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ABSTRACT

IMAGE ANNOTATION AND FEATURE ENGINEERING VIA STRUCTURAL

SPARSITY AND LOW-RANK APPROXIMATION

Deguang Kong, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Chris Ding

Nowadays, in order to sense environment and understand human behaviors, data

analysis plays a more and more important role to handle heterogeneous data ranging from

different domains, e.g., image categorization/annotation, customer segmentation, traffic

prediction, ad optimization, recommendation systems, privacy analysis, etc. The large

amount of multivariate data raises the fundamental problemof data mining: how to dis-

cover meaningful compact patterns hidden in the high-dimensional noisy observations?

One approach is to do dimension reduction, which finds the low-dimensional subspace and

thus encodes data in a low-dimensional structure. The otherapproach is to do feature selec-

tion or feature engineering, which manipulates the features to capture the most discriminant

patterns for classification/clustering tasks.

The goal of this thesis is to develop new and efficient machinelearning algorithms to

solve many challenging problems appeared in image analysis, instead of simply application

of existing methods to solve them. As compared to text mining, image analysis/mining is a

more challenging task because image is more complicated to understand and analyze. The

tremendous number of image data is available due to the advances in image acquisition and
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storage techniques. However, current analysis and modeling techniques for image data are

not mature, and still far behind.

In this thesis, to further improve the low-dimensional embedding results, an itera-

tively locally linear embedding algorithm is proposed, which captures the global structure

of non-linear manifold through iteratively updating the embedding. To handle noisy data

(e.g., data with missing values, corrupted values) classification problem, a robust data re-

covery model via Schatten-p norm is proposed to preprocessing the noisy data, where the

rank of the data is implicitly decreased. To utilize the feature structure with constraints,

an efficient feature learning algorithm via group lasso is proposed to handle features on

arbitrary structure, whose convergence can be rigorously proved. To handle the problem of

limited labeled data in image categorization/annotation tasks, efficient maximum consis-

tency label propagation methods are proposed to improve theperformance of graph-based

semi-supervised learning methods, which utilizes both thelabeled data information and

graph manifold information. Extensive experiments indicate the good performance of pro-

posed algorithms.

vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter Page

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.1 Motivating examples in image analysis . . . . . . . . . . . . . . .. . . . . 3

1.2 Review of feature Engineering, Dimension Reduction and Classification

Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. An Iterative Locally Linear Embedding Algorithm . . . . . . .. . . . . . . . . . 19

2.1 Background of locally linear embedding . . . . . . . . . . . . . . .. . . . 19

2.2 LLE and New Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 An Iterative LLE Learning Algorithm (ILLE) . . . . . . . . . . .. . . . . 25

2.4 ImprovedW-Learning Formulation . . . . . . . . . . . . . . . . . . . . . 28

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Low Rank Data Recovery with Minimal Shrinkage . . . . . . . . . . . .. . . . 37

3.1 Background of low rank data recovery . . . . . . . . . . . . . . . . . .. . 37

3.2 Proposed Data recovery models . . . . . . . . . . . . . . . . . . . . . .. 40

vii



3.3 Illustration of two Schatten p-norm models . . . . . . . . . . .. . . . . . 42

3.4 Analysis and Algorithm of Model 1 . . . . . . . . . . . . . . . . . . . .. 45

3.5 Efficient ALM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Iterative algorithm to solve Model 2 . . . . . . . . . . . . . . . . .. . . . 50

3.7 Connection to related works . . . . . . . . . . . . . . . . . . . . . . . . .52

3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4. Efficient Algorithms for Selecting Features with Arbitrary Group Constraints . . 58

4.1 Background of feature selection using structural sparsity . . . . . . . . . . 58

4.2 Generic group lasso problem . . . . . . . . . . . . . . . . . . . . . . . .. 61

4.3 Solving objective using proximal gradient method . . . . .. . . . . . . . . 64

4.4 An efficient algorithm for associated proximal operatorcomputation . . . . 66

4.5 Acceleration to the proposed algorithm . . . . . . . . . . . . . .. . . . . . 71

4.6 Extension to General Loss function . . . . . . . . . . . . . . . . . .. . . . 71

4.7 Connections to related works . . . . . . . . . . . . . . . . . . . . . . . .. 73

4.8 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5. Maximum Consistency Preferential Random Walks . . . . . . . . . .. . . . . . 83

5.1 Background of random walk . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 A brief overview of personalized random walk . . . . . . . . . .. . . . . . 85

5.3 Relations between preferential random walks and Label Propagations . . . 87

5.4 Score Distribution: Confidence of Label Assignment . . . . .. . . . . . . 89

5.5 Maximum Consistency Label Propagation . . . . . . . . . . . . . . .. . . 91

5.6 Connection to Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

ix



LIST OF ILLUSTRATIONS

Figure Page

1.1 Prediction of labels for unknown cars (marked as red question mark). Few labeled

cars: Civic, Accordcrosstour, AccordHybrid.. . . . . . . . . . . . . . . . . . . 4

1.2 General data mining pipeline. (1) Collection of data from different sources; (2)

Feature engineering on data; (3) Model construction according to requirement of

data analysis tasks; (4) Validation and interpretation of experiment results.. . . . . 5

1.3 Feature selection, dimension reduction, and classification for image analysis. . . . 6

1.4 Features(variables) in prediction of cancer disease. . . . . . . . . . . . . . . . 7

1.5 For image annotation task, each image is labeled as multiple concepts. Left image is

labeled as: sky, mountain, sea, boat, sand; right image is labeled as: road, building,

sky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Procedure of locally linear embedding process. (1) Neighborhood selection; (2)

Graph weightW-learning; (3) EmbeddingY-learning. . . . . . . . . . . . . . . 20

2.2 2D visualizations of embedding results using (1) initial/input kernelK0; (2)

LLE1: results on learnedY after 1 LLE iteration; (3) LLE4: results on

learnedY after 4 LLE iterations; using 4 digits “0”,“3”,“6”,“9” on MNIST

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



3.1 Optimal solutionδk given singular valueσk of input dataX, at different

p = {1, 0.9, 0.8, · · · , 0.1} values with fixedβ = 0.5, on dataset Mnist with

20 images, i.e.,X = {x1,x2, · · · ,x20}. To avoid clutter, part of Fig.1a is

zoomed in and shown in Fig.1b. In Fig.1d, the solution atp = 0.3 is a

faithful low-rank solution, and the solution atp = 0.9 is asuppressedlow-

rank solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Demonstration of robust Schatten-p model of Eq.(3.3) on a toy data shown

in panel (a): original data shown as black circles.(x1 · · ·x12) are non-

outliers and(x13 · · ·x15) are outliers. Reconstructed datazi are shown as

red-diamonds. Blue line indicates the subspace computed from standard

PCA on non-outlier data. Results of Schatten model atp = 0.2 are shown in

(e). Thisp = 0.2 results are split to outliers and non-outliers as shown in (b)

and (f). Similarly, results forp = 0.5 shown in (c) and (g); results forp = 1

shown in (d) and (h). Atp = 1, non-outliers shrink towards coordinate (0,0).

At smallerp, non-outliers shrink far less. . . . . . . . . . . . . . . . . . . . 44

3.3 Reconstructed images (Z) of YaleB dataset using Model 2 of Eq.(3) shown in

1 panel. First line: original images of one person, Second line: reconstructed

imagesZ atp = 1, Third line: reconstructed images atp = 0.2. One can see

p = 1 images are very similar to each other (most fine details are lost), while

p = 0.2 images retain some fine details and are closer to original images. . . 54

3.4 Occluded image dataset Umist.. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 An example of overlapping tree structure with variable index on each node.Root

groupG0 = {1−10}, depth-1 nodes include groupsG1 = {1, 2},G2 = {3, 4, 5, 6},G3 =

{7, 8, 9, 10}, depth-2 node include groupsG4 = {1},G5 = {2},G6 = {3, 4},G7 =

{5, 6},G8 = {7, 8, 9},G9 = {10}, and depth-3 nodes include groupsG10 = {7, 8},G11 =

{9}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



4.2 An example of linear structure, with variable index on each node. Left: non-

overlap linear structure,G1 = {1, 2},G2 = {3, 4},G3 = {5, 6},G4 = {7, 8, 9};

Right:overlap linear structure,G1 = {1, 2},G2 = {3, 4},G3 = {5, 6, 7},G4 =

{7, 8, 9}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 An example of feature constraint on undirected graph. Each group is themaximum

clique on undirected graph.G1 = {1, 2, 5},G2 = {1, 4, 5},G3 = {3, 7},G4 =

{3, 6, 8}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 One demonstrating example of overlapping group structure.y-axis: group num-

ber,x-axis: variable index.p = 100, G = 9. G1 = {x1,x2, ...,x20}, · · · ,G9 =

{x81,x82, · · · ,x100} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Convergence of proximal operator computation of our algorithm (Algorithm

2) on (a)pathwaygene-expression; (b)edgegene-expression. (a) Parameter

setting: p = 3510, G = 637, w = 0.5, convergence criteria: 1e-6. (b)

Parameter setting:p = 1000, G = 7194, w = 2, convergence criteria: 1e-6. . 76

4.6 Time comparison (y-axis: CPU time) for computing the proximal opera-

tors on synthetic datasets. w.r.t differentp, w,G. (a-c) overlapping group

structure as shown in Fig. 2; (d) tree structure which has similar hierarchi-

cal structure as shown in Fig. 1. (a) feature sizep = 1000, regularization

parameterw = 0.1; (b) group numberG = 100, regularization parameter

w = 0.1; (c) feature sizep = 1000, group sizeG = 100; (d) feature size

p = 2000, group sizeG = 200. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Selection of discriminative data in balanced class expansion. Data points: a,b, c, d.. 94

5.2 Illustration of maximum consistency approach on a synthetic dataset. Labeleddata

shown in thick symbols: red squares, green diamonds, blue circles for 3 classes.

Initially unlabeled data are shown in black stars and, after obtaining labels, shown

in open symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xii



5.3 Experiments results on 4 methods of Generalized Preferential Random Walks: GF,

method1, method2(=LGC), method3. x-axis represents the differentα settings(α =

0.1, 0.3, 0.5, 0.7, 0.9), y-axis is the average classification accuracy over 10 indepen-

dent runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-

LGC. x-axis represents the different percentage of labeled data, y-axis is the average

classification accuracy over 10 independent runs. . . . . . . . . . . . . . . . . . 104

5.5 Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-

LGC using different discriminant score computations of Eqs.(5.19,5.20 and5.21) on

datasets MSRC and binalpha. x-axis represents the different percentage of labeled

data, y-axis is the average classification accuracy over 10 independent runs . . . . . 105

5.6 Experiments results on 4 methods of label propagation: GF, MC-GF, LGC,

MC-LGC by using different parameterθ on dataset Caltec. x-axis represents

the different percentage of labeled data, y-axis is the average classification

accuracy over 10 independent runs . . . . . . . . . . . . . . . . . . . . . .. 106

xiii



LIST OF TABLES

Table Page

2.1 Dataset descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 31

2.2 Accuracy (ACC), normalized mutual information (NMI), andpurity (PUR)

comparisons of different clustering algorithms: Normalized Cut, Symmetric

NMF and Spectral Clustering.K0: results obtained on the original/input

kernel. LLE1: results on learnedY after 1 LLE iteration. LLE4: results on

learnedY after 4 LLE iterations. All results shown are percentage. . .. . . 35

2.3 Accuracy comparisons of semi-supervised learning on 9 datasets. Learning

algorithms used: Harmonic function, Green’s function and Local and global

consistency(LG-consistency).K0: results obtained on the original/input ker-

nel. LLE1: results on learnedW after 1 LLE iteration. LLE4: results on

learnedW after 4 LLE iterations. Results shown are based on 10% or 20%

labeled data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Description of Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 True data recovery: True signal reconstruction error atdifferent p on six

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Loss of fine-details: variance of reconstructedZ on six datasets, original

images:X0, occluded images:X . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Classification accuracy(shown as percentage) on six occluded datasets using

input corrupted dataX and reconstructedZ at differentp values . . . . . . . 57

3.5 Classification accuracy(shown as percentage) on six occluded datasets using

input corrupted dataX and reconstructedZ at differentp values . . . . . . . 57

xiv



4.1 Comparison of different proximal operator computation (Obj, CPU time) on

pathwaygene-expression dataset. Parameter setting:p = 3510, G = 637,

convergence criteria: 1e-6. . . . . . . . . . . . . . . . . . . . . . . . . . .. 77

4.2 Comparison of different proximal operator computation (Obj, CPU time) on

edgegene-expression dataset. Parameter setting:p = 1000, G = 7194,

convergence criteria: 1e-6. . . . . . . . . . . . . . . . . . . . . . . . . . .. 77

4.3 Comparison of different algorithms for overlapping lasso computation (Obj,

CPU time, iteration number) onpathwayandedgegene-expression dataset.

Involved genesp = 1000, convergence criteria:10−4. . . . . . . . . . . . . . 78

4.4 Comparison of different algorithms for overlapping lasso computation (Obj,

CPU time, iteration number) onpathwayandedgegene-expression dataset.

Involved genesp = 2000, convergence criteria:10−4. . . . . . . . . . . . . . 78

4.5 Classification accuracy, number of selected genes, number of selected path-

ways using our method (overlapping group lasso of Eq.4.2), standard lasso

using 3-fold cross validation. . . . . . . . . . . . . . . . . . . . . . . . .. . 80

5.1 Descriptions of datasets . . . . . . . . . . . . . . . . . . . . . . . . . .. . 99

xv



CHAPTER 1

Introduction

Nowadays, a large amount of data have been produced from different sources, e.g.,

text data, image data, sensor data, system data, etc. It is changing dramatically for people’s

daily life. This is also known as “data explosion” due to the rapid increase in the amount

of published data and the effects of its abundance. These years have witnessed the data

explosion, and data is everywhere. It is predicted that people will generate more data as

humankind than it is generated in the previous 5,000 years inthe next five years. How to

process these huge amount of data becomes more important than ever before.

Text data (e.g., web logs, microlog, email, etc) is one important type of data. The

goal of text analysis (a.k.a text mining) is to derive high-quality information from structured

or unstructured text document. These high quality information are explicitly or implicitly

expressed as patterns or trends. Typically, text mining is to find the relevance, novelty and

interestingness from structured or unstructured data, which may involve text categorization,

text clustering, concept extraction, sentiment analysis,document summarization, social

tagging, etc. Lots of analysis and modeling technology has been proposed for text analysis,

e.g., Bayesian model [1], Latent semantic indexing model [2], Latent Dirichlet allocation

model [3], etc. Analysis and modeling techniques for text isrelatively mature and adequate.

Among the large number of available data, image data accounts for a large portion

of them. Advances in image acquisition and storage techniques have paved the way for

tremendous growth of image data. For example, in Facebook, 350 million photos are up-

loaded every day. In google, weekly image search traffic is 1,400,000 per year on February

2013. As compared to text data, image data will reveal more useful information to hu-
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man users. Image analysis and mining focuses on extraction of knowledge/patterns from

images, which involves inter-disciplinary efforts in computer vision, image processing, ma-

chine learning, data mining, etc. Although some techniques(e.g., dictionary learning [4],

sparse coding [5], deep learning [6]) have been proposed to solve the emerging image

analysis problem, there is still a great gap to solve different challenging image analysis

problems in real world. Analysis and modeling techniques for image data are not mature,

and still far behind. For example, on google, when you searcha similar image, the results

will be very poor if the image is not in the google database. There is an urgent requirement

to develop advanced machine learning techniques to solve image analysis problems (e.g.,

image classification, image segmentation, image analysis,etc).

The goal of this thesis is to develop new and efficient machinelearning algorithms to

solve many challenging problems appeared in image analysis. More specially, we focus on

development of new technologies for image classifications:dimension reduction, feature

engineering, low-rank data approximation and label propagation. We propose the following

methods in this thesis.

• Iteratively locally linear embedding algorithm for dimension reduction;

• Efficient constrained feature selection algorithm via group lasso;

• Schatten-p norm model for robust data recovery;

• Efficient maximum consistency label propagation methods for semi-supervised learn-

ing and image annotation.

We start by briefly reviewing the key techniques used for feature engineering, di-

mension reduction and classification. We show applicationsof these techniques for image

classification/annotation. Then we present some challenges of current feature engineering,

dimension reduction methods, and show the problems of applications of those algorithms

for image annotation tasks. Finally, we summarize the contributions of our works.

2



1.1 Motivating examples in image analysis

See a motivating example shown below. Given a vehicle image taken from a camera

or a cell phone, can you find the near duplicate image and tell the exact information (com-

pany, year, model, etc.) of the query vehicle? To solve this problem, this involves image

representation, image similarity measurement, and image classification. In order to achieve

good image retrieval performance, there are a lot of challenging tasks needed to be solved.

See another motivating example shown below (Fig. 1.1). In practical settings, only

a few number of images are labeled, and thus how to label the large number of unlabeled

images remains a challenging issue. There is an urgent need of efficient and effective meth-

ods to label them. In Fig. 1.1, we only know several labeled cars, and the goal is to tell

the labels for all the other cars. More challengingly, we need to tell the exact model of the

car. Although the brand of the cars are the same: Honda, the model of the cars are totally

different. This is known as “fine-grained” classification [7] in computer vision, which is a

hot topic nowadays. As compared to coarse-grained classification, “fine-grained” classifi-

cation problem is more challenging, because images from different sub-classes share lots

of similar patterns in practice.

1.2 Review of feature Engineering, Dimension Reduction and Classification Techniques

Information explosion era has witnessed the rapid increaseof the amount of data and

the abundance of high-dimensional observations. The trendof “big data” presents enor-

mous challenges in different applications. The availability of large amount of data will

change everyone’s daily life. How to handle with these data becomes the central prob-

lem of many applications, e.g., image categorization/annotation, customer segmentation,

traffic prediction, ad optimization, recommendation systems, privacy analysis, etc. Data

mining/machine learning plays a fundamental role to handlethese data analysis tasks ap-

3



Civic

AccordHybrid

Predict car labels for unknown cars (?)

AccordCrosstourAccordCrosstour

??

??

??

??
??

??

Figure 1.1:Prediction of labels for unknown cars (marked as red question mark). Few labeled
cars: Civic, Accordcrosstour, AccordHybrid.

peared in different domains. Thus there is an urgent need to develop efficient and scalable

algorithms to deal with data analysis problems through dimension reduction, feature en-

gineering, semi-supervised learning. In this thesis, we will focus on some fundamental

algorithms which may help to improve the capabilities of data analysis systems and appli-

cations. More specially, we will go through dimension reduction, feature engineering, and

label propagation parts. The big picture of our work is shownin Fig 1.3.

Why feature engineering?

In machine learning, “feature” is a key concept used for different predictive tasks.

See an example shown in Fig 1.4. In order to predict whether a patient get cancer or not,

there are many factors which determine this. For example, he(or she) is of high pressure at

work; he (or she) seldom take physical exercise; he (or she) smokes a lot, etc. Each factor

of them can be viewed as a “variable” or “feature”. Since the goal is to find cancer earlier

before that they can grow and spread, we need to identify which factors are most significant

to cause cancer according to different patients’ record.

4



Utility
Retail

Finance

data collection
feature

engineering
modeling validation

Figure 1.2:General data mining pipeline. (1) Collection of data from different sources; (2) Feature
engineering on data; (3) Model construction according to requirement of data analysis tasks; (4)
Validation and interpretation of experiment results.

Good input features are very important for different machine learning algorithms.

For example, for a neural network (deep learning) module, the chosen features will af-

fect the needed number layers, the number of hidden neurons,and the number of training

examples. Feature engineering is to manipulate the features to satisfy the requirement of

different classifiers, which may involve feature concatenation, feature selection, and feature

configuration in different parameters, etc. Feature engineering is expected to help under-

stand the properties and capabilities of different features, and identify which features are

helpful for the tasks you are trying to solve. Domain knowledge can help for feature en-

gineering experiment design, while the experiment resultscollected from designed models

will motivate a better understanding of the problem.

It is well known that the initial pick of feature is an expression of prior knowledge.

For example, for image data, we may use pixels, contours, andtexture features; for signal,

we may use samples, spectrograms, etc; for time series, we may use ticks, trends, reversals,

etc; for biological data, we may use DNA sequence, marker sequence, genes, etc; for text

data, we may use words, term frequency, inverted document frequency, grammatical classes

and relations, etc. There are many methods to combine different features, e.g., polynomial

combinations of features from different domains, logical conjunctions of features, com-
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Figure 1.3:Feature selection, dimension reduction, and classification for image analysis.

bination of features in a tree-structure, etc. This will introduce large number of features.

Kernel mapping on feature space generally leads to non-linear combinations of features.

Feature selection on feature space selects a few number of important features. Different

features may be strongly relevant, weekly relevant, or totally irrelevant. It is known that

to find all relevant features for a classification problem is aNP-hard problem, because we

need to do an exhaustive search through all subsets of features. Using filter method [8] for

feature selection can select a few number of features, whichare independent of classifiers.

Feature selection using structural sparsity [9] based techniques has been proposed, for ex-

ample,L0 structural sparsity [10],L1 structural sparsity [11],L1/2 structural sparsity. The

goal of these sparse based regularization is to seek relevant features which have non-zero

values. This is also known as “compressed sensing” [12].

Wrapper method needs to use specific learning systems and algorithms. Backward

and forward tracking algorithms are the two most popular wrapper method. For example,

in backward feature selection method, it starts with all features, and then tries to remove
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Figure 1.4:Features(variables) in prediction of cancer disease

each feature and measure its effect on validation set. The metric used to remove features

is to find the features which causes the least harm. The above process is iterated, until

the desirable number of features are selected. There are many variants of above feature

selection methods. However, the computational cost is usually very high, and there is also

risk of over-fitting on the validation set.

Greedy method is another popular feature selection method which selects features

one by one. For example, in decision tree model, each decision making process can be

viewed as a feature selection process. Pruning of decision tree is equivalent to pruning

of features. In random forest model, ensembles of classifiers involves selection of new

features. Boosting model/bagging model is used to combine different features.

