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ABSTRACT

IMAGE ANNOTATION AND FEATURE ENGINEERING VIA STRUCTURAL
SPARSITY AND LOW-RANK APPROXIMATION

Deguang Kong, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Chris Ding

Nowadays, in order to sense environment and understandrhbetfaaviors, data
analysis plays a more and more important role to handle dgg@eous data ranging from
different domains, e.g., image categorization/annatatcustomer segmentation, traffic
prediction, ad optimization, recommendation systemsjapyi analysis, etc. The large
amount of multivariate data raises the fundamental proldénata mining: how to dis-
cover meaningful compact patterns hidden in the high-dsizgral noisy observations?
One approach is to do dimension reduction, which finds thedmaensional subspace and
thus encodes data in a low-dimensional structure. The afffgoach is to do feature selec-
tion or feature engineering, which manipulates the feattoeapture the most discriminant
patterns for classification/clustering tasks.

The goal of this thesis is to develop new and efficient macle@aming algorithms to
solve many challenging problems appeared in image anaigstead of simply application
of existing methods to solve them. As compared to text minim@ge analysis/mining is a
more challenging task because image is more complicatedderstand and analyze. The

tremendous number of image data is available due to the adsamimage acquisition and

\



storage techniques. However, current analysis and mapohniques for image data are
not mature, and still far behind.

In this thesis, to further improve the low-dimensional editiag results, an itera-
tively locally linear embedding algorithm is proposed, @fhcaptures the global structure
of non-linear manifold through iteratively updating thelmdding. To handle noisy data
(e.g., data with missing values, corrupted values) classifin problem, a robust data re-
covery model via Schatten-p norm is proposed to prepracgske noisy data, where the
rank of the data is implicitly decreased. To utilize the teatstructure with constraints,
an efficient feature learning algorithm via group lasso ppsed to handle features on
arbitrary structure, whose convergence can be rigorouslyegl. To handle the problem of
limited labeled data in image categorization/annotatasks, efficient maximum consis-
tency label propagation methods are proposed to improvpdetfermance of graph-based
semi-supervised learning methods, which utilizes bothldbeled data information and
graph manifold information. Extensive experiments inthdhe good performance of pro-

posed algorithms.

Vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . e e e v
ABSTRACT . . . . e v
LIST OF ILLUSTRATIONS . . . . . . . . X
LISTOF TABLES . . . . . . e Xiv
Chapter Page
1. Introduction . . . . . . . .. 1

1.1 Motivating examplesinimageanalysis . . . . ... ............ 3

1.2 Review of feature Engineering, Dimension Reduction andsifiaation

Techniques . . . . . . . . 3
1.3 ResearchChallenges . . .. . .. ... .. . .. . ... ... ... ... 12
1.4 Contributions . . . . . . . . .. 14
1.5 Organization. . . . . . . . . . e 16
2. An lterative Locally Linear Embedding Algorithm . . . . . ... . . .. .. .. 19

2.1 Background of locally linearembedding . . . .. ... ......... 19

2.2 LLEandNewFormations. . . . . . . .. . ... . . ... ... ... ... 21
2.3 An lterative LLE Learning Algorithm (ILLE) . . . ... ... ... ... 25

2.4 ImprovedW-Learning Formulation . . . . ... .. ... ... ...... 28
25 Experiments . . . . . . ... 30
2.6 Lessonslearned . . . . . . . . .. ... 34

3. Low Rank Data Recovery with Minimal Shrinkage . . . . .. ... ..... 37
3.1 Background of low rank datarecovery . . . ... ... ... ... ... 37

3.2 Proposed Datarecoverymodels . . . . ... ... ... ... .. ... 40

vii



3.3 lllustration of two Schatten p-normmodels . . . ... ... ... ... 42

3.4 Analysis and Algorithmof Model 1 . . . . . . ... ... ... ..... 45

3.5 EfficientALM algorithm . . . . . . . .. .. .. .. ... oo 84
3.6 Iterative algorithm to solve Model 2 . . . . . . .. ... .. .. .... 50
3.7 Connectiontorelatedworks . . .. .. ... .. ... .. .. ... 52

3.8 EXperiments . . . . . ... e e 53
3.9 Lessonslearned . . . . . . . ... 57
Efficient Algorithms for Selecting Features with ArbityaGroup Constraints . . 58
4.1 Background of feature selection using structural spyarsi. . . . . . . .. 58
4.2 Genericgrouplassoproblem . . .. ... ... ... oL 61
4.3 Solving objective using proximal gradientmethod . . ...... . .. ... 64
4.4 An efficient algorithm for associated proximal operatomputation . . . . 66
4.5 Acceleration to the proposed algorithm . . . . . ... ... ......... 71
4.6 Extensionto GeneralLossfunction. . . . .. ... ... ... . ...... 71
4.7 Connectionstorelatedworks . . . . . ... ... oL, 73
4.8 EXperiment . . . . .. e e e e e 74
49 Lessonslearned . . . . . . . ... 81
Maximum Consistency Preferential RandomWalks . . ... .. ... ... 83
5.1 Backgroundofrandomwalk . . .. .. ... ... ............. 83
5.2 A brief overview of personalized randomwalk . . . . ... .. .. ... 85
5.3 Relations between preferential random walks and Lalogd®yations . . . 87
5.4 Score Distribution: Confidence of Label Assignment . . ...... . ... 89
5.5 Maximum Consistency Label Propagation. . . . .. ... ... ...... 91
5.6 ConnectiontoRelated Works . . . . . . . . ... .. ... ... 79
57 EXpPeriments . . . . . . . . . e 99
58 Lessonslearned . . . .. .. .. ... ... 210



6. Conclusion 107

6.1 Futurework . . . . . . . . . e 107
6.2 SUuMMAry . . . . . . e e e e e 109
REFERENCES . . . . . . . e 110

BIOGRAPHICAL STATEMENT



Figure

1.1

1.2

1.3

1.4

15

2.1

2.2

LIST OF ILLUSTRATIONS

Page
Prediction of labels for unknown cars (marked as red question mark) ldbeled
cars: Civic, Accordcrosstour, AccordHybrid. . . . . . . ... ... ... L. 4
General data mining pipeline. (1) Collection of data from different s®jr¢2)
Feature engineering on data; (3) Model construction according taresgent of
data analysis tasks; (4) Validation and interpretation of experimentresults. . . 5
Feature selection, dimension reduction, and classification for image analysis. 6
Features(variables) in prediction of cancerdisease. . . . . . . . .. ... .. 7
For image annotation task, each image is labeled as multiple concepts. Leftimage is

labeled as: sky, mountain, sea, boat, sand; right image is labeled asbudeohg,

Procedure of locally linear embedding process. (1) Neighborhoodteie (2)

Graph weightW-learning; (3) Embeddiny -learning. . . . . . . . .. ... .. 20
2D visualizations of embedding results using (1) itliinaut kernelK; (2)

LLEL1: results on learned after 1 LLE iteration; (3) LLE4: results on
learnedY after 4 LLE iterations; using 4 digits “0”,“3",“6”,“9” on MNST

dataset . . . . ... s 31



3.1

3.2

3.3

3.4
4.1

Optimal solutiony,. given singular valuer, of input dataX, at different
p={1,0.9,0.8,---,0.1} values with fixeds = 0.5, on dataset Mnist with

20 images, i.e.X = {x;,Xs,--- ,Xz}. TO avoid clutter, part of Fig.1a is
zoomed in and shown in Fig.1b. In Fig.1d, the solutiopat 0.3 is a
faithful low-rank solution, and the solution at= 0.9 is asuppressetbw-

rank solution. . . . . . . . 38
Demonstration of robust Schattemodel of Eq.(3.3) on a toy data shown

in panel (a): original data shown as black circle&; - - - x12) are non-
outliers and(xy3 - - - x15) are outliers. Reconstructed dataare shown as
red-diamonds. Blue line indicates the subspace computed $tandard

PCA on non-outlier data. Results of Schatten model-at0.2 are shown in

(e). Thisp = 0.2 results are split to outliers and non-outliers as shown)n (b
and (f). Similarly, results fop = 0.5 shown in (c) and (g); results fgr= 1

shown in (d) and (h). Ab = 1, non-outliers shrink towards coordinate (0,0).

At smallerp, non-outliers shrink farless. . . . . .. ... ... ....... 44
Reconstructed imagesg)(of YaleB dataset using Model 2 of Eq.(3) shown in

1 panel. Firstline: original images of one person, Secarel lieconstructed
imagesZ atp = 1, Third line: reconstructed imagesjat 0.2. One can see

p = 1 images are very similar to each other (most fine details st Mhile

p = 0.2 images retain some fine details and are closer to originadésa . . 54
Occluded image datasetUmist.. . . . . . . . . . . . . ... ... 54
An example of overlapping tree structure with variable index on each nedet
groupGy = {1—10}, depth-1 nodes include grougs = {1,2},G> = {3,4,5,6},G3 =
{7,8,9,10}, depth-2 node include grougs = {1},Gs = {2},Gs = {3,4},G7 =

{5,6},Gs ={7,8,9},Gg = {10}, and depth-3 nodes include groups = {7,8},G11 =



4.2

4.3

4.4

4.5

4.6

5.1
5.2

An example of linear structure, with variable index on each node. Left:- non
overlap linear structurg; = {1,2},G, = {3,4},G3 = {5,6},G4 = {7,8,9};
Right:overlap linear structureg; = {1,2},G> = {3,4},G3 = {5,6,7},G4 =
{7,8,9). o e 62
An example of feature constraint on undirected graph. Each group isdRenum

clique on undirected graphg; = {1,2,5},G, = {1,4,5},G3 = {3,7},G4 =
3,6,8) . e 62
One demonstrating example of overlapping group structyraxis: group num-

ber, z-axis: variable indexp = 100,G = 9. G = {x1,X2,...,X20}, " ,G9 =

{X81, X825 "+ s X100} « + « « 0 0 e e e e e e e e e 74
Convergence of proximal operator computation of ourrélgm (Algorithm

2) on (a)pathwaygene-expression; (bjilgegene-expression. (a) Parameter
setting: p = 3510, G = 637, w = 0.5, convergence criteria: 1e-6. (b)
Parameter setting: = 1000, G = 7194, w = 2, convergence criteria: 1le-6. . 76
Time comparison (y-axis: CPU time) for computing the jore&d opera-

tors on synthetic datasets. w.r.t differentv, G. (a-c) overlapping group
structure as shown in Fig. 2; (d) tree structure which hadairhierarchi-

cal structure as shown in Fig. 1. (a) feature gize 1000, regularization
parameterw = 0.1; (b) group numberZ = 100, regularization parameter

w = 0.1; (c) feature sizepy = 1000, group sizeG = 100; (d) feature size
p=2000,group Sizez =200. . . . . ... 82
Selection of discriminative data in balanced class expansion. Data poibts,a.. 94
lllustration of maximum consistency approach on a synthetic dataset. Laksgked
shown in thick symbols: red squares, green diamonds, blue circles flas8es.

Initially unlabeled data are shown in black stars and, after obtaining labelsnsh

inopensymbols. . . . . ... 96

Xii



5.3

5.4

5.5

5.6

Experiments results on 4 methods of Generalized Preferential Randors: Witk
methodl, method2(=LGC), method3. x-axis represents the diffarsettings =
0.1,0.3,0.5,0.7,0.9), y-axis is the average classification accuracy over 10 indepen-
dentruns. . . . . . .. L e e 103
Experiments results on 4 methods of label propagation: GF, MC-GF, LG, M
LGC. x-axis represents the different percentage of labeled datas ysdhe average
classification accuracy over 10 independentruns. . . . . . . . . . ... ... 104
Experiments results on 4 methods of label propagation: GF, MC-GF, LG, M
LGC using different discriminant score computations of Eqgs.(5.19,5.26.24don
datasets MSRC and binalpha. x-axis represents the different pegeasftiabeled

data, y-axis is the average classification accuracy over 10 indepgenden . . . . 105
Experiments results on 4 methods of label propagatidf:M&-GF, LGC,
MC-LGC by using different parametéron dataset Caltec. x-axis represents
the different percentage of labeled data, y-axis is theameeclassification

accuracy over 10 independentruns .. . . . . . . ... ... ... ... . 106

Xiii



Table
2.1
2.2

2.3

3.1
3.2

3.3

3.4

3.5

LIST OF TABLES

Dataset descriptions. . . . . . . . . . . . . . .. . 31
Accuracy (ACC), normalized mutual information (NMI), apdrity (PUR)
comparisons of different clustering algorithms: NormediZZut, Symmetric
NMF and Spectral ClusteringK®: results obtained on the original/input
kernel. LLE1: results on learné¥ after 1 LLE iteration. LLE4: results on
learnedY after 4 LLE iterations. All results shown are percentage. ..... 35
Accuracy comparisons of semi-supervised learning oat&sets. Learning
algorithms used: Harmonic function, Green'’s function anddl and global
consistency(LG-consistencyK": results obtained on the original/input ker-
nel. LLE1: results on learneW after 1 LLE iteration. LLE4: results on

learnedW after 4 LLE iterations. Results shown are based on 10% or 20%

labeled data. . . . . . . . . . . . 36

Descriptionof Datasets. . . . . . . . . . . . ... 53

True data recovery: True signal reconstruction erradiféerent p on six

datasets . . . . . .. s 55

Loss of fine-details: variance of reconstruckan six datasets, original
images:Xg, occludedimagesX . . .. ... ... ... .. ... .. ... 56
Classification accuracy(shown as percentage) on siwdedldatasets using
input corrupted datX and reconstructed at differentp values . . . . . . . 57
Classification accuracy(shown as percentage) on siw@dedldatasets using

input corrupted datX and reconstructed at differentp values . . . . . . . 57

Xiv



4.1

4.2

4.3

4.4

4.5

5.1

Comparison of different proximal operator computati®bj( CPU time) on
pathwaygene-expression dataset. Parameter setfing: 3510, G = 637,
convergence criteria: 1e-6. . . . . . . . ... o 77
Comparison of different proximal operator computatiobj( CPU time) on
edgegene-expression dataset. Parameter setting: 1000, G = 7194,
convergence criteria: 1e-6. . . . . . . ... L e 77
Comparison of different algorithms for overlapping tasemputation (Obj,

CPU time, iteration number) gmathwayandedgegene-expression dataset.
Involved geneg = 1000, convergence criteria0=%. . . . . . ... ... .. 78
Comparison of different algorithms for overlapping tasemputation (Obj,

CPU time, iteration number) goathwayandedgegene-expression dataset.
Involved geneg = 2000, convergence criteria0=%. . . . . . ... ... .. 78
Classification accuracy, number of selected genes, nushkelected path-
ways using our method (overlapping group lasso of Eq.4tahdard lasso
using 3-fold cross validation. . . . . . ... ... ... .......... 80

Descriptionsofdatasets . . . . . . .. ... ... ... ... ... . 99

XV



CHAPTER 1
Introduction

Nowadays, a large amount of data have been produced froeretitf sources, e.g.,
text data, image data, sensor data, system data, etc. Hngjcty dramatically for people’s
daily life. This is also known as “data explosion” due to thapid increase in the amount
of published data and the effects of its abundance. Thess Weae witnessed the data
explosion, and data is everywhere. It is predicted that lgeopl generate more data as
humankind than it is generated in the previous 5,000 yeattseimext five years. How to
process these huge amount of data becomes more importargwbiabefore.

Text data (e.g., web logs, microlog, email, etc) is one ingurtype of data. The
goal of text analysis (a.k.a text mining) is to derive highatity information from structured
or unstructured text document. These high quality inforomaare explicitly or implicitly
expressed as patterns or trends. Typically, text mining fetl the relevance, novelty and
interestingness from structured or unstructured data;hwiniay involve text categorization,
text clustering, concept extraction, sentiment analydts;ument summarization, social
tagging, etc. Lots of analysis and modeling technology e&slproposed for text analysis,
e.g., Bayesian model [1], Latent semantic indexing modellfatent Dirichlet allocation
model [3], etc. Analysis and modeling techniques for texe¢iatively mature and adequate.

Among the large number of available data, image data acsdant large portion
of them. Advances in image acquisition and storage teclesiduave paved the way for
tremendous growth of image data. For example, in Facebdsikngllion photos are up-
loaded every day. In google, weekly image search trafficd8@,000 per year on February

2013. As compared to text data, image data will reveal moedulsnformation to hu-



man users. Image analysis and mining focuses on extractikmowledge/patterns from
images, which involves inter-disciplinary efforts in coater vision, image processing, ma-
chine learning, data mining, etc. Although some technidaes, dictionary learning [4],
sparse coding [5], deep learning [6]) have been proposedlt@ she emerging image
analysis problem, there is still a great gap to solve difiehallenging image analysis
problems in real world. Analysis and modeling techniquesrfage data are not mature,
and still far behind. For example, on google, when you searsimilar image, the results
will be very poor if the image is not in the google databaseer€hs an urgent requirement
to develop advanced machine learning techniques to solagemnalysis problems (e.qg.,
image classification, image segmentation, image anabs,

The goal of this thesis is to develop new and efficient macle@aming algorithms to
solve many challenging problems appeared in image analMsige specially, we focus on
development of new technologies for image classificatiaisiension reduction, feature
engineering, low-rank data approximation and label prapiag. We propose the following
methods in this thesis.

o lIteratively locally linear embedding algorithm for dimémrs reduction;

o Efficient constrained feature selection algorithm via gréasso;

e Schatten-p norm model for robust data recovery;

o Efficient maximum consistency label propagation methodsdmi-supervised learn-
ing and image annotation.

We start by briefly reviewing the key techniques used forueaengineering, di-
mension reduction and classification. We show applicatodrisese techniques for image
classification/annotation. Then we present some chaleafeurrent feature engineering,
dimension reduction methods, and show the problems of@ijuns of those algorithms

for image annotation tasks. Finally, we summarize the daurtions of our works.



1.1 Motivating examples in image analysis

See a motivating example shown below. Given a vehicle imakgntfrom a camera
or a cell phone, can you find the near duplicate image andiekxact information (com-
pany, year, model, etc.) of the query vehicle? To solve thablem, this involves image
representation, image similarity measurement, and imkagsi€ication. In order to achieve
good image retrieval performance, there are a lot of chgilentasks needed to be solved.

See another motivating example shown below (Fig. 1.1). &efral settings, only
a few number of images are labeled, and thus how to label tge lrumber of unlabeled
images remains a challenging issue. There is an urgent rie#ftceent and effective meth-
ods to label them. In Fig. 1.1, we only know several labeled,cand the goal is to tell
the labels for all the other cars. More challengingly, wedhigetell the exact model of the
car. Although the brand of the cars are the same: Honda, tldelnobthe cars are totally
different. This is known as “fine-grained” classificatior {ii computer vision, which is a
hot topic nowadays. As compared to coarse-grained clessifir; “fine-grained” classifi-
cation problem is more challenging, because images frofardiit sub-classes share lots

of similar patterns in practice.

1.2 Review of feature Engineering, Dimension Reduction and<tfiaation Techniques
Information explosion era has witnessed the rapid increbe amount of data and
the abundance of high-dimensional observations. The toéfidig data” presents enor-
mous challenges in different applications. The availgbiif large amount of data will
change everyone’s daily life. How to handle with these daeoimes the central prob-
lem of many applications, e.g., image categorization/gatian, customer segmentation,
traffic prediction, ad optimization, recommendation sysgeprivacy analysis, etc. Data

mining/machine learning plays a fundamental role to hatttdse data analysis tasks ap-



Predict car labels for unknown cars (?)

AccordCrosstour

AccordHybrid \/

Figure 1.1: Prediction of labels for unknown cars (marked as red question marky. |&eled
cars: Civic, Accordcrosstour, AccordHybrid.

peared in different domains. Thus there is an urgent needvelap efficient and scalable
algorithms to deal with data analysis problems through dsian reduction, feature en-
gineering, semi-supervised learning. In this thesis, wie fatus on some fundamental
algorithms which may help to improve the capabilities ofadanalysis systems and appli-
cations. More specially, we will go through dimension reiitut, feature engineering, and
label propagation parts. The big picture of our work is shawfig 1.3.

Why feature engineering?

In machine learning, “feature” is a key concept used foredéht predictive tasks.
See an example shown in Fig 1.4. In order to predict whetheatiamt get cancer or not,
there are many factors which determine this. For exampleyiske) is of high pressure at
work; he (or she) seldom take physical exercise; he (or shekss a lot, etc. Each factor
of them can be viewed as a “variable” or “feature”. Since tbalgs to find cancer earlier
before that they can grow and spread, we need to identifytwfaictors are most significant

to cause cancer according to different patients’ record.
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Figure 1.2:General data mining pipeline. (1) Collection of data from different s@ji@ Feature
engineering on data; (3) Model construction according to requirenfeaitdita analysis tasks; (4)
Validation and interpretation of experiment results.

Good input features are very important for different maehigarning algorithms.
For example, for a neural network (deep learning) module,ctmosen features will af-
fect the needed number layers, the number of hidden neurnadshe number of training
examples. Feature engineering is to manipulate the featarsatisfy the requirement of
different classifiers, which may involve feature concatema feature selection, and feature
configuration in different parameters, etc. Feature ermging is expected to help under-
stand the properties and capabilities of different featuaad identify which features are
helpful for the tasks you are trying to solve. Domain knowjedan help for feature en-
gineering experiment design, while the experiment reswliected from designed models
will motivate a better understanding of the problem.

