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ABSTRACT

Real Time Temperature Prediction in a Data Center Environment using an

Adaptive Algorithm

Vishok Amar Kumar, M.S.

The University of Texas at Arlington, 2013

Co-Supervising Professors: Dr. Alan Bowling and Dr. Dereje Aganofer

Most organizations around the world rely on information systems to run their

operations. Data centers are hence a crucial aspect of most organizational operations

to ensure business continuity. Disruption in the working of a system can impair

the business largely and hence optimizing the environment in which the servers and

storage devises of a data center are housed becomes extremely challenging. Most

industries design the data center infrastructure to handle peak load conditions thus

ensuring a continual functionality of its hosted environment. However, the cost of

maintaining such a system is very high. This gives rise to the need of having a robust

system which could regulate the energy consumption and thereby reduce the cost of

maintaining these environments ,at the same time guaranteeing optimal performance.

Standardization of such a system will yield savings and help improve the design of

the facility. In the traditional approach, a CFD model is used to model the dynamic

and complex environment of a data center. This system however takes a considerably

long time to converge to a steady state hence causing loss of productive time and

resources. We propose to solve these issues by using both a feed forward network and

v



a dynamic recurrent artificial neural network which would mimic the functionality of

the CFD , but at the same time guarantee a faster convergence rate and hence a better

performance. Given a data center model with varying server heats and fan speeds

,our system is aimed to predict accurate temperature readings for the system ,hence

ensuring controlled energy consumption in comparison to the traditional approaches.

By using a recurrent system allowing time delays we incorporate the variables of a

real time data center environment. Furthermore, the entire system is adaptive and

hence the neural network would learn incrementally with every incoming data sample

and use this error to better its performance. This guarantees an improvement of the

system output and reduction in the prediction error with every incoming data sample

as well as being scalable to model any room. This system is validated in against the

results from the CFD and data from a static neural network for the same data center

model. Various cases for different fan speeds and server heats have been tested and

validated. This system can be incorporated to improve the control strategy for data

centers.
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CHAPTER 1

Introduction

With the steep rise in web activity through social media, web based businesses,

media applications and services, data centers have become a quintessential element

in modern IT infrastructure. Practically every large IT organization has a data cen-

ter in house or out sourced to vendors, especially services that require an always

on capability. These factors have led to a tremendous growth in size, number and

power consumptions of data centers. With substantially growing energy demands

for high performance computing architecture and associated equipment, data centers

have become a large consumer of electricity. They are also amongst the harshest

on the environment with their enormous energy usage and large carbon footprint.

(1-25) For instance, a recent study claims that web search uses half the energy equiv-

alent to boiling a kettle of water. [1] The US Environmental Protection Agency,

EPA, estimates that servers and data centers have consumed 1.5% of total US en-

ergy in 2006 with loads rivaling the output of 15 base power plants. Furthermore,

the same report estimates the number of data centers to have doubled by 2011. [2]

The EPA estimates that the energy consumption of data centers is doubling every

5 years amounting to 7.4billion by 2011. Furthermore, in addition to environmental

degradation and soaring electricity bills, this increased power consumption may lead

to system failures due to over heating or power capacity over load. Even when power

distribution and cooling systems have reached peak capacity data centers continue

to deploy high-density servers (e.g., blade servers) to cope with the ever-increasing

load. Power consumption in a data server is a mix of many factors such as number of
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options installed on the server, CPU activity, memory, disk drives and even the mix

of instructions being executed [3]. Thus making data center research a prominent

focus for optimized operation and design of a data center given a lot of importance.

As data centers are critical components of modern days IT infrastructure, it

is imperative that the power demands, cooling and energy efficiency be managed

effectively. State of the art data centers have the high degree of control at a room level

such as liquid cooling and at a server level such as power distribution. Typical data

centers have an average cooling capacity of 3kW per cabinet with a maximum of 10-

15kW per cabinet whilst typical CRAC airflow supply to a cabinet is approximately

0.094 − 0.24m3/s (200-500 CFM). [4] In the not so distant future, to match the

high computational performance demands, high performance chips with heat fluxes

of 100W/cm2 will increase heat loads at the server and facility level. Back in 2002,

the heat load of a server compute cabinet was just 13kW but now has risen to over

28kW [5]. With increased heat loads, 30-50% of the energy consumption in a data

center is targeted toward cooling [6] while the energy efficiency in most data centers

are less than 50% [7]

Airflow in a data center is a complex process and is difficult to precisely map.

Consequently the environment in a data center is a highly dynamic, intricate and

complex thermal environment. Traditionally, Computational Fluid Dynamics have

been used to model a data center and simulate its environment. Not only is this

approach expensive in terms of software licenses but also in terms of computational

power required to effectively run the software. CFD requires a trained user for ac-

curate modeling. Typically, CFD takes considerable time to produce a steady state

output. As stated earlier, the environment in a data center is highly volatile and

dynamic and hence continuous simulation is a time consuming task. We propose to

use a neural network pre-trained from CFD data, to simulate a data center’s perfor-
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mance. Further more, when deployed in a real world data center, the neural network

will adaptively iterate itself based on real time data from the equipment in the room.