Feature learning for image analysis has been widely used forhandwritten digit recog-

nition, face recognition, sonar image analysis, vehicle recognition, zip code recognition,

etc. Multi-layer, multi-view [13], multi-task features [14], e.g., convolution on the fea-

tures, connections of features, have been proposed for image analysis.

Why dimension reduction?
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In many machine learning problems, the dimension of data is very large. For ex-

ample, in face recognition problem, if pixel is used as features and the resolution of each

image is 56x46 dimension, the dimension of each image will be2576 after vectorization.

Directly do classification/clustering on the high dimension space will not give accurate

results. This is known as “curse of dimensionality”. One popular way is do dimension

reduction, which reduces the number of feature dimension via projection the original high-

dimensional space into a low-dimensional space. Thus the goal of dimension reduction is

to reduce the number of random variables and to avoid the effects of curse of dimension-

ality. In low-dimensional subspace, many standard classification methods (e.g., K-nearest

neighbors, support vector machine, etc) can be applied.

Many linear dimension reduction methods are proposed, where dimension reduction

can be conducted in one step using linear discriminant analysis (LDA), principal compo-

nent analysis (PCA) [15], canonical correlation analysis (CCA) [16], factor analysis, etc.

This results in low-dimensional feature embedding. The subspace computed by PCA cap-

tures the dimensions which have the maximum variability across all the data, reflected by

the covariance structure of the data. Factor analysis also captures the correlation structure.

LDA is to find the subspace which maximizes the margins between between-class distance

and within-class distance.

Many nonlinear dimensionality reduction techniques are also proposed to project

original data into non-linear space, using kernel PCA [17], locally linear embedding (LLE) [18],

multidimensional scaling [19], Isomap (using geodesic distances in data space) [20], diffu-

sion maps (using diffusion distances), semi-definite embedding, etc.

For example, Kernel PCA uses the non-linear mapping to find thelow-dimensional

latent structure in the kernel space. LLE is to capture the low-dimensional, neighbor-

hood preserving embedding of high-dimensional data, usinginterpolation of data from

its nearest neighbors. Laplacian embedding is to compute the low-dimensional embedding

8



through graph Laplacian using the reconstructed graph weight information. Metric multidi-

mensional scaling (MDS) maps the original high dimensionalspace to a lower dimensional

space, which preserves the pairwise distances. In semi-definite embedding [21], it proposes

to learn the kernel matrix as an instance of semi-definite programming.

For multi-dimensional data, tensor analysis is a powerful tool for image analysis

through multi-linear subspace learning, like Parafac model, Tensor decomposition [22],

Tucker decomposition [23], bi-linear model, etc.

When handling very-high dimensional datasets (e.g., top 5 similar image in image

database, top 5 similar video in video database), locality sensitive hashing (a.k.a random

projection) [24] is also used to project original feature space into low-dimensional space for

searching, query purpose. Recently, learning for hashing function becomes more popular

because it provides a much better way to efficiently encode the high-dimensional data.

Why label propagation?

In image annotation/categorization, we can only obtain a few number of labeled data

points. To label a large number of unlabeled data will be time-consuming and also labor

expensive. In machine learning, this is usually solved using “semi-supervised learning

(a.k.a transductive learning)” [25]. Different methods have been proposed to solve these

problems. Among these methods, label-propagation [26] methods have proven to be very

efficient and effective methods.

The goal of label propagation is to label data points whose labels are unknown. In the

label propagation process, the labels are propagated from labeled data points to unlabeled

data point according to certain propagation rules. Different label propagation methods

have been proposed, such as Harmonic function [27], Local and Global consistency [28],

Green’s function [29], etc. In principle, the difference ofthese different algorithms is the

different label propagation rules (a.k.a operator).
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The key idea of graph-based label propagation method is to build a graph whose

nodes represent labeled data and unlabeled data, and edges represent similiarity/relations

between different data points. The labels are propagated from known nodes to all unknown

nodes on graphs. During the label propagation process, different cost criterion has been

proposed to solve the involved optimization problem, whichessentially reduces to different

graph transductive learning strategy.

In these different methods, graph structure, graph Laplacian is utilized to spread

labels from labeled data samples to the whole dataset. A basic assumption about graph

manifold learning is that, labeling process should be smooth over the graph manifold. This

assumption yields graph regularization terms based on graph Laplacian. From inductive

settings to transductive settings, graph manifold information is utilized to explore the local

geometry data in graphs (e.g., k-NN graph).

In harmonic function method [30, 31], the label for an unknown node is given by

a weighted average of the neighbors’ current labels, which is a compromise of its initial

labels and regularization term through graph Laplacian.

In local and global consistency method [32], in order to label unknown nodes, it uses

the normalized graph weights to compute the contributions of other graph nodes, which

leads to different “label spreading” criteria. In general,the time complexity of these algo-

rithms is expected to beO(kn2), wherek is the number of neighbors for a node in a graph,

n is the number of nodes in a graph.

Intuitively, the label propagation on graphs has close connections with random walk

on graphs [33]. For example, to assign a label to data pointxi is depending on the prob-

ability of arriving to a positively and negatively labeled example when making a random

walk starting fromxi and until some labeled data is reached. This will give inductive rules

for deriving label propagation equations on graphs.
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It has been shown that label propagation on graphs is equivalent to an optimization

problems by minimization of a cost function derived on graphs. Thus, it established the

theoretical foundation for label propagation on graphs. Label propagation on graphs often

leads to iteratively updating algorithms, which can be solved using linear system equation.

Label propagation on graphs can also be interpreted from heat kernel view or electric net-

work view [34]. The solution to the limit case of label propagation is known to be given by

the voltage in an electric network, where labeled nodes are connected to voltage sources,

and resistors correspond to the weights on graphs. Prior class distribution information can

be incorporated into this label propagation procedure.

Above non-parametric local learning algorithm [35] essentially relies on a neighbor-

hood graph which is used to approximate manifold which is very close to the data density.

This means the label for datax is mainly depending on the unlabeled data which are close

to x on graph manifold.

However, it is has been pointed out that above methods may notscale well, when the

intrinsic dimension of these manifold becomes large [36]. For example, Laplacian regular-

ization algorithm learns about the shape of manifold, whichis reflected from the principal

eigen-functions of the Laplacian of neighborhood [37]. Thedimension of manifold, and

whether data strictly lie on manifold determine the effect of the generalization error, which

are the influences of neighborhood data points. The structure of manifold determines the

performance of label propagation methods. If the manifold is flat in large region, then

simply increase of the number of neighbors may be helpful formanifold learning. If the

manifold has high curvature/variance, we cannot simply increase the number of neighbors,

because it will increase bias, without significantly improvement of variance.

In real world, there are different categories of classification tasks, e.g., image cat-

egorization, customer segmentation, topic discovery. Fig.1.5 shows the image annotation
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Figure 1.5:For image annotation task, each image is labeled as multiple concepts. Left image is
labeled as: sky, mountain, sea, boat, sand; right image is labeled as: road, building, sky.

tasks, where the left image is labeled as: sky, mountain, sea, boat, sand; and the right image

is labeled as: road, building, sky.

1.3 Research Challenges

There are tons of works about feature engineering, dimensional reduction and label

propagation. However, understanding and improvement of above algorithms is not trivial.

Application of above algorithms can be challenging, especially when considering some

specific algorithms. We provide the challenges of above algorithms in the following in

more detail. We argue that it is not trivial to solve the following problems.

Feature Engineering

Nowadays, structural sparsity based learning models are the most popular ways for

feature learning and feature engineering. The advantage ofstructural sparsity model is that

it can explore the structures of features, and enforce the solution of model to be sparse.

Based on different properties of structural sparseness, Lasso [11], group lasso [38], exclu-

sive lasso [39], generalized lasso [40], fused lasso [41] has been proposed to deal with

multi-dimensional variables with different structures. Can we achieve better classification

performance if feature structure is enforced? Is it closelyconnected to constraint feature

selection? Can we provide some efficient algorithms to solve these constraint feature se-
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lection problem? Is there some universal algorithms to handle the group lasso problem on

arbitrary structure?

Dimension Reduction

Unsupervised dimension reduction is widely used in practice. Locally linear embed-

ding is one of the most popular methods for non-linear feature embedding. The advantages

of locally linear embedding algorithm is to explore the neighborhood information of data,

and learn the embedding. The idea is to express each dataxi as a linear combinations of its

neighbors, and then construct the embeddingyi so that they can be expressed as the same

linear combinations of its neighbors. The challenge here isthat, can we provide a method

which can further improve the performance of embedding results? Like adaptive dimension

reduction which combines dimension reduction and unsupervised learning (clustering) to-

gether, can we provide a method to improve the reduced embedding(subspace) adaptively?

Low rank model [42] is widely used for data recovery purpose.It has close connec-

tions with principal component analysis (PCA), factor analysis, latent semantic analysis,

etc. Low rank approximation model is usually used to solve a minimization problem, which

measures the cost function w.r.t the fit between given data and low rank data approximation

matrix. The low dimensional constraint is enforced to ensure the rank of the recovered

data is low. It can be widely used in recommendation systems [43], where the data matrix

has missing values and approximation is categorial. In distance matrix completion prob-

lems, the constraint can also be enforced as semi-definite positive. The challenge is that,

can we provide some efficient algorithms to further improve the performance of low rank

data recovery? In practice, there are lots of missing valuesand corrupted values in data

matrix, can we provide some methods to recovery the missing values for data classification

purpose?

Label Propagation
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Many graph-based label propagation [44] are proposed. However, it is not clear what

is the difference among those different types of methods? Canwe explore the connections

and differences among different graph-based label propagation methods? If we can estab-

lish the connections between random walk and manifold learning, can it help to improve

the performance of label propagation methods? Can it be applied to more graph-mining

problems appeared in social networks and advertisement optimization?

In label propagation methods, we usually have a strong assumption that data lie on a

low-dimension manifold. This manifold could be smooth, andalso without high curvature.

What is the true dimension of manifold? Can we determine the structure of manifold?

1.4 Contributions

To solve above challenging problems, in this thesis, we provide efficient algorithms

targeting at specific challenges, to achieve the state-of-the-art performance in a number of

tasks in dimension reduction, feature engineering, and label propagation.

• Locally Linear embedding (LLE) is one of the most popular dimension reduction

method. We are interested in further improvement of standard LLE algorithm. We

systematically improve the two main steps of LLE: (a) learning the graph weights

W, (b) learning the embeddingY. We propose a sparse nonnegativeW learning

algorithm, and also a weighted formulation for learning embeddingY. One inter-

esting discovery is that, we find the embedding result is identical to normalized cuts

spectral clustering. We further propose to iterate the two steps in LLE repeatedly to

improve the results. Extensive experiment results show that iterative LLE algorithm

significantly improves both classification and clustering results. It can be applied into

image categorization/annotation tasks.
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• Standard trace norm model is used for data recovery purpose.However, the recon-

structed data can be shrank and singular values can be greatly suppressed. To solve

this problem, we present two low-rank data recovery models through replacing the

rank constraint by a Schattenp norm. The proposed model is attractive due to its

suppression on the shrinkage of singular values at smallerp. The limitations of stan-

dard trace norm model are: the shrinkage of reconstructed data, the suppression of

singular values. We analyze the optimal solution of model 1,and characterize the

rank of optimal solution. We design two algorithms to solve model 2, one is based

on Augmented Lagrangian method (ALM) [45], where a challenge step is to solve

associated proximal operator. The other is based on an iterative re-weighted scheme,

similar to reweightedL2 scheme, where rigorous convergence analysis is provided.

Extensive experiment results on 6 occluded datasets on computer vision tasks indi-

cate good performance of proposed method.

• Feature structure information plays an important role for regression and classification

tasks. We consider a more generic problem: group lasso problem, where structures

over feature space can be represented as a combination of features in a group. These

groups can be either overlapped or non-overlapped, which are specified in different

structures, e.g., structures over a line, a tree, a graph or even a forest. We propose a

new approach to solve this generic group lasso problem, where certain features are

selected in a group, and an arbitrary family of subset is allowed. We employ accel-

erated proximal gradient method to solve this problem, where a key step is to solve

the associated proximal operator. We propose an iterative re-weighted method to

compute the proximal operator, where its convergence is rigorously proved. Experi-

mental results on different structures (e.g., group, tree,graph structures) demonstrate

the efficiency and effectiveness of the proposed algorithm.
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• Random walk plays a significant role in computer science. The popular PageR-

ank [46] algorithm uses random walk. Personalized random walks force random

walk to “personalized views” of the graph according to users’ preferences. In this

paper, we show the close relations between different preferential random walks and

label propagation methods used in semi-supervised learning. We further present a

maximum consistency algorithm on these preferential random walk/label propaga-

tion methods [47] to ensure maximum consistency from labeled data to unlabeled

data. Proposed algorithm restricts label propagation fromsource(labeled data) to

reliably newly-labeled data only, and progressively expands to all unlabeled data,

therefore ensuring maximum consistency from labeled data to unlabeled data. Exten-

sive experimental results on 9 datasets provide performance comparisons of different

preferential random walks/label propagation methods. They also indicate that our

maximum consistency algorithm clearly improves the classification accuracy over

existing methods. It can be applied to text mining, image categorization/annotation

tasks.

1.5 Organization

This thesis is organized as follows.

In Chapter 2, we provide an improvement of standard Locally Linear embedding

algorithm. We name it as “iteratively locally linear embedding algorithm”, because it com-

putes the embedding results iteratively. The contributionof this paper is to provide a new

way to compute the embedding, which also establishes the relations between LLE and

standard Laplacian embedding and spectral clustering. It can be applied into image cate-

gorization/annotation tasks, and also different clustering tasks. Material of this paper was

published in two papers, presented at ICML2012 [48], SDM2013[49].
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In Chapter 3, we provide a new model for noisy data recovery, which can handle

dataset with missing values and corrupted values. The proposed new model is attractive

because it avoids the shrinkage of singular values. Efficient algorithms are derived to solve

the proposed model. There are lots of applications using theproposed model, for exam-

ple, application for recommendation systems, matrix completion problem, image recovery

problems, etc. It can also be used a preprocessing step for image categorization/annotation

tasks. Material of this paper was published in ECML2013 [50].

In Chapter 4, constraint feature learning is very helpful in practice because it can

enforce structures over feature space. Group lasso is one effective way to enforce the

constraint over feature space. There are many methods to enforce the group sparsity,

whereas these different groups could be either overlapped or non-overlapped, and these

different structures could be put over a line, a tree, a graphor even a forest. Iteratively

re-weighted method is derived to solve the proposed problem, where its convergence is

rigorously proved. There will be lots of applications which, e.g., medical image analysis,

bio-marker analysis, benefit from proposed algorithms. Material of this paper was pub-

lished in ICDM2013 [51].

In Chapter 5, random walk has many applications in information retrieval, medi-

cal image analysis, page rank, etc. The interesting discovery of this paper is to establish

the relations between random walk and label propagation. This fits well for many semi-

supervised learning problem. More interestingly, a maximum consistency algorithm is pro-

posed to ensure the reliably propagation of labels from labeled data to unlabeled data. This

is also known as “multi-stage” learning algorithm, which can be used for other classifiers,

e.g., k-nearest neighbor classifier, support vector machine, green function, etc. Empirical

study indicates the good performance of proposed algorithms. Material of this paper was

published in ECML2012 [52].
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Chapter 6 concludes the dissertation, summarizes our findings and empirical results,

and discusses future research directions. We have other works related to above researches.

Due to space limit, we will not put them in this thesis. If interested, please refer to [53, 54,

55, 56, 57, 58].
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CHAPTER 2

An Iterative Locally Linear Embedding Algorithm

Locally Linear embedding (LLE) is a very popular dimension reduction method.

This is very effective to do non-linear embedding. The two steps of LLE is shown in

Fig.2.1 The goal of this section is to propose a method, whichsystematically improves the

two main steps of LLE: (A) learning the graph weightsW, and (B) learning the embedding

Y.

We propose a sparse nonnegativeW learning algorithm. We propose a weighted

formulation for learningY and show the results are identical to normalized cuts spectral

clustering. We further propose to iterate the two steps in LLE repeatedly to improve the

results. Extensive experiment results show that iterativeLLE algorithm significantly im-

proves both classification and clustering results.

2.1 Background of locally linear embedding

Recently, there have been many algorithms proposed for nonlinear dimension reduc-

tion, which include Isomap [59], locally linear embedding (LLE) [18], kernel-LLE [60],

Hessian LLE [61], local tangent alignment [62], Laplacian embedding [63, 64], and many

variations. Above dimension reduction algorithms usuallycover two main steps: (A) for

each data point, learn the local geometry informationW. ThisW can be viewed as similar-

ity between data points or the edge weights of a graph whose nodes are the data points. We

call thisW-learning, or learning the graph weights. (B) Using the learnedW to embed the

high-dimensional data points into a lower-dimensional spaceY. We call thisY-learning, or
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Figure 2.1:Procedure of locally linear embedding process. (1) Neighborhood selection; (2) Graph
weightW-learning; (3) EmbeddingY-learning.

learn the embedding. The performance of those algorithms are determined both by learning

the local information and also by constructing the mapping relations.

In past decades, many clustering algorithms have been proposed such as K-means,

spectral clustering and its variants [65], normalized cut [66], ratio cut [67], etc. Among

them, the use of manifold information in graph cuts has shownthe state-of-the-art cluster-

ing performance.

One key observation is that both LLE and spectral clusteringutilize the data manifold

information. This motivates us to investigate deeper relations between the LLEY-learning

and spectral clustering in terms of Laplacian embedding (because the embedding is pre-

cisely the relaxed cluster indicators for the spectral clustering). Indeed, we discover that a

properly modified formulation ofY-learning provides a solution which is identical to the

normalized Laplacian embedding (see§2.3). We incorporate this improvement into our

final iterative LLE algorithm.

Another observation is that the data geometry information encoded inW also plays a

central role in the performance of these algorithms. We investigate theW-learning process

and propose a nonnegative, kernelized, sparseW-learning algorithm (see§2.4).
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Furthermore, we propose toiteratively repeatthe two mains steps (W-learning and

Y-learning) to improve the results progressively. Here we use the learned embeddingY

to augment the input data to learn a betterW, which leads to a betterY in turn. This is

repeated until the process converges (details are given in§2.3). This iterative procedure

incorporates both the improvedY learning and the improvedW learning into a coherent

iterative LLE algorithm.

The experiment results for clustering and semi-supervisedlearning tasks on 9 datasets

show clear performance improvements.

2.2 LLE and New Formations

Brief overview of LLE

LLE [18] is a nonlinear dimension reduction approach. Suppose dataX = [x1,x2, · ·

·,xn] ∈ <
p×n, consists ofn data pointsxi, each with dimensionalityp. LLE expects each

data point and its neighbors to lie on or close to a locally linear manifold, which governs

how the weight coefficientsW are constructed from Eq.(2.1). It then reconstruct each

data point (lowk-dimensional embedding vectors{yi}) from its neighbors via the same

neighborhood relations by minimizing a quadratic cost function Eq.(2.2),

min
W

∑

i

||xi −
∑

j∈Ni

Wijxj ||
2, (2.1)

min
Y

∑

i

‖yi −
∑

j

Wijyj‖
2, (2.2)

where weightWij summarizes the contribution of thejth data point to the construction of

ith data point.Ni is the kNN neighborhood ofxi. The shift invariance ofY = [y1,y2, · ·

·,yn] ∈ <
k×n is enforced by restricting

∑

j

Wij = 1.

LLE Improvements in two directions

In this paper, we propose improved formulations in both mainsteps in LLE. (A) In

theW-learning step of Eq.(1), we propose new improved formulations to learnW. We first
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makeW nonnegative in this section. We will further propose a kernelized sparse learning

in §4. (B) In theY-learning step of Eq.(2), we propose slightly modified formulation and

prove that the solution to Eq.(2) is identical to NormalizedCut or Laplacian embedding.

Our iterative LLE algorithm is based on these improved formations in both LLE steps.

To make a connection to graph embedding, we (1) restrictW to be nonnegative, i.e.,

we add constraintW ≥ 0 to Eq.(2.1) (as done in [68]); (2) we symmetrizeW to obtain

Z = 1
2
(W+WT ) as the graph edge weight/similarity matrix; (3) we imposeD-orthogonal

constraint onY, i.e.,YDYT = I, whereD = diag(Ze) is a diagonal matrix containing

node degrees.

With these three changes, the LLE equations of Eqs.(2.1,2.2) become

min
W

∑

i

||xi −
∑

j∈Ni

Wijxj ||
2, s.t. W ≥ 0, (2.3)

min
Y

∑

i

di||yi −
∑

j

(D−1Z)ijyj ||
2 s.t. YDYT = I, (2.4)

wheredi = Dii.

We note several important changes here. In Eq.(2.4),D−1 is inserted for two impor-

tant reasons: (1) Note that
∑

j(D
−1Z)ijyj is the average values ofyi’s neighbors. Thus

Eq.(2.4) enforces the smoothness of function{yi}. (2) It also enforces the shift invariance

of obtainedY, because
∑

j(D
−1Z)ij = 1. This implies that if{y∗i } is an optimal solution,

so is{y∗i − c} wherec is a constant vector. Note that we adddi as the weight of each point

yi, for reasons immediately clear below.

LLE Y-learning is identical to Normalized Cut Spectral Clustering

Now we show that LLEY-learning formulation of Eq.(2.4) is identical to normalized

cut.

In fact, this is a general result, not restricted to LLE. It holds for any symmetric

nonnegative graph similarity functionZ. More precisely we have theorem (1),

22



Theorem 1. For any symmetric nonnegative graph similarity functionZ of the formulation

of Eq.(2.4), the optimal solution ofY is identical to the optimal solutionH of normalized

cut spectral clustering, given graph weight matrixZ.

In the following, we first briefly introduce normalized cut and present the proof of

Theorem 1.

Review on Normalized Cut.

