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ABSTRACT

MATHEMATICAL PROGRAMMING APPROACHES FOR LAND USE

PLANNING THAT LIMITS URBAN SPRAWL

Piyush Kumar, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Dr. Jay Rosenberger

Sprawl has a detrimental effect on quality of life and the environment. For ex-

ample, it increases our dependence on vehicles for daily tasks. This leads to increased

vehicular pollution. It also increases traffic, which results in people spending more

time on the road. With dwindling resources and increasing population, it becomes

necessary that we manage sprawl. Ewing et al. [1] defined factors to measure sprawl

in the present urban structure. The measures are divided into four broad categories,

which are density factors, mixed use factors, streets factor, and centers factors. These

measures address various aspects that contribute to sprawl. For example, in streets

factors, the local street density affects sprawl. A balance between street density and

the size of the land plots would determine the smoothness of traffic and the popula-

tion density. These measures are then adapted for use in future planning of metro

areas.

In this research, we develop a mixed integer linear programming (MILP) model

to optimize land usage subject to sprawl constraints, which are based upon the

adapted sprawl measures. For a typical data-set of a city of moderate size, the
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MILP becomes too large for a commercial solver. In addition, all of the measures

given by Ewing et al. [1] are incorporated in the MILP as constraints as opposed to

an objective function.

The MILP has a special structure; that is the constraints containing quadratic

variables in the MILP that can be isolated from the rest of the model. We use Benders

decomposition to attempt to solve it. Due to the enormity of the problem and the fact

that the planner might be unaware of the initial bounds for the various constraints,

we create a scatter plot between the total land use suitability and the violations for

land mixed use bounds under varying bounds on certain constraints.

An orthogonal design of three factors is used to build the scatter plot. Land

use objective value and land mixed use violations form the X-axis and Y-axis on

the scatter plot. The factors used in orthogonal design are gross population density,

density gradient between the central census tract and the census tracts around it, and

the lower bound on the commercial activity, which determines the Central Business

District (CBD). Since the normal mathematical model is intractable, the goal is to

provide the planner with a tool to determine what would be a suitable land use

assignment. The planner can use this tool to analyze how various factors affect the

land use objective value and the violations on the land mixed use constraint.
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CHAPTER 1

Introduction

1.1 History of Urban Planning

According to Catanese and Snyder [2], the earliest known examples of urban

planning were by the Sumerians of Assyria. Their cities included fortresses and

marketplaces for populations of 3000-5000 that lived in them. The unifying features

of the cities were the tall buildings called ziggurats, which had the dual role of being

both temples and observatories. A notable example of this city was Babylon in present

day Iraq. Similarly, there were other civilizations, like the Egyptian, Indus valley, and

Chinese, that began building cities. The common characteristic among all of these

ancient cities was that they were all built along great rivers, which afforded them

advantages with regards to transportation and defense.

The first example of zoning in cities was in the first century A.D. in Rome

when Augustus established a 70-foot height limit. Rome grappled with the problems

of overcrowding and transportation when its estimated population grew from 250,000

to 2,000,000 residents. To tackle these problems, Romans started building roads and

military cities.

All of these developments in the ancient world established a pattern in which

cities are now built. There are four layers in the pattern, which are:

• Physical base: The visible form of the city, like the roads, buildings, parks, etc.

This was illustrated by the rectangular pattern of the street systems.

• Political base: This is the base that gives the city its meaning. The planner

must determine how the city must be designed around the political base. For
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example, the ancient cities were built around fortresses where the rulers of the

land resided.

• Economic base: The planner located various centers of commerce in the city,

such as the marketplaces.

• Social base: The planner allowed for open spaces or centers where the residents

may assemble and socialize.

The Medieval ages leading up to the Renaissance primarily led to cities and towns

being built for defense with very limited population. The Renaissance shifted the

focus of urban planning to artistic style rather than function. Notable planners during

this period included Leonardo and Michelangelo.

With the industrial revolution, there was the need to bring raw materials to

factories and finished products to market areas. Thus, the cities needed streets,

railways, shipping lanes without which the industrial revolution would have been

impossible. Increased commerce and manufacturing led to congestion, new safety

hazards, and air and water pollution. As the central areas became more crowded,

the wealthy began moving into the suburbs. The invention of the automobile only

served to hasten and promote this migration. This phenomenon was marked as an

early form of urban sprawl.

1.2 Planning Method

According to Catanese and Snyder [2], the major components for urban planning

process are:

• Problem Diagnosis : A planner must identify which problems afflict the present

city and then, define them in specific terms. However, the problem diagnosis

depends on the individual planner’s perspective on definitions of various norms,

ideologies, and standards. Descriptive statistics is used extensively to describe
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a problem, such as means, medians, ranges, ratios, etc. An important source

of information at this stage for the planner is the U.S. Bureau of Census. The

information available there includes but is not limited to census blocks, census

tracts, cities, counties, standard metropolitan statistical areas, etc. In case the

available information does not fit the needs of the planner, then he/she must

use survey research methods to generate specific information.

• Goal Articulation: After identifying the problems, specific goals must be set as

to what extent the problem has to be resolved. The challenge lies in translating

the verbal goals into operational objectives.

• Prediction and Projection: The planner must determine the time span of the

project. For example, California water plans required 20 years of lead time.

Hence, to plan a new city or to redevelop an old one, future projections of the

population growth and trade are required, since they have a direct effect on the

services in the city.

• Alternative Development : At this stage, the planner develops alternatives to

the original plans. If the situation is simple, such as developing a business

corridor, the planner has already been given a location and does not have many

competing factors. But if the situation is complex and involves many different

aspects, such as environmental planning, transportation and public facilities,

housing, historic preservation, spatial distribution, and land use planning, then

it is necessary that the planner develop multiple options.

• Feasibility Analysis : Even though the model inherently accounts for constraints,

such as size and availability of land, finance, etc., the planner must also ask

whether the alternatives are feasible on other vague constraints, such as orga-

nizational or political acceptability. These constraints are not present in the
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model since they are subjective in nature and hence, require the planner’s at-

tention.

• Evaluation: The planner must now decide which alternative to implement based

on the relative impact of the decisions made in each alternative. Cost-Benefit

analysis is used often at this stage.

• Implementation: Two factors vital to success at this stage are political commit-

ment and clearly defined goals.

The method given above is very general. There are now specific techniques

and tools that modern planners use to build cities. We examine land-use suitability

analysis, which is a tool that identifies the most suitable places for locating future land

uses [3]. According to the authors, the evolution of land use suitability techniques

through history can be divided into five stages. These stages are:

• Early hand drawn sieve mapping : As early as 1912, planners drew maps of

various topographical features of the land by hand. These maps were then

combined together to recommend changes in land use. These maps were a

precursor to the modern land-use suitability analysis.

• Advancement in literature: According to Steinitz et al. [4], overlay techniques

were improved after the publication of an article by Jacqueline Tyrwhitt in Town

and Country Planning. She gave an example of four maps (relief, hydrology, rock

types, and soil drainage) drawn on transparent paper to the same scale. Those

were then integrated into one map, which provided a unified interpretation of

the four different land characteristics [4]. As time passed, more maps were

drawn as more attributes for the land were identified. This posed a problem

since there was a limit to what may be feasible to draw by hand.

• Computer-assisted overlay mapping : In 1963, Harvard became one of the first

places to use computers to help draw overlay maps. The trend continued to

4



surge as computers became more powerful, and the techniques to draw the

maps became more sophisticated.

• Redefinition of spatial data and multi-criteria evaluation: At this stage, spatial

data, which describes the various attributes of the land in quantifiable terms,

was used as an input to optimization models. The two approaches used were

boolean logic and a fuzzy approach, both offering distinct sets of pros and cons.

Since there are conflicting objectives when planning a city, researchers intro-

duced decision making models where multiple criteria were evaluated. Moreno

and Seigel [5] provides an application of multi-criteria evaluation via an impact

analysis for the building of a highway corridor in Colorado. To identify the

land-use allocation criteria and suitability weights, a modified Delphi method

is used. After preparing maps for each factor, they are combined to form a

composite map to find a corridor with minimal environmental impact.

• Replicating expert knowledge in the process : In the current state, there is exten-

sive use of Artificial Intelligence (AI) in order to find an optimal solution. Tech-

niques like genetic algorithms, artificial life, genetic programming, and hybrid

intelligent systems are being used [3]. These techniques though, are experimen-

tal, complicated, and too expensive to be considered for everyday planning. A

more detailed discussion will follow in the next section.

1.3 Sprawl

As we have seen from the history of urban planning, the rise of sprawl as an issue

has its roots in the Industrial Revolution. There is no consensus in the literature as

to the definition of sprawl, which shows how difficult measure sprawl quantitatively

is. There are some characteristics that are common among the many attempts to

define sprawl in the literature. Those are:
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• Unplanned and scattered development.

• Low population density.

• High reliance on automobiles.

• Locations outside of the metro area.

Here, we primarily concentrate on sprawl in the context of the United States. De-

lafons [6] attributes the U.S. system of urban planning to be influenced by “prairie

psychology.” The development in the U.S. has taken place with the following basic

mindset:

• Virtually unlimited supply of land.

• Land accessible to everyone and the rights of ownership protected by the U.S. Con-

stitution.

• No intervention with market driven growth.

• Planners who do not question the need for development.

• Inherent distrust towards the government and hence, minimal public review of

the policies that are already in place.

From a historical perspective, the outward development was driven by increased

accessibility to commercial centers in the heart of cities since 1830 via transportation

[7]. As cities became more congested, sanitary conditions worsened and green space

was lost, and the wealthy found it necessary to relocate to more suitable places [8].

With the arrival of street cars and subsequently automobiles, the working population

in the cities moved to open lands outside of the cities and started travelling to work.

Federal aid for the highway systems in the U.S. also aided sprawl. In the post war

period, a number of policies were enacted that served to increase the rate of sprawl.

These are:

• Federal subsidies for housing and highways.

• Accessible auto loans and easy credit.
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• Federal mortgage guarantees and tax policies affording easier home ownership.