It is well known that the initial pick of feature is an expressof prior knowledge.
For example, for image data, we may use pixels, contourstextidre features; for signal,
we may use samples, spectrograms, etc; for time series, wesedicks, trends, reversals,
etc; for biological data, we may use DNA sequence, markenesstg, genes, etc; for text
data, we may use words, term frequency, inverted documesuiéncy, grammatical classes
and relations, etc. There are many methods to combine @iiféeatures, e.g., polynomial

combinations of features from different domains, logicahjanctions of features, com-
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Figure 1.3:Feature selection, dimension reduction, and classification for image analysis.

bination of features in a tree-structure, etc. This wiltaatuce large number of features.
Kernel mapping on feature space generally leads to noa#lioembinations of features.
Feature selection on feature space selects a few numberpoftamt features. Different
features may be strongly relevant, weekly relevant, olljobaelevant. It is known that
to find all relevant features for a classification problem iRxhard problem, because we
need to do an exhaustive search through all subsets of ésatusing filter method [8] for
feature selection can select a few number of features, varelindependent of classifiers.
Feature selection using structural sparsity [9] basedigales has been proposed, for ex-
ample, L, structural sparsity [10]L; structural sparsity [11]L, » structural sparsity. The
goal of these sparse based regularization is to seek relatnres which have non-zero
values. This is also known as “compressed sensing” [12].

Wrapper method needs to use specific learning systems andtfaige. Backward
and forward tracking algorithms are the two most populamwes method. For example,
in backward feature selection method, it starts with altdess, and then tries to remove

6
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Figure 1.4:Features(variables) in prediction of cancer disease

each feature and measure its effect on validation set. Thecsed to remove features
is to find the features which causes the least harm. The aboeess is iterated, until
the desirable number of features are selected. There arg vaaiants of above feature
selection methods. However, the computational cost isllyseery high, and there is also
risk of over-fitting on the validation set.

Greedy method is another popular feature selection methodhvselects features
one by one. For example, in decision tree model, each decimseking process can be
viewed as a feature selection process. Pruning of decisg@ni$ equivalent to pruning
of features. In random forest model, ensembles of classifieolves selection of new
features. Boosting model/bagging model is used to combifereint features.

Feature learning for image analysis has been widely usdthfoiwritten digit recog-
nition, face recognition, sonar image analysis, vehictgaition, zip code recognition,
etc. Multi-layer, multi-view [13], multi-task features 4]}, e.g., convolution on the fea-
tures, connections of features, have been proposed foeicuaglysis.

Why dimension reduction?



In many machine learning problems, the dimension of datary large. For ex-
ample, in face recognition problem, if pixel is used as fezdgwand the resolution of each
image is 56x46 dimension, the dimension of each image wikH& after vectorization.
Directly do classification/clustering on the high dimemsgpace will not give accurate
results. This is known as “curse of dimensionality”. One ydap way is do dimension
reduction, which reduces the number of feature dimensiaprojection the original high-
dimensional space into a low-dimensional space. Thus thkeajalimension reduction is
to reduce the number of random variables and to avoid theteftd curse of dimension-
ality. In low-dimensional subspace, many standard classiin methods (e.g., K-nearest
neighbors, support vector machine, etc) can be applied.

Many linear dimension reduction methods are proposed,ewvilienension reduction
can be conducted in one step using linear discriminant aisa{fiDA), principal compo-
nent analysis (PCA) [15], canonical correlation analysis (F{&], factor analysis, etc.
This results in low-dimensional feature embedding. Thespabe computed by PCA cap-
tures the dimensions which have the maximum variabilitpssmll the data, reflected by
the covariance structure of the data. Factor analysis alstures the correlation structure.
LDA is to find the subspace which maximizes the margins batvbetween-class distance
and within-class distance.

Many nonlinear dimensionality reduction techniques as® gdroposed to project
original data into non-linear space, using kernel PCA [1ofally linear embedding (LLE) [18],
multidimensional scaling [19], Isomap (using geodesitagises in data space) [20], diffu-
sion maps (using diffusion distances), semi-definite erdimeg etc.

For example, Kernel PCA uses the non-linear mapping to findoivedimensional
latent structure in the kernel space. LLE is to capture thedonensional, neighbor-
hood preserving embedding of high-dimensional data, usitegpolation of data from

its nearest neighbors. Laplacian embedding is to competkurdimensional embedding
8



through graph Laplacian using the reconstructed graphtweigprmation. Metric multidi-
mensional scaling (MDS) maps the original high dimensiapalce to a lower dimensional
space, which preserves the pairwise distances. In senmigefimbedding [21], it proposes
to learn the kernel matrix as an instance of semi-definitgramming.

For multi-dimensional data, tensor analysis is a poweidol for image analysis
through multi-linear subspace learning, like Parafac rho@iensor decomposition [22],
Tucker decomposition [23], bi-linear model, etc.

When handling very-high dimensional datasets (e.g., topridasi image in image
database, top 5 similar video in video database), locaditysgive hashing (a.k.a random
projection) [24] is also used to project original featura@pinto low-dimensional space for
searching, query purpose. Recently, learning for hashingtion becomes more popular
because it provides a much better way to efficiently encoedidph-dimensional data.

Why label propagation?

In image annotation/categorization, we can only obtaimarfember of labeled data
points. To label a large number of unlabeled data will be totaesuming and also labor
expensive. In machine learning, this is usually solved gissemi-supervised learning
(a.k.a transductive learning)” [25]. Different methodvé&deen proposed to solve these
problems. Among these methods, label-propagation [26haotkst have proven to be very
efficient and effective methods.

The goal of label propagation is to label data points whadseltaare unknown. In the
label propagation process, the labels are propagated &beildd data points to unlabeled
data point according to certain propagation rules. Difiedebel propagation methods
have been proposed, such as Harmonic function [27], LoahlGlobal consistency [28],
Green’s function [29], etc. In principle, the differencetbése different algorithms is the

different label propagation rules (a.k.a operator).



The key idea of graph-based label propagation method is itd Bugraph whose
nodes represent labeled data and unlabeled data, and eggesent similiarity/relations
between different data points. The labels are propagabded known nodes to all unknown
nodes on graphs. During the label propagation proces®reliff cost criterion has been
proposed to solve the involved optimization problem, whaskentially reduces to different
graph transductive learning strategy.

In these different methods, graph structure, graph Lapta utilized to spread
labels from labeled data samples to the whole dataset. A la@sumption about graph
manifold learning is that, labeling process should be simowér the graph manifold. This
assumption yields graph regularization terms based orhdgraplacian. From inductive
settings to transductive settings, graph manifold infdaromais utilized to explore the local
geometry data in graphs (e.g., k-NN graph).

In harmonic function method [30, 31], the label for an unknomode is given by
a weighted average of the neighbors’ current labels, wisch compromise of its initial
labels and regularization term through graph Laplacian.

In local and global consistency method [32], in order to laimknown nodes, it uses
the normalized graph weights to compute the contributidnstleer graph nodes, which
leads to different “label spreading” criteria. In genethg time complexity of these algo-
rithms is expected to b@(kn?), wherek is the number of neighbors for a node in a graph,
n is the number of nodes in a graph.

Intuitively, the label propagation on graphs has close ectians with random walk
on graphs [33]. For example, to assign a label to data pgirg depending on the prob-
ability of arriving to a positively and negatively labelegagnple when making a random
walk starting fromx; and until some labeled data is reached. This will give ingeatules

for deriving label propagation equations on graphs.
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It has been shown that label propagation on graphs is eguived an optimization
problems by minimization of a cost function derived on gmpfihus, it established the
theoretical foundation for label propagation on graphsdlgropagation on graphs often
leads to iteratively updating algorithms, which can be sdlusing linear system equation.
Label propagation on graphs can also be interpreted fromkeeael view or electric net-
work view [34]. The solution to the limit case of label propéign is known to be given by
the voltage in an electric network, where labeled nodes aneeacted to voltage sources,
and resistors correspond to the weights on graphs. Priss diatribution information can
be incorporated into this label propagation procedure.

Above non-parametric local learning algorithm [35] esigiytrelies on a neighbor-
hood graph which is used to approximate manifold which iy edvse to the data density.
This means the label for datais mainly depending on the unlabeled data which are close
to x on graph manifold.

However, it is has been pointed out that above methods mascate well, when the
intrinsic dimension of these manifold becomes large [36}. &xample, Laplacian regular-
ization algorithm learns about the shape of manifold, wisateflected from the principal
eigen-functions of the Laplacian of neighborhood [37]. Tmaension of manifold, and
whether data strictly lie on manifold determine the effddhe generalization error, which
are the influences of neighborhood data points. The strictumanifold determines the
performance of label propagation methods. If the manifeldat in large region, then
simply increase of the number of neighbors may be helpfuhfanifold learning. If the
manifold has high curvature/variance, we cannot simplygase the number of neighbors,
because it will increase bias, without significantly impgment of variance.

In real world, there are different categories of classiioatasks, e.g., image cat-

egorization, customer segmentation, topic discovery.1Egshows the image annotation
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Figure 1.5:For image annotation task, each image is labeled as multiple concepts. Left image is

labeled as: sky, mountain, sea, boat, sand; right image is labeled asbudduhg, sky.

tasks, where the left image is labeled as: sky, mountain jpeed, sand; and the right image

is labeled as: road, building, sky.

1.3 Research Challenges

There are tons of works about feature engineering, dimaeabkreduction and label
propagation. However, understanding and improvement @fe@hblgorithms is not trivial.
Application of above algorithms can be challenging, esgigcwhen considering some
specific algorithms. We provide the challenges of aboverdlgus in the following in
more detail. We argue that it is not trivial to solve the fallng problems.

Feature Engineering

Nowadays, structural sparsity based learning models arentist popular ways for
feature learning and feature engineering. The advantaggeumftural sparsity model is that
it can explore the structures of features, and enforce th#i@o of model to be sparse.
Based on different properties of structural sparsenessol{d4], group lasso [38], exclu-
sive lasso [39], generalized lasso [40], fused lasso [4&]deen proposed to deal with
multi-dimensional variables with different structures.nGree achieve better classification
performance if feature structure is enforced? Is it closelgnected to constraint feature

selection? Can we provide some efficient algorithms to sdleed constraint feature se-
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lection problem? Is there some universal algorithms to leati# group lasso problem on
arbitrary structure?

Dimension Reduction

Unsupervised dimension reduction is widely used in practiocally linear embed-
ding is one of the most popular methods for non-linear featumbedding. The advantages
of locally linear embedding algorithm is to explore the mdigrhood information of data,
and learn the embedding. The idea is to express eachkgdataa linear combinations of its
neighbors, and then construct the embeddingo that they can be expressed as the same
linear combinations of its neighbors. The challenge hetkag can we provide a method
which can further improve the performance of embeddinglt€8iLike adaptive dimension
reduction which combines dimension reduction and unsugesiMearning (clustering) to-
gether, can we provide a method to improve the reduced enmiggddbspace) adaptively?

Low rank model [42] is widely used for data recovery purpdséas close connec-
tions with principal component analysis (PCA), factor asalylatent semantic analysis,
etc. Low rank approximation model is usually used to solveramization problem, which
measures the cost function w.r.t the fit between given datdcanrank data approximation
matrix. The low dimensional constraint is enforced to eaghe rank of the recovered
data is low. It can be widely used in recommendation systd3J Jvhere the data matrix
has missing values and approximation is categorial. Iradcs matrix completion prob-
lems, the constraint can also be enforced as semi-defingiéygo The challenge is that,
can we provide some efficient algorithms to further imprdwe performance of low rank
data recovery? In practice, there are lots of missing vatunescorrupted values in data
matrix, can we provide some methods to recovery the missihges for data classification
purpose?

Label Propagation

13



Many graph-based label propagation [44] are proposed. Memieis not clear what
is the difference among those different types of methods?w@aexplore the connections
and differences among different graph-based label pramegaethods? If we can estab-
lish the connections between random walk and manifold Iegrrcan it help to improve
the performance of label propagation methods? Can it beeapfdi more graph-mining
problems appeared in social networks and advertisemeimiaption?

In label propagation methods, we usually have a strong gstsoamthat data lie on a
low-dimension manifold. This manifold could be smooth, ait&b without high curvature.

What is the true dimension of manifold? Can we determine thesire of manifold?

1.4 Contributions

To solve above challenging problems, in this thesis, weigeoefficient algorithms
targeting at specific challenges, to achieve the stateeshtt performance in a number of
tasks in dimension reduction, feature engineering, anel lafopagation.

e Locally Linear embedding (LLE) is one of the most popular éision reduction
method. We are interested in further improvement of stahdaE algorithm. We
systematically improve the two main steps of LLE: (a) leagnthe graph weights
W, (b) learning the embeddiny. We propose a sparse nonnegafi¥ learning
algorithm, and also a weighted formulation for learning editingY. One inter-
esting discovery is that, we find the embedding result istidahto normalized cuts
spectral clustering. We further propose to iterate the ti@pssin LLE repeatedly to
improve the results. Extensive experiment results showitidvative LLE algorithm
significantly improves both classification and clusteriaguits. It can be applied into

image categorization/annotation tasks.
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e Standard trace norm model is used for data recovery purpgdéseever, the recon-
structed data can be shrank and singular values can beygsapfiressed. To solve
this problem, we present two low-rank data recovery modeisuigh replacing the
rank constraint by a Schattgnnorm. The proposed model is attractive due to its
suppression on the shrinkage of singular values at smallBne limitations of stan-
dard trace norm model are: the shrinkage of reconstructt] thee suppression of
singular values. We analyze the optimal solution of modedrid characterize the
rank of optimal solution. We design two algorithms to solvedal 2, one is based
on Augmented Lagrangian method (ALM) [45], where a chalestep is to solve
associated proximal operator. The other is based on ativiera-weighted scheme,
similar to reweighted., scheme, where rigorous convergence analysis is provided.
Extensive experiment results on 6 occluded datasets onwemyision tasks indi-
cate good performance of proposed method.

e Feature structure information plays an important role égression and classification
tasks. We consider a more generic problem: group lassogmmhthere structures
over feature space can be represented as a combinatiortefea a group. These
groups can be either overlapped or non-overlapped, whiels@ecified in different
structures, e.g., structures over a line, a tree, a grapheor & forest. We propose a
new approach to solve this generic group lasso problem,evtentain features are
selected in a group, and an arbitrary family of subset isnadth We employ accel-
erated proximal gradient method to solve this problem, etzekey step is to solve
the associated proximal operator. We propose an iteraghwgeighted method to
compute the proximal operator, where its convergence s oigsly proved. Experi-
mental results on different structures (e.g., group, gesph structures) demonstrate

the efficiency and effectiveness of the proposed algorithm.
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e Random walk plays a significant role in computer science. Tdpular PageR-
ank [46] algorithm uses random walk. Personalized randomksaarce random
walk to “personalized views” of the graph according to usprsferences. In this
paper, we show the close relations between different gefid random walks and
label propagation methods used in semi-supervised leariive further present a
maximum consistency algorithm on these preferential reand@lk/label propaga-
tion methods [47] to ensure maximum consistency from labdita to unlabeled
data. Proposed algorithm restricts label propagation fsonrce(labeled data) to
reliably newly-labeled data only, and progressively exjzgato all unlabeled data,
therefore ensuring maximum consistency from labeled datalabeled data. Exten-
sive experimental results on 9 datasets provide perforenammparisons of different
preferential random walks/label propagation methods. yTdiso indicate that our
maximum consistency algorithm clearly improves the cfasgion accuracy over
existing methods. It can be applied to text mining, imagegatization/annotation

tasks.

1.5 Organization

This thesis is organized as follows.

In Chapter 2, we provide an improvement of standard Localyehr embedding
algorithm. We name it as “iteratively locally linear embeuylalgorithm”, because it com-
putes the embedding results iteratively. The contributibthis paper is to provide a new
way to compute the embedding, which also establishes tlatiae$ between LLE and
standard Laplacian embedding and spectral clusteringanitoe applied into image cate-
gorization/annotation tasks, and also different clustetasks. Material of this paper was

published in two papers, presented at ICML2012 [48], SDM2@93
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In Chapter 3, we provide a new model for noisy data recoverychvban handle
dataset with missing values and corrupted values. The peapoew model is attractive
because it avoids the shrinkage of singular values. Effiekgorithms are derived to solve
the proposed model. There are lots of applications usingtbposed model, for exam-
ple, application for recommendation systems, matrix cetigh problem, image recovery
problems, etc. It can also be used a preprocessing step &geicategorization/annotation
tasks. Material of this paper was published in ECML2013 [50].

In Chapter 4, constraint feature learning is very helpful iagtice because it can
enforce structures over feature space. Group lasso is deetie¢ way to enforce the
constraint over feature space. There are many methods twcenthe group sparsity,
whereas these different groups could be either overlappewm-overlapped, and these
different structures could be put over a line, a tree, a g@péven a forest. Iteratively
re-weighted method is derived to solve the proposed problenere its convergence is
rigorously proved. There will be lots of applications whiehg., medical image analysis,
bio-marker analysis, benefit from proposed algorithms. e@valk of this paper was pub-
lished in ICDM2013 [51].

In Chapter 5, random walk has many applications in infornmatitrieval, medi-
cal image analysis, page rank, etc. The interesting disgayethis paper is to establish
the relations between random walk and label propagations fite well for many semi-
supervised learning problem. More interestingly, a maximoonsistency algorithm is pro-
posed to ensure the reliably propagation of labels fromliéambeata to unlabeled data. This
is also known as “multi-stage” learning algorithm, whichndze used for other classifiers,
e.g., k-nearest neighbor classifier, support vector maglgreen function, etc. Empirical
study indicates the good performance of proposed algosithvtaterial of this paper was

published in ECML2012 [52].
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Chapter 6 concludes the dissertation, summarizes our fia@ind empirical results,
and discusses future research directions. We have oth&swalated to above researches.
Due to space limit, we will not put them in this thesis. If irésted, please refer to [53, 54,

55, 56, 57, 58].
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CHAPTER 2
An Iterative Locally Linear Embedding Algorithm

Locally Linear embedding (LLE) is a very popular dimensi@duction method.
This is very effective to do non-linear embedding. The twepstof LLE is shown in
Fig.2.1 The goal of this section is to propose a method, weystematically improves the
two main steps of LLE: (A) learning the graph weigs, and (B) learning the embedding
Y.

We propose a sparse nonnegatWé learning algorithm. We propose a weighted
formulation for learningY and show the results are identical to normalized cuts sgectr
clustering. We further propose to iterate the two steps ik ltépeatedly to improve the
results. Extensive experiment results show that iterdthe algorithm significantly im-

proves both classification and clustering results.

2.1 Background of locally linear embedding

Recently, there have been many algorithms proposed formearlidimension reduc-
tion, which include Isomap [59], locally linear embeddind.E) [18], kernel-LLE [60],
Hessian LLE [61], local tangent alignment [62], Laplacianbedding [63, 64], and many
variations. Above dimension reduction algorithms usuabflyer two main steps: (A) for
each data point, learn the local geometry informa¥én ThisW can be viewed as similar-
ity between data points or the edge weights of a graph whodeswre the data points. We
call thisW-learning, or learning the graph weights. (B) Using the ledi¥W to embed the

high-dimensional data points into a lower-dimensionatspa. We call thisY -learning, or
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Figure 2.1:Procedure of locally linear embedding process. (1) Neighborhoodtseie(2) Graph
weightW-learning; (3) Embeddind -learning.

learn the embedding. The performance of those algorithendetermined both by learning
the local information and also by constructing the mappéigtions.

In past decades, many clustering algorithms have been gedpsuich as K-means,
spectral clustering and its variants [65], normalized & ratio cut [67], etc. Among
them, the use of manifold information in graph cuts has shiherstate-of-the-art cluster-
ing performance.

One key observation is that both LLE and spectral clustartitige the data manifold
information. This motivates us to investigate deeper i@hatbetween the LLE -learning
and spectral clustering in terms of Laplacian embeddinggbse the embedding is pre-
cisely the relaxed cluster indicators for the spectralteliisg). Indeed, we discover that a
properly modified formulation ol -learning provides a solution which is identical to the
normalized Laplacian embedding (s¢&3). We incorporate this improvement into our
final iterative LLE algorithm.

Another observation is that the data geometry informatiaoded inW also plays a
central role in the performance of these algorithms. Westigate théW -learning process

and propose a nonnegative, kernelized, sp8skarning algorithm (seg2.4).
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Furthermore, we propose iteratively repeathe two mains stepsW-learning and
Y-learning) to improve the results progressively. Here we the learned embeddiryg
to augment the input data to learn a be¥®t which leads to a bettey in turn. This is
repeated until the process converges (details are givéa.8). This iterative procedure
incorporates both the improved learning and the improveW learning into a coherent
iterative LLE algorithm.

The experiment results for clustering and semi-superlesathing tasks on 9 datasets

show clear performance improvements.