Neural networks are computational tools used for pattern recognition and ma-

chine learning. They are best used as a prediction tool. A NN will approximate a

function between its inputs to produce a desired output. As shown in fig 1.1 it maps

a series of inputs to its outputs through a system of interconnected weighted neurons

and hidden layers containing activation functions. A Neural Network learns from

past data and is trained to predict ouputs as close to the target output with a prede-

fined error tolerance. Since the environment in a data center is highly non-linear and

variable system, a NN is an ideal tool for modeling a data center’s environment.

Figure 1.1. A Simple Neural Network.

CFD uses an algorithmic approach for computation, i.e it follows a set of in-

structions in order to solve a problem. Unless the specific steps that the CFD needs

3



to follow are known, it cannot solve the problem. That restricts the problem solving

capability of a CFD model. Here a neural network is much more useful as they can

do things that we do not know exactly know how to do. Neural networks learn by

example. They process information in a similar way the human brain does. A large

number of highly interconnected processing elements(neurones) work in parallel to

compute the output. Another advantage is the high speed computational power of a

NN compared to the time CFD takes to settle on a steady state output.

We propose to model and train two different NN architectures, a feed forward

network and a recurrent neural network, to simulate the data center’s environment

and predict server air temperature accurately. A feed forward network is the most

widely used NN with only forward connections as shown in fig 1.2. A RNN is a special

type of NN that incorporates feedback from other neurons as well as its self. It is

specially suited for dynamic systems as it has a time delay option in its structure

to predict transient data which is especially effective in this application. Figure 1.3

shows a simple RNN.
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Figure 1.2. A Simple Feed Forward Network.

Figure 1.3. A Simple Recurrent Neural Network with Self Feedback.
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When this system is deployed in a real time data center, we propose to incorpo-

rate an adaptive neural network that will receive real time data from the equipment

in the center to dynamically adapt itself to predict accurate server inlet air tempera-

tures. This network will actively update its weights corresponding to new targets it

recieves from the equipment. This system is validated against CFD predictions and

against predictions from a previously tested and validated batch trained NN for the

same data center model.
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CHAPTER 2

Background

2.1 ASHRAE Data Center Operation Guidelines

In recent years, there has been an exponential increase of activity in the IT

domain. The stress in increased computer performance has unfortunately led to an

undesirable side affect of high power. There are numerous factors affecting optimal

data center operation ie server inlet temperature, air humidity, ambient temperature,

server power utilization to name a few. The industry has recognized that with the

increasing density with in the data center has a profound impact on the reliability

and performance of the equipment it houses.

Initially, each commercial IT equipment manufacturer published their own op-

erating recommendations for their equipment, typically operating in the range of

20-21 deg C. It was common belief that ”colder is better”. Also, many data centers

use IT equipment from various vendors which proposes the problem of having to in-

tegrate varying manufacturer recommended operating environments. This created a

quandary for customers to as to what environment to provide in their data processing

room. A common ground was required for optimal and effective integration of these

components in a data center.

To address this issue, ASHRAE (American Society of Heating and Air-Conditioning

Engineers) proposed a set of guidelines to standardize the optimal operation of the

equipment in a data center. The primary focus for the thermal management was

the equipment’s temperature and humidity requirements. ASHRAE developed four

classes of data processing classes that encompassed most IT equipment. Classes 1 and

7



2 range from heavy duty air-conditioned server and storage environments while class

3 are for PCs, workstations and class 4 is equipment requiring virtually no environ-

mental control. For each class environmental conditions such as allowable dry bulb

temperature, relative humidty, maximum dew point, maximum elevation, maximum

rate of change are specified. Non operating points of the same are also included. Also,

psychometric chart of all environmental classes are provided. [8] [9]

2.2 CFD in Data Centers

Fluid flow is governed by three main aspects, (1) energy is conserved (2) mass is

conserved and (3) Newton’s second law (F=ma). These principles can be expressed in

terms of partial differential equations. CFD in the most part is replacing these equa-

tions with numbers and advancing the system through time to obtain a description

of the fluid flow of the system.

Computational Fluid Dynamics, more often than not abbreviated as CFD, is a

branch of fluid dynamic is a fluid dynamics tool that uses FDM, FEM and FVM to

solve, analyze and predict complex fluid flows. Computers are used to simulate the

physics and predict time dependent results given initial set of boundary conditions

2.1. Experimental validation is carried out to validate initial CFD predictions.
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Figure 2.1. CFD Modeling.

It only seems logical to use such a robust and strong tool such as CFD to model

data center environments. CFD has gained immense popularity to model cooling

effectiveness within racks and aisles. It provides a 3-D analysis of how hot and cold

air is moving through the data center and identifying regions that require additional

cooling or areas that are excessively cooled. CFD gives the customer a prediction of

how much cooling power is required for his application. An optimal layout of racks

and containment can be derived from this analysis.

Some popular CFD software packages for data center environment analysis are:

• 6Sigma from Future Facilities

• Flovent from Flomerics Group

• TileFlow from Innovative Research Inc. of Minnesota.

