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Abstract 

OPTIMAL DESIGN OF BEAMS 

Shivakumar Samala, MS 

The University of Texas at Arlington, 2013 

Supervising Professor: B. P. Wang 

Beams are basic structural components that are capable of withstanding load 

primarily by resisting bending. Unlike Euler-Bernoulli beams, Timoshenko beams 

undergo both shear deformation and rotational effects, making it suitable for analyzing 

the behavior of thick or short beams, composite beams and beams that are subjected to 

high frequency excitation when their wave length becomes shorter. This thesis work 

focuses on optimal design of straight and tapered Timoshenko beams under static and 

dynamic constraints for rectangular and circular cross sections. In this work Timoshenko 

beam static and dynamic equations were studied. The finite element method was used for 

static and dynamic analysis of the beam. In finite element method to overcome the 

numerical problem in shear locking, cubic interpolation of displacement and an 

interdependent quadratic approximation of rotation has been considered. 

In order to optimize the weight of the beam with static and dynamic constraints 

three sets of optimizations were done. The design variables are length, cross sectional 

width and height, with objective function as mass, static deflection constraints were used. 

The second optimization set was using dynamic constraints and the last set was using 

both static and dynamic constraints. 
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Chapter 1 

Introduction 

Beams have been used since dim antiquity to support loads over empty space, as 

roof beams supported by thick columns, or as bridges thrown across water, for example. 

The Egyptians invented the colonnaded building that was the inspiration for the classic 

Greek temple. Even with the scarcity of timber in Egypt, wooden beams supported the 

roofs. Early bridges were beams supported at each end by the stream banks, or on piles, 

on which a deck was constructed for traffic. In either case, the trunk of a tree was the 

usual beam, trimmed and either left round or squared. Our word "beam" is, in fact, 

cognate with German Baum or Dutch boom. A tree makes a very satisfactory beam, 

indeed, and practically all beams were originally timber beams. Stone beams, as in door 

lintels, could be used only for very short spans and light loads, because of the brittleness 

of stone. Brittle materials do not make good beams. 

Through the millennia, beams were designed by empirical methods, applicable 

only to specific cases and incapable of generalization. Galileo studied beams, and 

although he did not get it quite right, he showed how the subject should be approached. 

The theory of beams was only perfected in the late 17th century with the rise of the 

science of elasticity, and was shown to be a subject of great complexity for which a full 

and accurate solution was very difficult. This remains true even with modern 

computational methods, such as the method of finite elements, which produces only 

numbers (not designs) but very little insight, and depends on parameters that are not well 



 

2 

known and models that may contain errors. These methods have great value, but are not a 

comprehensive solution. 

The theory of beams shows remarkably well the power of the approximate 

methods called "strength of materials methods." These methods depend on the use of 

statics, superposition and simplifying assumptions that turn out to be very close to the 

truth. They give approximate, not exact, results that are usually more than adequate for 

engineering work. Calculus and little differential equations are all the mathematics 

required for this approach, not the partial differential equations or tensor analysis that are 

typical tools in elasticity. 

Strength of materials methods can be used for beams of arbitrary cross sections, 

for beams whose shape varies along the length, for loads applied in any direction at any 

point, distributed or concentrated. Many of these applications are discussed in the first 

reference, which shows the versatility of the method. The results obtained are fully 

adequate for engineering design. On the other hand, an accurate and rigorous quantitative 

solution in these varied cases would be extremely difficult and usually impossible. 

Two versions of theories have been developed for analysis of beams. In Euler-

Bernoulli theory, the displacement of beams is considered without shear effects. This 

method gives appropriate and acceptable response in tin beam in which shear effect is 

insignificant. However this approach, by increasing the thickness of beam and shear 

effect deformation, the error of response is increasing [1]. Correspondingly, the effect of 

shear transformation is formulated in Timoshenko Beam Theory. Therefore, this method 

has a better result, especially in deep/thick beams in which shear effect is impressive. 
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Although the rotational inertia of thick beams was investigated by Rayleigh for the first 

time, Timoshenko has developed this theory and formulated shear effect. Due to the 

complexity of the governing equations of the static and free vibrations of beams in 

general, numerical methods such as finite element methods have been developed 

profoundly. Up to now, many elements have been proposed, based on Timoshenko 

theory. These elements are classified into two groups which are simple and high-order 

elements. Some researchers used simple Two Node elements with four degrees of 

freedom [2-4] Thomas et al. have examined the elements proposed by other researchers 

[3].  

The first high-order element was proposed by Kapur with eight degrees of 

freedom [5]. Lees and Thomas formulated a complex element by applying independent 

polynomial series for displacement and rotational fields [6, 7]. Also, this method has been 

used by Webster [8]. Rao and Gupta have examined free vibrations of rotating beams [9].  

W. L. Cleghorn and B. Tabarrok [10] have proposed a finite element formulation for 

tapered beam elements by providing element matrices for a tapered Timoshenko beam. A 

cubic polynomial was employed for the deflection distribution and a linear distribution 

for a shear strain. A similar approach was developed by C. W. S To [11] has been 

employed for the free lateral vibrations of linearly tapered Timoshenko beams 

considering both shear deformation and rotary inertia. Leszek Majkut [12] presented a 

new approach to description of the Timoshenko beam free and forced vibration by a 

single equation. He has employed Green‟s function for describing the forced vibrations of 

the Timoshenko beams vibrational analysis. 



 

4 

In some methods like, isoparametric formulation, displacement and rotational 

fields are assumed dependently with the same order [13]. Based on Euler-Bernoulli 

theory, Gonclaves et al. have presented frequency equation and vibration modes for 

classical boundary conditions such as clamped, free, pinned and sliding supports [14]. 