2.2 LLE and New Formations

Brief overview of LLE

LLE [18] is a nonlinear dimension reduction approach. SgeptataX = [x;, xa, - -
-, X,] € RP*™, consists of: data points;, each with dimensionality. LLE expects each
data point and its neighbors to lie on or close to a locallgdinmanifold, which governs
how the weight coefficientd% are constructed from Eq.(2.1). It then reconstruct each
data point (lowk-dimensional embedding vectofs;}) from its neighbors via the same

neighborhood relations by minimizing a quadratic cost fiomcEq.(2.2),

] . 3|2
I%DZHXZ Z Wiz, (2.1)
1 ]ENi
min Y [lys — Y Wil (2.2)
i J

where weight/;; summarizes the contribution of théh data point to the construction of
ith data point.\V; is the kNN neighborhood of;. The shift invariance ok = [y, y», - -
- ¥a] € R is enforced by restrictin@ Wi = 1.

LLE Improvements in two direct]ions

In this paper, we propose improved formulations in both nsdéps in LLE. (A) In

the W-learning step of Eq.(1), we propose new improved formaieito learrv. We first
21



makeW nonnegative in this section. We will further propose a kbred sparse learning
in §4. (B) In the'Y-learning step of Eq.(2), we propose slightly modified folation and
prove that the solution to Eq.(2) is identical to NormaliZédt or Laplacian embedding.
Our iterative LLE algorithm is based on these improved fdrame in both LLE steps.

To make a connection to graph embedding, we (1) resf¥idb be nonnegative, i.e.,
we add constrainWW > 0 to Eq.(2.1) (as done in [68]); (2) we symmetri¥€ to obtain
Z = %(W+WT) as the graph edge weight/similarity matrix; (3) we impbserthogonal
constraint onY, i.e., YDYT = I, whereD = diag(Ze) is a diagonal matrix containing

node degrees.

With these three changes, the LLE equations of Egs.(2)lh2dme

H‘lz‘i]nz ||XZ - Z Winj||2, st. W > 0, (23)
7 JEN;
H%i(nz dillys — Z‘:(Dflz)ijyju2 st. YDYT =1, (2.4)
{ J

whered; = D;;.

We note several important changes here. In Eq.(P4), is inserted for two impor-
tant reasons: (1) Note thit:j(D*Z),»jyj is the average values ¢f’s neighbors. Thus
Eq.(2.4) enforces the smoothness of functign}. (2) It also enforces the shift invariance
of obtainedY, becausg ,(D~'Z);; = 1. This implies that if{y; } is an optimal solution,
sois{y; — c} wherec is a constant vector. Note that we adjcas the weight of each point
yi, for reasons immediately clear below.

LLE Y-learning is identical to Normalized Cut Spectral Clustering

Now we show that LLEY -learning formulation of Eq.(2.4) is identical to norma&d
cut.

In fact, this is a general result, not restricted to LLE. lidsofor any symmetric

nonnegative graph similarity functidf. More precisely we have theorem (1),
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Theorem 1. For any symmetric nonnegative graph similarity functibof the formulation
of Eq.(2.4), the optimal solution &f is identical to the optimal solutiol of normalized
cut spectral clustering, given graph weight mat#ix

In the following, we first briefly introduce normalized cutdapresent the proof of
Theorem 1.

Review on Normalized Cut.

Normalized cut [66] is an effective graph partitioning @lering) technique to iden-
tify clusters inherent in the data, given the pairwise saniy matrix Z. It is well-known

now multi-way normalized cut can be solved by the followinglgem,
ménTr(GT(I -7)G) st. GTG=1I,,

whereZ = D :ZD 2. andG = g1, 82, - -, g are relaxed cluster indicators. The

optimal solution forG is the smallest eigenvectors fronfl — Z), i.e.,

(I—-7Z)gr = k- (2.5)
The cluster indicatoH = [hy, hy, - - -, h] is

hy, =D 2g,, H=D:G. (2.6)

Relation to Laplacian Embedding.
It is easy to see thdd” =V = [v,,--- ,v,] is identical to the solution of
H{}nz Wijllvi —v;||? st. VDVT =1, (2.7)
ij
This Laplacian embedding with degree normalizatbV’ = I, is effective for clus-
tering problems because the embedding coordinates arefttguwous relaxation of the
cluster indicators of the multi-way normalized cut spdattastering. Similarly, Lapla-

cian embedding using coordinates with standard normaizatV’ = I, is precisely the
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continuous relaxation of the cluster indicators of muléywratio cut spectral clustering
[67]; The widely used linear embedding, Principal compdraralysis (PCA) is precisely
the continuous relaxation of the cluster indicators of thdthrway K-means clustering
[69, 70].

Theorem 1 can be equivalently expressed for Laplacian edibgd

Proof of Theorem 1

To prove the theorem 1, we need Lemma 1.

Lemma 1. The optimal solution to Eq.(2.4) is,
Y*=F'D 2, (2.8)
whereF = [f;,f,, ..., f,] € R"** is the smallest eigenvectors o —Z)2, Z = D2 ZD" 2,
ie.,
(I —Z)*f, = \if. (2.9)
Proof of Lemma 1.

Proof. NoteY = [y1,ya2, - -, ya] € R Let
S’i =Y — Z (Dilz)ijy'ja (210)
i
and thenlY = [y, ¥, - -, ¥n] € R¥". Itis easy to se& = Y — YZD~'. Now Eq.(2.4)

can be written as

n n k k n
SCdllFllP =D ) diYi =) > YuDu(Y")y

i=1 i=1 j=1 j=1i=1
=Tr(YDY?) =Tr(Y - YZD 1)D(Y - YZD })7
=TrY(I-2zD )D:Dz[Y(I-ZD )"
=TrYD:(I-Z)I-Z)DzY".

Thus Eq.(4) becomes
min Tr(YD2(I-Z)?2D2Y7?) st YDY? =1 (2.11)
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To optimize Eq.(2.11) is equivalent to optimize,
min TrFT(1—-2Z)°F, st FTF=1I, (2.12)

whereF = D2Y7. Itis easy to see the optimal solutidh= £y, fs, - - -, £] for EQ.(2.12)

is the smallest eigenvectors fronfl — Z)?, i.e., Eq.(9). Thus the optimal solutidvi* =

(D :F)T =F’D s, O

Proof of Theorem 1.

Proof. BecausgI — Z) is semi-definite positive, the eigenvect@s of Eq.(2.5) can be

uniquely mapped to eigenvectags of
(I—-Z)’gi = piygx- (2.13)

Comparing Eq.(6) of normalized cut against Eq.(2.9) of LLRe @an sed; = g;, u? =
A, F = G. Compared Eq.(2.6) of normalized cut against Eq.(2.8) of Lbfe can see
H = Y7, This completes the proof. ]

2.3 An lterative LLE Learning Algorithm (ILLE)

We now use the above results, coupled with two new schemgs{é derive a new
learning algorithm.

Motivation of iterative LLE

(A)lterative process of LLE

In LLE, starting fromX, we learnW, and then learrly as the low-dimensional
embedding of datX. In this paper, we propose to udeas the new data and iterate this
process to further improve the embedding. The key observadithat the class structure
of the data is more clear I than inX (this is the original embedding purpose of LLE).
Thus we uséY as the new data and repeat this process to learn an imphoved

(B) Kernel generalization
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From experiments on several datasets, the results of usiear lformulation onX
for learningW in EqQ.(2.1) are generally not as good as other state-of-ettiods. Here we
use the kernel trick to generalize this to arbitrary nordim&milarity function. We re-write
Eq.(2.1) as

; A b(x)[2
rrvlan lo(xi) = Y Wijo(xi), (2.14)

JEN;
where ¢(x;) is a mapping to a higher dimensional space. The importangthere is

that the exact form of the mapping function is not neededy &m inner producK;; =
(6(x:), 6(x;)) is needed.

Using matrix notation, the LLE of Eq.(2.1) can be Writtenr%VBl X — XWT||?,
and Eq.(2.14) can be written as

[¢(X) — d(X)WT||2 = Tr(K - WK — KW + WKWT), (2.15)

This is useful, because once we compytérom Eq.(2.4), we can build a kernel from
and substitute it into EQ.(2.15) to learn a n&W (and thusZ ).

Proposed algorithm

By incorporating the above schemes of (A,B), we outline ouattee LLE learning
algorithm as follows.

(1)Given kerneK?, solve forW* with Eq.(2.15) or Eq.(2.17)

(2)Given pairwise similaritpW?, solve forY* using Lemma 1.

(3)Given embeddind’?, compute a new kern&*! either as the final result of our
algorithm (both embeddinY* and kernelK'*!) or as input to step (1). Details &’*!
construction is given i§3.3.

Initially K! is obtained from datX, we repeat above 3 steps for serval iterations
to obtain a better kernel. See Algorithm 1 for more detailoteNin step(1), we have

two alternatives to compuf&/’. Thus we have two versions of iterative LLE - one based

1S of Eq.(2.17) can be viewed as pairwise similarity
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on simply iterating LLE process, and the other based on ilegra sparse kernel using
algorithm of Eq.(3.17) irg4.

Discussion. Here we did not give the global convergencefbthis iterative LLE
algorithm. The algorithm is very intuitive and natural.dtmotivated by a simple observa-
tion: class structure is more clear in embeddwhghan in original dat&X.

Construction of the new kernel In step (3) of our algorithngethe low-dimensional
embeddingY® is obtained, we have the following choices.

(a) Construct a new kernel froi¥i®. There are many way to construct kernel. One
possible approach is to construct the keddgl by simply using the Gaussian Kernel, i.e.,
Ky = e 7I¥i~%il* wherev is the scale parameter. Another way is to construct new kerne
Ky as the linear kernel in low-dimensional space, i€y, = YY7.

(b) Construct the kerndK**! either as the final result of our algorithm or as input
to step (1). There are many choices, @1)' = K% ; (b2) KernelK'*! is a combination
of K¢ and the previous kern@&. There are two way to achieve this, additiv@y ! =
K!+ K¢, or multiplicativelyK!*! = K!©K?%,, where we use to denote the element-wise
matrix multiplication, e.g., iiC = A © B, thenC;; = A;; x B;;.

In choice (b1), we simply ignore the previous kernel andIsettew kerneK!™! =
K% . Note both additive and multiplicative operations in clesi¢b2) ensure the new kernel
K+ is also semi-definite positive(s.d.p) if the original kdrkg is s.d.p.

Discussion. In our experiments, we tried different choicé& find the results ob-
tained from (b2) are generally better than (b1), and theiplidative combination usually
achieves better results than additive combination. Thosiirexperiment we use (b2) with

multiplicative combination to construct the new kernelteps3.
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Algorithm 1 Iterative LLE algorithm(ILLE)
Input: Original KernelK' obtained from datX, maximal iteratioril”

Output: Pairwise similarityW , embeddingy’

Algorithm:

1: fort =1to7 do

2:  ComputeW' of Eqg.(2.15) or Eq.(2.17) with current kerrit
3. ComputeZ’ = (W + W?).

4:  Compute embeddiny* using Lemma 1.

5:  Compute a new kernd{‘*! given embeddind’*.

6: end for

7: Output: Pairwise similarityW = K'™!, embeddingy = Y".

2.4 ImprovedW-Learning Formulation

Here we propose an improvement to W& learning step of LLE. So far for LLE of
Eq.(2.1) and the new kernel version of Eq.(2.15), we mairitae original LLE convention
thatW preserves théNN structure, i.elV;; # 0 for only j € A; (kNN of objecti).

This constraint is too strong for constructing the data lsinty matrix W. Thus,
in our approach, we relax this to I&;; be nonzero even if ¢ N;. In other words, we

bypass kNN entirely.

We now present a new approach to learn the pairwise sinyilarétrix S € R"*",
whereS;; represents théth data’s contribution to reconstruct data point We hope the
newly learnedS has much clear structure. We use the synthtd emphasize tha¥ is

learned using the new approach. Our objective functiondarrlings is,
rsn>ig\|X—XSH2—i—aTr(STS)—IrﬁHSHM, (2.16)

wherea and 8 are regularization parametei$S|[i1 = >_,;; [S;[. The first term| X —

XS|1? = > [[xi—3_ S;ix;||* is used to minimize the reconstruction error from the o@gin
i J
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data. The second term penalizes the complexit.ofThe third term ofL,; norm is to

promote the sparsity of the solution.
Using mapping: X — ¢(X) to map dataX to a higher dimensional space in kernel

machine. Eq.(2.16) becomes

min [[9(X) — $(X)S|* + aTr(S"S) + BIS| 1.1 (2.17)
which is equivalent to,
(2.18)

min Tr(K — 2KS + STKS) + aTr(S”S) + 3|IS||1.1-

Eq.(2.18) is identical to Eq.(2.16) whéa = X”X.

Eq.(2.18) is a convex optimization problem athas a unique global solution. Fur-

thermore, Eq.(2.18) can be written as

min Tr[K + (BE — 2K)S + ST(K + aI)S], (2.19)

whereE is a matrix of all ones. Becaud€is s.d.p., by addingI with o > 0, (K4 «l) is
a well-conditioned matrix. It can be solved efficiently (dedow). UsuallyL; norm term
is difficult to handle. Here, however, it does not add any aliffy when handled together
with the nonnegativity constraint. Thg term can be ignored entirelyS||; ; = Tr(ES).

Computational algorithm for Eq.(2.17)
Here we present an efficient algorithm to solve Eq.(2.17)@ode its convergence

rigorously.
The algorithm starts with an initial guess®f= E(E is a matrix of all ones), itera-

tively updatesS according to

Sij — Sij J . (2.20)
(KS + aS)j + 2

This algorithm converges very fast. The computational rtiga for Eq.(2.17) is

very simple and can be efficiently implemented.
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Convergence of Updating rule of Eq.(3.17) We have Theorema(pyove the con-
vergence of the algorithm whdg is non-negative.
Theorem 2. Updating S using the rule of Eq.(3.17), the objective function of E4.T2
monotonically decreases.

The proof of this theorem is lengthy and is similar to that #i,[56]. We therefore
skip the proof in this paper.

Correctness of Updating Rule of Eq.(3.17)

We prove that the converged solution satisfies the KarudimKiucker condition of
the constrained optimization theory. We have Theorem 3duepit.
Theorem 3. At convergence, the converged soluti®rof the updating rule of Eq.(3.17)

satisfies the KKT condition of the optimization theory.

Proof. The KKT condition forS with constraintsS,; > 0 is %JT(isj)Sij =0, Vi,j.
The derivative of/(S)(Eq.2.17) isanT(i) = (—2K + 2KS + 208 + SE), . Thus the
KKT condition forS is

(—2K + 2KS + 208 + fE),;S;; =0 Vi, j. (2.21)

On the other hand, onc® converges, according to the updating rule of Eq.(3.17), the converged
solutionS satisfies

K“
i (2.22)

S;; =Sy
7Y (KS + oS+ 9E)

]
which can be written as-K;; + (KS + oS + gE)ij]Sij = 0. This is identical to Eqg.(2.21). Thus

the converged solution satisfies the KKT condition. O

2.5 Experiments

We perform the proposed algorithms on nie datasets. We dodaohi-supervised

learning and clustering on these datasets. We evaluatedpeged iterative LLE learning
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Table 2.1: Dataset descriptions.

Dataset #Size #Dimension #Class
AT&T 400 644 40
Mnist 150 784 10
Umist 360 644 20
Binalpha 1014 320 36
Yale 1984 2016 31
Caltec 600 432 20
MSRC 210 432 7
Newsgroup 499 500 5
Reuters 900 1000 10
008 03 0.3 ‘6
ZZ: “ = 0.2 0.2 “
o ] - ’
700: ° Ldo - f'zé ?“?J o Lgo f ot “
-004 0 & [ A 0 ‘!7'-“ <
. . -
00; 6 -0.3 /ZI'J o -0.3 =
(a) embedding result frorK (b) embedding result from LLE1  (c) embedding result from LLE4

Figure 2.2: 2D visualizations of embedding results usingirfttial/input kernelKy; (2)
LLEZL: results on learne® after 1 LLE iteration; (3) LLE4: results on learnéd after 4
LLE iterations; using 4 digits “0”,“3",“6”,“9” on MNIST daaset

algorithm@3) and sparse similarity learning algorithia}, and then show the embedding
results from our approach.

Dataset. These data sets come from a wide range of domathsiiimgy three face
datasets AT&T, umist and yale [72], two digit datasets mTi3} and binalpha, two image
scene datasets Caltec101(Caltec) [74] and MSRC [75], and &datasets Newsgrodp
Reuters. Table 2.1 summarizes the characteristics of them.

We show both the iterative LLE (algorithm 1 §2.3) and the sparse similarity learn-

ing algorithm §2.4) results. Given original kern®&?°, S is obtained from 1-time running

Thttp://www.kyb.tuebingen.mpg.de/ssl-book/ benchmaatis!
2http://people.csail.mit.edu/jrennie/20Newsgroups/
Shttp://www.daviddlewis.com/resources/testcollecsiveuters21578/
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of sparse similarity learning algorithm §2.4. Then we obtain the final embedding results
Y after repeating out iterative LLE algorithm for 4 times. Btep 1 of algorithm X@2.3),

we use kernel constructed from Eq.(2.17) for the subsedqtezations. For step 3 of algo-
rithm 1(§2.3), given current embedding’, we obtain the new kernd’*! using choice
(b2) with multiplicative combination in every iteration.

Clustering Results We use clustering algorithms to evallegdearnedY in LLE.
We compare three standard clustering algorithms: (1) nlizethcut, which in the context
of our iterative LLE, is simply K-means clustering on leadrembeddingY’; (2) spectral
clustering [65], which is K-means clustering on embeddihgormalized onto unit sphere.
(3) symmetric NMF, which runs on the learn®4 in iterative LLE. All of results are the
averages of 10 K-means clustering with random starts.

We use accuracy, normalized mutual information (NMI) andtgas the measure-
ment of the clustering qualities and the results are showrabte 2.2. We show the clus-
tering results obtained from using (1) the original/inpatiel K), (2) LLE1: results on
learnedY after 1 LLE iteration. (3) LLE4: results on learn&fafter 4 LLE iterations.

For image datasets, we use gaussian kekfgl= e~ For text datasets,
we use linear kernel. We tune the graph construction pasaméd obtain the best results
from kernelK®. From Table 2, we observe that LLE1 and LLE4 consistentlyeaehbetter
clustering results, as compared to the results obtainead driginal kernelK°.

Semi-supervised learning results

We useK", LLE1 and LLE4 results (learne®) as the input to run three semi-
supervised methods: harmonic function[76], local and glaibnsistency[32], green’s
function[77]. We compare the classification accuracy ofvabihree methods by using
original kernelK") and the results obtained from LLE1 and LLE4 on 9 data sets.alFo
the methods and datasets, we randomly select 10%, 20% dédthtata for each class,

and use the rest as unlabeled data. We do 10 fold and 5 fold eadidation, respectively.
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Finally, we report the average of the semi-supervised ifieason accuracy in Table 2.3.
In all cases, we obtain higher classification accuracy byyapyp iterative LLE learning
algorithm (shown as LLE4 and LLE1).

Demonstration of embedding results We demonstrate thengalyas of iterative
LLE learning algorithm §2.3) and sparse similarity learning algorithf2 @) using two-
dimensional visualization. We randomly select four difitsn MNIST dataset (“0”, “3”,
“6”, “9"). Given Gaussian Kernel as the input, the iteratisteE algorithm 2.3) and sparse
similarity learning algorithm§2.4) are run. The other parameters are set as mentioned be-
fore. The embedding results obtained from original GaumsKiernel K, 4-time running
of iterative LLE learning algorithm (LLE4) and 1-time rumg of W-learning algorithm
(LLE1) are shown in Figs.(2.2a, 2.2b, 2.2c). In originalulesfrom Gaussian Kernel, all
images from different groups collapse together. For thalt@ebtained from LLE4 and
LLEZ, the images from different groups are balanced andibliged more evenly. This
indicates much better embedding results.

Insights from experiment results.

Overall, from initial/input kernelK® to LLE1, LLE4, both clustering and semi-
supervised learning results consistently improved. Comgaesults obtained between
LLE1 and initial/input kerneK?", the performance boost is from the learddtusing the
algorithm of§2.4. Comparing results obtained between LLE1 and LLE4, thfopeance
boost is from the iterative learning of LLE. From the statisshown in Tables 2.2, 2.3, we
observe that the boost from LLE1 to LLE4 is usually highemthizat fromK° to LLE1,

indicating that the iterative aspect contributes more.
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2.6 Lessons learned

In summary, the main contribution of this section is in thfele. (1) We show that an
improvedY -learning formulation of LLE is identical to normalized @ggectral clustering.
(2) We present an improveW -learning algorithm that learns a nonnegative, sparse pair
wise similarity from an input kernel function. (3) An itena procedure of the above two
steps is proposed to progressively refine/improve the isoluExperiments show that the
iterative LLE incorporating (1,2,3) leads to better clustg and semi-supervised learning
results.

In the future work, we will investigate the de-noising poveérproposed iterative
LLE algorithm. We are curious about whether we can get comatbedding results given

noisy observations with missing values.
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Table 2.2: Accuracy (ACC), normalized mutual information (NMnd purity (PUR) com-
parisons of different clustering algorithms: Normalized,Gymmetric NMF and Spectral
Clustering.K": results obtained on the original/input kernel. LLE1: deson learnedYy’
after 1 LLE iteration. LLE4: results on learn&@ after 4 LLE iterations. All results shown
are percentage.