Normalized cut [66] is an effective graph partitioning (clustering) technique to iden-

tify clusters inherent in the data, given the pairwise similarity matrixZ. It is well-known

now multi-way normalized cut can be solved by the following problem,

min
G

Tr(GT (I− Z̃)G) s.t. GTG = Ik,

whereZ̃ = D−
1
2ZD−

1
2 . andG = [g1,g2, · · ·,gk] are relaxed cluster indicators. The

optimal solution forG is the smallestk eigenvectors from(I− Z̃), i.e.,

(I− Z̃)gk = µkgk. (2.5)

The cluster indicatorH = [h1,h2, · · ·,hk] is

hk = D−
1
2gk, H = D−

1
2G. (2.6)

Relation to Laplacian Embedding.

It is easy to see thatHT = V ≡ [v1, · · · ,vn] is identical to the solution of

min
V

∑

ij

Wij‖vi − vj‖
2 s.t. VDVT = Ik. (2.7)

This Laplacian embedding with degree normalizationVDVT = Ik is effective for clus-

tering problems because the embedding coordinates are the continuous relaxation of the

cluster indicators of the multi-way normalized cut spectral clustering. Similarly, Lapla-

cian embedding using coordinates with standard normalization VVT = Ik is precisely the
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continuous relaxation of the cluster indicators of multi-way ratio cut spectral clustering

[67]; The widely used linear embedding, Principal component analysis (PCA) is precisely

the continuous relaxation of the cluster indicators of the multi-way K-means clustering

[69, 70].

Theorem 1 can be equivalently expressed for Laplacian embedding.

Proof of Theorem 1

To prove the theorem 1, we need Lemma 1.

Lemma 1. The optimal solution to Eq.(2.4) is,

Y∗ = FTD−
1
2 , (2.8)

whereF = [f1, f2, ..., fk] ∈ <
n×k is the smallestk eigenvectors of(I−Z̃)2, Z̃ = D−

1
2ZD−

1
2 ,

i.e.,

(I− Z̃)2fk = λkfk. (2.9)

Proof of Lemma 1.

Proof. NoteY = [y1,y2, · · ·,yn] ∈ <
k×n. Let

ỹi = yi −
∑

j

(D−1Z)ijyj, (2.10)

and thenỸ = [ỹ1, ỹ2, · · ·, ỹn] ∈ <
k×n. It is easy to seẽY = Y −YZD−1. Now Eq.(2.4)

can be written as
n
∑

i=1

di||ỹi||
2 =

n
∑

i=1

k
∑

j=1

diỸ
2
ji =

k
∑

j=1

n
∑

i=1

ỸjiDii(Ỹ
T )ij

= Tr(ỸDỸT ) = Tr (Y −YZD−1)D(Y −YZD−1)T

= Tr Y(I− ZD−1)D
1
2D

1
2 [Y(I− ZD−1)]T

= Tr YD
1
2 (I− Z̃)(I− Z̃)D

1
2YT .

Thus Eq.(4) becomes

min
Y

Tr(YD
1
2 (I− Z̃)2D

1
2YT ) s.t. YDYT = I. (2.11)
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To optimize Eq.(2.11) is equivalent to optimize,

min
F

TrFT (I− Z̃)2F, s.t. FTF = I, (2.12)

whereF = D
1
2YT . It is easy to see the optimal solutionF = [f1, f2, · · ·, fk] for Eq.(2.12)

is the smallestk eigenvectors from(I − Z̃)2, i.e., Eq.(9). Thus the optimal solutionY∗ =

(D−
1
2F)T = FTD−

1
2 .

Proof of Theorem 1.

Proof. Because(I − Z̃) is semi-definite positive, the eigenvectorsgk of Eq.(2.5) can be

uniquely mapped to eigenvectorsgk of

(I− Z̃)2gk = µ2
kgk. (2.13)

Comparing Eq.(6) of normalized cut against Eq.(2.9) of LLE, one can seefi = gi, µ
2
i =

λi,F = G. Compared Eq.(2.6) of normalized cut against Eq.(2.8) of LLE, one can see

H = YT . This completes the proof.

2.3 An Iterative LLE Learning Algorithm (ILLE)

We now use the above results, coupled with two new schemes(A,B) to derive a new

learning algorithm.

Motivation of iterative LLE

(A)Iterative process of LLE

In LLE, starting fromX, we learnW, and then learnY as the low-dimensional

embedding of dataX. In this paper, we propose to useY as the new data and iterate this

process to further improve the embedding. The key observation is that the class structure

of the data is more clear inY than inX (this is the original embedding purpose of LLE).

Thus we useY as the new data and repeat this process to learn an improvedY.

(B) Kernel generalization
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From experiments on several datasets, the results of using linear formulation onX

for learningW in Eq.(2.1) are generally not as good as other state-of-art methods. Here we

use the kernel trick to generalize this to arbitrary nonlinear similarity function. We re-write

Eq.(2.1) as

min
W

∑

i

||φ(xi)−
∑

j∈Ni

Wijφ(xi)||
2, (2.14)

whereφ(xi) is a mapping to a higher dimensional space. The important thing here is

that the exact form of the mapping function is not needed; only the inner productKij =

〈φ(xi), φ(xj)〉 is needed.

Using matrix notation, the LLE of Eq.(2.1) can be written asmin
W
||X − XWT ||2,

and Eq.(2.14) can be written as

||φ(X)− φ(X)WT ||2 = Tr(K−WK−KWT +WKWT ). (2.15)

This is useful, because once we computeY from Eq.(2.4), we can build a kernel fromY

and substitute it into Eq.(2.15) to learn a newW (and thusZ ).

Proposed algorithm

By incorporating the above schemes of (A,B), we outline our iterative LLE learning

algorithm as follows.

(1)Given kernelKt, solve forWt with Eq.(2.15) or Eq.(2.17)1.

(2)Given pairwise similarityWt, solve forYt using Lemma 1.

(3)Given embeddingYt, compute a new kernelKt+1 either as the final result of our

algorithm (both embeddingYt and kernelKt+1) or as input to step (1). Details ofKt+1

construction is given in§3.3.

Initially K1 is obtained from dataX, we repeat above 3 steps for serval iterations

to obtain a better kernel. See Algorithm 1 for more details. Note in step(1), we have

two alternatives to computeWt. Thus we have two versions of iterative LLE - one based

1S of Eq.(2.17) can be viewed as pairwise similarity
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on simply iterating LLE process, and the other based on learning a sparse kernel using

algorithm of Eq.(3.17) in§4.

Discussion. Here we did not give the global convergence proof of this iterative LLE

algorithm. The algorithm is very intuitive and natural. It is motivated by a simple observa-

tion: class structure is more clear in embeddingY than in original dataX.

Construction of the new kernel In step (3) of our algorithm, once the low-dimensional

embeddingYt is obtained, we have the following choices.

(a) Construct a new kernel fromYt. There are many way to construct kernel. One

possible approach is to construct the kernelKY by simply using the Gaussian Kernel, i.e.,

KY = e−γ||yi−yj ||2 , whereγ is the scale parameter. Another way is to construct new kernel

KY as the linear kernel in low-dimensional space, i.e.,KY = YYT .

(b) Construct the kernelKt+1 either as the final result of our algorithm or as input

to step (1). There are many choices, (b1)Kt+1 = Kt
Y; (b2) KernelKt+1 is a combination

of Kt
Y and the previous kernelKt. There are two way to achieve this, additivelyKt+1 =

Kt+Kt
Y, or multiplicativelyKt+1 = Kt�Kt

Y, where we use� to denote the element-wise

matrix multiplication, e.g., ifC = A�B, thenCij = Aij ×Bij.

In choice (b1), we simply ignore the previous kernel and set the new kernelKt+1 =

Kt
Y. Note both additive and multiplicative operations in choices (b2) ensure the new kernel

Kt+1 is also semi-definite positive(s.d.p) if the original kernel Kt is s.d.p.

Discussion. In our experiments, we tried different choices. We find the results ob-

tained from (b2) are generally better than (b1), and the multiplicative combination usually

achieves better results than additive combination. Thus inour experiment we use (b2) with

multiplicative combination to construct the new kernel in step 3.
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Algorithm 1 Iterative LLE algorithm(ILLE)
Input: Original KernelK1 obtained from dataX, maximal iterationT

Output: Pairwise similarityW , embeddingY

Algorithm:

1: for t = 1 to T do

2: ComputeWt of Eq.(2.15) or Eq.(2.17) with current kernelKt

3: ComputeZt = 1
2
(W +Wt).

4: Compute embeddingYt using Lemma 1.

5: Compute a new kernelKt+1 given embeddingYt.

6: end for

7: Output: Pairwise similarityW = Kt+1, embeddingY = Yt.

2.4 ImprovedW-Learning Formulation

Here we propose an improvement to theW-learning step of LLE. So far for LLE of

Eq.(2.1) and the new kernel version of Eq.(2.15), we maintain the original LLE convention

thatW preserves thekNN structure, i.e.Wij 6= 0 for only j ∈ Ni (kNN of objecti).

This constraint is too strong for constructing the data similarity matrix W. Thus,

in our approach, we relax this to letWij be nonzero even ifj 6∈ Ni. In other words, we

bypass kNN entirely.

We now present a new approach to learn the pairwise similarity matrix S ∈ <n×n,

whereSij represents thei-th data’s contribution to reconstruct data pointxj. We hope the

newly learnedS has much clear structure. We use the symbolS to emphasize thatW is

learned using the new approach. Our objective function for learningS is,

min
S≥0
‖X−XS‖2 + αTr(STS) + β||S||1,1, (2.16)

whereα andβ are regularization parameters,||S||1,1 =
∑

ij |Sij|. The first term‖X −

XS‖2 =
∑

i

||xi−
∑

j

Sjixj||
2 is used to minimize the reconstruction error from the original
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data. The second term penalizes the complexity ofS. The third term ofL1 norm is to

promote the sparsity of the solution.

Using mappingφ: X→ φ(X) to map dataX to a higher dimensional space in kernel

machine. Eq.(2.16) becomes

min
S≥0
‖φ(X)− φ(X)S‖2 + αTr(STS) + β||S||1,1, (2.17)

which is equivalent to,

min
S≥0

Tr(K− 2KS+ STKS) + αTr(STS) + β||S||1,1. (2.18)

Eq.(2.18) is identical to Eq.(2.16) whenK = XTX.

Eq.(2.18) is a convex optimization problem andS has a unique global solution. Fur-

thermore, Eq.(2.18) can be written as

min
S≥0

Tr[K+ (βE− 2K)S+ ST (K+ αI)S], (2.19)

whereE is a matrix of all ones. BecauseK is s.d.p., by addingαI with α > 0, (K+αI) is

a well-conditioned matrix. It can be solved efficiently (seebelow). UsuallyL1 norm term

is difficult to handle. Here, however, it does not add any difficulty when handled together

with the nonnegativity constraint. TheL1 term can be ignored entirely:||S||1,1 = Tr(ES).

Computational algorithm for Eq.(2.17)

Here we present an efficient algorithm to solve Eq.(2.17) andprove its convergence

rigorously.

The algorithm starts with an initial guess ofS = E(E is a matrix of all ones), itera-

tively updatesS according to

Sij ← Sij
Kij

(KS+ αS)ij +
β
2

. (2.20)

This algorithm converges very fast. The computational algorithm for Eq.(2.17) is

very simple and can be efficiently implemented.
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Convergence of Updating rule of Eq.(3.17) We have Theorem(2)to prove the con-

vergence of the algorithm whenK is non-negative.

Theorem 2. UpdatingS using the rule of Eq.(3.17), the objective function of Eq.(2.17)

monotonically decreases.

The proof of this theorem is lengthy and is similar to that in [71, 56]. We therefore

skip the proof in this paper.

Correctness of Updating Rule of Eq.(3.17)

We prove that the converged solution satisfies the Karush-Kuhn-Tucker condition of

the constrained optimization theory. We have Theorem 3 to prove it.

Theorem 3. At convergence, the converged solutionS of the updating rule of Eq.(3.17)

satisfies the KKT condition of the optimization theory.

Proof. The KKT condition forS with constraintsSij ≥ 0 is ∂J(S)
∂Sij

Sij = 0, ∀ i, j.

The derivative ofJ(S)(Eq.2.17) is∂J(S)
∂Sij

= (−2K+ 2KS+ 2αS+ βE)ij. Thus the

KKT condition forS is

(−2K+ 2KS+ 2αS+ βE)ijSij = 0 ∀ i, j. (2.21)

On the other hand, onceS converges, according to the updating rule of Eq.(3.17), the converged

solutionS satisfies

Sij = Sij
Kij

(KS+ αS+ β
2E)

ij

, (2.22)

which can be written as[−Kij +(KS+ αS+ β
2E)

ij
]Sij = 0. This is identical to Eq.(2.21). Thus

the converged solution satisfies the KKT condition.

2.5 Experiments

We perform the proposed algorithms on nie datasets. We do both semi-supervised

learning and clustering on these datasets. We evaluate the proposed iterative LLE learning
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Table 2.1: Dataset descriptions.

Dataset #Size #Dimension #Class
AT&T 400 644 40
Mnist 150 784 10
Umist 360 644 20
Binalpha 1014 320 36
Yale 1984 2016 31
Caltec 600 432 20
MSRC 210 432 7
Newsgroup 499 500 5
Reuters 900 1000 10

−0.04 −0.02 0 0.02 0.04 0.06

0.06

0.04

0.02

0

−0.02

−0.04

0.06

0.04

0.02

0

−0.02

(a) embedding result fromK0

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

(b) embedding result from LLE1
−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

(c) embedding result from LLE4

Figure 2.2: 2D visualizations of embedding results using (1) initial/input kernelK0; (2)
LLE1: results on learnedY after 1 LLE iteration; (3) LLE4: results on learnedY after 4
LLE iterations; using 4 digits “0”,“3”,“6”,“9” on MNIST dataset

algorithm(§3) and sparse similarity learning algorithm(§4), and then show the embedding

results from our approach.

Dataset. These data sets come from a wide range of domains, including three face

datasets AT&T, umist and yale [72], two digit datasets mnist[73] and binalpha1, two image

scene datasets Caltec101(Caltec) [74] and MSRC [75], and two text datasets Newsgroup2,

Reuters3. Table 2.1 summarizes the characteristics of them.

We show both the iterative LLE (algorithm 1 in§2.3) and the sparse similarity learn-

ing algorithm (§2.4) results. Given original kernelK0, S is obtained from 1-time running

1http://www.kyb.tuebingen.mpg.de/ssl-book/ benchmarks.html
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
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of sparse similarity learning algorithm in§2.4. Then we obtain the final embedding results

Y after repeating out iterative LLE algorithm for 4 times. Forstep 1 of algorithm 1(§2.3),

we use kernel constructed from Eq.(2.17) for the subsequentiterations. For step 3 of algo-

rithm 1(§2.3), given current embeddingYt, we obtain the new kernelKt+1 using choice

(b2) with multiplicative combination in every iteration.

Clustering Results We use clustering algorithms to evaluate the learnedY in LLE.

We compare three standard clustering algorithms: (1) normalized cut, which in the context

of our iterative LLE, is simply K-means clustering on learned embeddingY; (2) spectral

clustering [65], which is K-means clustering on embeddingY normalized onto unit sphere.

(3) symmetric NMF, which runs on the learnedW in iterative LLE. All of results are the

averages of 10 K-means clustering with random starts.

We use accuracy, normalized mutual information (NMI) and purity as the measure-

ment of the clustering qualities and the results are shown inTable 2.2. We show the clus-

tering results obtained from using (1) the original/input kernel (K0), (2) LLE1: results on

learnedY after 1 LLE iteration. (3) LLE4: results on learnedY after 4 LLE iterations.

For image datasets, we use gaussian kernelK0
ij = e−γ||xi−xj ||2 . For text datasets,

we use linear kernel. We tune the graph construction parameterγ to obtain the best results

from kernelK0. From Table 2, we observe that LLE1 and LLE4 consistently achieve better

clustering results, as compared to the results obtained from original kernelK0.

Semi-supervised learning results

We useK0, LLE1 and LLE4 results (learnedW) as the input to run three semi-

supervised methods: harmonic function[76], local and global consistency[32], green’s

function[77]. We compare the classification accuracy of above three methods by using

original kernel(K0) and the results obtained from LLE1 and LLE4 on 9 data sets. For all

the methods and datasets, we randomly select 10%, 20% of labeled data for each class,

and use the rest as unlabeled data. We do 10 fold and 5 fold cross validation, respectively.
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Finally, we report the average of the semi-supervised classification accuracy in Table 2.3.

In all cases, we obtain higher classification accuracy by applying iterative LLE learning

algorithm (shown as LLE4 and LLE1).

Demonstration of embedding results We demonstrate the advantages of iterative

LLE learning algorithm (§2.3) and sparse similarity learning algorithm (§2.4) using two-

dimensional visualization. We randomly select four digitsfrom MNIST dataset (“0”, “3”,

“6”, “9”). Given Gaussian Kernel as the input, the iterativeLLE algorithm (§2.3) and sparse

similarity learning algorithm (§2.4) are run. The other parameters are set as mentioned be-

fore. The embedding results obtained from original Gaussian KernelK0, 4-time running

of iterative LLE learning algorithm (LLE4) and 1-time running of W-learning algorithm

(LLE1) are shown in Figs.(2.2a, 2.2b, 2.2c). In original results from Gaussian Kernel, all

images from different groups collapse together. For the results obtained from LLE4 and

LLE1, the images from different groups are balanced and distributed more evenly. This

indicates much better embedding results.

Insights from experiment results.

Overall, from initial/input kernelK0 to LLE1, LLE4, both clustering and semi-

supervised learning results consistently improved. Comparing results obtained between

LLE1 and initial/input kernelK0, the performance boost is from the learnedW using the

algorithm of§2.4. Comparing results obtained between LLE1 and LLE4, the performance

boost is from the iterative learning of LLE. From the statistics shown in Tables 2.2, 2.3, we

observe that the boost from LLE1 to LLE4 is usually higher than that fromK0 to LLE1,

indicating that the iterative aspect contributes more.
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2.6 Lessons learned

In summary, the main contribution of this section is in three-fold. (1) We show that an

improvedY-learning formulation of LLE is identical to normalized cutspectral clustering.

(2) We present an improvedW-learning algorithm that learns a nonnegative, sparse pair-

wise similarity from an input kernel function. (3) An iterative procedure of the above two

steps is proposed to progressively refine/improve the solution. Experiments show that the

iterative LLE incorporating (1,2,3) leads to better clustering and semi-supervised learning

results.

In the future work, we will investigate the de-noising powerof proposed iterative

LLE algorithm. We are curious about whether we can get correct embedding results given

noisy observations with missing values.
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Table 2.2: Accuracy (ACC), normalized mutual information (NMI), and purity (PUR) com-
parisons of different clustering algorithms: Normalized Cut, Symmetric NMF and Spectral
Clustering.K0: results obtained on the original/input kernel. LLE1: results on learnedY
after 1 LLE iteration. LLE4: results on learnedY after 4 LLE iterations. All results shown
are percentage.

Dataset Metric
Normalized Cut Symmetric NMF Spectral Clustering

K0 LLE1 LLE4 K0 LLE1 LLE4 K0 LLE1 LLE4

AT&T
ACC 44.77 50.24 66.50 48.09 49.12 50.04 41.09 53.18 58.31
NMI 70.14 74.23 83.82 62.28 65.87 70.51 59.40 68.50 74.67
PUR 49.30 54.87 71.49 48.33 50.32 54.78 48.00 49.24 52.41

Mnist
ACC 64.37 64.87 65.61 73.29 76.43 81.84 73.29 74.21 75.14
NMI 65.77 66.84 67.25 69.83 72.03 74.92 73.03 73.38 74.93
PUR 66.55 67.12 68.37 74.16 76.87 81.88 74.69 74.89 75.61

Umist
ACC 48.44 48.85 49.11 49.46 49.87 50.24 43.13 44.87 45.76
NMI 64.62 64.98 65.15 64.56 65.34 66.95 63.26 63.78 63.89
PUR 52.06 52.92 53.71 52.43 53.14 54.98 48.85 49.23 50.72

Binalpha
ACC 40.52 42.23 45.91 40.65 42.78 44.67 39.18 42.45 44.26
NMI 56.25 57.65 60.35 54.49 55.61 59.54 53.57 56.72 58.51
PUR 43.58 45.54 49.57 43.60 45.71 48.73 41.82 45.23 48.07

Yale
ACC 9.02 12.21 15.49 10.72 11.34 14.78 10.83 10.98 12.89
NMI 11.24 13.43 20.12 13.98 16.84 20.45 12.72 13.45 16.58
PUR 9.93 15.53 16.57 11.71 13.23 15.69 11.72 12.37 13.76

Caltec
ACC 36.31 42.43 49.51 43.98 47.83 52.50 43.67 45.74 47.98
NMI 42.63 45.45 54.86 48.25 52.01 56.43 48.02 50.23 51.84
PUR 39.02 42.58 53.18 46.21 50.38 55.71 46.41 49.65 51.32

MSRC
ACC 53.23 60.89 66.65 57.86 62.34 66.77 65.85 66.78 68.42
NMI 44.08 50.23 55.81 46.81 49.87 56.16 54.78 55.23 56.36
PUR 55.89 61.43 69.95 60.12 64.23 69.62 67.38 68.84 69.64

Newsgroup
ACC 27.58 32.23 40.36 26.62 34.78 51.63 42.22 44.38 46.51
NMI 12.92 18.24 19.41 17.65 27.86 30.22 18.01 20.32 23.19
PUR 28.43 32.54 41.95 29.12 42.45 59.20 41.72 44.81 48.90

Reuters
ACC 19.22 23.87 30.59 24.02 35.98 41.35 33.48 34.49 35.83
NMI 15.69 18.42 22.22 11.30 26.83 32.74 24.26 25.80 27.78
PUR 19.97 23.34 33.39 24.98 31.90 45.92 37.91 37.98 38.43

Average
ACC 38.16 41.98 47.75 41.63 45.61 50.42 43.64 46.34 48.34
NMI 42.59 45.50 49.89 43.24 48.03 52.00 45.23 47.49 49.75
PUR 40.53 43.99 50.91 43.41 47.58 54.06 46.50 48.03 49.87
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Table 2.3: Accuracy comparisons of semi-supervised learning on 9 datasets. Learning al-
gorithms used: Harmonic function, Green’s function and Local and global consistency(LG-
consistency).K0: results obtained on the original/input kernel. LLE1: results on learned
W after 1 LLE iteration. LLE4: results on learnedW after 4 LLE iterations. Results
shown are based on 10% or 20% labeled data.