Lee and Schultz have considered free vibration of Timoshenko beam through 

Psuedospectral method [15]. Starting from the early 1960‟s, a number of papers by Mabie 

and Rogers [16] presented the exact frequency equations for various tapered beams with 

classical boundary conditions, by using Bessel function theory. 
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Chapter 2 

Uniform Timoshenko Beam Analysis 

2.1 Static Analysis of Uniform Timoshenko Beam 

The Euler-Bernoulli beam theory of beams does not include the effects of shear 

deformation. For short stubby beams this contribution clearly cannot be neglected, and 

for this reason we include both shear deformation and rotational inertia effects such that, 

making it suitable for describing the behavior of short beams, sandwich composite beams 

or beams that are subjected to high frequency excitation when the wavelength approaches 

the thickness of the beam. So, physically Timoshenko‟s theory efficiently lowers the 

stiffness of beam and the result is a larger deflection under a static load and lower 

predicted Eigen frequencies for a given set of boundary conditions. The latter effect is 

more noticeable for higher frequencies as the wavelength becomes shorter, and thus the 

distance between opposing shear forces decreases.  

 

 

Figure 2.1 Deformation of Euler-Bernoulli Beam Element 
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In Timoshenko Beam Theory (TBT), we will assume that plane cross section 

remains plane but not necessarily normal to the longitudinal axis after deformation, i.e. 

transverse shear rotation )(x  is not equal to zero. Therefore, the total rotation of a 

transverse plane about the Y-axis is sum of rotation due to bending and shear 

deformation.  

 

 

Figure 2.2 Deformation of Timoshenko Beam Element 

)()(/ xxxw    (2.1) 

 xw / Total transverse rotation of plane about Y-axis 

)(x = Rotation transverse plane about Y-axis due to bending only 

)(x = Rotation transverse plane about Y-axis due to shear deformation  

The displacement field can now be considered as the superposition of the bending 

and shear deformation 
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Where ),,(),,,(),,,( zyxwzyxvzyxu the components of the displacement vectors 

in three co-ordinate directions are, )(xw  is the displacement of the centerline in Z- 

direction. 

From strain-displacement relations  
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Since, the actual shear strain in the beam is not constant over the cross-section; 

we introduce a constant shear correction factor . 

Where shear correction factor „ ‟ is defined as, 

centroid at thestrain Shear 

section aon strain shear  Average
k

 

The significance of the shear correction factor „ ‟   in multilayered plate and 

shell finite elements have a constant shear distribution across thickness. This causes a 

decrease in accuracy especially for sandwich structures. This problem is overcoming by 

using shear correction factor „ ‟ 
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Now the total potential energy for the Timoshenko bam 
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We already know that 

dx
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From Eq. (2.5) and Eq. (2.8) shear force can be written as 
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Substitute Eq. (2.3), Eq. (2.5), Eq. (2.7) and Eq. (2.9) into Eq. (2.6) 
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Eq. (2.10) has two functions,   and w  

The Euler-Lagrange equations for this case are 
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Now from Eq. (2.10), Eq. (a) and Eq. (b) 
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Eq. (2.11) and Eq. (2.12) are the Governing Equations for Static Timoshenko 

Beam. 

2.1.1 Uniform Cantilever Timoshenko Beam Analytical Solution 

Let us assume that the clamped end is at x=0 and the free end is at x=L. If a point 

load P is applied to the free end in the positive z direction, we use right handed co-

ordinate system, where the X-direction is positive towards right and the Z-direction is 

positive upwards. Following normal convention, we assume that positive forces act in the 

positive directions of the X & Z-directions and positive moments act in the clockwise 

direction. We also assume that the sign convention for bending moments is positive such 

that, it compresses the beam in at bottom (i.e. Lower Z) and positive shear forces rotate 

the beam in counter clockwise direction.  

 

Figure 2.3 Uniform Cantilever Timoshenko Beam 
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From the Governing Equations of static Timoshenko Beam (For Homogeneous 

case with Point Load, i.e. q=0 in Eq. (2.12)) 
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Where Shear force is constant which is equal to applied load P, 
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Now from Eq. (2.13) 
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Integration of Eq. (2.16) and application of boundary condition 0
dx

d
 at x=L 

and 0 at x=0 gives 

)2(
2

)( xL
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Px
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From Eq. (2.15) and Eq. (2.17) we can write 
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2
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P
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Now first integration of Eq. (2.18) and application of boundary condition 0w at 

Lx  gives us 
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Eq. (2.17) and Eq. (2.19) are corresponding displacement and rotation equations 

for a cantilever beam. 

2.1.2 Finite Element solution for Uniform Cantilever Timoshenko Beam 

Consider an infinitesimal element of beam length x with Young‟s modulus E and 

area moment of inertia I. The element is in static equilibrium under the forces 

Total rotation of the beam is defined from Eq. (2.1) 

)()(/ xxdxdw    

Since applied load is a point load shear stress from governing equations static 

Timoshenko beam is 

1)( CxkGAQx  
 (2.20) 

Static equilibrium relations are defined as 
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dx
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 (2.21)           

*Since shear force is a constant. 

Stress strain relation in bending is 
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From Eq. (2.20) and Eq. (2.22) 
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Now from Eq. (2.22) & Eq. (2.1) 
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We are considering a 2-node beam element with 2 degrees of freedom at each 

node, i.e. we have total 4 degrees of freedom, which are
2

2
1

1 ,,,
dx

dw
w

dx

dw
w . 

