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ABSTRACT

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK BASED BLACK BOX

MODEL OF A DATA CENTER AS A TEMPERATURE PREDICTING TOOL

AS A FUNCTION OF SERVER LOCATION, DISSIPATING SERVER HEAT

AND CRAC FAN SPEED

Chinmay Date, M. Sci.

The University of Texas at Arlington, 2013

Supervising Professor: Dr. Alan Bowling

Modern data centers consume an astonishing 1.3% power all around the world.

As the number of data centers continue to grow, there is an increasing need and

demand to develop new ways to reduce the power footprint. Several approaches are

being made to achieve this. One of such several approaches is to develop control

systems that would keep the data centers running energy efficiently. Various control

theories have been developed throughout the world to achieve the optimal energy

efficient state. However, during the synthesis of such control schemes, the CFD

simulations take up excessive time for plotting the thermal map of such complex,

dynamic and highly nonlinear data center systems. In this paper, we aim to develop

and train artificial neural networks for a typical scaled setup of modern data center like

a Black Box Model which would predict the temperature at points in the state space

throughout the room as a function of the dissipating heat at those points and CRAC

fan speeds at the time. Due to significantly low analysis time than computational fluid
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dynamics, the Black Box is able to predict the temperatures in real time at different

points in the setup thereby enabling faster optimization analysis. The Neural model

is trained on a huge set of data generated by CFD simulations from hypothetical

arrangements in a data center. Discussion about neural network training functions,

its training parameters and comparisons of accuracy and computational time and the

reason for the same is also done in this paper. Various suggestions to train such

highly non linear and dynamic systems are summarized. To prove the accuracy of

the neural network, the data generated is compared to the output of the CFD model.

The robustness of the Black Box within the training data limits has been verified for

changing CRAC fan speed and server heat. The Black Box tool developed is not only

accurate but also very fast which enables its use in a feed forward adaptive control

setup or the dynamic learning setup or both. Such a Black Box tool mimicking the

CFD proves very useful in development of control systems for data centers.
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CHAPTER 1

Introduction

Modern data centers are growing in size and scale as we are moving forward

in technology. As the data centers continue to grow in size, their footprint on power

usage is becoming more significant by the day. As per the US Environmental Pro-

tection Agency, EPA estimations, the data centers and servers throughout the US

has consumed an astonishing 1.5 % of total power in 2006 which is the peakload

equivalent to the output of 15 baseload power plants. These were predicted to almost

double by 2011. This amounts to a major chunk of the global power. The high power

usage results in higher energy costs. Environmental concerns and more importantly

higher power costs have led the manufacturers and users of such systems to explore

newer and better ways to improve their energy efficiency.

Figure 1.1. Power Usage Effectiveness.

The term PUE is a metric used to determine the efficiency of a data center industry.
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It is the ratio of the total power used for the facility to the IT load catered. According

to the Uptime Institute, most data centers had an average PUE of 2.5. Using the

most energy efficient methods available, some of the data centers could achieve 1.6.

When put in perspective, this means for every 2.5 Watts of power, only 1 Watt is

used for the IT load. This is highly inefficient as we want the PUE to be near 1.

Therefore, attempts to improve the energy efficiency of such power guzzling data

centers are being made in various aspects of the facility. Recent results published by

Google Inc. shows them to have a PUE of 1.14. But this has been the most efficient

data recorded by any data center known. The data center industry is continually in

search of other energy efficient practices to reduce their PUE. Hot, cold aisle contain-

ment, better heat exchanger designs, application of evaporative cooling, changes in

layout, load scheduling, Waste Heat Recovery and application of absorption cooling,

contamination studies, etc. are various fields in which a lot of studies, experiments

and testing is being done to improve the efficiency of modern data centers.

Development of control systems to control such data centers is an efficient way to

reduce power footprint. The need for such control algorithms to be scalable and ef-

fective is huge. These controllers need to be smart, fast, adaptive and dynamic in

nature to control a highly non linear environment like that in a data center. The need

for a predictive and fast controller is huge as the repercussions of ineffective or failed

control are huge both in terms of cost and time.

Computational Fluid Dynamics is used currently to model data centers in computer

software and simulate their behavior or response to certain present conditions. CFD

is not only expensive to model but also requires an experienced user. moreover, the

CFD still lacks complete accuracy to the actual facility. All the control theories being

developed today use CFD as reference data in the development stage and later for the

verification studies. However, as the complexity of the data centers is increasing, the
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model based simulations take very long hours to achieve steady state for a preset con-

dition. This lengthens the parametric studies and thereby development of controllers.

Moreover, every minute change in the input parameters of a complex system has a

high effect response from a system. So a control engineer has to spend a lot of time on

verification studies and still faces the problem of highly unpredictable response if the

system goes out of control. Hence there is a very urgent need to develop predictive

type of control for such highly non linear and complex systems.

Artificial Neural Networks have been around for a long time and have been effectively

used for pattern recognition and data manipulation. We aim to use this pattern recog-

nition and duplicating effects of the neural network to our advantage in this approach.

The Data Center is a complex system wherein the thermal characteristics have a very

complex combination of heat and mass transfer. These systems form parallel inter-

connections of dynamic elements that are highly coupled energy sources, energy sinks

and energy storage units. The primary challenge of the thermal management system

is to maintain the peak temperature for any server within some preset zone of temper-

ature band. These systems form parallel interconnections of dynamic elements that

are highly coupled energy sources, energy sinks and energy storage units. The highly

varying local temperatures, point source temperature measurements and cooling to-

gether create an under actuated system which can be called unobservable due to its

sheer complex nature. This is a challenging scenario for any successful feed-forward

or feedback control system design.

The main reason behind the application of neural network for data prediction

is its fast computational rates over the regular CFD techniques. Neural Networks

as a concept has been derived from the biological human brain which gives it the

capacity to learn from the training data and model relationships between the inputs

3



Figure 1.2. A Simple MLP Neural Network.

and outputs of any level of complexity. They have an increasing application by the

day to accomplish complex tasks such as modeling, approximations, classification and

optimization. Neural networks have been proven to be very efficient in approximation

of nonlinear mapping with a high degree of accuracy. When such a system is analyzed

by the conventional CFD techniques, the analysis time is too large which hinders the

approaches to improve the system. To reduce this analysis time we use the Multi

Layered Perceptron(MLP) technique which is a feed-forward artificial neural network

model that maps sets of input data onto a set of appropriate output. An MLP consists

of multiple layers of nodes in a directed graph, with each layer fully connected to the

next one. Except for the input nodes, each node is a neuron (or processing element)

with a nonlinear activation function. MLP utilizes a supervised learning technique

called back-propagation for training the network. MLP is a modified form of the

standard perceptron and has the ability to effectively distinguish given data which is

not linearly separable. If there would be a neural network based tool which would

predict the behavior of the data center when given a preset input, would prove very

useful. Such a tool could be used for proof of concept as well as direct use in a feed

4



forward controller. Hence, the development of such a Black Box Model of a data

center mimicking the CFD was thought of and developed.

Figure 1.3. Black Box Model.
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CHAPTER 2

Background

2.1 Data Center Room Air Flow

A Data Center is a facility which houses servers, storage devices, computers and

other such IT equipment. Such rooms need conditioned air at precise temperatures

for predictable performance. ASHRAE Thermal Guidelines for Data Centers recom-

mends inlet temperatures in the range of 10 to 35◦C (50-95◦F) for Class A1 (high-end

enterprise servers and storage products) equipment. The cold air distribution is typ-

ically done through a raised floor plenum throughout the data center. Computer

Room Air Conditioners(CRACs) continuously pump cold air into the plenum at a set

temperature like 18. The air exits the plenum through perforated floor tiles and other

openings. The cold air rises through the ’hot’ IT equipment be it servers or storage

devices thereby cooling it. Hot air which has cooled the IT equipment is usually

recirculated and returned to the CRACs though either duct-work, raised plenums or

through the room CRAC openings. Standard best practice employed today in most

data canters is to arrange the perforated floor tiles in rows forming either cold or hot

aisles . IT equipment racks are then placed in rows along and facing each long side

of the cold aisle. Alternating hot and cold aisles are formed as this configuration is

repeated across the data center. The temperature of the cooling air actually available

for IT equipment depends on the airflow dynamics between the perforated tile and

the equipment inlet. Equipment will draw air as needed and, if sufficient cooling air

is unavailable, warm exhaust air will be recirculated over the racks or around the
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row ends. It is, therefore, essential that perforated tiles located near the equipment

provide sufficient cooling air.

2.2 ASHRAE Guidelines for Server rooms and IT Equipment

The ASHRAE thermal guidelines for IT Equipment housing or data centers

were updated in 2011. The previously known classes of 1,2,3,4 are now renamed A1,

A2, A3, A4. We are concerned with these as these contain all the ITE we might

encounter in a data center.

ASHRAE Thermal Guidelines for Data Centers recommends inlet temperatures

Table 2.1. ASHRAE Server Classification- 2008 and 2011

2011
Classes

2008
Classes

Applications IT Equipment Environmental
Control

A1 1 Data Center Enterprise
Servers, Storage
Products

Tightly Con-
trolled

A2 2 Data Center Volume Servers,
Storage Prod-
ucts, Personal
Computers,
Workstations.

Some Control

A3 NA Data Center Volume Servers,
Storage Prod-
ucts, Personal
Computers,
Workstations.

Some Control

A4 NA Data Center Volume Servers,
Storage Prod-
ucts, Personal
Computers,
Workstations.

Some Control

B 3 Office, Home, Transportable Environment, etc. Personal Com-
puters, Worksta-
tions, Laptops
and Printers.

Minimal Control

C 4 Point-of-Sale, Industrial, Factory, etc Point-of-Sale
Equipment,
ruggedized
controllers or
computers and
PDAs

No Control
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Figure 2.1. ASHRAE Server Classes Psychrometric Chart.

Figure 2.2. ASHRAE Thermal Guidelines for Data Centers.

in the range of 10 to 35◦C for Class A1-A4 (high-end enterprise servers and storage

products) equipment. e.g. 18 ◦C. Maintaining these temperatures within that zone

8



is vital for high performance of the servers. Heating of servers results in decrease

of computing performance and repercussions of such under performing systems in a

data center are huge. From the controller development stand point of view, we need

to ensure that the servers are maintained in this range for best operation efficiency.

2.3 Control Problem

The control problem in such a dynamic and non linear system is to not only

maintain the servers under the desired temperature range but also to maintain the

whole system stability. Such complex systems have a significant response when their

input parameters are changed. Also, the thermal map of a data center is dependent

on a lot of parameters and hence predictive type of control is required. For predictive

type of control we need a fast and accurate type of predicting tool. A nicely trained

Black Box tool would be perfect for such application. Also, the conventional PID

type of control is not effective in such systems because, we cant have too many shifts

in input parameters. Constant change in inputs makes the system fluctuate and the

whole system can go out of control. Hence, ANN based control that would be fast,

accurate, robust and adaptive is the ideal control system for such data center system.