Dataset Percent-labeled
Harmonic function Green’s function LG-consistency
K0 LLE1 LLE4 K0 LLE1 LLE4 K0 LLE1 LLE4

AT&T 10% 65.63 70.23 73.14 69.67 70.12 71.11 70.48 71.45 72.12
20% 74.93 78.87 83.37 78.01 79.03 79.73 78.43 80.23 82.94

Mnist
10% 68.83 68.89 69.91 63.35 63.90 64.21 65.72 67.89 69.19
20% 81.16 82.09 82.83 72.67 73.42 74.16 75.51 79.38 81.33

Umist
10% 48.64 50.45 51.19 47.91 48.03 48.42 48.87 49.35 50.68
20% 63.78 67.89 70.43 60.75 61.23 61.54 63.28 68.78 70.48

Binalpha
10% 47.71 49.89 52.61 46.79 47.09 49.24 46.76 48.93 50.35
20% 53.51 59.23 61.78 52.70 53.28 54.34 52.59 59.37 61.21

Yale
10% 30.31 35.43 38.54 29.13 31.99 32.94 34.67 37.65 43.23
20% 45.48 52.45 54.18 32.09 33.45 36.55 38.98 48.90 57.49

Caltec
10% 44.46 48.76 54.38 44.79 45.08 45.24 44.52 48.75 53.64
20% 49.87 53.25 63.67 49.03 50.23 52.34 49.93 53.74 63.62

MSRC
10% 57.46 60.35 66.50 59.47 60.01 60.24 60.12 63.45 65.82
20% 62.26 65.43 70.95 61.42 62.23 63.54 63.33 68.79 72.15

Newsgroup
10% 65.16 67.34 69.85 53.35 54.23 55.47 56.39 57.78 58.37
20% 72.27 73.25 74.35 59.72 60.91 61.14 58.84 60.19 61.32

Reuters
10% 64.25 65.78 66.23 53.29 55.79 57.81 53.27 58.98 61.44
20% 73.61 73.98 74.56 62.35 63.45 68.74 61.09 67.90 72.17

Average
10% 54.72 57.46 60.26 51.97 52.92 53.85 53.42 56.03 58.32
20% 64.10 67.38 70.68 58.75 59.69 61.34 60.22 65.25 69.19
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CHAPTER 3

Low Rank Data Recovery with Minimal Shrinkage

Standard trace norm model is used for data recovery purpose.However, the recon-

structed data can be shrank and singular values can be greatly suppressed. To solve this

problem, we present two low-rank data recovery models through replacing the rank con-

straint by a Schattenp norm. We analyze the optimal solution of model 1, and characterize

the rank of optimal solution. We design two algorithms to solve model 2, one is based on

Augmented Lagrangian method (ALM), where a challenge step is to solve associated prox-

imal operator. The other is based on an iterative re-weighted scheme, similar to reweighted

L2 scheme, where rigorous convergence analysis is provided. Extensive experiment results

on 6 occluded datasets on computer vision tasks indicate good performance of proposed

method.

3.1 Background of low rank data recovery

In big-data era, data is always noisy, development of robustnoise tolerant algorithm

for data recovery, is always useful and highly demanded. On the other hand, the available

of large amount of data makes it more difficult to control the quality the data. The chances

of the damaged data or noisy data are increasing. Given inputnoisy dataX, the goal of low

rank data recovery problem [78, 79, 80], is to find a low rank approximationZ. Recovered

dataZ is expected to be low rank, and retain minimum reconstruction errors (such as least

square error) as compared to input data matrixX. In practice, input data can be noisy and

also has missing values. This problem has attracted a lot of attentions due to its widely
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(b) Enlarged Fig.(1a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

k

va
lu

e

 

 
σ

k

δ
k
 (p = 0.1)

δ
k
 (p = 0.2)

δ
k
 (p = 0.3)

δ
k
 (p = 0.4)

δ
k
 (p = 0.6)

p = 0.1

p = 0.6

p = 0.3
p = 0.4

p = 0.2

(c) p = {0.6, 0.4, 0.3, 0.2, 0.1}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

k

va
lu

e

 

 

σ
k

δ
k
 (p = 0.3)

δ
k
 (p = 0.9)

p = 0.3
p = 0.9

(d) p = {0.9, 0.3}

Figure 3.1: Optimal solutionδk given singular valueσk of input dataX, at differentp =
{1, 0.9, 0.8, · · · , 0.1} values with fixedβ = 0.5, on dataset Mnist with 20 images, i.e.,
X = {x1,x2, · · · ,x20}. To avoid clutter, part of Fig.1a is zoomed in and shown in Fig.1b.
In Fig.1d, the solution atp = 0.3 is afaithful low-rank solution, and the solution atp = 0.9
is asuppressedlow-rank solution.

applications in recommendation systems [81], collaborative prediction [82], image/video

completion [83], etc.

Data recovery problem has close relations with dimension reduction or low dimen-

sion subspace recovery, since for most of high-dimensionaldata, they may have low-

dimensional subspace. Many efforts have been devoted alongthe direction of principal

component analysis (PCA) [84], compressive sensing [85], affine rank minimization [80],

etc. For example, Principal component analysis (PCA) seeks for a low-dimensional sub-

space given data matrix, which can be efficiently computed using singular value decom-
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position (SVD). However, a major drawback of classical PCA [86] is that, it breaks down

under grossly corrupted or noisy observations, such as noises/corruptions in images, and

dis-measurement in bio-informatics, etc. In Regularized PCAmodel (e.g., [87, 88]), it aims

at reducing the rank of the data without explicitly reducingthe dimension. However, they

do not return the clear representation of subspace and low-dimensional data explicitly.

It is well known that it is a NP-hard problem to directly minimizing the rank of data

for recovering input data. Since trace norm can be viewed as aconvex envelope of rank

function [89], different methods (e.g., [90, 91, 78, 92, 93, 94]), have been proposed by

minimizing the trace norm. In this paper, we point out that, standard trace norm model suf-

fers from a serious problem:shrinkage of reconstructed data and suppression of singular

values(see more details in Figs.(1-2) and§3.3). We find that the trace norm relaxation may

deviate the solution away from the real solution of originalrank minimization problem.

The goal of this paper is to develop new methods to solve the approximation of the

rank minimization problem. In this paper, we reformulate the noisy data recovery problem

using schattenp norm, where efficient algorithms are presented. To summarize, the main

contribution of this paper is listed as follows.

• From model construction point of view, we present new modelsfor noisy data re-

covery, which minimize both data recovery error and rank of recovery data. The

proposed models give the minimum shrinkage of recovered data.

• From algorithmic development point of view, we present a complete analysis for

proposed model, where the rank of optimal solution is characterized by Theorem 1.

Efficient algorithms are developed.

• Extensive experiments on noisy datasets indicate better noisy data recovery perfor-

mance at smallerp values (p is parameter of our model).

39



3.2 Proposed Data recovery models

Notation

Let X = (x1 · · · xn) ∈ <
d×n be inputn data, each of dimensiond. For standard

Schattenp norm of matrixZ,

||Z||sp = (
r

∑

k=1

σ
p
k)

1
p

=
(

Tr[(ZTZ)
p
2 ]
) 1

p
, (3.1)

whereσk is the singular value ofZ, r = rank(Z).

Given a data matrixX, it is often of interest to compute a matrixZ that is “close”

to X and satisfies the constraintrank(Z) < rank(X). Singular value decomposition [95]

is the most popular method for such approximations. There are alternative methods that

replace this constraint with a more friendly constraint, like, for example, the trace norm. In

this paper, we present two models:

Model 1: Schattenp model

We wish to solve the data recovery problem, i.e.,

min
Z

1

2
‖Z−X‖2F + βTr[(ZTZ)

p
2 ], (3.2)

where Tr(ZTZ)
p
2 =

∑r
k=1 σ

p
k, andσk is the singular value ofZ, β is a parameter to control

the scale of schattenp term.

The fact is that the approximation has the same eigen-vectors as the original matrix,

and that only eigen-values are shrinked in standard matrix linear algebra. The particular

shrinkage ofp Schatten norm is better than trace norm (p = 1, see Fig. 1), which is

corresponding to soft thresholding. Atp = 0, this is corresponding to hard thresholding

(exactly the rank).

Model 2: Robust Schattenp model

We wish to find low-rank data recoveryZ givenX, i.e.,

min
Z
‖Z−X‖1 + βTr[(ZTZ)

p
2 ]. (3.3)

40



This is used for noisy data recovery purpose, which can be viewed as an extension of

robust PCA [87].

Motivation

The goal of proposed models is to provide minimum shrinkage of reconstructed data

and suppression of singular values. This is the reason, why we replace the trace norm

regularization with schattenp regularization. More detailed analysis is provided in§3-

4. Our experiment results indicate that proposed models at smaller p values give better

recovery performance.

As p becomes small, it is closer to the desired rank constraint:

lim
p→0

Tr(ZTZ)
p
2 = lim

p→0

∑

k

σp
k = rank(Z).

=
∑

k

σk.

This indicates that the lowerp, the better that Schatten norm resembles the rank.

Since we wish to do reconstruction with low rank, thus parameter p is usually set to0 ≤

p ≤ 1. In generalp > 1 case is un-interesting.

Differences of two models The difference of above two modelsof Eqs.(3.2, 3.3) lies

in the first term. In Model 1 of Eq.(3.2), Frobenius norm or theleast square error is used to

minimize the reconstruction error. In Model 2 of Eq.(3.3), theL1-norm is used to minimize

the reconstruction error. As is known to us,L1 error is more robust to noises and outliers,

because||X − Z||1 =
∑

ij |X − Z|ij , where residue term isnot squared. In real world,

the observations (like images, text features, etc) can be contaminated by noises or outliers.

Model of Eq.(3.2) is for the data recovery problem polluted by Gaussian noise, while model

of Eq.(3.3) is for data contaminated by Laplacian noises. Both models can be used to solve

noisy data recovery, matrix completion problem, etc. For second term, for computational

41



purpose, we addp power to standard term||Z||sp , which plays the same role as standard

schatten term for low rank approximation purpose.

Relations with previous methods

At p = 1, Eq.(3.3) is equivalent to standard trace-norm model, which optimizes

min
Z
||Z−X||1 + β||Z||∗, (3.4)

where||Z||∗ = Tr(ZTZ)
1
2 is the trace norm, andσk is the singular value ofZ. This study

is a special case of our model. Note in [87], Schattenp-Norm model atp = 1 is called

as Robust PCA, because it can correctly recover underlying low-rank structureZ from the

dataX in the presence of gross errors and outlying observations.

3.3 Illustration of two Schatten p-norm models

Due to the non-smoothness of Schatten norm atp < 1, the computational algorithm

is challenging. We provide detailed analysis and efficient algorithms of both models in

§3.4,§3.5 and§3.6. Here we discuss the general features of the optimal solutions to these

two models. The key conclusion is that the solutions at smallp are much better than the

solution atp = 1, which is a previously studied model.

Illustration of Model 1

To illustrate results of Model 1, we use 20 images from real-world dataset mnist

(more details of this dataset is in§7). Letδk be the singular values of the optimal solution

Z∗. Let σk be the singular values of input dataX. We show solutionδk in Fig.?? along

with σk. We fix β = 0.5, but letp vary fromp = 1 to p = 0.1. From Fig.1, we see that

at p = 1, the optimal solutionZ∗p=1, which is represented by(δ1, δ2, · · · , δ20), is a simple

downshift of(σ1, σ2, · · · , σ20). The high rank part (k = 17 − 20) is zero. Asp decreases,

more high rank part of the solution{δk} becomes zero, while the lower rank part of{δk}

moves closer to{σk} of the input data. For example, in Fig.1a, Fig.1b, in optimalsolution
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Z∗p=0.9, the high rank part (k = 13− 20) becomes zero, while the low-rank part (k = 1− 7)

is higher than that ofZ∗p=1, i.e., this part moves towards corresponding{σk}.

In general in low-rank data recovery, we wish the low-rank part of Z∗ is close to those

of the input data, while the high-rank part is cut-off (closeto zero). Looking in Fig.1d, the

solution atp = 0.3 is a “faithful” low-rank solution, because the low-rank part is more

close orfaithful to the original data. The solution atp = 0.9 is a “suppressed” low-rank

solution because the low-rank part is far below the originaldata, i.e., they aresuppressed.

Clearly, the solution atp = 0.3 is more desirable than solution atp = 0.9, even though

both solutions are low-rank: rank(Z∗p=0.9)= rank(Z∗p=0.3) = 12.

The Schattenp norm model at smallp provides the desirable “faithful” low-rank

solution, while the previous work usingp = 1 also provides a low-rank solution, but the

low-rank part is moresuppressed.

Illustration of Model 2

Model 2 of Eq.(3) differs from Model 1 by using theL1 norm in error function. This

enables the model to do robust data recovery (e.g., moving outliers back to the correct

subspace). However, this model does not change the observedsuppressionin Model 1 atp

close to 1 (see Fig.1d). The suppression of singular values leads to theshrinkageeffect in

reconstructed data.

We demonstrate the robust data recovery and the shrinkage effects for Model 2 at

different p values on a simple toy data in Fig.(3.2a). The original dataX are shown as

black circles. Reconstructed datazi are shown as red-squares. We show the reconstructed

results atp = 0.2 Fig.(2b, 2e, 2f),p = 0.5 (Fig.2c, 2g),p = 1 (Fig.2d, 2h). We have two

observations.

First, at0 ≤ p ≤ 1, outliers (x13,x14,x15) all move towards the correct subspace,

indicating the desired denoising data recovery effects.

43



−2 0 2
−2

−1

0

1

2

1
234

56
7

89
10111213

14
15

(a) original data

−2 0 2
−2

−1

0

1

2

13

13

14

14

15

15

(d)  p=1 outlier

−2 0 2
−2

−1

0

1

2

(h) p=1 non−outlier

−2 0 2
−2

−1

0

1

2

(f)  p=0.2 non−outlier

−2 0 2
−2

−1

0

1

2

13
13 14
14 15

15

(b) p=0.2 outlier

−2 0 2
−2

−1

0

1

2

13
13 14
14 15

15

(e) p=0.2 all data

−2 0 2
−2

−1

0

1

2

13

13

14

14

15

15

(c) p=0.5 outlier

−2 0 2
−2

−1

0

1

2

(g) p=0.5 non−outlier

Figure 3.2: Demonstration of robust Schatten-p model of Eq.(3.3) on a toy data shown
in panel (a): original data shown as black circles.(x1 · · ·x12) are non-outliers and
(x13 · · ·x15) are outliers. Reconstructed datazi are shown as red-diamonds. Blue line indi-
cates the subspace computed from standard PCA on non-outlierdata. Results of Schatten
model atp = 0.2 are shown in (e). Thisp = 0.2 results are split to outliers and non-outliers
as shown in (b) and (f). Similarly, results forp = 0.5 shown in (c) and (g); results forp = 1
shown in (d) and (h). Atp = 1, non-outliers shrink towards coordinate (0,0). At smallerp,
non-outliers shrink far less.

Second, for non-outlier data, the reconstructed data shrink strongly atp = 1, but they

shrink much less atp = {0.2, 0.5}. This shrinkage is result of the singular value suppres-

sion in computedZ. At p = {0.2, 0.5, 1}, the largest singular value are{5.35, 4.49, 2.93},

while the second singular values are very small, i.e.,{1.7e-8, 1.7e-16, 9.8e-9}, respectively.

In summary, the Schatten model at smallp enables us to do robust data recovery but

without significant shrinkage in previous models which usep = 1.

To our knowledge the singular value suppression and shrinkage (both atp = 1 and

smallerp values) have not been studied previously.
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3.4 Analysis and Algorithm of Model 1

We show how to solve Model 1 of Eq.(3.2) at differentp values. This also serves as

the basic step in solving Model 2 of Eq.(3) using the ALM of§5. To our knowledge, this

problem has not been studied before.

Property 1. The global optimal solution for Eq.(3.2) at all0 ≤ p ≤ 1, can be

efficiently computed, even though it is non-convex atp < 1.

Property 2. Rank of the optimal solutionZ∗ has a closed form solution:

Theorem 4. Let the singular value decomposition (SVD) ofX beX =
∑

k σkukv
T
k . Then

rank of optimal solutionZ∗: rank(Z∗) = largestk, such that

σk ≤
(βp(2− p)(2−p)

(1− p)(1−p)

)

1
2−p

, 0 < p ≤ 1. (3.5)

In particular, p = 1, σk ≤ β; p = 1
2
, σk ≤ (

√

27
16
β)

2
3

.

Property 3. Optimal solutionZ∗ has a closed form solution atp = 1
2
.

Property 4. Optimal solutionZ∗ at 0 < p < 1 can be obtained using Newton’s

method.

To prove above 4 properties for Model 1 of Eq.(2), we need the following useful

lemma.

Lemma 2. Let the singular value decomposition (SVD) ofX beX =
∑

k σkukv
T
k . The

global optimalZ for Eq.(3.2) is given byZ =
∑

k δkukv
T
k , whereδk is given by solving,

min
δ1,··· ,δr

r
∑

k=1

[1

2
(δk − σk)

2 + βδ
p
k

]

, s.t. δk ≥ 0, k = 1 · · · r. (3.6)

Proof of Lemma 1

Proof. Let the optimal solution ofZ have the SVDZ = F∆GT whereF = (f1 · · · fr) and

G = (g1 · · ·gr) are the singular vectors ofZ, and∆ = diag(δ1 · · · δr) be their singular
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values. The key is to prove that the singular vectors ofZ∗ are the same as those of the input

dataX. Using von Neumann’s trace inequality

|Tr(ZTX)| ≤ Tr∆Σ =
r

∑

k=1

δkσk. (3.7)

From this, we have

Tr(U∆VT )TX = Tr∆Σ ≥ Tr(ZTX) = Tr(F∆GT )TX, (3.8)

where the inequality comes from Eq.(3.7). The inequality

Tr(U∆VT )TX ≥ Tr(F∆GT )TX

implies
1

2
‖U∆VT −X‖2 + βTr∆p ≤

1

2
‖F∆GT −X‖2 + βTr∆p.

This indicates(U,V) are better singular vectors forZ than(F,G). This proves that the

optimal singular vectors forZ must be the same singular vectors ofX. SettingZ = U∆VT

in Eq.(3.2), we obtain Eq.(3.6).

Analysis of Property 1

Due to Lemma 1, we now solve the simpler problem of Eq.(3.6) instead of the orig-

inal harder problem of Eq.(3.2). Clearly the optimization ofEq.(3.6) decouples intor

independent subproblems, each for oneδk:

min
δk

1

2
(δk − σk)

2 + βδ
p
k, s.t. δk ≥ 0. (3.9)

KKT complementarity slackness condition forδk ≥ 0 leads to
[

(δk−σk)+pβδp−1k

]

δk = 0.

The optimization of Eq.(3.9) decouples intor independent subproblems, and each of them

is of the type:

min
x≥0

J(x) =
1

2
(x− a)2 + βxp, (3.10)

wherex, a ∈ <. Here the correspondence between Eq.(3.10) and Eq.(3.9) isa = σk,

x = δk.J(x) is a weight sum over two functions:J(x) = f1(x) + βf2(x), wheref1(x) =
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1
2
(x − a)2, f2(x) = xp. f1(x) has a local minima atx1 = a. f2(x) is a singular function,

p ≤ 1 with singularity atx2 = 0, which is also a local minima.

Therefore,J(x) in general has two local minima(x∗1, x
∗
2). Becausef2(x) is singular

atx2, for Eq.(3.10), the singular point (local minima) does not change with different weight

β. Thusx∗2 = 0 is always a local minima.

Whenβ is small,x∗1 = a. As β increases,x∗1 moves towards 0. At certain(β, p),

this local minima disappears,J(x) has only one local minimax∗2 = 0. This condition is

determined by the same condition as in Theorem 1 or Eq.(12) with σk = a. x∗1 is easily

computed using Property 4.

In summary, the optimal solution of Eq.(10) is either the trivial one x∗2 = 0 or

min(x∗1, x
∗
2), whenx∗1 exits. This means Eq.(9) can be easily solved. Thus Eq.(6) can

be easily solved for each rank one at a time.

Proof of Theorem 1

Proof. First, optimization of Eq.(3.2) is equivalent to optimizing Eq.(3.10), which can be

further written as,

min
z≥0

g(z) =
1

2
(z − 1)2 + β̂zp, (3.11)

wherez = x/a, β̂ = βa(p−2). First, we note a key quantity, the zero crossing pointz0

exists, where the second derivativeg′′(z) changes its sign, i.e.,g′′(z0) = 0. We need two

lemmas.

Lemma 3. This cross pointz0 always exists at anyβ.

Lemma 4. If the slope of cost function of Eq.(3.11) at the crossing point z0 is negative, i.e.,

g′(z0) < 0, there exists two distinct local minima:z2 = 0 andz1 > 0. If g′(z0) ≥ 0, z2 = 0

is the global optimal solution.

Lemmas 2 and 3 give the key properties of optimization of Eq.(3.11). Setg′′(z0) = 0,

we obtainz0 = [β̂p(1− p)]
1

2−p . Lemma 2 states thatz2 = 0 is the global solution,g′(z0) =
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z0 − 1 + β̂pzp−10 ≥ 0, i.e., [β̂p(1− p)]
1

2−p − 1 + β̂p[β̂p(1− p)]
p−1
2−p ≥ 0. Solving forβ, we

have,

β ≥
1(1− p)(1−p)

p(2− p)(2−p)
· σk

(2−p), 0 < p ≤ 1. (3.12)

This indicates that the optimal solutionδk of Eq.(3.11) is zero (i.e.,δk = 0), if Eq.(3.12)

holds. This completes the proof.

Analysis of Property 3

Clearly, atp = 1
2
, from Eq.(3.9), we need to solveδk−σk+(β/2)δ

−1/2
k = 0, s.t. δk ≥

0. Let ρk = ( δk
σk
)
1/2

, µ = β

2σk

3
2
, this becomesρ3k − ρk + µ = 0, whereρk ≥ 0. The analytic

solution of this cubic equation can be solved in closed form.