 

Figure 2.4 Two-Node Timoshenko Beam Element 

Where 

iw = Deflection of cross section at node i 

idx

dw
= Rotation of cross section due to both bending and shear deformation 

These four DOF‟s may then be expressed in terms of constants jC  (j=1, 2, 3, 4) 

using Eq. (2.23) 
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In matrix form Eq. (2.24) 
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w

 (2.25) 

From Eq. (2.25) constant matrix  iC  may be written as 

   ii

La
L

L
LL

a
EIC 

1

2

23

01
2

1
26

010

1000



































 (2.26) 

 i =Displacement matrix 

 iC
= Constant matrix.  

Using MAT LAB® 
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   ii

L

a

L

a

L

aL

L

a

L

La

LL

aL

L

LLLL

EIC 





































































0001

)1(

6

)1(

12

)1(

)6(

)1(

12

)1(

)212(

)1(

6

)1(

)124(

)1(

6

)1(

6

)1(

12

)1(

6

)1(

12

232

2

3

3

2

23

2

2

3323

 (2.27) 

Where 
2

12

L

a

kGA

EI
a






 

Substitute Eq. (2.27) in Eq. (2.25) for constants 432,1 ,,, CCCC  which give the 

following equations 

 





























2

2

1

1

1

dx
dw

w

dx
dw

w

N
EI

w wi

 (2.28) 

 

 

 

 







































































223

23

223

23

2

32

2
2

1132

1

1

L

L

N wi

 (2.29) 

 





























2

2

1

1

1

dx
dw

w

dx
dw

w

N
EIdx

dw
i

 (2.30) 
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 

 

 

  
















































23

6

))1(143(

6

1

1

2

2

2

2

L

L

N i

 (2.31) 

 wiN    iN  -are displacement shape functional Matrix, rotational shape function 

Matrix respectively (i=1, 2, 3, 4). 

From principle of internal virtual energy 

       iwi

TL

iwi

L

i

T

i NNNNkGAdNNEIK    
'

0

'

0

''

 (2.32) 

Using MAT LAB 
































)4(6)2(6

612612

)2(6)4(6

612612

)1(
22

22

3







LLLL

LL

LLLL

LL

L

EI
K

  (2.33) 

The kinetic energy T, of an element length x  of a uniform Timoshenko beam is 

given as 

dx
dt

d
Idx

dt

dw
AT

LL

 


















0

2

0

2

2

1

2

1 


 (2.34) 

 Mass density of the material of the beam 

I Second moment of area of cross section 

Therefore the mass matrix of the element has two parts, one related to transverse 

displacement and the other related to rotations in the form of, 

Substituting the shape functions into above kinetic energy expression, 
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          

L
T

L

w

T

w dNNIdNNAM
00

 

 (2.35) 

The first of the above equation is 

 

       

       

       

        




































4
8147

4
447735

4
6147

4
266335

4
4477357814770

4
266335276335

4
6147

4
266335

4
8147

4
447735

4
266335276335

4
4477357814770

)1(210

2
22

2
22

2222

2
22

2
22

2222

21

LLLL

LL

LLLL

LL

AL
M













 

 (2.36) 

And the second part is

 

 

   

   
   

    




























2222

2222

22

)4510(315)155(315

3153631536

)155(315)4510(315

3153631536

)1(30

LLLL

LL

LLLL

LL

L

I
M













  

 

(2.37) 

                                        21 MMM   

Rectangular Cross Section: Let us consider a cantilever beam of length L, width 

b, height h for which Area 
RA  and area moment of inertia 

RI  defined as 

12

*

3bh
I

hbA

R

R





 (2.38) 

Where index R denotes Rectangular cross section 

Circular Cross Section: Let us consider a cantilever beam of length L, with 

diameter d, for which Area CA  and area moment of inertia CI  defined as 
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64

4
4

2

d
I

d
A

C

C







 (2.39) 

Where index C denotes Circular cross section 

2.2 Dynamic Analysis of Uniform Timoshenko Beam 

2.2.1 Free Vibrations of a Uniform Cantilever Timoshenko Beam Analytical 

Solution 

Consider a beam of length L, undergoing transverse motion ),( txw caused by a 

load ),( txq . The longitudinal coordinate is x, the flexural rigidity EI , the density  , the 

shear modulus G , and the beam cross section A. During vibration the elements of a beam 

perform not only translatory motion but also rotate. Hence when taking into account not 

only the rotary inertia but also the deflection due to shear, the slope of deflection due to 

shear, the slope the deflection curve ),( txw  depends on the rotation ),( tx  of the beam 

cross section, and one the shear i.e. on the angle of shear ),( tx  at neutral axis. 

 

 

 

 

 

 

Figure 2.5 Dynamic Equilibrium of Timoshenko Beam 

xQ

xx dMM 

xx dQQ xM

  dxM tx,,

  dxF txZ ,,

dx

dw)(x

)(x
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Another factor that affects the lateral vibration of the beam is the fact that each 

section of the beam rotates slightly in addition to its lateral motion when the beam 

deflects. The influence of the beam section rotation is taken into account through the 

moments of inertia, which modifies the equation of moment acting on an infinitesimal 

beam element 

dx
t

tx
ItxdM

2

2 ),(
).(









 (2.40) 

By applying D‟ Alembert‟s principle, the system of coupled differential equations 

for transverse vibration of the Uniform Timoshenko beam with a constant cross section 

given by 

0
),(

),(
),(

),(
),(),(

2

2

2

2





















t

tx
ItxQ

x

txM

txq
t

txw
A

x

txQ






  (2.41) 

Where     x
EItxM

tx
x

txw
kGAtxkGAtxQ

























),(

),(
),(

),(),(

 

