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ABSTRACT

VIEWPOINT INVARIANT GESTURE RECOGNITION AND 3D HAND POSE
ESTIMATION USING RGB-D

PAUL DOLIQOTIS, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Vassilis Athitsos

The broad application domain of the work presented in thesithis pattern classifi-
cation with a focus on gesture recognition and 3D hand pdsaason.

One of the main contributions of the proposed thesis is almeéhod for 3D hand
pose estimation using RGB-D. Hand pose estimation is faatedlas a database retrieval
problem. The proposed method investigates and introdue&ssimilarity measures for
similarity search in a database of RGB-D hand images. Atdngestime, towards making
3D hand pose estimation methods more automatic, a novel $egrdentation method is
introduced which also relies on depth data. Experimentallte demonstrate that the use
of depth data increases the discrimination power of thegseg method.

On the topic of gesture recognition, a novel method is pregdbat combines a
well known similarity measure, namely the Dynamic Time Wagp(DTW), with a new
hand tracking method which is based on depth frames caphyédicrosoft’s KinectV
RGB-Depth sensor. When DTW is combined with the near petfand tracker gesture
recognition accuracy remains high even in very challengia@sets, as demonstrated by

experimental results. Another main contribution of therent thesis is an extension of the
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proposed gesture recognition system in order to handle easere the user is not standing
fronto-parallel with respect to the camera. Our method emognize gestures captured
under various camera viewpoints.

At the same time our depth hand tracker is evaluated agaiegt@pular open source
user skeleton tracker by examining its performance on nandigns from a dataset of
American Sign Language (ASL) signs. This evaluation camesas a benchmark for the
assessment of more advanced detection and tracking metiadstilize RGB-D data.
The proposed structured motion dataset of (ASL) signs hasa baptured in both RGB
and depth format using a Microsoft Kiné¥tsensor and it will enable researchers to ex-
plore body part (i.e., hands) detection and tracking methasl well as gesture recognition

algorithms.
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CHAPTER 1
INTRODUCTION

In human-computer interaction applications, gesturegeitimn has the potential to
provide a natural way of communication between humans arghimes. The technology
is becoming mature enough to be widely available to the pubid real-world computer
vision applications start to emerge. However human-cosrgateraction interfaces need
to be as intuitive and natural as possible. The user shoehllidinteract with machines
without the need of cumbersome devices (such as coloredensank gloves) or apparatus
like remote controls, mouse and keyboards. Hand gestureproaide an alternative and
easy means of communication with machines and could reéeaiae the way we use tech-
nology in our daily activities. Successful applicationsiahd gesture systems can be found
in various research and industry areas such as: game domgybluman-robot interaction,
virtual environments, smart homes and sign language réoogto name a few.

The broad application domain of the work presented in thioviohg chapters is
pattern classification with a focus on viewpoint invariaasire recognition and 3D hand
pose estimation using RGB-D which are formulated as dataletseval problems. The
user provides to the gesture recognition system exampidsasks the system to retrieve
database items that are the most similar to those examptessystem achieves classifica-
tion of that example based on the class labels of the moskesidatabase patterns.

The main contributions of this dissertation can be sumradras follows:

1. Aviewpoint invariant hand pose estimation method usi@BFD (Chapter 2)



2. A hand tracking method based on depth data which is ewalgainst one popular
user skeleton tracker by examining its performance on nansigns from a dataset
of American Sign Language (ASL) signs. (Chapter 3)

3. An end-to-end gesture recognition system (see Chaptieatl)ses RGB-D and com-
bines a well known similarity measure, namely the DynamiodWarping (DTW),
with a new hand tracking method which is based on depth frames

4. A viewpoint invariant gesture recognition method that éandle cases where the
user is not standing fronto-parallel with respect to the@aniChapter 5).

More specifically, the first main contribution of the thessai viewpoint invariant
hand pose estimation method using RGB-D (see Chapter 2)rojtoges an exemplar-
based method that relies on similarity measures employepghdnformation. Our system,
given an input image of a person signing a gesture in a ckdtecene, locates the gestur-
ing arm, automatically detects and segments the hand arity fineates a ranked list of
possible shape classes, 3D pose orientation and full hamitjooation parameters. The
clutter-tolerant hand segmentation algorithm is basedepthddata from a single image
captured with a commercially available depth sensor, nartied Kinecf™. Shape and
3D pose estimation is formulated as an image databasevedtnethod where given a seg-
mented hand the best matches are extracted from a largadatatsynthetically generated
hand images. Contrary to previous approaches this cligkerant method is all-together:
user-independent, automatically detects and segmentsatiné from a single image (no
multi-view or motion cues employed) and provides estinratiot only for the 3D pose
orientation but also for the full hand articulation paraemnst The performance of this ap-
proach is quantitatively and qualitatively evaluated oatadet of real and synthetic images
of American Sign Language (ASL) handshapes.

Another main contribution, is an exemplar-based systemgésture recognition

which is presented at Chapter 4. A novel method is propossdtimbines a well known
2



similarity measure, namely the Dynamic Time Warping (DTWith a new hand track-
ing method which is based on depth frames captured by Mitresonect™ RGB-Depth
sensor. First we evaluate our depth hand tracker (see CGHgpagainst one popular user
skeleton tracker by examining its performance on randomssigpom a dataset of Ameri-
can Sign Language (ASL) signs. Our structured motion dats@SL) signs has been
captured in both RGB and depth format using a Microsoft Kifésensor and it will en-
able researchers to explore body part (i.e., hands) deteatid tracking methods, as well
as gesture recognition algorithms. The proposed gestaogngion system relies on the
accurate depth hand tracker and is one of the earliest oaesrtiployed such depth infor-
mation from the Kinec™ sensor. The underlying gesture recognition method islatios
and scale invariant which is a desirable property for many ${GStems. Performance has
been tested on a digits recognition dataset which has bgxuared in a rather challeng-
ing environment with clutter in the background as well asogs moving distractors that
could make typical gesture recognition systems fail . Alpenmental datasets include
hand signed digits gestures but the framework can be géeredtao recognize a wider
range of gestures.

At Chapter 5 we extend our recognition system in order to leaocases where the
user is not standing fronto-parallel with respect to the @amn Our viewpoint invariant
gesture recognition method can recognize gestures capiun@er various camera view-
points, in the range df-75° - - - + 75°|. A few interesting properties of our system are the
following:

1. Itis trained from videos captured under one specific cana@wpoint but it can be
tested with gestures captured under arbitrary camera aietg In our experiments
we opt to train our system with a camera viewpoint where tlee issstanding fronto-
parallel to the image plane. For testing the videos are cagtunder the following

set of viewpointg+45°, +75°}.



2. ltis all-together translation, scale and viewpoint mamat. To the best of our knowl-
edge few gesture recognition methods satisfy all these threperties at the same
time.

3. Itemploys an affordable, commercially available seffiser, Microsoft Kinect™) as
opposed to an expensive laboratory sensor or a cumbersditmatsd multi-camera
set-up.

In the upcoming chapters we will further elaborate on the@psed contributions and
we will provide experimental results that demonstrate tefuiness and effectiveness for

all novel methods presented throughout this thesis.



CHAPTER 2
3D HAND POSE ESTIMATION USING RGB-D

2.1 Introduction
This chapter will investigate and propose novel similamigthods that are integrated

in the general framework of 3D hand pose estimation. Hand pssmation belongs to the
broader application domain of gesture recognition and kasfe an essential component
for many natural user interface (NUI) systems. It providemhns the ability to interact
with machines naturally without the use of any cumbersomehaeical devices. Hand
gestures are more commonly used and can be found in a wide cdrapplications such
as: sign language recognition, robot learning by demotisirand gaming environments,
just to name a few. Recognizing hand gestures is a very cigatlg task and requires
solving several sub-problems like automatic hand deteciiod segmentation, 3D hand
pose estimation, hand shape classification and in some eassgtion of the full hand
configuration parameters.
In this work we specifically address the problem of 3D handepmsd shape estimation.
Towards developing an effective solution several chakbsnguay arise and some of the
main ones are listed bellow:

¢ High dimensionality of the problem

¢ Noisy hand segmentation due to cluttered backgrounds

¢ Increased pose variability and self-occlusions that fesdly occur when a hand is

in motion

Hand pose estimation is formulated here as an image datedtasgal problem. The clos-

est matches for an input hand image are retrieved from a Gatgbase of synthetic hand

5



Figure 2.1.System input and output. Given the input image, the systess foough the database
of synthetic images in order to identify the ones that arentlest similar to the input image. Eight
examples of database images are shown here, and the mdat sind@ is enclosed in a red square.
The database currently used contains more than 100,00@gnag

images. The ground truth labels of the retrieved matchessad as hand pose estimates
from the input (Figure 2.1). The approach described in thegpter is motivated by the
work presented in [4]. However, one limitation of that worksthat it required manual
segmentation in order to define a bounding box for the gegjurand. We propose an
automatic hand segmentation method that relies on depahadguired from the Microsoft
Kinect™ device [5]. Another contribution is that we achieve imprdyeerformance un-
der clutter by using a similarity measure which is also basethe depth data. A main
assumption we make is that the gesturing arm is the closgsttdio the camera and so
it can easily be segmented from the rest of the body and ottjects based on depth. To
measure the effectiveness of this new method we have celeatiataset of American Sign

Language (ASL) handshapes.

2.2 Related Work

Some successful early works require specialized hardwahease of cumbersome

mechanical devices. In [6] Schneider and Stevens use amud@ure system while in [7]

6



Wang and Popovit employ visual markers with a color glovefddtunately such methods
impede the user’s natural interaction in the scene and thgyine a costly and complex
experimental setup.

Nowadays research is more focused on purely vision-basétbaethat are non-invasive
and are more suitable for Natural User Interface (NUI) systeThe most recent review
on vision-based hand pose estimation methods has beesipedblby Erokt al. [8]. They
define a taxonomy where initially these approaches are etivid two main categories:
“partial pose estimation” and “full DOF pose estimationPdrtial pose estimation” meth-
ods can be viewed as extensions of appearance-based sy$teggaisually take as input
image features and map them a small discrete set of hand rkiogehatic parameters. A
main disadvantage is that they require a large amount ofitigiidata and hence are not
scalable. Appearance-based methods for hand pose raoogtike [9, 10, 11, 12], can
tolerate clutter, but they are limited to estimating 2D haode from a limited number of
viewpoints. Our method can handle arbitrary viewpoints.

“Full DOF pose estimation” approaches are not limited to al§ndiscrete set of
hand model configurations. They target all the kinemati@peters (i.e., joint angles,
hand position or orientation) of the skeleton of the handdieg to a full reconstruction
of hand motion. These approaches can be further dividediwdoother categories: (1)
“Model-based tracking” and (2) “Single frame pose estimti

“Model-based methods” [13, 14, 15, 16] typically match @kabservations to in-
stances of a predefined hand model. Formally this is expitlessan optimization problem
where an objective function is required in order to measundarity between actual visual
observations and model hypotheses. The main drawbackreaised computational com-
plexity due to the high dimensionality of the model’s paréenspace. On the other hand

they require less training and are easily scalable.



“Single frame pose estimation methods” try to solve the hawmgk estimation prob-
lem without relying on temporal information. The lack of geanal information increases
the difficulty of the problem. However successful approaaten tackle the negative effect
of motion blur and can also be employed to initialize tragkbased systems. Athitses
al. [4] have proposed such a single pose estimation method layirmgea large database
of synthetic hand poses using an articulated model ancvetthe best match from this
database. However they require manual segmentation oésheata.

Most recently, due to the advent of commercially availal@ptt sensors, there is an
increased interest in methods relying on depth data [171.3,819]. Keskiret al. [17] train
Random Decision Forests (RDF) on depth images and then esetthperform per pixel
classification and assign each pixel a hand part. Then, thay ghe mean shift algorithm
to estimate the centers of hand parts to form a hand skeletmmever they don't explicitly
address the automatic hand segmentation problem.

Another highly cited method that relies on RGB-D data hasiipeeposed by Oikono-
midis et al. [13]. This is a model-based method that treath@mt pose recovery as a min-
imization problem. The objective function to be minimizedarmulated as the difference
between a 3D parametric model and the actual instances nfredhand images. The ob-
jective function employs both RGB and depth informationvided by a Kinect" sensor.
More specifically, the 3D hand model is defined as a set of dssehgeometric primi-
tives and is expressed as a vector of 27 parameters. Hancepmsmation and tracking is
achieved by computing the optimal values for those 27 patensighat minimize the differ-
ence between hand hypotheses and the actual observatogsaiititatively measure that
difference a 3D rendering software is employed in order twdpce RGB and depthmap
instances for given model parameters. The minimizatiomisbilated with a variant of
Particle Swarm Optimization. Near real time performancadsieved by exploiting the

GPU'’s parallel processing architecture. This techniquplires temporal continuity as
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opposed to our proposed hand pose estimation method thed o#l information from a
single frame. Another main difference is the initializatiof the system which is not a
requirement in our case.

According to the aforementioned taxonomy, this chaptecuass an “appearance-
based method” aiming at 3D orientation estimation usingfes from a single frame. This
work builds on top of the work described in [4] and [20], wheesd pose is estimated from
a single cluttered image. The key advantages of the methsmtidbed here over [4] are that
we integrate an automatic hand segmentation method andene similarity measure that

is based on depth data. A recent published version of thik wem be found in [20].

2.3 Hand Segmentation

As a first step we need to perform a rough segmentation byhblgiag the depth
data in order to obtain the gesturing arm. Given the assemghiat the hand is the closest
object to the camera we can automatically find the lower déptshold. As an upper
threshold we take an initial rough estimation, since at ploisit we are only interested at
segmenting the arm. A more precise thresholding is neededves if we need to further
segment the hand. To find the palm cutoff point we need to partbe following steps:

1. Compute the axis of elongation for the gesturing arm.
2. Create a sequence of widths.
3. Perform a gradient descent on the sequence of widths &r twddentify the local

(or global) minimum, at which the palm cutoff point is locdte

2.3.1 Finding the Axis of Elongation

The result of the initial rough segmentation is a blob repnéiag the gesturing arm

(see Figure 2.2).



Figure 2.2.At the top image we can see the original depth image. At theobroimage we can
see the segmented arm after performing depth segmentaiiog a rough estimation for an initial
threshold. Original size for both imagesoi$) x 480.