2.4 Use of Artificial Neural Networks

Due to the large amount of power usage by data centers, a lot of different

approaches have been made to optimize the system. The sheer complexity of the

system as a whole makes the optimization much more complex. Artificial Neural

Networks have been used to predict certain parameters like temperature and hence

control the CRAC fan speeds for maintaining server temperatures. The temperatures

predicted are in real time which can be easily used to predict and make the necessary
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changes in the fan speeds. The Neural network has been used in conjunction with a

genetic algorithm and a ”cooling performance engine” can be formulated. However, it

becomes a bit more tricky when one tries to control the server temperatures by shifting

the loads around the servers. If we can train a network as a function of the heat at

the point, it will be much more effective in real sense of controlling the temperature.

Due to the ever increasing system performance demands the system is expected to

be able to scale i.e. Scalability has become one of the important parameters in the

design process. Hence, we thought of using the neural model in conjunction with

a Power Controller to change more than one parameters for the optimized system.

As the Server Power and Fan Speed are controlled, the system can be maintained at

the ”Optimized Point” in real time. With this theory in mind, the neural network is

trained in such a way that it has the freedom and robustness to map the temperature

at points it hasn’t been trained on.

2.5 The Plant

The system or The Data Center layout is an IBM data center. The room

has 4 CRACs in the layout. The cold air is supplied from the CRACs through the

perforated tiles from below. The cold air enters the Racks, cools them and returns

from the elevated plenums. The cold air movement can be seen in the fig. The server

aisles are named A,B,C and D. The Aisles A and B have 6 racks whereas the aisles

C and D have 4 racks. The Layout is along a line of Symmetry i.e. its scaled to half.

The space between the aisles A-B and C-D are the hot aisles and the others are cold

aisles. The modeling of the racks in aisles is done so that the heat dissipation is per

load bank. And there are 4 load banks on a rack. The dimensions and details of the

system is as follows.
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Figure 2.3. System Layout.

Table 2.2. Server Room Details

Room Size 6.05 m * 13.42 m * 3.648 m
Plenum Depth 0.3 m

Server Rated Air Flow 1460 cfm
Tile Open Area 50%

Perforated Tile Area 0.61 m * 0.61 m
CRAC Air Flow (100 %) 7300 cfm

Chilled Air Supply Temperature 15◦C
Ambient Air Temperature 30◦C

2.6 Past Work on the topic

In the past several similar approaches have been made to bypass the CFD to

save time as well as deal with the high non-linearity of the data center. ANNs have

been used to predict the air flow required to cool the room which enters through per-

11



forated tiles. Successful attempts to predict whether the room is sufficiently cooled

have been made. Combined with a cooling system model, control algorithms to find

the optimal operating point for CRACs have been tested.The performance of such

Genetic Algorithms has been accurately demonstrated. Such studies have shown upto

30% reduction on energy usage. Rack level cooling performance and development of

an optimization algorithm has been proved. Hard floor room studies that conclude

the effectiveness of the Neural Network can be found. Such studies have been ex-

tended to raised floor, overhead supply types also. Combination of ANNs with a cost

function based Multi-Objective Genetic Algorithm using Latin Hypercube method

which predict the operating conditions inversely for the desired outputs are very use-

ful in control scheme synthesis. ANNs as Cooling prediction engine using genetic

algorithms to find the optimized cluster layout enhance the chances to find the Best

Arrangement for a fixed inventory of racks, Best rack location, etc. However, neural

network trained which is highly accurate to map both change in CRAC fan speed and

Server heat with a high degree of robustness will prove to be very useful.
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CHAPTER 3

Artificial Neural Networks for Function Approximation

The ANN has a great potential to map unknown functions between a set of

input and output vectors. We use this ability to our advantage especially since the

system we are dealing with is highly nonlinear and complex. We use the ANN as a

function approximation system also referred to as Black Box Modeling. Lets assume

x as the input vector and d is the output vector. If there is a set of N different points

in a y dimensional input space such that xk ∈ Ry, k = 1, 2, 3, ..., N and another N

points in a z dimensional output space such that dk ∈ Rz, k = 1, 2, 3, ..., N , we want

to find a mapping function F : Ry −→ Rz which will satisfy the equation

T (xk) = dk, k = 1, 2, 3, ..., N.

Then the actual unknown function f(∗) which maps the input-output relationship is

denoted by

f(xk) = dk

Then the approximation should be such that the error between desired and actual

outputs, ε should be as small as possible. The approxiamtion function will be,

‖ T (xk)− f(xk) ‖< ε.

As long as we make sure that the training data sets are large enough and the network

is given sufficient number of free parameters or neurons , then the approximation

error ε can be made very small thereby increasing the accuracy of the predictions.
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The challenges with main stream control systems such as PID and Fuzzy systems is

that there are no system energy transfer equations which are easily found for such

complex systems. The transfer function in our model is also deeply buried in many

different parameters and variables. Black Box Modeling can approximate such sys-

tems using the system identification. The structure of system identification is as

shown below, We trained the ANN to map 5 inputs to 1 output of such an un-

Figure 3.1. System identification.

known system. The inputs were mainly location coordinates in 3-d space, heat load

and CRAC fan speed. We tested our ANN on a control algorithm which would read

through the temperatures at all the points and thereby make changes to the heat load

there bu shifting it to some point which was at a lesser temperature. We did this

just to test the speed and robustness of the ANN. A verification study with CFD was

also conducted after a few iterations of load shift to check if such a designed ANN

could maintain the accuracy at points it wasn’t trained on. Due to its high VLSI

implement-ability the ANN is able to predict the temperatures in almost real time.

The total simulation time for 50 iterations was less that 10 seconds which compared

to the CFD is negligible. The control algorithm was based on the Power Reservoir

concept. The server temperature is assumed to be proportional to the heat load at
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the server.
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CHAPTER 4

Training Algorithms and Comparison

We know from the adaptive control or dynamic learning control studies that

the ANNs that can effectively run with those setups not only need to be accurate

but need to be fast. They need to train fast i.e. update of weight matrices should be

fast and predict accurately.For the ANN training, there are several algorithms which

could be used viz.

i Levenberg-Marquardt algorithm

ii Gradient Descent method

iii Bayesian Regularization

iv Scaled Conjugate Gradient method

v Resilient Back Propagation method

vi One Step Secant method, etc.

The LM function and Gradient Descent are widely used as function approximation

tools and hence we look at the speed and accuracy of these two algorithms for com-

parison. The Gradient Descent is a training function which works by updating the

weight and bias values according to the gradient descent. There are 2 ways in which

the Gradient Descent is implemented viz.

a. Gradient Descent Back propagation method

b. Gradient Descent with Momentum Back Propagation

Both of the above operate on similar lines with some addition. These methods update

the weight and bias. The GD Back Propagation updates the wights and biases in

the negative gradient direction of the performance function. The Learning rate lr is
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multiplied by the negative gradient to evaluate the update on weight and biases. Size

of the lr directly affects the size of the step towards convergence. Small lr takes a lot

of analysis time whereas a huge lr value will make the network unstable.

The variables are updated using the Back Propagation which in turn is used to cal-

culate the derivative of the performance function as follows

dX = lr ∗ dPerf
dX

The Gradient Descent with Momentum allows a network to respond to the local gra-

dient as well as the trend in the error surface. It works like a low pass filter, where the

momentum allows the network to ignore small features in the error surface. Without

momentum a network can get stuck in a shallow local minimum. With momentum a

network can slide through such a minimum. This algorithm depends on two training

parameters. The parameter lr indicates the learning rate, similar to the simple gradi-

ent descent. The parameter mc is the momentum constant that defines the amount

of momentum. The weights and biases are updated as follows.

dX = mc ∗ dXprev + lr ∗ (1−mc) ∗ dPerf
dX

where dXprev is the previous change to the weight or bias.

Gradient Descent with momentum turns out faster but less accurate as compared

to gradient descent back propagation. Shown below is an example of their behavior

when trained on different settings of neurons.

On comparison, GD Back Propagation algorithm fares greater accuracy as compared

to the other. The difference in time of training is too insignificant as the difference

in accuracy is high.

Then there is Levenberg-Marquardt training algorithm which is one of the fastest back
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Table 4.1. Comparison of Training time and Number of Neurons for GD Back Prop-
agation and GD with Momentum

Neurons 5 10 15 20 25 50 100 150

GD Backpropoga-
tion algorithm

17 22 31 43 67 130 494 1557

GD with momen-
tum algorithm

13 17 25 37 60 118 452 1387

Figure 4.1. Comparison of Training time and Number of Neurons for GD Back
Propagation and GD with Momentum.

Table 4.2. Comparison of Training accuracy and Number of Neurons for GD Back
Propagation and GD with Momentum

Neurons 5 10 15 20 25 50 100 150

Accuracy for GD
Backpropogation
algorithm

72 74 81 88 89 90 95 100

Accuracy for GD
with momentum
algorithm

62 67 73 73 78 79 81 83

Figure 4.2. Comparison of Training accuracy and Number of Neurons for GD Back
Propagation and GD with Momentum.
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propagation algorithms present. This algorithm is designed to attain second order

training speed bypassing the computation of the hessian matrices. Its performance

function attains the sum of squares form hence the Hessian, H can be approximated as,

H = JTJ

And the gradient, g can be computed as,

g = JT e

where, J consists of the first derivative of network errors w.r.t the bias and

weights & e is the vector of network errors. This is useful as computing the Jacobian

is much easier than computing Hessian. This also plays a major role for the LM

algorithm to be fast. The wights are updated using the standard Newtonian method.

The equation is as follows

wk+1 = wk − [JTJ + µI]−1JT e

where w is the current network weights and µ is zero, following the Newtonian moth-

eod using the approximate Hessian matrix. And the Jocobian is calculated as,

J =



∂e1
∂w1

... ∂e1
∂wn

∂e1
∂w0

. . .

. . .

. . .

∂ep
∂w1

... ∂ep
∂wn

∂ep
∂w0


=



x11 . xn1 1

. . .

. . .

. . .

x1p . xnp 1



where w is the vector of weights, w0 is the bias of neuron and e is the error vec-
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tor.

The figures below shows the comparison between LM and GD with Back Propagation

when trained on different neurons and the graphs depict the time and accuracy of

both the algorithms.

Table 4.3. Comparison of Training time and Number of Neurons for GD Back Prop-
agation and LM Algorithm

Neurons 5 10 15 20 25 50 100 150

LM algorithm 11 13 22 35 37 132 403 1092

GD algorithm 17 22 31 43 67 130 494 1557

Figure 4.3. Comparison of Training time and Number of Neurons for GD Back
Propagation and LM Algorithm.

Table 4.4. Comparison of Accuracy and Number of Neurons for GD Back Propagation
and LM Algorithm

Neurons 5 10 15 20 25 50 100 150

Accuracy for GD
Back Propagation
Algorithm

72 74 81 88 89 90 95 100

Accuracy for LM
Algorithm

75 82 85 88 94 97 97 100
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Figure 4.4. Comparison of Accuracy and Number of Neurons for GD Back Propaga-
tion and LM Algorithm.

Figure 4.5. Comparison of Predicted Temperature Results from CFD, GD and LM
Algorithms.