The system of above differential equations is governing equation of the 

Timoshenko beam vibration, where the functions are the vibration amplitude ),( txw and 

the angle due to pure bending ),( tx  

The Fourier method of variable separation is employed to find the functions 

satisfying above system of equations. It is assumed that each function ),(&),( txtxw 
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cab be write in the form of a product of a function dependent on the spatial coordinate x 

and a function dependent on time t 

)()(),(

)()(),(

tTxYtx

tTxXtxw





  (2.42) 

After several simple transformations of system of equations 

0)()(

0)()()(

0)()()(

2''

'''

'''







tTtT

xCXxbYxY

xYxaXxX

  (2.43) 

Where 
EI

kGA
cc

E
b

kG
a  ;;

22 
and  is vibration frequency 

By eliminating the function Y(x) from the first two equations of system of 

Equations 

 )()()(
1

)( '''' xXcaxX
b

xY 
 (2.44) 

Now substitute Y(x) in system of equations to get an equation for the transverse 

amplitude function X(x) 

0)()()( ''''''  xeXxdXxX   (2.45) 

Where   EI

A
kG

I

abe
EI

kG

E
I

cbad

























 2222

;

1

 

The function Y(x) depends on derivatives of the vibration amplitude function 

X(x). This equation will be used to derive the boundary conditions dependent only on the 

vibration amplitude function X(x) and its derivatives. 

The characteristic equation has the form 
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024  edrr  

Replacing zr 2  in above equation 

02  edzz  

Roots for above equation are 

 

 



dz

dz

2

1

2

1

2

1

 (2.46) 

Where 

AEI
kG

E
Ied  2

2

2242 414 









 

It is easy to observe that  0  

Signs of the roots 
21 & zz are 

I

kGA
forz

I

kGA
forededz

z















2

1

22

1

2

0

040

0

 

Two possible solutions to system of equations come from the above discussion 

For 
I

kGA


 

 

The roots are 24231211 ;;; zirzirzrzr 
 

This gives a solution in the form 

xzixzixzxz
eCeCeCeCxX 2211

4321)(



 

In trigonometric and hyperbolic form 
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xPxPxPxPxX 24231211 sincossinhcosh)(  
 (2.47) 

Where 2
;

2
2

2

21

2

1







d
z

d
z 

 

For 
I

kGA


 

 

The roots are 24231211 ;;; zirzirzirzir 
 

This gives a solution in the form 

xzixzixzixzi
eCeCeCeCxX 2211

4321)(



 

In trigonometric and hyperbolic form 

xQxQxQxQxX 24231211 sincossincos)(  
 (2.48) 

Where 2
;

2
2

2

21

2

1







d
z

d
z 

 

Boundary Conditions for Cantilever Timoshenko Beam: 

Fixed/Clamped End     Lorxx ii  0                             
0),(

0),(





tx

txw

i

i


 

After separation of variables 

AxXcaxXY

xX

ii

i

0)()()(0

0)(

'''' 



 (2.49) 

Free End 
 Lorxx ii  0
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0),(
),(

),(

0
),(

),(






















tx
x

txw
kGAtxQ

x

tx
EItxM

i

i

i

i

i





       
 

After separation variables 

0)()(

0)()(

''''

''





ii

ii

xXxdX

xaXxX

 (2.50) 

Cantilever Beam 

Apply the boundary conditions stated above in Eq. (2.49) & Eq. (2.50). 

The form of the solution for the free vibration depends on the interval to which 

the searched natural frequency belongs: 

For frequencies 
I

kGA


  the solution to Eq. (2.47) for which boundary 

conditions are expressed by a matrix equation. 

                          0AP  

Where   





















44434241

34333231

2422 00

0101

AAAA

AAAA

AA
A

 (2.51) 
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 
 
 
 
 
 
 
 
 
  )*sin(

)*cos(

)*sinh(

)*cosh(

)*cos(*

)*sin(*

)*cosh(*

)*sinh(**

*

*

2

2

244

2

2

243

1

2

142

1

2

141

22

2

134

22

2

133

11

2

132

11

2

131

2

2

224

1

2

122

LaA

LaA

LaA

LaA

LdA

LdA

LdA

LdA

caA

caA









































 

 4321 PPPPPT 
 

The coefficients a, b, c, d, e are defined above. Above equation has a trivial 

solution at 0&0 21   . This condition is possible only when 0 , which describes 

the motion of the beam as a rigid body. So it is impossible for given boundary conditions. 

Non-trivial solutions of the main matrix are determined by equation 0)det( A . The roots 

of the main matrix determinate are the eigenvalues of the beam from which we can find 

out natural frequency of the beam. 

Determinate of the matrix A has the following form 

1)*cos(*)*cosh()*sin(*)*sinh( 212211  LLKLLK   (2.52) 

From observation one can tell that the above equation has infinite roots. 

Since 0)*sinh(0)*( 11  LL   

Hence 0)*sin( 2 L  will satisfy the determinate at
L

n
 2   

Where .)…1,2,3=(n  
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For frequencies 
I

kGA


  the solution has the form in Eq. (2.48), for which 

boundary conditions are expressed by a matrix equation. 

                                     0AQ  

Where         





















44434241

34333231

2422 00

0101

AAAA

AAAA

AA
A  (2.53) 

 
 
 
 
 
 
 
 
 
  )*sin(

)*cos(

)*sin(

)*cos(

)*cos(*

)*sin(*

)*cos(*

)*sin(**

*

*

2

2

244

2

2

243

1

2

142

1

2

141

22

2

134

22

2

133

11

2

132

11

2

131

2

2

224

1

2

122

LaA

LaA

LaA

LaA

LdA

LdA

LdA

LdA

caA

caA









































 

 4321 QQQQQT 
 

The coefficients a, b, c, d, e are defined above. Above equation has a trivial 

solution at 0&0 21   . This condition is possible only when 0 , which describes 

the motion of the beam as a rigid body. So it is impossible for given boundary conditions. 

