
DISTRIBUTED DATA DIMENSIONALITY REDUCTION AND DENOISING

by

ABIODUN T. ADUROJA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

Copyright c⃝ by ABIODUN T. ADUROJA 2013

All Rights Reserved

To my parents Engr. and Mrs. Aduroja

who sacrificed so much for me.

ACKNOWLEDGEMENTS

A lot of people have contributed to the success and completion of my thesis, from

whom I have learnt a lot of lessons which will be quite invaluable for me in my future

pursuits.

Firstly, I would like to thank my supervising Professor; Dr. I. D. Schizas for his

mentorship, invaluable pieces of advice during the course of my research. Dr. Schizas was

there to encourage and guide me through sharpening my research skills. I also would like

to thank Dr. Schizas for giving me the opportunity to conduct this research work under him

and more importantly for the financial assistance that I also received. It really went a long

way in reducing my financial burdens.

I wish to also thank Dr. Qilian Liang and Dr. Saibun Tjuatja and my graduate

advisor Dr. W. Alan Davis for taking out time out of their busy schedule to serve on my

thesis defense committee.

I would also like to extend my appreciation to my other research group members;

Guohua Ren and Jia Chen for your support, encouragement and even the helpful discus-

sions we had about the research work.

Finally, I would like to acknowledge my brother; Tobi Aduroja’s support and words

of inspiration during the course of my graduate studies. I say thank you.

November 22, 2013

iv

ABSTRACT

DISTRIBUTED DATA DIMENSIONALITY REDUCTION AND DENOISING

ABIODUN T. ADUROJA, M. Sc.

The University of Texas at Arlington, 2013

Supervising Professor: Ioannis D. Schizas

With the recent upsurge in the amount of data transmission and use, giving rise to the

era of big data, research has put a lot of emphasis on designing efficient methods to extract

useful information by reducing the size of a large set of data to a much smaller set. This is

the main idea in data dimensionality reduction which is a critical step in applications that

involve a constantly increasing data size, and limited computational and communication

resources. Such a situation appears in sensor networks where there is a large number of

sensors acquiring data. However, the informative part of the sensor data in practice is

created by a small number of sources/phenomena of interest and the dimension of data can

be effectively reduced.

Data dimensionality reduction by employing principal component analysis has proven

to be extremely useful. Traditional principal component analysis involves principal sub-

space estimation obtained by a decomposition of the data covariance matrix in a centralized

fashion. However, such centralized approaches do not account for the fact that sensors are

spatially scattered while they may have to communication through noisy links. This thesis

puts forth a distributed algorithmic framework for estimating the principal eigenspace of

the sensor data without the need of a central fusion center. Each sensor is only responsible

v

for estimating only a small part of the principal subspace, and it only communicates with

sensors in its near vicinity, the so called single-hop neighbors. Toward this end, the stan-

dard principal component analysis framework is reformulated as a separable constrained

minimization problem which is solved by utilizing coordinate descent techniques com-

bined with the alternating direction method of multipliers. Computationally simple local

updating recursions are obtained that involve only single-hop inter-sensor communications

and allow sensors to estimate the principal covariance eigenspace in a distributed fashion.

Two different type of algorithms are obtained that can applied in different sensor network

architectures.

The proposed distributed principal eigenspace estimation framework is used in a de-

noising application, where the sensor data are projected onto the estimated principal space

to reduce the noise and improve overall data quality. To this end, a novel distributed de-

noising scheme is presented in this thesis. Extensive numerical tests using both synthetic

and real data demonstrate that the proposed framework has the potential to achieve a con-

siderably faster convergence rate and better steady-state estimation performance compared

to existing alternatives. Further, the proposed distributed algorithms exhibit robustness in

the presence of inter-sensor communication noise whereas alternative techniques do not

converge in the presence of random perturbations.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . x

Chapter Page

1. INTRODUCTION . 1

1.1 Background . 1

1.1.1 Sensor Networks . 2

1.1.2 Distributed Sensing . 4

1.1.3 Principal Component Analysis (PCA) 5

1.1.4 Previous work . 6

1.1.5 Contributions of the thesis . 7

1.1.6 Outline of Work . 7

2. A DISTRIBUTED FRAMEWORK FOR PERFORMING PRINCIPAL COM-

PONENT ANALYSIS . 8

2.1 Problem Statement . 8

2.2 Distributed Implementation . 10

2.2.1 Alternating-Direction Method of Multipliers (ADMM) 11

2.2.2 Batch Distributed PCA Algorithm 12

2.2.3 Adaptive D-PCA . 17

2.3 Communication cost . 20

3. DISTRIBUTED PCA WITHOUT BRIDGE SENSORS 22

vii

3.1 Problem Statement . 22

3.2 Distributed Implementation of PCA . 24

3.2.1 Application of the ADMM . 25

3.2.2 Adaptive D-PCA . 30

3.3 Inter-Sensor Communication Noise . 32

3.4 Communication and Computational Costs 33

3.5 Comparison of bridge/ bridgeless sensor network communication costs . . 34

4. DISTRIBUTED DATA DENOISING . 36

4.1 Problem Statement . 37

4.2 Distributed Implementation . 39

5. NUMERICAL TESTS AND DISCUSSION . 41

5.1 D-PCA in network with bridge sensors . 41

5.2 D-PCA in a network without bridge sensors 43

5.2.1 Subspace Estimation error vs. iteration index 43

5.2.2 Post-SNR vs. Number of principal eigenvectors 45

5.3 D-PCA with bridge sensors vs. D-PCA without bridge sensors 46

5.4 Denoising of Synthetic Data . 46

5.5 Denoising of Real Data . 50

5.5.1 pre-SNR vs. actual SNR vs. post-SNR 52

5.5.2 post-SNR vs. number of estimated principal components 53

6. CONCLUSIONS AND FUTURE DIRECTIONS 54

REFERENCES . 56

BIOGRAPHICAL STATEMENT . 61

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 A ad-hoc sensor network . 3

5.1 Subspace projection estimation error e(t) vs. time index t for r=1 (top); and

r=2 (bottom) in a setting with bridge sensors 42

5.2 Subspace projection estimation error e(t) vs. time index t for r=1 (top); and

r=2 (bottom) in a network without bridge sensors 44

5.3 Subspace projection estimation error e(t) vs. time index t for r=1 (Steady

state performance) . 45

5.4 Subspace projection estimation error e(t) vs. iteration index t for D-PCA

with and without bridges for r = 1 . 47

5.5 Subspace projection estimation error e(t) vs. iteration index t for D-PCA

with and without bridges for r = 2 . 47

5.6 Subspace projection estimation error e(t) vs. iteration index t for different

number of consensus iterations for SNRobs = −3dB and SNRcomm = 25dB . 49

5.7 Subspace projection estimation error e(t) vs. iteration index t with and

without communication noise for SNRobs = −3db 51

5.8 Subspace projection estimation error e(t) vs. iteration index t for SNRcomm =

5db, 10db, 20db with SNRobs = 5db . 52

ix

LIST OF TABLES

Table Page

5.1 post-SNR vs. number of estimated principal eigenvectors 46

5.2 post-SNR vs. Number of consensus iterations 48

5.3 post-SNR vs. Number of principal eigenvectors 50

5.4 post-SNR vs. communication noise SNR 50

5.5 pre-SNR, actual SNR (act-SNR) and post-SNR using real data 53

5.6 post-SNR vs. number of estimated principal eigenvectors using real data . . 53

x

CHAPTER 1

INTRODUCTION

1.1 Background

Data acquired by sensors that sense a particular field are usually confined into a sub-

space of dimensionality. Efficient in-network processing of the sensor data collected is a

major strategy that can enable sensor networks to extract useful information from the ac-

quired data. Since not all data acquired is usually needed, estimation of the principal signal

subspace of the sensor data is crucial in reducing the memory and computational require-

ments imposed by a huge amount of data. Apart from this, sensors have limited resources

in terms of energy, computational power and data throughput. Radio communication in

particular is an energy consuming process and it is one of the primary reasons in sensor

node’s battery depletion [1]. The reduction in the quantity of the data being transmitted

is therefore essential in designing sensor networks [2]. Sensor data in practice tend to ex-

hibit temporal and spatial correlations that can be exploited to reduce their dimensionality.

The workhorse of recovering the low dimensional signal subspace corresponding to a large

set of data is known as Principal Component Analysis (PCA), see e.g., [3]. This method

involves estimating the eigenvectors and eigenvalues of the data covariance matrix which

can be estimated via sample-averaging of data acquired over a time period. PCA aims to

keep estimate a few covariance eigenvectors, the principal eigenvectors, that describe in

a compact way the low-dimensional signal subspace where the sensor data lie on. The

data acquired are then projected onto the principal eigenspace to obtain a low-dimensional

representation. This projection, which is of reduced dimension, finds application in data

dimensionality reduction, image denoising and sensor data denoising on an mean square

1

error (MSE) optimal basis [4–6]. The topic of this thesis is the design and testing of im-

proved distributed algorithms that have the ability to estimate the principal eigenspace over

a network of spatially scattered sensors. Combining statistics with message passing tech-

niques an computationally efficient and effective distributed algorithmic framework is put

forth that has the ability to outperform existing alternatives when it comes to distributed

dimensionality and denoising applications.

1.1.1 Sensor Networks

Recent technological improvements in wireless communications have made the de-

velopment of small, inexpensive, low-power, distributed devices, which are capable of local

processing and wireless communication, possible. Such nodes known as sensors are capa-

ble of only a limited amount of processing. Networks of sensors offer spatial diversity

when acquiring data in the sense that sensing is carried out at multiple locations, thus the

danger of having severely degraded by shadowing measurements when sensing at a single

location is eliminated. Thus, multiple sensing nodes that occupy different locations can

really lead to improved accuracy and robustness. When coordination/collaboration takes

place among multiple sensors that share their information, networks of sensors have the

ability to measure a given physical environment in great detail. Thus, a sensor network can

be described as a collection of sensor nodes which collaborate to perform some specific

action [7]. Figure 1.1 shows a graphical representation of ad-hoc (structure-less) sensor

network with 13 sensors/nodes.

The are different basic network topologies,namely; fully connected, mesh, star, ring,

tree, as well as ad-hoc networks with such structure as the one provided in 1.1. A single

network of sensors may consist of the following different interconnected topologies [8].

2

Figure 1.1. A ad-hoc sensor network.

1. Fully connected networks basically face complexity problems because as additional

nodes are added, the number of links increases exponentially making the routing

problem computationally complex.

2. Mesh networks have nodes that are identical permitting communication to their near-

est neighbors. They are also called peer-to-peer nets. This topology is robust to both

node and link failures. An advantage of mesh nets is that, although all nodes may be

identical and have the same computing and transmission capabilities, certain nodes

can be designated as bridges that take on additional functions. Similar properties are

shared by ad hoc networks too.

3. Star topology involves connection of all sensors to a fusion center that gathers the

sensor data. The fusion center does the information processing. If there is a failure

in a communication link, only one node is affected. However, if the fusion center

breaks down, then the whole network fails.

3

4. Ring topology involves all nodes performing the same function without a central or

a ’bridge’ sensor. Messages generally travel around the ring in a single direction. If

there is a failure along one of the communication links, the whole network fails.

1.1.2 Distributed Sensing

Traditional sensor networks consisted of small number of sensor nodes that were

wired to a central fusion center. However, the focus recently has been on wireless, dis-

tributed, ad hoc sensor networks. Sensing in a distributed fashion allows for closer place-

ment to the parameter being measured than a single sensor would permit especially when

the exact location of that particular deterministic quantity is unknown. Multiple sensor

nodes are also required to overcome environmental obstacles like obstructions, line of

sight constraints etc [9]. Typically, the environment to be monitored does not have an

existing infrastructure for either energy or communication. As such, factors such as en-

ergy,communication cost and memory capacity becomes integral to any network of sensors.

In terms of distributed processing, since communication consumes a lot of energy, central-

ized sensing systems would require huge communication costs to communicate over long

distances resulting in energy depletion.This also suffers from communication latency, in

which case is the time it takes information to be transferred to a central processing node.

This makes localized computation important as well. [7]

Sensor Networks have found huge applications in environmental monitoring - involv-

ing monitoring quantities such as air soil and water, condition based maintenance, habitat

monitoring, seismic detection, military surveillance, inventory tracking etc.It is worth not-

ing that, because of the pervasive nature of micro-sensors, sensor networks have the poten-

tial to revolutionize the ways data collection and model development are used to construct

complex physical systems [10]. Despite its applications, sensor network poses some chal-

lenges in terms of ease of ad hoc deployment, performance in an unattended operation,

4

sensor outage detection and compensation. Hence, the task of optimizing sensor network

communication have been have extensively studied with regards to energy efficiency, com-

putation localization, and minimizing routing [7, 11].

1.1.3 Principal Component Analysis (PCA)

PCA is a statistical technique for simplifying a dataset. It was first introduced by

Pearson(1901) [12] as a method of linear regression through geometric derivation. Later, it

was developed and got its current name through Hotelling(1933) [13, 14] when it was first

presented in algebraic form. Hotelling derived it as a technique for analysis of correlation

between many random variables. PCA aims to reduce the dimensionality of a set of data

whilst preserving as much of the relevant information as possible. It also relies entirely on

the input data without reference to the corresponding target data [15] (the criterion to be

minimized is the reconstruction mean-square error) [16].

