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ABSTRACT

SPARSITY ENHANCED RECONSTRUCTION METHODS FOR DIFFUSE

OPTICAL TOMOGRAPHY

Jixing Yao, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Soontorn Oraintara

Conventional reconstruction algorithms for diffuse optical tomography (DOT)

is based on Tikhonov regularization method and the simple white Gaussian noise

(WGN) assumption. These approaches usually lead to the following problems: 1. The

reconstructed images are blurry; 2. In 3D reconstruction problems, the reconstructed

objects are usually in the wrong depths; 3. The shape of a reconstructed object might

be different from its original one due to the noise.

In this work, after study the nature of DOT images as well as the data ac-

quisition process, several sparsity regularization related reconstruction methods were

developed to improve the spatial resolution as well as the fidelity of the reconstructed

image. First, this thesis presents a simple reconstruction formula that adjusts the

sensing matrix to improve the depth reconstruction in the 3D space. With the spar-

sity constraint, the spatial resolutions of a reconstructed image can also be improved

even with WGN added to the measurements.

Next, to make the reconstruction formula more practical, the physical sensing

model and its relationship with the measurement noise are further studied. Conse-
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quently, an effective noise quantification method is derived. By incorporating this

noise level information to the reconstruction process, objects with more complex

shapes can be recovered almost correctly.

Finally, the relative noise (RN) model is derived by considering the transforma-

tion from the light intensity measurements to relative light density changes. There-

after, a maximum a posteriori (MAP) estimator, together with both `1 norm and `2

norm regularization terms, is developed. The resulting optimization problem is solved

by the ellipsoid algorithm. The improvement of using this more accurate noise model

is demonstrated by both computer simulation and phantom experiments.
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CHAPTER 1

INTRODUCTION

The diffuse optical tomography (DOT) is one of the emerging noninvasive med-

ical imaging technique, which uses low power light in the near infrared (NIR) range to

detect the differences of optical properties inside the human body. In particular, the

absorption spectra of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin

(Hb) at the NIR wavelength differ markedly as shown in Fig.1.1.

Figure 1.1. The absorption spectra of oxygenated and deoxygenated hemoglobin in
the near infrared range.

As a result, the oxygen density in particular areas can be detected by taking

measurements at different light wavelengths within the near infrared range.
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Despite the limitation of spatial resolution and depth penetration as compared

to magnetic resonance imaging (MRI) or computed tomography (CT), the DOT tech-

nique provides generally a cheaper and more portable imaging solution, together with

higher temporal resolution. Recently, this has gained considerable interests and be-

come an important tool for medical imaging [37], and has been used for the applica-

tions such as functional brain imaging [10, 72] and cancer detection [19, 61].

Generally speaking, the DOT imaging systems can be categorized into three dif-

ferent types: frequency-domain systems, time-domain systems, and continuous-wave

(CW) systems [8]. For the frequency-domain imaging, the light sources are amplitude

modulated (AM). The images can be obtained from the phase delay information of

the measured AM light. The time-domain system, on the other hand, implements

a short light pulse as the input signal. In this case, the detected output signal can

be considered as the impulse response of the medium. Because when the injected

light traveling through the medium, the photons are actually traveling via different

reflection paths, which results different time delays. At the end, the CW system

can actually be considered as a special case of the frequency-domain systems, where

the modulation frequency is set to zero. Hence the CW systems can only detect the

magnitude attenuation of the input signal. Among these three types of systems, the

CW systems are the simplest and the cheapest. As a result, the CW systems are

widely accepted by the DOT community [12], and is the kind of system focused in

this research.

Moreover, depending on the applications, a variety of geometries have also

been used for the DOT system. For example, (1) the planar geometry: sources

and detectors are placed either on the same plane or on two parallel planes; (2)

the cylindrical geometry: sources and detectors are located on the boundary of the

cylinder and usually with the assumption that the cylinder is infinitely long; (3) the
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spherical geometry: sources and detectors are scattered over the surface of the sphere.

In this work, among all those geometries, we study the one that is widely used for

the human brain function imaging applications [10, 72]. For this scenario, sources

and detectors are placed on the same plane, and only reflective lights are detected.

During the detecting process, sources are turned on one after another. At the mean

time the reflective light densities are observed by all the detectors, and recorded as the

measurements. In other words, measurements are collected from the pairs formed by

different sources and different detectors. At the end, all the available measurements

or a number of selected measurements are used to reconstruct the image.

A medical imaging problem can be generally divided into two sub-problems:

the forward problem, which deals with the physical model of the imaging system,

and the inverse problem, which converts the measurements into an image [5]. The

fundamental forward model as well as the conventional inversion technique for the

DOT problems are discussed in the next two sub-sections.

1.1 Forward Model

Before reconstructing the image from the measured data, investigating the for-

ward physical model is necessary since an accurate forward model is the key to find

a correct reconstruction. When light propagates in biological media, scattering and

absorption are two fundamental interactions between light and tissue. Given that the

reduced scattering coefficient is much greater than the absorption coefficient for near

infrared light, this process can be modeled as the diffusion approximation (DA) of

the Boltzmann transport equation [60]. The DA of the frequency domain system is

given by:

−∇ ·D(r)∇Φ(r, ω) + cµa(r)Φ(r, ω) + jωΦ(r, ω) = cS(r, ω), (1.1)
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where c is the speed of light in the medium, S is the isotropic source providing the

number of photons emitted at position r, and Φ is the photon fluence rate. D is the

diffusion coefficient, which is defined as D = c/3(µa + µ′s), where µ′s is the reduced

scattering coefficient defined as µ′s = (1 − g)µs and g is the averaged cosine of the

scattering angle. Moreover, since in most of the tissues µ′s � µa, D ≈ c/(3µ′s). The

DA of cw system can be obtained from (1.1) by setting ω = 0, since the cw system

can be considered as a special frequency domain system with the frequency ω = 0.

The forward solution of (1.1) can be obtained by applying the Monte Carlo

methods [9, 32], finite element method [6, 68], finite difference method [2, 65], random

walk method [34, 35], and linear Born/Rytov approximation [4, 63, 67] etc.

In general, Eq. (1.1) governs light propagation and distribution in tissues as a

function of tissue optical properties, namely, light scattering and absorption. How-

ever, this study focuses only on functional brain imaging, with the assumption that the

change in light scattering is small [10, 28]. Thus, changes of light scattering induced

by brain activation can be ignored without causing significant errors. Consequently,

the forward solution of (1.1) can be solved by the linear Rytov approximation [64].

After combining with the modified Beer-Lambert law [23], the Rytov approximation

yields the following equation[10]:

ln
Φ0(rd, rs)

Φ(rd, rs)
= ∆µaL, (1.2)

where ∆µa is the relative absorption change from a source at position rs to a detector

at position rd between two measurement states, Φ0 and Φ, L is the average optical

path length of light propagating through the medium, Φ0(rd, rs) is related to the

baseline measurements or the background measurements. Therefore, the left hand

side of (1.2) can be considered as the measured relative light density changes or the

relative measurements.
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1.2 Inverse Problem

Eq. (1.2) can be further discretized into the following linear equation:

Ax = b, (1.3)

where b ∈ RM×1 is the vector of measured relative light density changes from M

different source-detector (S-D) pairs, x ∈ RN×1 is the vector being related to the

changes of absorption properties in spatial domain and discretized into voxels (i.e.

xi = δµ(xi)), and A ∈ RM×N is the sensing matrix referring to the sensitivity of voxels

with respect to different S-D pairs.

Due to the limited numbers of sources and detectors, the number of measure-

ments obtained is much fewer than that of voxels to be reconstructed. As a result,

the A matrix is highly ill-posed and the solution of (1.3) is not unique[77]. Therefore

regularization to the solutions is required. The conventional way to regularize the

solution is to use ||x||2, which is the `2 norm of x, as defined by ||x||2 =
√∑

i |xi|2.

This approach is also known as the Tikhonov regularization method [75], where the

image can be reconstructed from the following equation:

x̂ = arg min
x
{‖Ax− b‖22 + λ‖x‖22}

= AT (AAT + λI)−1b, (1.4)

where AT denotes the transpose of A, and λ is the regularization parameter that

controls the balance between the data fidelity and regularization terms. Methods of

selecting this parameter for the optical imaging problem have been discussed exten-

sively in [20]. The Tikhonov method is simple and easy to implement, and therefore

is widely used.

Besides solving the linear equations in (1.3), many other reconstruction methods

were also proposed. For example, the series papers of inverse problem in optical
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diffusion tomography by Markel et al.[54, 55, 56, 57] were based on solving (1.2)

directly. Yet, these kinds of inversion formulas are outside the scope of this work and

are not discussed.

1.3 Problem Statement

Similar to many other medical imaging applications, reconstructing high quality

images from a limited number of measurements is one of the main challenges. Specif-

ically in the DOT problems, improving the quality of the reconstructed images is one

of the main challenges. DOT images often appear less spatial resolution as compared

to other medical imaging modalities (e.g., CT or MRI). The poor spatial resolution

in DOT stems from the scattering nature of light traveling in tissue, leading to a low

signal-to-noise ratio (SNR), particularly when the source and detector separation is

large (3-4 cm). Moreover, the sensing operator of DOT is usually ill-posed. As a

result, infinitely many solutions exist and the solutions are sensitive to the measure-

ment noise [41, 66, 77]. Hence, an appropriate regularization method is required to

find the correct solution, and the analysis of noise is needed to increase the robustness

of the reconstruction algorithm.

A variety of solutions have been proposed and explored to improve the quality

of DOT reconstructions by (1) optimally selecting optode arrangements to boost

the SNR and gain more information from the measurements, as discussed in [72,

21, 50], (2) increasing the density of sources and detectors to increase the number

measurements and therefore enhance the spatial resolution of reconstructed images

[30, 33], (3) applying different regularization terms in image reconstruction algorithms

based on prior information and different properties of the images to be reconstructed,

which eventually improve the quality of reconstruction results [27, 14, 50], and (4)

incorporating prior information obtained from other imaging modalities to define
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the positions and shapes of the objects to be recovered[40, 26, 51]. Furthermore,

algorithms targeting each individual type of the DOT systems [62, 15] or different

types of statistical models [14, 62] are also showing promising results.

In this work, following aspects of the DOT reconstruction problem were inves-

tigated:

1. the features of DOT images and how to fit these features into the compressive

sensing (CS) framework;

2. the properties of the sensing matrix and how it relates to the image distortion;

3. the forward model and its relationship to the instrument noise; and

4. how to effectively reduce the measurement noise in the reconstruction process.

1.4 Thesis Outline

Chapter 2 introduces sparsity regularized 3D reconstruction algorithm. The

relative noise (RN) is introduced and a reconstruction method based on the approx-

imation of RN term are derived in Chapter 3. A more precise RN model as well as

the corresponding reconstruction formula are discussed in Chapter 4. Summary and

possible future directions are discussed and listed in Chapter 5.
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CHAPTER 2

3D DOT RECONSTRUCTION WITH SPARSITY CONSTRAINT

In this chapter, the features of DOT images as well as the sensing matrix were

investigated and corresponding algorithms were developed.