The boundary of that blob is essentially a Sebf m points in2 dimensional space:

Noisy smaller groups of pixels are usually partfTo remove them, we morphologically
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open the binary image by eliminating all connected compts@bjects) that have fewer
than20 pixels, considering an 8-connected neighborhood. Theirenggboundary pixels
will belong to a new sef’ = {z},),...,z}} € R% In order to define the elongation
axis of the gesturing arm we will compute tMinimum Enclosing Ellipsoid (MEEjor
the boundary pixels; € &’. The major axis of th/1EE coincides with the arm’s axis of
elongation (Figure 2.3).

An ellipsoid in center form can be given by the following etjoa:
E={2 eR*|(2' —¢)"E(a' — ) < 1} (2.1)

wherec € R? is the center of the ellips€é and E is a2 x 2 positive definite symmetric
matrix, £ € §% ..
So finding the Minimum Enclosing Ellipsoid can be formulasescan optimization problem

as follows:

minimize det(E™1)
subjectto (2, —c)'E(2) —¢)<1,i=1,...,k (2.2)
E >0
An implementation of a solver based on the Khachiyan Algonif21] can be found

at the web [22]. The major axis for the arm boundary pixel$ @aincide with the major

axis of the Minimum Enclosing Ellipsoid.

2.3.2 Creating the Sequence of Widths

After the major (or elongation) axis is obtained we can gasikate a sequence of
widths. In the discrete domain, the elongation axis is casegrof a set of pixel® =
{p1,p2, ..., pm}. FOr eachp; we compute the maximum distance of arm pixels belonging

to the line that goes through and it's direction is perpendicular to the direction of the
11



Figure 2.3. On the top is an example of inimum Enclosing Ellipsoid (MEEalong with the
major axis. To the bottom we visually demonstrate the ddgiedm cutoff location (blue line).
elongation axis. The main idea is that at the palm cutoff pthia sequence will reach a
global or local minimum. Since the contour of the segmented ia rugged our method
could be prone to other local minima. To alleviate this dffee apply a smoothing on our
2D contour. In Figure 2.5 one can see the effect of smoothing 2D contour of a hand.
Smoothing 2D contouiis achieved by usind.ocal Regression Line8ecause of the

linear nature of fitting it might be possible to loose impattenformation in special cases

like corners (or fingertips). To tackle this issue we opt tdoitally the line by employing
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Figure 2.4. This a plot of the sequence of widths. The desired local mimmis highlighted
indicating the position for the palm cutoff point.

Weighted Orthogonal Least Squares. The weights are gederaim a Gaussian distribu-
tion. An implementation of this smoothing technique candaenfd at the web [23]. To be
able to calculate the local regression lines we must defirerder for the all pixels, that
€S ={z,2,,...,2,}. Such an order can be defined with a boundary tracing algorith

We employ theMoore-Neighbor-Tracing Algorithm

2.3.3 Moore-Neighbor Tracing Algorithm

For a given pixelP;, we can define it'dVloore Neighborhoods the set\/; of 8 —
connected adjacent pixels, wheré/; = {P;, Py, Pi3, P, P;5, Pis, P, Pig} as seen in
Figure 2.6.

Given a binary image that consists of pixels that belong éosttme connected com-
ponent we first need to define the start pixel for our tracirgpadhm. We find our start

pixel by starting from the leftmost column and visiting dxérom top to down. The first

13



Figure 2.5.At the top image we can see tB® contour before the smoothing operation. At the
bottom image we can see tRé contour after the smoothing operation. Original size fothbo
images 6640 x 480.

non-zero pixel that we encounter is our start pixel. Next,wiléextract the contour by
going around the pattern in a clock-wise order. The algoritiiso works if we choose
an anti-clockwise order. We can choose either order howeeaneed to follow the same

convention until the algorithm terminates. Every time wata non-zero pixeP; we back-

track, which means we go back to the zero pixel we were previouslydshg on. After

14
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Figure 2.6.This is theMoore Neighborhood for a given pixé}.

we backtrackwe go around pixeP; in a clock-wise (or anti-clockwise) order, visiting the
pixels in P;’'s Moore Neighborhoodntil we find another non-zero pixel. The termination
criterion is to visit the start pixel twice. A more formal @eption of theMoore-Neighbor
Tracingtechnique is presented below at Algorithm 1.

Note that different termination criteria can change the fiesult of algorithm 1. For
more details we refer the reader to [24]. In our experimemescontour tracing method
terminates when the “second* pixel in the loop is revisiteatered from the same direc-
tion as it was entered on its first visit. MATLABimplementation of the method can be
downloaded from [25]. A demonstration of tMoore-Neighbor Tracinglgorithm can be
found in Figure 2.7. The red arrow denotes from which dimttve entered the start pixel
(i.e.,1). Then we backtrack (blue arrow facing up) and search itMbere-Neighborhood
of the start pixel. The first non-zero pixel we encounter iep2. We follow the same
procedure until we visit the start pixel for the second time.

In Figure 2.8 we depict the result of the method when appbedtne of the arm/hand

contours that we use in our experiments.
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input  : A set of pixelsP = {pi, ps,...pm}, belonging to a 8-connected compo-

nent
output : A sequence of ordered boundary pix€l&0;, Os,...,0%), 1 <k <m

SetO to be empty;
Find the start pixe¥, inserts in O;
Set current pixebto s, p = s;
Backtrack and setto be the next clockwise pixel if/ (p);
Il ¢ is the current pixel under consideration, i€is in M(p)
Il M (p) is theMoore-Neighborhooaf current pixelp
while (¢ # s) do
if ¢ is non-zeradhen

insertc in O;

setp = ¢;

backtrack (move the current pixeto the pixel from whiclp was entered);
else

current pixelc becomes the next clockwise pixel M (p);
end

end
Algorithm 1: The Moore-Neighbor Tracing algorithm

2.3.4 Gradient Descent

After the original contour is smoothed the sequence of veidkHurther filtered with

a 1D horizontal mask of ones and of size 5. The original candowothing is needed in

order to reduce the total number of local minima that couldreated due to rugged hand

contours. Rugged contours are caused because of the loltres®f the depth data, as

can be seenin Figure 2.5. The next step is to perform a gradiésieent in order to identify

the local minimum at which the palm cutoff point will lie. Assgarting point we choose the

global maximum (i.e., the highest width) which will alwaysside in the hand area. Then
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Figure 2.7.A demonstration of théloore-Neighbor Tracinglgorithm. Red arrow denotes from
which direction we entered the start pixel (i.€), Next blue arrow facing up ibacktracking We
search in thBloore-Neighborhoodor the next non-zero pixel (i.e2). The algorithm terminates
whenl1 is visited for the second time.

we move towards the end of the arm until we reach our localmmn. In Figure 2.4 we
can see a plot of the sequence of widths along with the de&ioadl minimum where the

palm cutoff point is located.

2.4 Framework for Hand Pose Estimation

We model the hand as an articulated object, consisting oink8:Ithe palm and 15
links corresponding to finger parts. Each finger has thrdes I{gigure 2.9). There are 15
joints, that have a total of 20 degrees of freedom (DOFs)th&@P0-dimensional vector of
joint angles we use synonymously the terms “hand shape” badd‘ configuration.”

The appearance of a hand shape also depends on the camenateasa For sim-
plicity, we consider only the camera viewing direction (tBQ@Fs), and image plane ori-

entation. We use the terms “camera parameters,” “viewimgmaters” and “3D orienta-
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Figure 2.8. On the top row one can see two original edge images from oabdae. On the
bottom row one can see the respective edges images aftgiraptbie contour following algorithm
(Moore-Neighbor Tracing Order of pixels is denoted with color intensities stagtfrom Red then
Magenta, Blue, Cyan, Green, Yellow and Orange. Note thatibottom left image we have used
anti-clockwise order and for the bottom right image clock®vorder.
tion” synonymously to denote the three-dimensional ved&scribing viewing direction
and camera orientation. Given a hand configuration veCior (cy, ..., co) and a view-
ing parameter vectov;, = (v, vs,v3), we define the hand pose vectBy to be the 23-
dimensional concatenation 6f, andV},: P, = (¢4, ..., ¢20, V1, U2, 3).
Using these definitions, our framework for hand pose estonatan be summarized

as follows:

1. Preprocessing step: create a database containing amrsémpling of all possible

views of the hand shapes that we want to recognize. Labelveashwith the hand

pose parameters that generated it.
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Figure 2.9.The articulated hand model. The palm and 15 finger links avevstin different colors.

2. Given an input image, retrieve the database views thaharmost similar. Use the
parameters of the most similar views as estimates for thgemahe most similar
views (Figure 2.1) are retrieved according to a similaritgasure (e.g., Euclidean

distance, Chamfer distance)

2.4.1 Database

Our database contains right-hand image20dfiand shape prototypes (Figure 2.10).

Each prototype is rendered fro#d different viewpoints (Figure 2.11), sampled ap-
proximately uniformly from the surface of the viewing spéer

The rendering is done usif@OSER[1], a 3D rendering software package for the
posing, animating and rendering of 3D polymesh human figuP§3SERincludes many
ready to us8 D content items like hands, lights, cameras, materials escett. \We specif-
ically used the hand library that includes hand poses of AcarrSign Language (ASL).
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Figure 2.10.The20 basic shapes used to generate model images in our datalaatebdsic shape
is rendered fron®6 different viewpoints.
However the library contains hand poses of various typedidnd signals, counting, action
poses and gestures. We found this library very useful adpeldeaus create a vast amount of
data for training and testing purposes in our experimenddie€ing such a huge database
of real hand images would have been extremely strenuous ifnrealistic.

Given a hand model and tt%® rendering computer graphics software we can ren-
der images under various lighting conditions and by applylifferent type of “textures”.
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Figure 2.11 Nine 3D orientations of the same hand shape.

Depending on our experiments, we can for example renderamaith skin color texture
overlayed on top of the hand model. We can also simulate tieeteff shadowing by
adding various light sources and appropriate “materiatsl ‘@extures”. In Figure 2.12 we
can see the same hand model rendered with different settings

Every3D modeling scene in theOSERenvironment has at least one viewing cam-
era that is fully customizable. We can control the camera&ntation and position i3 D
space as well as the focal length etc. For our experimentsonsiager only the camera
viewing direction (two DOFs), and image plane orientatid¥ihen rendering our images

the3D hand model can be seen as placed at the center of a spheresaraartra moving
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Figure 2.12.Four different type of textures for rendering the same hdraps. On the top left

we can see a "cartoon’-like skin color texture. Top right ipheoto-realistic skin color texture.

Bottom left all different joints have been rendered with fhedent color. Bottom right one can see
a depthmap, where each pixel intensity encodes the disfestoethe camera.

along the surface of that sphere always pointing at the cefié The camera’s starting

position can be regarded as the “north pole” of the spherg. camera placement on the
surface of that sphere can be denoted with two paramé#gitside andlongitude We also

use one more parameter for the image plane rotation. In theanm viewing parameter

vector can be modeled as:

Vi, = (v1, v9,v3) = (latitude, longitude, image_plane_rotation) (2.3)

Each database image is associated with the viewing parawvest®or V;, that has
been used during the rendering phase. For example, the ithagéas been generated
when camera is placed at the “north-pole” of the viewing sptand has no image plane
rotation is associated with the viewing parameter vetfor (0,0,0). In order to create
our whole database of training images we sample the wholaiesphere fron4 differ-
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ent viewpoints or pairs dfatitude, longitude) To accommodate rotation-variant similarity
measures (like the Chamfer distanc& more images are generated from each viewpoint,
corresponding td8 uniformly sampled rotations of the image plane. Overa#,database
includes48 x 84 = 4032 views of each hand shape prototype d082 x 20 = 80, 640 im-
ages overall. We refer to those images using the terms “dagalmages”, “model images”,

or “synthetic images”.

2.4.2 Similarity Measures

2.4.2.1 Chamfer distance

The Chamfer distance [26] is a well-known method to measweelistance between
two edge images. Edge images are represented as sets &, poimesponding to edge

pixel locations. TheX-to-Y directed Chamfer distane€X,Y") is defined as
1 :

where||a — b|| denotes the Euclidean distance between two pixel locaticarsdb. The

undirected Chamfer distan€g X,Y") is
CX)Y)=c¢(X,Y)+c(Y,X). (2.5)

We will use the abbreviation®C D to stand for “directed Chamfer distance” and

UC D for “undirected Chamfer distance.”

2.4.2.2 Depth Matching

Test data have been captured via the Kiféctevice which offers two synchronized
streams, one RGB and one depth stream. Frame resolutidd is 480. A depth image
is a gray-scale image, where each pixel is assigned an ityt@atue according to how far

or close it is located from the camera. We have also managa@#te depth-maps for our
23



synthetically generated database images using a 3D mgdeiithanimation software [1].
Some examples of our depth-maps are depicted in Figure BdtB, model and test depth
images are normalized in order to achieve translation iamae for the z-axis. All depth
values are in the range from 0 to 1. The depth similarity mesbatween two images is

defined as the total sum of their pixel-wise Euclidean distan Through the rest of this

chapter we will refer to the depth matching similarity measasdepthS M.

4

Figure 2.13The two depth-maps at the left side are “database depth*raag$ave been rendered
with a 3D modeling software. The two depth-maps at the rigtd are “test depth-maps” and they
have been captured by the KinE¢tdevice.
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2.4.2.3 Weighted Depth Matching and Chamfer Distance

Another similarity measure is defined by combining the fingt similarity measures.

In the following equation thé&V eightedS M is a weighted sum afepthSM andUC' D:

WeightedSM = 1, x depthSM + Iy x UCD (2.6)

In our experiments we have optimized the weights and deneatsst that the pair
Iy = 0.8,13 = 0.2 offers the best overall recognition accuracy. In Subsai®.5, Table

2.4, one can see recognition results for a set of differeins paweights.

2.5 Experiments
2.5.1 Definition of Retrieval Accuracy and Experimentalupet

Towards providing an experimental evaluation the first s¢efp estimate ground
truth for the test data and definetrieval accuracy We have manually established pseudo-
ground truth for each test image, by labeling it with the esponding shape prototype
and using the rendering software to find the viewing pararsatader which the shape
prototype looked the most similar to the test image. This whgstimating viewpoint
parameters is not very exact; we found that manual estintgtesfferent people varied
by 10-30 degrees. Model views cannot be aligned perfecthalee the anthropometric
parameters (like finger lengths and widths) of hands in teages do not match those of
the model, and because the hand shapes in the real imagest asaat replications of the
20 shape prototypes.