As can be seen from the graphs above, the LM algorithm is much faster than

GD Back propagation when tested. Since, speed is a vital feature required for the

ANN for it to be useful across platforms, LM algorithm looks best to train our ANN

on. The Fig.9 shows a comparison of prediction results of a test case for CFD, LM and

GD algorithms. It can be clearly seen that LM is better suited since the difference

in predictions between CFD and LM is least. So, for our ANN based Black Box

we will use the LM Algorithm for training. The Black Box shows fine tuning with

LM Algorithm which in turn means that there are no disconnections in the internal

structure of the ANN.
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CHAPTER 5

Training of the ANN achieved

The ANN was trained on LM algorithm several times before the best state was

achieved.The tables and figures below show a few different attempts made to finely

tune the Black Box. The number of neurons need to be adjusted in the hidden layer.

A trial and error method needs to be implemented to achieve the optimum training

parameters.

The tables below show case of tuning the network for 80% CRAC Fan Speeds. The

number of Neurons in hidden layers are changed as per the behavior of the ANN.

Table 5.1. Comparison of Best Performance Points during Training and Validation
for different Number of Neurons

Neurons 5 10 25 50 100 150 500 120 130 140 160 600 720
Best Validation Performance 4.21 2.4 0.2924 0.2522 0.1146 0.0768 0.1606 0.15138 0.167 0.14165 0.163 0.25212 0.42466

Best Training Performance 4.64 2.71 0.23 0.163 0.049 0.0185 0.0007 0.0479 0.062 0.0225 0.04 4.13E-11 9.21E-09

Figure 5.1. Comparison of Best Performance Points during Training and Validation
for different Number of Neurons.
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Table 5.2. Max Difference and Max %Error between ANN and CFD results

Neurons 5 10 25 50 100 150 500 120 130 140 160 600 720
Max Error 42.71168 20.66355 7.559624 6.601913 3.87639 4.540827 3.798227 5.913775 6.054006 3.806505 4.318931 9.226235 8.743773

Max Difference 8.093864 5.168147 1.893656 1.835244 1.479199 0.918543 0.830523 1.570114 1.609745 0.907286 1.127568 2.92418 1.815706

Figure 5.2. Max % Error and Max Difference for number of Neurons.

The 2 best operating points are found to be 150 and 500 Neuron Models. These

2 Networks are tested for accuracy to a 120% CRAC Fan Speed Model. The Table

and Fig. below show the test results.

Clearly, 150 Neuron Model is better tuned that 500 Neuron Model. To verify this, we

Table 5.3. Max % Error and Difference between ANN and CFD for 120% CRAC fan
speed Test Case.

Neurons 500 150
Max Error 4.554417 3.437699

Max Difference 1.292665 0.6725

again test this for another 80% CRAC Fan Speed case. The results are shown below.
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The difference is < 1◦C which is quite accurate and passes the test.

Figure 5.3. Testing on 80 % CRAC fan speed case; % Error and Difference in CFD
and ANN predictions.

The Network needs to be given sufficient number of neurons in its hidden layer

for the ANN to be finely tuned. The number of hidden neurons can be decided on

several factors. Higher the complexity of the system, greater the number of neurons

required.There are many rule-of-thumb methods to approximately determine the cor-

rect number of neurons to use in the hidden layers. Some of them are as follows

[1] Number should be between the size of the input layer and the size of the output

layer.

[2] Number should be 2/3 the size of the input layer, plus the size of the output layer.

[3] Number should be less than twice the size of the input layer.

However, there is no empirical formula since the variety of systems that can be dealt

with using ANN is huge. This ANN was trained with 150 neurons in it s hidden layer.

The goal value for e was set at 1e−6 which was suitable due to the insignificance of

Temperature after the fourth decimal.

The ANN block diagram and internal structure is shown above.The Gradient, G

tells us how a small change in the weight will affect the overall error E. In ANN,
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Figure 5.4. Artificial Neural Network.

Figure 5.5. Internal Structure of a neural network.

µ controls how much the weights are changed on each iteration. The value can be

anything from 1e−6 to as high as 0.1. A small value will cause the network to converge

too slowly whereas too large of a value will cause the convergence to be abnormal and

unstable during the final solution stage. It is difficult to understand or predict how

an ANN will react to any value of µ. This however forces us to monitor the network

behaviour during the training. The graph below shows the value of µ through out

the training. The number of validation checks until the training would go on was

set to 6. The training state is shown below The regression plot of the training,

validation and testing state is shown below. The values of R ≈ 1 shows the proper

tuning of the network. The performance of the function is measured in MSE. The
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Figure 5.6. Training state of ANN.

best validation performance is 0.0676 at epoch 77. The MSE graph is shown below

Figure 5.7. Performance of ANN while training in MSE.
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The figure below is a comparison of results of CFD simulations and ANN predictions.

Figure 5.8. Root MSE Values during Training, Testing and Validation.

The fine tuning of the ANN is evident by the accuracy of the ANN predictions. The

errors are very low and points of inaccuracy are minimal if not zero. This network

can be deemed fit to be further tested on other loading conditions and other robust-

ness study. However, the training parameters at the end of training, the testing of

accuracy and gradient values suggest that the ANN is very well trained.
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Figure 5.9. Temperature Plot comparing CFD and ANN for 20 kW , 80 % CRAC
fan speed.
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CHAPTER 6

Verification by comparison to CFD data

When the Black Box model is fully trained and tuned, the predicted outputs

were tested for accuracy. This is a very important as inaccurate model might prove

useless in a controller. The verification testing was done for different cases of server

heat loading conditions. The Black Box was tested for its robustness to changing

server location, CRAC fan speed and Server Heat load. During the verification, the

testing data was removed from the training data for the Black box model. The Black

Box was verified for 2 different tests viz.

1 Sever Heat Loading Pattern.

a Uniform server heat loading.

b Non uniform server heat loading.

2 Robustness tests for varying-

a CRAC fan speed.

b Server heat loading.

The Black Box model can be considered fairly accurate and verified when the differ-

ence in predictions from ANN and CFD would fall below 1◦C.

6.1 Verification for Sever Heat Loading Pattern

The CFD model of the data center was modeled like a 4 load bank model. Con-

sidering steady state loading patterns on all 80 load banks, the temperature patterns

were compared to that of the CFD simulation outputs. However, there are two types
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Figure 6.1. 5 KW per Load Bank and 60 % CRAC Fan Speed.

of loading patterns viz. Uniform and Non Uniform loading. A uniform loading is

when all the load banks are at the same heat load e.g. all 80 load banks are loaded

with 5 kW of heat and the CRAC units are running at 100 % fan speed.

6.1.1 Uniformly Loaded Server Heat Pattern

Uniformly loaded server heat means that all the load banks are loaded with

same values of heat load. Though this type of loading pattern is not very realistic in

a real data center, the use of controller might turn the non uniform loading to uniform

for which the ANN has to be tested prior to application. Shown below are the tests

for 3 uniformly loaded banks of different values and different CRAC fan speeds. The

first figure is a comparison of CFD and ANN predicted temperatures and since the

accuracy is not evident the figure that follows shows the difference and % Error

as compared to CFD. The table following each set of test results are the Maximum

Difference and Maximum % Error associated with the tests. A Consolidated Accuracy

diagram follows the 3 test results.
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Figure 6.2. Comparison of CFD and ANN in Difference and % Error.

Table 6.1. 5 kW and 60% CRAC Fan Speed; Maximum Difference and Maximum %
Error between CFD and ANN

Max Difference 0.4285
Max % Error 1.7699

Figure 6.3. 7.5 KW per Load Bank and 100 % CRAC Fan Speed.

Figure 6.4. Comparison of CFD and ANN in Difference and % Error.

31



Table 6.2. 7.5 kW and 100% CRAC Fan Speed; Maximum Difference and Maximum
% Error between CFD and ANN

Max Difference 0.4953
Max % Error 3.2822

Figure 6.5. 6.25 KW per Load Bank and 120% CRAC Fan Speed.

Figure 6.6. Comparison of CFD and ANN in Difference and % Error.

Table 6.3. 6.25 kW and 120% CRAC Fan Speed; Maximum Difference and Maximum
% Error between CFD and ANN

Max Difference 0.4889
Max % Error 3.0238

Table 6.4. Average % Accuracy

Average % Accuracy 99.3985
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Figure 6.7. % Accuracy.

6.1.2 Non Uniformly Loaded Server Heat Pattern

Non Uniformly loaded server heat means that all the load banks are loaded

with different values of heat load. This type of loading pattern is more realistic in a

real data center, as the real load banks will be non uniformly loaded.

Shown below are the tests for 3 non uniformly loaded banks of different values and

different CRAC fan speeds. The variable loading is shown in the table. The first fig-

ure is a comparison of CFD and ANN predicted temperatures and since the accuracy

is not evident the figure that follows shows the difference and % Error as compared

to CFD. The table following each set of test results are the Maximum Difference

and Maximum % Error associated with the tests. A Consolidated Accuracy diagram

follows the 3 test results.

6.2 Verification for Robustness tests for varying input parameters

The 3 tests for checking the robustness of the Black Box are shown in the

subsections below. Since this Black Box was designed with the premise of being able

to use with a controller, the accuracy check for its robustness is vital. In these tests

we check the accuracy of the Black Box for varying or unknown input parameters
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Table 6.5. 60% CRAC Fan Speed; Variable Loading

Rack LB1 LB2 LB3 LB4
1 5 5 5 5
2 5 5 5 5
3 5 5 5 5
4 6.25 6.25 6.25 6.25
5 6.25 6.25 6.25 6.25
6 5 5 5 5
7 3.75 3.75 3.75 3.75
8 3.75 3.75 3.75 3.75
9 5 5 5 5
10 5 5 5 5
11 3.75 3.75 3.75 3.75
12 3.75 3.75 3.75 3.75
13 5 5 5 5
14 5 5 5 5
15 5 5 5 5
16 6.25 6.25 6.25 6.25
17 6.25 5 6.25 5
18 5 6.25 5 6.25
19 5 5 5 5
20 5 5 5 5

Figure 6.8. 60% CRAC Fan Speed.
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Figure 6.9. Comparison of CFD and ANN in Difference and % Error.

Table 6.6. 60% CRAC Fan Speed; Maximum Difference and Maximum % Error
between CFD and ANN

Max Difference 0.8888
Max % Error 4.4329

Figure 6.10. 100% CRAC Fan Speed.

Figure 6.11. Comparison of CFD and ANN in Difference and % Error.
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Figure 6.12. 100 % CRAC Fan Speed.

Figure 6.13. Comparison of CFD and ANN in Difference and % Error.