Analysis of Property 4

From analysis of property 1, the optimization of Eq.(3.10) has two local optima:

x∗1 > 0, x∗2 = 0. Our algorithm is: (b1) to use Newton’s method to computex∗1; (b2)

compareJ(x∗1), J(x
∗
2), and pick the smaller one. It is easy to seeJ ′(x) = x− a+ βpxp−1,

J ′′(x) = 1 + βp(p − 1)xp−2. Using standard Newton’s method, we can updatex through

x ← x − J ′(x)
J ′′(x)

. This algorithm has quadratic convergence. In practical applications, we

found this Newton’s algorithm typically converges to localminima within a few iterations.

3.5 Efficient ALM algorithm

Augmented lagrange multipliers(ALM) have been widely usedto solve different

kinds of optimization problems ( [87], [96]). Here we adapt standard ALM method [97, 96]

to solve Schatten-p model of Eq.(3.3). It is worth noting that it is not trivial tosolve Eq.(3.3)

using ALM method. One challenging step is to solve the associated Schatten-p term shown

in §4.
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Algorithm 2 ALM algorithm to solve Eq.(3.3)
Input: data matrixX, parameterρ > 1.

Output: low rank approximationZ.

Procedure:

1: InitializeE, Z, Ω, µ > 0, t = 0, ; ρ = 1.1

2: while Not convergedo

3: UpdatingE according to Eq.(3.16)

4: UpdatingZ according to Eq.(3.17)

5: UpdatingΩ: Ω := Ω + µ(Z−X−E)

6: Updatingµ: µ := ρµ

7: end while

According to ALM algorithm, by imposing constraint variable E = Z − X, the

problem of Eq.(3.3) is equivalent to solve,

min
E, Z

‖E‖1 + βTr(ZTZ)
p
2 , s.t. Z−X−E = 0. (3.13)

According to ALM algorithm, we need to solve,

min
E, Z

‖E‖1 + 〈Ω,Z−X−E〉+
µ

2
||Z−X−E||2F + βTr(ZTZ)

p
2 , (3.14)

where Lagrange multiplier isΩ andµ is penalty constant. For this problem,Ω andµ

updated in a specified pattern:

Ω← Ω + µ(Z−X− E), µ← ρµ.

We need to search for optimalE, Z iteratively until the algorithm converges. Now we

discuss how we solveE, Z in each step.

UpdateE To update the error matrixE, we derive Eq.(3.15) with fixedZ and obtain

the following form:

min
E

µ

2
||E−A||2F + ||E||1 (3.15)
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whereA = X − Z + Ω
µ

. It is well-known that the solution to the above LASSO type

problem [11] is given by,

Eij = sign(Aij)max(|Aij| −
1

µ
, 0). (3.16)

UpdateZ To updateZ while fixing E, we minimize the relevant part of Eq.(3.14),

which is

min
Z

βTr(ZZT )
p
2 +

µ

2
||Z−X−E+

Ω

µ
||2F . (3.17)

SettingB = X + E − Ω
µ
, β̂ = β

µ
, this optimization becomes Eq.(3.2), which has been

solved in§4.

3.6 Iterative algorithm to solve Model 2

We present another efficient iterative algorithm to solve Eq.(3.3), where the variable

matrixZ is updated iteratively. SupposeZt is the value ofZ at t-th step. At stept, the key

step of our algorithm is to iteratively updatej-th column (zj) of Z one at a time, according

to

zj = A−1(A−1 + pλD−1j )−1xj , (3.18)

whereA = (ZtZ
T
t )

p/2−1,Wij = 1/|(Zt −X)ij|,Dj = diag(wj), wj is thej-th column

of W. This process is iteratively done for1 ≤ j ≤ n. ThenZ is updated until the

algorithm converges. More detailed algorithm is summarized in Algorithm 2. In computing

zj of Eq.(3.18), we first use conjugate gradient method to compute z̃j, where(A−1 +

pλD−1j )z̃j = xj, and thenzj = A−1z̃j.

Convergence of algorithm

Let J(Z) = ‖Z−X‖1 + βTr(ZTZ)
p
2 , we have

Theorem 5. UpdatingZ using Eq.(3.18),J(Z) decreases monotonically.

The proof requires the following two Lemmas.

50



Algorithm 3 An iterative algorithm to solve Eq.(3.3)
Input: X, λ

Output: Z

1: while not convergedo

2: computeA−1

3: for j = 1 : n do

4: computeD−1j , solvezj according to Eq.(3.18)

5: end for

6: end while

Lemma 5. Define the objective function

J2(Z) = ‖Z−X‖2W + pβTr(ZTAZ). (3.19)

where‖A‖2W =
∑

ij A
2
ijWij. The updatedZt+1 using Eq.(3.18) satisfies

J2(Zt+1) ≤ J2(Zt) (3.20)

Lemma 6. The updatedZt+1 using Eq.(3.18) satisfies

J(Zt+1)− J(Zt) ≤
1

2

[

J2(Zt+1)− J2(Zt)
]

(3.21)

Proof of Theorem 2

Proof. From Eq.(3.20), clearly, LHS of Eq.(3.21) is LHS≤ 0.

Proof of Lemma 4

Proof. Setting∂J2(Z)/∂Zij = 0, we have(Z − X)ijWij + pλ(AZ)ij = 0. This can be

written asZijWij + pλ(AZ)ij = XijWij. In matrix form,Djzj + pλAzj = Djxj. Thus

we have

zj = (Dj + pλA)−1Djxj = [Dj(A
−1 + pλD−1j )A]−1Djxj , (3.22)

which gives Eq.(3.18).
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Proof of Lemma 5

Proof. Let∆ = LHS - RHS of Eq.(3.21). We have∆ = α + β where

α =
∑

ij

[

|(Zt+1 −X)ij | − |(Zt −X)ij | −
(Zt+1 −X)2ij
2|(Zt −X)ij |

(Zt −X)2ij
2|(Zt −X)ij |

]

=
∑

ij

−1

2|(Zt −X)ij |

[

|(Zt+1 −X)ij | − |(Zt −X)ij |
]2
≤ 0.

and

β = λ
[

Tr(Zt+1Z
T
t+1)

p
2 − Tr(ZtZ

T
t )

p
2

]

−
p

2
λ
[

TrZT
t+1(ZtZ

T
t )

p
2Zt+1 − TrZT

t (ZtZ
T
t )

p
2Zt

]

= λ
[

Tr(Zt+1Z
T
t+1)

p
2 − Tr(ZtZ

T
t )

p
2

]

−
p

2
λTr
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where in the last inequality, we setA = Zt+1Z
T
t+1, B = ZtZ

T
t and used Lemma 6 below.

Clearly∆ = α + β ≤ 0.

Lemma 7. [98] For any two symmetric positive definite matricesF,G and0 < p ≤ 2,

Tr [Fp/2 −Gp/2] ≤
p

2
Tr [(F−G)Gp/2−1] (3.24)

Due to space limit, we omit the proofs of Lemma 6 here.

3.7 Connection to related works

We note [99] proposes an algorithm to solve squared schattenp model, i.e.,minZ f(Z)+

β
(

Tr(ZTZ)
p
2

) 2
p

, which cannot be directly applied here. [100] proposes an iterative reweighted

algorithm for trace norm minimization problem, in the similar vein as what has been pro-

posed for adaptive lasso. However, it cannot be directly applied to solve Eq.(3.3). As

compared to [98, 101, 102, 103], our goal is for noisy data recovery problem raised in

computer vision, instead of for matrix completion problemswith missing values.
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Table 3.1:Description of Data sets

Dataset #data #dimension #class

AT&T oc 400 2576 40
Binalphaoc 1404 320 36

Umist oc 360 644 20
YaleB 256 2016 4

CMUPIE oc 680 1024 68
Mnist oc 150 784 10

3.8 Experiments

We use six widely used image data sets, including four face datasets: AT&T Umist,

YaleB [72] and CMUPIE; and two digit datasets: Mnist [73] and Binalpha1. We generate

occluded image datasets corresponding to 5 original data sets (except YaleB). For YaleB

dataset, the images are taken under different poses with different illumination conditions.

The shading parts of the images play the similar role of occlusion (noises). Thus we use the

original YaleB data with first 4 persons in our experiments. For the other 5 datasets, half

of the images are selected from each category for occlusion with block size ofwxw pixels

(e.g.,w = 10). The locations of occlusions are random generated withoutoverlaps among

the images from the same category.Occludedimages (with occlusion size7×7) generated

from Umist data sets are shown in Fig. 3.4. Table 3.1 summarizes the characteristics of

these occluded data sets.

We did all experiments using Eq.(3.3). Atp < 1, objective function in Eq.(3.3) is

not convex any more, and we cannot get global minima. We initializeZ using trace norm

minimization solution, i.e., setp = 1 in Eq.(3.3). In the following experiments, we did

both algorithms proposed in§5-6, and reported the results using the one achieving smaller

objectives.

Illustrative examples.

1http://www.kyb.tuebingen.mpg.de/ssl-book/ benchmarks.html
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Figure 3.3: Reconstructed images (Z) of YaleB dataset using Model 2 of Eq.(3) shown in
1 panel. First line: original images of one person, Second line: reconstructed imagesZ at
p = 1, Third line: reconstructed images atp = 0.2. One can seep = 1 images are very
similar to each other (most fine details are lost), whilep = 0.2 images retain some fine
details and are closer to original images.

Figure 3.4:Occluded image dataset Umist.

To visualize the denoising effect of proposed method, we apply our model on YaleB

dataset. YaleB contains images with different shading which plays similar role of occlusion

(noises). Thus we did not add occlusion and use the original data. In this demonstration

and following experiment, each data (image) is linearized into a vector eachxi, and the

input matrixX is constructed asX = (x1,x2, · · ·,xn). We typically set the rankk equal to

the number of classes in the dataset. Due to space limit, computedZ at differentp values

for the two persons are shown. In Fig.(3.3), 20 images are shown as 2 panels, each panel

for one person. On each panel, the first line images are original imagesX, the 2nd line are

computedZ atp = 1, and 3rd line are computedZ at0.2.

Clearly, at differentp values (such asp = {1, 0.2}), Schattenp-Norm model can

effectively recover the original data by removing the shadings. See 2nd line on each panel
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Table 3.2: True data recovery: True signal reconstruction error at differentp on six datasets

dataset ||XE ||F
||X0||F Noise-free reconstruction error at differentp

p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T 0.3657 0.2672 0.2240 0.2199 0.2159 0.2132
Binalpha 0.2359 0.2023 0.1974 0.1845 0.1594 0.1729
Umist 0.3123 0.2816 0.2290 0.2199 0.2153 0.2151
YaleB N/A 0.2304 0.2264 0.2174 0.1912 0.2126
CMUPIE 0.2542 0.2012 0.1925 0.1845 0.1594 0.1729
Mnist 0.5574 0.5123 0.4993 0.4814 0.4542 0.4553

in Fig.(3.3), almost every person is recovered to same template, not any difference any

more. In contrast, we have much better visualization results (with more details) when

p = 0.2 (see 3rd line on each panel). Moreover, these fine details areexpected to be helpful

for classification on images from different persons.

True data recovery: true signal reconstruction error

Given noisy dataX, X = X0+XE, whereX0 is the true signal andXE is the noise.

Our goal is to recoverX0 using Eq.(3.3). We did experiments on above 6 datasets. To eval-

uate the performance, we define the true signal data recoveryerror,Etrue-signal=
||Z−X0||F
||X0||F .

Clearly, smallerEtrue-signalvalues indicate better recovery. Computed true signal reconstruc-

tion error are shown in Table.3.2. The experiment results indicate that true signal recon-

struction errors aresmallerat smallerp values. We also list||XE ||F
||X0||F values in Table.3.2 to

indicate the level of occlusions. Interestingly,Etrue-signal<
||XE ||F
||X0||F on all datasets at different

p values. This further confirms “de-noisy” effects of proposed data recovery model.

Loss of fine details in recovered data and its measure.

Due to suppression of higher order/frequency terms associated with smaller singular

values, fine details of original dataX are lost in the recoveredZ. As a consequence,

recovered individual images are very similar to each other.One numeric measure is the

variance of reconstructed images. We therefore definevar(Z) =
∑n

i=1 ||zi − z̄||2, z̄ =
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Table 3.3: Loss of fine-details: variance of reconstructedZ on six datasets, original images:
X0, occluded images:X

dataset X0 X Variance ofZ at differentp
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T 8.89 9.03 5.83 7.13 7.45 8.11 7.80
Binalpha 27.90 31.13 13.40 22.89 25.38 26.89 26.73
Umist 7.01 7.42 3.87 5.31 5.71 6.38 6.01
YaleB 9.75 9.75 7.28 8.22 8.59 9.19 8.76
CMUPIE 12.09 13.16 8.12 10.07 10.54 11.30 10.87
Mnist 9.24 10.26 0.49 4.41 5.45 7.04 5.85

1
n

∑n
i=1 zi, wherezi ∈ <d×1 is the reconstructed image corresponding to each original

imagexi. Larger variance values indicate more fine details are preserved in the solution

Z. Computed variance ofZ are shown in Table.3.3. Clearly, reconstructed images preserve

more detailed information at smallp (sayp = 0.2). One demonstrating example is shown

in Fig.3, where fine details of individual images are mostly suppressed atp = 1, but are

generally preserved/reetained atp = 0.2.

Classification results using recoveredZ.

So far we have discussed low rank recovery capability of computedZ. Reconstructed

low rankZ is expected to have much clear structure after removing noises and outliers. As

a by-product of solving low-rank data recovery problem, computedZ can be used for clas-

sification tasks. We compare the classification results by using the occluded imagesX and

recovered dataZ at differentp. The experiments are done on two widely used classifiers:

k nearest neighbor (kNN) and support vector machine1 using 5 fold cross validation. Since

the regularization coefficient is also a hyper-parameter, the performance of each Schatten-p

norm model is evaluated at an optimal value ofβ (which is determined by cross valida-

tion). The experiment results are shown in Table.3.5. We have two important observations

from experiment results. (1) Performances for image categorization tasks are improved by

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 3.4: Classification accuracy(shown as percentage) on six occluded datasets using
input corrupted dataX and reconstructedZ at differentp values

dataset method X ReconstructedZ at differentp
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T
SVM 29.75 30.52 33.75 34.25 36.78 35.53
KNN 25.75 28.63 30.25 28.75 29.31 28.33

Binalpha
SVM 38.35 44.78 42.74 43.84 48.53 47.43
KNN 52.09 56.78 55.10 54.65 58.23 57.87

Umist
SVM 59.83 65.89 63.17 64.35 68.33 67.67
KNN 89.12 93.89 92.67 93.75 94.23 93.01

YaleB
SVM 46.11 52.12 51.89 53.78 54.67 54.96
KNN 85.43 90.89 90.36 91.15 91.76 91.40

CMUPIE
SVM 29.24 33.57 36.74 34.21 35.39 34.98
KNN 58.12 64.03 65.38 64.27 66.39 65.64

Mnist
SVM 49.38 51.93 53.24 57.18 56.79 54.67
KNN 76.63 81.35 80.75 81.56 82.47 82.34

Table 3.5: Classification accuracy(shown as percentage) on six occluded datasets using
input corrupted dataX and reconstructedZ at differentp values

dataset method X ReconstructedZ at differentp
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

Umist KNN 84.12 90.89 92.67 93.75 94.23 93.01
YaleB KNN 82.43 88.89 90.36 91.15 91.76 91.40
Mnist KNN 73.63 79.35 80.75 81.56 82.47 82.34

using computedZ at differentp values; (2) Classification accuracy is consistently better at

smallerp values on both SVM and kNN classifiers, as compared to that at largep values.

All above results suggest us to use Schattenp-Norm at smallp values.

3.9 Lessons learned

We present novel models for low-rank data recovery, where efficient algorithms are

proposed. Extensive experiment results indicate schattenp model gives relatively better

reconstructed results at smallp values. In the next step, we will further explore how to

scale our model for large-size problems.
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CHAPTER 4

Efficient Algorithms for Selecting Features with ArbitraryGroup Constraints

Feature structure information plays an important role for regression and classification

tasks. We consider a more generic problem: group lasso problem, where structures over

feature space can be represented as a combination of features in a group.These groups can

be either overlapped or non-overlapped, which are specifiedin different structures, e.g.,

structures over a line, a tree, a graph or even a forest. We propose a new approach to solve

this generic group lasso problem, where certain features are selected in a group, and an

arbitrary family of subset is allowed. We employ accelerated proximal gradient method to

solve this problem, where a key step is solve the associated proximal operator. We propose

a fast method to compute the proximal operator, where its convergence is rigorously proved.

Experimental results on different structures (e.g., group, tree, graph structures) demonstrate

the efficiency and effectiveness of the proposed algorithm.

4.1 Background of feature selection using structural sparsity

Lasso is widely used for variable selection in high-dimensional space by captur-

ing the structure information. Structured-sparsity-inducing regularization is proposed to

encourage the joint selection of closely related input variables [104], [9], [105], [106],

[107]. Desirable for practical applications, arbitrary structures can be allowed on the feature

set, which further generalizes the concept of structure sparsity, such as group lasso [107],

fused lasso (linear-ordering of variables) [106], lasso onforest [108], etc, where a number

of composite gradient methods (e.g., [109], [110], [111]) have been developed to solve

above problems.
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Structured sparsity [10, 112] can enforce sparsity on variables of groups, trees, graphs,

and even forest, where the solution is zeros or nonzeros in group-wise. For example,

L2,p [10] regularization encourages the variable values in a group to be zero or non-zeros;

tree sparsity [113] encourages the variables in a hierarchical tree structure (see Fig. 1) on

a tree to be zero or non-zeros; graph sparsity [114] enforcesthe structure formed by the

node variables and the involved edges to be zeros or not. Structure sparsity will make the

models easier for interpretation and cheaper to use. Moreover, prior knowledge can be

incorporated to make the model sparse.

In this section, our goal is to solve a more generic structureregularization problem

(i.e., group, tree, graph or even forest) with overlapping groups, which means these differ-

ent groups can be overlapped, and each input variable can be simultaneously attributed to

multiple groups by incorporating different prior knowledge [9], which allows an arbitrary

combinations of features. This problem is more challengingdue to the non-separability of

penalties, where standard lasso cannot be easily applied. Moreover, generic solver (e.g.,

interior-point method (IPM)) is computational expensive and does not scale very well.

Many efforts (e.g., [9], [115], [116], [117], [118], [119], etc) have been devoted to

solve the related group lasso problem. For example, Jenatton et al [9] propose an alternating

algorithm to solve the overlapping lasso problem, Chen et al.[115] present a smoothing

technique to solve the overlapping group lasso problem, Argyrious et al. [118] use the

proximal gradient method to solve the overlapping lasso where the proximal operator is

computed through a fixed point method. Most of (if not all) these works, however, solve

group lasso problem withspecific fixedstructures(e.g., tree structures, wavelet transforation

coefficient relations, etc). To the best of knowledge, few algorithms can solve the group

lasso problem with an arbitrary structure.

We develop an efficient algorithm forgenericgroup lasso problem, which allows

an arbitrary definition of structures (e.g., group, tree, graph, forest structure, etc). This
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generalization makes our algorithm flexible to deal with anykinds of group lasso problem,

whether groups are overlapped or not. Furthermore, an efficient algorithm is developed to

solve this generic group lasso problem, where a key step is tosolve the proximal operator

using an efficient method. To summarize, the main contribution of this paper is listed as

follows.

• An efficient algorithm is employed to solve general group lasso problem, to satisfy

different kinds of structure requirement (i.e., group, tree, graph, forest, etc).

• An iteratively reweighted algorithm is provided, to solve the proximal operator,

which is the main contribution of this work. Its convergenceis rigorously proved.

The proposed algorithm is simple and effective, and thus could be useful in different

settings as well.

• Experiment results on both synthetic and gene-expression datasets indicate the effec-

tiveness and efficiency of proposed algorithm.

The remainder of this section is organized as follows. Section 4.2 states the moti-

vation of this work, and presents models to be solved in this work. Section 4.3 gives the

overview of the proximal gradient method to solve this problem while Section 4.4 presents

the efficient method to solve the proximal operator. In Section 4.5, we give an extension

strategy to our algorithm followed by a general auxiliary function based method in Sec-

tion 4.6. Section 4.7 discusses the related works. Section 4.8 shows experimental results

and finally we draw concluding remarks in Section 4.9.

Notations.

In this paper, all matrices are written as boldface uppercase, vectors are written as

boldface lowercase, and scalars are denoted by lower-case letters(a, b). n is the number

of data points,p is the dimension for data, andk is the number of class for each dataset.

For any vectorx ∈ <p, Lq norm ofw is ‖w‖q =
(

∑p
i=1 |wj|

q
) 1

q

for q ∈ [1,∞], and

‖w‖∞ = max1≤j≤p |wj|.
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G0
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G4 G5 G6 G7 G8 G9
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Figure 4.1:An example of overlapping tree structure with variable index on each node.Root group
G0 = {1 − 10}, depth-1 nodes include groupsG1 = {1, 2},G2 = {3, 4, 5, 6},G3 = {7, 8, 9, 10},
depth-2 node include groupsG4 = {1},G5 = {2},G6 = {3, 4},G7 = {5, 6},G8 = {7, 8, 9},G9 =
{10}, and depth-3 nodes include groupsG10 = {7, 8},G11 = {9}.

We first give the definitions of groups. LetxGg ⊆ {x1, x2, · · · , xp} contains theg-

th group of features, andGg is the index for theg-th group of features. For example, if

Gg = {1, 2, 4}, xGg = {x1, x2, x4}, then

‖xGg‖2 =
√

x2
1 + x2

2 + x2
4,

‖xGg‖∞ = max (|x1|, |x2|, |x4|).

See a tree structure described in Fig.4.1. It two groups haveoverlapped elements/features,

we say they are overlapped. For example, groupG2 andG7 have two overlapped features:

5, 6 becauseG2 = {3, 4, 5, 6}, G7 = {5, 6}.