After estimating ground truth for test data we need to defihatws acorrect match
and also define theetrieval accuracy We consider a database vi@&no be acorrect match
for a testimagd if the shape prototype with which we lahkis the one used in generating

V', and the manually estimated viewing parameter$ afe within 30 degrees of those of
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V' [27]. On average, there are 30.4 correct matches for eatimtage in the database. Our
measure ofetrieval accuracyfor a given test imagé is the rank of thehighest-ranking
correct matchthat was retrieved fof. 1 is the highest (best) possible rank. In the end we
show the percentage of test images for which the highestrrgmiorrect match is within a

set of specific ranges (e.d.,1 — 4,1 — 16,1 — 32,1 — 64,1 — 128, 1 — 256).

2.5.2 Rendering and Pre-processing Training Images

The original database images have been synthetically gesteusing a hand model
and a computer graphics software [1]. Depending on our @xjgets and on our similarity
measures we use database images with appropriate texhdeeradering settings. For
example if we are running experiments for the depth sintyfarieasure then our training
images are rendered as depthmaps. Another example is whéssivEhamfer distance
with edge images. In this case we choose to render our tgpimiages with a “cartoon’-
like texture. Furthermore we have to process these traimrages and extract contour
edges in order to apply the Chamfer distance measure. Atexitract edge information
a final processing step is required in order to achieve tatiosl and scale invariance for
our proposed method. This final step is caltemtmalizationand is really critical for the
performance of our system.

In this short paragraph we will describe how we can achiewenalizationof our
data. Originally the rendered images are of di2@0 x 942. We can easily segment the
foreground from the background since the latter has alwagsame uniform color. For
the set of all foreground pixels we calculate tienimum Enclosing Circle (MEC)Then
we compute the bounding box of tihEC and crop the image so as to keep only pixels
inside the bounding box. Finally we re-size the cropped rtag fixed size 0256 x 256.

Our whole pipeline for generating the training databaseggsacan be summarized

as follows:
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e Choose the appropriate texture / material and renda6all images 20 handshapes
x 84 viewpoints)
e Further process the images if needed (e.g., Canny Edgetioetec
e Segment foreground pixels and compute tihEC
e Crop the image and keep only pixels inside the bounding bake1EC
¢ Resize the cropped image to a fixed siz€&f x 256
We need to note that a similar processing pipeline is alsoired for the given test
images. All images need to have the same fixed 3isex 256. This way we ensure our
system will be translation and scale invariant. In Figudl2ve can see a few examples of

our normalized database images before and after extrasdiggs.

Figure 2.14. At the top row one can see original database images that reae $ynthetically
generated using a hand model and a computer graphics seftftjarAt the bottom row we show
the respective edge images we are given as input to our method
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2.5.3 Preliminary Results for Datasets with Clean Backgdou

As we further move on to our experimental evaluation the s¢ep is to present
some preliminary results and provide the baseline perfoomaf a well known similarity
measure for edge images, namely the Chamfer Distance [26}e¥¥r the reader back to

subsection 2.4.2.1 for a more detailed description on Caabitance.

2.5.3.1 Results for thASL-RGBdataset

First we report results for a testing dataset consisting7dfimages representing
American Sign Language (ASL) handshapes. Throughout #teofehis dissertation we
will refer to this dataset aBSL-RGB The handshapes are real hand images captured in a

rather clean background and no clutter is present, as ongeeaim Figure 2.15).

Figure 2.15Test images from our dataset16f4 ASL handshapes images with clean background.
On the top row one can see the original images. Bottom rowheretige images obtained after
applying a Canny Edge Detector to the original images.
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The training dataset for this first batch of experiments =tea®f images that have
been rendered with the “cartoon”-like texture. Finally wipked Canny edge image de-
tection in order to get the training images with edge pixsée(Figure 2.14). The results

for this dataset are presented in Table 2.1.

Table 2.1. Preliminary results for a datasetlaf# ASL handshape images, captured in a
rather clean background. For every method used, we shovetbemtage of testimages for
which the highest ranking correct match was within eacheahy ' D stands for “image-
to-model directed Chamfer distancé’C'D is the undirected Chamfer distance.

Method used 1 1-4 1-16 1-32 1-64 1-128 1-256

DCD 03.45 11.49 16.09 21.26 27.59 38.51 51.72
ucb 14.37 24.71 35.63 43.10 48.85 59.20 71.84

2.5.3.2 Results for thASL-Ground-TrutiDataset

For our second round of experiments we have used the sammgrainages but the
testing dataset is slightly different. We have used the igadwuth labels from the original
test images (i.eASL-RGB and generated synthetic images using the correspondisg cl
labels and viewpoint parameters. This new set of test imagesy similar to the original
dataset as one can see in Figure 2.16. However, it is evidenthandshapes with the exact
same ground truth labels can have some minor differencesdbbl affect the performance
of our hand pose estimation system. This is happening be@ubkropometric parameters
(like finger lengths and widths) vary between a human handetaad a synthetic hand
model. Of course the same applies for handshapes that haeegaund truth labels but
are captured from different users. The purpose for thisrsdcound of experiments is to
provide an indicative measure of the influence of differarineanthropometric parameters
between the test images and training images, see Table @.Zadte 2.1. The similarity
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measure used here is again the Chamfer distance (directednalirected). Throughout

the rest of this dissertation we will refer to this dataseA8&-Ground-Truth

Figure 2.16.To the left one can see the original test image which is a raatiimage captured
with a clean background. To the right one can see the syo#tigtigenerated image by using the
same ground truth labels.

Table 2.2. Preliminary results for a datasetl@fl ASL handshape images. For every
method used, we show the percentage of test images for wedhighest ranking correct
match was within each rangé&C Dgt stands for “image-to-model directed Chamfer dis-
tance”. UC Dgt is the undirected Chamfer distance. Test images have benesizally
generated with a 3D modeling software based on our estimstfay ground truth labels of
the original test datas&SL-RGB(see Table 2.1)

Method used 1 1-4 1-16 1-32 1-64 1-128 1-256

DCDgt 31.03 48.28 63.79 68.97 74.71 81.03 86.78
UCDgt 48.28 67.82 77.01 82.18 85.63 91.38 92.53

2.5.4 Preliminary Results for a Dataset with Clutter in treeByround

We also report preliminary results (Table 2.3) for a mordlehging dataset 0248
ASL handshape images, which have been captured in a cldig@keronment (see Figure
2.17). Throughout the rest of this dissertation we will ratethis dataset a8SL-Clutter
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The training images remain the same as in subsection 2.58 similarity measure used

is Chamfer distance (directed and undirected). The purpbtbgs round of experiments is

to measure the effect of clutter on our proposed system.rigleghen comparing results

between Tables 2.3 and 2.1 we can see a decrease in the temogocuracy of our system.

However we need to mention that the original test image®rbefegmenting the hand, are
of size340 x 240. This low resolution could be another factor causing a desgen the

performance.

Table 2.3. Preliminary results for a more challenging detta§248 ASL handshape im-
ages, which have been captured in a highly cluttered enviesn. For every method
used, we show the percentage of test images for which thesiiganking correct match
was within each rangeDC D¢ f stands for “image-to-model directed Chamfer distance”.
UC Dcf is the undirected Chamfer distance

Method used 1 1-4 1-16 1-32 1-64 1-128 1-256

DCDcf 04.03 06.45 15.32 2137 27.42 37.10 48.39
UCDcf 07.26 15.73 32.66 37.90 46.37 54.03 66.53

2.5.5 Results for the Proposed Depth Similarity Measure

Finally we tested our system on a challenging dataset of @ hand images of
American Sign Language (ASL) handshapes. The images ateredpvith the Kinect"
device in a cluttered scene. We will refer to this datas&@is-KinectHandshape3 hese
94 test images are provided in both formats, RGB and depth. Wisarg the RGB test
images the training set remains the same as in previous&idse2.5.4 and 2.5.3. Same
applies when testing’C'D with depth contoursHowever in this case the test images have

been generated from the depth images after extracting titewopixels of the hand.
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Figure 2.17 Testimages from our dataset28 ASL handshapes images within a highly cluttered
background. To the left one can see the original images atltetdght the edge images obtained
after applying a Canny Edge Detector to the original images.

For the similarity measuréepth.SM we employ a different set of training images.
This time database images are synthetically generatecotsdaps (see Figure 2.13). Test
images are also in the depth format (and not RGB).

Finally for weightedSM similarity measure we use a combination d#fpthS M
and UCD depth contours, using RGB and depth features for trainirgytest images.
Table 2.4 reports results for a set of different pairs of \w&sd;, andl,, wherel; is the
weight multiplied withdepthS M andl is the weight multiplied witiV C'D depth contours.
depthS M,.;,, contrary to the other similarity measures, uses input esdgat have been
generated using the automatic hand segmentation step.

From the experiments on tiSL-KinectHandshapeafataset it is evident that using

depth information from the depth-maps enhances the digtation power of our method,
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Table 2.4. Results foASL-KinectHandshapeataset, usingeightedSM similarity mea-
sure and a set of different pairs of weights. Optimized redamn rates are reported when
{1 =0.8 andlg = 0.2.

Weights used 1 1-4 1-16 1-64 1-256

[, =01,I,=09 12.77 23.40 36.17 52.13 71.28
[ =02,l,=09 18.08 26.59 44.68 61.70 77.65
[ =0.3,l,=0.7 23.40 37.23 52.12 69.14 79.78
[ =04,l,=0.6 24.46 42.55 56.38 73.40 82.97
[ =0.5,l=0.5 30.85 42.55 65.59 76.59 85.10
[y =0.6,l,=04 30.85 44.68 68.08 78.72 86.17
[, =0.7,1,=03 36.17 50.00 69.14 80.85 86.17
L =08,l,=0.2 37.23 50.00 70.21 80.85 88.29
[ =09,l,=0.1 34.04 48.93 68.08 79.78 87.23

Table 2.5. Results foASL-KinectHandshapedataset. For every method used, we show
the percentage of test images for which the highest ranlongct match was within each
range.UC' D depth contours, is undirected Chamfer distance betweeth ¢@mtours from
depth images and full edges from model images.UltHD color edges, skin color seg-
mentation has been employed to extract the full edgesth.SM is our depth similarity
measure, with manual hand segmentatidepthS M, .., iS our depth similarity measure,
with automatic hand segmentatianecightedS M similarity measure has weights= 0.8
andl, = 02.

Method used 1 1-4 1-16 1-64 1-256

UCD depth contours 14.74 20.0 32.63 40.0 62.11
UCD color edges 9.57 14.89 21.28 32.98 55.32

depthS Mgy, 25.53 38.30 55.32 70.21 84.04
depthS M 34.04 44.68 61.70 76.60 87.23
weightedS M 37.23 50.00 70.21 80.85 88.29

even in uncontrolled and cluttered environments. We ndtie¢ even when we only use
contours from depthmaps (i.é/C D depth contours) it outperforms the cagéC' D color
edges” where full edges of the hand are available due to coformation. Best perfor-

mance is reported when using theightedS M similarity measure.
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2.5.6 Consolidated Results

Finally, in Table 2.6 one can see results from the previobsections consolidated.
Additionally, we report results for another state of theradthod presented in [4]. The
authors of that method used for their experiments a test@tgset of250 real images of
right hands. Since our proposed method is tested on veryagsidatasets (i.e., real hand
images in cluttered backgrounds) we believe that all corepas in this dissertation are
fair and meaningful. The best overall performance, whetingsgainst real hand images,
is achieved when using the proposeédightedSM similarity measure with weights =
0.8 andl, = 0.2. Total processing time varies between different implemeons of our
proposed framework. We provide an indicative measure ottdmputation time of our
method (usinglepth.S M) which is about 33 seconds per input image, not includinglhan
segmentation, on a PC with a 2.00 GHz Intel(R) Xeon(R) E54@ggssor. The code is

rather unoptimized and implemented in MATLAB R2012a.

Table 2.6. Consolidated results. Best overall performasachieved when using the
proposedweightedSM similarity measure with weightg = 0.8 and/, = 0.2. Our
proposed method outperforms the state of the art methodmexsin [4].

Method used 1 1-4 1-16 1-64 1-256
DCD 03.45 11.49 16.09 27.59 51.72
ucb 14.37 24.71 35.63 48.85 71.84
DCDcf 04.03 06.45 15.32 27.42 48.39
UCDcf 07.26 15.73 32.66 46.37 66.53

UCD depth contours 14.74 20.0 32.63 40.0 62.11
UCD color edges 9.57 14.89 21.28 32.98 55.32

depthS Mgy, 25.53 38.30 55.32 70.21 84.04
depthS M 34.04 44.68 61.70 76.60 87.23
weightedS M 37.23 50.00 70.21 80.85 88.29

method from [4] 13.60 26.40 45.20 67.60 84.0
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2.5.7 Qualitative Evaluation

In this subsection we will provide a short qualitative ewlon for our similarity
measures and some of the experimental results. We will foousvo different cases of
guery images from the datasesL-RGB For each query image we will demonstrate some
of the highest ranking database images that have beenfiddriy our method based on
Chamfer distance. We need to stress that these higheshgatdp matches don't neces-
sarily have to be correct matches even though that is our givalwould like to remind
to the reader that we consider a database Wedw be a correct match for a test (or query)
imagel if the shape prototype with which we labeis the one used in generativy, and
the manually estimated viewing parameterd afe within 30 degrees of those f For
each of the images in the following Figures 2.18 and 2.19 weide the class labdl and
the viewing parameter vectdf, = (latitude, longitude, image_plane_rotation). Firstin
subsection 2.5.7.1 we demonstrate some of the retrieve@lnmodges where the rank of
the highest-ranking correct matchlisThen in subsection 2.5.7.2 we demonstrate some of

the retrieved model images where the rank of the highestirigrtorrect match i5601.

