This

is called Reinforcement Learning.

For a MDP model, the utility or the value function of a given policy is a function

of the world states V π : S → R that defines the expected total reward to gain

using policy π if starting from the state s. This value function can be easily defined

recursively using the Bellman equations [6] as follows:

V π(s) =
∑

a

π(s, a)
(

Rsa + γ
∑

s′

T sa
s′ V

π(s′)
)

. (2.1)

In Equation 2.1, π(s, a) = P (a|s, π) is the probability of taking action a at state s

using policy π. Using dynamic programming with this equation, the value of a policy

could be easily calculated for each state. However, the goal is not just to calculate

the value of a single policy, but to find the optimal policy. This is possible, too. Let

us define V ∗ as the value of the optimal policy. Then, we will have:

V ∗(s) = max
a

(

Rsa + γ
∑

s′

T sa
s′ V

∗(s′)
)

. (2.2)

12

This value function can also be calculated very straightforwardly. We set all the

values equal to zero in the beginning and then will iteratively update the function

value for all of the states using Equation 2.2. This algorithm is called Value Iteration.

A discounted reward function shows its importance here and guarantees the value

function will converge eventually in all of the MDP problems. Having the optimal

value function in hand, now the optimal policy is one that in each state chooses the

action which maximizes the utility according to the Equation 2.2.

The value iteration algorithm that was just explained works only for MDPs

because it defines the optimal policy as a function of states and also relies on the fact

that a policy is a mapping from states to actions. This is not going to work for a

POMDP model, because the agent has no knowledge of the current state. Even if it

computes the optimal value function this way, it is not able to execute a policy which

is a function of the states.

2.1 Value Iteration Algorithm

The value function for a POMDP model could be defined as a function of the

current belief state which is available to the agent though:

V ∗

n (b) = max
a

∑

s

bs

(

Rsa + γ
∑

s′

∑

z

T sa
s′ Z

sa
s′ V

∗

n−1(T (b, a, z))
)

, (2.3)

where, V ∗
n (b) is the value of the optimal policy at belief state b in the nth iteration

and Ts′(b, a, z) = b′(s′) is the probability of state s′ under the updated belief state b′

after taking action a and observing z [8].

2.1.1 Modeling the Value Function using α-vectors

In Equation 2.3, value function is again defined recursively but over belief states

instead. This unfortunately poses a huge problem: it is not possible to directly solve

13

Figure 2.1 A sample optimal value function for a two state POMDP problem.

this equation using dynamic programming or any other finite time algorithm like we

did for MDPs, because this function is defined over a continuous space of belief states

instead of a finite set of states. As a result, one iteration of dynamic programming or

value iteration algorithm would require an infinite amount of time to compute. Also,

representing the value function requires an infinite amount of space.

In 1973, Smallwood [8] shows that the optimal value function for POMDPs has

some nice properties that makes it possible to be solved using iterative algorithms.

Smallwood shows that the optimal value function is Piece-wise Linear and Convex

over the space of belief states and could be represented by a finite set of vectors.

Figure 2.1 illustrates what a piece-wise linear and convex value function looks like for

a sample POMDP problem with two states.

As can bee seen, there are a number of linear functions in the space, each could

be represented by a vector called alpha vector, and the value at each belief state is

equal to the maximum value that any of the linear functions return for that belief

state. This is formally shown in Equation 2.4:

V ∗

n (b) = max
α

[

∑

s

bsαs(n)
]

(2.4)

where, α(n) is one of the α-vectors on iteration n. The size of each alpha vector is

equal to the number of states |S|.

14

Using α-vectors, it is now possible to formulate the optimal value function in a

finite space and it just remains to find an algorithm to calculate these vectors.

2.1.2 Calculation of α-vectors

Using an iterative method again, α-vectors can be calculated recursively using

the α-vectors of the previous iteration:

αs(n) = Rsa + γ
∑

s′

T sa
s′ Z

sa
z αs′(n− 1) ∀a, z, α. (2.5)

This is called the value iteration algorithm for POMDPs. After computing the

optimal value function, a policy is extracted from this function. Each alpha vector

has a mapping action which is the one it was created with (in Equation 2.5). The

optimal policy is the one that returns the action associated to the α-vector which

maximizes the value function for a given belief state:

π∗(b) = argmax
a(α)

∑

s

bsαs (2.6)

This algorithm has its own weakness yet. The problem is that the number

of α-vectors grows rapidly after each iteration. This can make the algorithm com-

putationally very expensive or even implausible, if it is implemented the exact way.

However, there already exists a lot of work since 1973 on fixing this problem and mak-

ing different variations of the value iteration algorithm that are computationally less

expensive. Most of these algorithms usually work by approximating the α-vectors

through either sampling the belief state space or by defining bounds on the value

function [1][12].

2.2 Expectation Maximization Algorithm

Optimizing the policy using the Expectation Maximization (EM) algorithm [13]

is another approach to find the optimal policy for POMDP models [3]. This rela-

15

Figure 2.2 A Bayesian Network that defines the probability of receiving a boolean
reward at time-step T .

tively new learning method which is almost as fast as some advanced value iteration

algorithms provides a powerful framework for applying various useful techniques like

hierarchical learning and approximation.

2.2.1 Modeling the Problem using Bayesian Networks

In [3], Toussaint et al. reduce the problem of policy learning for POMDPs

into a parameter learning problem for Bayesian Networks (BN). This method uses a

Bayesian network to define the probability of receiving a boolean reward r̂ ∈ {0, 1}

at the end of a finite horizon using a policy that is modeled by a Finite State Con-

troller (FSC). All the variables that contribute to this probability value and their

dependencies are depicted in a BN using graphical models.

Figure 2.2 illustrates a Bayesian network that includes all of the variables con-

tributing to the probability P(r̂T = 1) and defines their conditional dependencies.

r̂T is a boolean reward that is received at the end of the finite horizon of length T .

This network consists of T time-slices each for one time-step t = 1...T . Each slice

of the network defines the probabilities of variables st (the state of the world), at

(the action taken), zt (the observation received) and mt (the memory state of the

16

FSC policy) at the time-step t. Connections define conditional dependencies of the

variables. For example, the probability of taking an action depends on the memory

state of that time-step, so there is an arrow from a memory state to an action in each

slice. According to the definition of the Markov processes, the reward received at the

end of horizon depends only on the last action taken and the state of the world at

the last time-step.