All of these social and institutional factors combined to aid urban sprawl. The reasons

why sprawl is a cause for concern are:

• Loss of Open Space: The pace of development in the U.S. has not been propor-

tional to the rate of population growth. For example, in the metropolitan area

of Cleveland, the amount of developed area increased whereas the population

decreased [9]. Even though the early suburbs were dense enough to be served

via mass transit systems, the present suburbs only have 2-5 lots per acre, and

hence, it becomes necessary that the residents drive automobiles for transporta-

tion. The urban population density has decreased by 23 percent between 1970

to 1990 [10]. A contributing factor towards that has also been the increased

size of housing. For example in Massachusetts, the average house size was 800

square feet in 1950, 1,500 square feet in 1970, and 2,190 square feet in 1998,

even though the size of the households have been shrinking from 3.67 in 1940

to 2.58 in 2010 [11, 12]. Larger suburban houses consume more energy and

produce more pollution too. This pattern can be seen all over the U.S. Between

1970 and 1990, the population size of Chicago only grew by 4 percent, but the

residential land development increased by 46 percent [13]. Loss of open space

is also a major contributor in prime farmland being lost to development. A

study by the American Farmland Trust measured the rate of loss of farming

land to sprawl and put the figure at 1 million acres per year [14]. With the

loss of agricultural farm lands and increasing population, more land would have

to be brought under cultivation, which would only mean more environmental

problems.

• Air Quality : Low density and discontinuous development makes automobile

use mandatory. It leads people to drive more, and hence, it burns more fossil
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fuels leading to increases in greenhouse gases and air pollution. Between 1960

and 1990, the percentage of people working outside their counties increased

by 200 [15]. The average American driver spends 443 hours each year driving

[15]. The spread out development discourages alternate means of mobility like

walking, cycling, or mass transit [16]. Increased usage of vehicles leads to traffic

congestions. An average driver spends 51 hours a year stuck in traffic [17]. This

is an issue of both quality of life and health. Automobiles are responsible for

one-third to one-half of carbon monoxide, nitrogen oxides (NOx) and volatile

organic compounds (VOC) pollution, which are health hazards [18]. Hence,

increased usage of automobiles leads to degrading air quality.

• Climate Change: According to the U.S. Environmental Protection Agency

(EPA) report, greenhouse gas emissions by light vehicles (transportation for

general population, which is separate from trade oriented heavy traffic) account

for 62 percent of the total emissions in the transportation sector [19]. Clearing

land for highways, residential areas, and service areas due to sprawl lead to the

destruction of green cover. The loss of green cover leads to the destruction of

carbon sinks (i.e., areas of forests that are large enough to absorb significant

amounts of carbon dioxide). Scientists from the Intergovernmental Panel on

Climate Change (IPCC) predict that climate change will lead to reduced fresh

water supplies, loss of fisheries and biodiversity, unpredictable wind patterns

among other negative impacts [20].

• Water Supply : As a result of sprawl, suburban areas are now characterized

by wide streets, long driveways, large lawns, and huge houses. All of these

structures have impervious surfaces that lead to rainwater runoff. The runoff

from the surface of urban and suburban areas are contaminated from roofs,

roads, building sites, and chemically treated lawns [13]. For example, according
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to the U.S. EPA, the majority of wildlife and bird poisonings are a result of

lawn chemicals [21]. Moreover, wetlands and forests filter rainwater absorb flood

waters and supply lakes and rivers that are our primary source of drinking water

[22]. Sprawl leads to the destruction of the wetlands and forests, and hence, it

impedes nature’s ability to provide clean water.

• Habitat and Wildlife: Encroachment of suburban areas near forests and wildlife

habitats inevitably leads to less room for wild animals to roam. According

to Lowy [23], the human injuries from bear, alligator, and cougar attacks in

1990s have been the highest in American history. With humans living in close

proximity to wildlife, overpopulation of certain species may occur. For example,

the population of deer in New Jersey has doubled between 1983-2003 [24].

• Ecosystem Services : An ecosystem service refers to the role natural systems

such as forests, wetlands, rivers, and estuaries play towards sustaining human

life. Environmental economists have calculated the fiscal worth of the services

provided by nature. In Massachusetts, the Charles river basin saves the state

$18 million in flood protection [13]. The protected lands surrounding Quabbin

and Wachusett reservoirs cleanses as much water as a $180 million filtration

plant would [13]. The land desirable for development are the ones that are

clear and flat or gently sloping. Ironically, these types of lands are suitable for

farmland and floodplains. Developing these lands leads to loss of farmland for

local agriculture and loss of important ecological systems.

• Human Health Impacts : Sprawl causes both air and water pollution as we have

seen above. Air pollution leads to a variety of respiratory diseases, such as

asthma, bronchitis, etc. Water pollution caused by surface runoff poses a se-

rious risk to human health as well. A study of New Jersey drinking water

found that the water supply was contaminated with arsenic, radium, mercury,
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VOCs, pesticides, and toxic by-products as a result of sprawl induced runoff

[25]. Sprawl also fosters sedentary lifestyles that lead to obesity, hypertension,

heart diseases among other negative health effects. A health promotion study,

joint venture by the American Journal of Health Promotion and the American

Journal of Public Health, examined research on over 200,000 people living in 448

counties. They concluded that “U.S. adults living in sprawling counties weigh

more, are more likely to be obese, and are more likely to suffer from high-blood

pressure than their counterparts in compact counties [26].”

With all of the issues surrounding sprawl, there have been past attempts to estimate

the costs associated with it. Even given how disputed the definition of sprawl is itself,

the costs of sprawl also do not give rise to any consensus in the planning community.

One of the more significant studies done on the costs of sprawl was by Robert Burchell

et al. [27, 28]. Burchell et al. [27, 28] divided the costs into five major categories:

• Public and private capital and operating costs.

• Transportation and travel costs.

• Land/natural habitat preservation.

• Quality of life.

• Social issues.

The study defined more than 40 measures (one third of which were positive) that

divided into these five categories. For example, in capital costs alone, if sprawl goes

unchecked, then the U.S. would spend $143.2 billion every year on services, and the

revenues would only be $99.4 billion, leading to a deficit of $43.7 billion annually [28].

Given all of the negative impacts of sprawl, the authors felt it necessary to provide

tools to planners that would enable them to design cities/downtowns that would be

walk-able and transit oriented.
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Despite all of the concerns with sprawl, the literature is still inadequate on how

to measure sprawl quantitatively and use those measures in land use planning. In

our research, we develop a mathematical optimization model for either designing and

developing a new area or redeveloping a previously developed area. In particular,

the model strives to minimize the negative effects of sprawl by managing various

parameters that were derived from the Transportation Research Board report by

Ewing et al. [1].

In the next chapter, we present a literature review of the research done for

measuring and optimizing sprawl, as well as decomposition methods, and quadratic

assignment problems. Then, we discuss the model that we are proposing for opti-

mizing sprawl, and we develop methodologies that would be appropriate for solving

our model. Finally, we present the computational results to show the efficacy of

decomposition methods and heuristics in solving the model.
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CHAPTER 2

Literature Review

2.1 Land Use Optimization

Most literature on land use optimization takes at least one or more aspects

that affect sprawl into consideration. These considerations may range from managing

peak run off, to air quality, to travelling costs. The term that is frequently associated

with sustainable land use planning is smart growth. Smart growth is a term used for

judicious stewardship of natural resources to prevent urban sprawl. Hence, to differ-

entiate between the literature of simple land use allocation and sprawl, we decided

that the papers that do not mention sprawl or sustainability explicitly as one of their

objectives will be discussed in this section.

The GIS-based land-use suitability analysis has been used to solve an array

of problems. For example, it has been used in ecological models for defining land

suitability (in this case, habitat for animal and plant species [29, 30]), geological

preference [31], suitability of land for agricultural use [32, 33], environmental impact

evaluation [5], site selection for facilities location [34, 35], and regional planning [36].

There is also a significant part of the literature that is concerned with simultaneous

optimization of land use assignment and transportation with the focus on minimizing

sprawl i.e. minimizing travelling cost [37, 38, 39, 40] . Moore and Gordon [41] extend

the integration of land use and transportation to include environmental applications

as well. Another area is optimizing the land use allocation problem with respect to

economic activities [37, 42, 43, 44]. Increasing popularity of the concept of sustain-

ability has led to research focusing on sustainable spatial optimization of land use
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allocation [45, 46, 47]. All of the papers cited above account for only some measures

that affect sprawl. The rationale here is that, since the measures are inter-dependent,

increasing compactness would automatically lead to minimization of sprawl. This

is not ideal, since it is not known to what degree other sprawl measures would be

reduced, as they are not accounted for in the model.

Most literature on land use allocation uses integer programming (IP). IP in-

volves a decision variable of whether a particular activity should be allotted to a

site or not [48]. Land use is the utilization of the land and its resources by humans

for a specific purpose. Land use suitability analysis searches for the best site for an

intended land use based on various characteristics of the land. The assumption here

is that the area is subdivided into a set of basic units of observation [49]. The basic

units of observation are referred to as land pieces or cells. Then, the sites are assigned

a suitability factor for each category of land use, which indicates how suitable a land

piece is for a particular land use. Modern land use suitability analysis depends on

Geographic Information Systems (GIS) to form overlay maps. The reason a Decision

Support System (DSS) has not been added to GIS is that, there is no general con-

sensus in the literature on a suitable spatial analytic tool. It is partly due to the fact

that most of the models are based on different underlying assumptions. For example,

according to Malczewski [48], the model assumption is that the planner will interact

closely with it to evaluate the various solutions. This assumption requires that the

model be relatively simple and fast even if the solution is suboptimal. In this case, an

LP method applied to a simplified version of the model would suffice. On the other

hand, if the assumption is that the model must be a black box and must produce

an output for a given set of input, the choice of a spatial analytic tool would be

completely different. In this case, the model would be very detailed, and hence, the
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algorithm used would be complex and relatively slower, such as a Genetic algorithm

(GA), Cellular Automata (CA), etc.