4.2 Generic group lasso problem

In this paper, we consider the following generic group lassopenalized problem:

min
x∈<p

g(x) = f(x) + φλ1,λ2(x), (4.1)

wheref(x) is a smooth convex loss function over input variablex ∈ <p (e.g., least square

loss), and

φλ1,λ2(x) = λ1||x||1 + λ2

G
∑

g=1

wg||xGg ||q (4.2)
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Figure 4.2:An example of linear structure, with variable index on each node. Left: non-overlap
linear structure,G1 = {1, 2},G2 = {3, 4},G3 = {5, 6},G4 = {7, 8, 9}; Right:overlap linear struc-
ture,G1 = {1, 2},G2 = {3, 4},G3 = {5, 6, 7},G4 = {7, 8, 9}.

w1
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w3

w4
w5

w6

w7 w8

w9

Features put in undirected graph

Figure 4.3:An example of feature constraint on undirected graph. Each group is themaximum
clique on undirected graph.G1 = {1, 2, 5},G2 = {1, 4, 5},G3 = {3, 7},G4 = {3, 6, 8}.

is the group lasso penalty, andλ1 ≥ 0, λ2 ≥ 0 are regularization parameters,wg > 0 is

a scalar,q = {2,∞}, 1 ≤ g ≤ G, G is the number of groups.xGg ⊆ {x1, x2, · · · , xp}

contains theg-th group of features, andGg is the index for theg-th group of features.

Different forms of group, tree or graph structures can be reformulated in this general

form, such as [113, 108], etc. A motivating example of tree structure is shown in Fig.(4.1),

whereG =12 groups are displayed, associated withp =10 variables.

Motivation of our formulation of Eq.(4.1)

The first term||x||1 promotes the flat sparsity of solution, which is standard LASSO

problem [11]. The second term
G
∑

g=1

wg||xGg ||q selects a number of groups, which enforces
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the structure sparsity [10]. Thus, Eq.(4.1) jointly enforces flat sparsity and structure spar-

sity, which selects features in both individual and group-wise way.

Actually the first term of Eq.(4.2) can be resolved into the second term, which intro-

ducesp additional groups. Theg groups are specified and they may overlap. The penalty

of Eq.(4.2) is a special case of more general Composite Absolute Penatly (CAP) fam-

ily [120]. When groups are disjoint withλ1 = 0 andλ2 ≥ 0, the model of Eq.(4.1) reduces

to the group lasso [107]. Ifλ1 > 0 andλ2 = 0, the model of Eq.(4.1) reduces to standard

Lasso [11]. The above objective function of Eq.(4.2) has thebenefit of being convex, which

eliminates the possibility of convergence to a local minimum.

Extension to non-convex group lasso usingLr norm

Further we can enforce more sparseLr norm (0 < r < 1) to encourage structure

sparsity. Because
G
∑

g=1

||xGg ||q approximates thetrue number of groups we want to select:
∑G

g=1 s(z), wherez = ||xGg ||q, and the scalar number functions(·) is defined as:

s(z) =











1; if z 6= 0

0; if z = 0
(4.3)

We approximate the number functions(·) by fr(z) = zr at smallr [50]. Clearly, z0.2

is a better approximation ofr(z) thanf(z) = z0.5. Thus parameterr is usually set to

0 ≤ r ≤ 1. In generalr > 1 case is un-interesting.

Using functionfr(z) = zr(0 ≤ r ≤ 1) , this leads to several other versions of general

group lasso problem,

φλ1,λ2(x) = λ1||x||1 + λ2

G
∑

g=1

wg(||xGg ||2)
r, (4.4)

φλ1,λ2(x) = λ1||x||1 + λ2

G
∑

g=1

wg(||xGg ||∞)
r. (4.5)
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Compared to Eq.(4.2), Eq.(4.2) can be viewed as a special caseat r = 1. However, one

drawback of this approach is that, at0 ≤ r < 1, Eq.(4.4) and Eq.(4.5) are not convex any

more.

4.3 Solving objective using proximal gradient method

In this paper, we employ accelerated proximal gradient method [111, 109] for solving

Eq.(4.1) atq = 2 due to its fast convergence.q =∞ case and non-convex case of Eq.(4.4)

and Eq.(4.5) can be similarly solved. Due to space limit, we omit the detailed algorithms

here.

The key step in computation of Eq.(4.1) is the computation ofproximal operator. We

present an effective algorithm to compute the proximal operator, which is well illustrated

in Section 4.4.

A brief overview of proximal gradient method

Proximal method firstly constructs a model for approximating f(.) at the pointx0,

such that

f(x) =
(

f(x0) + 〈∇f(x0),x− x0〉
)

+ φλ1,λ2(x) +
L

2
||x− x0||

2,

whereL > 0. This modelf(x) consists of the first-order Taylor expansion of the function

f(.) atx0, the non-smooth penaltyφλ1,λ2(x), and another regularization termL
2
||x− x0||

2.

Notef is a function:Rn×p → R
n. Its gradient is Lipschitz continuous if

||∇f(x1)−∇f(x2)|| ≤ L‖x1 − x2‖,

for any x1,x2 ∈ <
p, whereL is a constant. Iff is gradient Lipschitz continuous, the

following holds [111],

f(x) 6 f(x̃) + 〈x− x̃,∇f(x̃)〉+
L

2
||x− x̃||2.

More detailed introduction of proximal method can be found in [121, 111].
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Let

JLt,δt(x) =
Lt

2
||x− δt||

2 + φλ1,λ2(x). (4.6)

Next, a sequence of approximation solutionsx is computed as follows:xt+1 = argminx JLt,δt(x)

where the search pointsδt is an affine combination ofxt−1 andxt asδt = xt+βt(xt−xt−1).

Coefficientβt is updated in each step, and step sizeLt can be determined by the line search

algorithm, such as [111] to preservef(xt+1) ≤ JLt,xt
(xt+1). One key step is to mini-

mize proximal operator of Eq.(4.6) [121], which is equivalent to optimizing the following

Eq.(4.7),

min
x

Lt

2
||x− at||

2 + φλ1,λ2(x), (4.7)

whereat = xt −
1
Lt
∇f(xt), given current dataxt.

Detailed Algorithm

We summarize the detailed algorithm in Algorithm 1. Basically, this algorithm really

has nothing to do with the particular overlapping group lasso operator of Eq.(4.2), except

step 4 and 10.

Convergence analysis

Supposex∗ is optimal solution for Eq.(4.1), thenx ∈ <p is called anε-optimal solu-

tion to Eq.(4.1) ifg(x)− g(x∗) ≤ ε holds. It is known that proximal gradient method [122]

can achieveε-optimal solution inO( 1√
ε
) iterations.

Theorem 6. [122] Let {xt} be the sequence generated by proximal gradient method of

Alg.1, then for anyt ≥ 1, we have,

g(xt)− g(x∗) ≤
2Lf‖x

0 − x∗‖2

(1 + t)2
, ∀x∗ ∈ X∗.

The above theorem establishes the fast convergence of proximal gradient method.

The efficiency of proximal gradient method is depending on the computation of proximal

operator in Step 4/10 shown in Alg.1. As long as the proximal operator computation step
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Algorithm 4 Proximal method for overlapping group lasso
Input: L0, x0, δ0

Output: xt+1

1: initialize L1 ← L0, x1 ← x0, δ1 ← δ0, t← 1

2: while not convergedo

3: at ← xt − 1
Lt

∇f(xt).

4: solve forxt+1 = minx
Lt

2
||x− at||2 + φλ1,λ2

(x) of Eq.(4.8)

5: if f(xt+1) < JLt,at
(xt) then

6: xt+1 ← xt+1 +
2(δt−1)

1+
√

1+4δ2
t

(xt+1 − xt),

7: δt+1 ←
1+

√

1+4δ2
t

2
,

8: Lt+1 ← Lt, t← t+ 1

9: else

10: search for smallestLt, such thatxt+1 = minx
Lt

2
||x−at||2+φλ1,λ2

(x) of Eq.(4.8) satisfiesf(xt+1) < JLt,at
(xt+1)

11: end if

12: end while

gives good performance, we will achieve good performance. In the following, we will show

an efficient algorithm to solve the associated proximal operator in each iteration.

4.4 An efficient algorithm for associated proximal operatorcomputation

In this section, we show how to solve the associated proximaloperator. Eq.(4.7) is

equivalent to solving:

J1(x) =
1

2
||x− a||2 + β1||x||1 + β2

G
∑

g=1

wg||xGg ||, (4.8)

where the correspondence between Eq.(4.8) and Eq.(4.7) isa = at, β1 = λ1/Lt, β2 =

λ2/Lt, q = 2. In the following, we provide an iterative algorithm to solve Eq.(4.8), and

then prove its convergence.

Let IGg ∈ {0, 1}
p×1 be group index indicator for groupg(1 ≤ g ≤ G). For example,

group 1 is
√

x2
1 + x2

2, thenIG1 = [1, 1, 0, · · · , 0]. Thus the group variablexg can be

explicitly expressed asxGg = diag(IGg)× x.

Key idea of Algorithm
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The high level idea of proposed algorithm is to updatex iteratively, until the al-

gorithm converges. The similar idea is widely used in spare coding [11] or compressive

sensing [85], which is known asiteratively reweighted method[123], [124].

Procedure

Instead of directly optimizing Eq.(4.8), we propose to optimize the following objec-

tive, i.e.,

J2(x) =
1

2
||x− a||2 +

1

2
β1x

TEx+
1

2
β2x

TFx, (4.9)

whereE,F ∈ <p×p are both diagonal matrices, and given by

Eii =
1

|xi|
, Fii =

(

G
∑

g=1

wgIGg
||xGg ||

)

i
. (4.10)

Note computation ofE,F depends onx, thus minimization ofx depends on bothE,F.

In the following, we propose an efficient algorithm to find outthe optimal global solution

for x, where in each iteration,x is updated using currentE,F, andE,F are updated using

currentx. This process is iterated until the algorithm converges.

Taking the derivative of Eq.(4.9) w.r.tx and set it to zero. We have

∂J2
∂x

= x− a+ β1Ex+ β2Fx = 0. (4.11)

Thus we obtain the optimal solution for Eq.(4.9) is given by,

x = (I+ β1E+ β2F)
−1a. (4.12)

Note E,F are all diagonal matrix, and thus the(I + β1E + β2F)
−1 can be efficiently

computed, whereI ∈ <p×p is identity matrix. Lete ∈ <p, f ∈ <p,

Q = (I+ β1E+ β2F)
−1,

whereei = 1
|xi| , fi =

( G
∑

g=1

wgIGg
||xGg ||

)

i
, thenQ is a diagonal matrix and given by,

x = Qa, Qii =
1

1 + β1ei + β2fi
. (4.13)
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Using the updating rule of Eq.(4.13), we can obtain the global optimal solution for

Eq.(4.8). We call our algorithmiterative reweightedmethod due to iteratively updating of

x,E,F in each iteration. To summarize, Algorithm 2 gives the entire updating process of

each individual variablex, E, F. In other words, Algorithm 2 monotonically decreases the

objective of the problem in Eq.(4.8) in each iteration.

Algorithm 5 Iterative reweighted algorithm to solve Eq.(4.8)
Input: a, β1, β2

Output: x

Procedure:

1: t = 0.

2: while Not convergedo

3: Updatext using Eq.(4.13).

4: Updateeti =
1
|xt

i|

5: Updatef ti =
( G
∑

g=1

wgIGg
||xt

Gg
||

)

i

6: t = t+ 1.

7: end while

Time complexity analysis

We analyze the time complexity of proposed algorithm. In practice, we find the above

algorithm converges very fast. Typically, it converges to global optimal solution within 10-

20 times (to precision 1e-6). In each iteration, we need to updatex, e, f iteratively, which

takes time costO(p),O(p),O(pG), respectively. Thus the total time cost of each iteration

isO(pG), which is linear w.r.t the number of features and the number of groups.
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A nice property of our algorithm is that, it can handle different kinds of group struc-

ture, no matter whether they are overlapped or not. The performance of our algorithm is

determined by the number of features and the number of groups.

Convergence of algorithm

Theorem 7. Under the updating rule of Eq.(4.12),J1(xt+1)− J1(x
t) ≤ 0.

To prove Theorem 4.1, we need two lemmas.

Lemma 8. Under the updating rule of Eq.(4.12),J2(xt+1) < J2(x
t).

Lemma 9. Under the updating rule of Eq.(4.12),

(

J1(x
t+1)− J1(x

t)
)

≤
(

J2(x
t+1)− J2(x

t)
)

. (4.14)

Proof of Theorem 4.1.

Proof. From Lemma 4.2 and Lemma 4.3, it is easy to see
(

J1(x
t+1) − J1(x

t)
)

≤ 0.This

completes the proof.

Two useful propositions.

Before proof of Lemma 4.2, we present two properties satisfiedin our algorithm.

Proposition 1 is obvious, and we defer the presentation of proof of proposition 2 after

proof of Lemma 4.3.

Proposition 1

||x||1 = xTEx.

Proposition 2

xTFx =
G
∑

g=1

wg||xGg ||.

Proof of Lemma 4.2

Proof. Eq.(4.9) is a convex function, and optimal solution of Eq.(4.12) is obtained by tak-

ing derivative∂J2
∂x

= 0, thus obtainedx∗ is global optimal solution,J2(xt+1) < J2(x
t).

Proof of Lemma 4.3
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Proof. Let∆ = LHS -RHS of Eq.(4.14). We have∆ = β1α + β2γ, where

α = ||xt+1||1 − ||x
t||1 −

1

2
(xt+1)TEtxt+1 +

1

2
(xt)TEtxt

= ||xt+1||1 −
1

2
||xt||1 −

1

2
(xt+1)TEtxt+1

= ||xt+1||1 −
1

2
||xt||1 −

1

2

∑

i

|xt+1
i |

2

|xti|

= −
1

2

∑

i

(|xt+1
i | − |x

t
i|)

2

|xti|
≤ 0.

(4.15)

γ =
G
∑

g=1

wg(||x
t+1
Gg || − ||x

t
Gg ||)− wgx

t+1TFtx
t+1

2
+ wgx

tTFtx
t

2

=

G
∑

g=1

wg||x
t+1
Gg || −

1

2

G
∑

g=1

wg||x
t
Gg || −

1

2
wg(x

t+1)TFtxt+1

=

G
∑

g=1

wg||x
t+1
Gg || −

1

2

G
∑

g=1

wg||x
t
Gg || −

1

2

G
∑

g=1

wg

||xt
Gg ||
||xt+1
Gg ||

2

= −
1

2

G
∑

g=1

wg(||x
t
Gg − xt+1

Gg ||)
2

||xt
Gg ||

≤ 0.

(4.16)

Due to proposition 1, Eq.(4.15) holds. Due to proposition 2,Eq.(4.16) holds. Clearly,

∆ = β1α + β2γ ≤ 0.

Proof of Proposition 2

xTFx =

p
∑

i=1

x2
i

(

G
∑

g=1

wgIGg
||xGg ||

)

i
=

G
∑

g=1

wg

||xGg ||

p
∑

i=1

x2
i (IGg)i

=
G
∑

g=1

wg

||xGg ||
||xGg ||

2 =
G
∑

g=1

wg||xGg ||.

The proposed algorithm can also be used to solve a more general loss function w.r.t to

group lasso, i.e.,

J(x) = f(x) + β

G
∑

g=1

wg||xGg ||σ, (4.17)
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wheref(x) is a loss function (e.g., least square) w.r.t data variablesand class labels, and

||xGg ||σ could be an adaptive loss function [54] w.r.t an adaptive parameterσ, which can

smoothly interpolate betweenL1 loss andL2 loss. For example, for a vectorx ∈ <p,

‖x‖σ =
∑

i

(1 + σ)x2
i

|xi|+ σ
. (4.18)

Eq.(4.17) can be similarly solved as Eq.(4.8).

4.5 Acceleration to the proposed algorithm

One strategy to accelerate our algorithm is to use the following theorem [119]:

Theorem 8. Let x∗ be optimal solution for Eq.(4.8), thenx∗ is also the optimal solution

for:

J3(x) = min
x

1

2
||x− b||2 + β2

G
∑

g=1

wg||xGg ||, (4.19)

whereb = sign(a)⊗max(|a| − β1, 0),⊗ represents element-wise multiplication.

According to Theorem 8, we can solve Eq.(4.8) through Eq.(4.19), by settingb =

sign(a)⊗max(|a| − β1, 0). The algorithm is very similar to Algorithm 2 as shown above,

without updatingei in step 4.

4.6 Extension to General Loss function

If we have concrete examples of loss function in Eq.(4.1)(e.g., least square loss). Al-

gorithm 2 can be directly used to solve this problem without employing standard proximal

gradient method. Let

J4(x) = min
x
||y −Dx||2 + φλ1,λ2(x), (4.20)

wherex ∈ <p is the regression coefficient,y = [y1, y2, ·, ·, ·, yn]
T ∈ <n×1 is the output,

D = [d1,d2, · · ·,dn]
T ∈ <n×p is input data. We can use more robust error function, i.e.,

J5(x) = min
x

n
∑

i=1

||yi − dix||+ φλ1,λ2(x). (4.21)
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To solve Eq.(4.20) atq = 2, consider the following objective,

J6(x) = min
x
||y −Dx||2 +

1

2
λ1x

TEx+
1

2
λ2x

TFx, (4.22)

whereE,F are the same as those defined in Eq.(4.10). Then updating rules forx is given

by,

x = (2DTD+ λ1E+ λ2F)
−12DTy, (4.23)

whereE,F can be updated as that of Eq.(4.10) shown in Algorithm 2. The convergence of

the algorithm can be easily proved as that of Algorithm 2. Dueto space limit, we omit the

details here.

Extension to general case for multi-class classification

Above we have discussed how to use group lasso for variable selection purpose.

In practice especially for multi-class classification problem, we have original datasetD =

[d1,d2, · · · ,dn]with p features forn data points, with associated class labelsY = [y1,y2, · · · ,yn]

from c classes, whereD ∈ <p×n,Y ∈ <c×n. We note previous works [118, 125, 56] have

considered the problem of variable/feature selection based on structural sparsity (e.g., using

L2,1-norm for group sparsity),

min
W

f(W) + α

p
∑

i=1

√

√

√

√

k
∑

j=1

W2
ij (4.24)

whereW ∈ <p×c is multi-class regression coefficient, andf(W) is a function:<p×n 7→

<c×n, e.g., least square lossf(W) = ‖Y−WTX‖2F . This can be viewed as a special case

of the general group lasso problem, where there arep groups and thei-th group is thei-th

row ofW, i.e.,
∑p

i=1

√

∑k
j=1 W

2
ij =

∑G
g=1 ‖WGg‖2, where‖WGi‖2 =

√

∑k
j=1 W

2
ij .

This indicates the proposed algorithm can be used to solve multi-class/multi-label

feature selection problems [53] with fast convergence. Moreover, we can further define
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the group sparsity on projectionW, according to a priori knowledge, such as wavelet-

coefficient [126], topographic dictionary [127], image spatial neighborhood information [128],

graph embedding information [48], etc.

4.7 Connections to related works

Bach [129] analyzes the consistency of the group lasso and multiple kernel learning,

which can be used for learning from heterogeneous data sources and for nonlinear vari-

able selection. Jenatton et al [9] propose an alternating algorithm to solve the overlapping

lasso problem. However, it involves an expensive matrix inversion computation and it may

not scale very well. Alternating Direction method of Multipliers method (ADMM) [116]

is adopted to solve this overlapping problem through the computation of a linear system.

However, this approach may not scale well for large-size with high-dimension problems.

Chen et al. [115] present a smoothing technique to solve the overlapping group lasso prob-

lem. Mairal et al [117] provide an algorithm to solve the sum of L∞ norms, which can not

be directly used for solving the overlapping lasso, which isdefined as the sum ofL2 norms.

Argyrious et al. [118] use the proximal gradient method to solve the related problem,

where the proximal operator is computed through a fixed pointmethod. Yuan et al. [119]

use proximal method to solve overlapping group lasso problem, where the proximal op-

erator is computed through solving a smooth and convex dual problem. Different from

above works, our work proposes a new method for proximal operator computation, with

fast convergenceand verysimpleupdating rules.

We study the group sparsity problem in the parametric setting (i.e., group lasso). An-

other line of research is doing sparse variable selection using nonparametric additive mod-

els (i.e., sparse additive model) [130, 131, 132], where theprior knowledge of the structure

among the covariates are utilized to encourage variable selection. Most of works [130,
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Figure 4.4:One demonstrating example of overlapping group structure.y-axis: group number,
x-axis: variable index.p = 100, G = 9. G1 = {x1,x2, ...,x20}, · · · ,G9 = {x81,x82, · · · ,x100}

131, 133], however, perform variable selection individually, where a group of basis func-

tions constructed from a single covariate, which are greatly different from our work.

4.8 Experiment

In this section, extensive experiments are conducted to demonstrate the effective-

ness of proposed algorithm. We use both synthetic datasets (including group structure,

tree structure) and real world gene expression datasets to evaluate our method in various

problem size and parameter settings. We compare our algorithm with several state-of-

the-art methods, including SLasso algorithm [9], FoGLaasoalgorithm [119], Prox-Grad

method [115], and Alternating Direction Method of Multipliers (ADMM) [116].

In Eq.(4.1), we use the standard least square loss function.

Dataset

We use four datasets: (1) group structure of synthetic datasets, (2) tree structure of

synthetic datasets; (3) pathway structure of gene expression datasets; (4) edge structure of

gene expression datasets.

Synthetic dataset.

Group structure.
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We randomly generate a overlapping adjacent group, where a group contains 20 ad-

jacent inputs with an overlap of 10 variables between two successive groups. To be exact,

G1 = {1, 2, ..., 20},G2 = {11, 12, ..., 20},Gg = {J − 19, ..., J} with J = 10g + 10, andg

is the group size,J is the problem size. We show an example in Fig.4.4 whereJ = 100.

Tree structure.