In order to follow the same definition for the reward function as explained for

the Markov processes, the probability of receiving the boolean reward r̂ is considered

to be equal to the normalized value of the actual reward defined by the Markov model:

r̂T = P (r̂ = 1|T) =
R(sT , aT)

∑

sR(s, aT)
. (2.7)

In this network, the Conditional Probability Distributions (CPDs) of the vari-

ables are defined either by the POMDP model or the FSC policy. The POMDP

model defines the probabilities of the states st, the observations zt and the reward as

follows:

• P (s0 = s) = Is is the initial state probability,

• P (st+1 = s′|st = s, at = a) = T sa
s′ is the state transition probability,

• P (zt = z|st = s, at−1 = a) = Zsa
z is the observation probability, and

• P (r̂T = 1|aT = a, sT = s) = r̂T is the boolean reward probability as defined in

Equation 2.7.

The FSC also defines the probabilities of actions at and the memory states mt.

• P (m0 = m) = νm is the initial memory state probability,

• P (mt+1 = m′|mt = m, zt = z) = µmz
m′ is the memory state transition probability,

and

• P (at = a|mt = m) = πm
a is the action probability.

17

Now, using a BN optimization technique we could maximize the probability of

receiving a reward at the end of horizon P (r̂ = 1|T) through modifying the CPDs

that are related to the policy (ν, µ and π), while the CPDs that are related to the

POMDP model remain fixed. This is because we are adjusting the policy not the

world model.

The problem is not solved yet: we aim to maximize the total discounted reward

not the expected reward to receive at a specific time-step. Toussaint et al. [3] solve this

problem by defining one BN for the probability of reward at the end of each horizon

limit T = [0...∞] and redefining the optimization objective function as follows:

θ∗ = argmax
θ

∞
∑

T=0

γTP (r̂ = 1|T, θ), (2.8)

wherein, θ = {π, µ, ν} is the set of all CPDs or parameters that define the policy and

θ∗ is the set of parameters for the optimal policy.

Before doing anything to solve this equation, let’s first make our life easier

by defining the objective function using the log-likelihood of the utility which won’t

change the result:

θ∗ = argmax
θ

log
(

∞
∑

T=0

γTP (r̂ = 1|T, θ)
)

(2.9)

2.2.2 Learning the Optimal Policy using EM

To solve the optimization problem given in Equation 2.9, we need to calculate

the probability P (r̂ = 1|T, θ) for each θ and T . This probability is calculated using

inference on the BN model and in the simplest form this could be shown by:

θ∗ = argmax
θ

log
(

∞
∑

T=0

γT
∑

X

P (r̂ = 1, X|T, θ)
)

(2.10)

wherein, X =< m0, s0, z0, a0...,mT , sT , zT , aT > is the set of all of the hidden variables

in the network.

18

Using Equation 2.10, one can use any available optimization technique (e.g.,

expectation maximization or gradient ascent) to find the optimal policy. In this

section, we explain how to solve this problem using the EM algorithm.

The first thing to do before EM could be used is to convert the log of sums

equation into a sum of logs by replacing the objective function with a lower bound

obtained using Jensen’s inequality [13]. This gives a mathematically much nicer

formulation of the problem. For Jensen’s inequality to be applied, we need to convert

the objective function in Equation 2.10 to this form: log(
∑

X P (X)F (X)). In order

to do this, first, the objective function is multiplied by a constant factor 1−γ. Second,

it is multiplied and divided by an arbitrary probability distribution over X that we

name q(X). These two operations do not change the result of optimization, but will

let us have P (X) = q(X) and F (X) = (1 − γ)γTP (r̂ = 1, X|T, θ)/q(X). The result

is:

θ∗ = argmax
θ

log
(

∞
∑

T=0

∑

X

(1− γ)γT
q(X)P (r̂ = 1, X|T, θ)

q(X)

)

. (2.11)

Applying Jenson’s inequality changes the objective function to this form:

θ∗ ≈ argmax
θ

∞
∑

T=0

∑

X

(1− γ)γT q(X)log
(

P (r̂ = 1, X|T, θ)
)

(2.12)

Now, the EM algorithm can be used to optimize the policy using Equation 2.12

through several iterations of the E (Expectation) and M (Maximization) steps. In the

E-step, the objective function is maximized w.r.t. q(X) while holding θ fixed which

results in:

q(X) = P (X|r̂ = 1, T, θ). (2.13)

In the M-step, the objective function is maximized w.r.t. θ while holding q(X) fixed:

θn+1 = argmax
θ∗

∞
∑

T=0

∑

X

[

(1− γ)γTP (X|r̂ = 1, T, θn)logP (r̂ = 1, X|T, θ∗)
]

. (2.14)

19

The M-step can be solved by finding where the gradient of Equation 2.14 w.r.t. θ

is equal to zero. Lagrange Multipliers [13] are needed to enforce the optimization

constraints which basically say all of the probability values should remain in the

range [0, 1] and should add up to 1.

Optimizing Equation 2.14 using Lagrange Multipliers will give us the following

results for the E and the M Steps. In the E-step:

E[πm
a] =

∞
∑

T=0

T
∑

t=0

γTP (mt = m, at = a|r̂ = 1, T, θ(n)) (2.15)

E[µmz
m′] =

∞
∑

T=0

T−1
∑

t=0

γTP (mt = m, zt+1 = z,mt+1 = m′|r̂ = 1, T, θ(n)) (2.16)

E[νm] =
∞
∑

T=0

γTP (m0 = m|r̂ = 1, T, θ(n)) (2.17)

And, in the M-step:

(πm
a)

(n+1) =
E[πm

a]
∑

m′ E[πm′

a]
(2.18)

(µmz
m′)

(n+1) =
E[µmz

m′]
∑

m′′ E[µmz
m′′]

(2.19)

(νm)
(n+1) =

E[νm]
∑

m′ E[νm′]
(2.20)

It is obvious the E-step is still too complex, because it requires too many infer-

ence operations (in fact an infinite number of them) to be calculated on the Bayesian

networks we built. Toussaint et al. [3] suggest that if the Forward-Backward algo-

rithm is used to calculate the inferences (which is a rational way to do inference), the

Forward and Backward messages could be calculated on all of the networks simulta-

neously, because they are all subsets of each other. Also, both the Forward and the

Backward messages could be truncated at some time length when the impact of the

message is negligible due to the effect of the discount factor. The later suggestion

gets rid of the problem with the infinite number of inferences required, because the

20

sum in the E-step is not calculated for the T values up to infinity. Please refer to the

original paper for details.

21

CHAPTER 3

LEARNING ABSTRACT POMDP POLICIES

Abstraction and Transfer learning are effective methods to reduce the problem

complexity and effectively speed up the algorithms when learning optimal policies for

Markov decision processes [4].

This topic is studied extensively on the Markov Decision Processes; however, the

Partially Observable Markov Decision Processes are still suffering from the absence

of effective models and learning algorithms that support abstraction and transffering

of skills. Unfortunately, the techniques developed for MDP models are not directly

applicable to the POMDPs because the learning algorithms are completely different

and a lot more complicated in the latter case. Most of this comes from the value

function being defined over the infinite space of belief states and complex methods

being used to formalize it using a finite number of parameters.