• CoolSim software from ANSYS

9



2.3 Room Layout

Here we describe the reference data center configuration that has been modeled.

The current configuration hosts 40 racks arranged in a hot aisle/cold aisle layout. The

room is symmetrical across the middle section as shown in fig

Figure 2.2. Top view of the data center layout.

The room is 13.42 m in length, 6.05 m in width and 3.66 m in height. Each

rack is 0.61 m wide, 1.22 m wide and 2.0 m high. Each rack has 6 temperature data

points where the temperatures are measured for analysis. These temperature data

points are 0.333 m apart on a rack.

2.4 Past Work

A batch trained NN for the same data center model has been developed, tested

and validated. The NN is modeled on a feed forward architecture. The model is

trained purely on CFD data and tested for predictions within the data set. This

model has an accuracy of about 98/
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2.5 Why MATLAB?

MATLAB is a high-level language and interactive environment for numerical

computation, visualization, and programming as defined by MathWorks,Inc. It is an

advanced and robust software package designed for engineering and scientific com-

putation. Matlab does a good job of integrating graphical and numeric display of

results. Integrating computation, visualization and programming in a easy to use en-

vironment making MATLAB a robust and favourite package in the engineering and

scientific community.

Typical uses included but are not limited to:

• Modeling and Simulation

• Mathematics and Computation

• Data analysis and visualization

• Algorithm development

• Engineering and Scientific Graphics

11



CHAPTER 3

Neural Networks

3.0.1 An Introduction

A neural network (NN) is a information processing system composed of single

elements operating in parallel. These networks are a derivation of the biological

nervous system. Just as in nature, it is comprised of a highly interconnected network

of processing elements called neurons. These neurons work in unison to solve a

specific problem. Their function is highly dependent by the connections between these

elements. In the nervous system, learning is achieved through specific adjustments to

the synaptic connections between neurons. Similarly in neural networks, we train a

NN to perform a particular function by adjusting the values of weights between the

elements. [10] [11]

Figure 3.1. Components of a Biological Neuron.

12



Figure 3.2. Components of a Neuron Model.

Neural networks are conventionally used where traditional computing tech-

niques fail. They can not do everything but they can some things that otherwise

would be very difficult. They can form a model and output predictions based on

their training data or even their input data in the case of adaptive networks. NNs

have been used in numerous fields such as aerospace, automotive, banking, electron-

ics, defense, medical, financial, speech recognition, and telecommunications. [12] A

few specific applications include high performance auto pilot systems, credit card

evaluations and chip failures analysis.
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3.0.2 Neural Network Design

The work flow for a conventional NN has been classified into seven primary

steps. These steps cover the development of the NN to the execution and validation

of the NN. The steps are:

1. Collect data

2. Create the network

3. Configure the network

4. Initialize the weights and biases

5. Train the network

6. Validate the network

7. Use the network

3.0.3 Network Architecture

The spatial arrangement and connection pattern of neurons within and in-

between layers is called the architecture of the net. Weights, neurons, interconnects,

inputs and outputs together form a network. Networks can as simple as a single layer

or more complicated multiple layers. The number of layers in a network is the number

of layers of weighted interconnected links between slabs of neurons. ?? If two layers

with weighted interconnects are present, then there will be a hidden layer in between

them.

NN come in various shapes and sizes: Feed forward, recurrent networks, fully

interconnected networks etc. Some common networks are shown in fig 3.3 :

14



Figure 3.3. A fully connected recurrent neural network.

3.0.3.1 Feed Forward Net

Feed forward networks a single layer with the inputs directly connected to the

outputs or multiple layer of input weights with hidden layers in between them. Hidden

layers and their associated weights are used to create a representation of the input

patterns.

1. Single Layer Network: This is the simplest type of network. It consists of a

single layer if input nodes that feed via weighted interconnects directly to a

single layer of output nodes. In a single layer net, the weights from one output

does not affect the weights of another unit. They are capable of learning only

linearly separable problems.
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2. Multi Layer Network: Here there is one or more layers on nodes between the

input and output layer called the hidden layer. These networks can solve more

complicated problems.

3.0.3.2 Competitive Net

This network is similar to the feed forward network except that there are usu-

ally negative connections between the output nodes. These connection are usually

restricted to units that are close to one another. Due to these connections the output

nodes tend to compete to represent the current input pattern. Using a apt learning

algorithm, the system can reorganize itself topologically. [13]

3.0.3.3 Recurrent Net

Recurrent networks are time dependent networks. They have the ability to

connect all neurons to each other and even themselves of need be. They process

sequential information ie the state of the network depends on the previous time step.

3.0.4 A Neuron Model

The basic building block of a neural network is a neuron. A neuron consists

of a set of inputs, weights in the input layer and output layer, a bias, an activation

function and the output. A host of interconnected neurons together constitute a

neural network.

3.0.4.1 Neuron Architecture

A scalar input p is multiplied by a weight w to form a weighted input wp. b is

a scalar bias that is much like a weight and generally has a value of one. It is simply

added to the input or to the transfer function f shifting it to the left by the amount
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b. The arithmetic sum of the weighted input wp and the bias b form the input to the

transfer function and is denoted by n. The transfer function f is generally a sigmoid

function or step function. It takes the input n and gives an output a. The value of wp

and b can be adjusted to accordingly to so that the NN exhibits a desired behavior.