Figure 6.14. Average % Accuracy.
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Table 6.7. 100% CRAC Fan Speed; Variable Loading

Rack LB1 LB2 LB3 LB4
1 3.75 3.75 3.75 3.75
2 3.75 3.75 3.75 3.75
3 3.75 3.75 3.75 3.75
4 5 5 5 5
5 5 5 5 5
6 3.75 3.75 3.75 3.75
7 2.5 2.5 2.5 2.5
8 2.5 2.5 2.5 2.5
9 3.75 3.75 3.75 3.75
10 3.75 3.75 3.75 3.75
11 2.5 2.5 2.5 2.5
12 2.5 2.5 2.5 2.5
13 3.75 3.75 3.75 3.75
14 3.75 3.75 3.75 3.75
15 3.75 3.75 3.75 3.75
16 5 5 5 5
17 3.75 5 3.75 5
18 5 3.75 5 3.75
19 3.75 3.75 3.75 3.75
20 3.75 3.75 3.75 3.75

set within and outside the training data range. The Black Box needs to be able to

predict fairly accurately for points it is not trained for. This would give the controller

a predictive ability for different input scenarios. With the understanding, that these

are limitations to this as the ANN cannot predict beyond a certain limit, the tests

below check the accuracy for varying CRAC fan speed and modeled Server Heat Load.

6.2.1 Varying CRAC Fan Speeds

In this test we will test the robustness of the Black Box for an unknown CRAC

fan speed. For this test we will test the ANN for test cases of 80 % and 100% CRAC

37



Table 6.8. 100% CRAC Fan Speed; Maximum Difference and Maximum % Error
between CFD and ANN

Max Difference 0.94636
Max % Error 4.82592

Table 6.9. 100% CRAC Fan Speed; Variable Loading

Rack LB1 LB2 LB3 LB4
1 8.75 8.75 8.75 8.75
2 8.75 8.75 8.75 8.75
3 8.75 8.75 8.75 8.75
4 10 10 10 10
5 10 10 10 10
6 8.75 8.75 8.75 8.75
7 7.5 7.5 7.5 7.5
8 7.5 7.5 7.5 7.5
9 8.75 8.75 8.75 8.75
10 8.75 8.75 8.75 8.75
11 7.5 7.5 7.5 7.5
12 7.5 7.5 7.5 7.5
13 8.75 8.75 8.75 8.75
14 8.75 8.75 8.75 8.75
15 8.75 8.75 8.75 8.75
16 10 10 10 10
17 10 8.75 10 8.75
18 8.75 10 8.75 10
19 8.75 8.75 8.75 8.75
20 8.75 8.75 8.75 8.75

Table 6.10. 100% CRAC Fan Speed; Maximum Difference and Maximum % Error
between CFD and ANN

Max Difference 1.47487
Max % Error 5.92152

Table 6.11. Accuracy % in CFD and ANN

Average % Accuracy 98.4332
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fan speed. During these tests the data for the particular CRAC fan speed was removed

for convenience of testing.

Figure 6.15. 7.5 KW per Load Bank and 80% CRAC Fan Speed.

Figure 6.16. Comparison of CFD and ANN in Difference and % Error.

6.2.2 Varying Server Heat Loading

Server heat load is one of the most important factors which influence the tem-

perature at those points. Hence an accuracy check is presented in the test below.

This is somewhat already established that the Black Box is predicting accurately for
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Table 6.12. 7.5 kW per Load Bank and 80% CRAC Fan Speed; Maximum Difference
and Maximum % Error between CFD and ANN

Max Difference 0.96012
Max % Error 6.32073

Figure 6.17. 8.75 KW per Load Bank and 100% CRAC Fan Speed.

Figure 6.18. Comparison of CFD and ANN in Difference and % Error.

Table 6.13. 8.75 kW per Load Bank and 100% CRAC Fan Speed; Maximum Difference
and Maximum % Error between CFD and ANN

Max Difference 0.89919
Max % Error 5.60502
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Table 6.14. 3.125 kW per Load Bank and 100% CRAC Fan Speed; Maximum Differ-
ence and Maximum % Error between CFD and ANN

Max Difference 0.56769
Max % Error 2.58983

changing server heat load. In this test, we check for 2 cases of uniform server heat

loading viz.

1. Inside the training range but for unknown heat load.

2. Outside the training range for unknown heat load.

6.2.2.1 Inside the training range but for unknown heat load.

In this sub section, we will test the Black Box for Test inputs which are inside

our training range which is 5 to 35 kW range. Through this test we will verify whether

the Black Box is ready for a robust use of a data center.

Figure 6.19. 3.125 KW per Load Bank and 100% CRAC Fan Speed.
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Figure 6.20. Comparison of CFD and ANN in Difference and % Error.

Figure 6.21. 4.435 KW per Load Bank and 100% CRAC Fan Speed.

Figure 6.22. Comparison of CFD and ANN in Difference and % Error.

Table 6.15. 4.435 kW per Load Bank and 100% CRAC Fan Speed; Maximum Differ-
ence and Maximum % Error between CFD and ANN

Max Difference 0.59573
Max % Error 2.43951
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Figure 6.23. 5.625 KW per Load Bank and 100% CRAC Fan Speed.

Figure 6.24. Comparison of CFD and ANN in Difference and % Error.

6.2.2.2 Outside the training range for unknown heat load.

In this sub section, we will test the Black Box for Test inputs which are out

side our training range which is 5 to 35 kW range. Through this test we will verify

whether the Black Box is ready for a robust use of a data center.

Table 6.16. 5.625 kW per Load Bank and 100% CRAC Fan Speed; Maximum Differ-
ence and Maximum % Error between CFD and ANN

Max Difference 0.57733
Max % Error 2.97959
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Figure 6.25. 9.375 KW per Load Bank and 100% CRAC Fan Speed.

Figure 6.26. Comparison of CFD and ANN in Difference and % Error.

Table 6.17. 9.375 kW per Load Bank and 100% CRAC Fan Speed; Maximum Differ-
ence and Maximum % Error between CFD and ANN

Max Difference 1.32837
Max % Error 3.94392
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CHAPTER 7

Conclusion

To check the accuracy of the Black Box in a broader sense, let us plot an

error graph for all the tests on a server position axis. The figure below shows the

consolidated graph followed by aisle wise graphs.

To conclude from the above we can summarize points as follows.

1. The Black Box developed has been so trained that it is not only accurate but

very fast. Different algorithms for training and their effect has been demon-

strated to find the best suited training conditions for the Black Box.

2. The ANN developed can be seen to accurately predict the temperatures in the

data center room as a function of the server heat and CRAC fan speed at

different points in state space.

Table 7.1. Point wise analysis for errors above 5 %

Value Point Rack Case Power Fan Location
a 5.22 40 B1-4 6 Transient NA C T CRAC Return Air
b 5.51 41 B1-5 6 Transient NA C T CRAC Return Air
c 5.2 42 B1-6 6 Transient NA C T CRAC Return Air
d 5.92 45 B2-3 6 Transient NA NA Highly varied LBs
e 5.01 51 B3-3 8 Unknown Check NA Highly varied LBs
f 6.32 94 C4-4 7 Unknown Check Shown NA
g 5.21 96 C4-6 7 Unknown Check Shown NA
h 5.61 116 D4-2 8 Out of Range NA NA More Data
i 5.22 117 D4-3 7 Out of Range NA NA More Data
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3. The Robustness check of this Black Box has been done for input conditions

for which the ANN was not trained. Robustness check was important from a

controller development point of view as the controller would want the freedom

to change the CRAC fan speeds throughout the range and not in steps. So the

Black Box should be ready for such robustness.

4. The Black Box was verified on 2 types of tests viz. Uniform loading and the

more real Non-Uniform loading patterns. The ANN was found to be reliably

accurate in the training range to be used in a model predictive type of controller

setup.
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Figure 7.1. Error plot for server positions.

Figure 7.2. Aisle A.

Figure 7.3. Aisle B.
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Figure 7.4. Aisle C.

Figure 7.5. Aisle D.
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CHAPTER 8

Future Scope

This tool is currently being used as a predicting tool only, but it has a greater

potential to be used in a feed forward control system. A highly accurate ANN with a

PID controller in a feed forward control scheme seems ideal in monitoring and control

of the highly dynamic and nonlinear data center temperature. This system can be

further extended to a reinforcement learning system or it can be made ’Adaptive’

to the changing operating parameters. Introduction of this Black Box to dynamic

update of weight matrix and training data to make the ANN dynamic learning would

make it further reliable and reduce the CFD simulation time required right now for

training and verification studies. Moreover, using this ANN tool developed as a black

box model in an Adaptive Controller setting and application in a real data center for

testing would be the ultimate test of this Black Box model.
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APPENDIX A

Computaional Fluid Dynamics Data used for ANN Training.
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The Data generated from CFD simulations was used for training of the Black

Box. The Data was first generated for uniform loading conditions e.g. 5 kw to 35

kW for variable CRAC fan speed steps of 60,80,100 & 120 % in steps of 5 kW. This

was used to train the Black Box initially. Steps of CRAC fan speed and Server Heat

gave the Black Box a certain robustness within the range.

Table A.1. 5 KW, 60 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 17.96 15.59 15.31 15.04 15.02 15.01 17.65 15.49 15.25 15.03 15.01 15.01 17.63 15.3 15.08 15.01 18.76 15.85 15.26 15.01

T2 18.81 16.28 15.78 15.11 15.04 15.02 18.48 16.05 15.62 15.08 15.03 15.01 18.85 15.63 15.18 15.02 19.23 16.71 15.72 15.03

T3 18.64 16.96 16.36 15.27 15.09 15.03 18.57 16.7 16.12 15.2 15.06 15.02 19.64 16.12 15.36 15.02 19.01 17.38 16.23 15.08

T4 18.06 17.13 16.88 15.69 15.28 15.05 18.2 17.1 16.78 15.57 15.21 15.03 19.2 17.25 15.93 15.05 18.35 17.69 16.9 15.21

T5 17.69 17.09 16.97 15.89 15.43 15.08 17.99 16.98 16.78 15.79 15.34 15.04 18.59 17.58 16.3 15.07 17.93 17.61 16.98 15.29

T6 17.69 17.09 16.97 15.89 15.43 15.08 17.99 16.98 16.78 15.79 15.34 15.04 18.59 17.58 16.3 15.07 17.93 17.61 16.98 15.29

Table A.2. 5 KW, 80 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 18.27 15.54 15.27 15.03 15.02 15.01 17.83 15.44 15.22 15.02 15.01 15.01 17.29 15.22 15.06 15.01 18.77 15.74 15.2 15.01

T2 19.3 16.15 15.65 15.08 15.03 15.02 18.8 15.93 15.51 15.06 15.02 15.01 18.37 15.44 15.12 15.01 19.55 16.57 15.57 15.02

T3 18.97 16.82 16.15 15.18 15.06 15.02 19.02 16.55 15.94 15.13 15.04 15.02 19.34 15.74 15.21 15.02 19.56 17.3 16.03 15.05

T4 18.1 17.37 16.92 15.5 15.18 15.04 18.21 17.41 16.8 15.4 15.13 15.03 19.69 16.56 15.51 15.03 18.87 17.95 16.75 15.12

T5 17.62 17.3 17.06 15.72 15.28 15.05 17.42 17.33 17.03 15.61 15.22 15.03 18.98 17.04 15.73 15.04 18.23 17.74 16.95 15.16

T6 17.62 17.3 17.06 15.72 15.28 15.05 17.42 17.33 17.03 15.61 15.22 15.03 18.98 17.04 15.73 15.04 18.23 17.74 16.95 15.16