2.5.7.1 Retrieved Model Images where Rank of the Highesting Correct Match i

In Figure 2.18 we depict a query image that has been givenpag to our hand
pose estimation system and some of the retrieved model srizgeed on our method. The
rank of the highest-ranking correct matchliswhich is depicted in sub-figure 2.18(a).
In sub-figures 2.18(b), 2.18(c) and 2.18(e) we can see some ocworect-matches with
respective rankg, 3 and8. In sub-figures 2.18(d) and 2.18(f) one can see some retrieve
model images that are not correct-matches since they h#feeedit class labels than the
query image. However their rank is extremely higha(d9) since our method has falsely

regarded them as a very good match for the query image.
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(@) ranking = 1, L =19, (b) ranking =2, L =19, (c) ranking = 3, L = 19,
Vi, = (90, 22.5, 180 Vi, = (90,22.5,172.5) Vi, = (90, 22.5,187.5)

(d) ranking = 7, L = 14, (e) ranking = 8, L = 19, (f) ranking = 9, L = 1,
Vi, = (90,67.5,202.5) Vi, = (90, 22.5, 165) Vi = (90,112.5, 30)

(9) Query image, with L =
19 andV}, = (99,1, 184)

Figure 2.18 Query image and some of the retrieved model images.

2.5.7.2 Retrieved Model Images where the Rank of the Higteagting Correct Match is
5601

In this subsection and in Figure 2.19 we depict another queage that has been
given as input to our hand pose estimation system and sorhe oétrieved model images
based on our method. However in this case our method failsticoessfully identify a

correct match, since the rank of the highest-ranking cometch is5601. In sub-figures
36



2.19(a), 2.19(b), 2.19(c) and 2.19(d) we can the four highemsking retrieved images.
However none of the is a correct match since their classdadrel different than the query
class label. In sub-figure 2.19(e) one can see the model imégehe highest ranking
(i.e., 11) that has a correct class label. However the angle differdmatween the query
and model viewing parameter vectois$,(.., = (97,3, 158) andV,,,4e; = (90, 67.5, 135)
respectively) istif f (Viuery, Vinodet) = 67.0389. Since67.0389 > 30 we can not classify
this retrieved image as a correct match. In sub-figure 2.1@fcan see the correct match
with the highest ranking which 8601. Clearly our method failed dramatically to identify
a correct match. An interesting observation for the datbaages depicted in sub-figures
2.19(e) and 2.19(f) is that visually they look very simildvhen comparing the latter with
the query image (see sub-figure 2.19(g)) we notice as mdarelifce the edge pixels close
to the carpus. This indicates that the segmentation of thd sa critical factor for the

successful performance of our system.

2.5.8 Results for Automatic Hand Segmentation Method

We have also evaluated quantitatively our automatic hagoheatation method. To
this end we compared for all of our test images the distantedsn the automatically
generatecpalm cut-off pointsand the manually specified ones. For 8%85% of our
images the distance (measured in pixels) is negligible. distance is less than 15 pixels

for the85.11% and less than 25 for tH#.55% of the images (Table 2.7).

Table 2.7. Results for our Hand segmentation method

range (measured in pixels) 0 0-15 0-25 0-45 0-68
percentage of testimages 80.85 85.11 92.55 96.81 100
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(a) ranking = 1, L = 16, (b) ranking = 2, L =7, (c) ranking =3, L =0,
Vi, = (90,45,217.5) Vi, = (112.5,72,112.5) Vi, = (90,67.5,202.5)

(d) ranking = 4, L = 16, (e) ranking = 11, L = 3, (f) ranking =5601, L =3,
Vi, = (90,45, 225) Vi, = (90,67.5,135) Vi, = (90,22.5,142.5)

(9) Query image, with L =
3, andV}, = (97,3,158)

Figure 2.19top 10 results.

Total processing time for the segmentation algorithm, onCawth a 2.00 GHz
Intel(R) Xeon(R) E5406 processor, is about 10 seconds. ®be & rather unoptimized

and implemented in MATLAB R2012a.
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2.6 Conclusions and Future Work

We have presented a new method for hand pose estimation feingle depth im-
age. Our method combines a novel hand segmentation metlaod similarity measure
(depth.S M) based on depth information from depth images.The sinylaneasure is used
to retrieve the best matches from an image database, thuslimgp estimates for the 3D
hand pose and hand configuration. Depth information inexetfse discrimination power
of our method, according to the experiments conducted. &stdme time, differences in
anthropometric parameters and clutter in background avermportant factors influencing
recognition accuracy of our system. Experimental evabmati these two factors has been
provided by quantitatively measuring their influence on gleeformance of our proposed
similarity measures. Overall, retrieval accuracy is stid low for the system to be used as
a stand-alone module for 3D hand pose estimation. Howetienaig hand pose from a
single image can be useful in automatically initializingpndrackers. Our system currently
doesn’t achieve real-time performance. In order to do scsar our method is inherently
parallel, we are planning to take advantage of the GPU’sgasing power. Additional fu-
ture work will be to define more sophisticated similarity ragaes further exploiting depth
information. At this point depth information and the way wavh used it can be regarded
as2.5D. By using the Kinect™ camera’s intrinsic and extrinsic parameters we can con-
struct3D point clouds and start exploiting this richer source of infation. We could
experiment with features like surface normals and othierfeature descriptors. All the
aforementioned future directions address interestingarefi problems but implementing

them is out of the scope of the current dissertation.
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CHAPTER 3
HAND TRACKING USING DEPTH DATA

3.1 Introduction

Accurate detection and localization of moving hands in mst@ined environments
without any elaborate experimental setup remains a clafigrtask. An accurate and ro-
bust hand tracking can be applied in sign language recognitiuman-computer interfaces
and virtual reality environments. There is an extensigditure on hand detection/ track-
ing and part of it has been presented at previous Chapter thidithapter we focus on
a hand detection/tracking module that is integrated withmore general framework for
gesture recognition, which is presented at Chapter 4. The thfierences of our hand
tracking method presented here with respect to the handtaetenethod presented in the
previous Chapter 2 are the following:

1. Our hand tracking method assumes temporal continuityhende employs motion
cues. We use additional information from multiple frames.(previous, current and
next) as opposed to relying on a single frame (i.e. curramé).

2. Here we are not interested in articulated hand trackingaw¥ interested at locating
the hand but we don't care about the details of motion of eaxdefiand the palm
altogether.

3. Our hand detection module is integrated into a more géfraraework for gesture
recognition, which is presented at Chapter 4.

Our hand detector is based on motion from frame differenethggch we combine
with a depth segmentation according to the depth informatie have for each pixel. Our

detector can return a single best hand location or a listeb#st candidate hand locations.
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We evaluate our method on a Microsoft KinBttased video dataset of American Sign
Language (ASL) signs. This dataset has been designed fgrdastidetection and tracking
research as well as for ASL sign recognition. At the same waalso report results on the
performance of a popular skeleton tracker which is proviolethe not-for-profit OpenNI
consortium [28]. In this way we establish a benchmark forfthiere assessment of more
advanced detection and tracking methods that utilize RG@afa. The contributions of
this chapter can be summarized as follows:

1. A new hand tracking method based on RGB-D informationithah integral part of
the gesture recognition system proposed later in this deggen (see Chapter 4)

2. A structured motion dataset of American Sign Languageljfstgns captured in
RGB and depth format using a Microsoft Kin€étsensor, that will enable researchers
to explore body part (i.e. hands) detection and trackinghouag, as well as gesture
recognition algorithms.

3. Experimental evaluation of our method against a poplleson-tracker that could
be used as a baseline performance when evaluating new $ttte art tracking
methods.

In the next section 3.2 we describe in detail our new handimgcmethod which
is based on depth data. Then in section 3.3 we introduce ouR@B-D dataset of ASL
signs. Experimental setup and results are presented iois&c. Finally we conclude and

discuss future work at section 3.6.

3.2 Methodology

In this subsection we describe our method in more detail.nEpacel in an image
taken from a Kinect! camera is assigned a value according to how close or farrioms f

the plane defined by the camera lenses. For depth video, opoged detector is based
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Figure 3.1. Hand detection in depth images: original image (top lefépttl image (top right),
segmentation using depth (middle left), the connected ocompt corresponding to the gesturing
human (middle right), scores based on multiplication ofrfeedifferencing and depth (bottom left),
single top candidate (bottom right). One can see that théhdégtector here successfully detects

the hand of the gesturing person.
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on motion and depth information and is applied on depth imagetured from a KinetY
camera. The depth images are grayscale images with valngsmgafrom [0-2046] and
value 2047 denotes an invalid depth pixel. First we find theneated component of the
person performing the ASL sign . To achieve this we calcuiatevery pixel the absolute
value of the difference, in depth, between that pixel andttipe bottom, left and right
neighboring pixels. If the absolute value is over a thregdl{@D in our experiments) the
pixel is zero otherwise one. In this way we create a binarngenahere edges are depicted
on areas with abrupt changes in depth intensity. Now we halesamly segmented image
compromising of connected components that have the fatigvproperty: within each
component the depth intensity values of neighboring pirelger increase over 10. The
next step is to calculate the average depth for the 5 biggestected components. The
component with the lowest mean depth value is assumed toebeettson performing the
sign. Now that we know which pixels belong to the person wewdate their max and
median depth values.

Next, we calculate a score matrix based on frame differgnditame differencing
is the operation of computing, for every pixel, the minimuftweo values; the absolute
value of the difference in intensity between the currentniaand the previous frame and
the absolute value of the difference in intensity betweendiwrent and the next frame.
After frame differencing we compute another score matrixciins our depth image minus
the median depth value for the person. We multiply elemeriément those two matrices
and we apply a mask over the final matrix. The mask has theAoitpproperties:

¢ all invalid pixels in the previous, current and next frame aero. The reason we do
this is because the captured depth images have a lot of nbisé wan be regarded
as "motion”.

¢ all pixels in the motion score matrix that have a value lovirant1 are zero

e all pixels that their intensity value is over the max deptlugaare zero.
43



After we have applied the mask on our score matrix we use &aktD filter of ones with
some predefined size and finally on the new matrix we apply dheedilter horizontally.
The min value of our final score matrix denotes where our handdated. Figure 3.1
illustrates examples of input, output, and intermediagpstor this detector.

We evaluate our method on a dataset of ASL signs which is itbestin the following

section 3.3

3.3 Description of ASL Dataset

Our goal is to create a structured motion dataset that wdbenresearchers to ex-
plore body part (i.e. hands) detection and tracking methasisvell as gesture recognition
algorithms not possible with such datasets as the ASLLVD [¥9ncluding scene depth
information. The dataset is being recorded with a Microgadfiect™, which allows us to
capture both color video and frames that include scene diefottmation. Figure 3.2 shows
an example from one of the recording sessions. In this péaticepresentation, the darker
gray areas of the image are located closer to the camera.ldtleregions are portions of

the scene for which depth information was not available.

3.3.1 Discussion of Related Gesture Recognition Datasets

One of the highest quality video datasets useful for gesaaggnition research is the
American Sign Language Lexicon Video Dataset (ASLLVD) [28Fonsists of a large set
of recordings from multiple camera angles of the signs éoathin the Gallaudet Dictio-
nary of American Sign Language [30], performed by nativeserg. Each sign is annotated
with the gloss label (approximate English translatiomtsand end frames, hand shapes
at the start and end frames, and position of the hands angdWabemultiple examples per
sign. Such datasets, while extremely useful, lack any mé&tion about scene depth, since

they were recorded with standard color video cameras. Wiusn using them, researchers
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Figure 3.2.Sample dataset sign frame. Top: color video frame; Bottosptidvideo frame.

suffer from the limitations of having to use conventional B&nd detection and tracking
algorithms. Hand tracking using standard video is paridylchallenging because of oc-
clusions, shading variations, and the high dimensionafithe motion.

Guyon, et al., present a 3D gesture dataset in [31] contab0ir000 gestures recorded
with the Microsoft Kinect by 20 different users that is orgaad into 500 batches of 100
gestures. There are several limitations of this dataseteher. First, the video is recorded

at only 10 frames per second and at a resolutios20fx 240. Secondly, only 400 frames
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are manually annotated with any skeletal information, Wwhiakes it difficult to quantify
the efficacy of any body part tracker being developed. Rmal the video is offered only
as AVI files, we cannot translate the pixels into x,y,z cooaties in a 3D world reference
frame. The dataset we are developing addresses thesdilmstdy usings40 x 480 reso-

lution at 25 frames per second and providing access to thecame depth information.

3.3.2 Size and Scope

We hope that our final dataset will contain most of the 3,0@®sifound in The
Gallaudet Dictionary of American Sign Language [30], whieifi offer an abundance of
complex movements of the hands and arms. Currently, 1113-sifpoth one-handed and
two-handed—nhave been recorded with one fluent signer and/28@nother fluent signer,
but in the future, we will add more signers, so that there andtipte examples of each
sign. A recent published work which offers a more detailesicdetion of the proposed
ASL dataset can be found in [32].

As with [29], finger-spelled signs, loan signs, and classifere not included in the
dataset. A finger-spelled sign is a word that is spelled outdigg the manual alphabet.
When a signer has to use a letter that is part of the overail $igt letter is known as
aloan sign Classifiers provide additional information about the abjeeing signed, but
since there are infinite variations of them, they are exadud€&he ASLLVD paper [29]

contains more information about the motivations for excigdtertain types of signs.

3.3.3 Technical Specifications

Both the Kinect™ color frames and depth frames have a resolution of 640 x 480
pixels and are recorded at frame rate of 25 frames per seddwdsigners perform groups
of ten signs per video in front of a neutral backdrop in a lathwbnsistent lighting. The
signs are performed while standing, and the scene is frames $0 include the region
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from about the knees to a few inches above the signer’s heach ¥deo begins with a
calibration pose that can be used to detect the signer amalize tracking. After the pose,
between each sign, and after the last sign, the signer seh@mhands to her side, creating
a clear separation of the signs in the video.

We currently use the OpenNI framework [28] to record the signthe ONI for-
mat, but we may rerecord them in the future with the MicrosGftect™ SDK [33] so
that researchers can experiment with both platforms. OpenBin open source sensing
development framework used in many third party APIs. ltpse is to standardize com-
patibility and interoperability of Natural Interactive\dees and applications. It and third
party software developed around it are useful to reseas¢hat want to develop their own
detection and tracking tools. Compressed and uncomprésdedf the videos are also

available.

3.3.4 Annotations

Each video in the dataset is annotated with the start andrantkt of each sign so
that any sign can be quickly accessed. The first depth viéeodof each sign is annotated
with a bounding box around the signer’s face to give an idga@tcale of the individual
in the video. With this information, the researcher has aaidf how to scale the query
sign to which it is being compared. Furthermore, every dé@ime belonging to a sign
is also annotated with bounding boxes around the handshvgive an indication of the
hand’s location when the box’s centroid is calculated. mfiiture, we will annotate the
color video in the same manner.