In this chapter, we explain two different methods we developed for learning

policies with high-level actions (options) for POMDP models. Learning policies using

abstract actions and removing the unnecessary primitive actions could reduce the

model size and speed up the learning algorithm. In addition, if an already learned

policy to perform one task could be transferred to another environment as a new

action, it could speed up the process of learning how to perform other tasks.

3.1 POMDP Options

As explained earlier too, an option is a policy that defines how to perform a

sub-task or an abstract action. As a result, a POMDP option is also a POMDP

22

policy and is defined the same way as the POMDP policies are defined. This means a

POMDP option could be defined by mapping belief states to actions using α-vectors

or by mapping memory states to actions using FSCs. An option has some sort of

start and termination condition too.

3.1.1 Belief State Mapping Options

If an option is defined as a mapping of belief states to actions, there needs to be

a method to represent it using a finite space of parameters. Since a POMDP option

is a regular POMDP policy, it is possible to represent its value function using a finite

set of vectors. To distinct these vectors from the vectors defining the actual policy’s

value function, let us name the vectors representing an option’s value function as

β-vectors.

The equation for the expected discounted reward to get using a POMPD option

o at a particular belief state b is similar to the equation for the value function of a

regular POMDP policy at belief state b. As a result, we have:

rob = R(b, o) = max
l

∑

s

bsβ
o,l
s , (3.1)

where, rob is the expected reward to get executing option o at belief state b and βo,l
s is

the lth β-vector of option o. The option’s policy is also defined as follow:

πo(b, a) =



















1 if a = argmax
a(βo)

∑

s bsβ
o
s ,

0 otherwise.

(3.2)

This means, the action a(βo) associated to vector βo is the action to be chosen at

belief state b by option o, if the corresponding vector is the one maximizing Equation

3.1 at belief state b. As you can see, the policy function is piece-wise constant over

b, because it returns same results in a belief state area where a β-vector is dominant.

23

We define the initialization and termination probabilities also as functions of

belief states: νo(b) and ηo(b) respectively. Later on, we explain what conditions

and limitations should be applied to these functions in order for our value iteration

algorithm to work.

3.1.2 Finite State Controller Options

An option could also be defined using a FSC the same way as a regular POMDP

policy is defined using FSCs. Therefore, for each option, there are a set of memory

states, a function π that maps from memory states to actions, a function µ that

defines the memory state transition, and functions ν and η defining the initialization

and termination probabilities over memory states. Please read the formal definition

of FSCs in Chapter 1.

The expected reward to get with an option defined this way could be calculated

using dynamic programming with equation below:

roms =
∑

a

πo(m, a)
(

R(s, a) + γ
∑

s′,z,m

T sa
s′ Z

s′a
z µmz

m′ rom′s′

)

, (3.3)

where, roms is the expected discounted reward to get with option o at state s and

memory state m. Therefore, the expected reward to get running option o at belief

state b is:

rob = R(b, o) =
∑

s,m

bsν
o
mr

o
ms. (3.4)

In practice, we do not need to calculate the expected rewards for each option, if

we are using the EM algorithm (as will be explained later). However, it is possible to

use FSC options for value iteration algorithm too where the expected rewards must

be precomputed in this case.

The option’s initialization and termination probabilities are defined as functions

of memory states, when an option is defined using FSCs.

24

3.2 Value Iteration for Abstract Policies

The first method we suggest for learning abstract policies for POMDPs is a

modified version of the value iteration algorithm. Some variations of the regular

value iteration algorithm for learning POMDP policies from primitive actions are

among the fastest that currently exist.

It is possible to learn POMDP policies with primitive actions using iterative

algorithms, first of all because it has been proven that the optimal value function

made from primitive actions is piece-wise linear and convex and as a result could

be formalized with a finite set of vectors. Secondly, it is possible to calculate these

vectors recursively using an iterative algorithm we call value iteration (as described

in section 2.1).

In this section, we prove the optimal POMDP value function calculated using

abstract actions remains piece-wise linear and convex and could be represented using

a finite set of vectors. We also show what the recursive equation for calculating these

vectors looks like. This will give us a new value iteration algorithm that works with

abstract actions.

3.2.1 Generalized Belief State Update Function

One of the main pre-requisites of the value iteration algorithm for POMDPs is

to have a belief state because the value function is defined over the belief state space.

As a result, it is very important to show how the belief state is updated if options are

available in the POMDP model.

Here, we present a more generalized definition of the belief state update to

handle the options in the value function. In the conventional form, the belief state is

updated once after each action is executed and an observation is received. An option,

however, is a high level action and it executes a sequence of lower-level actions before

25

terminated. Therefore, in the generalized form we define a belief state update over a

sequence or trajectory of action-observation pairs we call a History.

A history h is a trajectory of action-observation pairs defined as:

h =< a1, z1, a2, z2, ..., aL, zL >, (3.5)

wherein, at is the action taken and zt is the observation obtained at time-step t. L

is the length of the history. Lets also define hk to be a prefix of h which contains the

first k pairs.

Now, we show how a belief state could be updated for a given history. b′ =

T (b, h) is the updated belief state b after experiencing the history h.

Ts′(b, hk) =

∑

s Ts(b, hk−1)T
sak
s′ Zs′ak

zk
∑

s′′

∑

s Ts(b, hk−1)T
sak
s′′ Z

s′′ak
zk

(3.6)

where, T sa
s′ = T (s, a, s′) and Zsa

z = Z(s, a, z) are the shorter version definitions of the

state transition and the observation functions. If we expand this recursive function

we will see that the belief state function is still a linear function of the starting belief

state. We use the ψh
ss′ variable just to simplify the equations in the later sections.

Ts(b, h1) =

∑

s0
bs0T

s0a1
s Zsa1

z1
∑

s0

∑

s1
bs0T

s0a1
s1 Zs1a1

z1

,

Ts(b, h2) =

∑

s0

∑

s1
bs0T

s0a1
s1

Zs1a1
z1

T s1a2
s Zsa2

z2
∑

s0

∑

s1

∑

s2
bs0T

s0a1
s1 Zs1a1

z1 T s1a2
s2 Zs2a2

z2

,

...

Ts(b, hk) =

∑

s0,s1,...sk−1
bs0T

s0a1
s1

Zs1a1
z1

...T
sk−1ak
s Zs,ak

zk
∑

s0,s1,...sk
bs0T

s0a1
s1 Zs1a1

z1 ...T
sk−1ak
sk Zsk,ak

zk

(3.7)

=

∑

s0
bs0ψ

hk

s0s
∑

s′

∑

s0
bs0ψ

hk

s0s′

. (3.8)

26

3.2.2 Value Function for the Optimal Abstract Policy

In this section, we will show that the nice property of the optimal value function

which is being piecewise linear and convex will be preserved after incorporating the

high-level actions in the optimal policy.