This is achieved by transforming to a new set of variables; the principal compo-

nents(PC) that are uncorrelated, linear functions of the original variables, and the greatest

variance by any projection of the data comes to lie on the first coordinate, the second great-

est variance on the second coordinate, and so on. This is done practically by computing the

covariance matrix for the full data set. Next, the eigenvectors and eigenvalues of the co-

variance matrix are computed, and sorted according to decreasing eigenvalue [15]. These

eigenvalues give the variances of their respective principal components, and the ratio of the

sum of the first say p eigenvalues to the sum of the variances of all say r original variables

represents the proportion of the total variance in the original dataset, accounted for by the

first p principal components.

PCA has been extended to non-linear applications such as approach to multivariate

analysis [17] and also implemented in neural networks [18].

5

1.1.4 Previous work

PCA has been developed for different settings that include the aggregation of data to

a central processing unit [5, 6, 19]. But sensor data are generally scattered among sensors

in a sensor network,some other approaches were developed such as the fusion center-based

algorithm in [20] where all sensors are assumed to be fully connected and each node is

able to transmit its measurements to a FC. Now the FC performs all computation including

computing the covariance matrix, performing the singular value decomposition(SVD), and

subsequently extracting the principal components. However, performing such computation

requires a lot of computational capabilities and communication bandwidth. Also, there is

potentially a single point of failure in the sensor network, i.e. once the fusion center is

down, the whole network is down. Consequently, decentralized methods have been devel-

oped. Partially decentralized PCA algorithms have been proposed either by local computa-

tion [20–23] or by data aggregation. However, these still required the presence of a fusion

center for merging measurements. The work in [24] puts forth a distributed Karhunen-

Loeve transform considering distributed compression and source coding, but convergence

is generally not guaranteed while again a fusion center is needed. The work in [25] devel-

oped a distributed algorithm, but this is dependent on the assumption that the covariance

matrix is decomposable. Distributed PCA algorithm with in-network processing capabil-

ities were proposed in [26, 27]. However, the approach in [27] relies on the fact that the

sensors are either fully connected or there is a special tree structure. The approach in [26]

relies on consensus averaging techniques, see e.g., [28], but it is well know that these di-

verge in the presence of noise in inter-sensor links. In this thesis, an efficient, distributed

PCA setting is considered that has the potential to converge faster than [26] while demon-

strating better steady-state performance. Also, this algorithm is robust both to communi-

cation and observation noise in contrast to [26] which is not as resilient and may diverge

since it relies on consensus techniques.

6

1.1.5 Contributions of the thesis

The contributions of this thesis include:

1) Developing a distributed algorithm for dimensionality reduction in sensor networks with

a few sensors more powerful than others robust to noise across communication links.

2) Developing a distributed algorithm for dimensionality reduction in sensor networks with

all sensors having the same capabilities robust to noise across communication links.

3) Introducing a distributed algorithm for denoising data acquired during sensor measure-

ments. 4) The proposed algorithmic framework has the potential to achieve better conver-

gence rates and lower steady-state estimation errors than existing alternatives. 5) It exhibits

robustness in the presence of inter-sensor communication noise, while other approaches do

not exhibit robustness and diverge.

1.1.6 Outline of Work

This research work proposes different distributed techniques for dimensionality re-

duction and denoising. Before designing these algorithms, the sensor network, the motiva-

tion for the distributive framework as well as the PCA framework are introduced. Chapter

2 focuses on dimensionality reduction in sensor networks having a few computationally

strong sensors-called bridges and a distributed PCA framework is put forth. Chapter 3

focuses on dimensionality reduction in those sensor networks where all sensors have the

same capabilities. Chapter 4 illustrates how the proposed algorithmic framework proposed

in Chapters 2 and 3 can be used for data denoising to remove as much sensing noise as

possible after acquiring data across sensors. Chapter 5 provides extensive numerical tests

using both real and synthetic data, and how compare the performance of our framework

with existing alternatives. Chapter 6 concludes by showing the extent of work done, while

highlighting future research directions that we are pursuing.

7

CHAPTER 2

A DISTRIBUTED FRAMEWORK FOR PERFORMING PRINCIPAL COMPONENT

ANALYSIS

Estimation of the principal eigenspace of a data covariance matrix is instrumental in

applications such as data dimensionality reduction and denoising. In sensor networks the

acquired data are spatially scattered which further calls for the development of distributed

principal subspace estimation algorithms. Toward this end, the standard principal compo-

nent analysis framework is reformulated as a separable constrained minimization problem

which is solved by utilizing coordinate descent techniques combined with the alternat-

ing direction method of multipliers. Computationally simple local updating recursions are

obtained that involve only single-hop inter-sensor communications and allow sensors to

estimate the principal covariance eigenspace in a distributed fashion.

2.1 Problem Statement

Consider an ad hoc sensor network with p sensors in which each sensor is capable

to exchange messages only with other sensors within its tranmission/reception range via

single-hop communications. The single-hop neighborhood of a sensors j is denoted by

Nj , and its cardinality (number of single-hop neighbors for sensor j) is denoted by |Nj|.

Assuming links in the sensor network are symmetric, we model the sensor network as

an undirected connected graph whose vertices correspond to the sensors and the edges

represent single-hop communication links. We characterize this network by an adjacency

matrix E ∈ Rp×p where Eij = Eji = 1 for i ∈ Nj , and Eji = 0 if i /∈ Nj . Each sensor

acquires a set of zero-mean measurements {xτ (j)}pj=1 of a particular deterministic quantity

8

at discrete time instances τ = 0, 1, 2, . . . , t. Let xτ := [xτ (1), . . . , xτ (p)]
T contain all the

sensor data at a given time instant. Note that xt is not stored somewhere and its given here

for notational purposes. The ensemble covariance of the sensor data xt is denoted by:

Σx = E[xτx
T
τ]. (2.1)

The ensemble covariance in practice is not available and we rely on the sensor observations

to approximate this as

Σx ≈ 1

t

∑t
τ=0 [xτx

T
τ]. (2.2)

Assuming temporally white data and using the law of large numbers [29], it follows that the

right hand side sample-average estimate in (2.2) will converge as t → ∞ to the ensemble

covariance Σx.

Let Σx = UxΛxU
T
x denote the eigenvalue decomposition of the covariance matrix,

where Ux ∈ Rp×p is the eigenvector matrix, which is the eigenspace, and the diagonal

matrix Λx contains the corresponding eigenvalues. Using principal component analysis,

the principal eigenspace Ux,r can be found by estimating the r ≤ p principal eigenvectors

of the covariance matrix Σx using the gathered sensor data. These estimates can be used in

data compression, dimensionality reduction, image processing, denoising and so on [30–

32]. The principal components constituted by the eigenspace Ux,r can be found, see e.g.,

[5], by minimizing

Ĉ = argmin(t+ 1)−1
∑t

τ=0 ∥xτ −CTCxτ∥22, (2.3)

with respect to C ∈ Rr×p. The following equation follows from setting yτ = Cxτ in (2.3)

(Ĉ, {ŷτ}tτ=0) = argmin
C,yτ

(t+ 1)−1
∑t

τ=0 ∥xτ −CTyτ |22, (2.4)

The minimization framework given in (2.4) pertains to a centralized PCA formulation that

requires all data to be available at a central location (fusion center) in order to be able to

estimate the principal eigenspace of Σx.
9

By estimating the covariance using Σ̂x,t = (t + 1)−1
∑t

τ=0 xτx
T
τ and obtaining the

r principal eigenvectors for which Ĉ = Ûx,r, we form a minimizer for (2.3) which forms

a separable PCA cost function that is amenable to distributed minimization. By setting

CT (ĈĈT)−1Ĉ = Ûx,rÛ
T
x,r, both (2.4) and (2.3) reach the same minima even though (after

applying first order optimality conditions) (2.3) yields ŷτ = (ĈĈT)−1Ĉxτ which is differ-

ent from ŷτ = Ĉxτ . Now let Ĉ = UcScV
T
c denote the singular value decomposition of

the minimizer in (2.4), where Uc ∈ Rr×r and Vc ∈ Rp×p contain the left and right singular

vectors of Ĉ, while diagonal matrix Sc contains the singular values. The last two equations

indicate that r left singular vectors of Ĉ corresponding to the largest singular values, say

Uc,r, satisfy Uc,r = Ûx,rW where W is an arbitrary r × r unitary matrix. Thus, Ux,r can

be estimated from Ĉ in (2.4) up to a unitary matrix ambiguity. A distributed PCA algorithm

is derived next for a wireless sensor network equipped with bridge sensors [33].

2.2 Distributed Implementation

In this section, the centralized PCA cost in (2.4) is re-written in a separable way,

after which the alternating method of multipliers (ADMM) [34] combined with block co-

ordinate descent iteration [34, 35] yields a distributed estimation algorithm. The method

of multipliers actually exploits the decomposable structure of the associated Lagrangian

function [36]. Hence, (2.4) is easily decomposed into smaller subtasks that can be carried

out in parallel across all sensors. Our aim is to form a cost function in which each sensor j

forms updates for C:j , jth column of C for j = 1, . . . , p. Starting from the cost function in

(2.4) we have

J(C, {yτ}tτ=0) = (t+ 1)−1
∑p

j=1

∑t
τ=0(xτ (j)−CT

:jyτ)
2. (2.5)

To form a separable PCA formulation, we introduce auxiliary vectors yτ,j for each sensor

j, responsible for estimating the principal components in yτ , subject to the appropriately
10

set consensus equality constraints yτ,j = yτ,b that will ensure that the local estimates yτ,j

are the same across all sensors. The following separable constrained optimization problem

is then formed

(Ĉ, {y̌τ,j}p,tj=1,τ=0) = argmin(t+ 1)−1

p∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j)

2,

s. to yτ,j = yτ,b, b ∈ Bj and τ = 0, . . . , t (2.6)

where Bj := Nj ∩ B represent a set of ‘bridge’ neighbors of the jth sensor and its car-

dinality represented by |Bj| for j = 1, . . . , p. The set B ⊆ [1, p] is a subset of bridge

sensors maintaining local vectors yτ,b that are utilized to impose consensus among all lo-

cal variables yτ,j across all sensors. If, for example, B ≡ [1, p] , then the communication

graph is connected, i.e. there exists a path connecting any two sensors, and the constraints

yτ,j = yτ,b, yτ,j = yτ,b, b ∈ Bj will render yτ,j = yτ,i∀ i, j ∈ {1, . . . , p}. This further

implies that the PCA cost in (2.4) is equivalent to the constrained separable formulation

given in (2.6).

The set of bridge sensors B is selected such that, see e.g., [33]:

(a1) ∀j ∈ [1, p] there exists at least one b ∈ Bj so that b ∈ Nj; and

(b1) If j1 and j2 are single-hop neighboring sensors, there must exist a bridge sensor b such

that b ∈ Nj,1 ∩Nj,2.

Note that (a1) ensures that every node has a bridge sensor neighbor. Further, (b1), guar-

antees that that all bridge variables {yτ,b}b∈B, as well as the local principal component

estimates {yτ,j}tτ=0 can reach consensus i.e. become equal.

2.2.1 Alternating-Direction Method of Multipliers (ADMM)

To solve (2.6) in a distributed fashion we will exploit the decomposable structure of

the so called augmented Lagrangian function (see e.g., [34]) and update the local variables

11

ŷτ,j , yτ,b and C:j by combining the method of multipliers with block coordinate descent

iterations. This approach will yield a distributed adaptive estimation algorithm.

Let us define the {vb
τ,j}b∈Bj

that correspond to the Lagrange multipliers associated

with the constraints yτ,j = yτ,b for b ∈ Bj and updated at sensor j. Then, the augmented

Lagrangian function corresponding to (2.6) can therefore be written as

L[C, {yτ,j}t,pτ=0,j=1, {yτ,b}tτ=0,b∈B,v] = (t+ 1)−1

p∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j)

2

+
t∑

τ=0

p∑
j=1

∑
b∈Bj

[
(vb

τ,j)
T (yτ,j − yτ,b)

]
+ 0.5c

t∑
τ=0

p∑
j=1

∑
b∈Bj

[
∥yτ,j − yτ,b∥22

]
, (2.7)

where c > 0 are penalty coefficients that introduce the constraints-related second-order

terms to make the PCA formulation in (2.6) strictly convex without affecting its optimal

solution. The vector v in the left hand side of (2.7) contains the multipliers vb
τ,j for τ =

0, . . . , t, b ∈ Bj and j = 1, . . . , p.