Non-trivial solutions of the main matrix are determined by equation 0)det( A . The roots 

of the main matrix determinate are the eigenvalues of the beam from which we can find 

out natural frequency of the beam. 
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Determinate of the matrix A has the following form 

1)*cos(*)*cos()*sin(*)*sin( 212211  LLKLLK    (2.54) 

From observation one can tell that the above equation has infinite roots. 

0)*sin( 1 L Or 0)*sin( 2 L will satisfy the determinate at respectively 

L

n

L

n 



  21 &  

Where .)1,2,3…=(n  

So from above discussion we can easily conclude that 
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
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


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









 (2.55) 

Where C1 & C2 are arbitrary constants 

Eq. (58) is the exact solutions for the Timoshenko beam dynamic governing 

equations. 

2.2.2 Finite Element Vibrational Analysis of Uniform Cantilever Timoshenko 

Beam 

Equation for FEM of, free vibrational analysis of Timoshenko beam is given as 

0'' KUMU  (2.56) 

M=Consistent Mass Matrix 

K=Stiffness Matrix 

tieuU  * , u is amplitude of vibration. 

Substitute U, K, M 
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0**2   titi eKueMu   

From above Equation we can write characteristic equation as 

2

0











MK

 (2.57) 

Solving above characteristic equation we will get Eigen frequencies for the 

straight Timoshenko beam. 
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Chapter 3 

Tapered Timoshenko Beam Analysis 

3.1 Static Analysis of Tapered Timoshenko Beam 

3.1.1 Tapered Cantilever Timoshenko Beam Analytical Solution 

Let us consider a tapered Cantilever beam with length L and width b. Height of 

the beam linearly varying along length L, such that it follows an equation

00 )()( h
L

x
hhxh L  . Where 0h the height of the cross section is at length zero and 

Lh is 

height of the cross section at length L. As height of the beam varies along the length of 

the beam area and area moment of inertia of the cross section varies along the length of 

the beam. 

 

 

 

Figure 3.1 Tapered Cantilever Timoshenko Beam 
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Now from governing equations of Timoshenko beam (i.e. Eq. (2.11) and Eq. 

(2.12)) 
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For the tapered beam, equations can be modified as 
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From above governing equations we write 

P
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d
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)(

 (3.3) 

Integrating above equation twice with respect to x gives rotation due to bending. 
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 (3.4) 

From Eq. (62) 

P
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 (3.5) 

Substitute Eq. (39) in above Eq. 
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 (3.6) 
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Integrating above Eq. with respect to x 

32
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  (3.7) 

Eq. (3.4) and Eq. (3.7) are Rotation and Displacement of Tapered Timoshenko 

beam. 

 Remember that coefficients in both equations are same. 

Rectangular Cross Section 

Consider a rectangular cross section tapered beam of length L, constant width b, 

and height varies along length L, such that it follows an equation

00 )()( RRRLR h
L

x
hhxh   

For a rectangular cross section of tapered beam, area )(xAR
 and area moment of 

inertia )(xI R  are given by 
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Substitute Eq. (69) in Eq. (64) to calculate rotation of tapered Rectangular cross 

section Timoshenko beam, 
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Where 12
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Integrating the above equations and applying boundary condition 0 at x=0 

and 0
dx

d
at x=L 
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Substitute Eq. (3.8) & Eq. (3.9) in Eq. (3.7) 
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 (3.12) 

Integrating the above equation and applying boundary condition w=0 at x=0, 
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Eq. (3.11) & Eq. (3.13) are Displacement and rotation due to bending of 

Rectangular cross section tapered cantilever Timoshenko beam. 

Circular Cross Section 

Consider a circular cross section tapered beam of length L, diameter d varies 

along length of the beam, such that it follows an equation 00 )()( d
L

x
ddxd L  . Where 

Ld is diameter of the beam at length L and 0d is diameter at length zero. 

Area and area moment of inertia are given by 
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Substituting above equations in Eq. (3.14) & Eq. (3.15) 
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Integrating above equation and applying boundary condition 0  at x=0 and 

0
dx

d
at x=L 
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Deflection can be derived as 
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Integrating above equation and applying boundary condition w=0 at x=L 
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 (3.19) 

Eq. (3.17) & Eq. (3.19) are rotation due to bending and displacement of Circular 

cross section tapered cantilever Timoshenko beam. 

3.1.2 Finite Element Analysis of Tapered Cantilever Timoshenko Beam 

Let us consider the general tapered beam element 1-2 of length L made of a 

homogeneous and linear elastic material of Young‟s modulus E. The cross section of this 

beam possesses a vertical axis of symmetry Y and has an area of cross section )(xA  and 

area moment of inertia )(xI  about the Z-axis. The element is in static equilibrium under 
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the forces. The shear angle   measured as positive in counter clockwise direction from 

the normal to the mid surface to the outer face of the beam. The element has two nodes, 

each possessing two degrees of freedom; they are the transverse displacement w , and 

total cross-section rotation dxdw / . The total cross section rotation dxdw /  defined as sum 

of the slope   due to bending and the slope  due to shear distortion. 

)()( xx
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 

 

Let us consider a Rectangular cross section, tapered cantilever beam with linearly 

varying height along length L, such that it follows an equation   00 *)( h
L

x
hhxh L  . 