First, we need to re-define the POMDP value function that was first explained

in Equation 2.3 again for the case where options are available. The value function

could be re-defined using the generalized form of the belief state update function we

just explained:

V ∗

n (b) = max
o

(

Ro
b +

∑

h∈H

P o,b
h γLV ∗

n−1(T (b, h))
)

, (3.9)

where, V ∗
n (b) is the value of the optimal policy at the belief state b in the iteration

number n, h is a history and H is the finite set of possible histories in the limited

horizon, L is the length of the specific history h.

Ro
b is the expected reward to get after executing the option o at the belief state

b. We assume an option is a regular POMDP policy itself; therefore, like all POMDP

policies an option’s utility or its expected reward function is piecewise linear on b and

could be represented with a set of vectors. Let’s call these vectors each representing

a linear equation the β-vectors.

Ro
b = max

i

∑

s

bsβ
o,i
s (3.10)

27

P o,b
h = P (h|o, b) is the probability of the history h happening if option o starts

the execution on the belief state b and terminates at the end of history h:

P (hk|o, b) =
∑

s0

[

νo(b)bs0

∑

s1

[

πo(b, a1)T
s0a1
s1

Zs1a1
z1

(

1− ηo(b)
)

∑

s2

[

πo(T (b, h1), a2)T
s1a2
s2

Zs2a2
z2

(

1− ηo(T (b, h1))
)

...

∑

sk

[

πo(T (b, hk), ak)T
sk−1ak
sk

Zsk,ak
zk

ηo(T (b, hk))
]

...
]]

(3.11)

= πo(b, a1)...π
o(T (b, hk), ak)

νo(b)
(

1− ηo(b)
)

...
(

1− ηo(T (b, hk−1))
)

ηo(T (b, hk))

∑

s0,...,sk

[

bs0T
s0a1
s1

Zs1a1
z1

...T sk−1ak
sk

Zsk,ak
zk

]

(3.12)

= Ao
hk
W b

hk
(3.13)

where, πo(b, a) is the probability of action a being selected by option o at belief state

b, νo(b) is the probability of belief state b being an initial state for option o and ηo(b)

is the probability of option o terminating in belief state b.

We have split the history probability into two terms: the Agent Effect Ao
h and

the Model Effect W o
h as also introduced in [14]. The Agent Effect is the product of all

the action, initialization and termination probability terms, while the Model Effect is

the product of all initial state, state transition and observation terms. Splitting the

equation this way, will help us simplify the math later in this section.

28

Theorem: The optimal value function V ∗
n (b) in Equation 3.9 is piecewise linear and

convex, if the option’s initialization and termination functions return constant values

in bounded areas of the belief state simplex:

V ∗

n (b) = max
l

(

∑

s

bsα
l
s(n)

)

(3.14)

Proof: First of all, the claim is true for n = 0 which is when the last option is

executed and the end of our finite horizon is reached. This is because the total

reward we could get when we have reached the end of time is equal to zero and zero is

linear V ∗
0 (b) = 0. Here, n is the iteration number which also means how many options

could be executed before reaching the end of horizon. Obviously, after iterating for

infinite times we get the converged value function for an infinite horizon.

Using induction now we could show V ∗
n (b) is piecewise-linear and convex in b

for all of the values of n. For this reason, we assume the hypothesis holds for Vn−1,

then we prove this applies to Vn as well. By using Equation 3.14 for Vn−1, we have:

V ∗

n−1(T (b, h)) = max
l

(

∑

s

Ts(b, h)α
l
s(n− 1)

)

. (3.15)

Plugging equations 3.15 and 3.10 into Equation 3.9, we get:

V ∗

n (b) = max
o

([

max
i

∑

s0

bs0β
o,i
s0

]

+
∑

h∈H

P o,b
h γL

[

max
l

∑

s

Ts(b, h)α
l
s(n− 1)

])

. (3.16)

Finding the location of a particular belief state inside the belief state simplex, we

can select the vector that provides the largest value for the given belief state [8].

Calling this vector as α∗, we can remove the max operation of the α-vectors from the

Equation 3.16. The same argument applies to the β-vectors of the option:

V ∗

n (b) = max
o

(

∑

s0

bs0β
o,∗
s0

+
∑

h∈H

P o,b
h γL

∑

s

Ts(b, h)α
∗

s(n− 1)
)

. (3.17)

In the Equation 3.17, moving P o,b
h inside the inner sum and multiplying it with Ts(b, h)

will cause the Model Effect W b
h from the Equation 3.13 to be cancelled out with the

29

normalizing factor (the denominator) in the Equation 3.7. Applying these changes to

the Equation 3.17 will result in:

V ∗

n (b) = max
o

(

∑

s0

bs0β
o,∗
s0

+
∑

h∈H

γL
∑

s

[

Ao
h

∑

s0

bs0ψ
hk

s0s

]

α∗

s(n− 1)
)

= max
o

(

∑

s0

bs0

[

βo,∗
s0

+
∑

s

α∗

s(n− 1)
(

∑

h∈H

γLAo
hψ

hk

s0s

)

])

. (3.18)

Please notice that all of the terms inside the brackets in Equation 3.18 except for Ao
h

are very clearly constant with respect to belief state b. Here, we will show that Ao
h is

also constant in a vicinity of the belief state point b.

Ao
h is a product of option’s action probabilities, initialization probability and

termination probabilities (see Equation 3.12). The product of action probabilities get

a value of either 0 or 1 for each belief state point b depending on what the β-vectors

look like and this value is constant in the vicinity of that point as also visible in

Equation 3.2. This is because the policy function is piecewise linear and the max

operation will return the same result in an area where the corresponding β-vector

has the superior value. If we assume the initialization and termination probabilities

νo and ηo are also piece-wise constant over b, then for a bounded area of the belief

simplex around the belief state point b the value of Ao
h is constant and is not a function

of b.

Having piece-wise constant initialization and termination probability functions

means the probability of initialization and termination should be constant in a vicinity

of the given belief state point. This will partition the belief state simplex into a finite

set of sections. For example, if the probability of termination is either 0 or 1 for

each belief state, this will partition the belief state simplex in two sections and would

respect our assumption.

30

Hence, given this condition, Ψ̂o
s0s

=
∑

h∈H γ
LAo

hψ
hk

s0s
is a constant value with

respect to b and we can rewrite the Equation 3.18 as:

V ∗

n (b) = max
o

(

∑

s0

bs0

[

βo,∗
s0

+
∑

s

α∗

s(n− 1)Ψ̂o
s0s

])

. (3.19)

As a result, the Equation 3.19 is also piecewise linear and convex in b if the option’s

initialization and termination functions return constant values in bounded areas of

the belief state simplex and the proof is complete. �

3.2.3 Value Iteration Algorithm

Having the recursive equation for calculating the α-vectors in hand, it is going

to be very simple to build the value iteration algorithm for learning the optimal policy

using it. The value iteration algorithm is just going to create more α-vectors out of

the existing ones in each iteration and at the end the dominating vectors will be in this

set. The different algorithms used for pruning the dominated α-vectors and speeding

up the process by sampling will all remain the same as for the regular POMDP case.