2.2.2 Batch Distributed PCA Algorithm

Let κ = 0, 1, . . . , denote the index for a coordinate descent cycle and k = 1, . . . , K

indicate the consensus iteration index within a coordinate cycle. Then κ ·K+k enumerates

the total number of ADMM (consensus) iterations from the beginning and after k consen-

sus iterations have been completed during the κth coordinate descent cycle. One coordinate

descent cycle will entail one iteration per sensor to update C:j’s, and K consensus iterations

associated with ADMM to respect the equality constraints. Hence, we let yτ,j(κK + K)

indicate the most recent updates for yτ,j , after K consensus iterations have been completed

during coordinate cycle κ. We now tackle (2.6) first by using the block coordinate descent

method. First, (2.6) is minimized with respect to C after fixing yτ,j to their most up-to-date

values yτ,j(κK +K). Due to the separability of (2.6) with respect to the columns of C, it

turns out that sensor j has to tackle during coordinate descent cycle κ+1 the minimization
12

task

C:j(κ+ 1) = argmin
C:j

[∑t
τ=0(xτ (j)−C:j

Tyτ,j((κ+ 1)K))2
]
, (2.8)

via which sensor j can update the jth column of matrix C. After calculating the first-order

derivative of the cost in (2.8) and setting it equal to zero (first-order optimality conditions)

it turns out that:

−2
∑t

τ=0 yτ,j((κ+ 1)K)xτ (j)

+ 2
[∑t

τ=0 yτ,j((κ+ 1)K))(yτ,j((κ+ 1)K)))T
]
C:j(k + 1) = 0,

from which it follows that

C:j(κ+ 1) =
[∑t

τ=0 yτ,j((κ+ 1)K)(yτ,j((κ+ 1)K))T
]−1 ×

∑t
τ=0 yτ,j((κ+ 1)K)xτ (j).

(2.9)

For simplicity in exposition, let yτ,j((κ + 1)K) := yτ,j(k) in the notation used from now

on. Note than in (2.9), a single iteration will be enough since Ĉ will be evaluated in

closed form. Next, the local variables y’s and v’s multipliers are updated across sensors

by applying ADMM. The first step in ADMM involves updating the Lagrange multipliers

using gradient ascent at coordinate iteration κ+ 1 as follows

vκ+1,b
τ,j (k) = vκ+1,b

τ,j (k − 1) + c[yκ+1
τ,j (k)− yκ+1

τ,b (k)] (2.10)

for b ∈ Bj , k = 1, . . . , K, κ = −1, 0, . . ., and τ = 0, . . . , t. Here, vκ+1,b
τ,j (0) = vκ,b

τ,j (K)

which is the multiplier update after K consensus iterations, so coordinate cycle κ+1 starts

using the most up-to-date v’s and y’s from cycle κ.

13

Next, we form updates for yτ,j by minimizing (2.7) with respect to yτ,j after fixing C and

the multipliers v’s to their most-up-date values. Multiple iterations K will however be

needed for the local variables yτ,j to reach consensus.

yκ+1
τ,j (k + 1) = argmin

yτ,j

[L(yj,yb(k),v(k))] (2.11)

= argmin
yτ,j

[
t∑

τ=0

p∑
j=1

(xτ (j)−CT
:j(k + 1)yτ,j)

2

+
∑
b∈Bj

t∑
τ=0

[
(vb

τ,j(κ))
T (yτ,j − yτ,b(κ))

]
+ 0.5c

∑
b∈Bj

t∑
τ=0

[
∥yτ,j − yτ,b(κ)∥22

]
. (2.12)

Applying the first-order optimality conditions to find the optimal solution of the strictly

convex problem in (2.11) it turns out that

−2(C:j(κ+ 1))
[
xτ (j)− (C:j(κ+ 1))Tyκ+1

τ,j (k + 1)
]

+
∑
b∈Bj

t∑
τ=0

(vκ+1,b
τ,j (κ)) + 0.5c

∑
b∈Bj

t∑
τ=0

[
2yκ+1

τ,j (k + 1)− 2yκ+1
τ,b (k + 1)

]
= 0. (2.13)

Solving with respect to yκ+1
τ,j (k + 1) it follows that

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + c|Bj|I

]−1

×
[
2C:j(κ+ 1)xτ (j)−

∑
b∈Bj

vκ+1,b
τ,j (k) + c

∑
b∈Bj

yκ+1
τ,b (k)

]
. (2.14)

where κ = 0, 1, . . . ,, k = 1, . . . , K and τ = 0, . . . , t for b ∈ B.

The final step in ADMM involves updating yτ,b by minimizing (2.6) with respect to yτ,b

after fixing C and yτ,j to their most up-to-date values. The associated cost that has to be

minimized at bridge sensor b can be obtained from (2.7) after isolating the terms involving

yτ,b, i.e.,

yκ+1
τ,b (k + 1) = argmin

yτ,b

[L(yj(k + 1),yb,v(k))] (2.15)

= argmin
yτ,b

[

p∑
j=1

t∑
τ=0

(xτ (j)−CT
:j(k + 1)yτ,j)

2

14

+
∑
j∈Nb

t∑
τ=0

[
(vb

τ,j(k))
T (yτ,j(k + 1)− yτ,b)

]
+ 0.5c

∑
j∈Nb

t∑
τ=0

[
∥yτ,j(k + 1)− yτ,b∥22

]
,

(2.16)

After applying first-order optimality conditions in the convex cost of (2.15) it follows read-

ily that

yκ+1
τ,b (k + 1) =

∑
j∈Nb

1

(
∑

β∈Nb
cβ)

[
vκ+1,b
τ,j (k) + cyκ+1

τ,j (k + 1)
]

(2.17)

where κ = 0, 1, . . . ,, k = 1, . . . , K and τ = 0, . . . , t and b ∈ B.

Let the Lagrange multipliers {vb
τ,j(−1)}b∈Bj

, local estimates {yτ,j(0)}pj=1 and consensus

variables {yτ,b(0)}b∈Bj
be arbitrary [33] with the WSN reaching consensus as k → ∞. It

turns out that if an infinite number of consensus iterations (K → ∞) is applied during

coordinate cycle κ + 1 then consensus is reached such that limk→∞ yκ+1
τ,j (k) = (C(κ +

1)C(κ+1)T)−1C(κ+1)xτ which constitute the principal component vectors; for all sensors

j = 1, . . . , p, while C(κ+ 1) := [C:1(κ+ 1) . . .C:p(κ+ 1)]. The latter convergence claim

can be established using similar arguments as the ones given in [33].

Equations (2.10), (2.14) and (2.17) constitute the recursions that are executed for K con-

sensus iterations during each cycle κ. Together with (2.9), these form our batch D-PCA

approach. The proposed algorithm is tabulated below as Algorithm 1.

All sensors j ∈ [1, p] keep track of:

i) C:j(k + 1) ∈ Rr×1, that estimates the jth row of Ux,r;

ii) the multipliers {vκ,j′

τ,j (k)}j′∈Nj
; and

iii) the principal components in yκ
τ,j(k + 1) for τ = 0, . . . , t.

All sensors belonging to B also keep track of yκ
τ,b(k + 1) for τ = 0, . . . , t.

15

Algorithm 1 Batch Distributed Principal Component Analysis
1: Lagrange multipliers {vκ,b

τ,j (−1)}b∈Bj
,sensor local estimates yκ+1

τ,j (0) , consensus enforcing

variables yκ+1
τ,b (0) are randomly initialized

2: Every sensor j gathers t+ 1 measurements {xj(τ)}tτ=0.

3: for κ = 1, 2, . . . do

4: Each sensor j the jth row of the principal component matrix C, estimating UT
x,r, and forms

C:j(κ+ 1) ∈ Rr×1 via (2.9).

5: for k = 1, 2, . . . ,K do

6: Sensor j updating the multipliers {vκ,b
τ,j (k)}b∈Bj

using (2.10).

7: Bridge sensor b belonging to B updating the consensus-enforcing variables yκ+1
τ,b (k + 1)

using (2.17).

8: Sensor j receiving the consensus variables from all its neighbors in the subset B (b ∈ Bj)

and estimates yκ+1
τ,j (k + 1) using (2.14).

9: end for

10: If maxj=1,...,p(∥Ĉκ+1
:j − Ĉκ

:j∥2) ≤ ϵ then stop (for desired tolerance ϵ).

11: end for

In the batch process, sensors first gather t+1 measurements (for fixed t) i.e. x0, ..., xt. The

D-PCA algorithm then takes effect. During coordinate descent cycle κ+ 1, sensor j forms

C:j(κ + 1) ∈ Rr×1 via (2.9), using local principal components yκ
τ,j(K) for τ = 0, ..., t.

Each sensor now runs K consensus iterations comprising the following steps:

i) At consensus iteration k + 1 still during coordinate descent cycle κ + 1,each sensor

j receives consensus variables yκ+1
τ,b (k) from all its neighbors in the subset B, namely

all b ∈ Bj . Based on these consensus variables, it updates the Lagrange multipliers

{vκ+1,b
τ,j (k)}b∈Bj

using (2.10).

ii)Sensor j then combines {vκ+1,b
τ,j (k)}b∈Bj

which is used along with {yκ+1
τ,b (k)}b∈Bj

to form

yκ+1
τ,j (k + 1) via (2.14). After determining yκ+1

τ,j (k + 1) , sensor j transmits to each of its

16

neighbors b ∈ Bj the vector vκ+1,b
τ,j (k) + cyκ+1

τ,j (k + 1).

iii) Each sensor b ∈ Bj receives vκ+1,b
τ,j (k) + cyκ+1

τ,j (k + 1) from all its neighbors j ∈ Nb

which then initializes the (k + 1)th consensus iteration.

For an increasing number of consensus iterations K → ∞ and coordinate descent cycles

(κ → ∞), C(κ) and yτ,j(κ) converge at least to a stationary point of the PCA cost in (2.5).

This can be established using the convergence properties of block coordinate descent and

ADMM in [33, 34, 36].

2.2.3 Adaptive D-PCA

In situations where real time processing of data is of utmost importance as compared

to estimation performance, a batch implementation will not be suitable. This particularly

comes to play in cases where the number of measurements t + 1 is not fixed. This is

because every sensor has to carry out (t+1)K consensus iterations for updating {yκ
τ,j}tτ=0.

For an increasingly large t, i.e. with sensors collecting a large amount of data, a batch

implementation will have a large computational complexity, as well as high communication

and memory costs. Building on batch D-PCA we derive an adaptive D-PCA scheme that is

capable to process data online, while having a manageable computational, communication

and memory cost [37]. In batch D-PCA the separable PCA cost in (2.6) is time-invariant.

For a constant t, the batch D-PCA consisted of multiple coordinate descent cycles that

could be run until, e.g., the the updates for matrix C (or PCA cost) do not decrease below

a desired limit.

In an adaptive setting sensors acquire new data at every time instant t. Thus, for an increas-

ing t the cost (2.6) will be augmented with new data terms at every time instant. Therefore,

it becomes important at t to apply a small number of coordinate cycles; here one coordi-

nate cycle per t is employed to update the C matrix. Thus, the time t and coordinate cycle

17

indices κ coincide. It should be noted that K consensus iterations are still performed using

(2.10), (2.14) and (2.17). Specifically, at time t the following steps are taking place

C:j(t+ 1) =
[∑t

τ=0 yτ,j(K)(yτ,j(K))T
]−1 ×

∑t
τ=0 yτ,j(K)xτ (j), (2.18)

yt+1,j(k + 1) =
[
2C:j(t+ 1)(C:j(t+ 1))T + 2c|Bj|I

]−1

×
[
2C:j(k + 1)xt+1(j)−

∑
b∈Bj

vb
t+1,j(k) + c

∑
b∈Bj

yt+1,b(k)
]
, (2.19)

yt+1,b(k + 1) =
∑
j∈Nb

1

(
∑

β∈Nb
cβ)

[
vb
t+1,j(k) + cyt+1,j(k + 1)

]
, (2.20)

vb
t+1,j(k) = vb

t+1,j(k − 1) + 0.5c[yt+1,j(k)− yt+1,b(k)], k = 1, . . . , K (2.21)

which is a single recursion that updates C, and then updates yt,j , yt,b, vt,j
b over K consen-

sus iterations.(where k = 0, 1, . . . , K−1 in (2.19)). Note that coordinate cycle superscripts

’κ’ have been removed since one cycle takes place per t. Note that in contrast to the batch

approach, in the adaptive implementation ADMM (consensus iterations) is applied only

for the yt,j and yt,b that contain the most recent data and not for all {yτ,j,yτ,b}tτ=0. The

multipliers at t = 0, namely vj,0(0), are initialized randomly, whereas at time instant t > 0

warm-starts are employed to set vt,j(0) = vt−1,j(K). At time instant t variables yt,j are

initialized as yt,j(0) = C:j(t)xt(j).

As stated earlier, what results a smaller computational complexity compared to the batch

algorithm, is that at time t the ADMM updating recursions (2.10), (2.14) and (2.17) will

only be performed the multipliers vt,j , the principal vectors yt,j and the consensus enforc-

ing variables yt,b that contain the most recent data at time instant t. On the contrary, in the

batch algorithm the ADMM is applied for all {vτ,j,yτ,b,yτ,j} for τ = 0, . . . , t.

Let us define now the following quantities

Mx,t :=
t∑

τ=0

yτ,j(K)(yτ,j(K))T (2.22)

18

and

mxy,t :=
t∑

τ=0

yτ,j(K)xτ (j), (2.23)

which are necessary in implementing updating C:j(t+ 1) using (2.18).