As shown in (1.4), the conventional way to solve the DOT problem is to use the

`2 norm of the image as the regularization term. However, using only the `2 norm of

the image as the regularization term over-penalizes pixels with large coefficients and

produces many pixels with unwanted small coefficients. This tends to blur the recon-

structed images and results in poor spatial resolution. As a result, the reconstructed

object in a DOT image often appears low spatial resolution and unclear boundary,

as compared to other medical imaging modalities (e.g., CT or MRI). Hence, one of

the main challenges in DOT is to improve the spatial resolution of the reconstructed

images. In general, many images in DOT problems are usually sparse, i.e., most of the

coefficients in x are zero or close to zero. Especially in the application of functional

brain imaging [10], a reconstructed DOT image reflects only the relative changes in

absorption coefficient within the field of view (FOV) between two different time in-

stances or before and after concentration change, and most likely the active areas are

relatively small compared to the entire measured regions interrogated by the optical

probe array. Also, the oscillation in the background is small or close to zero. In the

application of cancer detection [18, 19], the lesion is also smaller than the normal

tissue.

Taking into account the sparseness of a DOT image, several methods have been

proposed to improve the spatial resolution of the reconstructions [50, 14, 70, 45].
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In [14], an algorithm using `1 norm regularization has been applied for the DOT

problem. Therein, the expectation maximization (EM) algorithm is employed to

solve the following optimization:

x̂ = arg max
x
{ln p(b|x)− λ‖x‖1},

where p(b|x) is the conditional probability distribution function (pdf) of b given x.

Compared to the Tikhonov regularization, the results yielded by this method demon-

strate better spatial resolution. However, applying the EM algorithm requires sta-

tistical information of the measurements in order to solve the inverse problem. Such

information is easy to find in simulations, but can be difficult for real implementa-

tions due to the diversity of devices and measuring environments. Furthermore, the

compressed sensing concept was first introduced in [70], where the authors mapped

the image into the frequency domain and yielded the following cost function:

x̂ = arg min
x
{‖Ax− b‖22 + λ‖F(x)‖1},

where F represents the Fourier transform. Hence the regularization term in this

method is the Fourier coefficients of the image under the assumption that the image

is sparse in its frequency domain. This assumption might be true for certain images,

but as we mentioned the images in DOT are usually sparse in the spatial domain.

In general, the sparse spatial domain signal is not sparse in its frequency domain.

As a result using the `1 norm of image’s Fourier coefficients as a regularization term

can only yield blurred images. Regularization with the total variation (TV) as well

as the Hubert function were discussed in [27], where the edges of the targets are

better preserved. However, these methods are only suitable for piecewise constant

images. Sparseness of the DOT image in the spatial domain and an `0 norm based

compressive sensing algorithm were discussed in [50], with a major challenge of its
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non-convexity. Recently, a combination of the `1 regularization and the Depth Com-

pensation Algorithm (DCA) has been reported in [45], which shows an improvement

in both the spatial resolution and the depth localization in the 3D DOT reconstruc-

tion. A method of preconditioning the sensing matrix was discussed in [43], which

can be used to improve compressive sensing based reconstruction methods.

In addition, the limitation of using only the `1 norm regularization is that the

cardinality of original image coefficient should be less than the average number of

sources and detectors [50]. However, in regular DOT applications the number of

optodes is usually a small number. Hence using only the `1 norm might yield results

that are over-sparse. To concur this limit, the straightforward way is to decrease

the image resolution or increase the pixel size, so the the cardinality of the image is

reduced. On the other hand, several methods have been proposed to break the limit

while maintain the same resolution. The concept of group lasso or group sparsity is

intend to partition the images into several groups, then the sum of the `2 norm of

each group is used to regularize the solution, i.e. the so call `2,1 norm[42, 49, 58].

The authors of [82] suggested that using both `1 norm and `2 norm at the same

time as a regularizer is also an effective choice to improve the spatial quality without

over-sparse the reconstructed images.

2.1 Sparsity Regularized DOT Reconstruction

For sparse images, it is desired to use the `1 norm of image coefficients as the

regularization term[13]. Hence, we first suggest to utilize the sparse image recon-

struction algorithm (SIRA) for the DOT problem by replacing the `2 norm of x in

10



(1.4) with a sparsity regularization term. The image reconstruction task now becomes

solving the following equation [53]:

x̂ = arg min
x
{‖Ax− b‖22 + λ‖x‖1}. (2.1)

A high quality reconstruction also relies on the selection of regularization param-

eter λ. Because the regularization parameter controls the smoothness of the result,

a wrong choice of such a parameter could lead to an incorrect image. Especially for

clinical applications, a wrong image might lead to improper diagnoses. Numbers of

parameter selection methods have been developed for the Tikhonov regularization

such as the L-curve method[41] and the generalized cross-validation(GCV) [38]. The

L-curve method is based on the fact that the log-log plot of ‖Ax− b‖2 vs ‖x‖2 often

has an “L” shape and the optimal parameter can be found near the so call L-corner

as shown in Fig. 2.1. In general, the L-curve can be found in most of the regular-

ized optimization problems by plotting the log-log figure of the fidelity term vs the

regularization term. Hence it can also be used for the sparsity regularized reconstruc-

tion formula in (2.1). Similarly, the GCV method has successfully used for many

`1 norm regularization applications. Unfortunately, for a smaller data set, i.e. the

number of measurements is much smaller than the number of voxels, this method is

unstable and often results in under-smoothing. As a result, the GCV method cannot

be implemented to find an optimal regularization parameter in the DOT problem.

Besides these two methods, a simple method called the quasi-optimality principle has

also been proved can be used to select the regularization parameter with sparsity

regularization[44]. The optimal choice of the parameter λ∗ is simply defined as:

λ∗ = arg min
λ
‖x̂λn − x̂λn+1‖, (2.2)

where λn = λ0 ∗ qn, 0 < q < 1 and x̂λn is the reconstructed result with regularization

parameter set to λn.
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Figure 2.1. An example of the L curve.

In this thesis, the regularization parameter for both Tikhonov regularization in

(1.4) and SIRA in (2.1) was selected by the L-curve method.

Moreover, unlike the case of Tikhonov regularization method, as given in (1.4),

a batch solution does not exist. Nonetheless, there are several iterative methods pro-

posed in the literatures, for example, the conjugate gradient descent method discussed

in [52], the l1 ls algorithm proposed in [48], and the split augmented Lagrangian

shrinkage algorithm (SALSA) introduced in [1] etc. Among these algorithms, the

SALSA algorithm is specifically designed for the `1 norm regularized image recon-

struction problem.
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The SALSA algorithm is an implementation of augmented Lagrangian method

(ALM) or method of multipliers, where the unconstrained optimization problem in

(2.1) is converted into an equivalent constrained problem

min
x,v

{‖Ax− b‖22 + λ‖v‖1} subject to x = v. (2.3)

By combining the constraint as a Lagrange multiplier to the minimization problem,

(2.3) can be modified as

min
x,v

{‖Ax− b‖22 + λ‖v‖1 +
µ

2
‖x− v‖22}, (2.4)

where µ is the penalty parameter. Then the optimal solution of x and v can be solved

iteratively. The reason of splitting variables in such a manner is (2.3) might be easier

to solve than the original problem in (2.1).

Note that, due to the constraint in (2.3), the resulting cost function in (2.4)

contains an `2 norm of the image coefficient, which can be considered as an additional

regularization term. In case the cardinality of an image exceeds the average number of

sources and detectors, correct reconstruction might still be able to obtain by increasing

the parameter µ. Therefore, in this work, the SALSA algorithm was used to solve

(2.1).

In order to demonstrate the advantages of this sparseness enhanced method as

compared to the conventional Tikhonov regularization, a computer simulation was

carried out. In the simulation, a CW DOT system was considered. The geometry of

sources and detectors is illustrated in Fig. 2.2, where twenty five bifurcated optodes

were placed as a 5× 5 square grid over the top surface of a semi-infinite medium and

centered at the origin. The distance between every two nearest optodes was 1.4 cm.

The absorption and scattering coefficients of the homogeneous background medium

13



were chosen as µa0 = 0.06 cm−1 and µs0 = 8.2 cm−1, respectively. Two sphere

like absorbers with identical absorption coefficients of µa = 0.46 cm−1 and radii of

0.5 cm were placed along the y axis as shown in Fig. 2.3(a). Furthermore, since

each optodes can be used as both light source and detector, by considering all the

possible combination of optodes, 300 source-detector (S-D) pairs can be found. All

the resulting S-D pairs were used for reconstruction. White Gaussian noise (WGN)

was added to the relative measurement vector b.

y 

x 

z 

Object 

Figure 2.2. Geometry of the simulation and phantom experiments.

Figs. 2.3(b) and (c) are the reconstructed images using the Tikhonov method,

as given in (1.4), and the SIRA, as given in (2.1). In order to emphasize the spatial

14



(a)

(b) (c)

Figure 2.3. The original image (a) and the reconstructed images obtained using (b)
Tikhonov method and (c) SIRA .

contrast, the reconstructed images were redisplayed in Fig. 2.4 using the log scale,

i.e. log(|x̂|) was plotted. From the results in Figs. 2.3 and 2.4 one can clearly see

that both methods identified the centers of the locations of the two objects correctly.

However, it is evident that the sizes and sharpness of the imaged spheres were greatly

improved by using the SIRA.
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(a) (b)

Figure 2.4. Reconstructed images obtained using (a) Tikhonov method and (b) SIRA
in log scale .

2.2 The Depth of 3D DOT Reconstruction

In this section, the DOT image reconstruction problem is extended into the 3D

scenario. With the same probe geometry designed as in the previous simulation, a

spherical object with 0.5 cm radius was placed 2 cm below the S-D plane, as illustrated

in Fig. 2.5. WGN was added to the relative measurements and the signal-to-noise

ratio (SNR) was set to as 20 dB (i.e. the signal power was 100 times bigger than the

noise power).

First the Tikhonov method as described in (1.4) was applied directly to re-

construct the image. The result is shown in Fig. 2.6(a). Compare to the original

image, the object in the reconstruction is much larger than its original size, and the

edge is blurry. Moreover, the center of the object is pulled toward the top surface.

In other words, the reconstruction provided incorrect depth information. The SIRA

algorithm in (2.1) was applied next and the result is shown in Fig. 2.6(b). Due to the

sparsity regularization term, the size of the reconstructed object is almost identical

to its actual one. However, its center position is still higher than its actual one.
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Figure 2.5. Original image for the 3D reconstruction simulation .