In this thesis, we just explain how value iteration algorithms could be modified to

calculate the α-vectors using options.

To calculate the α-vectors we use the results we got in Equation 3.19. This

means our recursive equation for calculating the α-vectors is as follows:

αs(n) = βo,∗
s +

∑

s′

αs′(n− 1)Ψ̂o
ss′ ∀o, α. (3.20)

In practice, we don’t need to go through all the possible histories to calculate the

value of Ψo
ss′ as explained in the Equation 3.19. Instead, we could use a sample set of

histories to estimate the expected value for this parameter and we could pre-compute

that for each option before-hand.

Another method to expedite the calculations is to approximate the value func-

tion by running the value iteration algorithm using a finite set of sampled belief points

31

that properly cover the belief simplex [12]. We could also go one step further and

instead of sampling the belief points that cover the entire simplex, sample those that

are more probable to be reached from the current belief state [1]. This will enable us

to approximate the value function more accurately for the current belief state through

sampling more belief points in the more plausible area of the belief simplex.

3.3 Expectation Maximization for Abstract Policies

The value iteration algorithm requires full knowledge of the environment’s

(POMDP’s) probability functions, including state transition probability, observation

probability and initial state probability functions. However, this knowledge is not

always given in all the problems. The second method suggested in this chapter for

learning abstract POMDP polices is an Expectation Maximization algorithm based

on the EM learning algorithm explained for regular policies in the previous chapter.

This method finds the optimal policy by using sample trajectories an agent takes

while observing the world. As a result, this algorithm could improve the policy or learn

in a realtime fashion. The EM algorithm is first modified to learn using a sample

set of trajectories, then the structure of the Bayesian networks is modified to use

abstract policies. Using this sampling method will make the learning algorithm much

faster, because first the computational complexity posed by inference operations on

the Bayesian networks will be eliminated and second the complexity of the algorithm

becomes independent of the number of states in the model. It is very important

because for abstraction we need to use complex problems with a large number of

world states and exact inference methods won’t be able to solve those models in a

reasonable amount of time. The other important benefit of using sampling is that

the learning algorithm will no longer require the probability functions of the POMDP

32

model. This makes our realtime learning algorithm work for the model-less POMDP

problems as well.

The first part of this section explains how the sampling method works and the

second part explains how to modify the BN structure to incorporate abstract actions.

3.3.1 Realtime Learning for Model-less POMDPs using Sampling

In this section, we propose a new computationally fast and simple learning

algorithm for POMDP problems that is based on EM and uses a set of sampled

trajectories (memory states, actions, observations and rewards) to optimize the pol-

icy. The complexity of the algorithm is independent of the number of world states

and could be used to learn larger POMDP problems compared to exact inference

methods. This method also does not require knowledge of the POMDP’s probability

distributions. Since computation cost is low, many iterations of the EM algorithm

could be applied in a fixed amount of time compared to exact inference methods and

this dramatically improves the convergence.

Let us define ρ =< m0, z0, a0, r0,m1, z1, a1, r1, ... > to be a trajectory of memory

states, observations, actions and rewards that are all observable by the agent. Also,

let ρT be the first T steps of this trajectory. We are trying to calculate the inference

using a sampled set of these trajectories P .

Now, we will show how equations 2.15, 2.16 and 2.17 could be modified to

calculate the expected values in the E-step from a sampled set of trajectories P . To

do this, we first modify these equations to calculate the probabilities from the set of

33

all possible trajectories, then we show how to estimate the expected values using a

set of sampled trajectories. For convenience, these equations are repeated here again:

E[πm
a] =

∞
∑

T=0

T
∑

t=0

γTP (mt = m, at = a|r̂ = 1, T, θ(n)), (3.21)

E[µmz
m′] =

∞
∑

T=0

T−1
∑

t=0

γTP (mt = m, zt+1 = z,mt+1 = m′|r̂ = 1, T, θ(n)), (3.22)

E[νm] =
∞
∑

T=0

γTP (m0 = m|r̂ = 1, T, θ(n)). (3.23)

We have to modify all of these three equations, but let us start by modifying

the Equation 3.21. Also, let us define the variable δ to be:

δtma(ρ) = P (mt = m, at = a|r̂ = 1, T, θ(n), ρ). (3.24)

This is the same probability term as the one inside Equation 3.21, but conditioned on

a trajectory ρ being experienced. Please notice that when the trajectory ρ is given,

the probability of mt = m and at = a is independent of the other conditions. As a

result, δtma(ρ) = P (mt = m, at = a|ρ) is a binary variable and is equal to:

δtma(ρ) =















1, if mt = m and at = a in ρ; and

0, otherwise.

(3.25)

Using δ, Equation 3.21 could be redefined this way:

E[πm
a] =

∞
∑

T=0

T
∑

t=0

γT
∑

∀ρ

P (ρT |r̂ = 1, T, θ(n))δtma(ρ). (3.26)

Using Bayes law we have:

P (ρ|r̂ = 1, T, θ(n)) =
P (ρ|T, θ(n))P (r̂ = 1|ρ, T, θ(n))

∑

ρ′ P (ρ
′|T, θ(n))P (r̂ = 1|ρ′, T, θ(n))

. (3.27)

Again, given the trajectory, the probability of observing a reward is independent of

the policy. Therefore, rTρ = P (r̂ = 1|ρ, T, θ(n)) = P (r̂ = 1|T, ρ) is the reward observed

34

at step T of the trajectory ρ. Replacing this in Equation 3.27 and plugging it into

Equation 3.26 we get:

E[πm
a] =

∞
∑

T=0

T
∑

t=0

γT
∑

ρ P (ρT |T, θ
(n))rTρ δ

t
ma(ρT)

∑

ρ′ P (ρ
′
T |T, θ

(n))rTρ′
. (3.28)

Equation 3.28 tells us how to calculate E[πm
a] from the set of all possible tra-

jectories. What we need instead is how to calculate this expected value from a set

of sampled trajectories. We know that if S(A) is a set of samples drawn from the

original set A using a probability distribution P , then:

∑

a∈A

P (a)fa ≈
1

|S(A)|

∑

s∈S(A)

fs. (3.29)

Using this fact and applying it to Equation 3.28 we could calculate E[πm
a] from a set

of sampled trajectories ρ ∈ P :

E[πm
a |P] ≈

∞
∑

T=0

T
∑

t=0

γT
∑

ρ∈P r
T
ρ δ

t
ma(ρ)

∑

ρ′∈P r
T
ρ′

=
∞
∑

T=0

γT
∑

ρ∈P r
T
ρ

∑T

t=0 δ
t
ma(ρ)

∑

ρ′∈P r
T
ρ′

≈
Tmax
∑

T=0

γT
∑

ρ∈P r
T
ρ χ

T
ma(ρ)

∑

ρ′∈P r
T
ρ′

. (3.30)

wherein, χT
ma(ρ) =

∑T

t=0 δ
t
ma(ρ) adds up the δtma(ρ) values for t = [0, ..., T]. In other

words, χT
ma(ρ) counts how many times the pair of memory state m and action a has

occurred in the sub-trajectory ρT . We have also truncated the infinite loop of T at

some Tmax value the same way as in [3], because γT becomes exponentially smaller

as T is getting larger, so the effect of those terms is almost negligible at some point.