At time τ = t+ 1, Mx,t and mxy,t are updated in an adaptive fashion as

Mx,t+1 = Mx,t + yt+1,j(K)(yt+1,j(K))T (2.24)

and

mxy,t+1 = mxy,t + yt+1,j(K)xt(j) (2.25)

such that the Mx,τ and mxy,τ for τ = 0, . . . , t remains constant. Results from (2.24)

and (2.25) are used to update C:j(t + 1) using (2.18). The ADMM process kicks in by

initializing as

yt+1,j(0) = C:j(t+ 1)xt+1(j) (2.26)

yt+1,b(0) = yt,b(K) (2.27)

vt+1,j(0) = vt,j(K) (2.28)

During the kth consensus iteration, each sensor j receives updates yt+1,b from its bridge

neighbors b ∈ Bj and the multipliers vb
t+1,j are updated using (2.21). Sensor j then updates

yt+1,j at time k+1 for k ∈ K, using (2.19) with vb
t+1,j and yt+1,j obtained from the bridge

neighbors b ∈ Bj in the previous iteration. Updates yt+1,b are then formed at the bridge

sensors b ∈ Bj using the yt+1,j update and the multiplier update vb
t+1,j . This process is

repeated for K ADMM iterations.

Further, during time instant τ = t+ 2, Mx,t+1 and mxy,t+1 are updated as

Mx,t+2 = Mx,t+1 + yt+2,j(K)(yt+2,j(K))T (2.29)

19

and

mxy,t+2 = mxy,t+1 + yt+2,j(K)xt(j) (2.30)

Results from (2.29) and (2.30) are used to update C:j(t+2) using (2.18). ADMM is applied

for K iterations, and the whole process continues for τ = t+3, t+4, Notice that for all

τ = 0, . . . , t, updates vb
τ,j(K),yt,j(K) and yt,b(K) remain constant for the time instances

τ + 1, τ + 2, . . . for τ < t since consensus is only applied for yt,j , yt,b and vb
t,j .

2.3 Communication cost

For the communication costs associated with a D-PCA network setting with bridge

sensors, simple sensor j in D-PCA has to transmit r(|Bj|) scalars per consensus iteration

corresponding to the entries of the multipliers vb
t,j(k) and the local estimate yt,j(k). Given

that at each time instant t there are K consensus iterations taking place, the total trans-

mission load per sensor during time instant t is rK(|Bj|). For the bridge sensors, a bridge

sensor b has to transmit r(|Nj|+1) scalars per consensus iteration corresponding to the en-

tries of the consensus enforcing variables yt,b(k). Similarly, for K consensus iterations,the

total transmission load per sensor during time instant t is rK(|Nj| + 1). Generally, since

|Bj| < |Nj|,then rK|Bj| < rK(|Nj|+1) and hence a bridge sensor has a higher transmis-

sion cost than a simple sensor j. In S-PCA each sensor has to transmit rK(r + 1) to carry

out consensus-iterations involving r × r matrices and r × 1 vectors. Comparing with the

bridge sensors, if r < (|Bj| − 1) is smaller than the size of the single-hop neighborhoods

then S-PCA has a smaller transmission cost, whereas if r > (|Bj| − 1) D-PCA will have

an advantage. When compared with the simple sensors, if r < |Nj| is smaller than the size

of the single-hop neighborhoods then S-PCA has a smaller transmission cost, whereas if

r > |Nj| D-PCA will have an advantage.

20

When considering the reception cost it can be seen that in D-PCA each simple sensor

receives 2rK|Bj| scalars during K consensus iterations pertaining to {yt,b(k)}b∈Bj
. Con-

sidering the bridge sensors, each bridge sensor receives 2rK(|Nj|) scalars per consensus it-

eration corresponding to the entries of the multipliers vb
t,j(k) and the local estimate yt,j(k).

Again, since |Bj| < |Nj| , the bridge sensors have higher receiving cost than the simple

sensors. However, in S-PCA sensor j receives (r + 1)rK|Nj| ≥ 2rK|Nj| > 2rK|Bj| due

to the reception of Nj r×r matrices and r×1 vectors per consensus iteration. Thus, D-PCA

has a smaller reception cost for r > 1. Even though the transmission cost of D-PCA may

be greater than the one in S-PCA, it will be corroborated via numerical examples that the

higher transmission cost in D-RLS pays off in improved convergence rates and steady-state

performance.

The use of bridge sensors is ideal for networks in which a few sensors (the bridges)

have higher computational and memory capabilities than the rest. However, in a situation

where all sensors have equal capability, and want to avoid the extra coordination required

for setting and updating the bridge sensor set an alternative separable formulation for PCA

is set forth that does not require the utilization of bridge sensors.

21

CHAPTER 3

DISTRIBUTED PCA WITHOUT BRIDGE SENSORS

In the previous chapter to enable task parallelization of PCA via ADMM was achieved

by relying on the so called bridge sensor subset. Not only setting up, but also readjusting

the bridge sensor set, e.g., when sensors inevitably run out of battery resources, requires

additional coordination among sensors. To allow a distributed implementation in sensor

networks where all sensors are the same and therefore there are not special bridge sen-

sors a different formulation is proposed here. As in Chpt. 2 the machinery utilized will

be ADMM. However, a simpler algorithm that can be applied in sensor networks with no

hierarchical structure. On the other hand the approach proposed in Chapter 2, has a smaller

communication cost for the no-bridge sensors while it exhibits faster convergence rates

compared to the framework put here. Thus, selecting between the bridge-based D-PCA

and no-bridge D-PCA depends on the available resources, as well as the desired conver-

gence speed.

3.1 Problem Statement

Next, we consider an ad hoc sensor network with J sensors in which each sensor j

is only capable of single-hop communication. Here, a sensor can only communicate with

its directly connected neighbour in Nj with cardinality |Nj|. Assuming links in the sensor

network are symmetric, we model the sensor network as an undirected connected graph

whose vertices are sensors and edges represent communication links. We characterize this

network by an adjacency matrix E ∈ RJ×J where Eij = Eji = 1 for i ∈ Nj and Eji = 0 if

i /∈ Nj . Each sensor acquires a set of zero-mean measurements {xτ (j)}Jj=1 of a particular

22

deterministic quantity at discrete time instances τ = 0, 1, 2, . . . , t. As in Chpt. 2 these

measurements are stacked in xτ := [xτ (1), . . . , xτ (J)]
T , and the covariance becomes

Σx = E[xτx
T
τ]. (3.1)

For a very large number of observations t, the covariance can be approximated as

Σx ≈ 1

t

∑t
τ=0[xτx

T
τ], (3.2)

where equality holds for an infinite number of observations.

Let Σx = UxΛxU
T
x denote the eigenvalue decomposition of the covariance matrix, where

Ux ∈ RJ×J is the eigenvector matrix, which is the eigenspace, and the diagonal matrix Λx

contains the corresponding eigenvalues. Using principal component analysis, the principal

eigenspace Ux,r can be found by estimating the r principal eigenvectors of the covariance

matrix Σx using the gathered sensor data. The principal components constituted by the

eigenspace Ux,r can be found, see [5], by minimizing

Ĉ = argmin(t+ 1)−1
∑t

τ=0 ∥xτ −CTCxτ∥22, (3.3)

with respect to C ∈ Rr×J . The following equation follows from setting yτ = Cxτ in (3.3)

(Ĉ, {ŷτ}tτ=0) = argmin
C,yτ

(t+ 1)−1
∑t

τ=0 ∥xτ −CTyτ |22, (3.4)

The above equation in the centralized PCA cost function. By estimating the covariance

using Σ̂x,t = (t + 1)−1
∑t

τ=0 xτx
T
τ and obtaining the r principal eigenvectors for which

Ĉ = Ûx,r, we form a minimizer for (3.3) which forms a separable PCA cost function that

is amenable to distributed minimization.

Now let Ĉ = UcScV
T
c denote the singular value decomposition of the minimizer in (3.4),

where Uc ∈ Rr×r and Vc ∈ RJ×J contain the left and right singular vectors of Ĉ, while

23

diagonal matrix Sc contains the singular values. The last two equations indicate that r

left singular vectors of Č corresponding to the largest singular values, say Uc,r, satisfy

Uc,r = Ûx,rW where W is an arbitrary r × r unitary matrix. Thus, Ux,r can be estimated

from Č in (3.4) up to a unitary matrix ambiguity. A distributed PCA setting without bridge

sensors is now considered in the next section.

3.2 Distributed Implementation of PCA

In order to develop a distributed (D-) PCA algorithm without bridge sensors, we will rewrite

the centralized PCA cost in (3.4) in a separable way and then employ the alternating di-

rection method of multipliers (ADMM) [33–35] combined with block coordinate descent

techniques, see e.g., [36], to split the optimization problem into smaller subtasks that can be

implemented in parallel across sensors. Towards this end, the cost in (3.4) can be rewritten

as

J(C, {yτ}tτ=0) = (t+ 1)−1
∑J

j=1

∑t
τ=0(xτ (j)−CT

:jyτ)
2, (3.5)

where C:j denotes the jth column of C for j = 1, . . . , J . Sensor j is responsible for

forming updates for C:j that estimates the jth row of Ux,r. Since summands in (3.5) are

coupled through the vectors yτ , separate minimization of
∑t

τ=0(xτ (j)−CT
:jyτ)

2 at sensor j

will not return the minimizer of (3.4). A separable PCA formulation that is equivalent to the

centralized minimization problem in (3.4) is obtained by introducing the auxiliary vectors

yτ,j for each sensor j and impose the consensus constraint yτ,1 = yτ,2 = . . . = yτ,J . The

following separable constrained optimization problem is obtained

(Č, {y̌τ,j}J,tj=1,τ=0) = argmin(t+ 1)−1

J∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j)

2,

s. to yτ,j = yτ,j′ , j′ ∈ Nj and τ = 0, . . . , t (3.6)

24

Since the network is connected it follows readily that (3.6), (3.5) and (3.4) are equivalent

in the sense that {y̌τ,j = y̌τ}Jj=1.

3.2.1 Application of the ADMM

In order to solve (3.6) in a distributed implementation, we employ ADMM which will

allow sensor j to obtain iteratively estimates for the jth row of Ux via C:j . To facilitate

utilization of ADMM, consider the auxiliary variables zj
′

τ,j for j′ ∈ Nj and τ = 0, . . . , t.

Then, substitute the constraints in (3.6) with the equivalent ones

yτ,j = zj
′

τ,j and yτ,j = zjτ,j′ for j′ ∈ Nj and j ̸= j′. (3.7)

The variables zj
′

τ,j are just used to derive the local recursions run across sensors to find Č:j ,

and eventually these variables are eliminated. Next, let vj′

τ,j and wj′

τ,j denote the multipliers

associated with the constraints yτ,j = zj
′

τ,j and yτ,j = zjτ,j′ respectively. ADMM exploits

the decomposable structure of the augmented Lagrangian function [36, Ch. 3] which for

(3.6) is written as

L[C, {yτ,j}t,Jτ=0,j=1,v,w] = (t+ 1)−1

J∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j)

2

+
J∑

j=1

∑
j′∈Nj

t∑
τ=0

[
(vj′

τ,j)
T (yτ,j − zj

′

τ,j) + (wj′

τ,j)
T (yτ,j − zjτ,j′)

]

+ 0.5c
J∑

j=1

∑
j′∈Nj

t∑
τ=0

[
∥yτ,j − zj

′

τ,j∥22 + ∥yτ,j − zjτ,j′∥
2
2

]
, (3.8)

where c is a positive penalty coefficient, while v and w contain the multipliers vj′

τ,j and

wj′

τ,j , respectively for τ = 0, . . . , t, j′ ∈ Nj and j = 1, . . . , J . In order to tackle (3.6) we

first employ a block coordinate descent where we first minimize wrt C while treating the

yτ,j’s fixed and vice versa. ADMM will be utilized when minimizing (3.6) wrt to yτ,j , while
25

respecting the consensus constraints in (3.7). When minimizing wrt C assuming fixed yτ,j

one iteration will be enough since Č will be found in closed form. However, application of

ADMM to determine yτ,j for a fixed C, while respecting the equality constraints in (3.6),

will involve multiple iterations denoted as K. Multiple recursions (ideally K → ∞) in

ADMM will be needed to enforce the consensus requirement across the yτ,j variables [33].

3.2.1.1 Batch Algorithm

Now let κ = 0, 1, . . . , denote the index for a coordinate descent cycle and k = 1, . . . , K

indicate the consensus iteration index within a coordinate cycle. Then κ ·K+k enumerates

the total number of consensus iterations from the beginning after k consensus iterations

have been completed during the κth coordinate descent cycle. One coordinate descent cycle

will entail one iteration per sensor to update C:j’s, and K consensus iterations associated

with ADMM. Specifically, let yτ,j(κK + K) and zj
′

τ,j(κK + K) indicate the most recent

updates for yτ,j and zj
′

τ,j respectively, after K consensus iterations have been completed

during coordinate cycle κ. Minimization of (3.6) wrt to C:j during coordinate descent

cycle κ + 1, while treating yτ,j as fixed and equal to yτ,j(κK +K). From the augmented

Lagrangian function in (3.8) it follows that matrix C can be obtained as the minimizer of

(Č) = argmin(t+ 1)−1

J∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j((κ+ 1)K))2.

(3.9)

Exploiting the separability of (3.9) with respect to the sensor index j, it follows that the

update for the jth column of C can be found at sensor j as

Č(κ+ 1) = argmin(t+ 1)−1

t∑
τ=0

(xτ (j)−CT
:jyτ,j((κ+ 1)K).))2 (3.10)

26

Applying first-order optimality conditions in (3.10) it gives

−2
t∑

τ=0

yτ,j((κ+ 1)K)xτ (j)

+ 2
[∑t

τ=0 yτ,j((κ+ 1)K))(yτ,j((κ+ 1)K)))T
]
C:j(κ+ 1) = 0, (3.11)

from which it follows readily that

C:j(κ+ 1) =
[∑t

τ=0 yτ,j((κ+ 1)K)(yτ,j((κ+ 1)K))T
]−1 ×

∑t
τ=0 yτ,j((κ+ 1)K)xτ (j).