The depth problem of 3D DOT reconstruction was widely studied. A number of

modified Tikhonov regularization algorithms were developed to fix the depth problem

[31, 59, 71, 81]. The work in [71] was one of the methods that intended to fix the depth

problem by using prior information obtained from other medical imaging modality

such as ultrasound, x-ray, etc. It is suggested in [59, 81] that the reason behind the

depth problem is the coefficients in the sensing matrix A or the sensitivities of the

incident lights drop exponentially when the corresponding voxel goes deeper. Fig. 2.7

illustrated the path of light when it propagated form one optode to the other. One can

see that the photons are more likely to travel through the central area of the “banana”

shape than its outer area, especially its lower portion. As a result, the lower portion of

the medium is less sensitive in the measuring process due to this attenuation. Hence,

methods that reweight the sensing matrix A with respect to the corresponding depth
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(a)

(b)

Figure 2.6. Reconstruction results of the 3D reconstruction simulations with (a)
Tikhonov methods and (b) SIRA.
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were reported accordingly. In [31] the regularization parameter in (1.4) is placed with

a diagonal matrix Dλ. Therefore, different regularization parameters can be assigned

to different depth layers. Moreover, in [22] a normalization method was proposed

where the Tikhonov method was modified as follows:

x̂ = arg min
x
{‖Ax− b‖22 + λ‖Lx‖22}. (2.5)

The depth-dependent regularization matrix

L =
√

diag(ATA),

in the regularization term of (2.5) can be considered as normalizing each column of

the A matrix by its `2 norm.

Figure 2.7. Measurement sensitivity when light propagates from one source to one
detector.
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Therefore, the key to fix the depth error in the 3D reconstruction is to com-

bine the light attenuation information. A depth compensation algorithm (DCA) was

proposed in [59] for the Tikhonov regularization method. Thereafter the `2 norm

regularization term in [59] was replaced with a sparsity constraint, i.e. the `1 norm,

as proposed in [45]. In the DCA method, the sensing matrix A and the image co-

efficient vector x in (1.3) are separated into multiple blocks with respect to their

corresponding depths:

(
A1 A2 · · · Anz

)


x1

x2

...

xnz


= b,

where nz is the number of layers along the depth direction. Then the largest eigen-

value or the `2 norm of each sub-matrix Ai is calculated and represented as mi. Then

a diagonal matrix is defined as

D = {diag[mnz,mnz−1, · · · ,m2,m1]}γ,

where γ is an adjustable parameter to adjust the depth of reconstructed objects.

Consequently (2.1) can be modified into the following equation:

x̂ = arg min
x
{‖A]x− b‖22 + λ‖x‖1}, (2.6)

where the normalized sensing matrix A] = AD.

Even though the DCA based approach has shown improvements in both spatial

resolution and depth localization in the 3D DOT reconstruction, one clear disad-

vantage is that finding an appropriate tunable parameter γ is challenging. To avoid
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this drawback, we modified the diagonal entries of the weighting matrix D as the

reciprocal of ||Ai||2 of each corresponding block:

D = [
1

m1

,
1

m2

, · · · , 1

mnz

]. (2.7)

This process can be considered as a light attenuation correction process. In next

section, the developed method was tested by both computer simulation and laboratory

phantom experiments.

2.3 Experimental Results

2.3.1 Computer Simulation

Applying (2.6) with the modified weighting matrix D in (2.7) to reconstruct

the previous simulation data, where a spherical object placed 2 cm below the S-D

plane was measured. The reconstruction is shown in Fig. 2.8. Fig. 2.8(a) illustrates

the reconstruction in the x-y plane of different depth layers. The spherical object can

be found clearly in the center of the images for depths from -1.4 cm to -2.6 cm. In

addition, a vertical slice at y = 0 is shown in Fig. 2.8(b). The reconstructed center

of the object is approximately located at the depth of -1.8 cm, which was only one

voxel (0.2 cm) above its actual depth (-2 cm). Despite the slight distortion along the

depth direction, as compared to Fig. 2.6(b), the overall quality of the reconstructed

image with the developed method has improved significantly.

2.3.2 Laboratory Experiment

A similar laboratory phantom experiment was also performed. A CW multi-

channel NIR tomographic system (DYNOT, NIRx Medical Technologies) was used

to take the measurements from a cubical container filled with 1% Intralipid solution,

which has similar optical properties as normal human tissue. The geometry of the
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(a)

(b)

Figure 2.8. 3D Reconstruction of simulation data with a spherical object located at
2 cm below the S-D plane. (a) the x-y plane at different depth. (b) x-z plane when
y = 0. 22



experiment was the same as that in the earlier computer simulation shown in Fig.

2.2. Twenty five bifurcated optodes were used with the distance between every two

closest optodes 1.4 cm. Since each bifurcated optode can be used as both source

and detector. By considering all the possible combination of different optodes, 300

measurement channels can be obtained. However, to eliminate the low SNR measure-

ments, during the reconstruction process, only S-D pairs within 4.2 cm separation,

which means up to the sixth nearest neighbors of each optode, were selected. As a re-

sult, 188 channels were used to collect measurements to maintain an acceptably high

SNR. Moreover, a spherical absorber with a diameter of 1 cm is placed approximately

2 cm below the origin of the S-D plane.

The reconstruction results are shown in Fig. 2.9. Similar to the simulation

experiment, the images shown in Fig. 2.9(a) are slices along the x-y direction of

different depth layers. A ball-shaped object can be found near the center of the slices

corresponding to the depth from -1.4 cm to -2.6 cm. Due to the object was not

located exactly in the origin, an x-z slice at y= -0.6 cm is shown in Fig. 2.9(b). The

result is consist with the previous simulation experiment. As in both experiments,

the reconstructed object is centered at the depth of -1.8 cm, which is slightly above

its actual location.

2.4 Conclusion

In this chapter, an effective algorithm for 3D DOT reconstruction is discussed.

This approach is based on the sparsity regularization and the attenuation correction

of the measuring sensitivity. Such method manifested great improvement in the

computer simulation as well as laboratory phantom experiment, where both the size

and position of the object were recovered almost correctly. However, simply applying
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(a)

(b)

Figure 2.9. 3D Reconstruction of phantom data with a spherical object located at 2
cm below the S-D plane. (a) the x-y plane at different depth. (b) x-z plane when
y = −0.6.
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such a sparsity regularized reconstruction method to a more practical clinical human

experiment usually leads to poor results as explained in next chapter.
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CHAPTER 3

IMPROVED RECONSTRUCTION WITH RELATIVE NOISE

APPROXIMATION

In practice, measurement noise always exists, which can shield the true response

signals and mislead to wrong conclusions when DOT is utilized to study in vivo brain

activities stimulated under given tasks. In functional brain studies, the instrumen-

tal noise is usually inspected visually, where channels record significantly oscillating

measurements or with low SNR are removed prior to physiological noise reduction

process and image reconstruction steps [73, 47].

As in many of previous works, the noise added to b is usually treated as white

Gaussian noise (WGN) [14, 50, 26]. However, this might not be true in actual ex-

perimental measurements. Even though after the pre-selection process the remaining

channels have relatively higher SNR than those removed ones, the noise level may still

varied among different channels. Methods to design a weighting matrix for Tikhonov

method were discussed in [36] and [79]. In [79], the so call generalized least-squares

(GLS) method modified the Tikhonov method in (1.4) into

x̂ = arg min
x
{‖DAx−Db‖22 + λ‖Dxx‖22, } (3.1)

where D and Dx are diagonal matrices with the diagonal entries equal to the reciprocal

of the corresponding standard deviation of noise and the pixel, respectively. With the

appropriate noise variance information, the GLS method improves the reconstruction

quality of conventional Tikhonov methods. The noise covariance matrix might be

easy to obtain from both simulations and phantom experiments with fixed objects.

Because in simulations the statistical information is known in advance, and in a static
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phantom experiment, each measurement of individual S-D pairs can be modeled as

constant, hence the noise variance of each S-D pair or channel can be found from a

number of measurement samples. However, such a covariance matrix might be difficult

to find for other applications where the measurements are dynamic or do not have

enough samples available in order to estimate the covariance information, particularly

for in-vivo brain imaging applications. Hence, an alternative noise quantification

method is needed to weight the channels and consequently to promote the fidelity of

the reconstructed images.

3.1 Approximation of The Relative Noise

Fig. 3.1 shows the noise variances seen at different channels with variable S-D

separations of a laboratory phantom experiment. This clearly shows a larger variance

as the S-D separation becomes bigger.

In this work, we introduced the sparse image reconstruction algorithm with

noise normalization (SIRANN) by considering both the sparsity of the DOT images

and the varying feature of noise variances. Eq.(2.1) is therefore modified by including

a weight matrix D, which normalizes the noise variances of the fidelity term [46, 79],

as given below:

x̂ = arg min
x
{‖DAx−Db‖22 + λ‖x‖1}, (3.2)

where D = diag[1/σ1, 1/σ2, . . . , 1/σn], and σ2
j is the noise variance of the j-th

channel, 1 ≤ j ≤ n. One can also solve (3.2) by using the same algorithm as that

used to solve (2.1) by setting AD = DA and bD = Db.
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Figure 3.1. Noise variance of different S-D pairs in a laboratory phantom experiment.

3.1.1 Noise Analysis

In functional brain imaging by DOT, researchers often measure or determine

changes in light intensity or photon density at different time instances. It follows

that, with the linear Rytov approximation and modified Beer-Lambert law, the noise

free relative signal changes measured by DOT, as expressed in (1.3), is given by

b = ln
Φ0

Φ
, (3.3)

where the baseline measurements or background measurement Φ0 is the measured

light or photon density at time instant t1 , and Φ is the measured light density at

a different time instant t2 or activation measurement. Therefore, by considering the
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measurement noise at these two time instants as w0 and w, a noisy measurement is

then given by

b̃ = ln
Φ0 + w0

Φ + w

= ln
Φ0

Φ
+ ln

1 + w0/Φ0

1 + w/Φ

= b + ln
1 + w0/Φ0

1 + w/Φ
. (3.4)

Hence, a noisy DOT measurement can be considered as the summation of a

noise free relative light intensity measurement in (3.3) and the relative noise term z,

which is defined as:

z = ln

(
1 + w0/Φ0

1 + w/Φ

)
. (3.5)

Thus, the relative noise depends on both the original light intensity measurement,

Φ0 and Φ and the original noises, w0 and w. Consequently, assuming the noise

variances of different channels at different S-D separations are identical is not accurate

or appropriate in this case.

As shown in [80], incorporating the noise variance information is a meaningful

step to achieve high-quality DOT reconstructions. Before we start deriving a novel

noise quantification method in the next section, we state the following assumptions

that simplify the noise quantification process when the covariance matrix of (3.5) is

approximated:

(A1) Noise random variables of different S-D pairs are independent zero-mean Gaus-

sian, namely, the covariance matrix Cz is diagonal.

(A2) The measurement noise variance is much less than the measured photon density

or fluence, i.e., the SNR is high so that the probabilities of Pr(w0/Φ0 < −1)

and Pr(w/Φ < −1) are almost zero.
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The first assumption is acceptable if the noise from the sources is small and the

detectors are taking the measurements from different locations independently. The

second assumption is also valid since the noise amplitude of instrument is usually less

than the measured signal amplitude; the system noise is usually assumed to be a few

percent of the measured signals [83, 74].

3.1.2 Noise Variance Quantification

Eq. (3.5) can also be expressed as

z = ln

(
1 +

w0

Φ0

)
− ln

(
1 +

w

Φ

)
.

Now, based on the first assumption, the noise added to the i-th S-D channel is

z(i) = ln

(
1 +

w0(i)

φ0(i)

)
− ln

(
1 +

w(i)

φ(i)

)
, (3.6)

whose variance is equal to the i-th diagonal entry of the covariance matrix Cw.