2.1.1 Linear and Integer Programming Techniques

Implementation of Linear Programming (LP) to solve land use suitability prob-

lems started with multi-criteria decision making (MCDM) techniques. MCDM in-

volves defining a relationship between the input and output maps. The technique

combines the geographical information and the planner’s preferences to provide al-

ternative decision options. After assigning weights to each objective and combining

them into a single equation, the problem would be solved by using standard LP/IP

[50, 51]. Moore and Gordon [37] use an LP model for dividing economic activities

over the planning area. They focus on how to assign the activities to a physical site

in an iterative manner.

The problems associated with MCDM methods/LP are [48]:

• The input data to the GIS multi-criteria evaluation procedures are inaccurate,

imprecise, and ambiguous.

• Standardization of the criterion have no suitable theoretical or empirical justi-

fication [52].

• Different multi-criteria evaluation rules generate different land use suitability

patterns [53], and hence, it is difficult to choose the best method in a given

circumstance.

2.1.2 Artificial Intelligence Methods

Because of the large sizes of the allocation problems, the focus has been, for

the most part, on heuristic algorithms. The downside to heuristics is that they

do not guarantee optimal solutions, though most of the time, the solution/the set
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of solutions is near optimal [34]. A variety of meta-heuristic techniques, such as

simulated annealing, GAs [54], artificial neural networks [55], CA [56], etc. are used

in combination with GIS for optimization of land use allocation.

As we observed before, the assumptions of the input data being precise is not

realistic. Within the context of complex factors involved in land use suitability anal-

ysis, it is difficult to provide accurate numerical data. Since fuzzy logic techniques

have sets without clearly defined boundaries, and partial membership of elements is

allowed, it works well with the imprecise input data given. Wang [57] proposes a

method of representing fuzzy information in GIS, which leads to the formation of

a fuzzy suitability rating system. Banai et al. [58] and Jiang et al. [52] combine a

fuzzy membership function with MCDM to develop GIS-based land use suitability

methods.

A plethora of research has been conducted to test the applicability of artificial

neural networks for land use suitability analysis techniques [59, 60, 55]. Sui [55] uses

and compares a back propagation network to measure the suitability of land pieces for

development against a traditional map overlay modelling technique. However, there

are several problems with neural networks [49], which include the following:

• With a complex algorithm, it is unclear as to what makes an optimal structure.

The structure of neural networks might be too complex for an urban planner.

The planner would not be able to make any modifications to the solutions since

he/she does not know how it would affect the objective function.

• Neural networks require training with sample sets before they are applied to

the actual model. The network might overtrain, which simply means that the

network only memorizes the solutions during training, and thus, performs poorly

on other real data sets.
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Significant papers that use evolutionary algorithms, such as Gas, to optimize the

multi-objective (linear or nonlinear) land use allocation problem include Brookes [61],

Fotakis and Sidiropoulos [62], Holzkamper and Seppelt [63], Pereira and Duckstein

[29], Matthews et al. [64, 65], Los [38], Manson [66], Xiao et al. [67], Gabriel et al. [68],

and Zhang and Bian [69] among others. Zhou and Civco [59] uses a combination

of neural networks and a GA for solving land use suitability model. Matthews et

al. [65] compares GA to traditional deliberative methods. They report that the GA

methods are capable of delivering a range of options, along with cost-benefit analysis

for each such option. Manson [66] shows that evolutionary algorithms give better

solutions in general than traditional methods, such as a weighted sum method. Pereira

and Duckstein [29] use GA along with GIS-based multi-criteria evaluation methods.

There are research papers that explore land use optimization with simulated annealing

[70, 71, 72].

CA explicitly deals with a cell and its contiguous neighbours. CAs have been

used to simulate urban development, change in land use, freeway traffic, and the

spread of fires [56, 73]. CA does not take a global view of the model but examines

regional or local interactions to build system complexity. Wu [74] integrates CA with

GIS and multi-criteria evaluation. Recently, the CA method has been extended to

include the addition of agents and non-local search methods [75, 76].

Jonsson [77] and Vold [40] develop an integrated land use-transportation frame-

work, which is then optimized by implementing response surface methodology. The

recommendations made, as a result of the optimization, are for government policy.

Ouyang and Lam [39] use heuristics to solve the joint optimization problem of land

use allocation and transportation network design. They use an activity based model,

which determines the resources needed to accommodate the maximum population,

while satisfying user utility constraints. The models above strive to generate multi-
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ple solutions instead of just one. Hence, these models depend heavily on heuristic

techniques.

2.2 Measurement and Optimization of Sprawl

In recent years, sprawl has increasingly come under focus in not just the United

States, but in other countries around the world, such as China and Brazil. In these

countries, urban sprawl is fuelled by the combination of rapid economic growth and

large populations. A large number of publications have come out that focus on sprawl

as an issue in countries apart from the U. S. [78, 79, 80, 81, 82, 83, 84, 85].

There is a variety of research that chooses one or more aspects of sprawl to

manage. Urban sprawl is minimized from the standpoint of preservation of forests

and farmland [62, 63, 64, 70, 71, 72, 86]. Attempts to minimize sprawl by suggesting

changes in policies at the government level have been made in the past [78, 87, 88, 89].

Stone Jr. [90] measures how sprawl affects air quality. Feitosa et al. [91] focuses on

designing inclusive cities from an economic standpoint in Brazil.

Gabriel et al. [68] take a multi-objective approach to controlling sprawl in land

development. They do so by taking into account objectives from the perspective

of the government, planners, environmentalists, conservationists, and land develop-

ers. The intention of the authors is to balance the trade-off between the different

objective functions. The paper employs linear and quadratic objective functions,

subject to polyhedral and binary constraints, to come up with a Quadratic Mixed

Integer Program (QMIP). Spatially, the various objectives considered in the paper

are maximizing compactness, minimizing impervious area, protection of certain en-

vironmentally sensitive areas, and maximizing the total value of the developed land

pieces. The authors solve an example with 913 undeveloped and 4837 developed cells

using XPRESS-MP solver. After relaxing some constraints, the computations become
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tractable for the problem. The measures given in [68] do not cover many measures

of sprawl, such as the existence of Central Business Districts (CBDs) and Population

Centers (PCs). In addition, there is an overlap in the objectives of compactness and

impervious surfaces. When maximizing compactness (that is, developing land pieces

in the immediate neighbourhood), it automatically reduces the total impervious sur-

face area. Another point of interest is that the paper does not describe any special

algorithm to deal with the model.

Stewart et al. [92] suggests that there should be a close interaction between

the model and the planner at the evaluation stage. Hence, the model must be fast,

provide detailed feedback to the stakeholders/planners, generate a range of solutions,

and be flexible in terms of input data. The paper considers three objectives, which

are:

• The number of clusters for each land use: This measures the degree of frag-

mentation. The existence of clusters of single land use would require the use

of automobiles to travel from residential areas to service areas. Hence, the

requirement is for a holistic mix of land uses.

• The relative magnitude of the largest cluster for each land use: The goal here

is to minimize the existence of multiple clusters. The rationale is that one big

cluster is better than a number of clusters, since one big cluster would mean

that the other clusters would automatically be smaller.

• Compactness of land uses : A compact area of a single land use is preferable to

a long thread-shaped cluster.

A specially designed genetic algorithm is used to solve the resulting constrained non-

linear combinatorial programming problem. The objective functions are similar to

the measures given by Ewing et al. [1], but they are generic as far as sprawl is con-

cerned. Similar to Gabriel et al. [68], the paper does not account for the existence of
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PCs or CBDs, which form naturally in an urban setting even if the planner does not

intend for them.

Zielinska et al. [45, 93] develop an optimization model that minimizes perhaps

the most accurate model of sprawl in the current literature. The objective functions

given in the paper are:

• Minimization of open space development.

• Redevelopment of inner areas if economically feasible.

• Minimization of incompatibility between land uses.

• Minimization of distance to already developed areas.

The model employs a constraint to limit the population density. The authors suggest

that having density as an objective function might result in an unsustainable solution.

The paper employs a Branch-and-Bound method to solve the resulting model. They

do not consider the factors that affect sprawl like mixed use development, population

density, and degrees of centering.

Given the nature of the problem, which involves combining the disciplines of

urban planning and optimization, it is challenging for researchers to be an expert in

both. Most attempts at optimizing land use allocation models have been made by

researchers outside of the field of optimization. Zielinska et al.[45] made one of the

more significant attempts at designing a sustainable land use model for urban plan-

ning, and the authors belong to the department of geography. The authors of Riveira

et al. [71] were a multidisciplinary team, which combined agriculture and modern

technology. Holzkamper and Seppelt [63] combined the disciplines of environmental

research and software design to form a GUI for land use planning tools.

The performance of the models was not reported explicitly in a large part of

the literature. Zielinska et al. [45] and Stewart et al. [92] solve the model for a

20by-20 matrix. The maximum solution time was found to be 85 seconds with 978
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decision variables in [45]. It is also noted by Stewart et al. [92] that the computational

time increased quadratically with the problem size. Gabriel et al. [68] solve the

optimization problem with 913 undeveloped land parcels and 4837 developed land

parcels. It is a QMIP with 3500 variables (mostly binary) and over 23,000 constraints.

However, the computational time to solve it is unreported.

Some of the attempts to measure sprawl quantitatively are Ewing et al. [1],

Galster et al. [94], and Malpezzi [95]. We find that the current most comprehensive

framework to quantify and measure sprawl is constructed by Ewing et al. [1]. Hence,

we primarily focus on their measures and interpret them in a way that is suited

to future land use planning. Ewing et al. [1] include 22 measures that are broadly

divided into four categories, which are:

• Residential density.

• Neighbourhood mix of homes, jobs, and services.

• Strength of centers, such as business districts.

• Accessibility to the street network.

As we observed previously, the literature on land use optimization takes into account

only a part of each of these measures.

2.3 Decomposition Methods

Decomposition methods solve large scale problems by breaking them into sev-

eral smaller subproblems, along with a master problem. Dantzig-Wolfe decomposition

for linear programming with angular block structure [96, 97], started the trend of de-

composition of large optimization problems [98]. Some of the decomposition methods

are dual methods, primal cutting plane methods, delayed column generation, Ben-

ders decomposition. Decomposition methods are suitable for situations that require

analytical solutions of dynamical systems that are characterized by Adomian [99]:
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• No linearization or weak nonlinearity assumptions.