(3.12)

To make the notation more compact let yκ
τ,j(k) := yτ,j(κK + k), vκ,j′

τ,j (k) = vj′

τ,j(κK + k),

wκ,j′

τ,j (k) = wj′

τ,j(κK + k) and zκ,j
′

τ,j (k) = zj
′

τ,j(κK + k). Then, updates yκ+1
τ,j (k) will be

formed at sensor j for k = 1, . . . , K by employing the ADMM.

The first step in ADMM, during coordinate descent cycle κ + 1, updates the Lagrange

multipliers using the gradient ascent iterations

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k − 1) + c[yκ+1
τ,j (k)− zκ+1,j′

τ,j (k)], (3.13)

wκ+1,j′

τ,j (k) = wκ+1,j′

τ,j (k − 1) + c[yκ+1
τ,j (k)− zκ+1,j′

τ,j (k)], (3.14)

for j′ ∈ Nj , k = 1, . . . , K and τ = 0, . . . , t. Note that vκ+1,j′

τ,j (0) = vκ,j′

τ,j (K), thus

coordinate cycle κ + 1 starts using the most up-to-date v’s from cycle κ. The same holds

for the y’s, w’s and z’s.

The second step involves a minimization of (3.8) wrt yτ,j while treating the rest optimiza-

tion variables as fixed to their most up-to-date value.

yκ+1
τ,j (k + 1) = argmin

yτ,j

[La(yj,yj′ ,v,w)] (3.15)

= argmin
yτ,j

[
t∑

τ=0

(xτ (j)−CT
:j(κ+ 1)yτ,j)

2

27

+
∑
j′∈Nj

t∑
τ=0

[
(vκ+1,j′

τ,j (k))T (yτ,j − zκ+1,j′

τ,j (k)) + (wκ+1,j′

τ,j (k))T (yτ,j − zκ+1,j
τ,j′ (k))

]

+0.5c
∑
j′∈Nj

t∑
τ=0

[
∥yτ,j − zκ+1,j′

τ,j (k)∥22 + ∥yτ,j − zκ+1,j
τ,j′ (k)∥22

]
. (3.16)

After evaluating the gradient of the augmented Lagrangian with respect to yτ,j and setting

it equal to zero (first-order optimality conditions) it follows

−2C:j(κ+ 1)
[
xτ (j)−C:j

T (κ+ 1)yτ,j

]
+
∑

j′∈Nj
(vκ+1,j′

τ,j +wκ+1,j′

τ,j)

+0.5c
∑

j′∈Nj
2(yτ,j − zκ+1,j′

τ,j (k) + yτ,j − zκ+1,j
τ,j′ (k)) = 0. (3.17)

Then, from (3.17) it follows that for j = 1, . . . , J

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + 2c|Nj|I

]−1

×
[
2C:j(κ+ 1)xτ (j)−

∑
j′∈Nj

(vκ+1,j′

τ,j (k) +wκ+1,j′

τ,j (k))

+c
∑

j′∈Nj
(zκ+1,j′

τ,j (k) + zκ+1,j
τ,j′ (k))

]
. (3.18)

where κ = 0, 1, . . . ,, k = 1, . . . , K and τ = 0, . . . , t for j′ ∈ Nj .

The third step in ADMM involves forming the updates zκ+1,j′

τ,j (k). This is done by mini-

mizing (3.8) with respect to zκ+1,j′

τ,j , while fixing the other variables to their most up-to-date

values

zκ+1,j′

τ,j (k + 1) = arg min
zτ,jj

′
[La(yj′ ,v,w,yj(k + 1))] (3.19)

= arg min
zτ,jj

′
[

p∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j(k + 1))2

+
∑
j′∈Nj

t∑
τ=0

[
(vκ+1,j′

τ,j)T (yτ,j(k + 1)− zj
′

τ,j) + (wκ+1,j′

τ,j)T (yτ,j(k + 1)− zjτ,j′)
]

+0.5c
∑
j′∈Nj

t∑
τ=0

[
∥yτ,j(k + 1)− zj

′

τ,j∥22 + ∥yτ,j(k + 1)− zjτ,j′∥
2
2

]
, (3.20)

28

from which first-order optimality conditions result

− (vκ+1,j′

τ,j (k) +wκ+1,j
τ,j′ (k))

− c(yτ,j(k + 1)− zκ+1,j′

τ,j (k + 1) + yτ,j′(k + 1)− zκ+1,j′

τ,j (k)) = 0

⇔ 2czκ+1,j′

τ,j (k)− c(yτ,j′(k + 1) + yτ,j(k + 1)) = vκ+1,j′

τ,j (k) +wκ+1,j
τ,j′ (k). (3.21)

Then, it follows

zκ+1,j′

τ,j (k + 1) =0.5[yκ+1
τ,j (k + 1) + yκ+1

τ,j′ (k + 1)] + 0.5c−1[vκ+1,j′

τ,j (k) +wκ+1,j′

τ,j (k)],

(3.22)

where j = 1, . . . , J and j′ ∈ Nj . Substituting (3.22) into the two recursions in (3.13), it

follows that if the Lagrange multipliers are initialized such that v0,j′

τ,j (0) = −w0,j
τ,j′(0), then

vκ,j′

τ,j (k) = −wκ,j
τ,j′(k) for all τ , κ and k, while

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k − 1) + 0.5c(yκ+1
τ,j (k)− yκ+1

τ,j′ (k)), (3.23)

for j′ ∈ Nj . Thus, sensor j only has to keep track of {vκ,j′

τ,j (k)}j′∈Nj
since wκ,j′

τ,j (k) =

−vκ,j
τ,j′(k) becomes redundant.

Then, using (3.22) and vκ,j′

τ,j (k) = −wκ,j
τ,j′(k) recursion (3.18) becomes

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + c|Nj|I

]−1

×
[
2C:j(κ+ 1)xτ (j)−

∑
j′∈Nj

(vκ+1,j′

τ,j (k)− vκ+1,j
τ,j′ (k))

+c
∑

j′∈Nj
(yκ+1

τ,j (k) + yκ+1
τ,j′ (k))

]
, (3.24)

where the zκ,j
′

τ,j (k) variables have been eliminated. Using the convergence claims in [33]

turns out that if an infinite number of consensus iterations (K → ∞) is applied during

coordinate cycle κ + 1 then consensus is reached in the sense that limk→∞ yκ+1
τ,j (k) =

(C(κ+ 1)C(κ+ 1)T)−1C(κ+ 1)xτ (the principal component vectors) for all sensors j =

1, . . . , J , while C(κ+ 1) := [C:1(κ+ 1) . . .C:J(κ+ 1)].
29

Recursions (3.12), (3.23) and (3.24) constitute a batch D-PCA approach, whereby sensor j

keeps track of

i) C:j(k + 1) ∈ Rr×1, that estimates the jth row of Ux,r;

ii) the multipliers {vκ,j′

τ,j (k)}j′∈Nj
; and

iii) the principal components vectors yκ
τ,j(k + 1) for τ = 0, . . . , t.

In a batch setting, sensors first gather t + 1 measurements (t is fixed), namely x0, . . . ,xt,

and then employ the D-PCA algorithm. During coordinate descent cycle κ+1 sensor j first

forms C:j(κ+1) via (3.12), using its local principal components vector updates yκ
τ,j(K) for

τ = 0, . . . , t. Then, sensor j runs K consensus iterations by carrying out (3.23) and (3.24).

Specifically, during consensus iteration k + 1 and coordinate cycle κ + 1, it receives from

its neighbors j′ ∈ Nj the r × 1 vectors yκ+1
τ,j′ (k) and updates its multipliers vκ+1,j′

τ,j (k) via

(3.23). Then, sensor j receives {vκ+1,j
τ,j′ (k)}j′∈Nj

which are used along with {yκ+1
τ,j′ (k)}j′∈Nj

to form yκ+1
τ,j (k + 1) via (3.24). For an increasing number of consensus iterations K → ∞

and coordinate descent cycles (κ → ∞), C(κ) and yτ,j(κ) converge at least to a stationary

point of the PCA cost in (3.5). This can be established using the convergence properties of

block coordinate descent and ADMM in [36] and [33, 34], respectively.

3.2.2 Adaptive D-PCA

In situations where real time processing of data is of utmost importance as compared to es-

timation performance, a batch implementation will not be suitable. This particularly comes

to play in cases where the number of measurements t + 1 is not fixed. This is because

every sensor has to carry out (t + 1)K consensus iterations for updating {yκ
τ,j}tτ=0. For

an increasingly large t, i.e., with sensors collecting a large amount of data, there comes an

increasing demand of computational, communication and memory capabilities across sen-

sors for a batch implementation. Building on batch D-PCA we derive an adaptive D-PCA

scheme that is capable to process data online, while having a manageable computational,

30

communication and memory cost [37]. In batch D-PCA the separable PCA cost in (3.6) is

time-invariant. For a constant t, the batch D-PCA consisted of multiple coordinate descent

cycles that could be run until, e.g., the PCA cost does not decrease below a desired limit.

In batch D-PCA the separable PCA cost in (3.6) is time-invariant, i.e. t is fixed. For a

constant t batch D-PCA consisted of multiple coordinate descent cycles that could be run

until, e.g., the PCA cost does not decrease below a desired threshold. In an adaptive setting

sensors acquire new data at every time instant t, thus t is increasing and the cost (3.6)

will be augmented with new data terms. Thus, it is pertinent at t to apply a small number

of coordinate cycles; here one coordinate cycle per t is employed. Thus, the time and

coordinate cycle indices coincide, i.e., κ = t. During t there will be K nested consensus

iterations carrying out (3.23) and (3.24). Different from batch D-PCA, (3.23) and (3.24)

will be carried out only for the most recent multipliers and principal vectors {vj′

t,j,yt,j}pj=1,

and not for all τ = 0, . . . , t as in the batch implementation.

During t+ 1, adaptive D-PCA updates C:j as

C:j(t+ 1) =

[
t∑

τ=0

yτ,j(K)yT
τ,j(K)

]−1∑t
τ=0 yτ,j(K)xτ (j), (3.25)

and employs K consensus iterations for updating yt,j and vt,j as

vj′

t+1,j(k) = vj′

t+1,j(k − 1) + 0.5c[yt+1,j(k)− yt+1,j′(k)], (3.26)

yt+1,j(k + 1) =
[
2C:j(t+ 1)(C:j(t+ 1))T + c|Nj|I

]−1

×
[
2C:j(t+ 1)xt+1(j)−

∑
j′∈Nj

(vj′

t+1,j(k)− vj
t+1,j′(k))

+c
∑

j′∈Nj
(yt+1,j(k) + yt+1,j′(k))

]
, (3.27)

where k = 1, . . . , K for (3.26), while coordinate cycle superscripts have been removed

since one cycle takes place per t. The multipliers at t = 0, namely vj,0(0), are initial-

ized randomly, whereas at time instant t > 0 warm-starts are employed to set vt,j(0) =

vt−1,j(K). Further, during instant t the yt,j variables are initialized as yt,j(0) = C:j(t)xt(j).
31

Let Mx,t denote the matrix inverted in (3.25), and mxy,t :=
∑t

τ=0 yτ,j(K)xτ (j). Since con-

sensus is applied only for yt,j and vj′

t,j , the updates yτ,j(K) and vj′

τ,j(K) for τ < t remain

constant for the time instances τ +1, τ +2, Thus, Mx,t and mxy,t can be adaptively up-

dated at sensor j as Mx,t = Mx,t−1+yt,j(K)yT
t,j(K) and mxy,t = mxy,t−1+yt,j(K)xt(j),

respectively.

Summarizing, adaptive D-PCA will involve the following steps during t+ 1: Sensor j up-

dates recursively Mx,t and mxy,t and uses them to update C:j(t + 1) via (3.25). Then, K

consensus recursions are employed in order to obtain yt+1,j(K). To this end, the initializa-

tion yt+1,j(0) = C:j(t+ 1)xt+1(j) and vt+1,j(0) = vt,j(K) takes place. During consensus

iteration k sensor j receives from its neighbors j′ ∈ Nj vectors yt+1,j′(k) and updates

its multipliers vj′

t+1,j(k) via (15). Then, sensor j receives the multipliers {vj
t+1,j′(k)}j′∈Nj

which are used along with {yt+1,j′(k)}j′∈Nj
to form yt,j(k + 1) via (16). Once yt+1,j(K)

are formed across sensors, the process is repeated.

3.3 Inter-Sensor Communication Noise

Thus far, no inter-sensor communication noise was considered in the information exchanges

between neighboring sensors. The inter-sensor links so far have been assumed to be ideal.