Where 0h is height of the cross section at left end of the beam i.e. at Node-1 and 
Lh  

height of cross section at right end of the beam i.e. at Node 2. As height of the beam 

varies along the length of the beam, Area )(xA  and area moment of inertia )(xI  of the 

cross section by equations Eq. (3.8) & Eq. (3.9), 
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Since applied load is a point load shear stress from governing equations, static 

Timoshenko beam is 

Static equilibrium relations are 
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Stress strain relation in bending is 
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Integrating Moment equation 
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Integrating above equation will give transverse displacement of the beam 
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We are considering a 2-node beam element with 2 degrees of freedom at each 

node, i.e. we have 4 degrees of freedom in total, which are
2

2
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1 ,,,
dx
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Figure 3.2 Two-Node Timoshenko Beam Element with Four-Degrees of Freedom 
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Where iw = Deflection of cross section at node (i=1, 2) 

idx

d
= Rotation of cross section due to both bending and shear deformation at 

node i (i= 1, 2) 

Applying Nodal variables to the equations 
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In matrix form 
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From Eq. (83) constant matrix  iC  written as 

     ii BEIC 
1

0




 (3.24) 

 i = Displacement matrix 

 iC
= Constant matrix 
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Using MAT LAB inverse of above Matrix was calculated and substituted back in 

to Eq. (84) to get coefficients 4321 ,,, CCCC  . By substituting these coefficients in Eq. 

(3.20) & Eq. (3.21) displacement and rotational shape functions are obtained. 
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Eq. (85) & Eq. (86) are shape functions of Rectangular cross section Tapered 

Timoshenko Beam. 

 wiN    iN  -are displacement shape functional Matrix, rotational shape function 

Matrix respectively (i=1, 2, 3, 4). 

From principle of internal virtual energy 
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From Kinetic Energy of the beam Mass matrix can be written as 

  dx
dx

dw
xIxwxAM




























 

2
1

21 )()()(
2

1


 (3.31) 

3.2 Dynamic Analysis of Tapered Timoshenko beam 

3.2.1 Free Vibrations of a Tapered Timoshenko Beam Analytical solution 

Consider the tapered cantilever beam, which was shown in Figure 3.1, with 

linearly varying eight )(xh along length L. The dynamic governing equations for tapered 

Timoshenko beam are determined as, 
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The computational results for engineering problems are frequently presented in 

non-dimensional form for convenience of extension to cover wider range problems. 

The following non-dimensional parameters are introduced, 
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Where   , are non-dimensional co-ordinates,  is the elasticity ratio,  is the 

slenderness ratio and iC is the frequency parameter. 

By the use of equations Eq. (3.8) and Eq. (3.9) the first derivatives of 
dx

dI

dx

dA
&

can be given as 
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As of now all the three differential equations governing the vibration of the 

tapered Timoshenko beam can be obtained by substituting the above equations into the 

dynamic governing equations of tapered Timoshenko beam along with Eq. (3.35) and Eq. 

(3.36) 
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In which  



d

dF
FF & are defined as 

    1114  rF  
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The numerical methods presented by Lee and Wilson [17] and Lee et al. [18] are 

adopted to solve the three simultaneous differential equations. First the Runge-Kutta 

method is used to integrate the differential equations, subjected to boundary conditions. 

Second the determinant search method combined with Regula-Falsi method is used to 

determine the eigenvalues iC  in the differential equations. 

 

3.2.2 Finite Element Vibrational Analysis of Tapered Timoshenko Beam 

Equation for FEM of, free vibrational analysis of Timoshenko beam is given as 
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0'' KUMU  (3.40) 

M=Consistent Mass Matrix 

K=Stiffness Matrix 

tieuU  * , u is amplitude of vibration. 

Substitute U, K, M 

0**2   titi eKueMu   

From above Equation we can write characteristic equation as 
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 (3.41) 

Solving above characteristic equation we will get Eigen frequencies for the 

straight Timoshenko beam. 
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Chapter 4 

Design Optimization 

4.1 Introduction to Design Optimization 

Engineering consists of a number of well-established activities, including 

analysis, design, fabrication, sales, research and the development of systems. The 

processes of designing and fabricating systems have been developed over centuries. The 

existence of many complex systems, such as bridges, highways, automobiles, airplanes, 

space vehicles and others, is an excellent testimonial for this process. However, the 

evolution of these systems has been slow. The entire process has been both time-

consuming and costly requiring substantial human and material resources. Therefore, the 

procedure has been to design, fabricate and use the system regardless of whether it was 

the best one. Improved systems were designed only after substantial investment had been 

recovered. These new systems perform the same or even more tasks, cost less, and more 

efficient. 

The design of many engineering systems can be a fairly complex process. Many 

assumptions must be made to develop models that can be subjected to analysis by the 

available methods and the models must be verified by experiments. Many possibilities 

and factors must be considered during the problem formulation phase. The design of a 

system begins by analyzing various options, subsystems and their components are 

identified, designed and tested. This process results in a set of drawings, calculations, and 

reports by which the system can be fabricated. The optimum design forces the designer to 

identify explicitly a set of design variables, an objective function to be optimized, and the 
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constraint functions for the system. This rigorous formulation of the design problem 

helps the designer to gain a better understanding of the problem. 

 

Figure 4.1 Comparison of Conventional and Optimum Design Process (A) 

Conventional Design Process 
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Continued (B) Optimum Design Process 

4.2 Optimum Design Problem Formulation 

To obtain the best optimum solution to the design problem, it is important to 

properly formulate the design optimization problem. For most design optimization 

problems, we use the following  

 Project/Problem Statement: The formulation process begins by 

developing a descriptive statement for the project. The statement 

describes the overall objectives and the requirements to be met. 