First, let a = w0(i)/φ0(i) and b = w(i)/φ(i), where w0(i) and w(i) are Gaus-

sian random variables with zero mean, and variances σ2
1 and σ2

2, respectively. Then,

because φ0(i) and φ(i) are constants, a and b are also zero mean Gaussian random

variables with variances σ2
a = σ2

1/φ
2
0(i) and σ2

b = σ2
2/φ

2(i), respectively.

Furthermore, due to Assumption (A2), the variance of both a and b should be

much less than 1. Therefore, (3.6) becomes

z(i) = ln(1 + a)− ln(1 + b),
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whose variance is

σ2
z(i) = E[z2(i)]− (E[z(i)])2

= E[(ln(1 + a)− ln(1 + b))2]− (E[ln(1 + a)− ln(1 + b)])2

= E[(ln2(1 + a))] + E[(ln2(1 + b))]

− (E[ln(1 + a)])2 − (E[ln(1 + b)])2

= Var[ln(1 + a)] + Var[ln(1 + b)].

Since both a and b are Gaussian with small variance, let

g(x) = ln(1 + x), (3.7)

where x is normal, i.e., x ∼ N(0, σ2
x) with σx � 1.

Applying Taylor expansion to (3.7) yields:

g(x) =
∞∑
k=1

(−1)k+1x
k

k
,

for −1 < x < 1. Hence,

E[g(x)] =
∞∑
k=1

(−1)k+1E[xk]

k
.

By using the fact that the odd moments of Gaussian distribution are zero,

E[g(x)] =
∑

k is even

(−1)k+1

k
σkx(k − 1)!!

= −
∞∑
k=1

(2k − 1)!!

2k
σ2k
x , (3.8)

where k!! is the double factorial, defined by k!! = k (k−2) · · · 5 ·3 ·1 if k is a positive

odd number [3].
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Similarly,

E[g2(x)] = E

[(
∞∑
i=1

(−1)i+1x
i

i

)(
∞∑
j=1

(−1)j+1x
j

j

)]

=
∞∑
i=1

∞∑
j=1

(−1)i+j

ij
E[xi+j]

=
∑
i

∑
j

(i+ j − 1)!!

ij
σi+jx , (3.9)

where i+ j is even.

Since the variance of x is much less than one, (3.8) can be approximated as:

E[g(x)] ≈ −
(

1

2
σ2
x +

3

4
σ4
x +

5

2
σ6
x +O(σ8

x)

)
Hence,

E2[g(x)] ≈
(

1

2
σ2
x +

3

4
σ4
x +

5

2
σ6
x +O(σ8

x)

)2

≈ 1

4
σ4
x +

3

4
σ6 +O(σ8

x)

Similarly, (3.9) can be approximated as:

E[g2(x)] ≈ σ2
x +

11

4
σ4
x +

137

12
σ6
x +O(σ8

x).

Therefore, the variance of g(x) can be found from the following equation:

Var(g(x)) = E[g2(x)]− E2[g(x)]

≈ σ2
x +

5

2
σ4
x +

32

3
σ6
x +O(σ8

x).
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Followed by these results, we have:

E[z(i)] = E[ln(1 + w0(i)/φ0(i))]− E[ln(1 + w(i)/φ(i))]

≈ −

(
1

2

(
σ2
1(i)

φ2
0(i)
− σ2

2(i)

φ2(i)

)
+

3

4

(
σ4
1(i)

φ4
0(i)
− σ4

2(i)

φ4(i)

)

+
5

2

(
σ6
1(i)

φ6
0(i)
− σ6

2(i)

φ6(i)

)
+O(σ8)

)

≈ 0

σ2
z(i) = Var[ln(1 + w0(i)/φ0(i))] + Var[ln(1 + w(i)/φ(i))]

≈
(
σ2
1(i)

φ2
0(i)

+
σ2
2(i)

φ2(i)

)
+

5

2

(
σ4
1(i)

φ4
0(i)

+
σ4
2(i)

φ4(i)

)
+

32

3

(
σ6
1(i)

φ6
0(i)

+
σ6
2(i)

φ6(i)

)
+O(σ8) (3.10)

Hence the variance of the relative noise of one S-D channel can be obtained

from the above equation consisting of original noise variances and the amplitude of

the original measurements at different time instances.

Note that even if the original noise terms w0 and w are WGN, due to the Φ0

and Φ terms, the noise variances of (3.5) as derived in (3.10) are no longer the same

among different channels.

3.1.3 Numerical Validation

In order to verify the noise quantification method just derived above, two sets of

data were collected from a phantom experiment: Φ0 readings were related to the base

line measurements from all the S-D channels, which were taken when the absorbers

were removed from the medium; corresponding Φ values were acquired from the

measurements with the objects inside the medium. Both Φ0 and Φ were taken with

100 sampling points, separately. The mean and the variance of Φ0 and Φ over 100
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Figure 3.2. Comparison between the actual noise variance and the estimated noise
variance.

samples were computed and used to calculate the relative noise variance with (3.10).

A comparison between the approximated noise variance by the noise quantification

method in (3.10) with the actual one estimated from the 100 samples is given in Fig.

3.2. The approximated noise variances quantified by (3.10) are consistent with the

actual ones. The mean square error between the estimated and actual noise variance

was calculated as 1.7609× 10−9
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3.1.4 Noise Quantification Assisted DOT Image Inversion

Note that in (3.5), the measurement noise w0 and w are actually the noise from

the same S-D channels at different time instances. By further assuming that the noise

does not change over time, i.e. σ2
a = σ2

b = σ2
z , (3.10) can be modified as

σ2
z(i) ≈ σ2

z

(
1

φ2
0(i)

+
1

φ2(i)

)
+

5

2
σ4
z

(
1

φ4
0(i)

+
1

φ4(i)

)
+

32

3
σ6
z

(
1

φ6
0(i)

+
1

φ6(i)

)
+O(σ8

z). (3.11)

This simplification also makes the noise quantification method more practical and

suitable for most of DOT applications. In practice, the noise variance of each S-D

channel, σ2
z , can be easily measured in advance (e.g. it can be estimated using a short

acquisition from the baseline measurement). Then with (3.11), the noise variances of

the relative measurements can be easily calculated. The weighting matrix D in (3.2)

now becomes:

D =



1
σz(1)

1
σz(2)

. . .

1
σz(n)


.

One can notice that the estimated variances of the relative noise can be con-

sidered as the noise power to signal power ratio of one channel. Hence its reciprocal

or the weighting coefficient relates to the SNR of each channel. As a result, measure-

ments from high SNR channels gain higher weights as compared to those with a low

SNR, as implied in the weighting matrix D.

It should also be noted that for the applications that the original noise level

cannot be estimated, one can simply assume that the noise variances among different

channels are identical (i.e., σa = σb = 1) for all the channels. Then, the measured
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amplitudes can be used to estimate the relative noise variances and to build the weight

matrix.

3.2 Experimental Results

The derived noise quantification method along with the SIRANN algorithm is

tested by computer simulation, laboratory phantom, and the Human finger tapping

experiments.

3.2.1 Computer Simulation

A computer simulation was first implemented. In the simulation, a continuous

wave (CW) DOT system was considered. The geometry of sources and detectors was

the same as previous experiments in Ch. 2, which is illustrated in Fig. 2.2, where

twenty five bifurcated optodes were placed as a 5× 5 square grid over the top surface

of a semi-infinite medium and centered at the origin. The distance between every two

closest optodes was 1.4 cm. By using the first to sixth nearest S-D pairs or S-D pairs

within 4.2 cm separation, 188 channels can be obtained. White Gaussian noise was

added to both background measurements Φ0 and inhomogeneous measurements Φ.

The absorption and reduced scattering coefficients of the homogeneous back-

ground medium were chosen in a reasonable range [16] as µa0 = 0.06 cm−1 and

µs0 = 8.2 cm−1, respectively. The forward model was computed analytically as in

[59]. Since the main focus of this study is to improve the spatial resolution for func-

tional brain imaging, where only relative changes in absorption within activated brain

areas are considered. Thus, the difference in absorption, ∆µa, between the imaged

brain area and background is what we need to reconstruct for DOT images. An

“L” shape absorber with ∆µa = 0.1 cm−1 was placed in the center of a relative zero

background as shown in Fig. 3.3, at a depth of 1.5 cm.
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Figure 3.3. The original image used for the simulation.

In order to demonstrate the advantage of the SIRANN method with our new

noise quantification method, we compared the reconstruction results with the conven-

tional Tikhonov regularization method in (1.4), the GLS method in (3.1), and with

SIRA in (2.1). The regularization parameters in Tikhonov regularization methods

were selected with the L-curve approach[77], as it is effective to provide the optimal

solution and thus commonly used with Tikhonov regularization methods. For all the

other methods, the regularization parameter were selected from a number of trails

that yielded the least distortion of the imaged object’s shape. Moreover, methods

besides Tikhonov regularization were all performed by the SALSA algorithm [1], a

solver for convex optimization problems, with the same stopping criteria.

The results are shown in Fig. 3.4(a)-(d). The result by Tikhonov regularization

method, shown in Fig. 3.4(a), is blurry; the shape of the object is completely distorted

from the “L” shape into an elliptical object. With the noise normalization, the GLS

method improved the shape of the reconstructed object as compared to the Tikhonov

method. However, the recovered object is still fuzzy and with background noise. The

SIRA is giving a less blurred image shown in Fig. 3.4(c), but the shape of the object

tends to be a “C” shape, which is still incorrect. At the end, the reconstruction
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with the noise quantification assisted SIRANN method gives rise to very consistent

reconstructed image that recovers the original image almost completely, as shown in

Fig. 3.4(d).

Figure 3.4. Comparison of the reconstructions with:(a)Tikhonov (b) GLS; (c) SIRA;
(d) SIRANN.

To show the improvement of proposed noise quantification method, two quanti-

tative metrics were also computed: the structural similarity index metric (SSIM)[78]

and the contrast-to-noise ratio (CNR) [69].

The SSIM is given by

SSIM(x,y) =

(
2µxµy

µ2
x + µ2

y

)(
2σxy

σ2
x + σ2

y

)
,
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where µx, µy, σ
2
x, σ

2
y are the means and variances of vector x and y, respectively. σxy

is the covariance between vector x and y.

On the other hand, by defining the region of interest (ROI) as the area of

targeting object and the rest as background (BKG), the CNR is calculated by:

CNR =
µROI − µBKG√
c1σ2

µROI
+ c2σ2

µBKG

,

where µROI and µBKG are the average coefficients of ROI and BKG, σ2
µROI

and σ2
µBKG

are the variances of the coefficients of the two, and c1 and c2 are the weighting

coefficients that are calculated from

ci =
Number of pixels in ROI/BKG

Total number of pixels in the image
, i = 1, 2.

The SSIM and the CNR of all these four methods were computed and listed

in Table. 3.1. Notice that the SSIM from the SIRANN method was the highest

among all the methods we have tested, meaning that because of the sparse image

reconstruction algorithm and the noise normalization process, the structural of the

object in the reconstructed image was very close to the actual one.

Table 3.1. SSIM and CNR values of simulation reconstructions with Tikhonov, GLS,
SIRA, and SIRANN.