Table A.3. 5 KW, 100 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 17.29 15.33 15.16 15.02 15.02 15.01 16.9 15.27 15.13 15.02 15.01 15.01 17.02 15.18 15.04 15.01 18.48 15.64 15.17 15.02

T2 18.25 15.71 15.38 15.05 15.03 15.01 17.63 15.56 15.3 15.04 15.02 15.01 17.92 15.34 15.09 15.01 19.29 16.37 15.47 15.02

T3 18.11 16.15 15.68 15.1 15.04 15.02 17.92 15.93 15.54 15.07 15.03 15.01 18.77 15.55 15.15 15.02 19.52 17.06 15.84 15.04

T4 17.38 16.78 16.29 15.27 15.1 15.03 17.61 16.66 16.13 15.21 15.07 15.02 19.62 16.08 15.33 15.03 19.08 17.9 16.51 15.08

T5 16.94 16.92 16.54 15.4 15.15 15.04 16.57 16.72 16.38 15.33 15.11 15.03 18.97 16.42 15.46 15.04 18.31 17.84 16.75 15.1

T6 16.94 16.92 16.54 15.4 15.15 15.04 16.57 16.72 16.38 15.33 15.11 15.03 18.97 16.42 15.46 15.04 18.31 17.84 16.75 15.1
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Table A.4. 5 KW, 120 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 16.54 15.21 15.1 15.02 15.02 15.01 16.3 15.18 15.09 15.01 15.01 15.01 16.85 15.16 15.04 15.01 18.18 15.56 15.15 15.02

T2 17.45 15.44 15.23 15.04 15.03 15.01 16.85 15.36 15.19 15.03 15.02 15.01 17.63 15.29 15.08 15.01 18.96 16.19 15.4 15.03

T3 17.81 15.74 15.42 15.06 15.04 15.02 17.21 15.61 15.34 15.05 15.03 15.01 18.36 15.44 15.12 15.02 19.26 16.82 15.7 15.04

T4 17.46 16.36 15.88 15.16 15.07 15.03 17.41 16.21 15.76 15.13 15.05 15.02 19.31 15.83 15.25 15.03 19.13 17.7 16.27 15.06

T5 16.95 16.58 16.14 15.24 15.1 15.04 17.24 16.52 16.06 15.2 15.08 15.03 18.91 16.07 15.33 15.03 18.24 17.79 16.51 15.08

T6 16.95 16.58 16.14 15.24 15.1 15.04 17.24 16.52 16.06 15.2 15.08 15.03 18.91 16.07 15.33 15.03 18.24 17.79 16.51 15.08

Table A.5. 10 KW, 60 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 21.24 16.22 15.65 15.08 15.04 15.02 20.48 15.99 15.51 15.06 15.03 15.01 20.15 15.59 15.15 15.02 21.78 16.54 15.47 15.02

T2 22.82 17.61 16.59 15.23 15.09 15.03 22.18 17.12 16.25 15.17 15.06 15.02 22.49 16.24 15.36 15.03 22.48 18.17 16.33 15.06

T3 22.39 18.77 17.64 15.53 15.18 15.05 22.27 18.39 17.23 15.39 15.12 15.03 24.08 17.18 15.7 15.05 22 19.45 17.3 15.14

T4 21.21 18.4 18.07 16.27 15.54 15.1 21.51 19.01 18.42 16.11 15.41 15.06 23.4 19.42 16.81 15.1 20.83 20.01 18.55 15.39

T5 20.57 18.22 17.82 16.58 15.8 15.15 21.13 18.76 18.28 16.53 15.67 15.09 22.08 20.09 17.55 15.14 20.05 19.75 18.71 15.53

T6 20.57 18.22 17.82 16.58 15.8 15.15 21.13 18.76 18.28 16.53 15.67 15.09 22.08 20.09 17.55 15.14 20.05 19.75 18.71 15.53

Table A.6. 10 KW, 80 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 21.21 16.01 15.51 15.06 15.04 15.02 20.34 15.83 15.41 15.05 15.03 15.01 19.52 15.44 15.11 15.02 22.43 16.45 15.38 15.02

T2 23.56 17.2 16.24 15.15 15.07 15.03 22.31 16.76 15.97 15.11 15.05 15.02 21.65 15.87 15.24 15.03 23.89 18.06 16.12 15.05

T3 23.21 18.61 17.26 15.34 15.12 15.04 22.84 17.96 16.78 15.25 15.08 15.03 23.56 16.47 15.43 15.04 23.83 19.51 17 15.09

T4 21.5 19.86 18.89 15.99 15.35 15.08 21.13 19.63 18.45 15.76 15.25 15.05 24.43 18.1 16.01 15.07 22.53 20.81 18.43 15.22

T5 20.51 19.69 19.18 16.45 15.56 15.1 19.77 19.57 18.93 16.17 15.41 15.07 22.97 19.07 16.46 15.09 21.34 20.41 18.82 15.31

T6 20.51 19.69 19.18 16.45 15.56 15.1 19.77 19.57 18.93 16.17 15.41 15.07 22.97 19.07 16.46 15.09 21.34 20.41 18.82 15.31

Table A.7. 10 KW, 100 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 19.28 15.62 15.31 15.05 15.03 15.02 18.59 15.51 15.25 15.03 15.02 15.01 19 15.35 15.09 15.02 21.82 16.26 15.32 15.03

T2 21.22 16.32 15.71 15.1 15.06 15.03 20.01 16.06 15.57 15.07 15.04 15.02 20.78 15.67 15.18 15.03 23.44 17.68 15.92 15.05

T3 20.98 17.17 16.28 15.19 15.09 15.04 20.62 16.77 16.02 15.14 15.06 15.03 22.47 16.07 15.3 15.03 23.96 19.05 16.65 15.08

T4 19.57 18.39 17.45 15.5 15.19 15.07 20.03 18.18 17.15 15.4 15.14 15.05 24.22 17.12 15.64 15.06 23.18 20.76 17.97 15.15

T5 18.71 18.68 17.94 15.76 15.29 15.09 18 18.3 17.63 15.62 15.22 15.06 22.96 17.79 15.89 15.07 21.62 20.67 18.46 15.2

T6 18.71 18.68 17.94 15.76 15.29 15.09 18 18.3 17.63 15.62 15.22 15.06 22.96 17.79 15.89 15.07 21.62 20.67 18.46 15.2

Table A.8. 10 KW, 120 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 18 15.4 15.2 15.04 15.03 15.02 17.55 15.35 15.17 15.03 15.02 15.01 18.69 15.31 15.08 15.02 21.28 16.1 15.29 15.04

T2 19.76 15.85 15.45 15.07 15.05 15.03 18.63 15.71 15.38 15.06 15.04 15.02 20.26 15.57 15.15 15.02 22.82 17.34 15.77 15.06

T3 20.44 16.43 15.8 15.12 15.07 15.04 19.33 16.19 15.67 15.1 15.05 15.03 21.7 15.88 15.24 15.03 23.43 18.57 16.38 15.07

T4 19.76 17.62 16.7 15.3 15.14 15.06 19.7 17.36 16.49 15.25 15.11 15.05 23.62 16.64 15.49 15.05 23.35 20.38 17.51 15.12

T5 18.76 18.05 17.21 15.46 15.19 15.08 19.31 17.96 17.06 15.39 15.15 15.06 22.89 17.12 15.66 15.07 21.57 20.61 17.99 15.15

T6 18.76 18.05 17.21 15.46 15.19 15.08 19.31 17.96 17.06 15.39 15.15 15.06 22.89 17.12 15.66 15.07 21.57 20.61 17.99 15.15

After initial training, the Black Box gave accurate predictions for uniform load-

ing cases however, when it came to non uniform loading, there was a certain amount

of inaccuracy present. To train the Black Box further, CFD data was generated for

hypothetical non uniform loading cases. The data below has a few examples of non
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Table A.9. 15 KW, 60 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 24.5 16.84 15.97 15.12 15.06 15.03 23.23 16.46 15.76 15.09 15.04 15.02 22.33 15.83 15.21 15.03 23.87 16.99 15.6 15.03

T2 26.79 18.89 17.36 15.34 15.13 15.05 25.78 18.12 16.83 15.24 15.09 15.04 25.64 16.76 15.51 15.04 25.07 19.3 16.77 15.08

T3 26.13 20.52 18.88 15.77 15.26 15.08 25.8 19.94 18.25 15.56 15.18 15.05 28.04 18.11 16 15.07 24.76 21.21 18.13 15.19

T4 24.52 19.85 19.27 16.81 15.76 15.15 24.6 20.77 19.92 16.58 15.58 15.09 27.34 21.35 17.57 15.14 23.29 21.88 19.85 15.5

T5 23.7 19.66 18.83 17.2 16.12 15.23 24.14 20.44 19.68 17.17 15.94 15.13 25.29 22.36 18.65 15.2 21.97 21.23 20.03 15.68

T6 23.7 19.66 18.83 17.2 16.12 15.23 24.14 20.44 19.68 17.17 15.94 15.13 25.29 22.36 18.65 15.2 21.97 21.23 20.03 15.68

Table A.10. 15 KW, 80 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 23.79 16.42 15.72 15.09 15.05 15.03 22.56 16.16 15.57 15.07 15.04 15.02 21.79 15.66 15.16 15.03 25.89 17.09 15.55 15.03

T2 26.84 18.07 16.73 15.22 15.1 15.05 25.19 17.45 16.35 15.16 15.07 15.03 24.9 16.29 15.34 15.04 28.27 19.51 16.62 15.07

T3 26.07 19.96 18.12 15.48 15.17 15.07 25.62 19.05 17.45 15.35 15.12 15.05 27.73 17.15 15.62 15.06 28.75 21.82 17.97 15.13

T4 23.68 21.51 20.25 16.36 15.49 15.12 22.89 21.06 19.59 16.03 15.34 15.08 29.42 19.55 16.46 15.1 27.07 24.14 20.29 15.33

T5 22.43 21.28 20.63 16.97 15.78 15.16 20.76 20.69 20.06 16.57 15.57 15.1 27.18 21.02 17.11 15.13 24.85 23.47 20.97 15.47

T6 22.43 21.28 20.63 16.97 15.78 15.16 20.76 20.69 20.06 16.57 15.57 15.1 27.18 21.02 17.11 15.13 24.85 23.47 20.97 15.47

Table A.11. 15 KW, 100 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 21.06 15.87 15.43 15.07 15.05 15.03 20.06 15.72 15.35 15.05 15.04 15.02 20.96 15.53 15.13 15.02 25.07 16.85 15.48 15.05

T2 24.1 16.87 16 15.14 15.08 15.04 22.15 16.5 15.8 15.11 15.06 15.03 23.6 15.99 15.26 15.04 27.5 18.94 16.34 15.07

T3 24.1 18.13 16.83 15.27 15.13 15.06 23.2 17.53 16.46 15.2 15.09 15.04 26.11 16.58 15.44 15.05 28.31 20.97 17.42 15.11

T4 22.07 20.11 18.64 15.73 15.28 15.1 22.58 19.68 18.15 15.58 15.21 15.07 28.8 18.13 15.95 15.09 27.25 23.58 19.38 15.22

T5 20.72 20.6 19.44 16.11 15.42 15.13 19.34 19.79 18.86 15.9 15.32 15.09 26.98 19.12 16.31 15.11 24.89 23.47 20.12 15.29

T6 20.72 20.6 19.44 16.11 15.42 15.13 19.34 19.79 18.86 15.9 15.32 15.09 26.98 19.12 16.31 15.11 24.89 23.47 20.12 15.29

Table A.12. 15 KW, 120 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 19.4 15.59 15.29 15.06 15.05 15.03 18.76 15.51 15.25 15.04 15.04 15.02 20.53 15.46 15.12 15.02 24.28 16.61 15.42 15.06