Please notice how computationally less expensive Equation 3.30 is compared to

the Equation 3.21 computed using exact inference algorithms (e.g. Forward-Backward

or Junction Networks) on a huge Bayesian network. The complexity order of Equation

3.30 is Tmax squared times the number of sampled trajectories: O(T 2
max|P|).

35

Figure 3.1 A single slice of the Bayesian network for an abstract policy with op-
tions used for calculating the reward probability. The original Bayesian network was
illustrated in Figure 2.2.

Using the same analysis, we can convert the two other E-step equations (3.22

and 3.23) to be estimated from our set of sampled trajectories P to:

E[µmz
m′ |P] ≈

Tmax−1
∑

T=0

γT
∑

ρ∈P r
T
ρ φ

T
mzm′(ρ)

∑

ρ′∈T r
T
ρ′

, (3.31)

E[νm|P] ≈
Tmax
∑

T=0

γT
∑

ρ∈P r
T
ρ ξm(ρ)

∑

ρ′∈T r
T
ρ′

. (3.32)

Here, φT
mzm′(ρ) counts how many times the transition from memory state m and

observation z to the memory state m′ has occurred in the sub-trajectory ρT . ξm(ρ)

returns one if trajectory ρ starts with the memory state m and 0 otherwise.

3.3.2 Hierarchical Policy

In order to apply hierarchical policies in the EM learning algorithm, we have to

add other layers of memory state variables for the high-level actions to the Bayesian

36

network first depicted in the Figure 2.2 [15]. The new Bayesian network after adding

high-level actions is going to look like the one in Figure 3.1.

Figure 3.1 shows one slice of the actual BN at time-steps t and t+1. The random

variable nt defines the value of the memory state for the high-level policy’s FSC. The

variable ot is the option being executed at time-step t and is selected according to

the memory state of the high-level policy (nt). The option itself is a FSC too and

has an internal memory state which is defined by mt. At each time-step, the low-

level action is selected based on what option is executing and according to its current

memory state and action probability function. The high-level memory state transits

to another state when an option is terminated conditioned on its current state and

the last memory state of the terminated option.

When running EM on this new BN, the option’s probability functions (initial

memory state, memory state transition, action probability) are fixed and not going to

be learned. Therefore, the CPDs defining these functions are not included in the set

of parameters of the Maximization step θ. This will let the order of the EM algorithm

remain the same both in the exact and the approximate methods as in the original

algorithm.

37

CHAPTER 4

EXPERIMENTAL RESULTS

This chapter explains the methods used and the results of evaluating the two

proposed learning algorithms for abstract policies in POMDPs. In the first section,

a new sample problem is proposed for evaluation. The next two sections explain

the implementation and the experimental results for each of the proposed algorithms

separately.

4.1 The Ambulance Problem

The Robocup Rescue Simulation [5] is one of the well-known AI test-beds that

provides a comprehensive environment for research on challenging problems such as

decision making under uncertainty, multi-agent planning, realtime learning, etc. The

scalability potential of this simulation environment is completely unique compared

to most of the existing official AI problems. One could very easily create different

subsets of this problem from a very simple single-agent environment with a few states

to a very complex multi-agent environment with infinite number of states.

In our research we also needed a problem that could easily be scaled from a

simple case used for benchmarking the algorithms in absence of abstraction to more

complex cases that could better show the advantage of the abstraction methods. Most

of the existing problems however are designed to be simple and solvable using the

existing algorithms. We therefore created a simplified version of the Robocup Rescue

Simulation problem which is scalable from a very simple version to as complex as the

actual problem for the future algorithms.

38

Figure 4.1 A sample Ambulance problem with two civilians.

In our Ambulance problem, there exists a rectangular grid world on which there

are an ambulance agent, a set of civilians and one of the grid cells defined as the refuge.

The civilians have experienced a disaster and need to be carried to the refuge for

protection and cure. The ambulance agent should find the civilians moving randomly

around, load them, carry them to the refuge one by one and unload them there. The

ambulance doesn’t know its own location and the civilians’. It could see the civilians

though if they are in the same cell and could hear their voice probabilistically based

on their distance. The ambulance also observes when it hits one of the walls which are

considered to be the edges of the grid-world. The agent has actions to move one step

Up, Down, Right or Left on the grid world and also can Load or Un-load a civilian. A

civilian can be loaded if it is in the same cell as the ambulance, but can be un-loaded

everywhere. There is a reward of +1000 to un-load a civilian at the refuge cell and a

-1 for all other actions. A civilian can not be loaded from the refuge and is not going

to escape from there.

We have defined two very simple options for this environment to run our exper-

iments. The Search option finds a cell wherein there is a civilian and then terminates.

39

The Carry option moves until it reaches the refuge cell and terminates. It is very

obvious that the optimal policy is to repeat the sequence of Search, Load, Carry and

Unload actions. However, it’s not that simple for the learning algorithm to figure that

out because it needs to evaluate all different sequences of actions including primitive

actions and options and also within that all different possible trajectories from ex-

ecuting each option. In practice, we modeled the options with FSCs and used only

three memory states for each one.

4.2 Value Iteration

4.2.1 Implementation

Using the value function we derived in the previous section, it is going to be

easy to adopt any of the existing POMDP value iteration algorithms to support

learning with the high-level actions. All different variations of the POMDP value

iteration algorithms are using different methods to address the problem of increasing

complexity due to fast growing number of the Alpha-vectors. We do not address

this problem here though. We have based our implementation on the point-base

value iteration methods and we have only updated the Backup Function as explained

in Algorithm 1. Please refer to the HSVI paper [1] or any other point-based value

iteration algorithm for more details on the implementation.