Method SSIM CNR
Tikhonov 0.60 4.56

GLS 0.76 6.11
SIRA 0.61 4.08

SIRANN 0.92 11.97

The high CNR indicates that most of the non-zero pixels are located in the

ROI. Even though SIRA method yielded clean background, its CNR is the lowest.
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This is due to the distortion, some of the non-zero pixels were fallen outside the ROI

and therefore been considered as background noise in the CNR calculation. On the

other hand, the proposed method recovered the object almost completely with a clean

background, therefore its CNR value is the highest among all the methods tested in

the experiment.

3.2.2 Laboratory Experiment

Next, a laboratory phantom experiment was performed to test our newly derived

reconstruction method with real experimental noise. In the phantom experiment,

the experimental setup and procedures were similar to those used in [59]: A CW-

based DOT imaging system (DYNOT, NIRx, New York) was used to obtain the

measurements from a container of 15× 10× 10 cm3 filled with 1% Intralipid solution.

The optodes were placed on the very top surface of the intralipid solution such that the

tips of optodes were just touching the liquid phantom surface. In this way, no air gap

existed between the tips and liquid to minimize the refractive index (RI) mismatch.

This setup provided us with a very similar boundary condition to that in light-tissue

interaction situation. Thus, our experimental setup did not deviate too much from

the traditional light-tissue interaction setup. The wavelength of incident light was

830 nm. The absorption and reduced scattering coefficients of the homogeneous

background medium were measured with a frequency domain system (Model 96208,

ISS Inc., Champaign, Illinois) at the same 830nm wavelength as µa0 = 0.12 cm−1

and µs0 = 8.8 cm−1, respectively. The geometry of sources and detectors is the

same as computer simulation as illustrated in Fig. 2.2, where twenty five bifurcated

optodes were placed as a 5 × 5 square grid over the top surface of the Intralipid

medium and centered at the origin. By considering all the possible combination

of different optodes, 300 measurement channels can be obtained and the SNRs of
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all these channels were calculated as shown in Fig.3.5. It can be noticed that the

SNRs of the first to the sixth nearest S-D pairs were relatively higher than the rest

separations. Therefore, to avoid channels with significantly low SNR level, only first

to sixth nearest S-D pairs were selected. As a result, 188 channels were used to collect

measurements. Two spherical absorbers with identical sizes (diameter = 1 cm), were

placed along the y axis,1.5 cm below the measurement surface. The center to center

distance between the two absorbers was 1.5 cm.

Figure 3.5. Calculated SNRs among different channels in the phantom experiment.

Moreover, strong light scattering of biological tissue causes the detection sen-

sitivity of DOT to attenuate exponentially with increased depth, resulting in depth

localization in DOT to be poor in general. Thus, it becomes unrealistic to accurately

quantify the local absorption perturbation without knowing its actual depth. A va-
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riety of efforts have been made by different research groups to improve the accuracy

in depth localization. One common method that is currently used in functional brain

imaging was introduced by combining DOT with prior anatomical information from

MRI, assuming that all the optical signals come from a fixed depth or layer below the

measurement surface [10]. This is specifically realized by the utilization with a corti-

cal constraint (resulting from spatial prior information from structural and functional

MRI) to reduce DOT partial volume error and to improve quantitative accuracy for

reconstructed DOT images. This means that in DOT reconstruction, a 2D image is

reconstructed at a pre-selected depth. In this way, a 3D reconstruction problem is

reduced to a 2D slice reconstruction problem. This is how we obtain 2D reconstructed

images from our 3D experimental space.

Figure. 3.6 shows the reconstructed images using the Tikhonov method, as

given in (1.4), with the regularization parameter selected by the L-curve method[41]:

λ = 10−4, the SIRA, as given in (2.1), with λ = 3×10−4, and the SIRANN algorithm

with proposed noise quantification method, and regularization parameter λ = 3 ×

10−5. Despite the slight distortion of one absorber, reconstruction result by using

SIRA successfully shows two objects along the vertical axis, while Tikhonov method

failed to recover the structure of two absorbers inside the medium. It is clear that the

sparsity enhanced method indeed improved the spatial resolution of the reconstructed

image. However, due to the measurement noise, the lower object in the image tended

to be smaller than its actual size. On the other hand, thanks to the appropriate

noise whitening process, the lower object in the reconstructed image of our proposed

method ,as shown in Fig. 3.6(c), was showing a comparable size to the actual one

with smaller distortion of the shape. In order to emphasize the spatial contrast, the

cross sections of all the results from Tikhonov, SIRA, and the proposed method at
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x=0 (i.e., along y-axis) are also plotted in Fig. 3.7. As one can see, two objects were

better separated with the proposed method.

Figure 3.6. Reconstructed images obtained by using (a) Tikhonov method, (b) SIRA,
and (c) SIRANN with derived noise quantification method.

For the sake of better illustrating the advantage of our proposed method, an-

other phantom experiment was implemented. In the second experiment, the two

spherical absorbers used in the previous experiment were replaced by an “L” shape

object as shown in Fig. 3.8, where the grid on the background is 5 mm × 5 mm.

In Fig. 3.9, we compared the reconstruction results from Tikhonov method,

GLS method, SIRA, and the proposed noise quantification assisted SIRANN method,

with the regularization parameter λ = 10−5, 8× 10−7, 2× 10−5, and 8× 10−6, respec-

tively. Though all of the four methods recovered an absorber in the center of images,
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Figure 3.7. Vertical cross sections of reconstructions from SIRA, SIRANN, and
Tikhonov method.

Figure 3.8. Absorber used in the second phantom experiment.
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the quality of reconstructed background and object varies among these four cases.

Even though S-D pairs with wider separation were removed to minimize strong noise,

the reconstructed object in Fig. 3.9(a) by Tikhonov method is surrounded by many

background artifacts with a distorted shape of the object. In Fig. 3.9(b), a blur “L”

shape object can be roughly identify, but the background is still filled with artifacts.

The result in Fig. 3.9(c) reconstructed with SIRA, on the other hand, shows a clearer

background and improved object shape. At the end, the reconstruction result from

the proposed method, as shown in Fig. 3.9(d), demonstrates that not only the shape

of the object is improved to be very similar to the actual one in Fig. 3.8, but also the

background noise is further suppressed as compared to the one using SIRA alone.

Figure 3.9. The reconstructed image of the phantoms experiment by (a) Tikhonov,
(b) GLS, (c)SIRA, and (c) SIRANN method.
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Figure 3.10. The reconstructed image of the phantoms experiment with measurements
from the first to seventh nearest S-D pairs by (a) SIRA, and (b) proposed improving
method.

In addition, measurements from seventh nearest S-D pairs were included (220

S-D pairs) into the reconstruction process to test the robustness of the proposed

method. The results from SIRA and the proposed method with regularization pa-

rameter λ = 8 × 10−6 and 4 × 10−6 are shown in Fig. 3.10. SSIM and CNR for all

the phantom results were calculated and listed in Table 3.2. It is clear that including

measurements with lower SNR indeed hurts the reconstruction quality, as the SSIM

and CNR values were both decreasing and the reconstructed object deviate further

from its original shape. However, with the appropriate weighting coefficients, the

object in Fig. 3.10(b), which was reconstructed by the proposed method, still had

the similar structure as the original object. On the other hand, the “L”-shape object

cannot be identified from the reconstruction of SIRA as in Fig. 3.10(b).

3.2.3 Human Finger Tapping Experiment

Since the results from the simulation and phantom experiments have shown

significantly improvements of the reconstruction qualities. It would be interesting

to see how our SIRANN method improves the DOT reconstruction with the real
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Table 3.2. SSIM and CNR values of phantom reconstructions with Tikhonov, GLS,
SIRA, and SIRANN method from 188 measurements as well as with SIRA and SIR-
ANN method from 220 measurements.

Method SSIM CNR
Tikhonov 0.32 2.36

GLS 0.34 2.34
SIRA 0.53 4.33

Proposed 0.70 6.61
SIRA (220) 0.41 3.28

Proposed (220) 0.63 5.27

measurements from human brain function studies. A finger tapping experiment is

implemented for this purpose.

The experimental protocol was designed as follows: The motor activation epoch

consisted of 10 seconds of finger tapping and 20 seconds of rest, which was repeated

ten times. The subject was instructed to tap his index and middle fingers against

the thumb. The data was acquired using a high-density NIRS system (Cephalogics,

LLC.) and the geometry of sources and detectors is illustrated as in Fig. 3.11. The

sampling frequency was 10.3 Hz. Hemodynamic changes were averaged over the ten

epochs to reduce the noises.

The reconstruction results are shown in Fig. 3.12 with normalized coefficients.

Fig. 3.12(a) shows the results with only the sparsity regularization, the objects are

moving towards the center and area of objects are too small. On the other hand,

Fig.3.12(b) shows the results with both sparsity regularization and the noise normal-

ization with our novel noise quantification method. Even though the corresponding

functional MRI image was not available as a reference image, the active regions with

proper size can clearly be seen from the image.
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Figure 3.11. Source detector geometry of the finger tapping experiment.

3.3 Conclusion

In this chapter, we developed and demonstrated a practical method to quan-

tify the noise variance for the DOT problem. The noise variance can be estimated

from very limited information, which is also easy to obtain. Therefore, this approach

is practical for most of the DOT-based brain imaging applications. Moreover, the

combination of the proposed noise quantification method and sparsity regulariza-

tion, i.e. SIRANN, formed an efficient DOT image reconstruction algorithm. Such

an algorithm improves the spatial resolution and the shape fidelity considerably, as

demonstrated throughout this chapter by the reconstructed images based on com-

puter simulations, laboratory tissue phantom, and real human finger tapping mea-

surements.
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(a) (b)

Figure 3.12. Reconstructed images of the finger tapping experiment using (a) Sparsity
regularization (b) SIRANN method with the proposed noise model.
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CHAPTER 4

DOT RECONSTRUCTION WITH THE RELATIVE NOISE MODEL

Statistical modeling based reconstruction algorithms have also been studied. In

the DOT study, two kinds of noise are usually considered in the image reconstruction

process: the quantum shot noise and the thermal noise, where the shot noise follows

the Poisson distribution and the latter follows Gaussian distribution[8, 64]. Between

the two types of noise, the quantum shot noise is usually considered as the dominat-

ing [76]. Hence algorithms based on Poisson distribution have been proposed. For

example, in [62], an MAP estimator is proposed by modeling the noise-free data as

a Markov random process, and the measured time-resolved data as random variables

following Poisson distribution.

In this chapter, the pdf of RN is derived and corresponding reconstruction

method are discussed.

4.1 The Relative Noise Model

In practice, the raw measurement of reflectance light intensity Φ is always cor-

rupted by noise, i.e. Φ̃ = Φ + w, where w is the additive noise. Consequently, the

measured optical density change in (1.2) becomes:

∆̃OD = − ln

(
Φ + w

Φ0

)
= − ln

(
Φ

Φ0

)
− ln

(
1 +

w

Φ

)
= ∆OD − ln

(
1 +

w

Φ

)
(4.1)
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Hence

Y = − ln (1 + w/Φ) (4.2)

in (4.1) is defined as the relative noise term for the measurement of absorbance change.