Normalized Cut Symmetric NMF Spectral Clustering
K’ LLE1 LLE4| KY LLE1 LLE4| K° LLEl1 LLE4

ACC | 44.77 50.24 66.50 48.09 49.12 50.04 41.09 53.18 58.31
AT&T NMI | 70.14 7423 83.82 62.28 65.87 70.51 59.40 6850 74.67
PUR | 49.30 54.87 71.49 48.33 50.32 54.78 48.00 49.24 52.41
ACC | 64.37 64.87 65.61 73.29 76.43 81.84 73.29 74.21 75.14
Mnist NMI | 65.77 66.84 67.25 69.83 72.03 74.92 73.03 73.38 74.93
PUR | 66.55 67.12 68.37 74.16 76.87 81.8§ 74.69 74.89 75.61
ACC | 48.44 48.85 49.11 49.46 49.87 50.24 43.13 44.87 45.76
Umist NMI | 64.62 64.98 65.15 64.56 65.34 66.95 63.26 63.78 63.89
PUR | 52.06 52.92 53.7152.43 53.14 54.98 48.85 49.23 50.72
ACC | 40.52 42.23 45.91 40.65 42.78 44.671 39.18 42.45 44.26
Binalpha NMI | 56.25 57.65 60.35 54.49 55.61 59.54 53.57 56.72 58.51
PUR | 43.58 45.54 49.57 43.60 45.71 48.73 41.82 45.23 48.07
ACC | 9.02 1221 15.4910.72 11.34 14.7§ 10.83 10.98 12.89
Yale NMI | 11.24 13.43 20.12 13.98 16.84 20.45 12.72 13.45 16.58
PUR | 9.93 1553 16.57 11.71 13.23 15.69 11.72 12.37 13.76
ACC | 36.31 42.43 49.51 43.98 47.83 52.50 43.67 45.74 47.98
Caltec NMI | 42.63 4545 54.86 48.25 52.01 56.43 48.02 50.23 51.84
PUR | 39.02 4258 53.1§ 46.21 50.38 55.71 46.41 49.65 51.32
ACC | 53.23 60.89 66.6557.86 62.34 66.71 65.85 66.78 68.42
MSRC NMI | 44.08 50.23 55.81 46.81 49.87 56.16 54.78 55.23 56.36
PUR | 55.89 61.43 69.95 60.12 64.23 69.62 67.38 68.84 69.64
ACC | 27.58 32.23 40.36 26.62 34.78 51.63 42.22 44.38 46.51
Newsgroup| NMI | 12.92 1824 1941 17.65 27.86 30.22 18.01 20.32 23.19
PUR | 28.43 32.54 41.95 29.12 4245 59.20 41.72 44.81 48.90
ACC | 19.22 23.87 30.59 24.02 3598 41.35 33.48 34.49 35.83
Reuters NMI | 15.69 18.42 22.2211.30 26.83 32.74 2426 2580 27.78
PUR | 19.97 23.34 33.39 2498 31.90 45.92 3791 37.98 38.43
ACC | 38.16 41.98 47.73 41.63 45.61 50.42 43.64 46.34 48.34

Average NMI | 42.59 45.50 49.89 43.24 48.03 52.00 45.23 47.49 49.75
PUR | 40.53 43.99 50.91 43.41 47.58 54.06 46.50 48.03 49.87

Dataset Metric
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Table 2.3: Accuracy comparisons of semi-supervised lagran 9 datasets. Learning al-
gorithms used: Harmonic function, Green'’s function anddl@nd global consistency(LG-
consistency) K": results obtained on the original/input kernel. LLE1: deson learned

W after 1 LLE iteration. LLE4: results on learn&d after 4 LLE iterations. Results

shown are based on 10% or 20% labeled data.

Dataset

Percent-labeled

Harmonic function

Green’s function

LG-consistency

&

K° LLE1 LLE4| K LLEl1 LLE4| K° LLE1 LLE4
AT&T 10% 65.63 70.23 73.14 69.67 70.12 71.11 70.48 71.45 72.12
20% 7493 78.87 8337 78.01 79.03 79.73 78.43 80.23 82.94
10% 68.83 68.89 69.91 63.35 63.90 64.2]1 65.72 67.89 69.19
Mnist 20% 81.16 82.09 82.83 72.67 73.42 74.16 7551 79.38 81.33
10% 48.64 50.45 51.19 4791 48.03 48.42 48.87 49.35 50.68
Umist 20% 63.78 67.89 70.43 60.75 61.23 61.54 63.28 68.78 70.48
10% 47.71 49.89 52.61 46.79 47.09 49.24 46.76 48.93 50.35
Binalpha 20% 53.51 59.23 61.78 52.70 53.28 54.34 5259 59.37 61.21
10% 30.31 3543 3854 29.13 3199 3294 3467 37.65 43.23
Yale 20% 4548 5245 54.18 32.09 33.45 36.55 38.98 48.90 57.49
10% 4446 48.76 54.38 44.79 45.08 45.24 4452 48.75 53.64
Caltec 20% 49.87 53.25 63.61 49.03 50.23 52.34 49.93 53.74 63.62
10% 57.46 60.35 66.50 59.47 60.01 60.24 60.12 63.45 65.82
MSRC 20% 62.26 6543 70.9561.42 62.23 63.5463.33 68.79 72.15
10% 65.16 67.34 69.85 53.35 54.23 55.4756.39 57.78 58.37
Newsgroup 20% 7227 7325 74.3559.72 6091 61.1458.84 60.19 61.32
10% 64.25 65.78 66.23 53.29 55.79 57.8]1 53.27 58.98 61.44
Reuters 20% 73.61 7398 7456 62.35 6345 68.7461.09 6790 72.17
10% 5472 57.46 60.26 51.97 5292 53.8553.42 56.03 58.32
Average 20% 64.10 67.38 70.68 58.75 59.69 61.34 60.22 65.25 69.19
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CHAPTER 3
Low Rank Data Recovery with Minimal Shrinkage

Standard trace norm model is used for data recovery purpdé@eever, the recon-
structed data can be shrank and singular values can beygsegairessed. To solve this
problem, we present two low-rank data recovery models tjinaeplacing the rank con-
straint by a Schattemnorm. We analyze the optimal solution of model 1, and charazst
the rank of optimal solution. We design two algorithms toveahodel 2, one is based on
Augmented Lagrangian method (ALM), where a challenge stépsolve associated prox-
imal operator. The other is based on an iterative re-wetgbtbeme, similar to reweighted
L, scheme, where rigorous convergence analysis is providadngive experiment results
on 6 occluded datasets on computer vision tasks indicatd gedormance of proposed

method.

3.1 Background of low rank data recovery

In big-data era, data is always noisy, development of roboiste tolerant algorithm
for data recovery, is always useful and highly demanded.h@rother hand, the available
of large amount of data makes it more difficult to control thalgy the data. The chances
of the damaged data or noisy data are increasing. Given ngesy dataX, the goal of low
rank data recovery problem [78, 79, 80], is to find a low ranfragimationZ. Recovered
dataZ is expected to be low rank, and retain minimum reconstraoctiwors (such as least
square error) as compared to input data maXrixin practice, input data can be noisy and

also has missing values. This problem has attracted a lattefteons due to its widely
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Figure 3.1: Optimal solution, given singular valuer, of input dataX, at differentp =
{1,0.9,0.8,--- ,0.1} values with fixeds = 0.5, on dataset Mnist with 20 images, i.e.,
X = {x1,Xs, -+ ,Xz0}. TO avoid clutter, part of Fig.1a is zoomed in and shown inHig
In Fig.1d, the solution gt = 0.3 is afaithful low-rank solution, and the solution at= 0.9

is asuppressetbw-rank solution.

applications in recommendation systems [81], collabeeaprediction [82], image/video
completion [83], etc.

Data recovery problem has close relations with dimensidncton or low dimen-
sion subspace recovery, since for most of high-dimensidag, they may have low-
dimensional subspace. Many efforts have been devoted #fendirection of principal
component analysis (PCA) [84], compressive sensing [85heafank minimization [80],
etc. For example, Principal component analysis (PCA) semka fow-dimensional sub-

space given data matrix, which can be efficiently computedgusingular value decom-
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position (SVD). However, a major drawback of classical PC8][i8 that, it breaks down
under grossly corrupted or noisy observations, such agsf@isrruptions in images, and
dis-measurement in bio-informatics, etc. In Regularized P@@Alel €.g, [87, 88]), it aims
at reducing the rank of the data without explicitly reducihg dimension. However, they
do not return the clear representation of subspace andilm@rgional data explicitly.

It is well known that it is a NP-hard problem to directly minzimg the rank of data
for recovering input data. Since trace norm can be viewed @seaex envelope of rank
function [89], different methodse(g, [90, 91, 78, 92, 93, 94]), have been proposed by
minimizing the trace norm. In this paper, we point out th&tndard trace norm model suf-
fers from a serious problenshrinkage of reconstructed data and suppression of simgula
values(see more details in Figs.(1-2) af8l.3). We find that the trace norm relaxation may
deviate the solution away from the real solution of origirealk minimization problem.

The goal of this paper is to develop new methods to solve thecapnation of the
rank minimization problem. In this paper, we reformulate tioisy data recovery problem
using schattep norm, where efficient algorithms are presented. To summatie main
contribution of this paper is listed as follows.

e From model construction point of view, we present new modfl@ishoisy data re-
covery, which minimize both data recovery error and rankeafovery data. The
proposed models give the minimum shrinkage of recovereal dat

e From algorithmic development point of view, we present a plate analysis for
proposed model, where the rank of optimal solution is chareaed by Theorem 1.
Efficient algorithms are developed.

e Extensive experiments on noisy datasets indicate betisy nlata recovery perfor-

mance at smaller values f is parameter of our model).
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3.2 Proposed Data recovery models

Notation

Let X = (x;,---1,) € R>" be inputn data, each of dimensiah For standard

Schatterp norm of matrixZ,

1
r p

1zl = (Y oh) = (TM(z"2)8])" (3.1)

k=1

B =

whereoy, is the singular value d&, r = rank(Z).

Given a data matriX, it is often of interest to compute a matrkthat is “close”
to X and satisfies the constrainink(Z) < rank(X). Singular value decomposition [95]
is the most popular method for such approximations. Thezealiernative methods that
replace this constraint with a more friendly constraikg Jifor example, the trace norm. In
this paper, we present two models:

Model 1: Schattep model

We wish to solve the data recovery problem, i.e.,
min 212 - X[+ 5727 2) 5], (3.2)

where TAZ"Z)3 = "} _, 0%, andoy, is the singular value dZ, 3 is a parameter to control
the scale of schattemterm.

The fact is that the approximation has the same eigen-\gawothe original matrix,
and that only eigen-values are shrinked in standard mat®at algebra. The particular
shrinkage ofp Schatten norm is better than trace norpm= 1, see Fig. 1), which is
corresponding to soft thresholding. At= 0, this is corresponding to hard thresholding
(exactly the rank).

Model 2: Robust Schattemnmodel

We wish to find low-rank data recove®/givenX, i.e.,

min | Z — X[ + BTH(Z7Z)?). (3.3)
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This is used for noisy data recovery purpose, which can b&edeas an extension of
robust PCA [87].

Motivation

The goal of proposed models is to provide minimum shrinkdgeadnstructed data
and suppression of singular values. This is the reason, whyeplace the trace norm
regularization with schattep regularization. More detailed analysis is provided;8:
4. Our experiment results indicate that proposed modelsatlar p values give better
recovery performance.

As p becomes small, it is closer to the desired rank constraint:

This indicates that the lower, the better that Schatten norm resembles the rank.
Since we wish to do reconstruction with low rank, thus parnameis usually set td) <
p < 1. In generap > 1 case is un-interesting.

Differences of two models The difference of above two modéiEgs.(3.2, 3.3) lies
in the first term. In Model 1 of Eq.(3.2), Frobenius norm or lgeest square error is used to
minimize the reconstruction error. In Model 2 of Eq.(3.8F L;-norm is used to minimize
the reconstruction error. As is known to us, error is more robust to noises and outliers,
because|X — Z[|; = >, |X — Z|;; , where residue term isot squared. In real world,
the observations (like images, text features, etc) can b&aoonated by noises or outliers.
Model of Eq.(3.2) is for the data recovery problem pollutgd3daussian noise, while model
of Eq.(3.3) is for data contaminated by Laplacian noiseshBabdels can be used to solve

noisy data recovery, matrix completion problem, etc. Faosd term, for computational
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purpose, we adg power to standard termiZ||s, , which plays the same role as standard
schatten term for low rank approximation purpose.
Relations with previous methods

At p =1, EQ.(3.3) is equivalent to standard trace-norm model, wbjztimizes
min||Z — X||; + 81|2]l., (34)

where||Z||, = Tr(Z7Z)z is the trace norm, and is the singular value dZ. This study
is a special case of our model. Note in [87], Schagieddorm model atp = 1 is called
as Robust PCA, because it can correctly recover underlyingdmk structuréZ from the

dataX in the presence of gross errors and outlying observations.

3.3 lllustration of two Schatten p-norm models

Due to the non-smoothness of Schatten norm at1, the computational algorithm
is challenging. We provide detailed analysis and efficidgbr@thms of both models in
§3.4,83.5 and33.6. Here we discuss the general features of the optimatisontuto these
two models. The key conclusion is that the solutions at smpalle much better than the
solution atp = 1, which is a previously studied model.

lllustration of Model 1

To illustrate results of Model 1, we use 20 images from reatigvdataset mnist
(more details of this dataset is §@). Letd, be the singular values of the optimal solution
Z*. Let o, be the singular values of input da¥a We show solutiony, in Fig.?? along

with o,. We fix 5 = 0.5, but letp vary fromp = 1top = 0.1. From Fig.1, we see that

atp = 1, the optimal solutior¥;_,, which is represented by, s, - - - , d20), is @ simple
downshift of (o1, 09, - - - , 020). The high rank parti = 17 — 20) is zero. Asp decreases,

more high rank part of the solutiofd, } becomes zero, while the lower rank part{of, }

moves closer tdoy } of the input data. For example, in Fig.1a, Fig.1b, in optis@ution
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Z;_ 4, the high rank part’( = 13 — 20) becomes zero, while the low-rank pat£ 1 —7)
is higher than that oZ;_,, i.e., this part moves towards correspond{iag }.

In general in low-rank data recovery, we wish the low-ranit pgZ* is close to those
of the input data, while the high-rank part is cut-off (clasezero). Looking in Fig.1d, the
solution atp = 0.3 is a “faithful” low-rank solution, because the low-rank pa more
close orfaithful to the original data. The solution at= 0.9 is a “suppressed” low-rank
solution because the low-rank part is far below the origdath, i.e., they arsuppressed
Clearly, the solution ap = 0.3 is more desirable than solution at= 0.9, even though
both solutions are low-rank: rari&f_ ,)= rank@,_ ;) = 12.

The Schatterp norm model at smalp provides the desirable “faithful” low-rank
solution, while the previous work using= 1 also provides a low-rank solution, but the
low-rank part is moresuppressed

lllustration of Model 2

Model 2 of Eq.(3) differs from Model 1 by using thig norm in error function. This
enables the model to do robust data recovery (e.g., movitiggmuback to the correct
subspace). However, this model does not change the obssaipedessionn Model 1 atp
close to 1 (see Fig.1d). The suppression of singular vakeslto theshrinkageeffect in
reconstructed data.

We demonstrate the robust data recovery and the shrinkégmsefor Model 2 at
different p values on a simple toy data in Fig.(3.2a). The original datare shown as
black circles. Reconstructed dataare shown as red-squares. We show the reconstructed
results ap = 0.2 Fig.(2b, 2e, 2f)p = 0.5 (Fig.2c, 2g),p = 1 (Fig.2d, 2h). We have two
observations.

First, at0 < p < 1, outliers k13, X14,X15) all move towards the correct subspace,

indicating the desired denoising data recovery effects.

43
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Figure 3.2: Demonstration of robust Schatiemodel of Eq.(3.3) on a toy data shown
in panel (a): original data shown as black circlesx; ---x;5) are non-outliers and
(x13 - - - X15) are outliers. Reconstructed dateare shown as red-diamonds. Blue line indi-
cates the subspace computed from standard PCA on non-aldteer Results of Schatten
model atp = 0.2 are shown in (e). Thig = 0.2 results are split to outliers and non-outliers
as shown in (b) and (f). Similarly, results fpr= 0.5 shown in (c) and (g); results for= 1
shown in (d) and (h). Ab = 1, non-outliers shrink towards coordinate (0,0). At smagller
non-outliers shrink far less.

Second, for non-outlier data, the reconstructed datalsktiongly atp = 1, but they
shrink much less gi = {0.2,0.5}. This shrinkage is result of the singular value suppres-
sion in computed.. At p = {0.2,0.5, 1}, the largest singular value af6.35, 4.49, 2.93},
while the second singular values are very small, {£.7e-8, 1.7e-16, 9.8e}9respectively.

In summary, the Schatten model at smadinables us to do robust data recovery but
without significant shrinkage in previous models which pse 1.

To our knowledge the singular value suppression and shgenklaoth atp = 1 and

smallerp values) have not been studied previously.
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3.4 Analysis and Algorithm of Model 1

We show how to solve Model 1 of Eq.(3.2) at differentalues. This also serves as
the basic step in solving Model 2 of Eq.(3) using the ALM§&f To our knowledge, this
problem has not been studied before.

Property 1. The global optimal solution for Eq.(3.2) at@ll< p < 1, can be
efficiently computed, even though it is non-conveyat 1.

Property 2. Rank of the optimal soluti&t has a closed form solution:

Theorem 4. Let the singular value decomposition (SVDpobeX = >°, o,u,vi. Then

rank of optimal solutior¥*: rank(Z*) = largestk, such that

op < (W)“, 0<p<l. (3.5)
2
In particular,p = 1,03, < B;p = 35,04 < (\/%ﬁ)g.
Property 3. Optimal solutiod* has a closed form solution at= %
Property 4. Optimal solutioZ* at0 < p < 1 can be obtained using Newton’s
method.
To prove above 4 properties for Model 1 of Eq.(2), we need thewing useful
lemma.
Lemma 2. Let the singular value decomposition (SVD)Xfbe X = >, o,u,vi. The

global optimalZ for Eq.(3.2) is given bZ. = 3, drux vy, whered, is given by solving,
min [%(&; — oW BB sk b0k =11 (3.6)

P
1", k=1

Proof of Lemma 1

Proof. Let the optimal solution o% have the SVIZ = FAGT whereF = (f; - --f,) and

G = (g;---g,) are the singular vectors &, andA = diag(d; - - - d,) be their singular
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values. The key is to prove that the singular vectord’oéire the same as those of the input

dataX. Using von Neumann’s trace inequality
ITr(Z"X)| < TrAY = Z Oh0%- (3.7)
From this, we have
Tr(UAVHTX = TrAY > Tr(ZTX) = Tr(FAGT)TX, (3.8)
where the inequality comes from Eq.(3.7). The inequality
Tr(UAVH)TX > Tr(FAGT)TX

implies

1 1
5HUAVT — X||? 4+ BTrAP < §HFAGT — X||? + BTrAP.

This indicateg'U, V) are better singular vectors f@ than(F, G). This proves that the
optimal singular vectors fd& must be the same singular vectorafSettingZ = UAV?

in Eq.(3.2), we obtain Eq.(3.6). ]

Analysis of Property 1
Due to Lemma 1, we now solve the simpler problem of Eq.(3.60eiad of the orig-
inal harder problem of Eq.(3.2). Clearly the optimizationkxf.(3.6) decouples into

independent subproblems, each for opre

1
ngin 5(% —03)? + BOP, s.t. 6, > 0. (3.9

k

KKT complementarity slackness condition fr> 0 leads to (5k—0k)+pﬁ5£_1 0 = 0.
The optimization of Eq.(3.9) decouples intindependent subproblems, and each of them
is of the type:

min J(z) = %(x —a)? + faP, (3.10)

x>0
wherez,a € R. Here the correspondence between Eq.(3.10) and Eq.(3d9)=soy,

x = 0. J(x) is a weight sum over two functionsi(z) = fi(z) + Bf2(z), wheref;(z) =
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2(z —a)?, fo(z) = 2P. fi(z) has a local minima at; = a. f»(z) is a singular function,
p < 1 with singularity atr, = 0, which is also a local minima.

Therefore,/(x) in general has two local minima7, z%). Becausef,(z) is singular
atz,, for Eq.(3.10), the singular point (local minima) does nwdiege with different weight
B. Thuszi = 0 is always a local minima.

When g is small,z; = a. As (3 increasesg; moves towards 0. At certaifs, p),
this local minima disappeard,(z) has only one local minimaj = 0. This condition is
determined by the same condition as in Theorem 1 or Eq.(1) i = a. z7 is easily
computed using Property 4.

In summary, the optimal solution of Eq.(10) is either thei#ti one x5 = 0 or
min(zf, z3), whenzj exits. This means Eq.(9) can be easily solved. Thus Eq.(®) ca
be easily solved for each rank one at a time.

Proof of Theorem 1

Proof. First, optimization of Eq.(3.2) is equivalent to optimigikq.(3.10), which can be
further written as,

min g(z) = %(z —1)* + 327, (3.11)

wherez = z/a, B = BaP?. First, we note a key quantity, the zero crossing peint
exists, where the second derivatiy§ z) changes its sign, i.eg’(z) = 0. We need two

lemmas.
Lemma 3. This cross point, always exists at any.