Algorithm 1 ρ = backup(Γ, b)

βo,∗ ← argmaxβo(βo.b)

ρos ← βo,∗
s +maxα∈Γ(

∑

s′ αs′Ψ̂
o
ss′)

ρ← argmaxρo(ρ
o.b)

40

4.2.2 Evaluation

We used the Ambulance problem to run experiments and evaluate the learning

algorithm. We are obviously expecting to see faster learning speed after using high-

level actions. That is the whole purpose of abstraction.

Two different scales of the Ambulance problem are used for experiments. In the

first case, there is a grid world of size 3x3, one civilian and 162 states. The second one

has a grid world of size 4x4 with one civilian and 512 states. The parameters defining

the state are the ambulance location, the civilians’ location and the load status. There

is one Found-civilian and four Hit-wall (for different sides) observations. We did not

use the Heared-civilian observation in our experiments. There are also 6 primitive

actions: Up, Down, Right, Left, Load and Un-load. The reward to rescue a civilian is

1000 and the discount factor is 0.95.

Figure 4.2.2 depicts the computation times of the algorithm solving the two

problems, each in three different settings. In the first case (circles), all of the primitive

actions are used and there are no high-level actions available. In fact, this is the

normal POMDP value iteration algorithm. In the second case (rectangles), the Search

and Carry options are added to the list of the available actions. All of the primitive

actions are also preserved. This will increase the number of actions to 8. In the

last setting (triangles), we add the two options and removed the four primitive move

actions (Up, Down, Left and Right). The picture on the top shows the results for the

Ambulance-3x3 problem while the other picture is the results from the Ambulance-

4x4 problem.

The results show that adding options improves the learning speed even though

it makes the model more complex by increasing the number of actions. It also shows

that as the number of states are increasing the effectiveness of the high-level actions

in speeding up the learning algorithm also increases. In the Ambulance-3x3 problem,

41

Figure 4.2 The computation times for learning an Ambulance-3x3 problem.

Figure 4.3 The computation times for learning an Ambulance-4x4 problem.

42

the utility of the optimal policy reaches 90% of the maximum value using options

two times faster than the case of primitive actions only. This is almost three times

faster in the Ambulance-4x4 problem which has almost three times more states. The

reason is that options propagate more information about the future rewards in each

iteration of the algorithm and will let the value function be updated faster [10].

It is obvious form the experiments that after new high-level skills are added, the

learning speed could be further increased if less useful primitive actions are removed

from the model. We do not address the problem of which actions should be removed

in this thesis; however, this is studied for MDP models already [16].

We also didn’t explain in this thesis how options should be extracted from the

previous experiments automatically. One way to achieve this is to find the useful

policies that might not directly perform a complete task but are repeatedly used as

a subset of the other policies [17].

We have used the Cassandra POMDP learning tools [18] to parse and load the

POMDP files, for benchmarking with existing value iteration algorithms and also

as a base to add our implementation on it. All the experiments were run on a PC

with an Intel Pentium 4 CPU (3.40GHz) running a Redhat Enterprise 5 GNU/Linux

operating system.

4.3 Expectation Maximization

4.3.1 Implementation

In this section we explain how to implement the sampling based EM algorithm,

which in fact is very simple and straight forward compared to most of the other

POMDP learning algorithms we discussed in this thesis. There are two separate

parts involved in the learning process. The first part runs experiments and collects

43

Algorithm 2 Sample Trajectory()

m0 ← Draw Sample(ν
(n)
M)

ξm0
← ξm0

+ 1

for t = 0 : Tmax do

at ← Draw Sample(π
(n)
mtA

)

Take Action(at)

rt ← Receive Reward()

zt ← Receive Observation()

mt+1 ← Draw Sample(µ
(n)
mtztM

))

χt
mtat
← χt−1

mtat
+ 1

φt
mtztmt+1

← φt−1
mtztmt+1

+ 1

ωt ← ωt + rt

end for

statistics from the environment. The second part uses the EM algorithm to adjust

and improve the policy over the course of time.

The Sample Trajectory function in Algorithm 2 is responsible for running ex-

periments using the latest policy in hand and also collecting statistics. Each call of

this function performs one experiment of length Tmax. The states of the POMDP are

considered non-absorbing and, as explained earlier, the trajectory is truncated at a

point were the reward’s discount is too close to zero. The algorithm starts by picking

an initial memory state for the FSC. To do that, we pick a random memory state

based on the ν(n) probability distribution. The function Draw Sample generates a

random index from the discretized probability distribution vector given as an argu-

ment. In each following time-step, the algorithm first selects an action according to

the π(n) distribution and given the current memory state. After taking the action,

44

Algorithm 3 EM Iterate()

for N times do

Sample Trajectory()

end for

π(n+1) ← ~0

µ(n+1) ← ~0

ν(n+1) ← ~0

for T = 0 : Tmax do

π
(n+1)
ma ← π

(n+1)
ma + γTχT

ma/ω
T ∀ma

µ
(n+1)
mzm′ ← µ

(n+1)
mzm′ + γTφT

mzm′/ωT ∀mzm′

ν
(n+1)
m ← ν

(n+1)
m + γT ξm/ω

T ∀m

end for

Normalize(π
(n+1)
mA) ∀m

Normalize(µ
(n+1)
mzM) ∀m, z

Normalize(ν
(n+1)
M)

it receives observation and reward from the environment. Then, it updates the FSC

memory state according to the µ(n) distribution given the current memory state and

the latest observation. It finally updates the χ, ψ and ω statistics and goes to the

next time-step. The ϕ variable is updated only once at time-step zero, since it only

counts the initial memory state.

The EM Iterate function in Algorithm 3 performs the task of updating the

policy in one iteration of the EM algorithm and using the statistics provided by

sampling. This algorithm first calls the Sample Trajectory function to run some

experiments and collect statistics. Then it updates the FSC’s different probability

distributions (π, µ and ν) using Equations 3.30, 3.31 and 3.32. To complete the EM

45

iteration the algorithm normalizes the probability functions as explained in Equations

2.18, 2.19 and 2.20 as well. The Normalize function takes a vector as an input

argument and divides the elements by their sum to let those values add up to 1.

As you have probably already noticed, it seems such a waste to run experi-

ments and collect statistics for each iteration and toss all this information out in the

next step. Fortunately, the Importance Sampling techniques help avoiding that. In

[14], Shelton explains how trajectories produced from other policies could be used

to evaluate the current policy using Importance Sampling. The exact same concepts

could be applied here, too. When using Importance Sampling, a selection of the past

trajectories could be saved in the memory and reused for adjusting the policy in the

current iteration. Each old sample will receive an importance weight which is equal

to the probability of it happening under the current policy divided by its probability

under the original policy it was generated from. Then, the weighted samples are

included in the E-step evaluations while their expected rewards are multiplied by

their importance weights. To calculate the importance weights, there is fortunately

no need to know the world model’s probability distributions which is consistent with

our goal that these distributions are considered unknown in our learning algorithm.