Figure 3.4. Model Neuron with a Scalar Input.

NN can have vector inputs as shown in fig 3.4. They are prominent in adaptive

neural networks. The sum Wp is the dot product of the weighted values matrix W

and the input vector p. The neuron has a bias b which is summed to give the net

input n.

3.0.4.2 Transfer Functions

Transfer functions also known as activation functions contain adaptive param-

eters that are optimized. Larger networks with simple neurons may have the same

power as smaller networks with more complex neurons. /ref transfer functions. A
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transfer function is best chosen by by trial and error to see which gives the a more

consistent and desirable output. A recent list of known and new transfer functions

have been published recently /ref 12 from same paper. There are three main types of

transfer functions, a hard limit transfer function, linear transfer function and sigmoid

transfer function.

1. Hard Limit Transfer Function Here the output of the neuron is limited to 0 if

the net input n in less than 1 or is 1 if the input n is greater than or equal to

0.

Figure 3.5. Hard Limit Transfer Functions.

2. Linear Transfer Function Here the output is conditioned according to a linear

equation
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Figure 3.6. Linear Transfer Functions.

3. Log Sigmoid Transfer Function It is a differentiable transfer function and hence

is desirable in back propagation techniques. Here the takes a the input n which

could vary between plus to minus infinity and limits the output between a range

of 0 and 1.

Figure 3.7. Log Sigmoid Transfer Functions.
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3.0.4.3 Bias

Figure 3.8. Neuron with Bias.

A bias acts just as weight on connection whos activation is always equal to one.

They improve the performance of the NN. Increasing the bias increases the net output

to the unit. The bias is initially initialized to zero or any other value depending on

the network. The net input from the network is calculated as:

Net = b+
∑
xiwi

Where, Net : input b : bias xi : input from neuron i wi : weight of neuron i to

the output neuron

3.0.5 Error Estimation

The error calculations used to train a NN is very important. There have been

numerous error calculation methods experimented with. So for any set of input of

20



values and weights there will be a corresponding error associate with it. This error is

dependent how well the NN has been trained ie which structure has been used, which

learning algorithm is used. The Delta Rule applies an error function called gardient

descent. The negative of the error associated to a certain weight is proportional to

the change applied to that weight.

Figure 3.9. Schematic for Error Function Containing Two Weights (w1 and w2).

The error function most commonly used is the mean square error (MSE). This

is the squared difference between what the NN predicts for each iteration and its

corresponding target value. The equation is:

E =
1

2

N∑
i=1

C∑
j=1

(Tij − tij)2 (3.1)

Where: N : is the total number of training cases C : is the number of outputs Tij :

targetvalueforithnodeandjthlayer tij : predictedvalueforithnodeandjthlayer
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3.1 Feed Forward Networks

Feed forward neural networks (FFNNs) are the most well known and widely

used class of neural networks. The popularity of feed forward networks is derived

from the fact that they have been applied successfully to a wide range of information

processing tasks. A feed forward neural network is an artificial neural network where

connections between the units do not form a directed cycle as in fig ??. Feed forward

networks have a characteristic layered architecture, with each layer comprising one

or more simple processing units called artificial neurons. All of these networks have

input layer and a output layer. It is the simplest type of NN where the information

moves from only in one direction ie from its input layer through the hidden layer (if

any) to the output layer. There are no cycles or loops in the network.

Figure 3.10. Feed forward Neural Network.
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3.1.1 Single Layer Feed Forward Networks

A neural network is a network of neurons organized with multiple layers. In

its basic form, it consists of just one input layer that connects to an output layer of

neurons, but not vice versa. Figure 3.11 shows a single layer FFNN with four nodes

in the input layer and output layer. This is called a single layer network with the

single layer referring to the output layer of nodes. We do not count the input layer

of nodes as no computation is performed here.

Figure 3.11. Single Layer FFNN.

3.1.2 Multilayer Feed Forward Networks

The second class of feed forward neural networks are multilayer feed forward

networks. They have one or more hidden layers that are called hidden neurons.

Their function is to intervene between the input layer and output layer for increased

23



performance. With hidden layers, the NN is able to extract higher order statistics.

This ability to extract higher order statistics is valuable when the input layer is large.

The primary sources in the input layer of the NN give the respective elements

the input vector which act as the input signals applied to the computational nodes

in the second layer (the first hidden layer). The output of the second layer is used

as input to the third and so and so forth. The signal set from the final layer are

considered the response of the network. Figure 3.12 shows the architecture of a a

multi layer feed forward network with a single hidden layer. The network is termed

as a 4-5-1 network with 4 inputs, 5 hidden neurons and 1 output neurons. This

network is said to be fully connected in the sense that every node in the each layer is

connected to every node in the adjacent layer.