Lemma4. If the slope of cost function of Eq.(3.11) at the crossingnpgj is negative, i.e.,
d'(z0) < 0, there exists two distinct local minima; = 0 andz; > 0. If ¢'(zp) > 0, 20 =0

is the global optimal solution.

Lemmas 2 and 3 give the key properties of optimization of E¢X). Sety”(zy) = 0,

we obtainz, = [Bp(1 — p)]>#. Lemma 2 states that = 0 is the global solutiong’(zy) =
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20— 1+ Bp2 ' > 0,1, [Bp(1 — p)]77 — 1+ Bp[Bp(1 — p)]> > 0. Solving for 3, we

have,

1(1 - p)0

78 5, (2o
p(2 _p)(pr) Ok , O0<p<l. (3.12)

B =

This indicates that the optimal solutiop of Eq.(3.11) is zero (i.ed, = 0), if Eq.(3.12)

holds. This completes the proof. n

Analysis of Property 3

Clearly, atp = 1, from Eq.(3.9), we need to soNig— .+ (3/2)5, /> = 0, s.t. ), >
0. Let p, = (j—z)m, o= ﬁ, this becomeg; — pi. + 1 = 0, wherep,, > 0. The analytic
solution of this cubic equation can be solved in closed form.

Analysis of Property 4

From analysis of property 1, the optimization of Eq.(3.18% hwo local optima:
x7 > 0,25 = 0. Our algorithm is: (b1) to use Newton’s method to compue (b2)
compare/(x}), J(x3), and pick the smaller one. Itis easy to sBer) = z — a + SpaP !,

J"(x) = 1+ Bp(p — 1)xP~2. Using standard Newton’s method, we can updatiBrough

J (x)
J7 ()

T x— This algorithm has quadratic convergence. In practicaliegjons, we

found this Newton’s algorithm typically converges to loo@hima within a few iterations.

3.5 Efficient ALM algorithm

Augmented lagrange multipliers(ALM) have been widely usedsolve different
kinds of optimization problems ([87], [96]). Here we adatatralard ALM method [97, 96]
to solve Schattep-model of Eq.(3.3). It is worth noting that it is not trivial $olve Eq.(3.3)
using ALM method. One challenging step is to solve the assediSchatten-p term shown

in §4.
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Algorithm 2 ALM algorithm to solve Eq.(3.3)
Input: data matrixX, parametep > 1.

Output: low rank approximatiorZ.
Procedure:

1: Initialize E,Z, Q, > 0,t=0,; p=1.1
2: while Not convergedo

3:  UpdatingE according to Eq.(3.16)

4:  UpdatingZ according to Eq.(3.17)

5. UpdatingQ: Q:=Q+ pu(Z - X - E)
6: Updatingu: u:= pu

7: end while

According to ALM algorithm, by imposing constraint variedk = Z — X, the

problem of Eq.(3.3) is equivalent to solve,
wig |[Bll: + BTN(ZTZ):,  st. Z-X-E=0. (3.13)
According to ALM algorithm, we need to solve,
wmip [E[l, + (0.2~ X ~B) + guz ~ X — E|[% + ATr(Z72Z)3, (3.14)

where Lagrange multiplier i§& and x is penalty constant. For this problefl, and u

updated in a specified pattern:
Q—Q+pu(Z2—-X-E), p<+ pu.

We need to search for optim&l, Z iteratively until the algorithm converges. Now we
discuss how we solVE, Z in each step.
UpdateE To update the error matrik, we derive Eq.(3.15) with fixed and obtain

the following form:

o
min §HE—AH%+HE|I1 (3.15)
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whereA = X — Z + % It is well-known that the solution to the above LASSO type

problem [11] is given by,

1

UpdateZ To updateZ while fixing E, we minimize the relevant part of Eq.(3.14),

which is
: e M Q.
mZmﬁTr(ZZ )2 +§||Z—X—E+—HF. (3.17)
I

SettingB = X + E — %,6 = g, this optimization becomes Eq.(3.2), which has been

solved ing4.

3.6 Iterative algorithm to solve Model 2

We present another efficient iterative algorithm to solvgE8), where the variable
matrix Z is updated iteratively. Suppo@g is the value ofZ at¢-th step. At step, the key
step of our algorithm is to iteratively updateh column &) of Z one at a time, according
to

zj = A~ (AT +pAD; ) T x;, (3.18)

whereA = (Z,Z1P/*~1 W,; = 1/|(Z; — X);;],D; = diag(w;), w; is thej-th column
of W. This process is iteratively done far < j < n. ThenZ is updated until the
algorithm converges. More detailed algorithm is summakineAlgorithm 2. In computing
z; of Eq.(3.18), we first use conjugate gradient method to caenpy where (A~! +
pAD;1)z7 = x;, and therz; = A~'Z;.

Convergence of algorithm

Let J(Z) = |Z — X||, + BTr(Z"Z)>, we have
Theorem 5. UpdatingZ using Eq.(3.18),/(Z) decreases monotonically.

The proof requires the following two Lemmas.
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Algorithm 3 An iterative algorithm to solve Eq.(3.3)
Input: X, A

Output: Z
1: while not convergalo
2. computeA !

3: forj=1:ndo

4; computeDj‘l, solvez; according to Eq.(3.18)
5:  endfor
6: end while

Lemma5. Define the objective function
Jo(Z) = | Z — X ||, + pBTr(ZVAZ). (3.19)
where||A |3y = >°,; A, Wi;. The updated.,,, using Eq.(3.18) satisfies
J2(Ziy1) < Jo(Z) (3.20)

Lemma6. The updated, ., using Eq.(3.18) satisfies

1
J(Zi1) — J(Zy) < 3 [Jo(Zi 1) — Jo(Z)] (3.21)
Proof of Theorem 2
Proof. From Eq.(3.20), clearly, LHS of Eq.(3.21) is LHS0. O]

Proof of Lemma 4

Proof. Settingd.J»(Z)/0Z;; = 0, we have(Z — X);;W;; + pA(AZ);; = 0. This can be
written asZ;;W;; + pA(AZ);; = X;;Wi;. In matrix form,D;z; + pAAz; = D;x;. Thus

we have
z; = (Dj + pAA)"'D;x; = [D;(A~" +pAD; 1) A] ' D;x;, (3.22)

which gives Eq.(3.18). n
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Proof of Lemma 5

Proof. Let A = LHS - RHS of Eq.(3.21). We hav& = « +  where

o = D[ =Xl = 1@ = X0l - 0 S X

]

(Zi1 — X)F; (Ze — X)} }

B Zzuz:xm['<Zt+1—X>ij|—|<zt—x>ij@2go.

B = ATZnzl)E - T@z])E] - AWzl (22]) 2 - T2 (2,212

= A[T(zZl)

(NI
|
=
N
N
N

)%} _ g/\Tr[(thZtT+1 _ ZtZtT)(ZtZtT)%]

IN

0, (3.23)

where in the last inequality, we sat = ZtHZtTH, B = Z;ZT and used Lemma 6 below.

ClearlyA = a+ g <0. [

Lemma7. [98] For any two symmetric positive definite matridésG and0 < p < 2,
Tr [FP/2 — GP/?2] < gTr (F — G)GP/2 1] (3.24)

Due to space limit, we omit the proofs of Lemma 6 here.

3.7 Connection to related works

We note [99] proposes an algorithm to solve squared schattedel, i.e.ming f(Z)+
I5; (Tr(ZTZ)§> %, which cannot be directly applied here. [100] proposesexatitve reweighted
algorithm for trace norm minimization problem, in the sianivein as what has been pro-
posed for adaptive lasso. However, it cannot be directhliegpgo solve Eq.(3.3). As
compared to [98, 101, 102, 103], our goal is for noisy datavery problem raised in

computer vision, instead of for matrix completion problemt missing values.
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Table 3.1:Description of Data sets

| Dataset | #data| #dimension| #class|

AT&T _oc 400 2576 40
Binalphaoc | 1404 320 36
Umist.oc 360 644 20
YaleB 256 2016 4
CMUPIE.oc | 680 1024 68
Mnist_oc 150 784 10

3.8 Experiments

We use six widely used image data sets, including four fataseéés: AT&T Umist,
YaleB [72] and CMUPIE; and two digit datasets: Mnist [73] ans\@phal. We generate
occluded image datasets corresponding to 5 original désa(eecept YaleB). For YaleB
dataset, the images are taken under different poses witreft illumination conditions.
The shading parts of the images play the similar role of @ichu(noises). Thus we use the
original YaleB data with first 4 persons in our experimentsr fhe other 5 datasets, half
of the images are selected from each category for occlusitnblock size ofwxw pixels
(e.g.,w = 10). The locations of occlusions are random generated witbeetiaps among
the images from the same categddeccludedmages (with occlusion siZzex 7) generated
from Umist data sets are shown in Fig. 3.4. Table 3.1 summsitize characteristics of
these occluded data sets.

We did all experiments using Eq.(3.3). At< 1, objective function in Eq.(3.3) is
not convex any more, and we cannot get global minima. Wealiag Z using trace norm
minimization solution, i.e., set = 1 in EQ.(3.3). In the following experiments, we did
both algorithms proposed b-6, and reported the results using the one achieving smalle
objectives.

lllustrative examples.

http://www.kyb.tuebingen.mpg.de/ssl-book/ benchmarks.html
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Figure 3.3: Reconstructed image®) Of YaleB dataset using Model 2 of Eq.(3) shown in
1 panel. First line: original images of one person, Secamet Ireconstructed imag@sat

p = 1, Third line: reconstructed imagesat= 0.2. One can se@ = 1 images are very
similar to each other (most fine details are lost), while- 0.2 images retain some fine
details and are closer to original images.

LERRGAG

Figure 3.4:0ccluded image dataset Umist.

To visualize the denoising effect of proposed method, wéyammr model on YaleB
dataset. YaleB contains images with different shading Wwhlays similar role of occlusion
(noises). Thus we did not add occlusion and use the origiai@. dn this demonstration
and following experiment, each data (image) is linearizéd & vector eacl;, and the
input matrixX is constructed aX = (x,xa, - - -, X,,). We typically set the rank equal to
the number of classes in the dataset. Due to space limit, cdf at differentp values
for the two persons are shown. In Fig.(3.3), 20 images arestas 2 panels, each panel
for one person. On each panel, the first line images are afigitagesX, the 2nd line are
computedZ atp = 1, and 3rd line are computédat0.2.

Clearly, at differentp values (such ag = {1,0.2}), Schatterp-Norm model can

effectively recover the original data by removing the shgdi See 2nd line on each panel
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Table 3.2: True data recovery: True signal reconstructicor @t differentp on six datasets

dataset

Noise-free reconstruction error at different
p=1 \p:0.75 \sz.’c’) \sz.?\sz
AT&T 0.3657| 0.2672| 0.2240 | 0.2199 | 0.2159 | 0.2132
Binalpha | 0.2359| 0.2023| 0.1974 | 0.1845 | 0.1594 | 0.1729
Umist 0.3123| 0.2816| 0.2290 | 0.2199 | 0.2153 | 0.2151
YaleB N/A 0.2304| 0.2264 | 0.2174 | 0.1912 | 0.2126
CMUPIE | 0.2542| 0.2012| 0.1925 | 0.1845 | 0.1594 | 0.1729
Mnist 0.5574| 0.5123| 0.4993 | 0.4814 | 0.4542 | 0.4553

in Fig.(3.3), almost every person is recovered to same ta@phot any difference any
more. In contrast, we have much better visualization requith more details) when
p = 0.2 (see 3rd line on each panel). Moreover, these fine detailsxg@ected to be helpful
for classification on images from different persons.

True data recovery: true signal reconstruction error

Given noisy dat&X, X = X + X g, whereX is the true signal anX  is the noise.

Our goal is to recoveK, using Eq.(3.3). We did experiments on above 6 datasets.dlo ev

|Z—XollF
[[Xollr *

uate the performance, we define the true signal data recevesy, Eie-signal = |
Clearly, smalletEye-signaivalues indicate better recovery. Computed true signal istoocr
tion error are shown in Table.3.2. The experiment resutigcate that true signal recon-

struction errors aremallerat smallerp values. We also lis I);ﬁlllli values in Table.3.2 to

I XEllF
[1XollF

indicate the level of occlusions. InterestingBye-signal < on all datasets at different
p values. This further confirms “de-noisy” effects of propdskata recovery model.

Loss of fine details in recovered data and its measure.

Due to suppression of higher order/frequency terms agsaligth smaller singular
values, fine details of original datd are lost in the recovered. As a consequence,
recovered individual images are very similar to each otl@me numeric measure is the

variance of reconstructed images. We therefore defin¢Z) = > | ||z; — z||?, z =
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Table 3.3: Loss of fine-details: variance of reconstru@euh six datasets, original images:
Xy, occluded imagesX

dataset | X, X Variance ofZ at differentp

p=1 \p:O.75 \p:0.5 \p:O.Q \p:O
AT&T 8.89 | 9.03 | 583 |7.13 7.45 8.11 7.80
Binalpha | 27.90| 31.13 | 13.40| 22.89 25.38 | 26.89 | 26.73
Umist 701 [ 742 |3.87 |531 5.71 6.38 6.01
YaleB 9.75 | 9.75 | 7.28 | 8.22 8.59 9.19 8.76
CMUPIE | 12.09| 13.16 | 8.12 | 10.07 10.54 | 11.30 | 10.87
Mnist 9.24 |10.26|0.49 |4.41 5.45 7.04 5.85

%ZL z;, Wherez; € R%! is the reconstructed image corresponding to each original
imagex;. Larger variance values indicate more fine details are preden the solution
Z. Computed variance & are shown in Table.3.3. Clearly, reconstructed images prese
more detailed information at small(sayp = 0.2). One demonstrating example is shown
in Fig.3, where fine details of individual images are mostlpmessed gt = 1, but are
generally preserved/reetainedpat 0.2.

Classification results using recovergd

So far we have discussed low rank recovery capability of ageg¥.. Reconstructed
low rankZ is expected to have much clear structure after removingeaad outliers. As
a by-product of solving low-rank data recovery problem, pabtedZ can be used for clas-
sification tasks. We compare the classification results lmgubke occluded imagex and
recovered dat& at differentp. The experiments are done on two widely used classifiers:
k nearest neighbor (kNN) and support vector machirsing 5 fold cross validation. Since
the regularization coefficient is also a hyper-paramédterperformance of each Schatten-
norm model is evaluated at an optimal valuesofwhich is determined by cross valida-
tion). The experiment results are shown in Table.3.5. We Ihao important observations

from experiment results. (1) Performances for image caiegion tasks are improved by

Ihttp://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 3.4: Classification accuracy(shown as percentage)xoocsluded datasets using
input corrupted datX and reconstructed at differentp values

dataset | method| X Reconstructed. at differentp
pzl\p:0.75\p20.5\p:0.2\p20
AT&T SVM 29.75| 30.52| 33.75 34.25 | 36.78 35.53
KNN 25.75| 28.63| 30.25 28.75 |29.31 |28.33
Binalpha SVM 38.35| 44.78 | 42.74 43.84 | 4853 47.43
KNN 52.09| 56.78 | 55.10 54.65 | 58.23 57.87
Umist SVM 59.83| 65.89| 63.17 64.35 | 68.33 67.67
KNN 89.12| 93.89| 92.67 93.75 | 94.23 93.01
valeB SVM 46.11| 52.12| 51.89 53.78 | 54.67 | 54.96
KNN 85.43| 90.89 | 90.36 91.15 | 91.76 91.40
CMUPIE SVM 29.24| 33.57| 36.74 34.21 |35.39 |34.98
KNN 58.12| 64.03 | 65.38 64.27 | 66.39 65.64
Mnist SVM 49.38| 51.93| 53.24 57.18 56.79 | 54.67
KNN 76.63| 81.35| 80.75 81.56 | 8247 82.34

Table 3.5: Classification accuracy(shown as percentage)xoocsluded datasets using
input corrupted datX and reconstructed at differentp values

datasetf method| X Reconstructed at differentp

p=1 \p:O.75 \ p=20.5 \p:O.2 \sz
Umist | KNN 84.12| 90.89 | 92.67 93.75 | 9423 |93.01
YaleB | KNN 82.43| 88.89| 90.36 91.15 |91.76 |91.40
Mnist | KNN 73.63| 79.35| 80.75 81.56 |8247 |82.34

using computed. at differentp values; (2) Classification accuracy is consistently better a
smallerp values on both SVM and kNN classifiers, as compared to thatrgéb values.

All above results suggest us to use Schattdform at smallp values.

3.9 Lessons learned

We present novel models for low-rank data recovery, whdreieft algorithms are
proposed. Extensive experiment results indicate schatt@ondel gives relatively better
reconstructed results at smallvalues. In the next step, we will further explore how to

scale our model for large-size problems.
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CHAPTER 4
Efficient Algorithms for Selecting Features with Arbitra@roup Constraints

Feature structure information plays an important role égression and classification
tasks. We consider a more generic problem: group lassogmhwhere structures over
feature space can be represented as a combination of feaiwgroup.These groups can
be either overlapped or non-overlapped, which are spediffietifferent structures, e.g.,
structures over a line, a tree, a graph or even a forest. \W®opeoa new approach to solve
this generic group lasso problem, where certain featuresalected in a group, and an
arbitrary family of subset is allowed. We employ acceledgieoximal gradient method to
solve this problem, where a key step is solve the associateahpal operator. We propose
a fast method to compute the proximal operator, where itgargence is rigorously proved.
Experimental results on different structures (e.g., gringe, graph structures) demonstrate

the efficiency and effectiveness of the proposed algorithm.

4.1 Background of feature selection using structural sparsi

Lasso is widely used for variable selection in high-dimenai space by captur-
ing the structure information. Structured-sparsity-icidg regularization is proposed to
encourage the joint selection of closely related inputalads [104], [9], [105], [106],
[107]. Desirable for practical applications, arbitramustures can be allowed on the feature
set, which further generalizes the concept of structuresggasuch as group lasso [107],
fused lasso (linear-ordering of variables) [106], lassdavast [108], etc, where a number
of composite gradient methods (e.g., [109], [110], [11138yén been developed to solve

above problems.
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Structured sparsity [10, 112] can enforce sparsity on lséagof groups, trees, graphs,
and even forest, where the solution is zeros or nonzerosanpgwise. For example,
L, , [10] regularization encourages the variable values in agto be zero or non-zeros;
tree sparsity [113] encourages the variables in a hiereaitlriee structure (see Fig. 1) on
a tree to be zero or non-zeros; graph sparsity [114] enfdheestructure formed by the
node variables and the involved edges to be zeros or notctBteusparsity will make the
models easier for interpretation and cheaper to use. Merggvior knowledge can be
incorporated to make the model sparse.

In this section, our goal is to solve a more generic struategelarization problem
(i.e., group, tree, graph or even forest) with overlappiraugs, which means these differ-
ent groups can be overlapped, and each input variable camb#&aneously attributed to
multiple groups by incorporating different prior knowle=l{9], which allows an arbitrary
combinations of features. This problem is more challenging to the non-separability of
penalties, where standard lasso cannot be easily applieidedver, generic solver (e.g.,
interior-point method (IPM)) is computational expensivelaoes not scale very well.

Many efforts €.g, [9], [115], [116], [117], [118], [119], etc) have been désd to
solve the related group lasso problem. For example, Jengittd [9] propose an alternating
algorithm to solve the overlapping lasso problem, Chen dtLlab] present a smoothing
technique to solve the overlapping group lasso problemyrags et al. [118] use the
proximal gradient method to solve the overlapping lassore/iee proximal operator is
computed through a fixed point method. Most of (if not all)shevorks, however, solve
group lasso problem witkpecific fixedtructures(e.g., tree structures, wavelet transforation
coefficient relations, etc). To the best of knowledge, fegoathms can solve the group
lasso problem with an arbitrary structure.

We develop an efficient algorithm fgenericgroup lasso problem, which allows

an arbitrary definition of structures (e.g., group, treapty, forest structure, etc). This
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generalization makes our algorithm flexible to deal with kimgs of group lasso problem,
whether groups are overlapped or not. Furthermore, anegitialgorithm is developed to
solve this generic group lasso problem, where a key stepsslt@ the proximal operator
using an efficient method. To summarize, the main contioudif this paper is listed as
follows.
¢ An efficient algorithm is employed to solve general grouséaproblem, to satisfy
different kinds of structure requirement (i.e., groupetrgraph, forest, etc).
e An iteratively reweighted algorithm is provided, to solveetproximal operator,
which is the main contribution of this work. Its convergenseigorously proved.

The proposed algorithm is simple and effective, and thusddoe useful in different

settings as well.

e Experiment results on both synthetic and gene-expressitaisets indicate the effec-
tiveness and efficiency of proposed algorithm.

The remainder of this section is organized as follows. $acii.2 states the moti-
vation of this work, and presents models to be solved in tlugkwSection 4.3 gives the
overview of the proximal gradient method to solve this peobwhile Section 4.4 presents
the efficient method to solve the proximal operator. In ®ectl.5, we give an extension
strategy to our algorithm followed by a general auxiliarpdtion based method in Sec-
tion 4.6. Section 4.7 discusses the related works. Sect®shbws experimental results
and finally we draw concluding remarks in Section 4.9.

Notations.