4.3.2 Evaluation

Unfortunately, the result of experiments with the EM algorithm did not fulfill

the expectations in our tries. The sampling algorithm is much faster than the exact

EM method on very simple problems like the Tiger problem; however, on most of the

larger size problems the sampling method gets stuck in some local optimum point

in the value function. We tried several different problems including the ambulance

problem from different start points, but the algorithm gets stock in a local optimum

point in most of the cases.

46

Figure 4.4 Optimal policy’s utility vs. computation time on a problem with 100 states.
The dashed curve shows the performance of the EM method with exact inference and
the solid line is for the EM method with sampling .

Figure 4.4 shows one run of both the exact EM and the sampling EM algorithm

on a POMDP problem with 100 states. The exact algorithm (dashed curve) is very

slow and takes several days to learn this problem. The sampling method (solid line)

is very fast but usually gets stock in some local optimum point.

We have added some randomness in the sample generator function in order

to avoid biased samples. This has helped to some extent and has delayed faulty

convergences but the problem is not resolved.

47

Simulated annealing was also implemented to let the algorithm jump out of the

local optimum points. In most of the cases this helped the algorithm to jump out of

a few first local optima points but usually gets stuck jumping around when the result

is closer to the global optimum.

The EM algorithm is in general prone to local optima; however, we are not sure

if the sampling method has magnified this weakness or if there are other problems

we have neglected. The original algorithm has also gotten stuck in a local optima in

some trials, but the occurrence of this problem has been much more frequent in the

sampling method.

48

CHAPTER 5

CONCLUSION

In this thesis, we proposed two learning algorithms based on value iteration

and expectation maximization that enable the use of high-level actions or options for

POMDP models. Using options makes it possible to transfer the knowledge gained

from the past experiences to solve other problems.

We show that the optimal value function remains piece-wise linear and convex

after options are added and it is possible to benefit from the existing value iteration

algorithms with some modifications. An expectation maximization based algorithm

is also modified to learn the optimal policy from a set of sampled trajectories which is

a much faster algorithm compared to the original version that uses exact inference. A

change of architecture is suggested for the EM algorithm to support learning policies

using high-level actions. We have also introduced a new problem for benchmarking

abstraction on POMDPs that we called the ambulance problem.

Our experiments show adding options makes the value iteration algorithm faster

and more effective when the number of states is increased. The EM algorithm be-

comes more likely to get stuck in local optimum points when the sampling method is

implemented. The presented value iteration algorithm relies on having the model’s

distribution functions (i.e. state transition probability, observation probability, etc.)

which is a similar requirement for all of other value iteration algorithms, too. On

the other hand, the sampling based EM algorithm does not require knowledge of

the probability functions and in fact could perform realtime learning as the agent is

exploring the world.

49

In this work we are not addressing how sub-goals could be defined for learning

options and how to reduce the complexity by removing less useful primitive actions

from the model.

50

REFERENCES

[1] T. Smith and R. Simmons, “Point-based pomdp algorithms: Improved analysis

and implementation,” arXiv preprint arXiv:1207.1412, 2012.

[2] R. Sutton, H. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and

E. Wiewiora, “Fast gradient-descent methods for temporal-difference learning

with linear function approximation,” in Proceedings of the 26th Annual Interna-

tional Conference on Machine Learning. ACM, 2009, pp. 993–1000.

[3] M. Toussaint, S. Harmeling, and A. Storkey, “Probabilistic inference for solving

(po) mdps,” 2006.

[4] M. Taylor and P. Stone, “Transfer learning for reinforcement learning domains:

A survey,” The Journal of Machine Learning Research, vol. 10, pp. 1633–1685,

2009.

[5] S. Amraii, B. Behsaz, M. Izadi, H. Janzadeh, F. Molazem, A. Rahimi, M. Ghi-

nani, and H. Vosoughpour, “Sos 2004: An attempt towards a multi-agent rescue

team,” in Proceedings of the 8th RoboCup International Symposium, 2004.

[6] R. Bellman, “A markovian decision process,” DTIC Document, Tech. Rep., 1957.

[7] R. Sutton and A. Barto, Reinforcement learning: An introduction. Cambridge

Univ Press, 1998, vol. 1, no. 1.

[8] R. Smallwood and E. Sondik, “The optimal control of partially observable

markov processes over a finite horizon,” Operations Research, vol. 21, no. 5,

pp. 1071–1088, 1973.

[9] E. Hansen, “Finite-memory control of partially observable systems,” 1998.

51

[10] D. Precup, R. Sutton, and S. Singh, “Theoretical results on reinforcement learn-

ing with temporally abstract options,” Machine Learning: ECML-98, pp. 382–

393, 1998.

[11] R. Sutton, D. Precup, S. Singh, et al., “Between mdps and semi-mdps: A frame-

work for temporal abstraction in reinforcement learning,” Artificial intelligence,

vol. 112, no. 1, pp. 181–211, 1999.

[12] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration: An anytime

algorithm for pomdps,” in International joint conference on artificial intelligence,

vol. 18. LAWRENCE ERLBAUM ASSOCIATES LTD, 2003, pp. 1025–1032.

[13] Z. Ghahramani, “Learning dynamic bayesian networks,” Adaptive Processing of

Sequences and Data Structures, pp. 168–197, 1998.

[14] C. Shelton, “Policy improvement for pomdps using normalized importance sam-

pling,” in Proceedings of the Seventeenth conference on Uncertainty in artificial

intelligence. Morgan Kaufmann Publishers Inc., 2001, pp. 496–503.

[15] M. Toussaint, L. Charlin, and P. Poupart, “Hierarchical pomdp controller opti-

mization by likelihood maximization,” Uncertainty in AI (UAI), 2008.

[16] M. Asadi, “Learning state and action space hierarchies for reinforcement learning

using action-dependent partitioning,” Ph.D. dissertation, University of Texas at

Arlington, 2006.

[17] M. Asadi and M. Huber, “Effective control knowledge transfer through learning

skill and representation hierarchies,” in Proceedings of the 20th International

Joint Conference on Artificial Intelligence, 2007, pp. 2054–2059.

[18] A. Cassandra, “Tonys pomdp page,” website http://www. cs. brown.

edu/research/ai/pomdp, 1999.

52

BIOGRAPHICAL STATEMENT

Hamed Janzadeh was born in Qazvin, Iran, in 1982. He received his B.S.

and M.S. degrees from Amirkabir University of Technology (Tehran’s Polytechnic),

Tehran, Iran in 2005 and 2008, respectively, in Computer Engineering and Informa-

tion Technology. He received his second M.S. degree in Computer Science from The

University of Texas at Arlington in 2012. Hamed is working in the R&D department

of the ClearCorrect, Inc. as a project manager since 2011.

53