However, in practice data communication between sensors suffer from noise that will con-

taminate the quantities being exchanged between say a sensor j and another sensor j′ for

j ̸= j′, and j′ ∈ Nj . The presence of additive noise in the inter-sensor links will affect the

quantities yt,j and vt,j being exchanged between neighboring sensors. Specifically, if a sen-

sor j transmits the r×1 vectors yt+1,j′(k) and vj′

t+1,j(k), then a neighboring sensor j′ ∈ Nj

will receive the ‘noisy’ vectors yt+1,j′(k) + ηj
t+1,j′(k) and vj

t+1,j′(k) + ζj
t+1,j′(k), where

ηj
t+1,j′(k) and ζj

t+1,j′(k) correspond to the zero-mean communication noise affecting the

32

link from sensor j to sensor j′ during transmission of the y and v vectors, respectively.

Then, the updating formulas in (3.26) and (3.27) will be adjusted as

vj′

t+1,j(k) = vj′

t+1,j(k − 1) + 0.5c[yt+1,j(k)− (yt+1,j′(k) + ηj
t+1,j′(k))], (3.28)

yt+1,j(k + 1) =
[
2C:j(t+ 1)(C:j(t+ 1))T + c|Nj|I

]−1

×
[
2C:j(t+ 1)xt+1(j)−

∑
j′∈Nj

(vj′

t+1,j(k)− (vj
t+1,j′(k) + ζj

t+1,j′(k))

+c
∑

j′∈Nj
(yt+1,j(k) + (yt+1,j′(k)) + ηj

t+1,j′(k))
]

(3.29)

As will be corroborated by numerical tests, the D-PCA algorithm comprising of recursions

(3.25) and (3.28) is resilient to communication noise. On the contrary existing distributed

PCA approaches [38] do not exhibit robustness in the presence of noise and diverge as will

be demonstrated by simulations. Moreover, in the absence of noise (ideal links) D-PCA

will outperform [38] both in terms of convergence speed, as well as steady-state principal

eigenspace estimation error.

3.4 Communication and Computational Costs

The communication and computational costs associated with the adaptive D-PCA scheme

is now evaluated, summarized in (3.25), (3.26) and (3.29) , and compare it with the related

approach in [26]. The computational complexity for carrying out (3.25) is O(r2) which

is dictated by the inversion of Mx,t which can be done by employing the matrix inversion

lemma [39, pg. 571]. Updating of vj′

t,j and mxy,t has a complexity of the order of O(r),

while the associated complexity for forming yt,j is O(r2) which is imposed by the matrix

inversion that again can be carried out using the matrix inversion lemma. Thus, the compu-

tational complexity per time instant t and consensus iteration in adaptive D-PCA is O(r2).

The computational complexity of the algorithm proposed in [26], abbreviated as S-PCA, is

also O(r2).

33

For the communication costs associated with D-PCA and S-PCA, sensor j in D-PCA has

to transmit r(|Nj| + 1) scalars per consensus iteration corresponding to the entries of the

multipliers {vj′

t,j(k)}j∈Nj
and the local estimate yt,j(k). Given that at each time instant t

there are K consensus iterations taking place, the total transmission load per sensor during

time instant t is rK(|Nj| + 1). In S-PCA each sensor has to transmit rK(r + 1) to carry

out consensus-iterations involving r × r matrices and r × 1 vectors. If r < |Nj| is smaller

than the size of the single-hop neighborhoods then S-PCA has a smaller transmission cost,

whereas if r > |Nj| D-PCA will have an advantage. When considering the reception cost

it can be seen that in D-PCA each sensor receives 2rK|Nj| scalars during K consensus

iterations pertaining to the vectors {vj
t,j′(k),yt,j′(k)}j′∈Nj

. However, in S-PCA sensor j

receives (r + 1)rK|Nj| ≥ 2rK|Nj| due to the reception of Nj r × r matrices and r × 1

vectors per consensus iteration. Thus, D-PCA has a smaller reception cost for r > 1. Even

though the transmission cost of D-PCA may be greater than the one in S-PCA, it will be

corroborated via numerical examples that the higher transmission cost in D-RLS pays off

in improved convergence rates and steady-state performance. The work in [33] thoroughly

studied why ADMM exhibits better convergence properties over consensus-averaging [40]

when it comes to least-squares estimation [33]. Similar arguments can be carried over the

present PCA setting supporting the better convergence properties of ADMM observed via

simulations. In the next chapter we apply the D-PCA algorithm in denoising in a distributed

fashion data gathered across spatially scattered sensors.

3.5 Comparison of bridge/ bridgeless sensor network communication costs

Here, we compare the sensor network communication costs of both a sensor network

with a bridge and that without a bridge and the motivation behind each of the two schemes.

In both cases, we consider the K consensus iterations and rank r.

34

Considering the transmission cost, for a network with bridges, each bridge has a

transmission cost corresponding to rK < |Nj + 1| scalars. The simple sensors in the same

network have transmission cost corresponding to rK|Bj| scalars. Whereas, in the network

without bridges, each sensor has a transmission cost corresponding to rK < |Nj + 1|

scalars. So, in terms of transmission cost, the bridge sensors in a network with bridges

have the same cost as compared to the sensors of a network without bridges, at the expense

of the simple sensors which have a lower transmission cost.

In terms of the reception cost, for a network with bridges, each bridge has a reception

cost corresponding to 2rK < |Nj| scalars. The simple sensors in the same network have

reception cost corresponding to 2rK|Bj| scalars. Whereas, in the network without bridges,

each sensor has a transmission cost corresponding to 2rK < |Nj| scalars. Therefore, in

terms of reception cost, the bridge sensors in a network with bridges have the same com-

munication cost as compared to the sensors of a network without bridges, at the expense of

the simple sensors which have a lower reception cost.

Based on the analysis above, a network with bridges is ideal for networks in which

a few sensors have higher memory and computation capabilities than other sensors, while

network without bridges are ideal when sensors have the same computational power and

memory.

35

CHAPTER 4

DISTRIBUTED DATA DENOISING

The amount of useful information extracted from measurement data is often ham-

pered by the presence of noise. Even the effectiveness of statistical analysis methods such

as PCA sometimes degrade fast in very low signal-to-noise ratio (SNR) settings. Denoising

(or noise removal) is therefore a crucial step to improve the the information content of the

low dimension data obtained from these statistical methods. Although not much work has

been done on this, especially in a distributed setting, a few denoising algorithms have been

put forward. The work in [41] suggested the use of wavelets as a tool for brain electrical

activity analysis and denoising. A thresholding algorithm was introduced in [42] to re-

duce noise in the wavelet domain. However, these methods require high signal amplitudes

to be able to effectively distinguish between noise and signal-related wavelet coefficients

in single trials. The approach in [43] modified the original a posteriori Wiener filter to

find accurate filter settings. The work in [44] proposed a non-linear approach to transient

signal denoising with better filter settings. Other denoising approaches considered other

statistical methods for determining a particular matrix of data and its delayed version for

denoising, e.g., see [45]. [46] developed a batch based denoising approach where each

node had to have access to a specific sensor group and not just single hop communications.

A distributed PCA denoising algorithm is proposed in this chapter. The principal signal

eigenspace is estimated in a distributed fashion and the sensor data are projected on the

estimated signal space to remove noise and obtain better signal estimates. Denoising is

then performed by projecting the sensor data onto a subset of the principal eigenvectors of

36

data covariance matrix. The denoising task is performed whilst maintaining the distributed

setting being considered in earlier chapters.

4.1 Problem Statement

Consider an ad hoc sensor network consisting of J sensors taking measurements of

a particular deterministic quantity. Each sensor j takes measurements at time instant τ ,

where τ = 1, . . . , t and as mentioned on previous chapters is able to communicate only

with its single-hop neighbors, i.e. ad-hoc neighbors j′ for Nj . The measurements acquired

across sensors are stacked in the vector xn
τ := [xn

τ (1), . . . , x
n
τ (p)]

T , for τ = 1, . . . , t are

assumed to be zero-mean. Similarly, let the vector xτ := [xτ (1), . . . , xτ (p)]
T denote the

information part of the sensor data for τ = 1, . . . , t such that

xn
τ = xτ + nτ , (4.1)

where nτ := [nτ (1), . . . , nτ (p)]
T is a dataset containing the noise variables. The sensor

data covariance matrix, namely Σxn , can then be written as

Σxn = E[xn
τ (x

n
τ)

T] = E[xτx
T
τ + xτn

T
τ + nτx

T
τ + nτn

T
τ] (4.2)

Since the information signal xτ in xn
τ is uncorrelated with the noise nτ (for τ = 1, .., t),

from (4.2) it follows that

Σxn = Σx +Σn, (4.3)

where Σn denotes the measurement noise covariance matrix. Here we assume that the

sensing noise across sensors is spatially uncorrelated, i.e., Σn = σ2
nI where σ2

n denotes the

sensing noise variance. Let Σx = HΣsH
T denote the singular value decomposition (svd)

of information covariance matrix Σx, where H ∈ RJ×J is the orthonormal matrix that

37

contains the eigenvector in its columns, while the diagonal Σs contains the corresponding

eigenvalues. Thus, (4.3) becomes

Σxn = HΣsH
T + σ2

nI. (4.4)

Specifically, assume that the sensed field is formed by r zero-mean uncorrelated stationary

sources represented by the signals sρ(t). In detail, the informative part of the sensor data

(xn
τ) is formed as

xτ =
r∑

ρ=1

hρsρ(τ) = H:,1:rsτ , (4.5)

where sρ(τ) corresponds to the signal emitted by the ρth source, while the different sources

are uncorrelated. As assumed before, the sensor data follow the noisy linear model xn
τ =

xτ + nτ . Further, let the singular value decomposition of H := [h1 . . .hr] ∈ Rp×r be

written as H = UhShV
T
h , where Sh ∈ Rp×r is diagonal and Uh ∈ Rp×p and Vh ∈ Rr×r

orthonormal matrices.

The information signal covariance matrix Σx = UhΛsU
T
h , where Uh corresponds

to the eigenvector matrix and Λs := ShDsS
T
h the corresponding eigenvalue matrix where

Ds is diagonal matrix whose diagonal entries correspond to the variance of source signals

sρ(τ). This further implies that Σx = Uh(Λs + σ2
nI)U

T
h , where Λs = diag(Λs,r,0p−r)

since only r eigenvalues in covariance Σx will be strictly positive given that there are r

field sources. Here we consider subspace-based denoising which performs projection of

the data onto the principal signal subspace, i.e.,

Uh,rU
T
h,rx

n
τ = Hsτ +Uh,rU

T
h,rnτ , (4.6)

where Uh,r corresponds to the r principal eigenvectors of Σx, i.e., Uh = [Uh,r Uh,r−p]

where Uh,r−p corresponds to the eigenvectors multiplied by zero eigenvalues. It follows

readily that the covariance of the projected noise Uh,rU
T
h,r has rank equal to r, where

r < p since the number of field sources in many practical settings is much smaller than the
38

number of sensors. The total noise variance of Uh,rU
T
h,r becomes rσ2

n, which is small than

pσ2 (the total noise variance before data projection in (4.6)). Thus, the overall effect of the

noise is reduced on the projected signal while the information part Hsτ in (4.5) remains

unchanged in (4.6).

It becomes apparent that the main task in denoising via projection in (4.6) is to esti-

mate the principal eigenspace Uh,r. This is where the D-PCA approach proposed in Chap-

ter 3 will be utilized to come up with a distributed way to estimate Ux,r across sensors and

denoise the sensor data. Different techniques will be compared with D-PCA in terms of the

SNR achieved in the processed data after performing projection (post-SNR comparisons).

4.2 Distributed Implementation

In order to estimate the principal eigenspace Uh,r for data denoising we start with

the centralized cost function

Ĉ = argmin(t+ 1)−1
∑t

τ=0 ∥xτn −CTCxτn∥22, (4.7)

where Ĉ corresponds to the estimate for Uh,r. Again by setting yτ = Cxτn in (4.7), we

have

(Ĉ, {ŷτ}tτ=0) = argmin
C,yτ

(t+ 1)−1
∑t

τ=0 ∥xτn −CTyτ |22, (4.8)

Here, we consider the adaptive setting and therefore still use equations (3.25), (3.26) and

(3.27) to estimate the eigenspace Uh,r.

The performance metrics that will be used to compared the different techniques for

estimating Uh,r and performing denoising will be the SNR before and after data projection.

Specifically, the SNR will be evaluated as

SNR = 10log10
tr(Sx)

tr(Snoise)
(4.9)

39

where tr(.) is the trace of the matrix, while

Sx =
1

N

∑N
τ=1 xτ (xτ)

T , (4.10)

corresponds to power in the information part xτ , while

Snoise =
1

N

∑N
τ=1(yτ − xτ)(yτ − xτ)

T . (4.11)

. where yτ = Uh,rU
T
h,rx

n
τ corresponds to the projected sensor data.

Note that the SNR quantity given in (4.9) denotes the post-projection SNR denoted from

now on as post-SNR. Depending on which method will be used to estimate Uh,r different

post-SNR quantities will be obtained and extensive numerical tests in Chapt. 5 will advo-

cate that our approach outperforms related alternatives. Setting yτ = xn
τ in (4.11) gives the

pre-projection (before denoising) SNR which is denoted as pre-SNR. As a benchmark on

how well the different distributed methods do the so called actual-SNR will be computed

by using the true principal eigenspace Uh,r by applying singular value decomposition to

the ensemble covariance matrix Σx. Note that actual-SNR will give the highest possible

post-SNR that can be achieved via projection denoising since the true principal eigenspace

is used during data projection. Further, in Chapter 5 our D-PCA method will be compared

with the distributed subspace estimation technique proposed in [38], and it will become

apparent that our methodology achieved a better performance especially in noisy environ-

ments.