Figure 3.12. Muliti Layer FFNN.
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3.2 Recurrent Neural Networks

3.2.1 An Introduction

Recurrent Neural Networks (RNNs) are designed to learn sequential or time

dependent results. They utilize temporal data processing whose computational units

use activations based on the activation history of the network. RNNs distinguishing

characteristic is their ability to map a series of input sequences distributed across

time to their outputs sequences. In other words, for a same input parameters the

RNN could predict different outputs dependent on the time sequence in reference.

RNNs offer a framework suitable for resulting network outputs values in training ??

[14]

Using a RNN in server temperature prediction is typical use of RNNs. A data

center’s environment is heavily dynamic. Typically loads on the servers fluctuate

considerably through out working day and would cause an corresponding environment

change. The CRAC would have to react to these changes to maintain the the servers

in their optimal operating environments. An RNN works great with dynamic systems

and has the ability to work with time dependent data. For a certain set of inputs

from the data center, it could predict the room’s environment as a function of time.

This is helpful as we can predict transient states as well as steady state states of the

servers.

3.2.2 Architecture

RNNs can be fully connected (3.13) or partially connected networks, including

feedforward networks. Fully connected networks do not have distinct input layers to

nodes but have inputs from other nodes. They could even have feedback to themselves

[15].
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Figure 3.13. A fully connected recurrent neural network.

A simple RNN have a feed forward like structure but receive feedback from

other nodes and sequential context from other nodes. 3.14 shows a context layer C1

and C2 where the weights to these layers can be processed through back propagation.

This layer retains information between observations [16]. As new inputs are fed into

the RNN, the previous contents of the hidden layer are passed into the context layer.

These are then fed back into the hidden layer at the following time step. The context

layer receives time delayed feedback from the following layer of units.
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Figure 3.14. A simple recurrent neural network.

3.2.3 Learning in Recurrent Neural Networks

Neural networks are attractive in their applications because of their inert ability

to learn and continue learning. Different learning algorithms are used for specific

applications [17]. Exploiting the RNNs computational capabilities is a challange its

own. To take full advantage of the application of the a RNN one approach is use

a feed forward format integrated. Researchers have developed a variety of methods

of gradient methods of which back propagation is most effective. Back propagation

through time was proposed back in 1990s. [18]. Understanding how RNNs process

information is imperative when deciding which training algorithm to use.

27



CHAPTER 4

Methodology

4.1 Incremental Learning

4.1.1 An Introduction

In numerous applications learning algorithms must act in dynamic environ-

ments where data will be continuously generated. New information arrives in sepa-

rate batches over time. [19] Traditional batch learned algorithms re learn the concept

from scratch and can not be used. A more suitable approach is incremental learning

4.1.2 Description of the Method

Here the network at in its current state Net(tk) can be updated when ever a

new data set Tk+1 is available allowing the resulting network Net(tk+1) to include

both the new data Tk+1 and data from its previous data set. This network is known

to be adaptively learning.

4.1.2.1 Initial Training of the Network

The matrix of weights W1 corresponding to the weights on the connections

between the output nodes and the preceding hidden layer nodes. The sum of squares

error is now minimized. The sum of squares error is the sum of the squared differences

between each observation and its group’s mean. This error is a quadratic function of
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weights and its minimum can be found by solving a set of linear equations in terms

of a pseudo-inverse matrix [20] [21]

E =
1

2

q∑
i=1

1
N∑

n=1

1[oi(xn − Ti(xn]2 (4.1)

Where, Ti(xn)− ith target value , oixn − ith output of the network

4.1.2.2 Incremental Backpropagation Neural Network

A key feature in designing a incremental learning network is learning new knowl-

edge with out forgetting the old. Incremental back propagation network is one such

network. It combines structural adaption learning rules, bounded weight modification

and initial knowledge to curb the learning process [22] [23] Simple back propagation is

not incremental in its nature. If it trained on input set A and then retrained on input

set B, the knowledge of data set A maybe lost. The back propagation algorithm must

be modified so that the when the network is retrained whilst keeping the knowledge

of the previous training state. The idea is to minimize the network output error with

respect to old input sets subject to the approximation of the network output to the

desired output of the new input sets. Since the output of a NN is determined by how

its neurons are connected and the weights on those neurons. Adaptation is based

on two aspects, weight adaption and structural adaption. Using bounded weight

modification and structural adaption an incremental back propagation network is

developed.

4.1.2.3 Bounded weight update

A bound on the weight modification is implemented so that the previous knowl-

edge of the network is retained while allowing margin for updating the weights. More

29



the uncertainty in the network, larger the weight bounds should be. As the learning

proceeds, the weights should begin to and eventually converge.

Two different learning strategies can be implemented for error minimization,

fast learning and slow learning. In fast learning, the weights are adjusted on every

instance as long as they are with in their bounds and slow learning is where one

weight change is done per epoch. Fast learning is not as effective as slow learning.

The network learns by back propagation with in its weight bounded limits. The

network may not shift to its steepest descent because the weights will be pruned. To

avoid this, a scaling factor s is introduced so that all scaled weights adjustment is

within bounds. The learning rule is:

∆Wij(k) = s(k)ηδj(k)Oi(k)

where ∆Wij is the weight change from unit i to j, η is the learning rate, δj is the error

gradient at unit j and Oi is the activation at i, all for the kth iteration The weight

adjustment for at an instance is W(p) such that:

|
n∑

k=1

∆Wij(k)| ≤ Bp

where n is the number of iterations run. Therefore the scaling factor s for the nth

iteration is introduced.