 Data/Information Collection: To develop a mathematical formulation 

of the problem we need to gather material properties, performance 
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requirements and resource limits. In addition most problems require 

the capability to analyze the trail designs. Therefore, analysis 

procedure and analysis tools must be specifies at this stage. 

 Definition of Design Variables: In general design variables are 

referred to as optimization variables and are regarded as free because 

we can assign any value to them. Different values for design variables 

produce different designs. The design variables should be independent 

of each other as far as possible. The number of independent variables 

specifies the design degrees of freedom for the problem. If proper 

design variables are not selected for a problem, the formulation will be 

either incorrect or solution not possible at all. 

 Identification of Criterion to be optimized: There can be many feasible 

designs for a system, and some are better than others. To compare the 

different designs we must have a criterion. The criterion must be a 

scalar function whose numerical value can be obtained once a design 

is specified i.e. it must be a function of the design variable  

4.3 Optimization Problem 

As depending on what are the design variables and objective functions determines 

the outcome of the design optimization. There is no unique answer in optimization 

problems; it is just the physics of the problem that yields the appropriate results 

depending on the choice of input design variables. 
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For this work “Fmincon” function in MATLAB was used as an optimization tool 

to optimize the weight/Volume of the Timoshenko beam with height as the only design 

variable with Eigenvalues or deflection as the constraints. 

The general optimization constraint problems is stated as following, 

Minimize                     f(x)           (Objective Function) 

Subject to                                         i=1 …p 

 

Here in this problem Objective function is weight so for this problem objective 

function can be written as  

                            VxF *)(   (4.1) 

Where  =Mass Density of the material. 

 V=Volume of the beam. 

Design Variable: Height of the beam (h) 

Static Constraints: Deflection and Maximum Allowable stress in the beam. 

Dynamic Constraints: Eigen Values/Natural Frequencies of the beam. 
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Chapter 5 

Results 

In this study both uniform and tapered cantilever Timoshenko beam static and 

vibrational analysis has been done. As parametric study, rectangular and circular cross 

sections were studied and for both rectangular and circular cross sections analytical and 

Finite Element analysis were done. In this study a beam element was considered with two 

nodes which have two degrees of freedom at each node i.e. deflection and total rotation. 

As discussed earlier in the preceding chapters 2 and 3 an unique method was developed 

in this study to determine the static and vibrational characteristics of the beam which is, 

an interdependent interpolation functions has been derived for both the deflection and 

total rotation from the exact governing equations of the both uniform and tapered beam 

for the rectangular and circular cross sections. The obtained variation is cubic 

approximation for deflection and for the total rotation has one order less variation than 

deflection i.e. quadratic variation for rotation has been derived and this variation of the 

deflection and rotation is well matching with the J. N. Reddy‟s interdependent 

interpolation method. 

From these variations of the deflection and rotation using the finite element 

knowledge exact shape functions for both uniform and tapered Timoshenko beams were 

derived which are well in convergence with the Euler-Bernoulli shape functions. 

Following figures are describing the comparison of both Uniform and linearly tapered 

Timoshenko beam (Rectangular and Circular Cross sections) shape functions with Euler-

Bernoulli shape functions. 
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Figure 5.1 Comparison of Uniform Timoshenko Beam Shape Functions with 

Euler-Bernoulli Beam Shape Functions 

 

Figure 5.2 Comparison of Tapered Rectangular Timoshenko Beam Shape 

Functions with Euler-Bernoulli Beam Shape Functions 
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Figure 5.3 Comparison of Tapered Circular Timoshenko Beam Shape Functions 

with Euler-Bernoulli Beam Shape Functions 
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5.1 Uniform Timoshenko Beam Static Deflection 

5.1.1 Rectangular Cantilever Timoshenko Beam Static Deflection 

 

 

Figure 5.4 Uniform Timoshenko Beam (Rectangular Cross Section) Static 

Solution 

TB Deflection TS Rotation EB Deflection EB Rotation AnalyticalTB

1Elemet 166.23 -22.2156 148.104 -22.2156 166.23

5Element 166.23 -22.2156 148.104 -22.2156

10Element 166.23 -22.2156 148.104 -22.2156
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5.1.2 Circular Cantilever Timoshenko Beam Static Deflection 

 

 

 
 

Figure 5.5 Uniform Timoshenko Beam (Circular Cross Section) Static Solution 

TB Deflection TS Rotation EB Deflection EB Rotation AnalyticalTB

1Elemet 136.77 -18.85 125.71 -18.85 136.77

5Element 136.77 -18.85 125.71 -18.85

10Element 136.77 -18.85 125.71 -18.85
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Uniform Beam Static solution for circular 
section 
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5.2 Uniform Timoshenko Beam Dynamic Solution 

5.2.1 Rectangular Cantilever Timoshenko Beam Dynamic Solution 

 
 

Figure 5.6 Uniform Timoshenko Beam (Rectangular Cross Section) Dynamic 

Solution 

TB1Element TB5Element
TB10

Element
EB1Element EB5Element

EB10
Element

Mode 1 194.17 158.28 158.22 98.17 97.27 97.27

Mode 2 419.79 408.67 313.08 528.02 527.31 440.21

Mode 3 545.76 534.11 615.21 604.51

Mode 4 555.2 608.3 645.31 722.91
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Uniform Beam Dynamic Solution for 
Rectangular Section 
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5.2.2Circular Cantilever Timoshenko Beam Dynamic Solution 

 
 

 