40

CHAPTER 5

NUMERICAL TESTS AND DISCUSSION

Here, we test the convergence properties of the two different distributed algorithms

derived in this thesis; Distributed Principal Component Analysis (D-PCA) with a bridge

sensor setting, and D-PCA framework without bridge sensors. We further test the robust-

ness of the bridgeless network in the presence of noise across communication links. In

each of these two settings, convergence is compared with the distributed in [38], abbrevi-

ated as S-PCA. Furthermore, we consider the bridgeless D-PCA is tested in a denoising

application that involves both real and synthetic data. S-PCA is also applied in the denois-

ing setting and compared with D-PCA. Then, conclusions are drawn about the advantages

offered by the proposed algorithmic framework given here.

5.1 D-PCA in network with bridge sensors

Here we consider a sensor network with containing p = 16 sensors. Sensors are

randomly placed in a unit square [0, 1]× [0, 1] with uniform distribution. The communica-

tion range of the network is set equal to 0.3, i.e., two sensors communicate as long as the

distance is less than d = 0.3. Each sensor collects t = 2000 observations. Zero mean data

is randomly generated for 2000 time instants for the 16 sensors and without observation

noise. This was tested with k = 5 consensus (ADMM) iterations per time instant t. The

parameter c in D-PCA is set c = 4 here, while the step-size in S-PCA was set to γ = 10−3

The figure of merit used to compare different schemes will be the subspace projection error

which is defined as e(t) := ∥CT (t)(C(t)CT (t))−1C(t)−Ux,rU
T
x,r∥2F , where ∥ · ∥F stands

for the Frobenius norm operator and C(t) corresponds to the estimate of Ux,r.

41

0 500 1000 1500 2000 2500

10
−0.5

10
−0.4

t

e(
t)

r=1

D−PCA,k=5
S−PCA,k=5

0 500 1000 1500 2000 2500

10
−0.47

10
−0.44

10
−0.41

10
−0.38

10
−0.35

10
−0.32

t

e(
t)

r=2

D−PCA,k=5
S−PCA,k=5

Figure 5.1. Subspace projection estimation error e(t) vs. time index t for r=1 (top); and
r=2 (bottom) in a setting with bridge sensors.

42

Figure 5.1 (top) shows e(t) for the case where D-PCA and S-PCA are estimating r =

1 principal eigenvectors for both D-PCA and S-PCA. As it can be seen, D-PCA exhibits a

much faster convergence rate than S-PCA, while it converges to a lower steady state error

e(t). Fig. 5.1 (bottom) depicts e(t) for r = 2. In this case we test D-PCA and S-PCA for

K = 5 consensus iterations. Again e(t) in adaptive D-PCA decreases at a faster rate than

in the case of S-PCA.

5.2 D-PCA in a network without bridge sensors

Here we compare D-PCA with S-PCA for a bridgeless sensor network setting while

varying parameters such as the number of consensus iterations, number of principal com-

ponents being estimated. We still consider a sensor network containing p = 16 sen-

sors, and with sensors randomly placed in a unit square [0, 1] × [0, 1] with uniform dis-

tribution. The communication range of the network is d = 0.3. Each sensor collects

t = 7000 observations. In the next simulations the subspace projection error e(t) :=

∥CT (t)(C(t)CT (t))−1C(t) − Ux,rU
T
x,r∥2F and the post-SNR (see Chapter 4) values are

used as performance metrics to compared different principal eigenspace estimation meth-

ods.

5.2.1 Subspace Estimation error vs. iteration index

Here, zero mean data is randomly generated for 7000 time instants for the 16 sensors

and without observation noise. These were tested with K = 5, or K = 12 consensus

(ADMM) iterations per time instant t. The parameter c in D-PCA is set c = 4 here, while

the step-size in S-PCA was set to γ = 10−3. Figure 5.2 (top) shows e(t) for the case where

D-PCA and S-PCA are estimating r = 1 principal eigenvectors for both D-PCA and S-

PCA. As it can be seen, D-PCA exhibits a much faster convergence rate than S-PCA, while

it converges to a lower steady state error e(t). Increasing the number of consensus iterations

43

0 1000 2000 3000 4000 5000 6000 7000

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

t

e
(t
)

D−PCA, K=12

DLS−PCA, K=5

DLS−PCA, K=12

D−PCA, K=5

0 1000 2000 3000 4000 5000 6000 7000

10
−1

10
0

t

e
(t
)

D−PCA, K=15

D−PCA, K=5

DLS−PCA, K=15

DLS−PCA, K=5DLS−PCA, K=5,γ=10
−2

Figure 5.2. Subspace projection estimation error e(t) vs. time index t for r=1 (top); and
r=2 (bottom) in a network without bridge sensors.

44

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

10
−1

t

e(
t)

DLS−PCA, K=5

DLS−PCA, K=12

D−PCA, K=5

D−PCA, K=12

Figure 5.3. Subspace projection estimation error e(t) vs. time index t for r=1 (Steady state
performance).

K leads to better steady-state estimation performance for both D-PCA and S-PCA. Fig. 5.2

(bottom) depicts e(t) for r = 2. In this case we test D-PCA and S-PCA for either K = 5,

or K = 15 consensus iterations. Again e(t) in adaptive D-PCA decreases at a faster rate

than in the case of S-PCA. The subspace estimation performance improves considerably as

the number of consensus (ADMM) iterations K increases. The steady state performance

for r = 1 as seen over 10000 iterations is shown in Figure 5.3.

5.2.2 Post-SNR vs. Number of principal eigenvectors

Here, zero mean data is randomly generated for 2000 time instants for the 16 sensors

and without observation noise.Parameter c = 1 in D-PCA and γ = 10−3 for S-PCA,

where inter-sensor communication noise is set such that the communication SNR is equal

45

to SNRcomm = 20 dB. Table 5.1 shows the post-SNR for different number r of estimated

principal eigenvectors. It can be seen that the post-SNR decreases with decreasing number

of principal eigenvectors estimated. This is because the lower the number of principal

eigenvectors estimated, the lower the information content in the reduced dimension data.

Table 5.1. post-SNR vs. number of estimated principal eigenvectors

Scheme D-PCA
Number of Principal Components(r) 1 2 3

post-SNR (dB) 55.7302 64.5508 74.7502
pre-SNR (dB) 47.1883 46.9943 47.0229

5.3 D-PCA with bridge sensors vs. D-PCA without bridge sensors

So far, we have considered D-PCA with and without bridge sensors separately. Here,

we show which has a faster convergence for different parameters. Here we evaluate the

subspace estimation error by generating zero mean data for 2000 iterations for 16 sensors

for both r = 1, 2 eigenvectors in both cases without any communication noise. We set

the parameter c = 4 in both different algorithmic implementations. From Figure 5.4 and

Figure 5.5, without bridges, D-PCA performs better in terms of convergence. However,

this is only suitable for cases where a few sensors have more computational capacity than

others, but not suitable for situations where all sensors have the same capabilities.

5.4 Denoising of Synthetic Data

Again, here we consider a sensor network with p = 16 sensors which are randomly

placed in a unit square [0, 1]×[0, 1] with uniform distribution. The communication range of

the network d = 0.3. Each sensor collects t = 2000 observations. The subspace projection

46

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
−1

10
0

t

e(
t)

DPCA with bridges
DPCA without bridges

Figure 5.4. Subspace projection estimation error e(t) vs. iteration index t for D-PCA with
and without bridges for r = 1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

t

e(
t)

DPCA without bridges
DPCA with bridges

Figure 5.5. Subspace projection estimation error e(t) vs. iteration index t for D-PCA with
and without bridges for r = 2.

is e(t) := ∥CT (t)(C(t)CT (t))−1C(t)−Ux,rU
T
x,r∥2F . In this section, we examine the effects

of the number of consensus iterations on principal subspace estimation in the presence

of observation noise by estimating the principal subspace estimation error, evaluating the

post-SNR and actual SNR (see Chapter 4 for definitions). Parameter c = 1 in D-PCA and

47

γ = 10−3 for S-PCA. Zero mean data is randomly generated for 2000 time instants for the

16 sensors for each of the cases considered under this section.

5.4.0.1 post-SNR vs. number of consensus iterations

Here, the observation noise signal-to-noise ratio SNRobs = −3dB and SNRcomm =

25dB while estimating r = 3 principal eigenvectors. Table 5.2 shows the comparison be-

tween post-SNR and the actual SNR (act-SNR) for different number of consensus iterations

for both D-PCA and S-PCA. It is seen that in both cases, the post-SNR increases with the

number of consensus iteration. This is because, with increasing number of ADMM iter-

ations, sensors are able to communicate more with neighbors to reach consensus. Also,

the SNR values are closer to the actual SNR for increasing number of consensus itera-

tions. This is also true for D-PCA when compared with S-PCA. Further, D-PCA shows

better performance on the average than S-PCA. We also calculate the difference between

the act-SNR (which is the highest possible SNR that can be achieved) and the post-SNR,

i.e., diff-SNR = act-SNR − post-SNR.

Table 5.2. post-SNR vs. Number of consensus iterations

Scheme D-PCA S-PCA
Number of ADMM iterations (K) 5 10 15 5 10 15

post-SNR (dB) 50.0819 53.4347 54.5801 49.1154 50.7341 51.4089
act-SNR (dB) 58.2447 58.7176 58.4738 58.2447 58.7176 58.4738
diff-SNR (dB) 8.1627 5.2829 3.8938 9.1293 7.9835 7.0650

Figure 5.6 depicts the subspace estimation e(t) error plotted against the iteration index

t with the same parameters as above. This curves in this plot correspond to D-PCA for

the different number of consensus iterations. As it can be observed, faster convergence is

48

observed for an increased number of consensus iterations K, and therefore a better steady

state estimation performance is achieved. This testing is done for K = 5, 15, 25.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−0.16

10
−0.14

10
−0.12

10
−0.1

10
−0.08

10
−0.06

10
−0.04

10
−0.02

Iteration index t

S
ub

sp
ac

e
E

st
im

at
io

n
E

rr
or

 e
(t

)

k=5
k=15
k=25

Figure 5.6. Subspace projection estimation error e(t) vs. iteration index t for different
number of consensus iterations for SNRobs = −3dB and SNRcomm = 25dB.

5.4.0.2 post-SNR vs. number of estimated principal eigenvectors

Here, the post-SNR is estimated for different number of estimated principal eigen-

vectors r. The number of ADMM iterations is fixed to K = 25, while the observation SNR

is SNRobs = 20dB and SNRcomm = 10dB.

As seen in table 5.3, higher post-SNR values were obtained for an increasing number of

principal eigenvectors being estimated, and overall, the SNR values for D-PCA are signifi-

cantly larger that than the post-SNR values achieved by S-PCA in [38].

49

Table 5.3. post-SNR vs. Number of principal eigenvectors

Scheme D-PCA S-PCA
Number of principal eigenvectors(r) 1 2 3 1 2 3

post-SNR (dB) 52.8956 60.3031 81.1464 52.3053 59.7009 74.8399
act-SNR (dB) 56.4966 68.4716 110.7478 56.4966 68.4716 110.7478

Table 5.4. post-SNR vs. communication noise SNR

Scheme D-PCA S-PCA D-PCA S-PCA
SNR(comm) (dB) 32db Inf

act-SNR (dB) 111.0 111.5
post-SNR (dB) 81.7348 69.9509 85.4463 71.7930

5.4.0.3 post-SNR vs. communication noise SNR

The post-SNR is estimated for two scenaria where i) there is inter-sensor communi-

cation noise; and ii) the inter-sensors links are ideal and there is no noise. Again, we set

r = 3 and K = 25 ADMM iterations, while the observation SNR is SNRobs = −3dB.

Figure 5.7 illustrates the fact that the convergence is slowed by the presence of communica-

tion noise, and D-PCA still outperforms S-PCA with or without observation noise. This is

further substantiated by Table 5.4 where the Post SNRs without communication noise were

larger than with it. A comparison was also made for different values of communication

noise in the presence of observation noise for r = 3 and K = 25 consensus iterations and

with SNRobs = 5dB as shown in Table 5.8. D-PCA still outperforms the existing alternative

for all three different values.

5.5 Denoising of Real Data

Here we test the denoising capability of D-PCA and compare it with existing alternatives

on real ocean temperature data. The temperature data where obtained by the so called Argo

50

0 500 1000 1500 2000 2500
10

−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

t

e(
t)

r=3

D−PCA SNR(comm)=Inf
S−PCA SNR(comm)=Inf
D−PCA SNR(comm)=32db
S−PCA SNR(comm)=32db

Figure 5.7. Subspace projection estimation error e(t) vs. iteration index t with and without
communication noise for SNRobs = −3db.

Floats that have been deployed in all oceans. The data are obtained and handled by the

National Oceanographic Data center (NODC), and we downloaded them from their online

data repository [47]. These measurements are used to compare the performance of D-PCA

and S-PCA, under different scenaria as detailed next.