T2 21.94 16.24 15.65 15.11 15.08 15.04 20.35 16.05 15.55 15.08 15.06 15.03 22.88 15.85 15.22 15.04 26.57 18.43 16.13 15.08

T3 22.87 17.09 16.17 15.18 15.11 15.06 21.37 16.75 15.99 15.15 15.08 15.04 25.03 16.31 15.36 15.05 27.51 20.25 17.01 15.11

T4 21.81 18.79 17.45 15.45 15.2 15.1 21.84 18.46 17.18 15.37 15.16 15.07 27.93 17.44 15.72 15.08 27.65 23 18.69 15.17

T5 20.34 19.42 18.19 15.67 15.28 15.12 21.1 19.29 17.99 15.58 15.22 15.09 26.94 18.15 15.97 15.1 25.05 23.46 19.44 15.22

T6 20.34 19.42 18.19 15.67 15.28 15.12 21.1 19.29 17.99 15.58 15.22 15.09 26.94 18.15 15.97 15.1 25.05 23.46 19.44 15.22

Table A.13. 20 KW, 60 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 27.82 17.44 16.29 15.16 15.08 15.04 25.9 16.91 15.98 15.11 15.06 15.03 23.12 15.91 15.24 15.04 25.33 17.29 15.7 15.04

T2 30.81 20.15 18.12 15.45 15.17 15.07 29.27 19.06 17.37 15.31 15.11 15.05 27.16 16.98 15.57 15.06 26.73 19.98 17.01 15.09

T3 29.99 22.35 20.13 16 15.34 15.1 29.08 21.37 19.18 15.72 15.23 15.07 30.08 18.54 16.13 15.09 26.55 22.18 18.52 15.2

T4 28.11 21.66 20.73 17.33 15.97 15.21 27.35 22.39 21.29 16.99 15.72 15.12 30.01 22.39 17.93 15.17 25.23 22.84 20.34 15.51

T5 27.18 21.61 20.27 17.82 16.41 15.31 26.92 22.01 21 17.73 16.17 15.17 28.11 23.62 19.14 15.24 23.63 22.02 20.49 15.67

T6 27.18 21.61 20.27 17.82 16.41 15.31 26.92 22.01 21 17.73 16.17 15.17 28.11 23.62 19.14 15.24 23.63 22.02 20.49 15.67

uniform loading cases.
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Table A.14. 20 KW, 80 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 26.02 16.77 15.89 15.11 15.07 15.04 24.31 16.42 15.7 15.08 15.05 15.03 24.01 15.86 15.21 15.03 28.46 17.52 15.67 15.04

T2 30.07 18.86 17.16 15.28 15.13 15.06 27.43 17.99 16.65 15.2 15.09 15.04 28.01 16.69 15.45 15.05 31.71 20.57 16.98 15.09

T3 29.23 21.31 18.94 15.6 15.22 15.09 27.49 19.89 17.97 15.43 15.16 15.06 31.56 17.81 15.8 15.07 32.7 23.6 18.68 15.16

T4 26.34 23.44 21.77 16.73 15.62 15.16 23.69 22.02 20.39 16.25 15.43 15.11 34.2 20.94 16.9 15.13 31.37 27.15 21.84 15.41

T5 24.94 23.12 22.23 17.52 15.99 15.21 21.17 21.47 20.89 16.88 15.7 15.14 31.31 22.91 17.74 15.17 28.36 26.39 22.85 15.59

T6 24.94 23.12 22.23 17.52 15.99 15.21 21.17 21.47 20.89 16.88 15.7 15.14 31.31 22.91 17.74 15.17 28.36 26.39 22.85 15.59

Table A.15. 20 KW, 100 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 22.69 16.09 15.54 15.09 15.07 15.03 21.47 15.92 15.45 15.07 15.05 15.03 22.87 15.69 15.17 15.03 28.26 17.43 15.62 15.06

T2 26.64 17.37 16.27 15.18 15.11 15.06 24.18 16.91 16.02 15.14 15.08 15.04 26.37 16.3 15.34 15.05 31.49 20.18 16.76 15.1

T3 26.76 18.99 17.33 15.34 15.17 15.08 25.58 18.24 16.86 15.26 15.12 15.06 29.7 17.07 15.58 15.07 32.61 22.85 18.17 15.15

T4 24.18 21.62 19.68 15.94 15.36 15.14 24.66 21 19.03 15.74 15.27 15.1 33.34 19.09 16.23 15.11 31.27 26.33 20.75 15.29

T5 22.52 22.28 20.74 16.43 15.54 15.17 20.38 21.11 19.93 16.16 15.41 15.12 30.95 20.4 16.71 15.14 28.11 26.21 21.73 15.38

T6 22.52 22.28 20.74 16.43 15.54 15.17 20.38 21.11 19.93 16.16 15.41 15.12 30.95 20.4 16.71 15.14 28.11 26.21 21.73 15.38

Table A.16. 20 KW, 120 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 20.75 15.77 15.38 15.08 15.06 15.03 19.94 15.67 15.33 15.06 15.05 15.02 22.37 15.61 15.15 15.03 27.19 17.09 15.55 15.08

T2 24.02 16.62 15.85 15.14 15.1 15.06 22.02 16.37 15.72 15.11 15.08 15.04 25.49 16.12 15.29 15.05 30.22 19.47 16.46 15.11

T3 25.14 17.71 16.52 15.24 15.14 15.08 23.34 17.29 16.29 15.19 15.11 15.06 28.34 16.74 15.48 15.07 31.5 21.85 17.61 15.14

T4 23.7 19.9 18.18 15.58 15.27 15.13 23.89 19.51 17.85 15.49 15.21 15.09 32.23 18.22 15.95 15.11 31.98 25.55 19.82 15.23

T5 21.81 20.73 19.13 15.87 15.37 15.16 22.67 20.54 18.88 15.75 15.29 15.11 31.01 19.16 16.28 15.13 28.62 26.27 20.83 15.28

T6 21.81 20.73 19.13 15.87 15.37 15.16 22.67 20.54 18.88 15.75 15.29 15.11 31.01 19.16 16.28 15.13 28.62 26.27 20.83 15.28

Table A.17. 25 KW, 60 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 31.06 17.99 16.58 15.19 15.1 15.05 28.37 17.29 16.18 15.14 15.07 15.04 24.5 16.05 15.28 15.04 28.28 17.9 15.87 15.05

T2 34.93 21.35 18.83 15.54 15.21 15.08 32.51 19.86 17.83 15.37 15.14 15.06 29.33 17.26 15.65 15.07 29.85 21.26 17.49 15.11

T3 34.1 24.21 21.37 16.22 15.41 15.13 32.03 22.59 19.97 15.85 15.27 15.09 33.02 19.04 16.28 15.11 29.65 23.76 19.26 15.24

T4 32.12 23.73 22.33 17.83 16.17 15.26 29.76 23.86 22.49 17.33 15.84 15.16 33.35 23.6 18.33 15.2 27.48 24.17 21.28 15.59

T5 31.15 23.93 21.98 18.43 16.69 15.39 29.5 23.51 22.19 18.19 16.35 15.21 30.74 25.02 19.72 15.29 25.2 23.35 21.39 15.77

T6 31.15 23.93 21.98 18.43 16.69 15.39 29.5 23.51 22.19 18.19 16.35 15.21 30.74 25.02 19.72 15.29 25.2 23.35 21.39 15.77

Table A.18. 25 KW, 80 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 26.97 16.91 15.95 15.13 15.09 15.05 24.78 16.41 15.68 15.09 15.07 15.03 26.41 16.2 15.32 15.04 32.58 18.72 16.03 15.06

T2 31.41 19.07 17.25 15.3 15.16 15.08 28.34 18.08 16.66 15.21 15.12 15.06 31.68 17.34 15.67 15.07 36.38 23.06 18.07 15.13

T3 33.86 22.03 19.27 15.64 15.26 15.12 28.73 20.23 18.11 15.43 15.18 15.08 36.42 18.89 16.2 15.1 36.92 26.95 20.49 15.24

T4 32.65 27.02 23.96 17.03 15.74 15.22 26.05 23.31 21.19 16.33 15.46 15.14 38.49 23.18 17.82 15.19 34.03 29.8 24.13 15.57

T5 30.6 26.82 25.16 18.19 16.23 15.3 23.93 22.74 21.99 17.08 15.75 15.18 34.92 25.64 19.04 15.25 30.72 27.86 24.83 15.77

T6 30.6 26.82 25.16 18.19 16.23 15.3 23.93 22.74 21.99 17.08 15.75 15.18 34.92 25.64 19.04 15.25 30.72 27.86 24.83 15.77

Table A.19. 25 KW, 100 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 24.24 16.31 15.65 15.11 15.08 15.04 22.85 16.11 15.54 15.08 15.06 15.03 24.77 15.85 15.21 15.04 31.41 17.99 15.77 15.07

T2 28.99 17.84 16.53 15.22 15.14 15.07 26.17 17.31 16.23 15.17 15.1 15.05 29.11 16.6 15.42 15.06 35.4 21.38 17.16 15.12

T3 29.03 19.8 17.8 15.42 15.21 15.1 27.83 18.91 17.25 15.32 15.15 15.07 33.26 17.55 15.71 15.09 36.88 24.68 18.9 15.18

T4 25.95 22.97 20.63 16.13 15.44 15.17 26.14 22.11 19.81 15.89 15.33 15.12 37.87 20.03 16.51 15.14 35.43 29.08 22.09 15.35

T5 24.21 23.8 21.91 16.71 15.66 15.22 21.03 22.22 20.85 16.39 15.5 15.15 34.94 21.64 17.09 15.18 31.41 28.97 23.33 15.47

T6 24.21 23.8 21.91 16.71 15.66 15.22 21.03 22.22 20.85 16.39 15.5 15.15 34.94 21.64 17.09 15.18 31.41 28.97 23.33 15.47

54



Table A.20. 25 KW, 120 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 22.04 15.94 15.46 15.09 15.08 15.04 21.07 15.82 15.4 15.07 15.06 15.03 24.19 15.76 15.19 15.04 30.06 17.57 15.68 15.1

T2 26.02 16.98 16.04 15.17 15.13 15.07 23.63 16.68 15.89 15.13 15.09 15.05 28.07 16.39 15.36 15.06 33.81 20.48 16.79 15.13