For potential use in future gesture and sign language rewogresearch, the annota-
tions also include information about the signs themselsash as signer ID, file locations,

sign type (two-handed/one-handed), and gloss, or roughdbrtganslation. The hand and
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face annotations for an example sign frame are shown omestathe depth frame image

in figure 3.3.

Figure 3.3.Sample hands and face annotations of a single depth videfra

3.4 Experimental Setup for the Evaluation of Hand Trackingtihvbds

In order to establish the benchmark, we chose to use the lbaatidn capabilities
of the user skeleton tracker included in the OpenNI 1.5 NiUseker sample program
[28], since it is freely available to anyone. Once it has fbtime signer via the standard
psi calibration pose, the program creates a skeletal mddéleoperson and tracks joint
position movement. In particular, we were interested inahms and defined the hand
locations to be the hand endpoints of the elbow-hand partdthe arms.

To evaluate the efficacy of using the skeleton tracker to@pprate the positions of
the hands, we used 35 one-handed randomly selected signgHeodataset described in
section 3.3 and processed them with the tracker. For théhanded signs, only the sign-

ing hand was considered. Once the hand positions were ebtaimey were compared to
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the ground truth positions from the manual annotations,thagixel Euclidean distance
between them was recorded as a score, so that a lower scole wdicate a closer esti-
mation of the hand’s actual location. This operation wa$gpered on each frame of the
signs, and the accuracy was calculated to serve as the barcfonthe evaluation of fu-
ture methods. We have also processed the one-handed sigribevproposed single hand
locator (described in Section 3.2) and calculated the t®ssing the same pixel Euclidean

distance similarity measure.

3.5 Results for Hand Tracking

We calculated overall accuracy as a percentage of framehichwhe automatically
generated hand locations fell within in various pixel distas (termed pixel error) of the
manual hand annotations. Figure 3.4 shows the accuracyedgenNI skeletal tracker
and our depth hand locator on one-handed signs. For thaakieteker 90% of the frames
have a pixel error of about 24 pixels or less. It can also be g our depth hand locator
does not perform as well on this dataset. It is understaedabén we consider that it was
written for use in simple hand gestures in which the handlikilly be the closest part of
the body to the camera. Indeed, after examination of thdtseste determined that it tends
to fail when other body parts that are also in movement, sa¢heelbow, are closer to the
camera.

We also calculated the maximum pixel error for each sign.uf@d.5 shows the
results for the skeletal tracker and its comparison to optidband detector. We can see
that50% of the signs had a maximum pixel error of about 22 pixels & \elsen our depth
hand tracker [2] was used to detect hands.

Figure 3.6 shows a visualization of three levels of skeldétanker accuracy from

good to poor on a single-handed sign, with the pixel errogiragn from a few pixels to a
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Figure 3.4.Comparison of the skeletal tracker and our method from [2)rerhanded signs.
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Figure 3.5.Skeletal tracker and depth hand tracking method maximurl gistor on a per sign
basis.

few hundred pixels. The manual annotations are shown imgred the skeleton tracker

hand locations in red.
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Figure 3.6.Varying accuracy on one-handed signs.

Total processing time for tracking the hand in a single fraorea PC with a 2.00
GHz Intel(R) Xeon(R) E5406 processor, is about 0.673 sexohide code is rather unopti-
mized and implemented in MATLAB R2012a. Processing timelmadrastically reduced
depending on our I/O and memory management strategy. Intnert implementation, we
read each frame (saved as a separate file) from the disk,gaddiignificant computation

overhead for just reading and loading each single frame maong

51



3.6 Conclusion and Future Work

We have presented a new hand tracking method that relieb depa and that can
accurately identify the location of the gesturing hand ie-tvanded signs or gestures. The
method was compared against one popular skeleton tracketigoth on a RGB-D dataset
of ASL signs. Results show comparable performance whileesame time our method
doesn’t require an initialization pose like the OpenNI skeh tracker does. Our exper-
imental evaluation of the readily available skeleton teac&nd our depth hand tracking
method establish a benchmark for analysis of future deteand tracking algorithms.
Another contribution of this chapter is the introductionasf ASL RGB-D video dataset
for use in the development and testing of hand detectionrac#fing methods, as well as
in 3D gesture and sign language recognition projects. Thesdaprovides a large number
of gestures that involve one or both hands with varying eeémovement and hand shape
complexity and presents an opportunity to develop algoritthat are viable in real world
scenarios.

Future work will be to expand the dataset described in se@i@ until we have

multiple examples of all the signs found in [30].
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CHAPTER 4
GESTURE RECOGNITION USING DEPTH DATA

4.1 Introduction

This chapter focuses on a specific application, namely dsdggsture recognition
system. In human-computer interaction applications,ugestcognition has the potential
to provide a natural way of communication between humansraaahines. The technology
is becoming mature enough to be widely available to the pubid real-world computer
vision applications start to emerge. However human-coergateraction interfaces need
to be as intuitive and natural as possible. The user shoehllidinteract with machines
without the need of cumbersome devices (such as coloredensask gloves [10]) or appa-
ratus like remote controls, mouse and keyboards. Hand gsstan provide an alternative
and easy means of communication with machines and couldutevaze the way we use
technology in our daily activities. Successful applicai@f hand gesture systems can be
found in various research and industry areas such as: gantking [34], human-robot
interaction [10], virtual environments, smart homes arghdanguage recognition [35],
to name a few. Moreover with the advent and success of Mift'estew camera, the
Kinect™ (see Figure 4.1), it has been clear that computer visionmdstand specifically
gesture recognition are becoming mature enough to be walaijable to the public.

However, in order to create such successful and robustcgpiolns there is still much
room for improvements. One key challenge for gesture reitiognsystems is that they
must perform in uncontrolled real-world environments.Slimeans heavily cluttered back-
grounds with various moving objects and possibly harshmihation conditions. Most

hand gesture recognition systems assume that the geshaniagcan be reliably located in
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Figure 4.1 Kinect™ camera.

every frame of the input sequence. Unfortunately, in maay liee settings perfect hand
detection is hard to achieve, especially when we rely onglessource of information such
as RGB frames. For example, in Figure 4.2 skin detectiomgietultiple hand candidates,
and the top candidate is often not correct. Skin detectionbsaaffected by varying or
harsh illumination. Other visual cues commonly used forchdetection such as motion,
edges, and background subtraction [36, 37] would also ndoqme well in backgrounds
with moving objects which could be wrongly classified as mgvands.

In previous Chapter 3 we proposed a method for building astand detector that
detects the gesturing hand in a scene by using motion datdzdised on frame differencing

and depth segmentation. Depth segmentation is based olm idégrtsities for each pixel
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Figure 4.2. Detection of candidate hand regions based oncskor. Clearly, skin color is
not sufficient to unambiguously detect the gesturing hancesihe face, the non-gesturing
hand, and other objects in the scene have similar color. ®attter hand, for this particular
scene, the gesturing hand is consistently among thd iagandidates identified by skin
detection.

in our images which have been captured with a Kiféatamera . This hand detector is
integrated to the proposed gesture recognition systentideddn this chapter.

After we compute the location of the hand at each frame of argiwdeo, then we
create2 D trajectories that represent our gestures. For traininggses, in our database we
have precomputed the trajectories for all our gesturesféhatur experiments correspond
to signed digits. Finally we resort to a dynamic programmirgthod, namely DTW [38],
in order to compare the test and model trajectories and rezeghe gestures. The main
advantages of our method are:

o It performs very well even in very challenging environmewith the presence of

multiple "distractors” like moving objects, or skin colar®bjects (e.g., face, non-

gesturing hand, background objects).
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e Itis robust to overlaps between the gesturing hand and teedathe other hand.

e Itis translation and scale invariant; the gesture can oiccany part of the image.

e Unlike HMMs and CONDENSATION-based gesture recognitiom method re-
quires no knowledge of observation and transition derssitead therefore can be
applied even if we have a single example per class.

e Our method can be generalized and applied to recognize a vadge of gestures,
other than signs of digits.

The proposed gesture recognition system, to the best ofrmwlkdge, is one of the
earliest works that employed depth data from the Kilésensor and provided compara-
tive results using color and depth information. The evatuaof our technique is carried
out on a vision-based digit recognition dataset. Each wsesign a digit ranging from 0 to
9 and the goal is to correctly classify the given digit. Sangvaluation frameworks have
been followed by other vision-based HCI systems (e.g., tttaal white board by Black

and Jepson [39], and the virtual drawing package by Isar]},[@Dname a few).

4.2 Related Work

Gesture recognition is a broad research area and a vast awfditerature exists
covering all it's different aspects like segmentation,tdiea extraction and recognition
strategies. Mitra and Acharya [41] have carried out a cotmameive survey on gesture
recognition covering all the aforementioned aspects. T two paragraphs highlight
some of the most popular feature representation and retomgyior classification) tech-
niques.

Some interesting feature representations, proposed jiB]2are velocity histories
of tracked keypoints and ballistic dynamics (respectiyeligich aim to express human ges-

tures and actions. Other popular features used for gestaognition are 3D Histograms
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of Flow (3DHOFs) [44] and Histograms of Gradients (HOGs)|[4#=nello et al. [46] em-
ployed 3DHOFs and Global Histograms of Oriented Gradie@td@Gs) but also added a
sparse codindeature selection step in order to catch the relevant indbion inherently
underlying the data and in order to discard the redundaotnmdtion like background or
body parts not involved in the gesturing actioBparse representatidd 7, 46] can been
seen as a higher level feature representation. Anothempagmylar higher level feature rep-
resentation ibag-of-wordsoriginally proposed by the document classification comryuni
A bag-of-visual-wordss a sparse vector of the amount of detected local imageresati
avocabulary. Csurka et al. [48] have introduted)-of-wordgo the computer vision com-
munity as a novel method for generic visual categorizatasel on vector quantization of
affine invariant descriptors of image patches. Niebles.g48] have further exploitedag-
of-wordsfeatures to propose a novel unsupervised learning methattmn recognition
while Dardas and Georganas [50] proposed a real-time syfstehand gesture detection
and recognition that is trained with SIFT [51] featuresdaled by a vector quantization
technique which maps SIFT keypoints from every traininggmito a unified dimensional
histogram vector (bag-of-words) after K-means clustering

At the recognition level many approaches employ Hidden Maidodels (HMMs)
[52, 53, 54] or Dynamic Bayesian Networks (DBNSs) [55, 56].ppart Vector Machines
(SVMs) is another widely used machine learning techniqeeessfully applied for gesture
recognition [46, 57, 50]. Most recently Conditional Randbreld (CRF) approaches [58,
59, 60] have also become a standard.

Another popular category of methods for gesture and behagmognition can be
characterized by the use Motion History Images (MHIs). MotHistory Images (MHIs)
and Motion Energy Images (MEIs) are among the first holigiatdire representation meth-
ods for behavior recognition [61]. In an MHT ., pixel intensity is a function of the tem-

poral history of motion at that point.
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Figure 4.3.Example MHIs representing digits fromto 9. MHIs have been computed based on
RGB information only.
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T if |I(z,y,t) — I(z,y,t —1)| > 01,
H(z,y,1) = (4.1)

max (0, H (x,y,t — 1) — 1), else.
Herer is the longest time window we want the system to considewdpds the threshold
value for generating the mask for the region of motion. Tiseiltds a scalar-valued image
where more recently moving pixels are brighter. Note thatMEl can be generated by
thresholding the MHI above zero. The above mathematicahditation of a MHI and a
MEI is described by Davis and Bobick in their seminal papéi.[@hey further proposed
a statistical description of those images using transiaitd scale invariant moment-based
features (7 Hu moments). For recognition a Mahalanobisdcs is calculated between
the moment description of the input and each of the knowrmastiln Figure 4.3 one can
see some examples of MHIs for a set of gestures represengitg fdom 0 to 9.

In [62] Xiang et al. have shown that pixel change history (F@hrhages are able to
capture relevant duration information with better disenation performance. The mathe-
matical formulation for a PCH image can be found at the foifapequation (Eq. 4.2):
min(P, (x,y,t — 1) + 22, 255)

ifD(x,y,t) =1
P§,T(x7y7t) - (42)

maX(Pw(x,y,t - 1) -2 0)

¢’

otherwise

\

whereP, ,(x,y,t) is the PCH for a pixel atx, y), D(z,y, t) is the binary image indicating
the foreground regiorg is an accumulation factor andis a decay factor. By setting
appropriate values tpandr we are able to capture pixel-level changes over time.
However, using only RGB camera, MHIs can only encode thehjisif motion in-
duced by the lateral component of the scene motion parallieg image plane. Ni et al.

[63] proposed the use of an additional depth sensor and tnesiap an extended frame-
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work which is capable of encoding the motion history alorgdlepth changing directions.
To encode the forward motion history (increase of depthy th&roduced the forward-

DMHI (fDMHI):

7,if D(z,y,t) — D(x,y,t —1) > 01y,
HIP (z,y,1) = t (4.3)

max (0, HIP (z,y,t — 1) — 1), else.

Here, H/” denotes the forward motion history image abdzx, y,t) denotes the depth
sequenceith is the threshold value for generating the mask for the regfdarward mo-
tion. The backward-DMHI (i.e.[1’P) is generated in a similar way with the thresholding
function replaced byD(x,y,t) — D(z,y,t — 1)) < —dth. In another similar work Kos-
mopoulos et al. [64] investigated the effects of fusingudeatstreams extracted from color
and depth videos, aiming to monitor the actions of peoplaiassistive environment. They
extracted Pixel Change History Images (PCHs) from RGB stssand backward/forward-
DMHI from depth streams. All images were finally represertigd,;, order Zernike mo-
ments. For classification they reported results on Hiddenkbamodel classifiers and
fusion methods like early, late or state fusion. The use a&f™ depthmaps has the main
disadvantage of the presence of a significant amount of nafser frame differencing and
thresholding, motion is encoded even in areas where thererdy still objects. To tackle
this problem one can use a median filtering at the spatial donrathe temporal domain
each pixel value can be replaced by the minimum of its neighbo

This chapter proposes a trajectory based gesture recmgnitthod employing KinetY
RGB-D data. Trajectory based methods are typically basef@atire vectors regarding
hand locations in consecutive frames. Based on this feagymesentation another wide
category of gesture recognition approaches can be define@n @ video sequence one

can define a gesture as the trajectory of the points thatsmorel to the hand locations
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for each video frame. A gesture is therefore a sequen@éqgboints or a time series. A
popular method for comparing time series, that we emplopimc¢hapter, is the Dynamic
Time Warping (DTW) [38]. We will describe in more detail thigarithm in section 4.5.
DTW has been applied to successfully recognize a small wdanbof gestures [65, 66].