Let w be zero mean Gaussian random variable, i.e. N(0, σ2
w). Then w/Φ is

also zero mean Gaussian, i.e. N(0, (σw/Φ)2). By assuming the standard deviation of

relative noise σ = σw/Φ is low. In other words, the signal to noise ratio (SNR) of the

raw measurement is high. The probability of (1 + w/Φ) < 0 is approximately zero.

Therefore, the pdf of Y can be calculated as follows:

fY (y) =
1√
2πσ

exp

[
−(e−y − 1)2

2σ2

] ∣∣∣∣d(e−y − 1)

dy

∣∣∣∣
=

e−y√
2πσ

exp

[
−(1− e−y)2

2σ2

]
. (4.3)

A computer simulation was performed to validate the derived pdf. In the simu-

lation, 106 Gaussian random samples were generated with variance σ2 = 0.04. Then

all these samples were converted through (4.2). The corresponding normalized his-

togram was shown in Fig. 4.1. Compared with the derived pdf in (4.3) and the pdf

of Gaussian distribution with variance estimated from the samples, it is obvious that

the RN pdf fit the histogram better than the Gaussian pdf did.

4.1.1 RN Model Based Reconstruction Formula

Applying the relative noise term to the discretized equation in (1.3) and let b̃

be the noisy measurement vector, it is straightforward that the RN is given by

Y = b̃− b = b̃−Ax

and

yi = b̃i − aix, (4.4)
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Figure 4.1. Comparison of the derived RN pdf and Gaussian pdf with normalized
histogram generated from 106 samples.

where yi and b̃i are the i-th element of Y and of b̃, respectively, and ai is the i-th

row of matrix A.

Before applying the MAP estimation to solve (1.3), with respect to the noise pdf

just derived in (4.3). The priori distribution of x is needed, which consequently will

become the regularization terms. As mentioned in Ch2, two types of regularization

terms might be used for the DOT reconstruction problem: 1. the group sparsity

term; and 2. the combination of `1 norm and `2 norm. However, implementing

the group sparsity term or the so call `21 norm usually leads to a more complicated

optimization process, as the regularization term also depends on the design of the

size and the structure of the groups. On the other hand, if consider the pdf of x

as a product between the pdf of zero mean Gaussian and zero mean Laplacian with

some scaling coefficient (so the total probability remains one), then it leads to a
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regularization term consist of both ‖x‖1 and ‖x‖22. The unit circle of `1 norm, `2

norm and the combination of the two are illustrated in Fig. 4.2. It shows that the

resulting regularization term is a good balance between the `2 norm, which leads to

blurry reconstructions, and the `1 norm, which might over-sparse the reconstructions.

Figure 4.2. The unit circle of `1 norm (in red dash line), `2 norm (in black dot-dash
line), and the combination of both `1 norm and `2 norm (in solid blue line).

Thus, the RN-based reconstruction is formulated as:

x̂RN = arg min{
∑
i

(
yi +

(e−yi − 1)2

2σ2
1i

)
+ λ1‖x‖1 + λ2‖x‖22}, (4.5)

where λ1 and λ2 are regularization parameters.
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Moreover, in the scenario that the base-line measurement Φ0 is also affected by

the noise, i.e. Φ̃0 = Φ0 + w0, the RN model can also be extended appropriately. In

this case the measured optical density change becomes:

∆̃OD = − ln

(
Φ + w

Φ0 + w0

)
= − ln

(
Φ

Φ0

)
+ ln

(
1 +

w0

Φ0

)
− ln

(
1 +

w

Φ

)
= ∆OD + ln

(
1 +

w0

Φ0

)
− ln

(
1 +

w

Φ

)
. (4.6)

Assume both w and w0 are independent zero-mean Gaussian random vari-

ables. It is trivial that both w/Φ and w0/Φ0 are also Gaussian. Now define Y1 =

ln (1 + w0/Φ0), Y2 = ln (1 + w/Φ), and the standard deviation of w0/Φ0 and w/Φ as

σ1 and σ2, respectively.

The RN in this case is defined as Z = Y1 − Y2. Therefore, the cdf of Z is given

by

FZ(z) = Pr({Y1 − Y2 ≤ z}) = Pr({Y1 − z ≤ Y2}) =

∞∫
−∞

∞∫
y1−z

fY1,Y2(y1, y2)dy2dy1.

Therefore,

fZ(z) =
∂

∂z
FZ(z)

=

∞∫
−∞

ey1√
2πσ1

exp

(
−(1− ey1)2

2σ2
1

)
ey1−z√
2πσ2

exp

(
−(1− ey1−z)2

2σ2
2

)
dy1.

The closed form of fZ(z) is found as (Refer to Appendix B for the detail of the

derivation steps)

fZ(z) =
C

2β

(
1−
√
π exp

(
γ2

4β

)
γ

2
√
β

erfc

(
γ

2
√
β

))
,
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where

C =
e−z

2πσ1σ2
exp

(
−σ

2
1 + σ2

2

2σ2
1σ

2
2

)
β =

e−2zσ2
1 + σ2

2

2σ2
1σ

2
2

γ = −e
−zσ2

1 + σ2
2

σ2
1σ

2
2

.

Similar to (4.4), the noise of i-th channel in this extended case is defined as

zi = b̃i − aix. Then the noise pdf of i-th channel is given by:

fZ(zi) =
Ci
2βi

(
1− αi

√
π

βi
exp

[
α2
i

βi

]
erfc

(
αi√
βi

))
,

where

Ci =
e−zi

2πσ1iσ2i
exp

[
−
σ2
1i

+ σ2
2i

2σ2
1i
σ2
2i

]
=

e−zi

2πσ2
1i
si

exp

[
−1 + s2i

2s2iσ
2
1i

]
,

βi =
e−2ziσ2

1i
+ σ2

2i

2σ2
1i
σ2
2i

=
e−2zi + s2i

2s2iσ
2
1i

,

αi =
γ

2

= −
e−ziσ2

1i
+ σ2

2i

2σ2
1i
σ2
2i

= −e
−zi + s2i
2s2iσ

2
1i

.

si = σ2i/σ1i

Therefore, the corresponding MAP estimator in this case can be found as fol-

lows:
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arg min{−
∑
i

(
zi + 1.5 ln

(
e−2zi + s2i

)
− ln(e−zi + s2i ) +

(1− e−zi)2

2σ2
1i

(e−2zi + s2i )

)
+ λ1‖x‖1 + λ2‖x‖22} (4.7)

4.2 Optimization Problem

For the RN estimator in (4.5), the sub-gradient of (4.5)can be found as:

∇f(x) = −
M∑
i=1

(
1− e−yi(e−yi − 1)/σ2

1i

)
aTi + λ1

∂‖x‖1
∂x

+ 2λ2x.

Similarly, the sub-gradient of RN estimator in (4.7) is:

∇f(x) = −
∑
i

(
1− 3e−2zi

(e−2zi + s2i )
+

e−zi

(e−zi + s2i )
− e−zi(1− e−zi)(s2i + e−zi)

σ2
1i

(s2i + e−2zi)2

)
aTi

+ λ1
∂‖x‖1
∂x

+ 2λ2x.

Note that, the `1 norm term is defined as ||x||1 =
∑

n |xn|, which is the sum of

the absolute values. It is straightforward that the absolute value function is a non-

smooth function, therefore it is not differentiable. To make the cost function differen-

tiable, the absolute value is approximated by a smooth function: |x| ≈
√
x× x+ ξ,

where ξ is a positive smoothing parameter[53]. Then the sub-gradient of the absolute

value function can be calculated as d|x|/dx ≈ x/
√
x× x+ ξ and the sub-gradient of

the `1 norm can therefore be easily derived.

However, due to the (e−yi − 1)2 term in (4.5) and the (1− e−zi)2 term in (4.7),

cost functions of RN estimator in both cases are not convex, but quasiconvex [11] as

illustrated by an example in Fig.4.3 for x ∈ R2.
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Figure 4.3. An example of the RN cost function with x ∈ R2.

Hence it cannot be solved by conventional convex optimization algorithms such

as steepest descent or gradient descent methods, as these kind of methods can only

yield local optimal solutions or stuck in the valley. Moreover, obtaining the inverse

Hessian matrices of (4.5) and (4.7) are not feasible. For example the Hessian of the

fidelity term of (4.5) is

AT



2e−2y1−e−y

σ2
11

2e−2y2−e−y

σ2
12

. . .

2e−2yN−e−y

σ2
1N


A.

Since the sensing matrix A has less number of rows than it of columns as well as the

non-differentiability of `1 norm, the Hessian of the cost function is not invertible. As

a result, Newton’s method cannot be applied neither.
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As an alternative, the ellipsoid algorithm is one of the cutting plane methods

that can be used to find a steady solution for this kind of optimization problems[29,

17]. The algorithm starts from an initial ellipsoid P ∈ RN , which contains the solu-

tion. In each iteration, the gradient at the center of current ellipsoid is calculated,

then the half ellipsoid along the gradient direction is cut and removed. Thereafter, a

new ellipsoid is updated, which is the smallest ellipsoid that includes the remaining

half ellipsoid from the previous step. The pseudo-code is given as follows [7]:

Define the ellipsoid as E(x,P) = {z|(z− x)TP−1(z− x) ≤ 1}

Initial an ellipsoid E(x,P) containing the optimal solution x?

repeat

1. g(k) ← ∇f(x(k))

2. if

√
g(k)T P(k)g(k) ≤ ε, return x(k)

3. update ellipsoid

(a) g(k+1) ← 1√
g(k)T P(k)g(k)

g(k)

(b) x(k+1) ← x(k) − 1

N + 1
P(k)g(k+1)

(c) P(k+1) ← N2

N2 − 1

(
P(k) − 2

N + 1
P(k)g(k+1)g(k+1)T P

)
Therefore, the optimal solution of (4.5) and (4.7) can be obtained with only the

first order sub-gradient of the cost functions.

4.3 Experimental Results

To demonstrate the improvement in reconstructed images by using RN estima-

tor as compared to other Gaussian model based least square methods, both simulation

experiment and phantom experiments were performed and illustrated in this section.
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4.3.1 Simulated Data

First, a computer simulation experiment was designed to show the improvement

of RN estimator compared to conventional least square methods. Similar to previous

simulation experiments, in this experiment, twenty five bifurcated optodes were placed

as a 5× 5 square grid over the top surface of a semi-infinite medium and centered at

the origin as illustrated in Fig.2.2. The separation between every two nearest optodes

was 1.4 cm. To avoid low SNR channels, only the first to sixth nearest S-D pairs were

used. Consequently, 188 channels can be obtained.

The absorption and reduced scattering coefficients of the homogeneous back-

ground medium were chosen to be µa0 = 0.06 cm−1 and µs0 = 8.2 cm−1, respectively

[16]. Since only the relative absorption changes from the background are considered,

a “U” shape absorber with ∆µa = 0.6 cm−1 was placed at the center of a relative

zero background as shown in Fig.4.4(a), 1.5 cm below the measuring plane. White

Gaussian noise was added the inhomogeneous measurements Φ.

In this example, since the number of non-zero pixels in the original image was

greater than twenty five, which was the number of optodes, both `1 norm and `2

norm terms were used to regularize the solution. The stopping criterion for the

corresponding ellipsoid algorithm was set as ε < 10−10 with the initial ellipsoid P =

10I, where I is the identity matrix.