In this paper, all matrices are written as boldface upperycaactors are written as
boldface lowercase, and scalars are denoted by lower-etiees(a,b). n is the number
of data pointsp is the dimension for data, aridis the number of class for each dataset.
For any vectorx € R?, L, norm ofw is ||w]|, = < P |wj|q>; for ¢ € [1,00], and

[W|oo = maxi<j<p [wy|.
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Figure 4.1:An example of overlapping tree structure with variable index on each fiaf®.group
Go = {1 — 10}, depth-1 nodes include grougs = {1,2},G2 = {3,4,5,6},G3 = {7,8,9, 10},
depth-2 node include grough = {1},Gs = {2},Gs = {3,4},G7 = {5,6},Gs = {7,8,9},G9 =
{10}, and depth-3 nodes include groups = {7,8},G11 = {9}.

We first give the definitions of groups. Let, C {z1,z,,--- ,z,} contains they-

th group of features, and, is the index for they-th group of features. For example, if

Gy = {1,2,4}, xg, = {71, 12, 24}, then

I%g,ll2 = \/#% + x5 + 7,

||ng||oo = max(|x1|, |ZE2|, |$4|)

See a tree structure described in Fig.4.1. It two groups beedapped elements/features,
we say they are overlapped. For example, gréupndg; have two overlapped features:

5,6 becaus&j, = {3,4,5,6}, G, = {5,6}.

4.2 Generic group lasso problem

In this paper, we consider the following generic group lgs=aalized problem:

min g(x) = £(x) + day00 (), (4.2)

xeRP

where f(x) is a smooth convex loss function over input variable R? (e.g., least square
loss), and

G
Barn (%) = Al X[ + Ao Y wyllxg, |, (4.2)

g=1
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Non overlap linear structure  overlap linear structure

W1 G1 W1 G1
w2 w2
W3 G2 W3 G2
w4 w4
w5 G3 wb -
w6 w6
w7 w7
w8 a4 w8 G4
w9 w9

Figure 4.2:An example of linear structure, with variable index on each node. Left:avenlap
linear structureg; = {1,2},G2 = {3,4},G3 = {5,6},G4 = {7,8,9}; Right:overlap linear struc-
ture,G, = {1,2},G2 = {3,4},G3 = {5,6,7},G4 = {7,8,9}.

Features put in undirected graph

Figure 4.3:An example of feature constraint on undirected graph. Each group imakénum
clique on undirected grapld; = {1,2,5},G> = {1,4,5},Gs = {3,7},G4 = {3, 6, 8}.
is the group lasso penalty, angd > 0, A, > 0 are regularization parameters, > 0 is
a scalarg = {2,00}, 1 < g < G, G is the number of groupsxg, C {z1,22,- - ,2,}
contains the-th group of features, and, is the index for they-th group of features.

Different forms of group, tree or graph structures can berretilated in this general
form, such as [113, 108], etc. A motivating example of treacttire is shown in Fig.(4.1),
whereG =12 groups are displayed, associated withl 0 variables.

Motivation of our formulation of Eq.(4.1)

The first term||x||; promotes the flat sparsity of solution, which is standard 58S
problem [11]. The second tenﬁG: wy||xg, ||, selects a number of groups, which enforces

g=1
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the structure sparsity [10]. Thus, Eq.(4.1) jointly en&gdlat sparsity and structure spar-
sity, which selects features in both individual and groupemvay.

Actually the first term of Eq.(4.2) can be resolved into theos®l term, which intro-
ducesp additional groups. The groups are specified and they may overlap. The penalty
of Eq.(4.2) is a special case of more general Composite Atesdtenatly (CAP) fam-
ily [120]. When groups are disjoint with,; = 0 and\, > 0, the model of Eq.(4.1) reduces
to the group lasso [107]. k; > 0 and )\, = 0, the model of Eq.(4.1) reduces to standard
Lasso [11]. The above objective function of Eq.(4.2) haddeefit of being convex, which
eliminates the possibility of convergence to a local minimu

Extension to non-convex group lasso usingnorm

Further we can enforce more spaisenorm (0 < r < 1) to encourage structure

G
sparsity. Becausg  ||xg, ||, approximates thérue number of groups we want to select:
g=1

Zle s(z), wherez = ||xg, ||, and the scalar number functief) is defined as:
1; ifz#0
s(z) = 7 (4.3)
0; ifz=0

We approximate the number functie:) by f.(z) = 2" at smallr [50]. Clearly, 2%
is a better approximation of(z) than f(z) = 2%5. Thus parameter is usually set to
0 <r < 1.Ingeneral > 1 case is un-interesting.
Using functionf,(z) = 2" (0 < r < 1), this leads to several other versions of general

group lasso problem,

G
B (X) = ArlIx] |1+ A2 Y wy(l1xg,]12)", (4.4)
g=1
G
G () = M|+ A2 D> wy(llxg,I].)"- (4.5)
g=1
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Compared to Eq.(4.2), Eq.(4.2) can be viewed as a specialatase- 1. However, one
drawback of this approach is that,(ak r < 1, Eq.(4.4) and Eq.(4.5) are not convex any

maore.

4.3 Solving objective using proximal gradient method

In this paper, we employ accelerated proximal gradient otefhl11, 109] for solving
Eq.(4.1) aly = 2 due to its fast convergence = oo case and non-convex case of Eq.(4.4)
and Eq.(4.5) can be similarly solved. Due to space limit, widt the detailed algorithms
here.

The key step in computation of Eq.(4.1) is the computatioprokimal operator. We
present an effective algorithm to compute the proximal afper which is well illustrated
in Section 4.4,

A brief overview of proximal gradient method

Proximal method firstly constructs a model for approximatfii.) at the pointx,,

such that
L 2
£00) = (FGx0) + (VF(x0), X =0} ) + da1.00 () + 5 1x =0

whereL > 0. This modelf(x) consists of the first-order Taylor expansion of the function
f(.) atxo, the non-smooth penalty, ,(x), and another regularization ter|x — xol|2.

Note f is a function:R™*? — R". Its gradient is Lipschitz continuous if
IVF(x1) = Vf(x2)]| < LfJx1 — %2,

for any x;,x, € RP, whereL is a constant. Iff is gradient Lipschitz continuous, the
following holds [111],

Fx) < F) + x— %, V() + 5 |x - %]

More detailed introduction of proximal method can be foumd121, 111].
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Let
_ L 2
Trva (%) = 1% = 61l + da, 00 (). (4.6)

Next, a sequence of approximation solutiaris computed as followsk;; = arg min, Jy, 5,(x)
where the search poindsis an affine combination of;,_; andx; asé; = x;+ 5;(x; —x;_1).
Coefficients, is updated in each step, and step dizean be determined by the line search
algorithm, such as [111] to preseryéx; 1) < Ji,x, (x:+1). One key step is to mini-
mize proximal operator of Eq.(4.6) [121], which is equivdléo optimizing the following
Eq.(4.7),

. L
m}:n?tHX_atHz +¢>\1,>\2(X>7 (47)

wherea; = x; — L%Vf(xt), given current data;.

Detailed Algorithm

We summarize the detailed algorithm in Algorithm 1. Basigdhis algorithm really
has nothing to do with the particular overlapping groupdaggerator of Eq.(4.2), except
step 4 and 10.

Convergence analysis

Suppose* is optimal solution for Eq.(4.1), thex € R? is called are-optimal solu-
tion to Eq.(4.1) ifg(x) — g(x*) < e holds. It is known that proximal gradient method [122]
can achieve-optimal solution inO(\/ig) iterations.
Theorem 6. [122] Let {x'} be the sequence generated by proximal gradient method of

Alg.1, then for any > 1, we have,

2L¢[Ix" — x*|*

e vx* e X,.

g(x') —g(x") <

The above theorem establishes the fast convergence ofnpabgradient method.
The efficiency of proximal gradient method is depending andbmputation of proximal

operator in Step 4/10 shown in Alg.1. As long as the proxingerator computation step
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Algorithm 4 Proximal method for overlapping group lasso

Input: Lo, x0, do

Output: x;41
1. initialize Ly < Lo, X1 ¢ X0, 01 + 00, t < 1
2: while not convergelo
3: ap — X¢ — I%Vf(xt).
solve forxy 41 = miny Zt||x — a¢[|? + ¢, x, (x) of Eq.(4.8)

4
St if f(xe41) < Jry e, (%) then
6

2(6¢—1)
Xt41 & X1 Xt41 — Xt
+ 1t ﬁ1+45§( + ),

7: Spy1 1+\/;+Tst2’

8: Lit1 < Lt —t+1

9. dse

10: search for smalledt,, such thak;;; = minx %||x—at|\2+qsh,x2(x) of Eq.(4.8) satisfieg (x:+1) < Jr,,a; (X¢4+1)
11: end if

12: end while

gives good performance, we will achieve good performancéhd following, we will show

an efficient algorithm to solve the associated proximal afmerin each iteration.

4.4  An efficient algorithm for associated proximal operatomputation
In this section, we show how to solve the associated proxapeafator. Eq.(4.7) is
equivalent to solving:
1 G
Ji(x) = llx ~ al|” + Bulx|l + B2 > wyllxg, I, (4.8)
g=1
where the correspondence between Eq.(4.8) and Eq.(4a7)Hsal, 81 = A\ /L, B =
Xo/Li, g = 2. In the following, we provide an iterative algorithm to seltq.(4.8), and
then prove its convergence.
Letl g, € {0,1}**! be group index indicator for groug(1 < g < G). For example,
group 1 is\/a? + 232, thenl g, = [1,1,0,---,0]. Thus the group variablg, can be
explicitly expressed asg, = diag(l g,) x x.

Key idea of Algorithm
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The high level idea of proposed algorithm is to updatéeratively, until the al-
gorithm converges. The similar idea is widely used in spaing [11] or compressive
sensing [85], which is known akeratively reweighted methdd 23], [124].

Procedure
Instead of directly optimizing Eq.(4.8), we propose to optie the following objec-

tive, i.e.,
1 2, 1, 7 1, p
Jo(x) = 5”){ —al|* + §le Ex + 562x Fx, (4.9)

whereE, F € 17*P are both diagonal matrices, and given by

1 G wyl Gy
E; = my Fi; = (; . )Z (4.10)

1%, ||
Note computation oE, F depends orx, thus minimization ofk depends on botlk, F.
In the following, we propose an efficient algorithm to find ¢l optimal global solution
for x, where in each iteratiorx is updated using curreitt, F, andE, F are updated using
currentx. This process is iterated until the algorithm converges.
Taking the derivative of Eq.(4.9) w.i and set it to zero. We have

0.,

=x—a+ f1Ex+ foFx = 0. (4.11)
ox

Thus we obtain the optimal solution for Eq.(4.9) is given by,
x = (I+ BE + BF) ta. (4.12)

Note E, F are all diagonal matrix, and thus tt& + 3, E + 3,F)~! can be efficiently

computed, wheré € RP*? is identity matrix. Lete € R, f € R?,

Q= (I+BE+5F)™,

1

%]

wheree; =

G
> wol gg )Z thenQ is a diagonal matrix and given by,

=
I
/N

1

1+ fre; + fofi
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Using the updating rule of Eq.(4.13), we can obtain the dlop&amal solution for
Eq.(4.8). We call our algorithrterative reweighteanethod due to iteratively updating of
x, E, F in each iteration. To summarize, Algorithm 2 gives the entipdating process of
each individual variable, E, F. In other words, Algorithm 2 monotonically decreases the

objective of the problem in Eq.(4.8) in each iteration.

Algorithm 5 Iterative reweighted algorithm to solve Eq.(4.8)
Input: a, Bla /82

Output: x

Procedure:

1. t=0.

2: while Not convergedo

3:  Updatex’ using Eq.(4.13).

4.  Updatee! = | |
G owglg
5. Updatef! = Z it )
g=1 ™99l
6: t=t+1.
7. end while

Time complexity analysis

We analyze the time complexity of proposed algorithm. Ircpca, we find the above
algorithm converges very fast. Typically, it convergesltwbgl optimal solution within 10-
20 times (to precision 1e-6). In each iteration, we need tiatgx, e, f iteratively, which
takes time cosO(p), O(p), O(pG), respectively. Thus the total time cost of each iteration

is O(pG), which is linear w.r.t the number of features and the numbgraups.
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A nice property of our algorithm is that, it can handle diffet kinds of group struc-
ture, no matter whether they are overlapped or not. The pe#doce of our algorithm is
determined by the number of features and the number of groups

Convergence of algorithm
Theorem 7. Under the updating rule of Eq.(4.12); (x'™!) — Ji(x*) < 0.

To prove Theorem 4.1, we need two lemmas.

Lemma 8. Under the updating rule of Eq.(4.12);(x'1) < Jy(x).
Lemma 9. Under the updating rule of Eq.(4.12),

(Jl(xt“) - Jl(xt)> < (JQ(XM) - JQ(xt)>. (4.14)
Proof of Theorem 4.1.

Proof. From Lemma 4.2 and Lemma 4.3, it is easy to éd@(xt“) — Jl(xt)> < 0.This

completes the proof. ]

Two useful propositions.

Before proof of Lemma 4.2, we present two properties satisfienlr algorithm.
Proposition 1 is obvious, and we defer the presentation odfpof proposition 2 after
proof of Lemma 4.3.

Proposition 1

[|x||; = xTEx.

Proposition 2

x'Fx = ilngngH.

Proof of gL;emma 4.2

Proof. Eq.(4.9) is a convex function, and optimal solution of EQL®) is obtained by tak-

ing derivative?22 = 0, thus obtainec” is global optimal solution/,(x'*!) < J»(x!). O

Proof of Lemma 4.3
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Proof. Let A = LHS -RHS of Eq.(4.14). We hav& = 5,a + (57, where

1 1
a = th-‘rlHl _ ||Xt||1 _ *(XH_I)TEtXt—H + *(Xt)TEtXt

2
t+1 1 t 1 t+IN\NT t t+1
= [)x Hl—*HXHl—g(X ) E'x
t+1 t |=75t+1\2
= x|y - | ||1—f2
t+1
IR Y
2 P | =]
t+1 t
Z w (Il | — 11, 1) - ngt“TFt"T T
G
wg’ ngHng ( t-‘rl)TFtXt-I—l
g=1
G 1 G 1 G
=D wyllxg) || - ng||xtgg||—§z xg; I
g=1 g=1 1 .q
1 wg(Hth _Xg IH
=Y e <o
29:1 nggH

Due to proposition 1, Eq.(4.15) holds. Due to propositiorEg,(4.16) holds
A= Bia+ By <0.

Proof of Proposition 2

2 L g, )i 2 Tixg, Il 5
G G
= 2 el = ngnxm
g=1 gg

(4.15)

(4.16)

. Clearly,

The proposed algorithm can also be used to solve a more gdossaunction w.r.t to

group lasso, i.e.,

G
J(x) = () + 8> wyllxg,|lo,

g=1
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where f(x) is a loss function (e.g., least square) w.r.t data variadhesclass labels, and
||xg,||» could be an adaptive loss function [54] w.r.t an adaptivepeaters, which can

smoothly interpolate betweedhn, loss andl, loss. For example, for a vectarc R?,

g IQ
Ixlle = Chl)iry (4.18)

|z;| + o

i

EqQ.(4.17) can be similarly solved as Eq.(4.8).

4.5 Acceleration to the proposed algorithm
One strategy to accelerate our algorithm is to use the fatigwheorem [119]:
Theorem 8. Letx* be optimal solution for Eq.(4.8), thex® is also the optimal solution
for:
Jg(X)=minlllx—b!\2+ﬂz§:wgll><g 1 (4.19)
x 2 g g
whereb = sign(a) ® max(|a] — f1,0), ® represents element-wise multiplication.

According to Theorem 8, we can solve Eq.(4.8) through EfQ¥.by settingb =
sign(a) ® max(|a] — 81, 0). The algorithm is very similar to Algorithm 2 as shown above,

without updatinge; in step 4.

4.6 Extension to General Loss function
If we have concrete examples of loss function in Eq.(4.b)(least square loss). Al-
gorithm 2 can be directly used to solve this problem witheuplying standard proximal

gradient method. Let

Ja(x) = min|ly — Dx||* + ¢x, 0, (%), (4.20)
wherex € R? is the regression coefficient, = [y1, 42, -, -, -, y.]T € R**! is the output,
D = [d,dy, - -, d,]T € R™*P isinput data. We can use more robust error function, i.e.,

J5(x) = m}gnz [|y: — dix]|[ + P, 00 (%) (4.21)

=1
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To solve Eq.(4.20) aj = 2, consider the following objective,
. 2 1y o7 Ly o7
J(x) = min ||y — Dx||* + 5)\1X Ex + 5)\2x Fx, (4.22)

whereE, F are the same as those defined in Eq.(4.10). Then updatirgyfarke is given

by,
x = (2D'D + \,\E + \,F) 2Dy, (4.23)

whereE, F can be updated as that of Eq.(4.10) shown in Algorithm 2. Tmwergence of
the algorithm can be easily proved as that of Algorithm 2. Bugpace limit, we omit the
details here.

Extension to general case for multi-class classification

Above we have discussed how to use group lasso for varialdet®s purpose.
In practice especially for multi-class classification gesh, we have original dataskt =
[dy,do, - - -, d,] with p features forn data points, with associated class laéls- [y, ys, -+, ya]
from c classes, wher® € RP*"Y € R*". We note previous works [118, 125, 56] have
considered the problem of variable/feature selectiondasestructural sparsity (e.g., using

L, 1-norm for group sparsity),

(4.24)

P k
min f(W) +a) | > W
i=1 j=1

whereW € RP*¢ is multi-class regression coefficient, afigW) is a function: RP*"™ —
Rexn, e.g., least square logsW) = ||[Y — WTX]|%. This can be viewed as a special case
of the general group lasso problem, where therepageups and the-th group is the-th
row of W, i.e., >0 | /35 W2 =37 | [Wg, |2, where||[Wg, [, = /35 W2 .

This indicates the proposed algorithm can be used to solg-chass/multi-label

feature selection problems [53] with fast convergence. dédwer, we can further define
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the group sparsity on projectiow, according to a priori knowledge, such as wavelet-
coefficient [126], topographic dictionary [127], image Bakneighborhood information [128],

graph embedding information [48], etc.

4.7 Connections to related works

Bach [129] analyzes the consistency of the group lasso aniphelternel learning,
which can be used for learning from heterogeneous data esarad for nonlinear vari-
able selection. Jenatton et al [9] propose an alternatiggyighm to solve the overlapping
lasso problem. However, it involves an expensive matrigtison computation and it may
not scale very well. Alternating Direction method of Multgrs method (ADMM) [116]
is adopted to solve this overlapping problem through themgation of a linear system.
However, this approach may not scale well for large-sizé \wigh-dimension problems.
Chen et al. [115] present a smoothing technique to solve tegapping group lasso prob-
lem. Mairal et al [117] provide an algorithm to solve the suinig, norms, which can not
be directly used for solving the overlapping lasso, whiatkeBned as the sum d@f, norms.
Argyrious et al. [118] use the proximal gradient method ttvasdhe related problem,
where the proximal operator is computed through a fixed poethod. Yuan et al. [119]
use proximal method to solve overlapping group lasso prmpighere the proximal op-
erator is computed through solving a smooth and convex duddlgm. Different from
above works, our work proposes a new method for proximalaipeicomputation, with
fast convergencand verysimpleupdating rules.

We study the group sparsity problem in the parametric geftia., group lasso). An-
other line of research is doing sparse variable selectiolgusnparametric additive mod-
els (i.e., sparse additive model) [130, 131, 132], whergtler knowledge of the structure

among the covariates are utilized to encourage variabexteh. Most of works [130,
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Figure 4.4:One demonstrating example of overlapping group structyraxis: group number,
z-axis: variable indexp = 100,G = 9. G; = {Xl,Xg, ey XQO}, N {Xgl,ng, s 7X100}
131, 133], however, perform variable selection individyakhere a group of basis func-

tions constructed from a single covariate, which are gyatifferent from our work.

4.8 Experiment

In this section, extensive experiments are conducted toodstrate the effective-
ness of proposed algorithm. We use both synthetic dataseisiding group structure,
tree structure) and real world gene expression datasetsatoate our method in various
problem size and parameter settings. We compare our digomtith several state-of-
the-art methods, including SLasso algorithm [9], FoGLaalgmrithm [119], Prox-Grad
method [115], and Alternating Direction Method of Multipts (ADMM) [116].

In EQ.(4.1), we use the standard least square loss function.

Dataset

We use four datasets: (1) group structure of synthetic destag) tree structure of
synthetic datasets; (3) pathway structure of gene exmesisitasets; (4) edge structure of
gene expression datasets.

Synthetic dataset.

Group structure.
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We randomly generate a overlapping adjacent group, whereupgontains 20 ad-
jacent inputs with an overlap of 10 variables between tweaessive groups. To be exact,
G ={1,2,...,20},G, = {11,12,...,20},G, = {J — 19, ..., J} with J = 10g + 10, andg
is the group size/ is the problem size. We show an example in Fig.4.4 whiete 100.

Tree structure.