A main disadvantage of DTW when used in gesture recogniidhat it requires a
perfect hand detector. For every frame we assume that wethawexact hand location.
This assumption of course is hard to be satisfied in uncdetroéal-world environments,
as mentioned in the previous section. To address this kimitave need to either build a
really robust hand detector, like the one we propose in thagter, or we need to relax the
assumption of a single candidate hand location per frameabma for multiple detections
of candidate hand regions. If we allow for more than one adatéds, then we can employ
Dynamic Space-Time Warping DSTW [3]. The dynamic spacestatgorithm aligns a
pair of query and model gestures in time, while at the same tindentifies the best hand
location out of the multiple hypotheses available at eadrytrame.

Another similar approach is multiple hypothesis trackiegy(, [67]) where multi-
ple hypotheses are associated with multiple observatidhe. CONDENSATION-based
framework can also be applied to gesture recognition [39thduigh in principle CON-
DENSATION can be used for both tracking and recognition,38][CONDENSATION
was only used for the recognition part, once the traject@y heen reliably estimated
using a color marker. Employing CONDENSATION requires tmewledge of observa-
tion and propagation densities for each state of each claskelimwhereas our proposed
method doesn’t require such knowledge. Trajectory basetiods can be coupled with
a HMM framework, as proposed by Sato and Kobyashi [68]. Iir tmethod they extend
the Viterbi algorithm so that multiple candidate obseimwasi can be accommodated at each
guery frame; the optimal state sequence is constrainedswtheough the most likely can-

didate at every time step. However their approach is nostadion invariant and it doesn’t
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perform well in more challenging setting like the ones we imseur experiments. Next

section 4.3 describes our proposed method in more detail.

4.3 Application Overview

Our method is an appearance based and example based gestgeition method.
In our experiments we define 10 classes representing thedes flom 0 to 9, as shown
in Figure 4.4 and 4.5.

Each digit can be formed by a gesture that has been signed graand is stored
as a video sequence. For each digit class we have severahty@xamples (videos) in
our database. More specifically we have 10 different usefeipeing 3 times each gesture
digit, thus providing us 300 training examples. To makeeyamnd automate the annotation
for the training examples the user wears a colored glovelabdackground is fairly static
and controlled. However we must stress that the same do@pplytfor the test sequences
where the environment is far more challenging.

Given a test video sequence we first need to find the hand docatieach frame
and create a 2D trajectory. Then we must classify that ti@jg@s one of our ten classes
(Figure 4.6). In this chapter we compare the performancehiamusing a color video, vs.
the performance we obtain using a depth video, which prayitite every pixel, the depth.
For the color videos, we use a hand detector which combines/tsual cues, i.e., color
and motion; both requiring only a few operations per pixé&in®olor detection is compu-
tationally efficient, since it involves only a histogram kup per pixel. Similarly, motion
detection, which is based on frame differencing, involvesall number of operations per
pixel.

For the depth video, we use a hand detector based on motiorfifamne differencing

which we combine with a depth segmentation according to #gp¢hdinformation we have
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Figure 4.5.Example model digits extracted using a colored glove. Weedhe figure and actual
videos from [3].

for each pixel (see previous chapter 3). Our detector camrret single best hand location
that will be the input for DTW.
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Figure 4.6.Given a test video sequence, we classify it as one of our tmses by computing the
INN.

Recognizing the input gesture is done using the nearedtbeiglassification frame-
work. The gesture recognition we have just described isotieghin Figure 4.7. The sim-
ilarity measure that we use for the 1NN scheme (see FigupesitBe score returned by
the DTW. The DTW algorithm temporally aligns two sequen@eguery sequence and a
model sequence, and computes a matching score, which idarseldssifying the query
sequence. The time complexity of the basic DTW algorithmuadyatic in the sequence
length, but more efficient variants have been proposed 9, B DTW, it is assumed that
a feature vector can be reliably extracted from each quamér In the following sections

we describe in detail each module of our method.
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Comparison with database trajectories
(Nearest Neighbor classification)

d

QOutput: most similar trajectory ( or gesture)

Figure 4.7 A typical bottom-up gesture recognition approach.

4.4 Detection and Normalization
4.4.1 Detection

The first hand detector that we used in our experiments iseapph RGB color

images and is based on motion and skin detection. To buildkimecolor model we use
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Figure 4.8.Hand detection in color images: original image (top lefRindetection (top right),
frame differencing (middle left), multiplication of skimd frame differencing scores (middle right),
top 15 hand candidates (bottom left), single top candidat&dm right). One can see that the hand
detector here fails to detect the hand of the gesturing perso
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a generic skin color histogram [70] to compute the skin Ihka&bd image in which each
pixel in the frame gets assigned a value denoting the prbtyatifi being skin. The motion
detector computes a score matrix with the same size as tiji@arimage by using frame
differencing (frame differencing is the operation of coriipg, for every pixel, the mini-
mum of two values; the absolute value of the difference iensity between the current
frame and the previous frame and the absolute value of thereliice in intensity between
the current and the next frame). Then we multiply elementlbynent the motion score
matrix with the skin likelihood image to obtain the hand likeod image. Next we com-
pute for every subwindow of some predetermined size the dipixel likelihoods in that
subwindow. Then we extract the subwindow with the highest.siThe gesturing hand
is typically covered by one or more of these subwindows (Sgar€é 4.2). Figure 4.8
illustrates examples of input, output, and intermediagesfor this detector.

We use the detector based on RGB information to provide coatiga results and a
baseline performance for our system. Our proposed ges&cognition however integrates
a hand detector based on depth data which has been preseptediaus chapter 3. By
detecting hands in every frame we create @lrtrajectories that are given as input to our
recognition algorithm. These trajectories are then namedlin order to achieve translation
and scale invariance for our system. The process of norimglaur trajectories is described

in more detail at the next subsection 4.4.2.

4.4.2 Normalization

Translation and scale invariance are highly desirablegantags for any gesture recog-
nition system. Our method is based on DTW which doesn't iahily satisfy these two
properties. Hence we need to pre-process our locationrésatn order to account for dif-
ferences in translation and scale. When the hand detecampiged, we can segment the

hand region. Then we extract our features that will be giwinputs to DTW. We use a ba-

67



Figure 4.9.0n the top image we can see a trajectory representing thetaigi If the user moves
towards the camera this may result in a trajectory that appszaled up (middle image). If the
users changes his position with respect to the camera thigesalt in a trajectory that appears to
be translated (bottom image).

sic feature which is theD position(z, ) of the segmented region centroid. For any given
i, frame a2D feature vecto); = (z,y) is extracted. However, theD feature vector
representing position is translation and scale dependamer interacting with the gesture

recognition system doesn't have to always be located inaheeglace with respect to the
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Figure 4.10. In this figure we depict the output of our normalization psxe As input to the
normalization algorithm we gave the trajectories depietedrigure 4.11. The actual frame size for
the normalized images depicted her&d x 300.
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camera. Different placements of the user may result indtajees with different scale and
translation as one can see in Figure 4.9.

In order to render out method scale and translation invani@must use a normal-
ization step before we give our sequences of 2D vectors as$ iaTW.

Normalization is achieved in the following way:

e After we have the set of all 2D points corresponding to hamations, we can cal-
culate the Minimum Enclosing Circle (MEC) of that set.

e Then we find the bounding square box that has the same certteg B#=C and its
width length is twice the circle’s radius.

e Then we resize the square to a fixed siz8@f x 300.

By normalizing our features our system becomes translatnahscale invariant and
increases our recognition rates. The whole normalizatipelipe is depicted in Figure
4.12.

In Figure 4.11 we can see some images with the hand trajestbefore normaliza-
tion. Each red pixel represents the actual hand locationeofiesturing hand in each video
frame. In Figure 4.10 the same trajectories are depicted #ieé process of normalization.

Another normalization technique that has been proposeddayét al. [71] employs
a face-centric coordinate system. In order to detect the éheach user at the first frame
of the gesture the authors use the face detector of Rowlely 73]. The coordinate
system is defined so that the center of the face is at the orgid the diagonal of the
face bounding box has length The same scaling factor is applied to both the x and the y
direction. However a major disadvantage of this technigubat the user’s hand needs to
always have the same relative position with respect to tbe. fahis is a rather imposing
restriction that impedes the natural interaction betweasax and the gesture recognition

system.
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Figure 4.11.The trajectories represent all digits fraito 9. Each red pixel represents the actual
hand location of the gesturing hand in each video frame. Esagne of siz€40 x 320.
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Figure 4.12 This figure depicts our normalization process. On the tom@r(@ctual frame size is
240 x 320) we can see the original 2D trajectory based on the actual lvmations. Then (middle
image) we compute the Minimum Enclosing Circle (in red) amel ¢corresponding bounding box
(in green). Finally we resize the bounding box to predefirize af 300 x 300 (bottom image).

The main disadvantage of our normalization technique isitha sensitive to out-
liers as depicted in Figure 4.13. However the proposed hauing method based on

depth data manages to accurately define the hand locaticacinfeame resulting in 2D

trajectories without outliers.
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Figure 4.13.To the left image we can see a normalized trajectory. To tite image, is the same
trajectory normalized after adding some outliers. Cletingytrajectory has been shifted with respect
to the original position and has been scaled down.

4.5 Dynamic Time Warping

In time series analysis, dynamic time warping (DTW) is a wsliablished algorithm
for comparing temporal sequences which may vary in time eedp DTW addresses the
main problem of aligning two sequences in order to computentlost suitable distance
measure of their overall difference. Originally employgdtbe speech recognition com-
munity DTW can also be applied to temporal sequences of wid¢® or any type of data
that can be expressed as a liner sequence. DTW is a key algdot the gesture recog-
nition system described in this chapter. One of the sevedaligations that describe the
DTW algorithm is [38]. In this section we briefly describe thigorithm presented in that
paper.

Let M = (M, ..., M,,) be a model video sequence in which edchis a feature
vector and let) = (Qy,...,Q,) be a query video sequence in which e&ghis another
feature vector. In our experiments each feature vectoraoosit andy coordinates of the
2D hand location.M and@ have a length ofn andn, respectively corresponding to the
total number of frames of each video sequence. To align twaesgces using DTW, we

construct am-by-m matrix where thei(", j'*) element of the matrix contains the distance
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(M;, Q;) between the two feature vectai$; andQ); (i.e., d(M;,Q;) = ||M; — Q,||. For
our experimentgl is the Euclidean distance between two feature vectors. Heathx
element {, j) corresponds to the alignment between the feature vedfpend();. This is

illustrated in Figure 4.14.

(a) A modelM and query@ sequence

Q

(b) Warping matrix defining the alignment fa¢ and@

Figure 4.14. To align the sequences, we construct a warping matrix anguterthe optimal
warping path, shown with gray squares.
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A warping pathiV defines an alignment betweéhand@. Formally,W = w;, ..., wr,
wheremax(m,n) < T < m + n — 1. Eachw; = (1, j) specifies that feature vectdf; of
the model is matched with query feature veafpr The warping path is typically subject
to several constraints:

e Boundary conditionsw; = (1,1) andwy = (m,n). This requires the warping path
to start by matching the first frame of the model with the firatrie of the query, and
end by matching the last frame of the model with the last frafrtee query.

e Temporal continuity: Givem, = (a,b) thenw;_, = (a’,1'), wherea — a’ < 1 and
b — Ut < 1. This restricts the allowable steps in the warping path jacaht cells
along the two temporal dimensions.

e Temporal monotonicity: Givem; = (a,b) thenw, ; = (d’, ') wherea — a’ > 0
andb — b’ > 0. This forces the warping path sequence to increase mormaignin
the two temporal dimensions.

An exponential number of warping paths can be found thatradiwethe above re-
strictions. However DTW computes the optimal path that wilhimize the following

warping cost:
T
DTW (M, Q) = min{¢| Y w;} (4.4)
t=1

This path can be found using dynamic programming (see Algor2) which com-
putes the cumulative distaneé€i, j) as the distancé(i, j) found in the current cell and the

minimum of the cumulative distances of the adjacent element

(0, 7) = d(M;, Q;) +min{y(i — 1,5 = 1),7(i = 1,5),7(6,j — 1)} (4.5)

The time and space complexity of DTW@&nm).
The Euclidean distance between two sequences can be sespexsad case of DTW

where thekth element of W is constrained such that = (i, j)x, ¢ = 7 = k. Note that it is
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WAL

(a) Euclidean distance

(b) DTW

Figure 4.15.Note that the two sequences are quite similar but not aligmele time axis. Eu-
clidean distance doesn't take into account the fact thatviioetime series are out of phase. Hence
it will produce a pessimistic dissimilarity measure. DTVigament will provide a more intuitive
distance measure.

only defined in the special case where the two sequenceslmagame length (see Figure
4.15).