• Closure approximations.

• Perturbation theory.

• Restrictive assumptions on stochasticity.

Decomposition methods have been used in a wide variety of applications rang-

ing from multi-commodity distribution network design [100], to locomotive and car

assignment problems [101, 102, 103], to large-scale water resource management [104].

However, according to the literature, decomposition methods have never been used

to solve a land use suitability problem.

2.3.1 Benders Decomposition

Benders decomposition [105], named after Jacques F. Benders is a decomposi-

tion method to solve mixed-variable programming problems. Since its inception, it

has been used in a variety of applications. For example, Ghotboddini et al. [106] uses

a Benders decomposition approach to solve multi-objective cellular manufacturing

system problems. It involves increasing efficiency in small-to-medium lot size pro-

duction environments. Gendron et al. [107] employs Benders decomposition to solve

an integer program with non-linear constraints. The nonlinearity of the model was

taken care of with Benders decomposition. Benders decomposition involves splitting

the mathematical model into a master problem and a single or multiple subproblems.

The complicating variables and the associated constraints are put in the subproblem.

Hence, the master problem which is only a subset of the original problem is easier to

solve. First, the master problem is solved to get a solution. Then, after fixing certain

variables in the subproblem, we solve it and generate cuts that penalize the master

problem objective function. Benders decomposition is an iterative procedure where
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the master problem and the subproblems are solved multiple times to arrive at an

optimal solution.

Given the following mixed integer programming formulation,

max z = cTx+ dTy (2.1)

subject to: (2.2)

Ax+By ≤ b

y ∈ Rn1
+ , x ∈ Rn2

+ (2.3)

where c and d are associated cost column vectors of appropriate size for continuous

variable vector x and integer variable vector y, respectively. Matrices A, B, and D

and vectors b and e have appropriate dimensions. The above formulation can be

rewritten as follows,

max z1 = cTx+ µ(x) (2.4)

subject to: (2.5)

Ax ≤ b

x ≥ 0 (2.6)

where µ(x) is the maximum value of the subproblem which is as follows,

max z2 = dTy (2.7)

subject to:

By ≤ b− Ax (2.8)

y ≥ 0 (2.9)

Let u ∈ Rm1 be the dual variable associated with constraint 2.8. From duality theory,

the dual problem for the model (2.7)-(2.9) can be written as follows,
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min uT (b− Ax) (2.10)

subject to: (2.11)

BTu ≥ d

u ≥ 0 (2.12)

We can see that the feasible space of the subproblem is independent of the optimal

values of x chosen in the master problem. Let F = {u | Bu ≥ d, u ≥ 0}. The

presumption is that F is nonempty, since F being empty would imply that the primal

subproblem is either infeasible or unbounded. Hence, F is considered to be composed

of extreme points up (p ∈ P ) and extreme rays rq (q ∈ Q). Hence, the Benders’s

reformulated master problem becomes as follows,

max cTx+ µ (2.13)

subject to: (2.14)

Ax ≤ b

µ ≤ up(b− Ax) p ∈ P (2.15)

rq(b− Ax) ≤ 0 q ∈ Q (2.16)

x ∈ X (2.17)

The drawback of Benders decomposition method is that the number of extreme

points and extreme rays is quite large. To address this drawback, delayed constraint

generation is used. The master problem and the dual subproblem are solved iter-

atively, until the termination criteria is reached. The criteria for stopping Bender

decomposition is that the upper bound from the subproblem and the lower bound are

sufficiently close.
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2.4 Quadratic Assignment Problems

Koopmans et al. [43] introduced the concept of the Quadratic Assignment Prob-

lems (QAP) to model the problem of locating economic activities. The location of

the activities depends upon the locations of other facilities in the neighbourhood.

Afterwards, QAPs were used to model a variety of different problems. For exam-

ple, Steinberg [108] uses QAPs to minimize backboard wiring in electronic circuits.

Burkard et al. [109] and McCormick [110] use a QAP to design typewriter keyboards

and control panels. Heffley [111] suggests that assigning runners to a relay team

transforms into a QAP.

QAP has several formulations which are used most often for the various applica-

tions, such as integer linear programming, mixed integer linear programming (MILP),

graph formulation, etc. [112].

The methods to solve QAPs can be divided into two categories, which are:

• Exact algorithms : Significant exact methods to solve QAPs are branch-and-

bound or dynamic programming [113, 114, 115]. There has been some research

into using Benders decomposition algorithm along with some heuristics to solve

QAPs [116, 117]. Miranda et al. [116] uses a Benders decomposition algorithm

to solve a motherboard design issue.

• Heuristic algorithms : There is an abundance of research in solving QAP us-

ing heuristics. Heuristics can be divided into three categories, which are con-

structive, limited enumeration, and improvement methods. Even under these

categories, most of the research is done in improvement methods. Before the

introduction of meta-heuristics, such as simulated annealing, GAs, etc., the

heuristics were customized for each problem [112].
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As we observed, the majority of the research tends towards heuristic algorithms

for QAPs. That is the trend we observed for land use optimization. All the quadratic

formulations in land use suitability models were solved with meta-heuristics.

2.5 Contribution

In this research, we develop a mixed integer linear programming model for

land use optimization. The objective of the model is to maximize suitability while

constraining sprawl. The constraints are constructed from the measures of sprawl as

given in Ewing et al. [1]. The rationale here is that various features of a metro area,

such as population centers, business districts, distance to services, etc. are always

present. Hence, instead of ignoring some or all of these, and maximizing suitability

alone, the measures are accounted for and managed at planning level.

The contributions of this research include:

• A comprehensive treatment of sprawl measures : From the literature survey,

we concluded that no one has accounted for measuring and minimizing sprawl

clearly and comprehensively. Rather, the focus has been on sustainability, which

focuses on the larger context of the land use problem. We believe it over-

complicates the model since destruction of farmland, pollution, and discontinu-

ous development are a result of urban sprawl, and not the cause/characteristics.

Hence, if sprawl itself is focused upon, and minimized, then all the other symp-

toms of sprawl, like pollution and low density development, would diminish.

• Restricting the sprawl measures : Most of the research focuses on incorporating

the measures in objective functions. But, as noted by Zielinska et al. [45], if

population density is included as an objective function, then either maximizing

or minimizing it would go against the principles of sustainable development.

For example, maximizing population density would lead to overcrowding and
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minimizing population density would lead to sprawl. Hence, our model includes

all the significant measures of sprawl as constraints in the model. This allows

the planner to quickly perform sensitivity analysis. It also enables the planner

to generate a range of solutions based on the manipulation of the parameters.

• Use of decomposition methods : The literature is completely devoid of research

that employs decomposition methods to solve large QMIPs for land use alloca-

tion, even though decomposition methods have been used extensively in other

areas that involve large-scale problems. We develop a land use model with

sprawl constraints and customized decomposition methods to solve it.

• Method for solving the dual problem for constraints between quadratic and lin-

ear variables : If any linear programming problem only has quadratic variables

and the corresponding fixed linear variables, then we devised a method to ob-

tain the optimal values for the corresponding dual variables without solving

the problem with any linear programming technique e.g. simplex method. This

saves the memory overhead required for building a sparse matrix for the math-

ematical model and solving it using a commercial software. Although given the

sparse matrix, finding the dual variables involved searching for values in a four

dimensional matrix which is very slow given a linear index search method.
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CHAPTER 3

Sprawl Considerations in Land Use Optimization

3.1 Problem Description

According to the literature, there are various land use allocation models that

deal with different aspects, such as agricultural, watersheds, sprawl, etc. However,

there is a common theme among all such models in that they aspire to maximize the

perceived utility by assigning a land use to each land piece.

The planner’s objective is to develop all or part of a metro area. We assume that

the planner has already assigned a suitability value to each land piece, which, in our

model, varies from−10 to 10 depending on the fitness of the land pieces towards a land

use. In our model, we consider eight different land uses, which are High Industrial

(HI), High Commercial (HC), High Industrial Residential (HIR), High Residential

(HR), Low Commercial (LC), Low Industrial (LI), Low Industrial Residential (LIR),

and Low Residential (LR). The planner also has the future population and trade

growth projections. The aim is to plan the area in such a way that it naturally resists

sprawling in the future. To achieve this target, the planner must find a balance

between population growth and services in the area. If he/she fails to do so, then the

sprawl would naturally occur as we have observed from history. The planner controls

the upper and lower bounds for the parameters given in the model. By changing

those, the planner gets information about how the model behaves under different

conditions. In some cases, the bounds also depend upon the demands of the market.

In others, the bounds must be controlled to manage sprawl.
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3.1.1 Measures of Sprawl

The paper by Ewing et al. [1] was funded by Smart Growth America. The

objective of the study is to characterize sprawl and relate it with a wide set of out-

comes. Based on the characterization of sprawl, the authors select four characteristics

of sprawl, which are:

• Low Development Density.

• Segregated Land Uses.

• Lack of Significant Centers.

• Poor Street Accessibility.

Various outcomes, such as vehicle ownership, air quality, commute times, commute

mode, etc. are analysed to check how they relate to the four characteristics. The

study sample includes 101 of the largest metropolitan statistical areas in 1990 in the

U. S. Within this sample, the metro areas are measured on the various quantifiable

sprawl factors. The various sprawl factors are then combined into four categories via

Principal Component Analysis (PCA). PCA is an analytic technique that extracts a

small number of factors from a large pool of correlated variables that represent the

common variance in the data.

The four categories of sprawl factors are:

• Density Factor : It includes seven variables, four of which were measured from

data by the U. S. Bureau of Census. The assumption here is that the census

tracts that include low population density areas, such as rural tracts, deserts,

etc., are not included. These factors deal with the population density in the

metro areas and their distribution. Population Centers (PCs) are areas with

local density maxima. They serve as a focal point for social activities, and

hence, are considered important.
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• Mix Factor : These factors are included to ensure a good mix of land uses in a

compact area. Sprawl is characterized by long commuting time. For example,

the principle behind measuring the percentage of residents within 1 mile of an

elementary school is to minimize travelling. Hence, there should be a good mix

of services and residences in an area.