T3 27.29 18.31 16.86 15.3 15.18 15.1 25.24 17.81 16.58 15.24 15.13 15.07 31.61 17.15 15.59 15.08 35.44 23.4 18.18 15.17

T4 25.49 20.97 18.88 15.71 15.33 15.16 25.87 20.52 18.49 15.6 15.26 15.11 36.5 18.97 16.17 15.13 36.31 28.03 20.9 15.28

T5 23.21 22.01 20.05 16.06 15.45 15.2 24.07 21.72 19.73 15.92 15.36 15.14 35.09 20.13 16.57 15.16 32.22 29.04 22.17 15.35

T6 23.21 22.01 20.05 16.06 15.45 15.2 24.07 21.72 19.73 15.92 15.36 15.14 35.09 20.13 16.57 15.16 32.22 29.04 22.17 15.35

Table A.21. 30 KW, 60 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 34.18 18.48 16.83 15.22 15.12 15.06 30.61 17.62 16.34 15.16 15.09 15.04 25.9 16.19 15.32 15.05 30.62 18.42 16.03 15.06

T2 39.19 22.51 19.48 15.62 15.24 15.1 35.6 20.57 18.22 15.42 15.16 15.07 31.7 17.55 15.74 15.09 32.11 22.23 17.87 15.13

T3 38.48 26.18 22.61 16.4 15.48 15.16 34.84 23.72 20.67 15.95 15.31 15.1 36.23 19.58 16.45 15.13 31.65 24.88 19.82 15.27

T4 36.47 26.3 24.27 18.31 16.33 15.31 32.11 25.43 23.68 17.61 15.93 15.19 36.18 24.71 18.73 15.24 29.05 25.32 21.93 15.63

T5 35.46 26.87 24.2 19.03 16.93 15.47 31.99 25.12 23.49 18.59 16.49 15.25 33.41 26.24 20.25 15.33 26.47 24.87 22.1 15.82

T6 35.46 26.87 24.2 19.03 16.93 15.47 31.99 25.12 23.49 18.59 16.49 15.25 33.41 26.24 20.25 15.33 26.47 24.87 22.1 15.82

Table A.22. 30 KW, 80 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 30.07 17.38 16.2 15.16 15.11 15.05 27.4 16.9 15.94 15.12 15.08 15.04 28.01 16.22 15.3 15.05 34.7 18.69 15.97 15.07

T2 36.21 20.25 17.93 15.39 15.19 15.09 31.23 18.97 17.19 15.28 15.13 15.07 33.9 17.37 15.63 15.08 39.51 23.09 17.86 15.13

T3 35.98 23.9 20.48 15.83 15.32 15.13 30.39 21.39 18.9 15.58 15.22 15.09 39.28 18.93 16.12 15.11 41.09 27.47 20.3 15.23

T4 32.69 27.71 24.97 17.45 15.88 15.24 25.71 24.28 22.12 16.66 15.58 15.16 43.06 23.31 17.61 15.19 38.75 32.45 24.77 15.58

T5 30.92 27.14 25.67 18.62 16.41 15.31 23.23 23.62 22.87 17.49 15.94 15.2 38.67 26.08 18.77 15.25 34.1 31.18 26.17 15.83

T6 30.92 27.14 25.67 18.62 16.41 15.31 23.23 23.62 22.87 17.49 15.94 15.2 38.67 26.08 18.77 15.25 34.1 31.18 26.17 15.83

Table A.23. 30 KW, 100 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 25.72 16.52 15.76 15.13 15.1 15.05 24.18 16.29 15.63 15.1 15.07 15.04 26.69 16.01 15.25 15.05 34.48 18.52 15.9 15.09

T2 31.2 18.29 16.77 15.26 15.16 15.09 28.07 17.7 16.44 15.2 15.12 15.06 31.86 16.89 15.5 15.07 39.19 22.51 17.53 15.14

T3 31.17 20.56 18.24 15.49 15.24 15.12 29.96 19.55 17.61 15.38 15.18 15.09 36.78 18.01 15.84 15.1 41.06 26.41 19.57 15.21

T4 27.65 24.26 21.54 16.31 15.52 15.21 27.44 23.16 20.54 16.03 15.39 15.15 42.43 20.93 16.77 15.17 39.74 31.8 23.38 15.42

T5 25.89 25.24 23.03 16.99 15.77 15.26 21.7 23.26 21.7 16.6 15.59 15.18 39.02 22.83 17.45 15.21 34.83 31.77 24.88 15.55

T6 25.89 25.24 23.03 16.99 15.77 15.26 21.7 23.26 21.7 16.6 15.59 15.18 39.02 22.83 17.45 15.21 34.83 31.77 24.88 15.55

Table A.24. 30 KW, 120 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 23.3 16.11 15.55 15.11 15.1 15.05 22.17 15.97 15.48 15.08 15.07 15.04 26 15.9 15.22 15.05 32.89 18.03 15.8 15.12

T2 27.93 17.33 16.23 15.21 15.15 15.08 25.2 16.98 16.05 15.16 15.11 15.06 30.64 16.65 15.43 15.07 37.36 21.47 17.1 15.16

T3 29.33 18.89 17.19 15.35 15.21 15.12 27.09 18.31 16.86 15.28 15.16 15.08 34.86 17.55 15.7 15.1 39.33 24.92 18.74 15.21

T4 27.17 22.02 19.56 15.84 15.39 15.19 27.75 21.49 19.1 15.71 15.31 15.14 40.75 19.71 16.39 15.16 40.63 30.46 21.95 15.33

T5 24.54 23.26 20.94 16.25 15.54 15.24 25.3 22.85 20.54 16.09 15.43 15.17 39.2 21.08 16.86 15.2 35.89 31.79 23.47 15.41

T6 24.54 23.26 20.94 16.25 15.54 15.24 25.3 22.85 20.54 16.09 15.43 15.17 39.2 21.08 16.86 15.2 35.89 31.79 23.47 15.41

Table A.25. 35 KW, 60 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 37.2 18.93 17.05 15.25 15.14 15.07 32.42 17.88 16.47 15.17 15.1 15.05 27.22 16.32 15.36 15.06 33.24 18.96 16.18 15.07

T2 43.91 23.63 20.1 15.69 15.27 15.12 38.38 21.12 18.52 15.46 15.18 15.08 33.94 17.83 15.82 15.1 34.4 23.12 18.23 15.15

T3 43.49 28.29 23.88 16.56 15.53 15.18 37.4 24.69 21.25 16.02 15.34 15.12 39.35 20.07 16.6 15.15 33.55 25.79 20.28 15.3

T4 41.54 29.25 26.44 18.78 16.48 15.37 34.49 27.12 24.85 17.82 16 15.22 38.81 25.61 19.07 15.27 30.37 26.13 22.38 15.67

T5 40.46 30.3 26.83 19.64 17.15 15.57 34.49 26.95 24.91 18.89 16.58 15.3 35.87 27.2 20.68 15.37 27.49 26.02 22.58 15.85

T6 40.46 30.3 26.83 19.64 17.15 15.57 34.49 26.95 24.91 18.89 16.58 15.3 35.87 27.2 20.68 15.37 27.49 26.02 22.58 15.85
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Table A.26. 35 KW, 80 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 31.89 17.65 16.33 15.18 15.12 15.06 28.86 17.12 16.05 15.14 15.09 15.05 30.19 16.41 15.34 15.06 36.68 18.95 16.04 15.08

T2 38.93 20.85 18.25 15.43 15.22 15.11 33.09 19.42 17.44 15.32 15.16 15.08 36.86 17.74 15.72 15.09 42.36 23.8 18.07 15.14

T3 38.92 24.98 21.12 15.93 15.37 15.16 32.07 22.12 19.35 15.65 15.26 15.11 42.7 19.51 16.28 15.13 44.53 28.77 20.75 15.26

T4 35.48 29.37 26.22 17.72 15.98 15.27 27.03 25.49 23 16.84 15.65 15.18 47.79 24.5 17.98 15.22 43.31 35.27 26.01 15.64

T5 33.3 28.68 27 19.02 16.56 15.36 24.66 24.84 23.89 17.77 16.05 15.24 42.79 27.76 19.31 15.29 37.76 34.09 27.83 15.92

T6 33.3 28.68 27 19.02 16.56 15.36 24.66 24.84 23.89 17.77 16.05 15.24 42.79 27.76 19.31 15.29 37.76 34.09 27.83 15.92

Table A.27. 35 KW, 100 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 27.16 16.73 15.86 15.15 15.12 15.06 25.47 16.47 15.72 15.11 15.09 15.04 28.57 16.17 15.29 15.06 37.48 19.04 16.03 15.1

T2 33.3 18.73 17.01 15.3 15.19 15.1 29.91 18.06 16.63 15.23 15.14 15.07 34.55 17.18 15.57 15.09 42.9 23.6 17.89 15.16

T3 33.13 21.3 18.68 15.56 15.28 15.15 31.95 20.16 17.96 15.43 15.21 15.1 40.23 18.45 15.96 15.12 45.17 28.07 20.21 15.24

T4 29.21 25.49 22.42 16.49 15.6 15.24 28.38 24.07 21.2 16.17 15.45 15.17 46.93 21.77 17.02 15.2 44.05 34.44 24.6 15.47

T5 27.55 26.61 24.1 17.26 15.88 15.31 22.25 24.19 22.46 16.8 15.67 15.21 43.08 23.95 17.79 15.25 38.23 34.48 26.38 15.63

T6 27.55 26.61 24.1 17.26 15.88 15.31 22.25 24.19 22.46 16.8 15.67 15.21 43.08 23.95 17.79 15.25 38.23 34.48 26.38 15.63

Table A.28. 35 KW, 120 % CRAC Fan Speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 24.52 16.28 15.63 15.13 15.11 15.06 23.23 16.12 15.55 15.1 15.08 15.04 27.78 16.05 15.26 15.05 35.72 18.49 15.92 15.14

T2 29.79 17.67 16.41 15.24 15.18 15.1 26.72 17.28 16.2 15.18 15.13 15.07 33.18 16.91 15.49 15.08 40.91 22.45 17.41 15.19

T3 31.33 19.45 17.51 15.41 15.25 15.14 28.89 18.8 17.14 15.32 15.19 15.1 38.09 17.94 15.8 15.12 43.23 26.41 19.28 15.24

T4 28.84 23.06 20.24 15.97 15.46 15.23 29.61 22.44 19.7 15.81 15.35 15.16 44.98 20.42 16.59 15.18 44.93 32.84 22.97 15.38

T5 25.9 24.51 21.83 16.44 15.62 15.28 26.5 23.96 21.34 16.25 15.5 15.2 43.27 22 17.14 15.23 39.51 34.47 24.73 15.47

T6 25.9 24.51 21.83 16.44 15.62 15.28 26.5 23.96 21.34 16.25 15.5 15.2 43.27 22 17.14 15.23 39.51 34.47 24.73 15.47

Table A.29. Server Heat Loading on racks

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

Load Bank 1 2.5 2.5 2.5 3.75 3.75 2.5 1.25 1.25 2.5 2.5 1.25 1.25 2.5 2.5 2.5 3.75 3.75 2.5 2.5 2.5

Load Bank 2 2.5 2.5 2.5 3.75 3.75 2.5 1.25 1.25 2.5 2.5 1.25 1.25 2.5 2.5 2.5 3.75 2.5 3.75 2.5 2.5