We randomly generate a overlapping tree structure, whichbeaconsidered as a
special graph structure. We generate an overlap tree steufeature sizep = 2000,
group sizeG = 200), which is similar to the tree structure shown in Fig.4.1.eDa space
limit, we cannot show the whole tree structure here. Parte# has the same structure
as the tree in Fig.4.1. For example, we have root gréyp- {1 — 2000}, depth-1 node
include groupsj, = {1,2},G, = {3,4,5,6},G; = {7,8,9, 10}, etc; depth-2 nodes include
groupsyso = {1}, Gs1 = {2}, Gs3 = {3,4}, G54 = {5, 6}, etc; and depth-3 groups include
Gos = {3}, Gog = {4}, etc.

Gene expression dataset.

We perform our experiment to evaluate the efficiency of ogoathm on breast
cancer gene expression dataset [134]. This dataset con$i8t41 genes in 295 breast
cancer tumors (78 metastatic and 217 non-metastatic). dlyamthe microarrays from
the biological point of view, different methods have beeadito organize the gene into
overlapping gene sets. We follow [114], [119] and use twohods$ to generate the over-
lapping groups of gene sets:

(1) pathway [135];
(2) edges [136].

For pathways, we use the canonical pathways from Molecutara®ire Database
(MSigDB) [135]. It contains 639 groups of genes, where 637ugsoinvolve the genes
used in pathways. The average number of genes for each gr@@p7i, and the largest gene

group has 213 genes. 3510 genes appear in these 637 grohpsvaterage frequency
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Figure 4.5: Convergence of proximal operator computatiasuofalgorithm (Algorithm 2)
on (a)pathwaygene-expression; (blilgegene-expression. (a) Parameter setting: 3510,
G = 637, w = 0.5, convergence criteria: 1e-6. (b) Parameter setiing:1000, G = 7194,
w = 2, convergence criteria: 1e-6.

of number 4. We use the network [136] to extract 42,594 edgesa the network, i.e.,
42,594 groups of overlapping gene sets with size 2. The gedraquency for 8,141 genes
appeared in these 42,594 groups are 10.

Convergence of proposed proximal operator algorithm

In Figs.(4.5), we show the convergence of our algorithm QAlllpm 2) for comput-
ing the proximal operator on (Path-way(2) edge gene-expression datasets. To further
accelerate our algorithm, in our experiments, accordinpheorem 2, we solve Eq.(4.19)
instead of original problem of Eq.(4.2), using AlgorithmThe experiment results indicate
that our algorithm converges very fast to precisiben-{ 6). It takes no more tha20 steps.

Comparisons of different methods for proximal operator.

The key advantage of our algorithm lies in the computatiothefproximal operator
of EQ.(4.8). There have been many methods proposed to gpineluding dual method
proposed by Yuan et al [119], Dykstra-like proximal spfhifimethod [119], and alter-

nating direction method multipliers (ADMM) [116]. Theseomimal splitting methods
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Table 4.1: Comparison of different proximal operator comagan (Obj, CPU time) on
pathwaygene-expression dataset. Parameter setfing: 3510, G = 637, convergence

criteria: 1e-6.
w = 0.5 w=2
method Obj, CPUls| Obj,  CPUIs
our method| 79.7500 2.255 | 153.9001 2.402
Dykstra 81.8974 4.267| 154.7923 4.879
ADMM 82.3142 3.897| 155.1287 3.912
Dual 79.7612 2.274| 153.9018 2.418

Table 4.2: Comparison of different proximal operator comagioh (Obj, CPU time) on
edgegene-expression dataset. Parameter setting: 1000, G = 7194, convergence

criteria: 1e-6.
w = 0.5 w =2
method Obj. CPU/s| Obj,  CPUs
our method| 56.9837 1163 | 102.7791 1.087
Dykstra | 58.9742 3.648| 105.8314 3.485
ADMM | 60.3214 3.124| 107.2494 2.987
Dual 57.0123 1.207| 102.8123 1.113

convert this challenge optimization problem into a seriesub-problem with closed-form
solutions. We compare our method with above three methods.

On above four datasets, we compare the performance of abaveniethod. There
are three key parameters: (1) feature numbef2) group numbel=; (3) regularization
weightsw. We setw; = w to the same value, even for different group regularization.

Experiment results on synthetic datasets.

We show the comparison results w.r.t different group nunio®y different feature
number p), different regularization weightsu) using group structure, hierarchical tree
structure on synthetic datasets in Fig. 4.6. We see thatnetinod achieves good perfor-
mance in different parameter settings, and scales veryaveh whery, g is very large.

Our method is better than the other methods, in terms of thgoatation time, at different
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Table 4.3: Comparison of different algorithms for overlaggpiasso computation (Obj,
CPU time, iteration number) guathwayandedgegene-expression dataset. Involved genes

p = 1000, convergence criteriat0 4.

pathway edges
method Obj. CPU/s lteration Obj. CPU/s Iteration
Our method | 88.11 9.24 108 117.73 12.30 91
Re-weighted 88.12 12.33 123 | 118.34 13.29 92
FoGLasso |87.89 9.75 116 | 117.75 12.34 121
SLasso 88.93 11.17 142 | 117.98 17.81 102
Prox-Grad | 88.12 12.50 138 | 118.10 16.53 112
ADMM 89.32 13.72 78 | 119.32 21.34 83

Table 4.4: Comparison of different algorithms for overlaggpiasso computation (Obj,
CPU time, iteration number) grathwayandedgegene-expression dataset. Involved genes

p = 2000, convergence criteria:0—*.

pathway edges

method Obj. CPU/s lteration Obj. CPU/s Iteration
Our method | 131.32 28.92 148 235.75 29.51 163
Re-weighted 132.46 38.65 163 | 235.90 39.52 201
FoGLasso | 131.80 29.14 156 | 235.76 29.63 187
SLasso 131.34 32.74 174 | 236.01 31.34 198
Prox-Grad | 132.57 35.02 185 | 235.97 32.93 212
ADMM 133.09 48.74 107 | 237.35 44.31 150

group numbe(, feature numbep and regularization weight. For Dykstra method and
ADMM method, it is more sensitive to group numbéf)(and feature numbepy.

Experiment results on gene-expression datasets.

We show the comparison results w.r.t different regulalatveights {v) in Ta-
ble. 4.1, Table. 4.2. Clearly, our method outperforms Dykstethod and ADMM method,
and is also better than dual method, in terms of both objedtimction values and compu-
tational time. Moreover, our method is much simpler than dugthod.

Comparisons of different computation methods for overlaggroup lasso.

On the gene expression dataset, we follow [119] and usedsedquare losg(z) =
Hlly — XDb|[%, andA; = Ay = v x A7*, andAT** = || X7y||w¢, andvy is chosen from the
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set{sx 1071, 2x 1071, 1 x 107, ..., 1 x 1071}, w; = 1. We have two methods to solve the
overlapping group lasso problem, (1) proximal method psepang2,3,4 (Our method) ;
(2) general method proposed§h (shown as “Re-weighted” in Tables 4.3, 4.4.

We compare above two methods against other 4 methods: (¥s8Iaethod [9]; (2)
FoGLaaso method [119]; (3) Prox-Grad method [115]; (4) Ai&ding Direction Method
of Multipliers (ADMM) [116].

For the giveny, we run SLasso until a certain precision is reached, and ween
run the other algorithms until all methods can reach to th#he® SLasso. Tables 4.3, 4.4
summarize the comparison of different algorithms for cugping lasso computation (Obj,
CPU time, iteration number) when involved genes 1000, p = 2000, and convergence
criteria is10~*. We make several important observations from experimentte

(1) Our algorithm is efficient, as compared to the other mashmcluding FoGLasso
and SLasso, in terms of CPU time.

(2) Our algorithm converges relatively faster than othethods, and always achieves
smaller objective, as compared to other methods.

(3) The efficiency oredgedataset is greatly improved, as compared with that on
pathways Moreover, as the number of genes increases, the efficidnmyralgorithm is
also greatly improved.

(4) The results indicate that this algorithm is slower thha proximal gradient
method, although our method fdx, norm does not need a proximal step. Most of time
for computation is spent on Eq.(4.23), which requires thematation of inverse of a ma-
trix of p x p.

We will further investigate how to make our algorithm moralable and efficient
for large-size problems.

Experiment results on breast cancer prediction.
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Table 4.5: Classification accuracy, number of selected ganesber of selected pathways
using our method (overlapping group lasso of Eq.4.2), stahthsso using 3-fold cross
validation.

Metric Our method| standard lasso
Classification accuracy | 65% + 2% 62% + 2%

# of genes in each fold 48/57/70 | 109/112/143
# of pathways in each fold 238/242/167, 247/267/278

Another important application of overlapping group lassdd perform gene se-
lection for breast cancer prediction. For example, for theabt cancer gene expression
dataset [134] as shown H#.1, we are interested in finding a group of genes, which can
distinguish metastatic (78 samples) from non-metastafi¢ 6amples) cancer tumors. The
pathway information, which involves a group of genes, cgaviinctionality informa-
tion for cancer discovery. Different genes could be invdliredifferent groups, and these
groups may even overlap with each other. Overlap group laxsades an easy and natural
way to incorporate these prior information into cancer ptah.

On pathway dataset (s€d.1 for more details), we analyze the 3510 genes, which
are in at least one pathway. Before making classification, @pkhe 300 genes most
correlated with the output [132]. Paramesgeis set according to cross validation. Since
the dataset is very unbalanced, we balance the dataset, kipgrareplication of each
metastasis patient in each fold in cross validation. TalBeshows the comparison results
of overlapping group lasso (Eq.4.2) and standard Lassoaddflii]. Clearly, our method
(overlapping group lasso) gives better classification eagu As compared to standard
lasso, the solution of overlapping group lasso is more gpardoth gene and pathway
level. This makes the relations between identified genegatitvays easier to interpret,

which suggests using overlapping group lasso model forargmediction.
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4.9 Lessons learned

In this paper, we propose an efficient algorithm to solve teeegal overlapping
group lasso problem. We present an efficient algorithm teestile associated proximal
operator. Different structures can be integrated into fiismework. Numerical experi-
ments on both synthetic and gene expression datasets deatertse effectiveness of the
proposed algorithm. An interesting future direction is tlaptive this algorithm to solve
problems, which involve much richer structures among thréatsées (e.g., more compli-

cated hierarchical tree structure, forest structure).
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Figure 4.6: Time comparison (y-axis: CPU time) for computing proximal operators on
synthetic datasets. w.r.t differeptw, G. (a-c) overlapping group structure as shown in
Fig. 2; (d) tree structure which has similar hierarchicalsture as shown in Fig. 1. (a)
feature sizep = 1000, regularization parameter = 0.1; (b) group numbeG = 100,
regularization parameter = 0.1; (c) feature sizev = 1000, group sizeG = 100; (d)
feature sizep = 2000, group size& = 200.
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CHAPTER S5
Maximum Consistency Preferential Random Walks

Random walk plays a significant role in computer science. Tdpmular PageRank
algorithm uses random walk. Personalized random walkefaiedom walk to “personal-
ized views” of the graph according to users’ preferenceshikipaper, we show the close
relations between different preferential random walks labél propagation methods used
in semi-supervised learning. We further present a maximamsistency algorithm on these
preferential random walk/label propagation methods taensiaximum consistency from
labeled data to unlabeled data. Extensive experimentaltsesn 9 datasets provide per-
formance comparisons of different preferential randonke/édbel propagation methods.
They also indicate that our maximum consistency algorithearty improves the classifi-

cation accuracy over existing methods.

5.1 Background of random walk

Random walk model [137] is a mathematical formalization & gaths that con-
sists of taking successive random steps, i.e., at eachlsepdlk jumps to another site
according to some probability distribution. The randomkwualodel plays an important
role in computer science, and it has many applications orimétion retrieval [138], social
network [139], etc. PageRank [140] is a link analysis aldponit which uses the idea of
random walk to measure the webpage’s relative importaneesoRalized Page Rank [141]
is presented to create “personalized views” of the web se@ageesults based on redefining

importance according to users’ preferences.
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Semi-supervised learning (SSL) has connections with nanaalks on graphs. In
SSL, only a small number of data points are labeled while gelmumber of data points
are unlabeled. The goal of SSL is to classify the unlabel¢d loi@sed on labeled data. SSL
has attracted more attention because the acquisition elddloata is quite expensive and
time-consuming, while large amount of unlabeled data aseeeto obtain. Many different
approaches have been proposed to solve SSL problems [13]2e1dt, classification-based
approach [144], clustering-based approach [145], gragstedb approaches [27, 28, 29], etc.
Among all these approaches, graph-based approach is thepomsdar way to model the
whole dataset as undirected weighted graph with pairwredasities (W), and the semi-
supervised learning can be viewed as label propagationltbeled data to unlabeled data,
like a random walk on a similarity-grag¥v. Our work is inspired by previous graph-based
semi-supervised methods, especially by the work of carststlabeling [28] and Green’s
function [29].

In this paper, we first show the close relationships betweatearent preferential
random walks and label propagation methods. We show thdalieéed data points act as
the preferential/personalized bias vectors in the pefsmthrandom walks. This provides
much insight to the existing label propagation methods,sugdjest ways to improve these
methods. We also perform extensive experiments to comparpdrformance of different
methods used in preferential random walks.

Furthermore, we observe that current label-propagatigmogeh may not achieve
best available results especially when the propagationatgredo not exactly reveal the
intrinsic structure collected from both labeled and unledelata points. Many label prop-
agation approach is done in one shot from source (labeled ttaall unlabeled data. This
can not guarantee many newly-labeled data, which lie faryaw the data manifold with
the labeled data, are labeled reliably. Motivated by thiseotation, in this paper, we

present a novel maximum consistency approach to improv@en®rmance of existing
84



label propagation methods. Our approach first allows thel latppagation from source to
reliably newly-labeled data only, and progressively exjstio all unlabeled data, to ensure
maximum consistency from labeled data to unlabeled data.K€l idea of our approach
is to leverage the existing propagation operator and regdsatitilizes it, which has almost
the same computational complexity as the existing propagatethods.

Specifically, it is worthwhile to emphasize the contribatif our paper.

o We first show the relations between different prefereniablom walks and existing
label propagation methods. Extensive experiments on estare performed to
demonstrate the performance of different methods.

¢ We present a maximum consistency algorithm to improve iegsabel-propagation
methods. Extensive experiments performed on 9 datasetsitedlear performance
improvement.

The rest of this paper is organized as follow&. gives a brief overview of person-
alized random walk. Next i3, we establish the connections between the preferential
random walks and label propagation methods§4nwe emphasize the concept of score
distribution in semi-supervised learning methodsg3nwe propose our maximum consis-
tency label propagation methogb reviews the related work to our paper.slh, extensive
experiments on 9 datasets are performed to provide perfax@neomparisons of differ-
ent preferential random walks/label propagation methadd,demonstrate our maximum

consistency algorithm results. Finally, we conclude theepa

5.2 A brief overview of personalized random walk
On a graph with edge weigh®/, D is a diagonal matrix witlD = diag(We), e =

(1,...,1)T, P = [P;] is the transition matrix from nodeto nodey,
P=D'W (5.1)
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Let f; be the probability of one walker on sitethus
f=(1-a)y+aP’f, (5.2)

In PageRank( [140])y = (1,...,1)T/n, a = 0.9.

In personalized random walk [14 4}, is the personalized probability (a vector) en-
coding the personalized preferences. For example, fordorarwalker, he prefers to visit
sitesiy, is. Theny; = 1if 1 = iy, 45} y; = 0 otherwise.

Generalized Preferential Random Walks

In multi-person random walks, there akérandom walkers. Each random walker

k(1 < k < K)has a distribution vectdj, and a personalized preference vegtpr
f, = (1 - a)yx + P fx. (5.3)
LetF = (f,--- ,fx)andY = (yi1, - ,yx), from Eq.(2), we obtain the transition
F=(1-a)Y +aPTF. (5.4)

The solution for the final stationary distributions of tRerandom walkers are

1l -«

F=—_2Y.
I—aPT

(5.5)

Method 1
Here we use standard random walk transition probability @{B and obtain the
stationary distributions of th& random walkers:

11—« 11—« l1—«a
= = Y=D——Y. 5.6
I-aWD-! (D — ONV)D_1 (D —aW) (5.6)

F

Method 2
If we use the “pseudo transition probability’ = D—:WD~ 2, we obtain the sta-

tionary distributions of theé< random walkers as:
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B 1«
I—-aD WD 3

(5.7)

Method3
If we use another “pseudo transition probabilifif”= WD~!, we obtain the sta-

tionary distributions of thé{ random walkers as:

- y_ lma y_ 170 py (5.8)

F=
I—aD "W~ D I(D-aW) (D — aW)

So far, we have discussed random walks on a graph. Next, we o@knections
to semi-supervised learning. The significance of relatinalysis between preferential
random walks and label propagations is to help to capturessence of these different
algorithms and better interpret the experiment resultsoudroknowledge, so far there is a
lack of systematic study to explore the commonalities affér@ginces of these algorithms,

as well as their intrinsic relationships.

5.3 Relations between preferential random walks and Lalogddgyations

In semi-supervised learning, we hawve= n, + n, data points{x;}? , , where first
n, data points are already labeled wih; }?“, for c target classes. Herg, € R and
v, € 1,2,..., K, such thaty; = k if x; belongs to the:-th class. The last, data are
unlabeled. The goal of semi-supervised learning is to |é#eir class labels{y;}i_,, ;-
LetY € R™*¥ be a class indicator matri%(,;; = 1 if x; is labeled ag; = j andY,;; =0
otherwise.

Local - Global Consistency method (LGC)

Local and global consistency(LGC) [32] utilizes sufficigndmooth assumptions

with respect to the intrinsic structure collectively relsgbby known labeled and unlabeled
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data points. Given the graph edge matfix LGC constructs the normalized mat$x=
D-2WD 2, where D is a diagonal matrix with = diag(We). Then the predicted label

matrix F' is,

F = QY, Q=p3I-aS)™!, (5.9)

whereQ is the label propagation operator—= ﬁ B = ﬁ 1L IS @ parameter.

Relations with preferential random walk.

Compared with method 2 in generalized preferential randotk ofeEq.(7), we can
see LGC isidenticalto it. This is because constafitwill not change the classification
results.

Green'’s function method (GF)

Green'’s function for semi-supervised learning and labgbpagation is first presented
in [29]. GF is defined as the inverse of graph laplacian= D — W with zero-mode
discarded. Using the eigenvectors@fLv, = \,vy, where0 = \; < Xy < ... < ), are
the eigenvalues. Green’s function computes the predieteel matrixF,

n T
1 ViV;

D-W), & N~

F =QY, Q=<,1'= (5.10)

whereQ is label propagation operatdl) — W), indicates zero eigen-mode is discarded.
Relations with preferential random walk.
From Method 1 of generalized preferential random walk, théanary distribution

F of Eq.(6) is related t@) in EqQ.(10). Asa — 1, we have

n T
(D-aW)!' — D-aW) =Y V’Avl . (5.11)
i—2

Indeed, for classification purpose, the GF approach is thi¢ dif Method 1 of generalized
preferential random walk of Eq.(6). This is because of thiefong three reasons.
(1) In semi-supervised learning, the classification refsulobject: is determined by

the location of the largest element:kth row(See Eq.(12)).
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(2) Given a distributionA and a diagonal matrid = diag(d; ---d,,), DA will
multiply the i-th row of A by d;. The relative distribution of this row does not change.
ThusD applied to distributiomrA does not change the classification results.

(3) The multiplicative constant — o does not change the classification too.

Comparison of preferential random walk results.

In label propagation of Eq.(9) or Eq.(10), once the distitiuscore (a.k.a propaga-
tion score)F are obtained, each unlabeled data painis assign a class label according
to

k = argmax F;; (5.12)
1<j<e

Note the key difference of LGC with GF is the computation afgagation operato®:
LGC uses Eq.(5.9) while GF uses Eq.(5.10), which leads teréifit label propagation
results. Another popular label propagation method is Haimfunction [27], which em-
phasizes harmonic nature of the label diffusive proceds.uéry different from LGC and
Green’s function, thus we did not discuss it here.

We have done extensive experiments to compare the abovwesdest methods for
semi-supervised learning. We defer the presentation gkthesults in the experime$it.
We next discuss another contribution of this paper, i.e.nthximum consistency algorithm

on these preferential random walk/label propagation nusho

5.4 Score Distribution: Confidence of Label Assignment

We begin the presentation of our maximum consistency appraéh analysis of the
distribution score of the propagation. Our maximum coesisy algorithm is not designed
in an ad-hoc way, but motivated by the insight obtained frogqmegiments: although label
propagation methods are effective, they may not achievepuessible label propagation

results. Next we illustrate the reasons.
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In both LGC (Eq.9) and GF (Eq.10) methods, the propagatidom in one shot. All
unlabeled data obtain their class labels immediately. Hewasome unlabeled data points
may lie nearby in the data manifold (embedding subspacd) thi# labeled data, while
many other unlabeled data lie far-away from the labeled. detarefore, the reliability or
confidence of the class labels obtained in propagation vam high (for those lie near

labeled data) to low (for those lie far-away from labeledaglat
However, in the class assignment procedure of Eq.(12),l8#%s clecision is simply
the largest one among theclasses in the propagation score distribution. For exanfimle

x;, the score distribution maybe
(Fj1 - Fie) = (0.1,0.2,0.8,0.3,0.05),
in a data withc = 5. Forx;, the score distribution maybe
(Fj1---Fj.) = (0.2,0.35,0.38,0.05,0.3).