The weight bound is based on prior knowledge or determined by the learning

curve. The bound should be set that the learning curve is smooth. It is concluded

that bounded weight modification is needed for incremental learning since simple back

propagation with such a constraint can not learn incrementally. Ref paper.

4.1.2.4 Structural Adaptation

The simple back propagation algorithm depicts how to change the weights on

a neuron but not its structure. One way is do deactivate the neurons upon adaption

where the adaption is below a certain threshold. How ever this approach fails where a
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new neuron is added. In incremental learning, the weights prior to learning represent

the learning so far. If the NN can not be adapted by weight adaption then structural

adaption becomes necessary.

If the NN can not learn a new instance by weight adaption then a new hidden

unit is added which encodes the input-output characteristics of the instance. The

input units present in the instance are connected to the added hidden units with an

initial weight 1/p where p is the total number of attributes. That hidden unit is then

connected to the output with a small weight. If the output weight is based on a single

instance is reduced to a small value then the unit is removed. Although if the NN can

only be increasing in size, it will reach a limit where its performance is compromised

due to the spatial or temporal limitations.
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CHAPTER 5

Training of the Neural Network

For the development of a NN model, the following problems need to addressed

[24]

• How many hidden neurons in the hidden layer should be used?

• Which training algorithm should be used?

• What neural network architecture should be used?

All these factors can affect the error on the nodes to which the output is connected.

The minimal error reflects better stability of the NN and a higher error reflects insta-

bility of the NN. The error before adaptive learning begins will tend be higher and

will minimize as the networks adapts to the desired targets.

Two different neural network architectures have been trained and tested with

the adaptive algorithm namely a feed forward structure and recurrent neural network

structure. The performance of these architectures are compared on similar grounds.

5.0.3 Training the FFNN

The network is trained from CFD simulated data entered in a vector format.

The data consists of several trials of uniform server power loading, non uniform server

power loading, CRAC fan speeds, tile perforation ratios and target temperatures of

the inlet air. The entire data set ranges from 5kW to 35kW of dissipated server heats,

60%, 80%, 100%, 120% CRAC fan speeds all at 50% tile perforation ratio.
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Figure 5.1. Matlab Model Representation for the Feed Forward Architecture.

The network is then tested for predictions outside its training set but with in

the data range for robustness.

Then the network is trained to a new plant model feeding it inputs on a case by

case basis. The adaptive NN learns the new room with every new test case fed to it.

The NN is tested for extreme loading predictions where the batch trained NN failed.

The batch trained NN is modeled as the plant to feed multiple inputs. 80 such cases

were generated and fed to the NN as data.

For a training case of 5kW at 80% CRAC fan speed is now run through the

adaptive NN for 5 passes. Figure 5.2 shows the iterative predictions for 5 passes of

the adaptive NN for all rack 1. It can clearly be seen how the NN is learning with

every iteration whilst adjusting its weights accordingly. Each iteration is run in a

matter of seconds and can be adapted to a real time setting. The average error per

iteration for 120 temperature data points is shown in table 5.1.
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Figure 5.2. Iterative Temperature Predictions for Rack 1 Compared to CFD Predic-
tions.

Table 5.1. Mean Error Reduction per Iteration

Iteration 1 2.072395833
Iteration 2 0.761734167
Iteration 3 0.444356667
Iteration 4 0.276921667
Iteration 5 0.1930675

Table 5.2 and Table 5.3 shows the update of weights in the NN from iteration

1 to iteration 2 for rack 1. These are small increments or decrements to each weights

on the neurons between the hidden layer and output layer.
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Table 5.2. Weight Matrix for Iteration 1

Hidden Neuron 1 2 3 4 5 6 7 8 9 10
T1 0.0583 -1.1851 -0.0002 0.8003 -0.0067 0.3714 0.0269 0.0647 0.5767 0.4427
T2 -0.5420 -0.2829 0.1620 0.9094 0.2275 0.2300 0.4766 -0.5446 0.8325 0.2810
T3 0.0284 -0.9014 -0.4167 0.9487 -0.0928 -0.0621 0.2176 -0.1468 0.0961 0.2072
T4 0.0807 0.2861 -0.4533 0.9652 -0.3214 -0.3650 -0.0570 0.0823 0.2207 0.3615
T5 0.1627 0.5373 -0.4076 0.9497 -0.3566 -0.5005 -0.2396 0.2374 0.2477 -0.1100
T6 -0.2039 0.3135 -0.3649 1.0141 -0.3320 -0.6380 0.0514 -0.1296 0.4782 0.3013