Load Bank 3 2.5 2.5 2.5 3.75 3.75 2.5 1.25 1.25 2.5 2.5 1.25 1.25 2.5 2.5 2.5 3.75 3.75 2.5 2.5 2.5

Load Bank 4 2.5 2.5 2.5 3.75 3.75 2.5 1.25 1.25 2.5 2.5 1.25 1.25 2.5 2.5 2.5 3.75 2.5 3.75 2.5 2.5

Table A.30. Temperatures for 60% CRAC fan speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 22.62 15.69 15.26 15.02 15.01 15.01 21.34 15.49 15.17 15.01 15 15.01 19.59 15.21 15.03 15.02 22.73 16.1 15.21 15.02

T2 24.98 19.47 17.51 15.18 15.04 15.03 24.32 18.03 16.54 15.09 15.01 15.01 25.2 16.25 15.22 15.03 23.85 19.89 17.08 15.06

T3 24.09 20.73 19.58 15.66 15.12 15.04 22.96 19.86 18.24 15.31 15.04 15.02 26.54 17.71 15.6 15.04 23.22 20.95 18.32 15.13

T4 23.37 20.46 19.46 16.74 15.52 15.07 21.92 19.01 18.99 16.07 15.22 15.03 25.94 20.76 16.79 15.06 22.3 20.56 19.31 15.28

T5 22.88 20.98 19.87 17.27 16.1 15.15 21.04 18.57 18.17 16.91 15.69 15.04 24.51 22.03 18.72 15.11 20.63 19.96 19.28 15.43

T6 22.88 20.98 19.87 17.27 16.1 15.15 21.04 18.57 18.17 16.91 15.69 15.04 24.51 22.03 18.72 15.11 20.63 19.96 19.28 15.43

Table A.31. Server Heat Loading on racks

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

Load Bank 1 5 5 5 6.25 6.25 5 3.75 3.75 5 5 3.75 3.75 5 5 5 6.25 6.25 5 5 5

Load Bank 2 5 5 5 6.25 6.25 5 3.75 3.75 5 5 3.75 3.75 5 5 5 6.25 5 6.25 5 5

Load Bank 3 5 5 5 6.25 6.25 5 3.75 3.75 5 5 3.75 3.75 5 5 5 6.25 6.25 5 5 5

Load Bank 4 5 5 5 6.25 6.25 5 3.75 3.75 5 5 3.75 3.75 5 5 5 6.25 5 6.25 5 5
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Table A.32. Temperatures for 60% CRAC fan speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 29.16 16.17 15.43 15.03 15.01 15.03 27.25 15.88 15.3 15.02 15.01 15.02 22.46 15.34 15.04 15.03 27.78 16.77 15.34 15.03

T2 35.67 23.62 19.56 15.28 15.05 15.06 35.34 20.75 17.8 15.14 15.03 15.05 30.92 17 15.34 15.06 30 22.84 18.32 15.09

T3 34.4 28.2 24.68 16.06 15.17 15.09 33.49 25.34 21.38 15.52 15.08 15.07 32.9 19.27 15.94 15.07 28.53 24.18 20.05 15.18

T4 33.17 27.78 25.49 18.13 15.77 15.15 31.42 25.16 24.03 16.9 15.34 15.1 32.35 23.86 17.75 15.1 26.62 23.83 21.4 15.36

T5 32.24 28.99 26.61 19.35 16.78 15.74 30.23 24.77 23.56 18.69 16.11 15.17 30.95 25.48 20.52 15.17 24.18 23.89 21.4 15.52

T6 32.24 28.99 26.61 19.35 16.78 15.74 30.23 24.77 23.56 18.69 16.11 15.17 30.95 25.48 20.52 15.17 24.18 23.89 21.4 15.52

Table A.33. Server Heat Loading on racks

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

Load Bank 1 3.75 3.75 3.75 5 5 3.75 2.5 2.5 3.75 3.75 2.5 2.5 3.75 3.75 3.75 5 3.75 5 3.75 3.75

Load Bank 2 3.75 3.75 3.75 5 5 3.75 2.5 2.5 3.75 3.75 2.5 2.5 3.75 3.75 3.75 5 5 3.75 3.75 3.75

Load Bank 3 3.75 3.75 3.75 5 5 3.75 2.5 2.5 3.75 3.75 2.5 2.5 3.75 3.75 3.75 5 3.75 5 3.75 3.75

Load Bank 4 3.75 3.75 3.75 5 5 3.75 2.5 2.5 3.75 3.75 2.5 2.5 3.75 3.75 3.75 5 5 3.75 3.75 3.75

Table A.34. Temperatures for 100% CRAC fan speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 20.9 15.38 15.13 15.02 15.01 15.02 19.93 15.29 15.1 15.01 15 15.01 19.95 15.17 15.02 15.02 24.46 16.05 15.2 15.06

T2 25.12 17.38 16.07 15.07 15.03 15.04 24.31 16.64 15.71 15.04 15.01 15.02 25.05 15.75 15.1 15.04 27.9 20.47 17.02 15.08

T3 23.69 19.61 17.41 15.18 15.05 15.05 24.11 18.17 16.58 15.1 15.02 15.03 28.35 16.38 15.23 15.05 28.44 22.58 18.25 15.11

T4 22.63 22.05 19.84 15.58 15.13 15.07 21.64 20.2 18.29 15.32 15.06 15.04 29.63 17.72 15.55 15.07 27.92 24.65 19.85 15.17

T5 22.95 22.96 21.59 16.41 15.37 15.09 17.7 19.92 19.38 15.83 15.18 15.05 28.24 19.75 16.13 15.09 25.79 24.27 20.99 15.25

T6 22.95 22.96 21.59 16.41 15.37 15.09 17.7 19.92 19.38 15.83 15.18 15.05 28.24 19.75 16.13 15.09 25.79 24.27 20.99 15.25

Table A.35. Server Heat Loading on racks

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

Load Bank 1 6.25 6.25 6.25 7.5 7.5 6.25 5 5 6.25 6.25 5 5 6.25 6.25 6.25 7.5 6.25 7.5 6.25 6.25

Load Bank 2 6.25 6.25 6.25 7.5 7.5 6.25 5 5 6.25 6.25 5 5 6.25 6.25 6.25 7.5 7.5 6.25 6.25 6.25

Load Bank 3 6.25 6.25 6.25 7.5 7.5 6.25 5 5 6.25 6.25 5 5 6.25 6.25 6.25 7.5 6.25 7.5 6.25 6.25

Load Bank 4 6.25 6.25 6.25 7.5 7.5 6.25 5 5 6.25 6.25 5 5 6.25 6.25 6.25 7.5 7.5 6.25 6.25 6.25

Table A.36. Temperatures for 100% CRAC fan speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 23.62 15.56 15.19 15.03 15.01 15.03 22.25 15.43 15.14 15.02 15.01 15.02 23.12 15.27 15.03 15.03 30.35 16.68 15.32 15.1

T2 29.77 18.49 16.56 15.1 15.04 15.06 28.71 17.4 16.04 15.06 15.02 15.04 31.45 16.2 15.17 15.06 35.77 23.63 18.15 15.12

T3 27.79 21.84 18.56 15.26 15.07 15.08 27.62 19.62 17.3 15.15 15.04 15.06 36.7 17.2 15.36 15.08 36.99 26.93 20.06 15.17

T4 26.61 25.57 22.22 15.85 15.18 15.11 23.43 22.23 19.67 15.46 15.09 15.08 38.87 19.26 15.85 15.1 36.81 30.75 22.65 15.26

T5 27.86 26.48 24.58 17.04 15.53 15.14 18.99 22.03 21.17 16.18 15.26 15.1 37 22.45 16.74 15.14 33.05 30.43 24.74 15.38

T6 27.86 26.48 24.58 17.04 15.53 15.14 18.99 22.03 21.17 16.18 15.26 15.1 37 22.45 16.74 15.14 33.05 30.43 24.74 15.38

Table A.37. Server Heat Loading on racks

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

Load Bank 1 8.75 8.75 8.75 10 10 8.75 7.5 7.5 8.75 8.75 7.5 7.5 8.75 8.75 8.75 10 10 8.75 8.75 8.75

Load Bank 2 8.75 8.75 8.75 10 10 8.75 7.5 7.5 8.75 8.75 7.5 7.5 8.75 8.75 8.75 10 8.75 10 8.75 8.75

Load Bank 3 8.75 8.75 8.75 10 10 8.75 7.5 7.5 8.75 8.75 7.5 7.5 8.75 8.75 8.75 10 10 8.75 8.75 8.75

Load Bank 4 8.75 8.75 8.75 10 10 8.75 7.5 7.5 8.75 8.75 7.5 7.5 8.75 8.75 8.75 10 8.75 10 8.75 8.75
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Table A.38. Temperatures for 100% CRAC fan speed

Rack A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 D1 D2 D3 D4

T1 26.41 15.74 15.26 15.04 15.02 15.04 24.65 15.57 15.19 15.03 15.01 15.03 26.28 15.37 15.04 15.04 36.4 17.31 15.44 15.14

T2 35 19.58 17.04 15.13 15.06 15.09 32.9 18.16 16.37 15.09 15.04 15.06 37.82 16.63 15.22 15.08 43.99 26.86 19.31 15.17

T3 32.45 24.09 19.69 15.34 15.1 15.12 29.72 21.02 18.01 15.2 15.06 15.08 45.24 17.96 15.48 15.11 45.78 31.33 21.89 15.23

T4 31.07 29.51 24.79 16.12 15.25 15.16 24.83 24.05 20.93 15.6 15.12 15.12 48.36 20.71 16.13 15.14 45.43 36.58 25.38 15.35

T5 33.6 30.86 28.18 17.78 15.72 15.2 20.44 24.51 23.07 16.51 15.34 15.15 45.68 24.97 17.29 15.18 39.78 35.7 28.14 15.5

T6 33.6 30.86 28.18 17.78 15.72 15.2 20.44 24.51 23.07 16.51 15.34 15.15 45.68 24.97 17.29 15.18 39.78 35.7 28.14 15.5
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APPENDIX B

ANN code for Matlab using LM function
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a= [ Power, CRAC fan speed, server position]

b= [ Temperature]

dataset= [a ; b ];

size(a)

size(b)

rand(’seed’, 491452)

net = fitnet(150);

net.trainParam.goal=1e-4;

[net, tr] = train(net, a, b);

nntraintool

plotperform(tr)

testA = a(:,tr.testInd);

testB = b(:,tr.testInd);

testC = net(testA);

perf = mse(net,testB,testC);
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APPENDIX C

Nomenclature
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EPA Environmental Protection Agency

PUE Power Usage Effectiveness

ANN Artificial Neural Network

CFD Computational Fluid Dynamics

CRAC Computer Room Air Conditioner

MLP Multi Layered Perceptron

MSE Mean Square Error

RMSE Root Mean Square Error

N Number of training cases or data sets

PID Proportional Integral Derivative

H Hessian Matrix

J Jacobian

LM Levenberg-Marquardt training algorithm

GD Gradient Descent
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