We randomly generate a overlapping tree structure, which can be considered as a

special graph structure. We generate an overlap tree structure (feature sizep = 2000,

group sizeG = 200), which is similar to the tree structure shown in Fig.4.1. Due to space

limit, we cannot show the whole tree structure here. Part of tree has the same structure

as the tree in Fig.4.1. For example, we have root groupG0 = {1 − 2000}, depth-1 node

include groupsG1 = {1, 2},G2 = {3, 4, 5, 6},G3 = {7, 8, 9, 10}, etc; depth-2 nodes include

groupsG50 = {1},G51 = {2},G53 = {3, 4},G54 = {5, 6}, etc; and depth-3 groups include

G98 = {3},G99 = {4}, etc.

Gene expression dataset.

We perform our experiment to evaluate the efficiency of our algorithm on breast

cancer gene expression dataset [134]. This dataset consists of 8141 genes in 295 breast

cancer tumors (78 metastatic and 217 non-metastatic). To analyze the microarrays from

the biological point of view, different methods have been used to organize the gene into

overlapping gene sets. We follow [114], [119] and use two methods to generate the over-

lapping groups of gene sets:

(1) pathway [135];

(2) edges [136].

For pathways, we use the canonical pathways from Molecular Signature Database

(MSigDB) [135]. It contains 639 groups of genes, where 637 groups involve the genes

used in pathways. The average number of genes for each group is 23.7, and the largest gene

group has 213 genes. 3510 genes appear in these 637 groups with an average frequency
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Figure 4.5: Convergence of proximal operator computation ofour algorithm (Algorithm 2)
on (a)pathwaygene-expression; (b)edgegene-expression. (a) Parameter setting:p = 3510,
G = 637, w = 0.5, convergence criteria: 1e-6. (b) Parameter setting:p = 1000, G = 7194,
w = 2, convergence criteria: 1e-6.

of number 4. We use the network [136] to extract 42,594 edges from the network, i.e.,

42,594 groups of overlapping gene sets with size 2. The average frequency for 8,141 genes

appeared in these 42,594 groups are 10.

Convergence of proposed proximal operator algorithm

In Figs.(4.5), we show the convergence of our algorithm (Algorithm 2) for comput-

ing the proximal operator on (1)path-way(2) edge gene-expression datasets. To further

accelerate our algorithm, in our experiments, according toTheorem 2, we solve Eq.(4.19)

instead of original problem of Eq.(4.2), using Algorithm 2.The experiment results indicate

that our algorithm converges very fast to precision (1e− 6). It takes no more than20 steps.

Comparisons of different methods for proximal operator.

The key advantage of our algorithm lies in the computation ofthe proximal operator

of Eq.(4.8). There have been many methods proposed to solve it, including dual method

proposed by Yuan et al [119], Dykstra-like proximal splitting method [119], and alter-

nating direction method multipliers (ADMM) [116]. These proximal splitting methods
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Table 4.1: Comparison of different proximal operator computation (Obj, CPU time) on
pathwaygene-expression dataset. Parameter setting:p = 3510, G = 637, convergence
criteria: 1e-6.

method
w = 0.5 w = 2

Obj. CPU/s Obj. CPU/s

our method 79.7500 2.255 153.9001 2.402
Dykstra 81.8974 4.267 154.7923 4.879
ADMM 82.3142 3.897 155.1287 3.912
Dual 79.7612 2.274 153.9018 2.418

Table 4.2: Comparison of different proximal operator computation (Obj, CPU time) on
edgegene-expression dataset. Parameter setting:p = 1000, G = 7194, convergence
criteria: 1e-6.

method
w = 0.5 w = 2

Obj. CPU /s Obj. CPU/s

our method 56.9837 1.163 102.7791 1.087
Dykstra 58.9742 3.648 105.8314 3.485
ADMM 60.3214 3.124 107.2494 2.987
Dual 57.0123 1.207 102.8123 1.113

convert this challenge optimization problem into a series of sub-problem with closed-form

solutions. We compare our method with above three methods.

On above four datasets, we compare the performance of above four method. There

are three key parameters: (1) feature numberp; (2) group numberG; (3) regularization

weightsw. We setwi = w to the same value, even for different group regularization.

Experiment results on synthetic datasets.

We show the comparison results w.r.t different group number(G), different feature

number (p), different regularization weights (w) using group structure, hierarchical tree

structure on synthetic datasets in Fig. 4.6. We see that, ourmethod achieves good perfor-

mance in different parameter settings, and scales very welleven whenp, g is very large.

Our method is better than the other methods, in terms of the computation time, at different
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Table 4.3: Comparison of different algorithms for overlapping lasso computation (Obj,
CPU time, iteration number) onpathwayandedgegene-expression dataset. Involved genes
p = 1000, convergence criteria:10−4.

method
pathway edges

Obj. CPU/s Iteration Obj. CPU/s Iteration

Our method 88.11 9.24 108 117.73 12.30 91
Re-weighted 88.12 12.33 123 118.34 13.29 92
FoGLasso 87.89 9.75 116 117.75 12.34 121
SLasso 88.93 11.17 142 117.98 17.81 102
Prox-Grad 88.12 12.50 138 118.10 16.53 112
ADMM 89.32 13.72 78 119.32 21.34 83

Table 4.4: Comparison of different algorithms for overlapping lasso computation (Obj,
CPU time, iteration number) onpathwayandedgegene-expression dataset. Involved genes
p = 2000, convergence criteria:10−4.

method
pathway edges

Obj. CPU/s Iteration Obj. CPU/s Iteration

Our method 131.32 28.92 148 235.75 29.51 163
Re-weighted 132.46 38.65 163 235.90 39.52 201
FoGLasso 131.80 29.14 156 235.76 29.63 187
SLasso 131.34 32.74 174 236.01 31.34 198
Prox-Grad 132.57 35.02 185 235.97 32.93 212
ADMM 133.09 48.74 107 237.35 44.31 150

group numberG, feature numberp and regularization weightw. For Dykstra method and

ADMM method, it is more sensitive to group number (G) and feature number (p).

Experiment results on gene-expression datasets.

We show the comparison results w.r.t different regularization weights (w) in Ta-

ble. 4.1, Table. 4.2. Clearly, our method outperforms Dykstra method and ADMM method,

and is also better than dual method, in terms of both objective function values and compu-

tational time. Moreover, our method is much simpler than dual method.

Comparisons of different computation methods for overlapping group lasso.

On the gene expression dataset, we follow [119] and use the least square lossf(x) =

1
2
||y −Xb||2, andλ1 = λ2 = γ × λmax

1 , andλmax
1 = ||XTy||inf , andγ is chosen from the
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set{5×10−1, 2×10−1, 1×10−1, ..., 1×10−1}, wi = 1. We have two methods to solve the

overlapping group lasso problem, (1) proximal method proposed in§2,3,4 (Our method) ;

(2) general method proposed in§5 (shown as “Re-weighted” in Tables 4.3, 4.4.

We compare above two methods against other 4 methods: (1) SLasso method [9]; (2)

FoGLaaso method [119]; (3) Prox-Grad method [115]; (4) Alternating Direction Method

of Multipliers (ADMM) [116].

For the givenγ, we run SLasso until a certain precision is reached, and thenwe

run the other algorithms until all methods can reach to that of the SLasso. Tables 4.3, 4.4

summarize the comparison of different algorithms for overlapping lasso computation (Obj,

CPU time, iteration number) when involved genesp = 1000, p = 2000, and convergence

criteria is10−4. We make several important observations from experiment results.

(1) Our algorithm is efficient, as compared to the other methods, including FoGLasso

and SLasso, in terms of CPU time.

(2) Our algorithm converges relatively faster than other methods, and always achieves

smaller objective, as compared to other methods.

(3) The efficiency onedgedataset is greatly improved, as compared with that on

pathways. Moreover, as the number of genes increases, the efficiency of our algorithm is

also greatly improved.

(4) The results indicate that this algorithm is slower than the proximal gradient

method, although our method forL2 norm does not need a proximal step. Most of time

for computation is spent on Eq.(4.23), which requires the computation of inverse of a ma-

trix of p× p.

We will further investigate how to make our algorithm more scalable and efficient

for large-size problems.

Experiment results on breast cancer prediction.
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Table 4.5: Classification accuracy, number of selected genes, number of selected pathways
using our method (overlapping group lasso of Eq.4.2), standard lasso using 3-fold cross
validation.

Metric Our method standard lasso
Classification accuracy 65%± 2% 62%± 2%
# of genes in each fold 48/57/70 109/112/143
# of pathways in each fold 238/242/167 247/267/278

Another important application of overlapping group lasso is to perform gene se-

lection for breast cancer prediction. For example, for the breast cancer gene expression

dataset [134] as shown in§4.1, we are interested in finding a group of genes, which can

distinguish metastatic (78 samples) from non-metastatic (217 samples) cancer tumors. The

pathway information, which involves a group of genes, conveys functionality informa-

tion for cancer discovery. Different genes could be involved in different groups, and these

groups may even overlap with each other. Overlap group lassoprovides an easy and natural

way to incorporate these prior information into cancer prediction.

On pathway dataset (see§4.1 for more details), we analyze the 3510 genes, which

are in at least one pathway. Before making classification, we keep the 300 genes most

correlated with the output [132]. Parameterλ is set according to cross validation. Since

the dataset is very unbalanced, we balance the dataset, by making a replication of each

metastasis patient in each fold in cross validation. Table 4.5 shows the comparison results

of overlapping group lasso (Eq.4.2) and standard Lasso method [11]. Clearly, our method

(overlapping group lasso) gives better classification accuracy. As compared to standard

lasso, the solution of overlapping group lasso is more sparse at both gene and pathway

level. This makes the relations between identified genes andpathways easier to interpret,

which suggests using overlapping group lasso model for cancer prediction.
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4.9 Lessons learned

In this paper, we propose an efficient algorithm to solve the general overlapping

group lasso problem. We present an efficient algorithm to solve the associated proximal

operator. Different structures can be integrated into thisframework. Numerical experi-

ments on both synthetic and gene expression datasets demonstrate the effectiveness of the

proposed algorithm. An interesting future direction is to adaptive this algorithm to solve

problems, which involve much richer structures among the variables (e.g., more compli-

cated hierarchical tree structure, forest structure).
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Figure 4.6: Time comparison (y-axis: CPU time) for computingthe proximal operators on
synthetic datasets. w.r.t differentp, w,G. (a-c) overlapping group structure as shown in
Fig. 2; (d) tree structure which has similar hierarchical structure as shown in Fig. 1. (a)
feature sizep = 1000, regularization parameterw = 0.1; (b) group numberG = 100,
regularization parameterw = 0.1; (c) feature sizep = 1000, group sizeG = 100; (d)
feature sizep = 2000, group sizeG = 200.
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CHAPTER 5

Maximum Consistency Preferential Random Walks

Random walk plays a significant role in computer science. The popular PageRank

algorithm uses random walk. Personalized random walks force random walk to “personal-

ized views” of the graph according to users’ preferences. Inthis paper, we show the close

relations between different preferential random walks andlabel propagation methods used

in semi-supervised learning. We further present a maximum consistency algorithm on these

preferential random walk/label propagation methods to ensure maximum consistency from

labeled data to unlabeled data. Extensive experimental results on 9 datasets provide per-

formance comparisons of different preferential random walks/label propagation methods.

They also indicate that our maximum consistency algorithm clearly improves the classifi-

cation accuracy over existing methods.

5.1 Background of random walk

Random walk model [137] is a mathematical formalization of the paths that con-

sists of taking successive random steps, i.e., at each step the walk jumps to another site

according to some probability distribution. The random walk model plays an important

role in computer science, and it has many applications in information retrieval [138], social

network [139], etc. PageRank [140] is a link analysis algorithm, which uses the idea of

random walk to measure the webpage’s relative importance. Personalized Page Rank [141]

is presented to create “personalized views” of the web searching results based on redefining

importance according to users’ preferences.
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Semi-supervised learning (SSL) has connections with random walks on graphs. In

SSL, only a small number of data points are labeled while a large number of data points

are unlabeled. The goal of SSL is to classify the unlabeled data based on labeled data. SSL

has attracted more attention because the acquisition of labeled data is quite expensive and

time-consuming, while large amount of unlabeled data are easier to obtain. Many different

approaches have been proposed to solve SSL problems [142, 143], e.g., classification-based

approach [144], clustering-based approach [145], graph-based approaches [27, 28, 29], etc.

Among all these approaches, graph-based approach is the most popular way to model the

whole dataset as undirected weighted graph with pairwise similarities (W), and the semi-

supervised learning can be viewed as label propagation fromlabeled data to unlabeled data,

like a random walk on a similarity-graphW. Our work is inspired by previous graph-based

semi-supervised methods, especially by the work of consistency labeling [28] and Green’s

function [29].

In this paper, we first show the close relationships between different preferential

random walks and label propagation methods. We show that thelabeled data points act as

the preferential/personalized bias vectors in the personalized random walks. This provides

much insight to the existing label propagation methods, andsuggest ways to improve these

methods. We also perform extensive experiments to compare the performance of different

methods used in preferential random walks.

Furthermore, we observe that current label-propagation approach may not achieve

best available results especially when the propagation operator do not exactly reveal the

intrinsic structure collected from both labeled and unlabeled data points. Many label prop-

agation approach is done in one shot from source (labeled data) to all unlabeled data. This

can not guarantee many newly-labeled data, which lie far-away in the data manifold with

the labeled data, are labeled reliably. Motivated by this observation, in this paper, we

present a novel maximum consistency approach to improve theperformance of existing
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label propagation methods. Our approach first allows the label propagation from source to

reliably newly-labeled data only, and progressively expands to all unlabeled data, to ensure

maximum consistency from labeled data to unlabeled data. The key idea of our approach

is to leverage the existing propagation operator and repeatedly utilizes it, which has almost

the same computational complexity as the existing propagation methods.

Specifically, it is worthwhile to emphasize the contribution of our paper.

• We first show the relations between different preferential random walks and existing

label propagation methods. Extensive experiments on 9 datasets are performed to

demonstrate the performance of different methods.

• We present a maximum consistency algorithm to improve existing label-propagation

methods. Extensive experiments performed on 9 datasets indicate clear performance

improvement.

The rest of this paper is organized as follows.§2 gives a brief overview of person-

alized random walk. Next in§3, we establish the connections between the preferential

random walks and label propagation methods. In§4, we emphasize the concept of score

distribution in semi-supervised learning methods. In§5, we propose our maximum consis-

tency label propagation method.§6 reviews the related work to our paper. In§7, extensive

experiments on 9 datasets are performed to provide performance comparisons of differ-

ent preferential random walks/label propagation methods,and demonstrate our maximum

consistency algorithm results. Finally, we conclude the paper.

5.2 A brief overview of personalized random walk

On a graph with edge weightsW, D is a diagonal matrix withD = diag(We), e =

(1, . . . , 1)T , P = [Pij ] is the transition matrix from nodei to nodej,

P = D−1W (5.1)
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Let fi be the probability of one walker on sitei, thus

f = (1− α)y + αPT f , (5.2)

In PageRank( [140]),y = (1, . . . , 1)T/n, α = 0.9.

In personalized random walk [141],y is the personalized probability (a vector) en-

coding the personalized preferences. For example, for a random walker, he prefers to visit

sitesi1, i2. Thenyi = 1 if i = i1, i2; yi = 0 otherwise.

Generalized Preferential Random Walks

In multi-person random walks, there areK random walkers. Each random walker

k(1 ≤ k ≤ K)has a distribution vectorfk and a personalized preference vectoryk,

fk = (1− α)yK + αPT fK . (5.3)

LetF = (f1, · · · , fK) andY = (y1, · · · ,yK), from Eq.(2), we obtain the transition

F = (1− α)Y + αPTF. (5.4)

The solution for the final stationary distributions of theK random walkers are

F =
1− α

I− αPT
Y. (5.5)

Method 1

Here we use standard random walk transition probability of Eq.(1) and obtain the

stationary distributions of theK random walkers:

F =
1− α

I− αWD−1
Y =

1− α

(D− αW)D−1
Y = D

1− α

(D− αW)
Y. (5.6)

Method 2

If we use the “pseudo transition probability”P = D−
1
2WD−

1
2 , we obtain the sta-

tionary distributions of theK random walkers as:
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F =
1− α

I− αD−
1
2WD−

1
2

Y. (5.7)

Method3

If we use another “pseudo transition probability”P = WD−1, we obtain the sta-

tionary distributions of theK random walkers as:

F =
1− α

I− αD−1W
Y =

1− α

D−1(D− αW)
Y =

1− α

(D− αW)
DY. (5.8)

So far, we have discussed random walks on a graph. Next, we make connections

to semi-supervised learning. The significance of relation analysis between preferential

random walks and label propagations is to help to capture theessence of these different

algorithms and better interpret the experiment results. Toour knowledge, so far there is a

lack of systematic study to explore the commonalities and differences of these algorithms,

as well as their intrinsic relationships.

5.3 Relations between preferential random walks and Label Propagations

In semi-supervised learning, we haven = n` + nu data points{xi}
n
i=1 , where first

n` data points are already labeled with{yi}
n`

i=1 for c target classes. Here,xi ∈ <
p and

yi ∈ 1, 2, ..., K, such thatyi = k if xi belongs to thek-th class. The lastnu data are

unlabeled. The goal of semi-supervised learning is to learntheir class labels:{yi}ni=n`+1.

Let Y ∈ <n×K be a class indicator matrix,Yij = 1 if xi is labeled asyi = j andYij = 0

otherwise.

Local - Global Consistency method (LGC)

Local and global consistency(LGC) [32] utilizes sufficiently smooth assumptions

with respect to the intrinsic structure collectively revealed by known labeled and unlabeled
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data points. Given the graph edge matrixW , LGC constructs the normalized matrixS =

D−
1
2WD−

1
2 , where D is a diagonal matrix withD = diag(We). Then the predicted label

matrixF is,

F = QY, Q = β(I− αS)−1, (5.9)

whereQ is the label propagation operator,α = 1
1+µ

, β = µ
1+µ

,µ is a parameter.

Relations with preferential random walk.

Compared with method 2 in generalized preferential random walk of Eq.(7), we can

see LGC isidentical to it. This is because constantβ will not change the classification

results.

Green’s function method (GF)

Green’s function for semi-supervised learning and label propagation is first presented

in [29]. GF is defined as the inverse of graph laplacianL = D −W with zero-mode

discarded. Using the eigenvectors ofL: Lvk = λkvk, where0 = λ1 ≤ λ2 ≤ ... ≤ λn are

the eigenvalues. Green’s function computes the predicted label matrixF,

F = QY, Q = L−1+ =
1

(D−W)+
=

n
∑

i=2

viv
T
i

λi
, (5.10)

whereQ is label propagation operator,(D−W)+ indicates zero eigen-mode is discarded.

Relations with preferential random walk.

From Method 1 of generalized preferential random walk, the stationary distribution

F of Eq.(6) is related toQ in Eq.(10). Asα −→ 1, we have

(D− αW)−1 −→ (D− αW)+ =
n
∑

i=2

viv
T
i

λi
. (5.11)

Indeed, for classification purpose, the GF approach is the limit of Method 1 of generalized

preferential random walk of Eq.(6). This is because of the following three reasons.

(1) In semi-supervised learning, the classification resultfor objecti is determined by

the location of the largest element ini-th row(See Eq.(12)).
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(2) Given a distributionA and a diagonal matrixD = diag(d1 · · · dn), DA will

multiply the i-th row of A by di. The relative distribution of this row does not change.

ThusD applied to distributionA does not change the classification results.

(3) The multiplicative constant1− α does not change the classification too.

Comparison of preferential random walk results.

In label propagation of Eq.(9) or Eq.(10), once the distribution score (a.k.a propaga-

tion score)F are obtained, each unlabeled data pointxi is assign a class label according

to

k = argmax
1≤j≤c

Fij (5.12)

Note the key difference of LGC with GF is the computation of propagation operatorQ:

LGC uses Eq.(5.9) while GF uses Eq.(5.10), which leads to different label propagation

results. Another popular label propagation method is Harmonic function [27], which em-

phasizes harmonic nature of the label diffusive process. Itis very different from LGC and

Green’s function, thus we did not discuss it here.

We have done extensive experiments to compare the above discussed methods for

semi-supervised learning. We defer the presentation of these results in the experiment§7.

We next discuss another contribution of this paper, i.e., the maximum consistency algorithm

on these preferential random walk/label propagation methods.

5.4 Score Distribution: Confidence of Label Assignment

We begin the presentation of our maximum consistency approach with analysis of the

distribution score of the propagation. Our maximum consistency algorithm is not designed

in an ad-hoc way, but motivated by the insight obtained from experiments: although label

propagation methods are effective, they may not achieve best possible label propagation

results. Next we illustrate the reasons.
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In both LGC (Eq.9) and GF (Eq.10) methods, the propagation isdone in one shot. All

unlabeled data obtain their class labels immediately. However, some unlabeled data points

may lie nearby in the data manifold (embedding subspace) with the labeled data, while

many other unlabeled data lie far-away from the labeled data. Therefore, the reliability or

confidence of the class labels obtained in propagation vary from high (for those lie near

labeled data) to low (for those lie far-away from labeled data).

However, in the class assignment procedure of Eq.(12), the class decision is simply

the largest one among thec classes in the propagation score distribution. For example, for

xi, the score distribution maybe

(Fi1 · · ·Fic) = (0.1, 0.2, 0.8, 0.3, 0.05),

in a data withc = 5. Forxj, the score distribution maybe

(Fj1 · · ·Fjc) = (0.2, 0.35, 0.38, 0.05, 0.3).

Even though bothxi,xj are assigned class label=3, the confidence of the assignments are

different. Clearly,xi is assigned with higher confidence becauseFi3 = 0.8 is much higher

than other classes.xj is assigned with lower confidence becauseFj3 = 0.38 is marginally

higher than some other classes. In other words, forxi the propagation score distribution

has a sharp peak while forxj the propagation score distribution has a rather flat peak.

There could be many reasons thatxi’s score distribution is much sharper than the

score distribution forxj. xi could lie much closer to class= 3 labeled data point thanxj.