• Centers Factors : According to Ewing et al. [1], metropolitan centers are con-

sidered a hub of concentrated activities that allow multi-purpose trip making,

alternate modes of transport, and a sense of place in a metro. Centers may

be either residential or commercial. They include six factors, which are den-

sity gradient, coefficient of variation of population density across census tracts,

etc., percentage of metropolitan population less than 3 miles from the CBD,

percentage of population more than 10 miles from the CBD, percentage of the

population relating to centers or subcenters within the same metropolitan sta-

tistical area (MSA), and the ratio of the weighted density of population centers

within the same MSA to the highest density center to which a metro relates.

• Streets Factors : Street networks in an metro area form a network, which may

be dense or sparse depending on the geography and planning of the area. There

is no information available regarding degree of connectedness or curvature of

street networks. Hence, the authors use the information about block lengths to

generate sprawl measures. The principle behind this is that if the block lengths

are larger, then the street network is sparse, so the metro area is spread out.

However, one issue was that large rural tracts distorted the average of the block

lengths. Three factors were included in this category, which are percentage of

small blocks, average block size in square miles, and percentage of small blocks

(< 0.01 square miles).
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3.1.2 Assumptions

Prior to the assignment of land uses to land pieces, the planner must decide

on the scope of the various measures to be taken into account. Since there are

multiple conflicting objectives, to make our problem relatively tractable, we assume

the following:

• The distance between the various land pieces is calculated a priori. The dis-

tance between two land pieces is calculated from the center of the first land

piece to the center of the latter. The measure of land mixed use variable LMi is

inversely dependent on the distance between the two land pieces under consid-

eration. If the distances are to be calculated dynamically, the equation (3.10),

and consequently equation (3.11) would cease to be linear. Since our focus is

on developing a linear model, we calculate the distances beforehand.

• Each land piece is assigned to one and only one census tract. Census tracts

are meant to be territorial units that are homogeneous with respect to factors

like population characteristics, living conditions, etc. These imply that census

tracts are developed after the population has settled. But in case of future

planning, the planner may rely on clear geographical boundaries to divide the

planning area into census tracts.

• The census tracts are known a priori and are determined by the planner.

• The model accounts for only one Central Business District (CBD). The planner

decides the center of the CBD a priori and then develops a potential set of

CBDs and inputs them into the model. The model ultimately selects one of the

potential CBDs in the solution.

• The model assigns each land piece under consideration to one particular land

use. If a land piece has a pre-existing land use, it can simply be removed from

consideration or included in the model as a hard constraint.
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• The density at the center of the planning area is the density of the census tract,

which includes the central coordinates of the planning area.

• Single family dwellings belong in low density residential spaces.

• The census tracts that include low population density areas, such as rural tracts,

deserts, etc. are not included.

• For each land piece, the planner determines an area of influence, which is the

set of surrounding land pieces within a specified distance from the land piece.

This is based on the assumption that the land pieces that are apart for more

than 1 mile have negligible effect on the mixed use factor of each other.

3.2 Land Use Model

3.2.1 Sets

The following is a description of the sets used in the model. Let,

• C be the set of different land uses (indexed by j).

• N be the set of land pieces in the planning area (indexed by i).

• CT be the set of census tracts in the planning area (indexed by k).

• CBD be the set of potential central business districts in the planning area

(indexed by k).

• For each set census tract or CBD, k ∈ CT ∪ CBD, let Nk be the set of land

pieces in k.

• For each land piece i ∈ N , let Ni be the set of land pieces that fall under the

sphere of influence of land piece i.

3.2.2 Parameters

The parameters used in the model are:
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• Sij = Suitability factor for each land piece i ∈ N assigned to land use category

j ∈ C.

• Uj, Lj = Upper and lower bounds on the number of land pieces that can be

assigned to each category of land use j ∈ C.

• UPC , LPC = Upper and lower bounds on the mean density in the cells considered

to be in Population Centers.

• UMD, LMD = Upper and lower bound for the mean density for each Census

Tract k ∈ CT .

• UDG, LDG = Upper and lower bounds for the density gradient between census

tracts.

• UCV , LCV = Upper and lower bound for the coefficient of variation of the plan-

ning area.

• UMix, LMix = Upper and lower bound for land mix factor.

• ρj = An estimated population density for a land use type j ∈ C.

• Ai= The area of each land piece i ∈ N .

• AFjĵ= Attraction factor for each pair of land use type j, ĵ ∈ C, which describes

the desirability of having the land use types near each other.

• τj = A constant for the level of commercial activity in each land use category

j ∈ C.

• LCBD = Lower bound for the level of commercial activity in the CBD.

• iCBD = The land piece chosen by the planner around which the CBD is built.

• ik = Central land piece of any set of land pieces Nk.

• diok = Distance between the land piece at the center of the planning area to the

land piece at the center of census tract k ∈ CT .

• dîi= Distance between the centers of two land pieces i, î ∈ N .

• ρo= Estimated density at the center of the metro area.
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3.2.3 Variables

The variables used in the model are:

• Let the binary variable xij be defined such that,

xij =


1, if land piece i ∈ N is assigned land use j ∈ C,

0, otherwise.

• Let the binary variable yk be defined such that,

yk =


1, if a set of land pieces k is selected to be the CBD,

0, otherwise.

• Let the binary variable xijîĵ be defined such that,

xijîĵ =


1, if land piece i ∈ N and land piece î ∈ N are assigned

land uses j ∈ C and ĵ ∈ C, respectively,

0, otherwise.

• Let the variable wij be defined such that,

wij =


1, if land piece i is assigned category j and the 1-mile

radius around it has density ≥ 850 people per square mile,

0, otherwise.

• GPD = Gross population density.

• ρk1k2= Covariance of density between two census tracts k1, k2 ∈ CT .

• ρk= Mean population density for a census tract k ∈ CT .

• ρo= Mean population density of the census tract at the center of the planning

area.
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• bk = Density gradient of census tract k ∈ CT with respect to the census tract

at the center of the planning area.

• LMi = Measure of the level of mixed land use around land piece i ∈ N .

• ρ̄ = Mean population density of all census tracts.
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3.2.4 Mathematical Programming Model

max zLP =
∑
i∈N

∑
j∈C

Sijxij (3.1)

subject to:∑
j∈C

xij = 1 ∀i ∈ N (3.2)

Uj ≥
∑
i∈N

xij ≥ Lj ∀j ∈ C (3.3)

GPD =

∑
i∈N
∑

j∈C xijρjAi∑
i∈N Ai

(3.4)

UPD ≥ GPD ≥ LPD (3.5)

UPC ≥
∑

i∈N
∑

j∈C ρjAiwij∑
i∈N Ai

≥ LPC ∀k ∈ PC (3.6)

M ·
∑
j∈C

wij ≥
∑
î∈Ni

∑
j∈C

ρjAîxîj − 850×
∑
î∈Ni

Aî ∀i ∈ N (3.7)

850×
∑
j∈C

Aiwij −
∑
j∈C

ρjAixij ≤ 0 ∀i ∈ N (3.8)

xij ≥ wij ∀i ∈ N, j ∈ C (3.9)

LMi =
∑
î∈Ni

(∑
j∈C
∑

ĵ∈C xijîĵ(Sij + Sîĵ)AFjĵ

dîi

)
∀i ∈ N (3.10)

UMix ≥ LMi ≥ LMix (3.11)

ρk =

∑
i∈Nk

∑
j∈C ρjAixij∑

i∈Nk
Ai

∀k ∈ CT (3.12)

UMD ≥ ρk ≥ LMD ∀k ∈ CT (3.13)
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ρk1k2 =

∑
i∈Nk1

∑
j∈C
∑

î∈Nk2

∑
ĵ∈C ρjρĵAiAîxijîĵ

(
∑

i∈Nk1
Ai)(

∑
i∈Nk2

Ai)
∀k1, k2 ∈ CT

(3.14)

m(U2
CV + 1)

∑
k∈CT

ρkk ≥
∑

k1∈CT

∑
k2∈CT

ρk1k2 ≥ m(L2
CV + 1)

∑
k∈CT

ρkk (3.15)

bk =
−1

diok
ln
ρk
ρo

∀k ∈ CT \ ko

(3.16)

ρo exp−diokUDG ≥ ρk ≥ ρo exp−diokLDG ∀k ∈ CT \ io

(3.17)∑
i∈Nk

∑
j∈C

τjxij ≥ LCBD · yk ∀k ∈ CBD

(3.18)∑
k∈CBD

yk = 1 (3.19)

xij ≥ xijîĵ ∀i, î ∈ N ; i > î; j, ĵ ∈ C

(3.20)

xîĵ ≥ xijîĵ (3.21)

xijîĵ ≥ xij + xîĵ − 1 (3.22)

3.2.5 Model Justification

3.2.5.1 Deterministic Land use suitability optimization

Equation (3.1) maximizes the overall utility value for assigning land uses to

land pieces. Equation (3.2) ensures that each land piece is assigned exactly one land

use. Equation (3.3) provides the upper and lower bounds for the total number of

land pieces that may have a particular land use. These equations alone represent a
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classical linear programming approach to optimizing a land use suitability problem.

Now, we add constraints to manage sprawl.

3.2.5.2 Density Factors

The following is a description of various measures for population density as

given in Ewing et al. [1]. We have also described whether and how these measures

are included in the model.

• Gross population density : Equations (3.4) and (3.5) allow the planner to control

the gross population density of the population within certain bounds.

• Percentage of population living at densities less than 1500 persons per square

mile: A density less than 1500 persons per sq mi. is referred to as low suburban

density. Since the population density of each land use is already set at a cer-

tain level, the equations (3.3) and (3.5) automatically constrain this measure.

However, we do not explicitly include it in the model.