Table 5.3. Weight Matrix for Iteration 2

Hidden Neuron 1 2 3 4 5 6 7 8 9 10
T1 0.0549 -1.1814 -0.0013 0.8022 -0.0082 0.3723 0.0275 0.0662 0.5774 0.4466
T2 -0.5477 -0.2769 0.1602 0.9125 0.2251 0.2315 0.4774 -0.5422 0.8336 0.2875
T3 0.0317 -0.9049 -0.4156 0.9468 -0.0914 -0.0630 0.2171 -0.1482 0.0954 0.2034
T4 0.0820 0.2848 -0.4530 0.9645 -0.3209 -0.3653 -0.0571 0.0818 0.2205 0.3601
T5 0.1609 0.5392 -0.4082 0.9507 -0.3574 -0.5001 -0.2393 0.2382 0.2481 -0.1079
T6 -0.2006 0.3100 -0.3639 1.0123 -0.3306 -0.6389 0.0509 -0.1310 0.4700 0.2976
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5.0.4 Training the RNN

The neural network was designed as a recurrent neural network with one hidden

layer that has a recurrent connection with a tap delay associated to it. This allows

the network to have an infinite dynamic response to the time series input data. The

RNN is given seven inputs (server load x 4, fan speed, spatial position of rack x2) per

iteration. After numerous trials, the hidden layer size is set at ten. The RNN returns

six temperature data points per iteration as shown in fig 5.3. The RNN is trained via

adaptive incremental learning. The time delay is set to zero as this network is not

trained for transient data but could be used for the same.

Figure 5.3. Recurrent Neural Network.

After many trials, it is found that 10 hidden neurons yield improved accuracy

and stability of the network. This size is used for all test cases that have been

performed.

The network is trained from CFD simulated data entered in a vector format.

The data consists of several trials of uniform server power loading, non uniform server

power loading, CRAC fan speeds, tile perforation ratios and target temperatures of
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the inlet air. The entire data set ranges from 5kW to 35kW of dissipated server heats,

60%, 80%, 100%, 120% CRAC fan speeds all at 50% tile perforation ratio.

The network has been trained for 1000epochs and is continuously trained for

better results. Figure 5.4 shows the training performance of the RNN. It achieves a

lowest MSE of 1.6702 at its last epoch.

Figure 5.4. Recurrent Neural Network.

The learning rate of the RNN is at its highest at around epoch 70 and cycles

there after. The learning rate gradually reduces a shown in fig 5.5. This is also

reflected in fig 5.4 where the MSE reduces drastically till epoch 70 and there after

almost linearly decreases but at a more relaxed rate.
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Figure 5.5. Learning rate of the Recurrent Neural Network.

Figure 5.7 shows that maximum erros lay between +0.3934Celciusand−0.3805

Celcius for the data set. Considerable errors do lay in the ± 2.0 elcius range as

well. The regression plot shows that this network is accurate for temperatures where

enough data was available. Temperature points in the extremes (>30deg C) show

some inaccuracy. See fig 5.6. To mitigate these errors is where the adaptive phase of

the NN comes into play.
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Figure 5.6. Regression.

Figure 5.7. Recurrent Neural Network.
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Figure 5.8 shows the stack up of 5 iterative RNN ANN predictions and the

CFD prediction for the same case. It can be seen the shift of the successive iterations

toward the target.

Figure 5.8. Iterative Temperature Predictions for Rack 1 Compared to CFD Predic-
tions.
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CHAPTER 6

Test Cases and Verification

6.1 Feed Forward Architecture

This architecture is tested for predictions with in its data set to test the perfor-

mance of the network and for predictions outside its data set to test for the robustness

of the network. The network is further tested for scalability and testing outside its

data for predictions off training via the batch trained black box model.

6.1.1 Testing for CFD data

Testing done in two parts, for predictions from data set and predictions for data

not in data set but with in range of data set.

6.1.1.1 Performance Testing

Three distinct test cases were chosen for testing the performance, 5kW per rack

at 60% CRAC fan speed, 10kW per rack at 100% CRAC fan speed, 20kW per rack

at 100% CRAC fan speed. These predictions were compared to CFD predictions for

the same setting. The adaptive NN predictions are shown in figs 6.1 6.2 and 6.3. The

average error percentage for all predictions is below 1% for test cases. The maximum

error is around 1 degree C for all cases.
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Figure 6.1. Prediction for 5kW at 60% CRAC fan speed.

Figure 6.2. Prediction for 10kW at 100% CRAC fan speed.
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Figure 6.3. Prediction for 20kW at 100% CRAC fan speed.

The errors for these predictions are shown in figs 6.4, ?? and 6.6. The error

plot 6.7 shows the averaged error percentage for the test case for 120 temperature

data points. The error percentage is averaged at 0.74% with a maximum of 5.37%

and a minimum at 0.007%.

Figure 6.4. Errors for 5kW at 60% CRAC fan speed.
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Figure 6.5. Errors for 10kW at 100% CRAC fan speed.

Figure 6.6. Errors for 20kW at 100% CRAC fan speed.
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Figure 6.7. Error Percentage Chart.

6.1.1.2 Testing for Robustness

Three test cases are chosen for intermittent testing with in the range of the

data set that are not included in the training data set. The cases are 12.5kW per

rack at 60% CRAC fan speed, 17.5kW per rack at 80% CRAC fan speed and 22.5kW

per rack at 100% CRAC fan speed. The NN predictions were compared to CFD

predictions for the same setting. The adaptive NN predictions are chosen in fig 6.8,

?? and ??. The average error percentage for all predictions is still below 1%. The

maximum error is below 1 degree Celcius.
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Figure 6.8. Prediction for 12.5kW at 60% CRAC fan speed.