It could also be that there are more class= 3 labeled data nearxi than nearxj. It is also

possible that there are many unlabeled points nearxi such that they mutually enhance the

class= 3 probability than those nearxj. More possibilities exist. Fortunately, it is not

necessary to dig out these details — they are collectively reflected in the propagation score

distribution. Consider the existing label propagation approach. Bothxi,xj are assigned la-

bels in the propagation.xj obtains class= 3 label, although it is done with low confidence.
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Now let us consider a different approach where we break the actual label assignment

into several rounds. We first assign class label forxi and move it to the pool of already-

labeled data, while defer the decision forxj in later rounds. As the pool of already-labeled

data expands to the neighborhood ofxj, the propagation score distribution forxj is likely

to become sharper. At this time/round, we assign class labelto xj. Thus the class label

assignment is always occurring at the situation where the assignment is done with high

confidences, i.e., the assignment is done such that the data point is the most consistent

with other members of the same class, both globally and locally, as reflected by the sharp

score distribution. From these observations and discussions, we design a maximum consis-

tent(MC) label propagation algorithm, which uses the label propagation operatorQ defined

in both LGC and GF methods. We call our approach as MC-LGC and MC-GF. Detailed

algorithm is presented in next section.

Motivation of Maximum consistency label propagation.

To summarize, semi-supervised learning methods such as random walk did not con-

sider the distributions of scores of multiple labeled but just judged the label of nodes from

the maximal score in all the classes of nodes. On the other hand, the unlabeled nodes

far away from the labeled nodes can hardly receive the flows. To handle these two issues

above, next we present maximum consistency label propagation algorithm.

5.5 Maximum Consistency Label Propagation

Design of the algorithm
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Our algorithm design is guided by maximum consistency assumption, which consists

of multiple label propagations,

F1 = QY0,

F2 = QY1,

· · ·

Ft = QYt−1, (5.13)

whereQ is the propagation operator which can be computed from Eq.(9) or Eq.(10), andFt

is the label prediction matrix during each propagation. In each label propagation process,

we use the current labeled data matrixYt to update the label prediction matrixFt.

At the end of each propagation, only those unlabeled data points whose class labels

are reliably predicted are actually assigned class labels and moved into the pool of labeled

data(Lpool). The rest of unlabeled data points remain in thepool of unlabeled data (Upool).

Thus the pool of unlabeled data decreases with each propagation, and the pool of labeled

data expands with each propagation. At last propagation, all remaining unlabeled data are

assigned class labels.

Because of class balance consideration, the pool of labeled data should get approxi-

mately the same number of new members for each class. In our algorithm, each class gets

one new member after each propagation. We call this procedure as “balanced class expan-

sion (BCE)”. The number of unlabeled data are shrinking while the number of labeled data

are increasing during this repeated BCE procedure. The critical issue in this BCE procedure

is how to select this new member for each class. i.e., how to decide “reliably predicted”

data points in each BCE. As analyzed in above section, the reliability of label propagation

is reflected in score distribution. Thus, in our algorithm, we use the score distribution to

decide the most “reliable predicted” data points from the data points in Upool in each BCE.

We will illustrate more details in the next section.
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Discussion.

If we add different number of new members to different classes, it will produce

unbalance. Even if the discriminant scores of one class are much higher than that of another

class, we also consider add one number for each class. Although it is inefficient, we believe

this conservative way will result in selecting more “reliable” data points.

Normalization on the distribution score.

Although data in Lpool expands in a class-balanced way, there are always the sit-

uation where classes become unbalanced. In the label propagation, we need to properly

normalize the contributions from each class.

Suppose, a subset of data are labeled and there exists a classprior probabilityπk. Let

π = diag(π1 · · · πk), andZ be the multi-class label assignment matrix from labeled data,

i.e.,

Zik =











1, if xi belongs to class k

0, otherwise
(5.14)

then the balanced source of propagation is defined as

Y = Zπ =













π1Z1,1 · · · πcZ1,c

· · · · · · · · ·

π1Zn,1 · · · πcZn,c













. (5.15)

In our algorithm, we set the prior toπk =
1∑
i Zik

. therefore, each class contributes the same

total weight to the propagation:
∑

i Yik =
∑

i Yi` for any two classk, `. In our algorithm

the initial label matrixY0 is constructed as

Y0 = Z0π0, (5.16)

whereZ0 is the initial label assignment matrix constructed as Eq.(5.14) from the initially

labeled data in Lpool. In thet-th iteration, letZt be the label assignment matrix constructed

from current data in Lpool,

Yt = Ztπt. (5.17)
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Figure 5.1:Selection of discriminative data in balanced class expansion. Data points: a, b, c, d.

Reliable assigning class labels with score distribution.

After obtaining the assignment scoreFik for all data in Upool, our goal is to pick up

the “reliable” assigned data points, one for each class, andadd them to the Lpool whereas

remove them from the Upool. Afterwards in the actual label assignment for each class, we

(1) find out all the currently unlabeled data assigned to thisclass, (2) pick the one with the

highest discriminative score and assign it to this class.

A Motivating example to illustrate discriminant score.

Fig.(5.1) illustrates the idea of selecting discriminative unlabeled data points. Class

1 selects dataa instead of datab, becausea is far away from classes 2 and 3; although

b is slightly closer to class 1, butb is also closer to class 2. In other words,a is more

class discriminative thanb. Similarly, class 2 selects datac instead ofd, becausec is more

discriminative thand.

Now we discuss the discriminative score computation. For each unlabeled data point

xi, it has been assigned tok scores(Fik, 1 ≤ k ≤ c). Thec scores are then sorted as,

Fik1 ≥ Fik2 ≥ Fik3 ≥ ... (5.18)

3 classes with the highest scores are recorded as the three closest classes forxi: Fk1 ; Fk2 ,

Fk3 . As discussed above, even two data pointsxi andxj have been assigned to the same

classck, they may have different discriminant scores depending on the scores which how

xi,xj may be assigned to other classes. Here we consider the targetclass the data points
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will be assigned to and other two competing classes which we wish to be discriminant

against. The discriminative scores for the 1st choice target class are defined as (if there is

only 2 classes, we do not needck3),

D(i, ck1) = F2
ick1

|Fick1 − Fick2 |+ |Fick1 − Fick3 |
√

Fick1 + Fick2 + Fick3

. (5.19)

The score difference achieves the discriminative affects.The denominator provides a mild

scale normalization. Without this term, the class with largestFik scale may dominate the

score computation process. Note that these scores are computed once for each balanced

class expansion. For each unlabeled data pointxi in Upool, it is assigned to classk, which

has the largestD(xi, ck) scores among all classk. For each classk, we select the data

pointsxi, which has the largest discriminative scoreD(xi, ck) among all data points in

Upool assigned to classk. This procedure is designed to maximize the label assignment

consistency, which is consistent with LGC/GF approach.

Discussion on the discriminant score.

Actually, we can define other formulations of discriminant score. (1) Without the

denominator of Eq.(5.19), discriminant score can be written as,

D2(i, ck1) = F2
ick1

(|Fick1 − Fick2 |+ |Fick1 − Fick3 |). (5.20)

(2) Without the square for the 1st term of Eq.(5.19), discriminant score can be written as,

D3(i, ck1) = Fick1

|Fick1 − Fick2 |+ |Fick1 − Fick3 |
√

Fick1 + Fick2 + Fick3

. (5.21)

(3) Select more top (e.g.,4, 5, 6, 7, ··) classes to compute the discriminant score, then

discriminant score forT classes is given by,

D4(i, ck1) = F2
ick1

∑T
t=1 |Fick1 − Fickt |
√

∑T
t=1Fickt

. (5.22)

Our experiments results(see§7.4) show Eq.(5.19) achieves slightly better results than other

discriminant scores defined in Eqs.(5.20,5.21,5.22). For Eq.(5.20), the denominator is re-

moved. When someFick has very large values, it may dominator the score. For Eq.(5.21),
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(a) Data distribution.
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(b) LGC result
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) MC-LGC result

Figure 5.2: Illustration of maximum consistency approach on a synthetic dataset. Labeleddata
shown in thick symbols: red squares, green diamonds, blue circles for 3 classes. Initially unlabeled
data are shown in black stars and, after obtaining labels, shown in open symbols.

square of scoreFick is removed, which makes the score less sharper than that of Eq.(5.19).

For Eq.(5.22), more top classes are fetched to achieve discriminant effect. In our experi-

ments, we find when we select3 classes, we can get very good results. When we select

more classes, the results change slightly, but sometimes even worse.

Demonstration of algorithm performance on toy data.

Here we use a toy data example to illustrate the advantage of the MC approach (on

LGC methods) in Fig.2. A 3-class synthetic dataset is displayed in Fig.(2a). For each

class, three data points are labeled while the rest of data points are unlabeled. Results

of standard LGC methods and MC-LGC methods are shown in Figs.(2b, 2c). It is clear

that MC approaches achieves better results. One can get similar results if making the

comparisons of GF against MC-GF methods.

Complete algorithm.

Above we have given a detailed discussion on the rational of the algorithm. The

whole algorithm is listed in Algorithm 1. This algorithm wraps around the label propaga-

tion operatorQ, and it can also use other label propagation operators.

Time complexity analysis.

Note we only need to compute propagation operatorQ (through Eq.5.10 or Eq.5.9)

once as in standard LGC or GF, and the extra time cost is the iteration cost in balanced

96



Algorithm 6 Maximum consistency label propagation algorithm (MC algorithm)
Input: labeled dataL = {(xi, yi)}`i=1, unlabeled dataU = {xj}`+u

j=`+1, MaxIter

Output: predicted class labels for unlabeled data

Procedure:

1: compute propagation operatorQ with Eq.(9) or Eq.(10), compute initial label matrixY0 using Eq.(16),t = 1

2: while t < MaxIter & U is not emptydo

3: Ft = QYt−1

4: for each unlabeled datado

5: compute its corresponding discriminative score using Eq.(5.19)

6: end for

7: for k = 1 to c do

8: search all unlabeled data whose 1st choice target class is k.{Balanced class expansion}

9: if not emptythen

10: pick the one with the largest discriminative score, add it to class k, remove it fromU

11: end if

12: end for

13: UpdateYt with Eq.(17) using current label assignmentZt {new labeled data added to Lpool}

14: t = t+ 1

15: end while

class expansion(BCE) process, which includes (1)the iteration time of BCE process which

is proportional to number of iterationt; (2) the discriminant score table computation in

lines7− 13 of Algorithm 1, which is proportional to the number ofcurrentunlabeled data

pointsnl and the number of class labelc. In our experiment, we find that the extra time

cost is very limited as compared to the propagation operatorcomputation in step 1.

5.6 Connection to Related Works

In this section, to make our contribution more clear, we discuss the related works

highly related to our algorithm. The related methods can be roughly divided into three

categories, (1) personalized random walk (RW); (2) semi-supervised learning (SSL); (3)

belief propagation (BP).
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Random Walk is a very popular technique widely used for PageRank algorithm [140].

Many variations of random walk methods are proposed, including personalized page rank [141],

lazy random walks [146], fast random walk with restart [147], center-piece subgraph dis-

covery [148], using ghost edge for classification in sparsely labeled networks [149] and so

on.

Semi-Supervised Learning methods are widely used in real applications. Graph-

based semi-supervised methods are the most popular and effective methods in semi-supervised

learning. The key-idea of graph-based semi-supervised methods is to estimate a (label

propagation) function on a graph, which maximizes (1) consistency with the label infor-

mation; (2) the smoothness over the whole graph. Several representative methods include

harmonic function [27], local and global consistency [28] and Green’s function [29].

Belief Propagation [150] is widely used for inference in probability graphical model.

Belief propagation methods can be used for collective classification for network data [151],

grouping nodes into regions for graphs [152] and so on. However, the computational cost

for BP method is usually very high.

In this paper, we mainly focus on (1) discuss the relations between semi-supervised

learning and random walks; (2) propose a maximum consistency label propagation meth-

ods. We note there is few (if not many) papers to discuss the relations between different

kinds of random walks and semi-supervised learning. In our paper, we try to answer the fol-

lowing questions: (1) whether these random walks methods are related or not; (2) whether

they are identical or not; (3) which method can produce the best results; (4) is there one

method consistently performing better than the others? To our knowledge, the relations

have not been well investigated so far. One similar work to our paper is about unifying

guilt-by-association approach [153], which discusses therelations between random walk,

semi-supervised learning and belief propagation. For maximum consistency random walk

method, it is an improvement of state-of-the-art semi-supervised learning methods, which
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Table 5.1: Descriptions of datasets

Dataset #Size #Dimension #Class
AT&T 400 644 40
Caltech 600 432 20
MSRC 210 432 7
Binalpha 1014 320 36
Mnist 150 784 10
Umist 360 644 20
Newsgroup 499 500 5
Reuters 900 1000 10
digit 1500 241 2

extends the works of local and global consistency [28] and Green’s function [29]. Our

method can be extended to be used for collective classification [151] and community de-

tection [154]. Due to space limit, we omit the discussions here.

5.7 Experiments

In this section, we perform two groups of experiments. One group is to compare

three different methods in preferential random walks of Eqs.(6-8), and the other group is to

evaluate the effectiveness of maximum consistency (MC) algorithm. First we discuss the

datasets used in our experiments.

Datasets

We adopt 9 data sets in our experiments, including two face datasets AT&T and

umist, three digit datasets mnist([73]), binalpha and digit1, two image scene datasets Cal-

tec101 [74, 75] and MSRC [75], and two text datasets Newsgroup2 and Reuters3. Table 5.1

summarizes the characteristics of the datasets.

Experiments results on 3 methods of Generalized Preferential Random Walks of

Eqs.(6-8)

1http://www.kyb.tuebingen.mpg.de/ssl-book/ benchmarks.html
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
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In §2, we give three methods for generalized preferential random walks. We also

show method 2 is equivalent to LGC method. Whenα = 0.1, method 1 is equivalent to GF

method. In all the methods except in GF, parameterα will influence the semi-supervised

classification results. For image datasets, we use Gaussiankernel to construct the graph

edge weightsWij = e−
||xi−xj ||

2

σ2 , whereγ is fine tuned according to [27]. For text datasets,

we use linear kernel to compute the graph similarity. We randomly select 20% of all data

as the training data. In Fig.3, we show the average classification results on 4 methods

(GF, method1, method2(=LGC), method3) by using 5-fold cross-validation. In Fig.3, x-

axis represents the differentα settings(α = 0.1, 0.3, 0.5, 0.7, 0.9), y-axis is the average

classification accuracy over 10 independent runs.

Experiment result analysis.

From Fig. 3, we can observe: (1) method 1 and GF perform well onall the datasets;

(2) parameterα does not influence very much for the classification results obtained from

method 1; (3) method 2 and 3 perform reasonably well whenα ≤ 0.5, but their perfor-

mances degrade much whenα is approaching 1.

Experiment results on maximum consistency algorithm.

We compare maximum consistency algorithm with standard LGCand GF methods.

Theα in LGC and MC-LGC methods are set toα = 0.5 as suggested in [32]. We use

Eq.(5.19) as the discriminant score in the balanced class expansion process. The maximum

iteration timeT is set according to the number of data points in the unlabeledpool. If

there are more thanθ = 90% of the whole data labeled, we stop our maximum consistency

algorithm, and do one-shot label propagation.

We show the classification results of 4 methods (LGC, MC-LGC, GF,MC-GF) by

randomly selecting different percentage of labeled data inFig.4, where x-axis represents

different percentages of labeled data (i.e.,10%, 20%, · · · ·), and y-axis is the average clas-

sification accuracy over 10 independent runs.
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Experiment results analysis.

From Fig. 4, we can observe, (1) MC-LGC consistently performsbetter than LGC es-

pecially when the percentage of labeled data is very small(e.g., 10%); (2) MC-GF performs

much better than GF; (3) on text dataset, MC-GF’s superiorityis more significant(more than

5% improvement).

Next, we discuss our maximum consistency algorithm experiment results when using

different parameter settings.

Discussion on discriminant score computation.

Discriminant score computation is very important for the decision of data to be prop-

agated. The first issue is how to compute the discriminant score. Here we show the experi-

ment results of classification when alternative discriminant score computation formulations

of Eq.(5.20), Eq.(5.21) are used. The other settings of the experiments are the same as those

described in§7.3. Fig. 5 shows the classification results of 4 methods of label propaga-

tion(GF, MC-GF, LGC, MC-LGC) by using different discriminant score computations of

Eqs.(5.19,5.20,5.21) on datasets MSRC and binalpha. We can observe, most of the time,

the classification results obtained from Eq.(5.19) are slightly better on both datasets for

both MC-GF and MC-LGC methods. These experiment results suggest us to use Eq.(5.19)

for discriminant score in our algorithm.

Discussion on the iteration number.

Another key parameter is related to what extent is the procedure designed to maxi-

mize the label assignment consistency. As described in§7.3, we use the number of labeled

data points in labeled pool as a criteria to stop our algorithm. We use parameterθ to repre-

sent the percentage ofcurrently labeled data of the whole dataset. In§7.3, we setθ = 0.9.

We try different settings ofθ = {60%, 70%, 80%, 90%, 100%} and report the experiment

results on dataset Caltec in Fig. 6. The other settings of the experiments are the same as

those described in§7.3. We find, on most of the datasets, if we setθ = 90%, we can achieve
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the best results. Thus we setθ = 90% as the default setting for our maximum consistency

algorithm.

5.8 Lessons learned

We analyze the relations between 3 methods of generalized preferential random

walks and label propagation methods. A maximum consistencyalgorithm is presented to

improve the current label propagation methods. Extensive experiments on 9 datasets show

the effectiveness of MC algorithm and different generalized preferential random walks. We

will explore the opportunities of algorithm improvement onother semi-supervised learning

models, e.g., support vector machine, k-nearest neighbors, etc. Also, we will apply the

proposed random walk model for medical image segmentation tasks.
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Figure 5.3: Experiments results on 4 methods of Generalized Preferential Random Walks:
GF, method1, method2(=LGC), method3. x-axis represents the differentα settings(α =
0.1, 0.3, 0.5, 0.7, 0.9), y-axis is the average classification accuracy over 10 independent runs.
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Figure 5.4: Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC. x-
axis represents the different percentage of labeled data, y-axis is the average classification accuracy
over 10 independent runs
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(a) MSRC with Eq.(5.19)
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(b) MSRC with Eq.(5.20)
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(c) MSRC with Eq.(5.21)
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(e) binalpha with Eq.(5.20)
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Figure 5.5: Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC
using different discriminant score computations of Eqs.(5.19,5.20 and 5.21) on datasets MSRC and
binalpha. x-axis represents the different percentage of labeled data,y-axis is the average classifica-
tion accuracy over 10 independent runs

105



0.1 0.2 0.3 0.4 0.5
42

43

44

45

46

47

48

49

50

Percentage of randomly labeled points

av
er

ag
e 

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy
 

 

 

GF
MC−GF
LGC
MC−LGC

(a) Caltec (θ = 60%)
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(b) Caltec (θ = 70%)
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(c) Caltec (θ = 80%)
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(d) Caltec (θ = 90%)
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(e) Caltec (θ = 100%)

Figure 5.6: Experiments results on 4 methods of label propagation: GF, MC-GF, LGC,
MC-LGC by using different parameterθ on dataset Caltec. x-axis represents the different
percentage of labeled data, y-axis is the average classification accuracy over 10 independent
runs
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CHAPTER 6

Conclusion

In this thesis, we provide different methods for dimension reduction, feature engi-

neering and label propagation. We apply the proposed methods image classification/annotation

tasks. Throughout the paper, we have the following contributions.

• This thesis proposes an efficient iterative locally linear embedding algorithm.

• This thesis presents two low-rank data recovery models through replacing the rank

constraint by a Schattenp norm, for data recovery purpose.

• This thesis proposes an iteratively re-weighted method to solve the generic group

lasso problem, where an arbitrary structure can be enforcedon feature space.

• This thesis proposes a maximum consistency algorithm for preferential random walks

and label propagation.

• Extensive experiments results indicate the good performance of proposed algorithms.

6.1 Future work

According to our current research findings, there are many possible extensions of

current approaches, in terms of different topics.

• In terms of Locally Linear embedding (LLE), besides its capability for dimension

reduction, we are curious about the de-noising power of thismethod. In real world,

there are noisy data with missing values. How to get the correct embedding results

for these noisy data remains a challenging issue. We will explore robust methods for

noisy data embedding. Meanwhile, LLE has close relations with subspace learning
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and multi-subspace learning. This is also closely connected with motion segmenta-

tion. Can we explore methods for better understanding the subspace?

• Schattenp norm model can be used for data recovery purpose. A direct application of

this model is for recommendation systems. Can it be exploitedfor recommendation

system analysis? How to incorporate different prior knowledge into this model? Can

Schattenp norm model extended for tensor analysis (e.g., video analysis)?

• In terms of constraint feature selection using group lasso regularization term, can we

exploit method using exclusive lasso for feature selection? This is helpful because

we can enforce exclusiveness constraint according to the exclusiveness of features.

Further, can we explore both group lasso and exclusive lassofor feature learning

purpose, especially for multi-view feature learning?

• There are many applications of random walk in different domain. We will consider

more practical problems, which involves medical image segmentation, social media

link predication. For multi-stage semi-supervised learning algorithms, the similar

idea can be applied to many models. We will explore the opportunities of algo-

rithm improvement on other semi-supervised learning models, e.g., support vector

machine, k-nearest neighbors, etc?

• Extension to large scale data. Nowadays, a large amount of data is available for data

analysis. How to speed up our algorithm for large-scale computational purpose be-

comes a more and more important question then ever before. Distributed computing

framework provides us opportunities to explore the system-level optimization using

Mapreduce (Hadoop) framework. Paralleling our algorithmsto distributed frame-

work and adapting them for large-scale computing frameworkwill be a solution.

However, most existing methods cannot directly fit into the current system paradigm,

and necessary modifications or extensions of algorithms areneeded for large-scale

computing purpose.
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6.2 Summary

In this thesis, we provide a comprehensive studying for somekey technologies in

feature engineering, dimension reduction and label propagation. We provide improvements

of current state-of-the-art algorithms. Extensive experiments are performed to validate the

effectiveness of proposed approach. Our findings and discoveries are expected to be helpful

for many practical applications, e.g., image categorization/annotation, text classification,

graph link analysis, etc.
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