• Percentage of population living at densities greater than 12, 500 persons per

square mile: A density above 12,500 persons per square mile generally supports

mass transport systems. For the reasons stated above, this measure is only

implicitly included via the constraints (3.3) and (3.5).

• Estimated density at the center of the metro area derived from a negative ex-

ponential density function: Ewing et al. [1] estimates the density at the center

of the metropolitan area and the density gradient after fitting a negative ex-

ponential density function to the data points that include densities of census

tracts versus the distance from the center to those census tracts. The central

coordinates are determined by taking into consideration the extreme edges of

the planning area, which may lead to biased center coordinates if there are a
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significant number of already developed cells. This measure is included using

the constraint sets (3.16) and (3.17).

• Gross population density of urban lands : The following measure was derived

from the U. S. Department of Agriculture’s Natural Resources Inventory (NRI)

by separating the population based on whether they are located in urban, or

built up land, as opposed to being in sub-urban or rural areas. Every land use

has a fixed population density and there are bounds on how many land pieces we

can have for a particular land use (3.3). This implicitly controls the population

density of the urban lands.

• Weighted average lot size in square feet for single family dwellings : Since low

residential land use is already bounded by the planner’s specifications (3.3), the

value is controlled implicitly.

• Weighted density of all population centers within a metro area: Population

centers as described by Ewing et al. [1] are any 9 grid cell areas that satisfy a

population density threshold of 850 persons per sq mi. The rationale here is

that any land piece is a part of a population center if the area surrounding the

land piece has density greater than 850 persons per square mile. By controlling

the total density of the population centers using equations (3.6), (3.7) and (3.8),

the measure is automatically bounded.

3.2.5.3 Mix Factor

The various measures for Mix Factor as given in Ewing et al. [1] are as follows:

• Percentage of residents with businesses within certain blocks of their homes.

• Percentage of residents with satisfactory neighbourhood shopping within 1 mile.

• Percentage of residents with a public elementary school within 1 mile.

• Job-resident balance.
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• Population-serving job-resident balance.

• Population-serving job mix.

All of the measures given above are for metro areas that have already been

developed. We substitute these measures with another model that has extensively

been used in the literature. Attraction factor Aij refers to whether it is desirable to

have the land uses closer together or farther apart. For example, it is not desirable

to have high industrial and high residential land uses adjacent to each other, and yet

it is desirable that there be a good mix of job-resident balance. Hence the land uses

cannot be too far apart either. It varies between 0 to 1, depending on whether the

land uses should be further apart or closer together.

As we observe from the definition of LMi given by equation (9), it is a quadratic

variable that involves multiplying two integer variables xij and xîĵ. Hence, to convert

LMi to a linear variable, we introduced the variable xîijĵ. The relationship between

xij, xîĵ, and xîijĵ is described by equations (3.20), (3.21), and (3.22).

Land mixed use factor LMi is calculated for each land piece i ∈ N . Equation

(3.10) and (3.11) bounds the value of land mixed use factor. It is necessary to obtain

a holistic mix of land uses and avoid formations of clusters. If LMi does not have a

lower bound, then there is no constraint to stop the formation of clusters. If LMi does

not have an upper bound on it, then it might lead to a compact but very haphazard

assignment of land uses, which is unsustainable.

3.2.5.4 Centers Factors

The various measures for Centers Factors as given in Ewing et al. [1] are as

follows:

• Coefficient of variation of population density across census tracts : Coefficient of

variation is given as standard deviation divided by mean density. This measure
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is not linear. Hence, we use algebraic techniques to reduce this to a linear

equation. Equation set (3.14) and (3.15) bounds the value of this measure.

• Density gradient : Density gradient is defined by Ewing et al. [1] as rate at which

the density declines with distance from the center of the metro area estimated

with a negative exponential density function. The decline in density is directly

proportional to the centering of the metropolitan area. Equations (3.12), (3.13),

(3.16), and (3.17) bound the value of density gradient by controlling both the

density gradient and the mean density of the census tracts.

• Percentage of metropolitan population less than 3 miles from the CBD : To de-

termine this measure, the first task is to determine the location and size of

the CBD. According to our assumptions, we have a given location of the CBD

from the planner and a potential set of CBDs from which the model can choose.

Equations (3.18) and (3.19) determine which CBD is selected and ensure that it

has sufficient commercial activity. Since the total population density is bounded

within the planning area, and compactness as a factor is already included in

mixed use equations (3.10) and (3.11), this measure is only included implicitly.

The metropolitan population density would naturally tend to be higher near

the CBD.

• Percentage of metropolitan population more than 10 miles from the CBD : As

above, not including these two measures explicitly helps to make our model

computationally simpler but does not adversely affect the model’s ability to

manage sprawl.

• Percentage of the metropolitan population relating to centers within the same

MSA: This measure is directly controlled by bounds on high residential and low

residential land uses (3.3).
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• Ratio of the weighted density of population centers within the same MSA to

the highest density center to which a metro relates : Since the ratio is nonlinear

in nature, bounding it in the model would lead to unnecessary complications.

Consequently, this measure is not included in the model.

3.2.5.5 Streets Factors

The various measures for Streets Factors as given in Ewing et al. [1] are as

follows:

• Approximate average block length in urbanized portion of the metro: Since the

size of the land pieces is decided by the planner a priori, and the number of

land pieces for each land use is already bounded, we do not include this measure

explicitly in the model.

• Average block size in square miles (excluding blocks greater than 1 square mile):

For the reasons stated above, this measure is not included in the model.

• Percentage of small blocks (less than 0.01 square mile): This measure is not

included in the model.

3.2.6 Summary

The following table summarizes how each measure of sprawl as given by Ewing

et al. [1] was incorporated into our model.
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Table 3.1: Summary of measures of sprawl and corre-

sponding interpretation in the mathematical model

Measures of sprawl Ewing et al. [1] Interpretation

Centers

Factors

Coefficient of variation of population

density across census tracts

(3.14)

Density gradient (rate of decline of den-

sity with distance from the center of the

metro area)

(3.16)

Percentage of population < 3 miles

from CBD

Implicit

Percentage of population > 10 miles

from CBD

Implicit

Percentage of population relating to

centers within the same MSA

Implicit

Ratio of weighted density of population

centers to highest density in the same

MSA

Not included

Density

Factor

Gross population density in persons per

square miles (PSM)

(3.4)

Percentage of population living at den-

sity < 1500 PSM

Implicit

Percentage of population living at den-

sity > 12, 500 PSM

Implicit
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Table 3.1– Continued

Measures of sprawl Ewing et al. [1] Interpretation

Density

Factor

Estimated density at the center of the

metro area derived from negative expo-

nential density function

Assumed to be the

census tract which is

at the center

Gross population density of urban

lands

Implicit

Weighted average lot size in square feet

for single family dwellings

Implicit

Weighted density of all population cen-

ters (local density maxima) within a

metro area

(3.6)

Mix Factor Percentage of residents with businesses

within certain blocks of their homes

Implicit

Percentage of residents with satisfac-

tory neighbourhood shopping within 1

mile

Implicit

Percentage of residents with schools

within 1 mile

Implicit

Job-resident balance Implicit

Population-serving job mix Implicit

Population serving job resident balance (3.10)

Streets

Factors

Approximate average block length in

urbanized portion of the metro

Pre-determined
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Table 3.1– Continued

Measures of sprawl Ewing et al. [1] Interpretation

Streets

Factors

Average block size in square miles (ex-

cluding blocks > 1 square mile)

Pre-determined

Percentage of small blocks (< 0.01

square mile)

Pre-determined
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CHAPTER 4

Algorithms and Results

Due to the enormity of the scope of the research problem, we present a Benders

decomposition approach to solving the given research problem. Since obtaining a

globally optimal solution in a limited time is not feasible yet, the focus is to provide

relevant information to the planner so that he/she may choose a solution from a given

set of solutions, which may satisfy the concrete and abstract set of requirements.

The data-set used in the experiments was provided by the Urban planning

department at The University of Texas at Arlington. The data-set is for the city of

Leander, Texas. It has 7632 land pieces, each with a size of 150 feet by 150 feet.

The suitability factors for each land piece were provided for eight different categories.

This results in a total of 87632 possible land use assignments.

The number of variables in the current sprawl formulation is 2 × |N | × |C| +

|CT |2 +
∑

i∈N
∑

î∈Ni
nîi×|C|2 + |CT |. For a 7632 land piece problem with 8 land use

categories (divided into 5 census tracts), the number of variables is roughly 4 million,

and the number of rows exceeds 1010. Since such a large matrix cannot be solved by

a commercial solver (e.g. CPLEX), and due to the large number of quadratic variable

constraints, a Benders decomposition method was chosen to solve this assignment

problem.

4.1 Benders Decomposition applied to the MILP

There are a number of reasons for choosing Benders decomposition to solve the

current problem.
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As stated previously, the MILP rapidly becomes too large for CPLEX to handle

as the number of land pieces increase, especially when the variables and constraints

associated with land mixed use (3.10), (3.11) and (3.20)-(3.22) are included. For each

neighbor of a land piece i with assigned land use j, we have a corresponding quadratic

variable for the neighboring land piece î with assigned land use ĵ. Hence, for each

neighboring land piece, we have 64 quadratic variables, and each quadratic variable

has 3 constraints linking xijîĵ, xij, and xîĵ.

Since the relationship between the quadratic variables xijîĵ and xij is clearly

defined, the solution to the primal subproblem is already known. The solution for the

primal subproblem is then used to construct the dual objective function without push-

ing the subproblem model into CPLEX. The dual objective function is constructed

using duality theory from linear programming.

A large number of constraints have to have their bounds specified manually by

the planner. In the beginning, the planner would have difficulty ascertaining a reason-

able range on the upper and lower bounds on the constraints. If the bounds are too

tight, it would run into infeasibility. If the planner starts with very relaxed bounds,

it would take a significant amount of time to determine a feasible set of bounds

that would adhere to the planner’s requirements and minimize sprawl. To overcome

this problem, the subproblem was constructed so as to minimize the violation of the

bounds on land mixed use constraints.