To demonstrate the improvement of the RN estimator, the reconstruction was

also compared with Tikhonov method as in (1.4) and least square with both `1 norm

and `2 norm regularization (LSL12) as in the following equation:

x̂ = arg min
x
{‖Ax− b‖22 + λ1‖x‖1 + λ2‖x‖22}.

In addition, even though the noise added to the inhomogeneous measurements was

WGN, the variance of the RN term are different among different channels as discussed
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(a) (b)

(c) (d)

Figure 4.4. (a) The original image used for the simulation, and comparison of the
reconstructions with:(b)Tikhonov; (c)LSL12; (d) RN estimator..

in Ch.3 Hence the fidelity term of both Tikhonov method and LSL12 method should

be re-weighted before the reconstruction step as [80]

‖D(Ax− b)‖22,

where D is a diagonal matrix with the entries equal to the reciprocal of noise standard

deviation of each corresponding channel. Followed by (3.11), the noise variance of

the i-th channel can be calculated as

σ2
w(i) ≈

σ2

φ2(i)
+

5

2

σ4

φ4(i)
+

32

3

σ6

φ6(i)
+O(σ8

w),

where σ2 is the variance of noise added to φ(i)
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As we expected, the reconstructed image by Tikhonov, as shown in Fig.4.4(b),

was still blurry and horizontal bar was barely recovered. Improvement of spatial

resolution can be observed from the result of LSL12 method as shown in Fig.4.4(c),

but the area inside the object is still noisy or two vertical bars of the object was not

fully separated. The reconstructed image shown in Fig.4.4(d) was obtained from the

proposed RN estimator, where not only was the spatial resolution promoted, but also

the shape of reconstructed object was almost the same as the original one. The cross

section profiles at y=0 are shown in Fig.4.5 to further illustrate the improvement of

RN estimator.

Figure 4.5. Cross section profile of reconstructions from LSL12, RN, and Tikhonov
method.
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Similar to the previous chapter, two quantitative metrics, SSIM and CNR,

were computed to show the improvement of RN estimator over other reconstruction

methods. The SSIM and the CNR of all the three reconstruction methods were

computed and listed in Table4.1. Notice that the SSIM from the RN estimator was

the highest among all the methods that have been tested, which means due to the

more accurate noise model, the structural of the object in the reconstructed image

was the most accurate one among all the methods tested.

Table 4.1. SSIM and CNR values of simulation reconstructions with Tikhonov, LSL12,
and proposed RN estimator.

Method SSIM CNR
Tikhonov 0.8449 4.5242

LSL12 0.8576 4.7156
RN 0.8709 4.9380

The high CNR indicates that most of the non-zero pixels are located in the

ROI. The proposed RN estimator recovered the object almost completely with a

clean background both inside and outside the U shape object, therefore the CNR was

the highest among all the methods.

4.3.2 Phantom Data

Next, the phantom experiment in the previous chapter was used to evaluate RN

estimator with real measurements. In this phantom experiment, the experimental

setup and procedures were similar to those used in [59], where a CW-based DOT

imaging system (DYNOT, NIRx, New York) was used to obtain the measurements

from a container of 15× 10× 10 cm3 filled with 1% Intralipid solution. The optodes
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were placed on the very top surface of the intralipid solution such that the tips

of optodes were just touching the liquid phantom surface. In this way, no air gap

existed between the tips and liquid to minimize the refractive index (RI) mismatch.

This setup provided us with a very similar boundary condition to that in light-tissue

interaction situation. Thus, our experimental setup did not deviate too much from

the traditional light-tissue interaction setup. The absorption and reduced scattering

coefficients of the homogeneous background medium were µa0 = 0.08 cm−1 and µs0 =

8.8 cm−1, respectively. An “L” shape absorber as shown in Fig.3.8 was placed 1.5cm

under the surface with the grid size on the background was 5mm × 5mm.

Since the absorber was thin along the depth direction, 2D reconstruction at

the depth of 1.5cm was considered. The pixel size was set as 2mm × 2mm. In this

experiment, the number of non-zero pixels in the reconstruction was not as small as

the number of optodes used, hence both `1 norm and `2 norm regularization terms

should be applied.

The measured data was first reconstructed by Tikhonov method with regular-

ization parameter λ = 10−5.2 as shown in FIg??(a) Similar to the simulation, the

reconstructed object has larger size than the actual one with unclear boundary. By

selecting λ1 = 10−4.6 and λ2 = 10−6, the reconstruction result of the LSL1 is shown

in Fig??(b). In the reconstructed image, despite the background noise shown in the

bottom and the lower right corner of the image, the horizontal bar of the object was

successfully recovered. However, the top of the vertical bar was bent toward left and

tended to merge into the left end of the object.

In comparison, the reconstruction of proposed RN estimator in (4.5) with λ1 =

10−5 and λ2 = 10−6 is shown in Fig.4.6(b). Even though the background noise in the

lower right corner was not completely suppressed, background noise in the bottom

of the image was successfully removed and the shape of the reconstructed object is
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(a)

(b) (c)

Figure 4.6. Reconstructions of phantom experimental data by:(a)Tikhonov (b)LSL12;
(b)RN estimator..

almost identical as the absorber used. In other words, the proposed RN estimator

did improve the fidelity of reconstructed images. The SSIM and CNR values were

also computed and listed in Table.4.2

4.3.3 Parameter Selection

The regularization parameter for Tikhonov method can be found by the L-

curve method [77]. For the RN estimator and LSL12, the optimal values of two

regularization parameters are vary among different experiments and different fidelity

terms. However our experience showed that a good rule of thumb to deal with them
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Table 4.2. SSIM and CNR values of phantom reconstructions with LSL12, and pro-
posed RN estimator.

Method SSIM CNR
LSL12 0.8042 6.1709

RN 0.8809 8.4553

is to fix the ratio between the two as a constant first, e.g. λ2 = c×λ1, then adjusting

only one regularization parameter is needed in order to found the best reconstruction

results. In practice, the constant ratio c < 1 can first be tuned through few number

of trails to find a good balance between reconstructed objects being too sparse (c is

too small) and too blurry (c is too large). Then with the constant ratio c fixed, the

optimal value of λ1 can be found through strategies like the L-curve method. For

instances, in the result shown in Fig4.6(b), the constant c = 0.1 was found.

4.4 Conclusion

In this chapter, an RN noise model was derived by considering the modified

Beer-Lambert law and Rytov linear approximation. Thereafter, an effective MAP

estimator was developed based on the derived RN noise model. Together with both

`1 norm and `2 norm regularization terms, an effective reconstruction formula for

CW DOT was obtained. Although the corresponding optimization problem is quasi-

convex, it can be solved by ellipsoid algorithm. With the proposed reconstruction

formula, the shape of the reconstructed object is more accurate as compared to the

conventional least square scheme with the same regularizer as demonstrated with

both computer simulation and the real laboratory measurements.
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CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

5.1 Summary

In this work, sparsity enhanced reconstructing algorithms have been developed

to improve the reconstruction quality for DOT.

The sparsity regularized 3D reconstruction algorithm corrects the sensitivity

attenuation of the forward matrix by using the maximum singular values of sub-

matrices relate to different depths. Such algorithm presented great reconstruction

results under the WGN condition.

By considering the measurement acquisition process of DOT, the relative noise

was discovered. Two reconstruction algorithms have developed accordingly.

The first method approximated the RN as Gaussian noise with different vari-

ances among the measuring channels. The corresponding variance quantification for-

mula was derived. The combination of sparsity constraint and the noise whitening

with the developed noise quantification method improve the shape fidelity of a recon-

structed object, as it can be identified almost correctly even with noisy measurements.

Utilizing this novel noise quantification method in the noise whitening process along

with the sparsity constraint brought the sparsity regularized DOT reconstruction into

an even more practical level.

The statistical distribution of RN has also been derived. The second reconstruc-

tion formula was obtained by applying the MAP framework to the derived RN pdf

and combined with the sparsity constraint. Even though the resulting cost function

is not convex, it has been solved by ellipsoid algorithm. Due to the more precise

66



statistical information, objects recovered by this formula have shown almost identical

shapes as the original ones.

The advantage of noise quantification based reconstruction method is that the

least square related cost functions have been studied extensively and therefore can be

solved by a number of advanced optimization algorithms in an effective way. Conse-

quently, reconstruction images can be obtain in a short amount of time with almost

correct shape of objects. Hence it can be used for fast reconstruction with slightly

lower quality than the RN estimator or when the variance of the raw noise is not avail-

able. On the other hand, the RN pdf based method indeed recovered the shape of

targeting objects correctly, the convergence speed of ellipsoid algorithm is extremely

slow. Hence it is not feasible to deal with image with a large amount of pixels.

Therefore, it can be used to reconstruct small images with relatively higher quality.

5.2 Future Directions

5.2.1 Improve the Reconstruction Speed of RN Model Formula

Implementation of the ellipsoid algorithm is discussed in Appendix C. Even

though implementing the algorithm in C with the general BLAS library can boost the

speed approximately 5 times faster (could be even faster with the ATLAS) than the

MATLAB version, the convergence rate of the ellipsoid algorithm is still extremely

slow. A further acceleration might be achieved by solving the matric operations

parallelly on GPU, but the gain in speed is still limited due to the nature of ellipsoid

algorithm that the volume reduction factor degrades significantly as the number of

pixels become large. For this reason, a more efficient algorithm to solve (4.5) is needed

to reconstruct larger images in a timely manner. The conventional way to speed up

a gradient based algorithm, e.g. steepest descent, is to change the coordinate by
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the inverse of Hessian, i.e. Newton’s method. However, the Hessian of the fidelity

term is singular as the sensing matrix is under-determined hence it is not invertible.

Moreover, the `1 norm term is not differentiable , therefore its Hessian cannot be

found. Methods to approximate the Newton’s step for convex optimization problems

has been studied and many newly developed algorithms have been proposed. It is

possible that some of these developed algorithm can be used to solve the quasi-convex

problem (4.5) effectively. One other possible way to approximate the Hessian is to

replace it by the ellipsoid matrix found after a number of initial iterations of ellipsoid

algorithm.

5.2.2 Combine the Physiological Noise Into the RN Model

As discussed earlier, two types of noise can shield the true response signals and

mislead to wrong conclusions when DOT is utilized to study in vivo brain activities

stimulated under given tasks. The first type of noise is the instrument noise, which is

the type of noise considered in this thesis. The second type of the noise is physiological

variations. For example heartbeat, respiration, and even motion of the patient. These

types of noise are usually considered as band-limited Gaussian noise. It is possible

to extend the RN model to further reduce the physiological noise by looking into the

properties of it, e.g. frequency range of different types of physiological signals.