Even though botlx;, x; are assigned class label=3, the confidence of the assigsiaent
different. Clearlyx; is assigned with higher confidence becalige= 0.8 is much higher
than other classex; is assigned with lower confidence becaiig = 0.38 is marginally
higher than some other classes. In other wordsxfdhe propagation score distribution
has a sharp peak while far; the propagation score distribution has a rather flat peak.

There could be many reasons thkas score distribution is much sharper than the
score distribution foi;. x; could lie much closer to class3 labeled data point thax;.

It could also be that there are more clas$ labeled data neat; than near;. It is also
possible that there are many unlabeled points geauch that they mutually enhance the
class= 3 probability than those neat;. More possibilities exist. Fortunately, it is not
necessary to dig out these details — they are collectivéligated in the propagation score
distribution. Consider the existing label propagation apph. Bothx;, x; are assigned la-

bels in the propagationx; obtains class 3 label, although it is done with low confidence.
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Now let us consider a different approach where we break thmblabel assignment
into several rounds. We first assign class labekfpand move it to the pool of already-
labeled data, while defer the decision forin later rounds. As the pool of already-labeled
data expands to the neighborhoodxgf the propagation score distribution fey is likely
to become sharper. At this time/round, we assign class tabe]. Thus the class label
assignment is always occurring at the situation where tegasent is done with high
confidences, i.e., the assignment is done such that the dattip the most consistent
with other members of the same class, both globally andligce reflected by the sharp
score distribution. From these observations and discassive design a maximum consis-
tent(MC) label propagation algorithm, which uses the labeppgation operatd defined
in both LGC and GF methods. We call our approach as MC-LGC and@#CPetailed
algorithm is presented in next section.

Motivation of Maximum consistency label propagation.

To summarize, semi-supervised learning methods such demawalk did not con-
sider the distributions of scores of multiple labeled bt judged the label of nodes from
the maximal score in all the classes of nodes. On the otheat,lthe unlabeled nodes
far away from the labeled nodes can hardly receive the flowshahdle these two issues

above, next we present maximum consistency label propagalgorithm.

5.5 Maximum Consistency Label Propagation

Design of the algorithm
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Our algorithm design is guided by maximum consistency agsiom which consists

of multiple label propagations,

F' = QY°
F2 = QY!,
Ft = QY !, (5.13)

whereQ is the propagation operator which can be computed from Eqr@q.(10), and™
is the label prediction matrix during each propagation. dotelabel propagation process,
we use the current labeled data mafyikto update the label prediction matrX.

At the end of each propagation, only those unlabeled datagwihose class labels
are reliably predicted are actually assigned class lalmelsr@oved into the pool of labeled
data(Lpool). The rest of unlabeled data points remain ipta of unlabeled data (Upool).
Thus the pool of unlabeled data decreases with each propagand the pool of labeled
data expands with each propagation. At last propagatibremkiining unlabeled data are
assigned class labels.

Because of class balance consideration, the pool of labeliedstiould get approxi-
mately the same number of new members for each class. Inganithin, each class gets
one new member after each propagation. We call this proeeahitbalanced class expan-
sion (BCE)". The number of unlabeled data are shrinking wihig&ertumber of labeled data
are increasing during this repeated BCE procedure. Thealgsue in this BCE procedure
is how to select this new member for each class. i.e., how ¢aldéreliably predicted”
data points in each BCE. As analyzed in above section, thdilélyeof label propagation
is reflected in score distribution. Thus, in our algorithng uwse the score distribution to
decide the most “reliable predicted” data points from theag@ints in Upool in each BCE.

We will illustrate more details in the next section.
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Discussion.

If we add different number of new members to different classewill produce
unbalance. Even if the discriminant scores of one class aohmigher than that of another
class, we also consider add one number for each class. Althois inefficient, we believe
this conservative way will result in selecting more “religbdata points.

Normalization on the distribution score.

Although data in Lpool expands in a class-balanced waygethes always the sit-
uation where classes become unbalanced. In the label @bpagwe need to properly
normalize the contributions from each class.

Suppose, a subset of data are labeled and there exists aritagwobabilityr;. Let
7 = diag(m - - - 1), andZ be the multi-class label assignment matrix from labele@,dat

i.e.,

1, if x; belongs to class k
Zi, = (5.14)
0, otherwise

then the balanced source of propagation is defined as

mlig - Tl

Y=Zr=| ... ... ... |. (5.15)

71—lzn,l T 7Tczn,c

In our algorithm, we set the prior tg, = ﬁ therefore, each class contributes the same
total weight to the propagation)., Y, = > . Y, for any two class, ¢. In our algorithm

the initial label matrixY? is constructed as
YO = 7%, (5.16)

whereZ? is the initial label assignment matrix constructed as Egi4bfrom the initially
labeled data in Lpool. In theth iteration, letZ! be the label assignment matrix constructed
from current data in Lpool,

Y! = Z'x. (5.17)
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Figure 5.1:Selection of discriminative data in balanced class expansion. Data points, @. b

Reliable assigning class labels with score distribution.

After obtaining the assignment scdrg, for all data in Upool, our goal is to pick up
the “reliable” assigned data points, one for each classadddhem to the Lpool whereas
remove them from the Upool. Afterwards in the actual labslgrsment for each class, we
(2) find out all the currently unlabeled data assigned todlass, (2) pick the one with the
highest discriminative score and assign it to this class.

A Motivating example to illustrate discriminant score.

Fig.(5.1) illustrates the idea of selecting discriminatiunlabeled data points. Class
1 selects data instead of dataé, because: is far away from classes 2 and 3; although
b is slightly closer to class 1, butis also closer to class 2. In other wordsjs more
class discriminative thal Similarly, class 2 selects datanstead ofd, because is more

discriminative thani.
Now we discuss the discriminative score computation. Foh ealabeled data point

x;, it has been assigned toscoresF;;., 1 < k < ¢). Thec scores are then sorted as,
Fir, > Fig, > Fipy > ... (5.18)

3 classes with the highest scores are recorded as the thssstctlasses fot;: Fy,; Fy,,
F;,. As discussed above, even two data pomtandx; have been assigned to the same
classcy, they may have different discriminant scores dependindherstores which how

x;,X; may be assigned to other classes. Here we consider the téagstthe data points
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will be assigned to and other two competing classes which vgé w0 be discriminant
against. The discriminative scores for the 1st choice tarigss are defined as (if there is

only 2 classes, we do not need),

D(l Ckl) —_ F2? |Fick1 - Fick2| + |Fick1 - Fick:‘s"
7 o \/Ficm + Ficm + Ficks

(5.19)

The score difference achieves the discriminative afféldi® denominator provides a mild
scale normalization. Without this term, the class with éstd";;,. scale may dominate the
score computation process. Note that these scores are teanmuce for each balanced
class expansion. For each unlabeled data pqimt Upool, it is assigned to clags which
has the largesD(x;, ¢;) scores among all clags For each clas&, we select the data
pointsx;, which has the largest discriminative scddgz;, ¢,) among all data points in
Upool assigned to clags This procedure is designed to maximize the label assighmen
consistency, which is consistent with LGC/GF approach.

Discussion on the discriminant score.

Actually, we can define other formulations of discriminacbie. (1) Without the

denominator of Eq.(5.19), discriminant score can be wridts,

DQ(ia Ckl) = F?Ck1(|Fick1 - Fick2| + |Fick1 - Fick3‘)’ (5.20)

(2) Without the square for the 1st term of Eq.(5.19), disanant score can be written as,

’Ficm - Fick2| + ‘Fickl - FiCk:a‘
\/Fickl + Fickz + FiCk:s

(3) Select more top (e.g4,5,6,7,-) classes to compute the discriminant score, then

D3(’i,6k1> =F (521)

ickl

discriminant score fof” classes is given by,

T
— F2 Zt:l |Fick1 - Fickt|

ick1
T
V thl Fickt

Our experiments results(sge.4) show Eq.(5.19) achieves slightly better results ttiaaro

D4(i7 Ck‘l)

(5.22)

discriminant scores defined in Egs.(5.20,5.21,5.22). Ep(320), the denominator is re-

moved. When somE,., has very large values, it may dominator the score. For E2L}5.
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(a) Data distribution. (b) LGC result (c) MC-LGC result
Figure 5.2:lllustration of maximum consistency approach on a synthetic dataset. Latetiaed

shown in thick symbols: red squares, green diamonds, blue circles fasses. Initially unlabeled
data are shown in black stars and, after obtaining labels, shown in opdroksy

square of scor&';., is removed, which makes the score less sharper than that @&. [E9).

For Eq.(5.22), more top classes are fetched to achieveiisent effect. In our experi-
ments, we find when we selegtclasses, we can get very good results. When we select
more classes, the results change slightly, but sometines\eorse.

Demonstration of algorithm performance on toy data.

Here we use a toy data example to illustrate the advantadgeed¥iC approach (on
LGC methods) in Fig.2. A 3-class synthetic dataset is dysggain Fig.(2a). For each
class, three data points are labeled while the rest of datdspare unlabeled. Results
of standard LGC methods and MC-LGC methods are shown in Blgs2c). It is clear
that MC approaches achieves better results. One can gdaismesults if making the
comparisons of GF against MC-GF methods.

Complete algorithm.

Above we have given a detailed discussion on the rationahefalgorithm. The
whole algorithm is listed in Algorithm 1. This algorithm wra around the label propaga-
tion operatorQ, and it can also use other label propagation operators.

Time complexity analysis.

Note we only need to compute propagation oper@dthrough Eq.5.10 or Eq.5.9)

once as in standard LGC or GF, and the extra time cost is thatidga cost in balanced
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Algorithm 6 Maximum consistency label propagation algorithm (MC ailiyon)

Input: labeled datd = {(x;, y;)}{_,, unlabeled dat&/ = {x‘j}ﬁi}fﬂ, Maxlter

Output: predicted class labels for unlabeled data
Procedure:
1: compute propagation operat@ with Eq.(9) or Eq.(10), compute initial label matr&® using Eq.(16)t = 1
2: while t < Maxlter & U is not emptydo
3. Ft=QYt!
for each unlabeled datio

compute its corresponding discriminative score using EtP(5.

for k=1tocdo

search all unlabeled data whose 1st choice target clasq Batanced class expansipn

4
5

6:  endfor
7

8

9

if not emptythen

10: pick the one with the largest discriminative score, add iléssk, remove it front/

11: end if

12: endfor

13: UpdateY ¢ with Eq.(17) using current label assignméit {new labeled data added to Lpgol
14: t=t+1

15: end while

class expansion(BCE) process, which includes (1)the iterditne of BCE process which
is proportional to number of iteration) (2) the discriminant score table computation in
lines7 — 13 of Algorithm 1, which is proportional to the number aiirrentunlabeled data
pointsn;, and the number of class label In our experiment, we find that the extra time

cost is very limited as compared to the propagation opecatorputation in step 1.

5.6 Connection to Related Works

In this section, to make our contribution more clear, we usscthe related works
highly related to our algorithm. The related methods candaghly divided into three
categories, (1) personalized random walk (RW); (2) semesuped learning (SSL); (3)

belief propagation (BP).
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Random Walk is a very popular technique widely used for PagkeRlgorithm [140].
Many variations of random walk methods are proposed, inotypersonalized page rank [141],
lazy random walks [146], fast random walk with restart [14&nter-piece subgraph dis-
covery [148], using ghost edge for classification in spgrddeled networks [149] and so
on.

Semi-Supervised Learning methods are widely used in reglicagpions. Graph-
based semi-supervised methods are the most popular antiefi@ethods in semi-supervised
learning. The key-idea of graph-based semi-supervisethodstis to estimate a (label
propagation) function on a graph, which maximizes (1) cstesicy with the label infor-
mation; (2) the smoothness over the whole graph. Severedseptative methods include
harmonic function [27], local and global consistency [28fi&reen’s function [29].

Belief Propagation [150] is widely used for inference in pabliity graphical model.
Belief propagation methods can be used for collective diaasion for network data [151],
grouping nodes into regions for graphs [152] and so on. Hewelie computational cost
for BP method is usually very high.

In this paper, we mainly focus on (1) discuss the relatiorte/é&en semi-supervised
learning and random walks; (2) propose a maximum consigtiabel propagation meth-
ods. We note there is few (if not many) papers to discuss tladars between different
kinds of random walks and semi-supervised learning. In apep we try to answer the fol-
lowing questions: (1) whether these random walks methcelsedated or not; (2) whether
they are identical or not; (3) which method can produce trst tesults; (4) is there one
method consistently performing better than the others? ufdknowledge, the relations
have not been well investigated so far. One similar work topaper is about unifying
guilt-by-association approach [153], which discusseg¢tegions between random walk,
semi-supervised learning and belief propagation. For mami consistency random walk

method, it is an improvement of state-of-the-art semi-suiped learning methods, which
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Table 5.1: Descriptions of datasets

Dataset #Size | #Dimension| #Class
AT&T 400 644 40
Caltech 600 432 20
MSRC 210 432 7
Binalpha 1014 | 320 36
Mnist 150 784 10
Umist 360 644 20
Newsgroup | 499 500 5
Reuters 900 1000 10
digit 1500 | 241 2

extends the works of local and global consistency [28] anee@s function [29]. Our
method can be extended to be used for collective classditéti51l] and community de-

tection [154]. Due to space limit, we omit the discussion®he

5.7 Experiments

In this section, we perform two groups of experiments. Oraugris to compare
three different methods in preferential random walks of.f38), and the other group is to
evaluate the effectiveness of maximum consistency (MC)rdhgn. First we discuss the
datasets used in our experiments.

Datasets

We adopt 9 data sets in our experiments, including two fatcasdés AT&T and
umist, three digit datasets mnist([73]), binalpha andtdigivo image scene datasets Cal-
tec101 [74, 75] and MSRC [75], and two text datasets Newsgrang Reuters Table 5.1
summarizes the characteristics of the datasets.

Experiments results on 3 methods of Generalized PrefateRandom Walks of

Egs.(6-8)

thttp://www.kyb.tuebingen.mpg.de/ssl-book/ benchmaatis
2http://people.csail.mit.edu/jrennie/20Newsgroups/
Shttp://www.daviddlewis.com/resources/testcollecsiveuters21578/
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In §2, we give three methods for generalized preferential rand@lks. We also
show method 2 is equivalent to LGC method. Whes 0.1, method 1 is equivalent to GF
method. In all the methods except in GF, parametevill influence the semi-supervised
classification results. For image datasets, we use Gaussiagl to construct the graph

2
[l

edge weightdV;; = e~ -2 , wherey is fine tuned according to [27]. For text datasets,

we use linear kernel to compute the graph similarity. We oanlgt select 20% of all data
as the training data. In Fig.3, we show the average cladsificaesults on 4 methods
(GF, methodl1, method2(=LGC), method3) by using 5-fold cn@d&lation. In Fig.3, x-
axis represents the different settings¢ = 0.1,0.3,0.5,0.7,0.9), y-axis is the average
classification accuracy over 10 independent runs.

Experiment result analysis.

From Fig. 3, we can observe: (1) method 1 and GF perform wedlliathe datasets;
(2) parametery does not influence very much for the classification resultaiobd from
method 1; (3) method 2 and 3 perform reasonably well whed 0.5, but their perfor-
mances degrade much wherns approaching 1.

Experiment results on maximum consistency algorithm.

We compare maximum consistency algorithm with standard @€ GF methods.
The « in LGC and MC-LGC methods are setto= 0.5 as suggested in [32]. We use
Eq.(5.19) as the discriminant score in the balanced clgsseskon process. The maximum
iteration time7 is set according to the number of data points in the unlabeted. If
there are more thah= 90% of the whole data labeled, we stop our maximum consistency
algorithm, and do one-shot label propagation.

We show the classification results of 4 methods (LGC, MC-LGC, I3E;GF) by
randomly selecting different percentage of labeled dataigd, where x-axis represents
different percentages of labeled data (il®%, 20%, - - - -), and y-axis is the average clas-

sification accuracy over 10 independent runs.
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Experiment results analysis.

From Fig. 4, we can observe, (1) MC-LGC consistently perfdoetter than LGC es-
pecially when the percentage of labeled data is very smgl)(#0%); (2) MC-GF performs
much better than GF; (3) on text dataset, MC-GF’s superigityore significant(more than
5% improvement).

Next, we discuss our maximum consistency algorithm expamntmesults when using
different parameter settings.

Discussion on discriminant score computation.

Discriminant score computation is very important for theidien of data to be prop-
agated. The first issue is how to compute the discriminanest¢tere we show the experi-
ment results of classification when alternative discrimirgzore computation formulations
of Eq.(5.20), Eq.(5.21) are used. The other settings ofitper@ments are the same as those
described irg7.3. Fig. 5 shows the classification results of 4 methods lwéllaropaga-
tion(GF, MC-GF, LGC, MC-LGC) by using different discriminantose computations of
Egs.(5.19,5.20,5.21) on datasets MSRC and binalpha. Webserne, most of the time,
the classification results obtained from Eq.(5.19) arehfliygbetter on both datasets for
both MC-GF and MC-LGC methods. These experiment results stiggd¢o use Eq.(5.19)
for discriminant score in our algorithm.

Discussion on the iteration number.

Another key parameter is related to what extent is the pnoeedesigned to maxi-
mize the label assignment consistency. As describ&d.B, we use the number of labeled
data points in labeled pool as a criteria to stop our algoritiVe use parametérto repre-
sent the percentage ofirrentlylabeled data of the whole dataset.5lh3, we set) = 0.9.
We try different settings of = {60%, 70%, 80%, 90%, 100%} and report the experiment
results on dataset Caltec in Fig. 6. The other settings ofxtperaments are the same as

those described i§i7.3. We find, on most of the datasets, if weset 90%, we can achieve
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the best results. Thus we get= 90% as the default setting for our maximum consistency

algorithm.

5.8 Lessons learned

We analyze the relations between 3 methods of generalizefgrpntial random
walks and label propagation methods. A maximum consistafgyrithm is presented to
improve the current label propagation methods. Extensipe@ments on 9 datasets show
the effectiveness of MC algorithm and different generaigeeferential random walks. We
will explore the opportunities of algorithm improvementather semi-supervised learning
models, e.g., support vector machine, k-nearest neighbktrs Also, we will apply the

proposed random walk model for medical image segmentadiskst
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CHAPTER 6
Conclusion

In this thesis, we provide different methods for dimensieduction, feature engi-
neering and label propagation. We apply the proposed meihwafe classification/annotation
tasks. Throughout the paper, we have the following contiobs.

e This thesis proposes an efficient iterative locally lineabedding algorithm.

e This thesis presents two low-rank data recovery modelsigiraeplacing the rank
constraint by a Schattgnnorm, for data recovery purpose.

e This thesis proposes an iteratively re-weighted methodlbeesthe generic group
lasso problem, where an arbitrary structure can be enfanddature space.

e This thesis proposes a maximum consistency algorithm &fepential random walks
and label propagation.

e Extensive experiments results indicate the good perfocmahproposed algorithms.

6.1 Future work
According to our current research findings, there are marsgipte extensions of
current approaches, in terms of different topics.

e In terms of Locally Linear embedding (LLE), besides its day for dimension
reduction, we are curious about the de-noising power ofrtteghod. In real world,
there are noisy data with missing values. How to get the coembedding results
for these noisy data remains a challenging issue. We willbegpobust methods for

noisy data embedding. Meanwhile, LLE has close relatiorts subspace learning
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and multi-subspace learning. This is also closely congeweith motion segmenta-
tion. Can we explore methods for better understanding thepade?

Schatterp norm model can be used for data recovery purpose. A diretitapipn of
this model is for recommendation systems. Can it be explddetcecommendation
system analysis? How to incorporate different prior knalgkeinto this model? Can
Schatterp norm model extended for tensor analysis (e.g., video ais®/s

In terms of constraint feature selection using group lasgalarization term, can we
exploit method using exclusive lasso for feature sele@tidimis is helpful because
we can enforce exclusiveness constraint according to tbleisixeness of features.
Further, can we explore both group lasso and exclusive lagsteature learning
purpose, especially for multi-view feature learning?

There are many applications of random walk in different diom¥Ve will consider
more practical problems, which involves medical image sagation, social media
link predication. For multi-stage semi-supervised leagnalgorithms, the similar
idea can be applied to many models. We will explore the oppdtres of algo-
rithm improvement on other semi-supervised learning ngdely., support vector
machine, k-nearest neighbors, etc?

Extension to large scale data. Nowadays, a large amountaisiavailable for data
analysis. How to speed up our algorithm for large-scale agatpnal purpose be-
comes a more and more important question then ever befos&itidited computing
framework provides us opportunities to explore the systarat optimization using
Mapreduce (Hadoop) framework. Paralleling our algorithmslistributed frame-
work and adapting them for large-scale computing framewuitkbe a solution.
However, most existing methods cannot directly fit into therent system paradigm,
and necessary modifications or extensions of algorithmsi@eeled for large-scale

computing purpose.
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6.2 Summary

In this thesis, we provide a comprehensive studying for skayetechnologies in
feature engineering, dimension reduction and label prajag We provide improvements
of current state-of-the-art algorithms. Extensive experits are performed to validate the
effectiveness of proposed approach. Our findings and désmm/are expected to be helpful
for many practical applications, e.g., image categomzdéinnotation, text classification,

graph link analysis, etc.
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