A central composite design is used to design the experiment so that the results

may help the planner decide what the bounds on various constraints should be. The

three factors chosen for the design are the gross population density, the density gra-

dient across census tracts, and the lower bound on commercial density in the central

business district.
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A central composite design is used to design the experiment so that the results

may lead the planner to decide what the optimal bounds on various constraints should

be. The three factors chosen for the design are:

• Gross Population Density : Gross population density directly affects an optimal

land use assignment. With higher population density bounds, categories with

higher density are chosen.

• Density Gradient between Census Tracts : Gross population density however

does not control how the population density is spread across the planning area.

It only accounts for the total density. Hence, the density gradient across census

tracts is chosen to control how the density should be distributed. Higher density

gradient bounds means the planning area becomes more monocentric (i.e. high

population density in the middle and starts falling off as we move outwards).

• Lower Bound on Commercial Activity for CBD : The lower bound on the com-

mercial activity that decides which central business district would be selected

is considered to control how dense the commercial area at the center of the

planning area can be. This factor only has a lower bound and no upper bound.

Hence, we only increase the values for the lower bound over its default value

from the relaxed MILP.

There were two methods that were explored in using Benders decomposition,

which are as follows:

• Single Benders Cut : A single optimal solution is generated from the master

problem, and that solution is used to generate the Benders cut.

• Multiple Benders Cuts : We obtained multiple solutions from solving the master

problem by using the CPLEX solution pool property. Given certain parameters

on time limit and MIP gap, CPEX generated a pool of solutions that were then
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used to generate multiple Benders cuts. The termination criteria was evaluated

for all the cuts that were generated.

4.1.1 Variables for Master Problem and Subproblem

The variables for the master problem and subproblem are given as follows:

• θ = The upper bound on the subproblem objective function.

• SL
i = Violation of the lower bound LMix for land piece i ∈ N .

• SU
i = Violation of the upper bound UMix for land piece i ∈ N .

• x̄ = Fixed value of the variable from the master problem solution.

• πL
i = Dual variable corresponding to constraints (4.5).

• πU
i = Dual variable corresponding to constraints (4.6).

• µI
ij = Dual variable corresponding to constraints (4.7).

• µII
îĵ

= Dual variable corresponding to constraints (4.8).

• µIII
ijîĵ

= Dual variable corresponding to constraints (4.9).

The complicating variables in sprawl formulation are the quadratic variables in

the land mixed use constraints. Hence, the constraints from the original MILP that

are handled in the subproblem are (3.20)–(3.22), (3.10), and (3.11).
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4.1.2 Master Problem

The master problem now becomes the following:

max zLP =
∑
i∈N

∑
j∈C

Sijxij + θ (4.1)

subject to: (3.2) - (3.9), (3.12) (3.19)

θ ≤ −L
∑
i∈N

π̄L
i + U

∑
i∈N

π̄U
i +

∑
i∈N

∑
j∈C

µ̄I
ijxij +

∑
î∈N

∑
ĵ∈C

µ̄II
îĵ
xîĵ (4.2)

+µ̄III
ijîĵ
· (1−

∑
î∈N

∑
ĵ∈C

xîĵ −
∑
i∈N

∑
j∈C

xij)

∀i, î ∈ N ; i > î; j, ĵ ∈ C

θ is free
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4.1.3 Primal Subproblem

The formulation of the primal subproblem is given below:

max −
∑
i∈N

SL
i −

∑
i∈N

SU
i (4.3)

subject to:

ωijîĵ =

(
xijîĵ(Sij + Sîĵ)AFjĵ

dîi

)
(4.4)

−SL
i −
∑
j∈C

∑
î∈Ni

∑
ĵ∈C

ωijîĵxijîĵ ≤ −L ∀i ∈ N (4.5)

−SU
i +
∑
j∈C

∑
î∈Ni

∑
ĵ∈C

ωijîĵxijîĵ ≤ U ∀i ∈ N (4.6)

xijîĵ ≤ x̄ij ∀i, î ∈ N ; i > î; j, ĵ ∈ C (4.7)

xijîĵ ≤ x̄îĵ (4.8)

−xijîĵ ≤ 1− x̄ij − x̄îĵ (4.9)

xijîĵ, S
L
i , S

U
i ≥ 0 ∀i, î ∈ N ; i > î; j, ĵ ∈ C

Observe that with a solution from the master problem x̄, the primal subproblem

yields solutions with integer values for x.
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4.1.4 Dual Subproblem

The formulation of the dual subproblem is given below:

min − L
∑
i∈N

πL
i + U

∑
i∈N

πU
i +

∑
i∈N

∑
j∈C

µI
ijx̄ij (4.10)

+
∑
î∈N

∑
ĵ∈C

µII
îĵ
x̄îĵ + µIII

ijîĵ
· (1−

∑
î∈N

∑
ĵ∈C

x̄îĵ −
∑
i∈N

∑
j∈C

x̄ij)

subject to:

πL
i ≤ 1 ∀i ∈ N

(4.11)

πU
i ≤ 1 ∀i ∈ N

(4.12)

ωijîĵ · (
∑
î∈Ni

πU
î
−
∑
î∈Ni

πL
î

) + µI
ij + µII

îĵ
− µIII

ijîĵ
≥ 0 (4.13)

πU
i , π

L
i ,µ

I
ij, µ

II
îĵ
, µIII

ijîĵ
≥ 0 ∀i ∈ N, î ∈ Ni, j, ĵ ∈ C

4.1.5 Benders Decomposition Algorithm

The data points are all the various combinations of values of the three factors,

which are gross population density, density gradient, and the lower bound on com-

mercial activity for CBD as shown in Table (4.1).
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Data: Suitability Factors for the land area, census tract and relaxed

parameter values

Result: Land use objective and land use mix violations for all data points

Initialization: Create vector of non-zero values for coefficients of quadratic

variables in the subproblem.;

while For all the data points do

if 1st pass then

Use the relaxed bounds;

else

Use the data points created from solving relaxed bounds;

end

STOP = FALSE;

Set θ = 0;

while STOP = FALSE do

Solve the master problem (4.1.2);

From the optimal solution/solution pool of the master problem,

generate single/multiple Benders cuts by solving the subproblem

(4.1.4);

if Violation = 0 OR θ = Violation then

STOP = TRUE;

else

Send the cut to master problem;

end

end

end

Algorithm 1: Single/Multiple Benders Cut
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4.1.6 Solving the Subproblem

The quadratic variable xijîĵ is dependent on two binary variables, xij and xîĵ.

There are only 4 possible combinations for the two binary variables. The values of

assignment vector xij come from solving the master problem (4.1.2). Using properties

of duality theory and the solution from the primal problem, we came up with the

following solution for the dual subproblem (4.1.4). The cut as calculated below is

unique. Although during our experiments, any other combinations of the values still

yielded the same values on the coefficients of the cut. All the 4 cases are listed as

follows:

• Case I: If xij = 0 and xîĵ = 0, then

µI
ij = −min(ωijîĵ(

∑
î∈Ni

πU
î
−
∑

î∈Ni
πL
î

), 0), µII
îĵ

= 0, µIII
ijîĵ

= 0.

• Case II: If xij = 0 and xîĵ = 1 , then

µI
ij = 0, µII

îĵ
= −min(ωijîĵ(

∑
î∈Ni

πU
î
−
∑

î∈Ni
πL
î

), 0), µIII
ijîĵ

= 0.

• Case III: If xij = 1 and xîĵ = 0 , then

µI
ij = −min(ωijîĵ(

∑
î∈Ni

πU
î
−
∑

î∈Ni
πL
î

), 0), µII
îĵ

= 0, µIII
ijîĵ

= 0.

• Case IV: If xij = 1 and xîĵ = 1 , then

µI
ij = −min(ωijîĵ(

∑
î∈Ni

πU
î
−
∑

î∈Ni
πL
î

), 0), µII
îĵ

= 0,

µIII
ijîĵ

= max(ωijîĵπ, 0).

4.2 Experimental Setup

The goals of the experiment are to create an efficient frontier between land use

objective and land mixed use violation and to obtain the best possible solution in a

limited time.

Initially, a problem with very relaxed bounds on these three factors is solved.

Only the land mixed use factor is limited. Once we obtain an optimal solution with
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relaxed bounds, the values of the factors described above are calculated. Based on

these values, the central composite design is constructed. The variation on the values

were obtained by running multiple experiments on a 400 land piece problem (a subset

of the Leander, TX data-set) to determine which changes would significantly affect

the objective value of the problem without leading to infeasibility.

Characteristics of the experimental setup are as follows:

• Time limit : The time limit on the CPLEX optimizer for the master problem is

30 minutes, and the time limit on Benders algorithm overall is 5 hours.

• MIP Emphasis : The parameter in CPLEX for MIP emphasis was set to feasi-

bility instead of optimality for the master problem.

• Termination criteria: If the subproblem objective value i.e the violation of the

land mixed use constraints is 0 or the gap between subproblem objective value

and master problem parameter is less then 0.1, then the Benders decomposition

algorithm terminates.

• Solution pool limit : The maximum total number of solutions allowed in the

master problem solution pool is 5.

• Maximum iterations for Benders algorithm: The maximum number of itera-

tions allowed for Benders algorithm was set to 5000. However, in practice, this

termination criteria was never met, and the maximum number observed was

200.

• Design for observations : An orthogonal 3 factorial design was used to collect

observations and form the scatter plot as shown in figure 4.1.

• Solution pool population parameter : The MIP gap allowed for a solution to be

a part of the master problem solution pool is 0.1%.

• Candidates for CBD : The number of candidates to be evaluated for the CBD

is 5. All of the candidates form a concentric circle with increasing radius. The
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center of the concentric circles is the land piece chosen by the planner, which

becomes the origin for all the candidates for CBD.

• Number of neighbors : The number of blocks from a central land piece inside

which all the surrounding land pieces are considered to be its neighbors is 2. If

the number of blocks under consideration is larger, the problem size increases

rapidly.

• Bounds on land mixed use: The lower and upper bound for land mixed use is

set to be 2 and 3 respectively. The land mixed use values should not be either

too high or too low so as to strike a balance between various land uses present

within the sphere of influence.