Figure 5.7 Uniform Timoshenko Beam (Circular Cross Section) Dynamic 

Solution 

TB1Element TB5Element TB10 Element EB1Element EB5Element EB10 Element

Mode 1 178.36 127.21 122.14 85.01 100.74 100.74

Mode 2 431.89 472.67 475.69 457.28 564.59 580.11

Mode 3 625.49 640.17 690.11 730.24

Mode 4 661.74 691.56 815.42 898.01
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Uniform Beam Dynamic solution for circular 
section 
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5.3 Tapered Timoshenko Beam Static Solution 

5.3.1 Tapered Rectangular Cantilever Timoshenko Beam Static Deflection 

 
 

Figure 5.8 Tapered Timoshenko Beam (Rectangular Cross Section) Static 

Solution 

TB Deflection TS Rotation EB Deflection EB Rotation AnalyticalTB

1Elemet 78.698 -8.88 71.215 -8.88 81.491

2Element 79.729 -8.88 73.469 -8.88

3Element 81.256 -8.88 76.669 -8.88

-20

-10

0

10

20

30

40

50

60

70

80

90

in
 o

rd
e

r 
o

f 
1

0
-6

  i
n

 M
e

te
rs

 

Tapered Beam Static solution for Rectangular 
Section 
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5.3.2 Tapered Circular Cantilever Timoshenko Beam Static Deflection 

 
 

Figure 5.9 Tapered Timoshenko Beam (Circular Cross Section) Static Solution 

TB Deflection TS Rotation EB Deflection EB Rotation AnalyticalTB

1Elemet 24.5468 -3.512 23.556 -3.512 28.144

2Element 26.7129 -3.512 24.967 -3.512

3Element 28.0414 -3.512 26.247 -3.512
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Tapered Beam static solution for Circular 
section 
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5.4 Tapered Timoshenko Beam Dynamic Solution 

5.4.1 Tapered Rectangular Cantilever Timoshenko Beam Dynamic Solution 

 
 

Figure 5.10 Tapered Timoshenko Beam (Rectangular Cross Section) Dynamic Solution 

 

TB1Element TB2Element TB3 Element EB1Element EB2Element EB3 Element

Mode 1 221.27 207.27 207.27 182.46 210.54 210.54

Mode 2 567.21 552.9 575.21 610.47 635.19 651.2

Mode 3 671.64 770.1 801.2 867.51

Mode 4 798.29 882.11 905.72 935.9
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Tapered Beam Dynamic Solution for 
Rectangular Section 
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5.4.2 Tapered Circular Cantilever Timoshenko Beam Dynamic Solution 

 

 

 

 
 

Figure 5.11 Tapered Timoshenko Beam (Circular Cross Section) Dynamic Solution 

 

TB1Element TB2Element
TB3

Element
EB1Element EB2Element

EB3
Element

Mode 1 204.86 195.16 195.16 201.54 201.54 201.54

Mode 2 533.5 527.27 541.01 555.15 574.31 602.43

Mode 3 645.34 721.61 761.9 787.51

Mode 4 721.71 834.36 832.17 927.32
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Tapered Beam Dynamic Solution for Circular 
Section 
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5.5 Optimization Results 

Using the “Fmincon” function in MATLAB optimization tool box weight 

optimization of Timoshenko beam has been done with eigenvalues as constraints and 

height of the beam as design variable. 

 

OBJECTIVE FUNCTION 

 

CONSTRAINT 

 

WEIGHT 

 

Deflection 

 

WEIGHT 

 

Eigenvalues/Natural Frequencies 

 

Table 5.1 Optimization Problem Definition 

Problem 1: With the Objective function weight and Deflection (<1.00*10
-6

 m) as 

constraints design optimization has been done to minimize the weight with height as 

design variable. 
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Weight in Kilograms 

Original Weight 

 

13060 

Optimal Weight 

 

8734 

 

Table 5.2 Optimal Weight of Beam with Deflection Constraints 

Problem 2: With the Objective function weight and Eigenvalues (<1000 Hz) as 

constraints design optimization has been done to minimize the weight with height as 

design variable. 

 

 

Weight in Kilograms 

 

Original Weight 

 

13060 

 

Optimal Weight 

 

9072 

 

Table 5.3 Optimized Weight of Timoshenko Beam with Eigenvalues as 

Constraints 
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Chapter 6 

Conclusion and Future Work 

In this thesis, detailed study of governing equations of both uniform and tapered 

Timoshenko beam has been studied. The numerical techniques involved to perform static 

and vibrational analysis of Timoshenko beam have been studied. An extensive effort has 

been made to derive the exact shape functions of both uniform and tapered Timoshenko 

beams from exact homogeneous governing equations by inter independent interpolation 

technique in which cubic polynomial interpolation has been obtained for the deflection 

and a quadratic variation obtained for deflection of the Timoshenko beam. This beam 

element with two nodes and four degrees of freedom successfully eliminated the 

numerical problem shear locking in both uniform and tapered Timoshenko beams.  

Derived exact shape functions are in accordance with the Euler Bernoulli shape 

functions and a parametric study has been performed to understand the variations in 

circular and rectangular cross sections. 

         The finite element model for uniform Timoshenko beam is super converging 

with the analytical solutions whereas, for tapered beam the solution is converging for 

very few elements unlike the numerical techniques proposed earlier which considers 

large number of elements for convergence problems. 

A weight optimization of Timoshenko beam with deflection and natural 

frequencies as constraints has been carried out in this study.  
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This work can be extended to various cross sections such as I-section, C-section, 

H-section, T-section. In this study, a linear taper in height has been considered which can 

be extended to breadth taper, width taper and square taper. This research can be 

protracted to composites with ply drop off technique considered.  
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