The errors for these predictions are shown in figs 6.9, 6.10 and 6.11. The error

plot 6.12 shows the averaged error percentage for the test case for 120 temperature

data points. The error percentage is averaged at 0.72% with a maximum of 3.74%

and a minimum at 0.0006%

Figure 6.9. Errors for 12.5kW at 60% CRAC fan speed.

46



Figure 6.10. Errors for 17.5kW at 80% CRAC fan speed.

Figure 6.11. Errors for 22.5kW at 100% CRAC fan speed.
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Figure 6.12. Error Percentage Chart.

6.1.2 Scalability

Here the scalability of the network is tested. A batch trained NN modeled

around the same data center is used to simulate a plant. The plant can generate

infinite predictions for infinite inputs. These inputs are fed to a nascent NN on a case

by case basis. On feeding the NN enough data, it will be sufficiently well trained.

Fifteen test cases are chosen to test the performance of the network. The test cases

are combination of extreme loading conditions and intermittent fan speeds. The

test cases chosen are shown below in table XXX. The performance of the network is

highly accurate. The average error percentage 0.19%. The maximum error is only

0.54 degree Celsius while the minimum is at 0.003 degree Celsius. Figure 6.13 shows

the average error percentage for all 15 trials.
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Figure 6.13. Error Percentage Chart.

6.2 Recurrent Network Architecture

The same test cases are chosen to test the performance of this architecture as

were to test the performance of the feed forward architecture. The test cases were

5kW per rack for 60/

Figure 6.14. Prediction for 5kW at 60% CRAC fan speed.
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Figure 6.15. Prediction for 10kW at 100% CRAC fan speed.

Figure 6.16. Prediction for 20kW at 100% CRAC fan speed.

Figure 6.17, 6.18 and 6.19 show the errors for each of the test cases. The average

error percentage is 3.35% with a maximum error of 12.98% and a minimum of 0.009%.

The average error, maximum error percentage and minimum error percentage is shown

for 120 data points in figure 6.20
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Figure 6.17. Errors for 5kW at 60% CRAC fan speed.

Figure 6.18. Errors for 10kW at 100% CRAC fan speed.
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Figure 6.19. Errors for 20kW at 100% CRAC fan speed.

Figure 6.20. Error Percentage Chart.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

An adaptive neural network has been developed that is shown to accurately

predict the air temperatures in the data center room as a function of the server

heat and CRAC fan speed and spatial position of the load banks. The network has

been adaptively trained for a data set provided by CFD simulations. This adaptive

training is advantageous as the network no longer needs to be trained on multitudes

of data. With a minimal training set, the adaptive algorithm allows the network is

incrementally update its weights with every pass.

Two different architectures have been presented with their merits. The feed-

forward system showing a better accuracy of predictions and the recurrent system

showing a slightly less accurate predictions but having the ability to include temporal

data. The robustness and scalability of the feed forward system has been proved and

can be used to learn a room with over 99% accuracy.

Further more, as this adaptive network has the flexibility to continually learn

even after deployment. So it can receive real time data from a system and adapt itself

further if need be. This feature is very useful when the network is used in a real time

data center. Not only has it learned the room with minimal training, it can further

adapt to new data fed to it.

The robustness of this system was verified when the network was tested for data

that is had not been included in its data set. The accuracy shown in fig 16 proves

the scalability of this network. The system can make predictions with an accuracy
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of over 99%. By learning a new room via inputs from a plant model, the network’s

predictions proved that it is not limited to predictions with in its data set.

A strategy to save time and resources while maintaining a complex data cen-

ter environment has been presented. The proposed system predicts temperatures for

varying server configurations with a minimal error rate hence ensures the sustainabil-

ity of this system. The various test cases and comparisons with the real time CFD

data and black box model demonstrate the accuracy of system.

The neural network’s speed and accuracy of predictions are two of its most

promising claims to fame. The adaptive network takes this one step further, and

shows that with minimal training the network can learn a new room and continually

learn with out having to be retrained. The neural network can be a powerful tool

in prediction of air inlet temperatures at key points in data center and this model

can be extended to a real time cooling control model. Deployment of the proposed

system is likely to save resources and the time invested in achieving optimal data

center environment conditions.

7.2 Future Work

The proposed system is an initial attempt to use a new idea to predict optimal

environments for servers and storage systems. However, this project has wider areas

where which can be explored in the future. Some of them being :

1. Developing a deployment framework which will facilitate easy installation and

operation of the proposed system in the targeted industries.

2. Deploying the neural network in a real time data center and monitoring the

influence of the various environment variables on the results predicted.

3. Modify the current system to use different adaptive algorithms and further

reduce the error in prediction rate.
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4. Investigate any anomalies in prediction and investigate the cause and nature of

the edge cases.

5. Incorporate the adaptive network into a dynamic controller[25] that can be

deployed in a real time data center.
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