• Bounds on land use categories : The lower and upper bounds for land use cate-

gories is set to be 0 % and 100 % respectively.

• Changes in factors for the orthogonal design: Gross population density was

varied by 45 people per square mile. Density gradient was varied by 20 units

(it is a unit-less measure). Lower bound for the CBD was varied by 1.2 units

(level of commercial activity is a unit-less measure as well).

• Upper and lower bounds for factors in orthogonal design: Given the value of

gross population density for the planning area from solving the relaxed model,

the upper and lower bound is obtained by adding and subtracting 5% to it

respectively. For density gradient, the upper and lower bound were obtained by

adding and subtracting 10 units from the average gradient value.
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4.3 Results

Table (4.1, 4.2, 4.3) has 33 = 27 data points, which is as a result of all possible

unique combinations of three factors at three different levels. 0 denotes the default

value as calculated in a relaxed MILP. + and − denotes the increase and decrease of

the values of the factors from their respective default values. ++ denotes twice the

increase over the default. 0 denotes that the master problem was infeasible.

For changes in gross population density (GPD) in figure (4.1), we observe that

an increase in GPD results in a decrease of the land use objective value but an

increase in the land mixed use violations. By contrast, a decrease in GPD results

only in a slightly worse land use objective value but a large increase in mixed use

violations compared to the increase in GPD. This behavior leads us to conclude that

GPD bounds should be higher than the relaxed value if it should be changed. Also,

given the variation in GPD was 45 people per sq. mile, we conclude that smaller

changes would have less effect on the values of land use objective value and mixed

use violations.

For changes in density gradient between census tracts (DG) in figure (4.1), we

observe that decrease in DG results in a large decrease in the land use objective value

and an increase in land mixed use violations. A decrease in values for the bounds

on DG results in only a slight increase in land mixed use violations but a relatively

larger decrease in the land use objective value. This leads us to conclude that the

MIP is very sensitive to the values of DG bounds, and hence, should be not changed.

But once the decision to change the bounds has been taken, it does not make a very

large difference whether the values of the bounds go up or down.

As we observe from Table (4.1, 4.2, 4.3), changes in the lower bound on com-

mercial activity of the CBD does not affect the land use objective value or the land
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mixed use violations. We conclude then that the planner can significantly increase

the lower bound LCBD.

From Table (4.1, 4.2), we observe that a simultaneous decrease in values for the

bounds on GPD and an increase in values for the bounds on DG leads to infeasibility

in the model. Furthermore, from Table (4.3), we observe that all of the infeasible

points occur because of changes in DG.

Figure 4.1. Scatter plot between Land Use Objective value and Land Mixed Use
Violations from Table 4.1.
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Table 4.1. Result from 2500 land pieces data set with single Benders cut

Data Point Land use
objective

Violation Gross pop-
ulation
density

Density
Gradient

LCBD

1 6716 4915.36 0 0 0
2 6716 4915.36 0 0 +
3 6716 4915.36 0 0 ++
4 6176 4923.58 0 + 0
5 6176 4923.58 0 + +
6 6176 4923.58 0 + ++
7 6389 4922.42 0 - 0
8 6389 4922.46 0 - +
9 6389 4922.43 0 - ++
10 6492 4917.3 + 0 0
11 6492 4917.3 + 0 +
12 6492 4917.3 + 0 ++
13 5664 4928.97 + + 0
14 5664 4928.97 + + +
15 5664 4928.97 + + ++
16 5889 4927.75 + - 0
17 5889 4927.75 + - +
18 5889 4927.75 + - ++
19 6397 4923.49 - 0 0
20 6397 4923.49 - 0 +
21 6397 4923.49 - 0 ++
22 Infeasible - + 0
23 Infeasible - + +
24 Infeasible - + ++
25 Infeasible - - 0
26 Infeasible - - +
27 Infeasible - - ++
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Table 4.2. Result from 2500 land pieces data set with multiple Benders cut

Data Point Land use
objective

Violation Gross pop-
ulation
density

Density
Gradient

LCBD

1 6716 4912.82 0 0 0
2 6716 4912.82 0 0 +
3 6716 4912.86 0 0 ++
4 6181 4923.48 0 + 0
5 6182 4923.50 0 + +
6 6181 4923.48 0 + ++
7 6384 4922.37 0 - 0
8 6384 4922.37 0 - +
9 6384 4922.37 0 - ++
10 6484 4917.16 + 0 0
11 6484 4917.16 + 0 +
12 6484 4917.17 + 0 ++
13 5671 4929.745 + + 0
14 5671 4929.745 + + +
15 5671 4929.745 + + ++
16 5887 4928.29 + - 0
17 5887 4928.29 + - +
18 5887 4928.29 + - ++
19 6398 4923.53 - 0 0
20 6398 4923.53 - 0 +
21 6398 4923.53 - 0 ++
22 Infeasible - + 0
23 Infeasible - + +
24 Infeasible - + ++
25 Infeasible - - 0
26 Infeasible - - +
27 Infeasible - - ++
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Table 4.3. Result from 7600 land pieces data set with single Benders cut

Data Point Land use
objective

Violation Gross pop-
ulation
density

Density
Gradient

LCBD

1 24733 15264 0 0 0
2 24733 15264 0 0 +
3 24733 15264 0 0 ++
4 Infeasible 0 + 0
5 Infeasible 0 + +
6 Infeasible 0 + ++
7 Infeasible 0 - 0
8 Infeasible 0 - +
9 Infeasible 0 - ++
10 23837 15264 + 0 0
11 23836 15264 + 0 +
12 23837 15264 + 0 ++
13 Infeasible + + 0
14 Infeasible + + +
15 Infeasible + + ++
16 Infeasible + - 0
17 Infeasible + - +
18 Infeasible + - ++
19 17120 15264 - 0 0
20 17120 15264 - 0 +
21 17120 15264 - 0 ++
22 Infeasible - + 0
23 Infeasible - + +
24 Infeasible - + ++
25 Infeasible - - 0
26 Infeasible - - +
27 Infeasible - - ++
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CHAPTER 5

Future Research

To discuss areas of future research, we first have to understand the limitations

of the current research.

5.1 Limitations

In our experiments, the time taken to solve the master problem was negligible,

whereas the time to generate the Benders cut was very large. For example, for the

2500 dataset, the time taken to solve the master problem was 0 minutes, whereas the

time taken to generate a single Benders cut was close to 200 minutes. The reason

for the large time consumption is that while solving the subproblem, we generate

the violations, create the dual subproblem objective coefficients, and then recombine

them to form Benders cut. In all of these steps, the index for the variables depend

on four dimensions, which are land piece i, land piece î, land use category j and land

use category ĵ. Given the large matrix for the subproblem, the time consumed while

searching for the index of the location of the variable values is quite large. Since

all of the coding was done in the C programming language, which has very limited

libraries available for optimizing index search, it is impossible to reduce the time to

solve the subproblem without writing an optimized search algorithm for indexing or

implementation of map libraries from C++/C#.

There are a number of factors that affect the land use objective value. Even

using 3 factors over 3 different levels yields 27 different observation points. Hence, as

the number of factors and levels increase, the number of observation points increase
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exponentially. Thus, given the amount of time it takes to solve the subproblem,

there is a virtual limit on the number of factors that can be incorporated into the

experiment.

Given the multi-objective nature of the problem, it is very difficult to formulate

a model that would give the planner a single solution that satisfies all of the require-

ments. Hence, there is no single decision making framework that does not require a

lot of input from the planner.

Land use mix factor is only computed over a limited area around a land piece.

As the number of neighbors increases, the number of quadratic variables also increases

rapidly. Given our current algorithm, it would take a substantially long time to solve

a single iteration if a certain land piece is influenced by every other land piece in the

planning area. Hence, a limit to the number of neighbors of a land piece affects our

ability to produce a more holistic land use solution.

There is an interaction between gross population density and density gradient

between census tracts. The effects of that interaction are more pronounced when the

gross population density reaches either extremes for the planning area. For example,

if the gross population density of the planning area is bounded to be as low as possible,

then it is not possible for there to be a steep density gradient between different census

tracts, whereas if the gross population density is bounded at an average value, then

the census tracts are allowed have sharply varying densities.

5.2 Future Research

As stated above, the time taken to search over the four dimensions is very

long. One solution is to form a sparse four dimensional matrix but that would be

very expensive memory-wise. Hence, the goal is to find a way to calculate the values

which is efficient with respect to both computations and memory. It would reduce
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the time to generate the Benders cut. This would also enable the inclusion of more

quadratic variables.

As seen from figure 4.1, there is some interaction between gross population

density and density gradient, and the effect on the land use objective value from the

lower bound on the CBD is not significant. Hence, in future research, the various

constraints have to be studied to isolate quasi-independent factors that can then be

used in the orthogonal design.

5.3 Summary and Conclusion

Urban sprawl is genuine problem in all the major cities of the world. Con-

trolling urban sprawl would make the cities sustainable and a pleasant place to live.

Given the various sprawl factors defined by Ewing et al. [1], we formulated a mixed

integer linear programming (MILP) model for urban land use assignment with the

focus on controlling urban sprawl. The MILP model was then solved using Benders

decomposition. The subproblem was solved using a deterministic method that em-

ployed properties from duality theory instead of solving it using a commercial solver.

Since the problem has a number of factors affecting urban sprawl, the sprawl con-

straints were introduced as bounds instead of putting them in the objective function.

We then create a scatter plot between land use objective values and land mixed use

violations to assist the planner in analyzing the effects of certain factors like gross

population density, density gradient between census tracts, and the lower bound on

the commercial activity for assigning a CBD on the land use assignment.

In conclusion, the scatter plot would allow the planner to analyze the effects of

various factors on the land use objective value and land mixed use violations. This

would assist the planner in determining what the best assignment for the given land

area should be. Although there are limitations to the decision framework presented
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above, we believe that in the future, incorporating more factors in the orthogonal

design, and a more efficient procedure for solving the subproblem would make this

framework significantly helpful for an urban planner who wishes to focus on control-

ling urban sprawl.
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