5.2.3 Develop a More Effective Method to Find the Optimal Regularization Param-

eters When Both `1 Norm and `2 Norm are Used

Generally speaking, the regularization parameter is selected empirically. For

selecting only one parameter, there are many methods that is already available and

are relatively easy to find. In the RN model formula, even though we can fixed

the ratio between the two regularization parameters to reduce the number of tuning
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parameters, finding the appropriate ratio is still empirical. It is desire to develop

a more effective way or automatic way to approximate the optimal regularization

parameters.
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APPENDIX A

Acronyms
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2-D Two-Dimensional

3-D Three-Dimensional

ALM augmented Lagrangian method

AM Amplitude Modulated

ATLAS Automatically Tuned Linear Algebra Software

BLAS Basic Linear Algebra Subprograms

BKG Background

CDF Cumulative Distribution Function

CNR Contrast to Noise Ratio

CS Compressive Sensing

CT Computed Tomography

CW Continuous-Wave

DA Diffusion Approximation

DCA Depth Compensation Algorithm

DOT Diffuse Optical Tomography

EM Expectation Maximization

FOV Field Of View

GCV Generalized Cross Validation

GLS Generalized Least Square

GPU Graphics Processing Unit

Hb Deoxygenated Hemoglobin

HbO Oxygenated Hemoglobin

LAPACK Linear Algebra PACKage

LSL12 least square with both `1 norm and `2 norm regularization

MAP Maximum A Posteriori

MRI Magnetic resonance imaging

NIR Near InfraRed
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PDF Probability Distribution Function

RI Refractive Index

RN Relative Noise

ROI Region Of Interest

SALSA Split Augmented Lagrangian Shrinkage Algorithm

S-D Source-Detector

SIRA Sparse Image Reconstruction Algorithm

SIRANN Sparse Image Reconstruction Algorithm with Noise Normalization

SNR Signal-to-Noise Ratio

SPD Symmetric Positive Definite

SSIM Structural Similarity Index Metric

TV Total Variation

WGN White Gaussian Noise
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APPENDIX B

Derivation of RN pdf When Both Inhomogeneous and Background Measurements

Are Corrupted by Noise
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Derivation of the RN pdf in the scenario that the both base-line measurement

Φ0 and inhomogeneous measurement Φ are affected by the Gaussian noise is shown

in this Appendix. The corresponding cost function and its first order derivative are

also discussed.

In this case the measured optical density change becomes:

∆̃OD = − ln

(
Φ + w

Φ0 + w0

)
= − ln

(
Φ

Φ0

)
+ ln

(
1 +

w0

Φ0

)
− ln

(
1 +

w

Φ

)
= ∆OD + ln

(
1 +

w0

Φ0

)
− ln

(
1 +

w

Φ

)
. (B.1)

Assume both w and w0 are independent zero-mean Gaussian random vari-

ables. It is trivial that both w/Φ and w0/Φ0 are also Gaussian. Now define Y1 =

ln (1 + w0/Φ0), Y2 = ln (1 + w/Φ), and the standard deviation of w0/Φ0 and w/Φ as

σ1 and σ2, respectively.

The relative noise in this case is defined as Z = Y1 − Y2. Therefore, the cdf of

Z is given by

FZ(z) = Pr({Y1 − Y2 ≤ z}) = Pr({Y1 − z ≤ Y2}) =

∞∫
−∞

∞∫
y1−z

fY1,Y2(y1, y2)dy2dy1.

Therefore,

fZ(z) =
∂

∂z
FZ(z)

=

∞∫
−∞

∂

∂z

[∫ ∞
y1−z

fY1,Y2(y1, y2)dy2

]
dy1

=

∞∫
−∞

[0 + 0− fY1,Y2(y1, y1 − z)(−1)] dy1

=

∞∫
−∞

ey1√
2πσ1

exp

(
−(1− ey1)2

2σ2
1

)
ey1−z√
2πσ2

exp

(
−(1− ey1−z)2

2σ2
2

)
dy1.
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Hence, the pdf of the relative noise Z is given by

fZ(z) =

∞∫
−∞

e2y1−z

2πσ1σ2
exp

(
−σ

2
2(1− ey1)2 + σ2

1(1− ey1−z)2

2σ2
1σ

2
2

)
dy1.

= C

∞∫
−∞

e2y1e−βe
2y1−γey1dy1,

where

C =
e−z

2πσ1σ2
exp

(
−σ

2
1 + σ2

2

2σ2
1σ

2
2

)
β =

e−2zσ2
1 + σ2

2

2σ2
1σ

2
2

γ = −e
−zσ2

1 + σ2
2

σ2
1σ

2
2

.

Let x = ey1 . The integral therefore becomes

fZ(z) = C

∞∫
0

x2e−βx
2−γxx−1dx = C

∞∫
0

x e−βx
2−γxdx. (B.2)

Checking the tables from [39], we find that

∞∫
0

xν−1e−βx
2−γxdx = (2β)−ν/2Γ(ν) exp

(
γ2

8β

)
D−ν

(
γ√
2β

)
, β > 0, ν > 0, (B.3)

where D−ν(x) is the parabolic cylinder function.

Note that fZ(z) in (B.2) is a special case of (B.3) when ν = 2. Hence, fZ(z) in

(B.2) is simplified as

fZ(z) = C

∞∫
0

xe−βx
2−γxdx = C(2β)−1Γ(2) exp

(
γ2

8β

)
D−2

(
γ√
2β

)

=
C

2β
exp

(
γ2

8β

)
D−2

(
γ√
2β

)
,

where C, β, γ are defined as above.

Applying Eq 9.254-2 in [39]:
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D−2(z) = e
z2

4

√
π

2

{√
2

π
e−

z2

2 − z
[
1− Φ

(
z√
2

)]}

= e−
z2

4 − e
z2

4

√
π

2
zerfc

(
z√
2

)
D−2

(
γ√
2β

)
= exp

(
− γ

2

8β

)
− exp

(
γ2

8β

)√
π

γ

2
√
β

erfc

(
γ

2
√
β

)
Hence the closed form of fZ(z) is given by

fZ(z) =
C

2β
exp

(
γ2

8β

)
D−2

(
γ√
2β

)
=

C

2β
exp

(
γ2

8β

)(
exp

(
− γ

2

8β

)
− exp

(
γ2

8β

)√
π

γ

2
√
β

erfc

(
γ

2
√
β

))
=

C

2β

(
1−
√
π exp

(
γ2

4β

)
γ

2
√
β

erfc

(
γ

2
√
β

))
Similar to (4.4), the noise of i-th channel in this extended case is defined as

zi = b̃i − aix. Then the noise pdf of i-th channel is given by:

fZ(zi) =
Ci
2βi

(
1− αi

√
π

βi
exp

[
α2
i

βi

]
erfc

(
αi√
βi

))
,
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where

Ci =
e−zi

2πσ1iσ2i
exp

[
−
σ2
1i

+ σ2
2i

2σ2
1i
σ2
2i

]
=

e−zi

2πσ2
1i
si

exp

[
−1 + s2i

2s2iσ
2
1i

]
,

βi =
e−2ziσ2

1i
+ σ2

2i

2σ2
1i
σ2
2i

=
e−2zi + s2i

2s2iσ
2
1i

,

αi =
γ

2

= −
e−ziσ2

1i
+ σ2

2i

2σ2
1i
σ2
2i

= −e
−zi + s2i
2s2iσ

2
1i

.

si = σ2i/σ1i

Therefore, the MAP estimator in this case can be found as follows:

arg max{ln fW (b̃−Ax)− λ1‖x‖1 − λ2‖x‖22}

=arg min{−
∑

ln
Ci
2βi
−
∑

ln

(
1− αi

√
π

βi
exp

[
α2
i

βi

]
erfc

(
αi√
βi

))
+λ1‖x‖1+λ2‖x‖22}

≈ arg min{−
∑

ln
Ci
2βi
−
∑

ln

(
−αi

√
π

βi
exp

[
α2
i

βi

]
erfc

(
αi√
βi

))
+ λ1‖x‖1 + λ2‖x‖22}

(Since

(
−αi

√
π

βi
exp

[
α2
i

βi

]
erfc

(
αi√
βi

))
� 1)

=arg min {
∑

i

(
zi + 1.5 ln (e−2zi + s2i )− ln(e−zi + s2i )−

α2
i

βi
− ln

(
erfc(

αi√
βi

)

)
+

1 + s2i
2s2iσ

2
1i

)
+

λ1‖x‖1 + λ2‖x‖22}

≈ arg min {
∑

i

(
zi + 1.5 ln (e−2zi + s2i )− ln(e−zi + s2i )−

(e−zi + s2i )
2

2s2iσ
2
1i

(e−2zi + s2i )
+

1 + s2i
2s2iσ

2
1i

)
+

λ1‖x‖1 + λ2‖x‖22} (Because erfc(
αi√
βi

) ≈ 2)

= arg min{
∑
i

(
zi + 1.5 ln

(
e−2zi + s2i

)
− ln(e−zi + s2i ) +

(1− e−zi)2

2σ2
1i

(e−2zi + s2i )

)
+ λ1‖x‖1 + λ2‖x‖22}

(B.4)
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The gradient of each term in (B.4) can be found as:

∂
∑
zi

∂x
= −

∑
aTi

∂
∑

ln(e−2zi + s2i )

∂x
=

∑ 2e−2zi

(e−2zi + s2i )
aTi

∂
∑

ln(e−zi + s2i )

∂x
=

∑ e−2zi

(e−zi + s2i )
aTi

∂ −
∑ (1− e−zi)2

(e−2zi + s2i )

∂x
=

∑ 2e−zi(1− e−zi)(s2i + e−zi)

(s2i + e−2zi)2
aTi

Hence

∇f(x) = −
∑
i

(
1− 3e−2zi

(e−2zi + s2i )
+

e−zi

(e−zi + s2i )
− e−zi(1− e−zi)(s2i + e−zi)

σ2
1i

(s2i + e−2zi)2

)
aTi

+ λ1
∂‖x‖1
∂x

+ 2λ2x.
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APPENDIX C

Implementation of the Ellipsoid Algorithm
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The convergence speed of the ellipsoid algorithm discussed in CH.4 is

vol(P(k+1)) < e−
1

2N vol(Pk),

where vol(Pk) denotes the volume of a ellipsoid after k iterations, N is the number

of pixels.

Hence, the volume reduction factor degrades significantly with N. It is desire to

implement an efficient code to accelerate the process by incorporating some features

or special structure of the matrices in the process. However, it might be a difficult

task to implement such a efficient code in MATLAB. In this work, the ellipsoid

algorithm was implemented in C with the BLAS library[24, 25]. Moreover, since the

original data format is “.mat”, which is easier to be load in MATLAB, the C code

was complied in MATLAB with its mex function.

In addition to use the variables wisely, a few comments on implementing the

algorithms are listed below:

1. Computing the noise vector can be simply done by using the BLAS function

dgemv ;

2. It is not necessary to compute the value of the cost function in each step as

only the gradient is needed in order to proceed to next step, unless tracking the

optimization progress is needed;

3. The ellipsoid matrix P is a symmetric positive definite (SPD) matrix, hence

its rank one downdate step in each iteration can be accelerated by the BLAS

function dsyr. Note that, the matrix might loss its SPD property due to the

round-off error. In this case, the Cholesky factorization of the ellipsoid matrix

should be implement by using LAPACK and the matrix downdate step can be

consequently converted into a Cholesky Rank-1 downdate step;
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4. All the matrix computation steps might be accelerated by using some GPU

parallel computing libraries, e.g. CUDA, especially when the matrix size is big.
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