Given warping path element;, = (i, j), we define the se¥ (i, j) to be the set of all
possible values ofv;_; that satisfy the warping path constraints (in particulantowity

and monotonicity):

We assume that we have a cost measlifej) = d(M;, Q);) between two feature
vectors)M; and(@);. In our experimentd(i, j) is the Euclidean distance. DTW finds the

optimal pathi/* and the global matching scofe* as described in Algorithm 2.
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input  : A sequence of model feature vectdi, 1 < i < m, and a sequence of

query feature vector@;,1 < j <n.
output : A global matching costD*, and an optimal warping path’* =

(Wi, ..., wh).
D(1,1) =d(1,1) // Initialization

j=1fort=2:mdo

‘ D(i,1) = D(i — 1,1) +d(i,1)
end

i=1for j=2:ndo

end

for i =2:mdo

/I lterationfor j =2 : n do
w = (i, ])

for w’ € N(w) do

‘ C(w',w) = D(w'),
end

D(w) = d(w) + minyenw) C(w', w)

b(w) = argmin,, ¢ v, C(w', w)

end

end
k* = argmin, {D(m,n)} // Termination
D* = D(m,n,)
wh = (m,n,)
wy_; = b(wy) Il Backtrack
Algorithm 2: The DTW algorithm
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4.6 Experiments and Results

To evaluate the performance of our method we have createch@digned digit
recognition system. The training videos that we use areigyldvailable, as described
in [71]. In that data, the trajectories can be easily foundg¢esthe persons signing the
digits are wearing a green colored glove. This is a convarthat we allow only on our
training data which we then preprocess offline in order tateréne trajectories. However
this is not the case for the testing data. Our test video semsehave been captured in
some really challenging settings so as to measure the rodsssof our proposed and previ-
ous methods. The test data have been collected with the Ktheamera using an image
resolution of640 x 480. In more detail our datasets have been organized as follows:

e Training examples300 digit exemplars (30 per class) were stored in the database
(See Figure 4.5). A total number af) users have been employed to collect all
training data

e Test gesturestO digit exemplars (20 per class) were used as queries. For @t
the users were wearing short-sleeve shirts contrary to gesstire recognition meth-
ods. We will refer to this half of the test set as #msy test setFor the remaining
20 exemplars, we have created even more challenging consljitwith people and
various objects moving constantly in the background. Iaway we want to demon-
strate that most of the previous methods fail while our psggomethod remains
robust even in the harshest conditions. We will refer to i of the test set as the
hard test setA total number o users have been employed to collect all test data.
It is important to note that recognition was performed irsar-independemhanner:

we never use a model video sequence as a test query. Thedess\iave been collected
from users that do not appear in the training videos. Usingradldetector we extract a

trajectory from a test query. Then we compare that trajgototh all the pre-computed
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training trajectories and using 1-NN Nearest Neighbor sifesition we classify our test

signed digit as one of the 10 classes, ranging from 0 to 9.

100 1
901 |
801T] ODTW (perfect hand
701771 detector)
6017
501T] m DTW (simple hand
401 detector)
3017
2047} O DTW {using our
107 "depth hand
0 detector”)

easy test hard test cumulative
set set

Figure 4.16 Results.

First we test the performance of DTW given that we have a pefand detector
for our test sequences. To extract the trajectories in #sg eve have resorted to manual
annotation. Naturally, the gesture recognition is 100%eate and all digits are classified
correctly. Then we test DTW by employing another detectoictvluses motion and skin
color to locate the hand in each frame. This will also serva baseline performance for
our system. For theasy test satve achieve an accuracy of 85% while for thard test
setthe accuracy reduces drastically down to 20% emphasizmgvkakness of previous
methods in such challenging environments. Finally, ourho@tachieves an accuracy of
95% for both test sets. All results are depicted in Figuré4.1

Total processing time for tracking the hand in a single fraorea PC with a 2.00
GHz Intel(R) Xeon(R) E5406 processor, is about 0.673 sexohide code is rather unopti-
mized and implemented in MATLAB R2012a. Processing timelwarastically reduced
depending on our I/O and memory management strategy. Inthert implementation, we
read each frame (saved as a separate file) from the disk,gaddimgnificant computation
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overhead for just reading and loading each single frame imong The computation time
for the recognition algorithm, including the normalizatistep, is about 19 seconds for a
random gesture containing 68 frames. The normalizatigntsiees as input the whole set
of 2D gesturing points. This introduces a small latency to oungedion algorithm which

requires that the whole gesture has to be first captured.

4.6.1 Conclusion and Future Work

This thesis chapter has introduced a translation and so@deiant gesture recog-
nition method that can achieve high performance even ineigihg environments with
backgrounds full of moving people and objects. The contitlouof this chapter is a ges-
ture recognition system that integrates a hand detecteda@smotion detection and depth
segmentation that can accurately locate the hand at eadle.fran top of the detector the
features are normalized and then the Dynamic Time Warpiggrithm is employed in
order to recognize the gestures. Incorporating transiaml scale invariance makes the
proposed system more user friendly since the user has festeictions as to where exactly
he needs to be placed with respect to the camera. However restnietions remain and
one of them is viewpoint invariance. The current methodm&s.that the user always faces
the camera so as to capture a frontal view of the gesture. femsion of this approach that
can handle arbitrary camera viewpoints is presented in €h&p Another open problem
that needs investigation is temporal segmentation. In tineent approach the beginning
and end frame for each gesture is manually annotated. Atitogrtais procedure (e.g., by
using a distinct pose for the non-gesturing hand) remainsduvork. Finally, we would
like to expand our gesture recognition system in order to@@ccodate more challenging
gestures from other domains such as the American Sign Lgegudl the aforementioned
future directions address interesting research problemisiplementing them is out of the

scope of the current thesis.
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CHAPTER 5
VIEWPOINT INVARIANT GESTURE RECOGNITION USING RGB-D

5.1 Introduction

Towards developing NUI systems the ultimate goal is to affethe user a type of
interaction that is as natural and unconstrained as pessHbdénce, two highly desirable
properties for any action/gesture recognition systemsgasesand translation invariance.
The method we proposed at previous chapter 4 satisfies bopleies. However another
essential property that needs to be addressed is viewpwariance. Typically, most ges-
ture recognition approaches assume that the gesturing @dronto-parallel to the cam-
era image plane. However this imposes a restriction to tke as he can not be placed
freely under an arbitrary viewpoint with respect to the cean&ven though there is a vast
amount of literature on gesture and action recognition,dpproaches explicitly target the
viewpoint invariance property. At the same time traditiom&thods rely or2 D and most
recently orn2.5D data where there might be loss of information from the oab#D ges-
tures. Relying or2D information means that the analyzed trajectory is just geptmn
onto the image plane of the actudD gesture. Depending on the viewpoint and after the
projection we might loose useful information that was poegly encoded in thaD data.

In this chapter we will extend our method to expldi? point clouds and handle cases
where the user is not standing fronto-parallel to the camkrstead we allow the user to
perform gestures in such a way that the gesturing plane roghdtated with respect to the
camera image plane. We consider rotations along the caroerdinate system axis but
our method can also handle differences alongitlais. To estimate these angles we use

the unit length normal vector of the gesturing plane. In oqpregiments we recorded videos
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and we managed to recognize gestures from a set of differewpwints: {£45°, +75°}.
Our system has some attractive properties which can be stiradas follows:

1. Itis trained from videos captured under one specific cana@wpoint but it can be
tested with gestures captured under arbitrary camera aiedg In our experiments
we opt to train our system with a camera viewpoint where tlee issstanding fronto-
parallel to the image plane. For testing the videos are cagtunder the following
set of viewpointg+45°, +75°}.

2. ltis all-together translation, scale and viewpoint mamat. To the best of our knowl-
edge few gesture recognition methods satisfy all these threperties at the same
time

3. It employs an affordable, commercially available seifser, Microsoft Kinect™) as
opposed to an expensive laboratory sensor or a cumbersditmatsd multi-camera
set-up
In the next section 5.2 we will present related work for viewariant action/gesture

recognition.

5.2 Related Work

One of the earliest works on viewpoint invariant gesturegaition has been pro-
posed by Weinland et al. [73]. They introduced a free-viewprepresentation olo-
tion History VolumegMHV) for human actions using an experimental setup of miét
calibrated and background-subtracted video camerasméaltigly their goal was to build
free-viewpoint class models from view-invariant motiorsdeptors. To acquire the motion
descriptors the main assumption is that viewpoint vaniare expressed with respect to
the vertical axis of the gesturing body. Then the motion tewes (MHV) can be expressed

invariantly (translation and rotation) around the bodysdy using Fourier-magnitudes and
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cylindrical coordinates. After computing motion desaooistin a view-invariant way the fi-

nal task is to recognize or classify the actions. This isdglty done by learning statistical
models of the temporal sequencing of the descriptors. flitz#on is achieved using di-

mensionality reduction (PCA) coupled with Mahalanobigalise and linear discriminant
analysis (LDA). Experimental results are reported on a B&flactions (IXMAS dataset)

captured in a laboratory environment with five Firewire ceasehat were calibrated and
synchronized.

In [74] Souvenir and Babbs use the same dataset (i.e IXMASjdouraining pur-
poses they animate the visual hull of gesturing body andeptdhe silhouette onto 64
evenly spaced virtual cameras located around the bodytgcakeaxis. They model ap-
pearance of actions as a function of the camera viewpointelMdpecifically they formu-
late actions by learning a low-dimensional representatfdngh-dimensionaR transform
surfaces, which lie on or near a low-dimensional manifold other words;R transform
surfaces vary as a function of the viewpoint parameter wisclearned with manifold
learning.

All the above methods rely on a multi-camera experimentaips@here all cameras
need to be calibrated and synchronized. Such an elabotaieatary setting can not be
applied when we need to observe actions in scenarios witheonstrained real environ-
ments (e.g., smart homes or sign language recognitioncgioins). At the same time the
training phase for many different viewpoints can be an exélg strenuous process.

More recently, Holte et al. [75] have proposed a method tbasd't require a set
of multiple calibrated cameras. Instead they employ a TafaElight (ToF) range camera,
namely the SwissRanger SR4000. This range camera can prBdB-D synchronized
image frames similarly to the Kin€ét device, as described in previous chapters. The au-
thors represent gestures as an ordered sequeféembtion primitives Since the focus of

that work is on hand gestures a segmentation based on mstmpilied in order to isolate
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arms from the rest of the body. More specifically the arms atmeted by using 8D
version of optical flow in order to compute velocity annotap®int clouds that are finally
represented by themotion contextMotion context is an extended version of regular shape
context. The3D motion primitives can be expressed in an invariant way watpect to
rotation around the vertical axis. Towards this end the@stbhoose to use spherical har-
monic basis functions, yielding a harmonic motion contexresentation. In each video
frame, the observed data can be represented by a primitaey(j. After identifying prim-
itives from consecutive frames a discrete recognition fgmbcan be constructed, since a
video sequence of range data will be converted into a stngaining a sequence of sym-
bols, each representing a primitive. After pruning thengtrd probabilistic Edit Distance
classifier is applied in order to determine which gesture tegsesents the pruned string.

Our proposed method for view invariant gesture recognitsotnained with videos
from one camera viewpoint and tested with videos taken frompietely different view-
points ranging from-75° to +75°. The main advantages of our approach over [75] are the
following:

1. We use an affordable, commercially available sensor, (iécrosoft Kinect™) as
opposed to an expensive laboratory sensor like the SwiggR&R4000.
2. We can recognize gestures captured from a wider set ofpaimis, ranging from

—T75° to +75° as opposed to a smaller set of viewpoints (see [75]) rangio f

—45° to +45°.

A more comprehensive survey regarding viewpoint invariggsture/action recogni-
tion methods can be found at [76]. The remainder of this @raptorganized as follows.
In the next section 5.3 we describe in more detail our metimoldmsection 5.4 we present
the experimental setup and results. Finally at section 8.8anclude and discuss possible

future work.
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5.3 Methodology
We propose a viewpoint invariant gesture recognition sydteat can be seen as an
extension of our system presented at previous chapter 4 mHieadvantage here is that
we can recognize gestures extracted from videos that haae deptured under varying
viewpoint directions of the camera with respect to the us@r each video we employ
RGB and depth information in order to determine #i¢ hand locations of the gesturing
hand. Relying or2D information means that the analyzed trajectory is just geptmn
onto the image plane of the actudD gesture. Depending on the viewpoint and after the
projection we might loose useful information that was poergly encoded in thaD data.
To address this issue we will define our trajectories in Béfand3 D space. By combining
the registered and synchronized RGB and depth frames issilgie to construciD point
clouds and thus estimasé) hand locations. The framework for capturing and processing
3D point clouds is offered by the Point Cloud Library (PCL) [/Which is a large scale,
open project foR D /3D image and point cloud processing. By using the RGB and depth
frame along with the camera’s (i.e., Kin€¢} intrinsic and extrinsic parameters PCL offers
a fully 3D reconstructed point cloud. An interesting property of tee/point cloud is that
for each:, j pixel of the original VGA resolution image we can now haveesscto the
corresponding D coordinates:, y andz expressed in meters. So for any given pixelve
know all-together:
e 2D spatial information, i.e., row and columi { respectively)
e Color information (i.e., RGB value fay;)
e 3D spatial information based an y, » coordinates, expressed in3& coordinate
system where the origin coincides with the optical cente¢hefKinect™ RGB sen-
sor. In Figure 5.1 we can see a snapshot of a rendered poirat along with the3 D

coordinate system. Unit of measurement is in meters. Rexligxj green axis ig

85



and finally blue axis:. PCL defines th&D coordinate system following the same

conventions as thginhole camera model

Figure 5.1. This figure depicts a point cloud with a user performing awest The origin of
the 3D coordinate system coincides with the optical center of tiree&f’™ RGB sensor. Unit of
measurement is in meters. Red axig igreen axis ig and finally blue axis igz. PCL defines the
3D coordinate system following the same conventions agpitiigole camera model

By using PCL, any extracte?lD trajectory can be also expressed &d atrajectory
now. Towards quantifying the differences between vari@meara viewpoints we first need
to define thegesturing plane This can be computed by fitting a plane for the points that
belong to the3 D trajectory and correspond to the actual hand locationsdh #ame. This
imposes the restriction that all gesturing points need todiplanar. Future work will be
to define thegesturing plandy fitting a plane for the points that belong to the torso of the
user. In this way our method could handle a wider set of gestwithout requiring them

to be co-planar. We expre8#® planes in theiHessian Normal fornfsee Equation 5.1),

n-r=-—p (5.1)



wherep is the distance of the plane from the origin and veétet (n., n,,n.) is the
unit normal vector (normal to the surface of the plane) aisccdmponents are defined as
shown respectively at equations 5.3, 5.4, 5.5. The gengualt®n of a3 D plane is defined
at Eq. 5.2.

ar +by+cz+d=0 (5.2)
a
Ny = ——— 5.3
Vi :3)
b
Ny = ——— (5.4)

Ny = (5.5)

Pt Errre &0

By using the unit length normal vectarof the gesturing planave can compute the
camera viewpoint anglé with respect to the user. Let's denote withthe projection of:
onto theX 7 plane. We define abthe rotation angle betweer and the unit length normal
vector z that lies onz axis. Rotation anglé@ can quantify differences between various
camera viewpoints. But, most importantly we can @de apply a3D transformation for

the points comprising th&D trajectory. Towards that end we construct the 3 rotation

matrix R, (0) (see Eq. 5.7) as follows:
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R,(0) = 0o 1 0 (5.7)
—sin(f) 0 cos(6)

After multiplying to the left the transformation matrix,(¢) with all 3D trajectory
points the anglé between image plane and gesturing plane will get reducedrtm@ =
0°). Matrix R, (#) accounts for rotations with respect to the camegis but in a similar
fashion we can also handle cases where we also have rotatittngespect to the camera
x-axis. After the transformation we can regard 8@ gesture being captured as if the user
was standing fronto-parallel to the camera. We can exthectorresponding@D gesture
by projecting all points onto th&'Y plane. We illustrate the effect of that transformation
in Figures 5.3 and 5.4. First, in Figure 5.3 be show 2M& trajectories that have been
generated by detecting hand locations in a video whete75° (see also Figure 5.2). Itis

evident that useful information from the origirtaD gestures has been lost.