Specifically, data measurements acquired across 20 sensors (p = 20) over t = 117 time

stamps during the time period from 10/2/1998 to 7/10/2002. Even though the measure-

ments are taken over an extensive time period, it has sufficient correlation to be employed

in the denoising algorithm. The subspace projection e(t) := ∥CT (t)(C(t)CT (t))−1C(t)−

Ux,rU
T
x,r∥2F and post-SNR will be used as performance evaluation criteria. We still con-

51

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

D−PCA SNR(comm)=10dB
D−PCA SNR(comm)=5dB
D−PCA SNR(comm)=20dB
S−PCA SNR(comm)=10dB
S−PCA SNR(comm)=20dB
S−PCA SNR(comm)=5dB

Figure 5.8. Subspace projection estimation error e(t) vs. iteration index t for SNRcomm =
5db, 10db, 20db with SNRobs = 5db.

sider the presence of observation noise since this illustrates an actual sensor network set-

ting. Parameter c = 1 in D-PCA and γ = 10−4 for S-PCA.

5.5.1 pre-SNR vs. actual SNR vs. post-SNR

A comparison is made here between the pre-SNR, the actual SNR and the post-SNR for

both D-PCA and S-PCA for K = 25 ADMM iterations while estimating r = 3 principal

eigenvectors. Further, the observation SNR is set to SNRobs = 41dB and the inter-sensor

link variance is SNRcomm = 10 dB. As it can be seen in Table 5.5, for a fixed pre-SNR and

act-SNR pair, the post-SNR for D-PCA is higher and closer to the actual SNR (act-SNR).

52

Table 5.5. pre-SNR, actual SNR (act-SNR) and post-SNR using real data

Scheme D-PCA S-PCA
pre-SNR (dB) 41.4080
act-SNR (dB) 58.4738

post-SNR (dB) 54.5801 51.4089

Table 5.6. post-SNR vs. number of estimated principal eigenvectors using real data

Scheme D-PCA S-PCA
Number of principal eigenvectors(r) 1 2 3 1 2 3

post-SNR (dB) 18.6945 26.7986 28.5122 15.6597 17.1463 18.7691
act-SNR (dB) 21.0085 28.8255 37.4376 21.0085 28.8255 37.4376

5.5.2 post-SNR vs. number of estimated principal components

Here, the post-SNR is estimated for different number of estimated principal eigenvectors

r after applying K = 25 ADMM iterations per time instant t where SNRobs = 44dB and

SNRcomm = 10 dB.

Similar to Table 5.1, Table 5.6 compares post-SNR for both D-PCA and S-PCA.

Again, D-PCA shows a better performance in terms of SNR for the different number of

principal eigenvector being estimated. A similar variation is observed as with the synthetic

data, which further substantiates our claim of better performance of D-PCA as compared

to S-PCA.

53

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

Two distributed dimensionality reduction techniques applicable to different settings were

developed in this research work/thesis. The first involved sensor networks and is preferred

for scenarios where a few sensors have a higher computational capacity than others, in

which case those sensors (called bridge sensors) perform most of the computation and

communication at the expense of the simple sensors. The second involved scenarios where

all sensors have equal computational capabilities. The computational and communication

costs were studied for both algorithms. In both cases, the approaches involved a formula-

tion of the PCA cost as a separable constrained optimization problem and application of

the coordinate descent technique combined with ADMM to approach the separable PCA

formulation in a distributed manner. Only single-hop communications were required and

no fusion center, as in traditional dimensionality reduction approaches is necessary. The

involved computational and communication complexity is small and manageable due to

the single-hop communications. Inter-sensor communication noise are also considered and

extensive numerical testing corroborated the robustness of the proposed framework while

existing alternatives fail to converge. Further, it is demonstrated that the convergence rate of

the proposed distributed PCA framework is faster than related distributed approaches while

having a comparable communication cost. The proposed algorithmic framework is then ap-

plied in a distributed denoising application, where the goal is to remove sensing noise from

the sensor data and improve the signal-to-noise ratio in the processed (denoised) data. This

is done by projecting the sensor measurement data onto an estimate of the data covari-

ance principal eigenspace obtained via our distributed PCA algorithm. Different principal

54

eigenspace estimates obtained by alternative distributed methods are used as well, and it

turns out that the distributed PCA framework put forth here leads to a substantial noise

reduction in the data compared to existing alternatives. Both synthetic data and real data

corresponding to ocean temperature measurements acquired from sensors are utilized to

demonstrate the advantages of the novel algorithms existing techniques via extensive nu-

merical tests.

This thesis work laid a foundation of a distributed PCA framework with applications

in data dimensionality reduction and denoising. Future directions include:

- Convergence analysis of the proposed algorithmic framework.

- Extension of the algorithms for tackling nonlinear models in denoising and dimensionality

reduction.

- Consideration of time-varying principal eigenspaces in nonstationary environments, e.g.,

mobile field sources.

55

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-

works: a survey,” Computer networks, vol. 38, no. 4, pp. 393–422, 2002.

[2] M. Ilyas, I. Mahgoub, and L. Kelly, “Handbook of sensor networks: compact wireless

and wired sensing systems. 2005.”

[3] Y.-A. Le Borgne, S. Raybaud, and G. Bontempi, “Distributed principal component

analysis for wireless sensor networks,” Sensors, vol. 8, no. 8, pp. 4821–4850, 2008.

[4] T. Hastie, R. Tibshirani, and D. Friedman, The Elements of Statistical Learning: Data

Mining, Inference and Prediction. Second Edition, Springer, 2009.

[5] D. R. Brillinger, Time Series: Data Analysis and Theory. Expanded Edition, Holden

Day, 1981.

[6] B. Yang, “Projection approximation subspace tracking,” IEEE Trans. on Sig. Process-

ing, vol. 43, no. 1, pp. 95–107, 1995.

[7] A. Bharathidasan and V. A. S. Ponduru, “Sensor networks: An overview.”

[8] F. L. Lewis, “Wireless sensor networks.”

[9] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the world with wire-

less sensor networks,” in Acoustics, Speech, and Signal Processing, 2001. Proceed-

ings.(ICASSP’01). 2001 IEEE International Conference on, vol. 4. IEEE, 2001, pp.

2033–2036.

[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century challenges: Scal-

able coordination in sensor networks,” in Proceedings of the 5th annual ACM/IEEE

international conference on Mobile computing and networking. ACM, 1999, pp.

263–270.

56

[11] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Distributed detection and estimation

in wireless sensor networks,” arXiv preprint arXiv:1307.1448, 2013.

[12] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,”

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

vol. 2, no. 11, pp. 559–572, 1901.

[13] H. Hotelling, “Analysis of a complex of statistical variables into principal compo-

nents.” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[14] S. V. Macua, P. Belanovic, and S. Zazo, “Consensus-based distributed principal com-

ponent analysis in wireless sensor networks,” in Proc. of 11th IEEE Workshop on Sig.

Proc. Advances in Wir. Com. (SPAWC), June 2010, pp. 1 –5.

[15] M. Sewell, “Principal component analysis.”

[16] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.

[17] A. Gifi, Nonlinear multivariate analysis. Wiley Chichester, 1990.

[18] K. I. Diamantaras and S. Y. Kung, Principal component neural networks. Wiley

New York, 1996.

[19] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigen-

values of the expectation of a random matrix,” J. Math. Anal. Applicat., vol. 106,

no. 1, pp. 69–84, 1985.

[20] Z. jian Bai, R. H. Chan, and F. T. Luk, “Principal component analysis for distributed

data sets with updating,” in In Proceedings of International workshop on Advanced

Parallel Processing Technologies (APPT, 2005.

[21] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson, “Distributed clustering using

collective principal component analysis,” Knowledge and Information Systems, vol. 3,

p. 2001, 1999.

[22] H. Qi, T. wei Wang, and J. D. Birdwell, “Global principal component analysis for

dimensionality reduction in distributed data mining,” 2004.

57

[23] Y. L. Borgne, S. Raybaud, and G. Bontempi, “Distributed principal component anal-

ysis for wireless sensor networks,” Sensors, vol. 8, no. 8, pp. 4821–4850, 2008.

[24] M. Gastpar, P. L. Dragotti, and M. Vetterli, “The distributed karhunen–loeve trans-

form,” Information Theory, IEEE Transactions on, vol. 52, no. 12, pp. 5177–5196,

2006.

[25] Z. Meng, A. Wiesel, and A. O. Hero, “Distributed principal component analysis on

networks via directed graphical models,” in in Proc. of IEEE Intl. Conf. on Acoust.,

Speech and Sig. Proc, March 2012, pp. 2877 –2880.

[26] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace estimation in

wireless sensors networks,” IEEE Journal of Sel. Topics in Sig. Proc., vol. 5, no. 4,

pp. 725–738, 2011.

[27] A. Bertrand and M. Moonen, “Distributed adaptive estimation of covariance matrix

eigenvectors in wireless sensor networks with application to distributed PCA,” Inter-

nal Report KU Leuven ESAT-SCD, 2013.

[28] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least-mean-

square deviation,” Journal of Parallel and Distributed Computing, vol. 67, no. 1, pp.

33–46, 2007.

[29] H. Bauer, Probability Theory, ser. De Gruyter studies in mathematics. Bod Third

Party Titles, 1996.

[30] I. D. Schizas, G. B. Giannakis, and Z.-Q. Luo, “Optimal dimensionality reduction for

multi-sensor fusion in the presence of fading and noise,” in Proc. of Intl. Conf. on

Acoustics, Speech and Signal Processing, Toulouse, France, May 2006, pp. 869–872.

[31] ——, “Distributed estimation using reduced dimensionality sensor observations,” in

Proc. of 39th Asilomar Cof. On Signals, Systems and Computers, Monterey, CA, Oct.

2005, pp. 1029–1033.

58

[32] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Dimensionality reduction, compres-

sion and quantization for distributed estimation with wireless sensor networks.” pp.

259–296, Springer, New York, 2006: in Wireless Communications (P. Agrawal, D.

M. Andrews, P. J. Fleming, G. Yin, and L. Zhang, eds.), vol. 143 of IMA Volumes in

Mathematics and its Applications.

[33] ——, “Consensus in ad hoc wsns with noisy links- part i: Distributed estimation of

deterministic signals,” IEEE Trans. on Sig. Processing, vol. 56, no. 1, pp. 350–364,

2008.

[34] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical

Methods. 2nd ed. Belmont, MA: Athena Scientic, 1999.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Foundations

and Trends R⃝ in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[36] D. P. Bertsekas, Nonlinear Programming. Second Edition, Athena Scientific, 2003.

[37] A. Aduroja, I. D. Schizas, and V. Maroulas, “Distributed principal components anal-

ysis in sensor networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on. IEEE, 2013, pp. 5850–5854.

[38] “Distributed principal subspace estimation in wireless sensor networks.”

[39] S. M. Kay, Fundamental of Statistical Signal Processing: Estimation Theory. Pren-

tice Hall, 1993.

[40] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and

Control Letters, vol. 53, pp. 65–78, Sept. 2004.

[41] S. J. Schiff, J. G. Milton, J. Heller, and S. L. Weinstein, “Wavelet transforms and

surrogate data for electroencephalographic spike and seizure localization,” Optical

Engineering, vol. 33, no. 7, pp. 2162–2169, 1994.

59

[42] D. L. Donoho, “De-noising by soft-thresholding,” Information Theory, IEEE Trans-

actions on, vol. 41, no. 3, pp. 613–627, 1995.

[43] O. Bertrand, J. Bohorquez, and J. Pernier, “Time-frequency digital filtering based

on an invertible wavelet transform: an application to evoked potentials,” Biomedical

Engineering, IEEE Transactions on, vol. 41, no. 1, pp. 77–88, 1994.

[44] A. Effern, K. Lehnertz, T. Schreiber, T. Grunwald, P. David, and C. Elger, “Nonlinear

denoising of transient signals with application to event-related potentials,” Physica D:

Nonlinear Phenomena, vol. 140, no. 3, pp. 257–266, 2000.

[45] M. Ghil, M. Allen, M. Dettinger, K. Ide, D. Kondrashov, M. Mann, A. W. Robertson,

A. Saunders, Y. Tian, F. Varadi, et al., “Advanced spectral methods for climatic time

series,” Reviews of Geophysics, vol. 40, no. 1, p. 1003, 2002.

[46] A. Bertrand and M. Moonen, “Robust distributed noise reduction in hearing aids with

external acoustic sensor nodes,” EURASIP Journal on Advances in Signal Processing,

vol. 2009, Article ID 530435, 14 pages, 2009. doi:10.1155/2009/530435.

[47] “Operational oceanography group:global argo data repository.april 2007,” U.S.

Department of Commerce, National Oceanic and Atmospheric Administration,

National Oceanographic Data Center, Silver Spring, Maryland, 20910.October

12,2013. [Online]. Available: http://www.nodc.noaa.gov/argo

60

BIOGRAPHICAL STATEMENT

Abiodun T. Aduroja was born in Osun State, Nigeria in 1988. He received his B.S.

degree in Electrical and Electronic Engineering from Ladoke Akintola University of Tech-

nology in 2009, his M.S. degree from The University of Texas at Arlington in 2013 in

Electrical Engineering. From 2009 to 2010, he worked as an Electrical Engineer at Tralat

Engineering and Energy Solutions. From August 2012 to May 2013, he worked as a Field

Test Specialist at Blackberry as an intern. He is a member of the IEEE.

61