Figure 5.2.This figure depicts a user performing a gesture from a camievgpoint such as that
0 = T75°.
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Figure 5.3. In this figure we depicRD trajectories that have been created by detecting hand
locations in2D RGB-D images. The origindd D gestures represent hand-signed digits ffdio

9. The user is not facing the camera from a frontal view but febmewpoint withd = 75°. The
actual frame size for the depicted image8(8 x 300.
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In Figure 5.4 we demonstrate the effect of the transformation. The origin&d D

gestures here are the same as in previous figure 5.3. We &episansformation so as the

gesturing plandecomes parallel to the image plane. Finally we depicRihdrajectories

created by projecting theD points ontoX'Y plane.

Since our system is trained with fronto-paralid) trajectories we can classify the

transforme® D gestures with Nearest Neighbor classification employing\DAas a simi-

larity measure. The general framework for the proposed wigariant gesture recognition

method can be summarized as follows with the following steps

1.

In each frame we compute tB® hand locations, manually or automatically with a
hand tracker. In the end we have R trajectory representing our gesture.

By using PCL we can express th® trajectory in3D.

. Fit a plane for th&D trajectory by using RANSAC. Gesturing plane is expressed in

Hessian Normal form

Find the transformation matrix that aligns the unit léngbrmal vector of the ges-
turing plane with the: unit length vector of the image coordinate system.

Apply that transformation to allD points of the trajectory and then project to the
XY image plane.

Normalize the D trajectory (see subsection 4.4.2 of chapter 4)

Classify the new transformed and normali2dd trajectory, by giving it as input to
the DTW algorithm and find the best match from our trainingatdase. The Near-
est Neighbor classification scheme we employ here is the sane the previous
Chapter 4.

The next subsection describes RANSAC algorithm which isldgecomputing the

parameters of thgesturing plane
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Figure 5.4.In this figure we demonstrate the effect of the transformation. The original hand-
signed digit3D gestures are the same as in previous figure 5.3. We applyahsfdarmation so

as thegesturing planebecomes parallel to the image plane. Finally we depictbetrajectories
created by projecting th&D points ontoX'Y plane. The actual frame size for the depicted images
is 300 x 300.
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5.3.1 RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm proposeéibghler and
Bolles [78] is an iterative method for fitting of parametriodels which is specifically de-
signed to be robust in the presence of many data outliersalbhon-deterministic algorithm
in the sense that it produces a reasonable result only widrtaic probability, with this
probability increasing as more iterations are allowed. FSAE is a re-sampling technique
that generates model hypotheses by employing the minimunbauof input data (data
points) required to estimate the underlying model parareet®o for example, when esti-
mating3D planes (as in our experiments) it requires only three datapto estimate the
plane parameters. This is in contrast with traditional damggechniques that first require
a large set of input data for the initial parameters estiomaéind then prune out outliers.
RANSAC first uses the smallest possible set of input data laed éxpands it in a iterative
fashion with more data that are consistent with the initiaided parameters. The basic
algorithm is formally described here:

Lets denote withp the probability that at least one set or random data item&aan
only inliers. Typicallyp is set t00.99. Lets denote withp;,;;.. the probability that any
selected data item is an inlier. Lets denote wigh,;.. the probability that a selected data

item is an outlier. We know that:

Poutlier = 1-— DPinlier (58)

Remember thatV is the number of minimum required data items in order to de-
fine the model parameters. The number of iteratibnsan be determined based on the

following equation:

1 - p= (1 - (pinlier)N)L (59)
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input @ A fitting problem with parameters, as set of total\/ input points, the
numberN of minimum required points to define the model parameters,

is the maximum number of iterationsandx are predefined thresholds
output : The estimated model parameters and the set of inlier points
fori=1:Ldo

selectN minimum required data points randomly;
estimater (i.e., model parameters);
find numberD of all data items (out of\/) that are consistent with our model

parameters, given a toleraneg

D
ifM>7then

re-estimate the model parameterssing all D data items;

exit and returnc along with theD data items;
end

end

fail if you get here;
Algorithm 3: The RANSAC algorithm

. log(1 — p)
B lOg(l - (]- - poutlier)N)
One of the main advantages of RANSAC is that it can robustiynede the model

(5.10)

parameters even in the presence of a large amount of outli¢he original data-set. On
the other hand because of the non-determinist nature oflgjeeithm there is no upper
bound for the computation time for estimating the correcdeli@arameters. The more
iterations performed the higher the probability of an aateimodel being estimated. At
the same RANSAC requires the setting of problem-specifestiolds. Contrary to many of
the common robust estimation techniques, such as M-estimahd least-median squares

that have been derived from the statistics literature, RASSvas developed from within
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the computer vision community. In our experiments we empAWNSAC to computes D
gesturing planes. Next section 5.4 presents experimeargalts assessing the performance

of the proposed method.

5.4 Experimental Results

One of the main advantages of our viewpoint invariant gestecognition method is
that it can be trained from one camera viewpoint and testdémnwarious different camera
viewpoints. In our experiments we choose to train our sydigmsing a camera viewpoint
where the user is standing fronto-parallel to the imageeldrhe training videos that we
use are the same as in previous Chapter 4. All gestures egpresnd-signed digits from
0 to 9. Our training database consists300 digit exemplars (30 per class) expressed as
normalized2D trajectories. A total number afd users have been employed to collect all

training data.

5.4.1 Testing Dataset

For testing purposes we have captured videos under varamasra viewpoints rang-
ing from —75° to +75°. More specifically we have tested our system under the fatigw
4 different viewpoint angle§+45°, £75°}. Figure 5.5 shows a user performing gestures
under some of the aforementioned viewpoint angles.

At total of 3 users participated in the creation of our test dataset. EHaeh has
performed gestures with different camera viewpoints. For each viewpoint and user we
have collected 0 gestures representing hand-signed digits (foam9). We have collected
atotal of3 x4 x 10 = 120 testing gestures and a totala¥36 frames. Since the focus of this
Chapter is on the viewpoint invariant recognition algantive have manually identified the
original 2D hand locations in the test video sequences. Implementirsgiomatic hand

tracker that can handle different camera viewpoint angdesains future work.
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(a) User fronto-parallel to the image
plane.d = 0°

(c) viewpoint anglé) = —75° (d) viewpoint angled = +90°

Figure 5.5.User performing gestures under various camera viewpoints.

Right now we have preliminary results for the cases wiere{+45°, £75°}. First
we tested our gesture recognition system from Chapter 4odetton rates are reduced
drastically down t®3.33% with a change in viewpoint of about75°. However when test-
ing our new view invariant method recognition rates remairy\high93.33% proving that
our system is indeed viewpoint invariant. Results are de@in Figure 5.6. Cumulative
recognition rate for our proposed method#&33% while for our competitor recognition
accuracy is reduced down 1d.66%.

Total processing time for the recognition algorithm, irtthg fitting the plane, trans-
forming and normalizing theD points, on a PC with a 2.00 GHz Intel(R) Xeon(R) E5406
processor, is about 19 seconds. Estimating the plane amsfdraning takes about 0.16

seconds and normalization takes about 0.15 seconds. Tleesoather unoptimized and
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DTW
(Gesture
Recognition
method from
Chapter 4)

Proposed
Viewpoint
Invariant
method

75 -75 45 -45total

Figure 5.6.Results for our view invariant gesture recognition methd: comparison we tested
our gesture recognition method from previous Chapter 4.

implemented in MATLAB R2012a. The plane estimation ste$a&s input the whole set
of 3D gesturing points. This introduces a small latency to oungedion algorithm which

requires that the whole gesture has to be first captured.

5.5 Discussion and Future Work

This chapter proposed a novel view invariant gesture radogmmethod that can
recognize gestures from videos captured under various ream@vpoints ranging from
—T75°t0 +75°. The proposed system can be trained with gestures captamdaf specific
viewpoint and tested with gestures from various viewpoir@r system is all-together
translation, scale and viewpoint invariant. To the bestwfkmowledge few gesture recog-
nition methods satisfy all these three properties at theesame.

Experimental results that the proposed method is indeed wvieariant even in the
cases of extreme viewpoint angles like= 75° or § = —75°. An open research problem
that needs investigation is automating temporal segmentdn the current approach the

beginning and end frame for each gesture is manually aretbtautomating this pro-
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cedure (e.g., by using a distinct pose for the non-gesturangl) remains future work.
Automatic hand tracking in order to handle different camaesvpoint angles also remains
future work. Finally, we would like to expand our gestureagition system in order to
accommodate more challenging gestures from other domaatsas the American Sign

Language.
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CHAPTER 6
DISCUSSION AND CONCLUSIONS

6.1 Discussion of Contributions

This thesis investigated methods for viewpoint invariaggtgre recognition angiD
hand pose estimation. First, Chapter 2 proposed a viewpuiatiant hand pose estima-
tion method using RGB-D. It proposed an exemplar-based odettiat relies on similar-
ity measures employing depth information. At the same titaeards making 3D hand
pose estimation methods more automatic, a novel hand ségtioermethod has been in-
troduced which also relies on depth data. Contrary to ptevapproaches the proposed
clutter-tolerant method is all-together: user-indepemdautomatically detects and seg-
ments the hand from a single image (no multi-view or motioescemployed) and provides
estimation not only for the 3D pose orientation but also fa tull hand articulation pa-
rameters. Depth information increases the discrimingtimmer of our method, according
to the experiments conducted. At the same time, differemcasthropometric parameters
and clutter in background are two important factors inflilgaecognition accuracy of
our system. Experimental evaluation of these two factossligen provided by quantita-
tively measuring their influence on the performance of owppsed similarity measures.
Estimating hand pose from a single image can be useful imaattoally initializing hand
trackers that can be integrated with gesture recognitistegsys.

On the topic of gesture recognition, a novel method is pregdbat combines a
well known similarity measure, namely the Dynamic Time Wagp(DTW), with a new
hand tracking method which on based on motion from framedificing which we com-

bine with a depth segmentation according to the depth irdtion we have for each pixel.
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Depth frames have been captured using Microsoft's KiteBGB-Depth sensor. First, at
Chapter 3 we evaluate our depth hand tracker against ondgs@pen source user skele-
ton tracker by examining its performance on random signs fraataset of American Sign
Language (ASL) signs. This evaluation can be seen as alootim since it can serve as a
benchmark for the assessment of more advanced detectidgraakohg methods that utilize
RGB-D data. Another contribution of Chapter 3 is the intrction of a structured motion
dataset of (ASL) signs which has been captured in both RGBdapth format using a
Microsoft Kinect™ sensor and it will enable researchers to explore body part tiands)
detection and tracking methods, as well as gesture recogikgorithms.

Chapter 4 proposes a novel gesture recognition systenmtiegrates the depth hand
tracker presented at chapter 3. The proposed method wag treeaarliest ones that used
depth information from the KinetY sensor. Some interesting properties of the proposed
system are the following:

o It performs very well even in very challenging environmewith the presence of
multiple "distractors” like moving objects, or skin colatr®bjects (e.g., face, non-
gesturing hand, background objects).

e Itis robustto overlaps between the gesturing hand and tee fa

e Itis translation and scale invariant; the gesture can oiccany part of the image.

e Unlike HMMs and CONDENSATION-based gesture recognitiom method re-
quires no knowledge of observation and transition derssitend therefore can be
applied even if we have a single example per class.

e Our method can be generalized and applied to recognize a vadge of gestures,
other than signs of digits.

Finally, Chapter 5 contributes to the state of the art byreiteg the proposed gesture
recognition system in order to handle cases where the uset istanding fronto-parallel

with respect to the camera. In our experiments we recordaéelogi and we managed to
99



recognize gestures from a set of different viewpoits45°, £75°}. Our view invariant
gesture recognition method has some attractive propestidésh can be summarized as
follows:

1. Itis trained from videos captured under one specific cana@wpoint but it can be
tested with gestures captured under arbitrary camera aiedg In our experiments
we opt to train our system with a camera viewpoint where tlee issstanding fronto-
parallel to the image plane. For testing the videos are cagtunder the following
set of viewpointg+45°, +75°}.

2. Itis all-together translation, scale and viewpoint nieat. To the best of our knowl-
edge few gesture recognition methods satisfy all these threperties at the same
time

3. Itemploys an affordable, commercially available seffiser, Microsoft Kinect™) as
opposed to an expensive laboratory sensor or a cumbersditmatsad multi-camera

set-up

6.2 Future Work
On the topic of3D hand pose estimation the retrieval accuracy for the prapose

system is still too low to be used as a stand-alone module@oha&nd pose estimation
and/or gesture recognition. Future work will be to define ensophisticated similarity
measures further exploiting depth information. At thismialepth data and the way we
have used it can be regarded a8.aD source of information. By using the Kinétt
camera’s intrinsic and extrinsic parameters we can coctsil) point clouds and start
exploiting this richer source of information. We could expeent with features like surface

normals and othe3 D feature descriptors. Our system currently doesn’t achieaktime
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performance. In order to do so and since our method is intigngarallel, additional future
work will be to take advantage of the GPU's parallel proaaggiower.

On the topic of view invariant gesture recognition an opevbfem that needs in-
vestigation is automating temporal segmentation. In threeow approach the beginning
and end frame for each gesture is manually annotated. Autogniis procedure (e.g.,
by using a distinct pose for the non-gesturing hand) renmfaitnse work. Automatic hand
tracking in order to handle different camera viewpoint &sghlso remains future work.
Finally, we would like to expand our gesture recognitiontegsin order to accommodate

more challenging gestures from other domains such as theiéaneSign Language.
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