
TASK COMPLEXITY AND EFFECTIVENESS OF PAIR PROGRAMMING: AN

EXPERIMENTAL STUDY

by

VENUGOPAL BALIJEPALLY

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

Copyright © by Venugopal Balijepally 2006

All Rights Reserved

 ii

ACKNOWLEDGEMENTS

Dr. Radha Mahapatra was not just my dissertation chairperson, but was also my

mentor and guide during the Ph.D. program. His encouragement, advice and patient

approach were invaluable particularly during the dissertation process. He was always

accessible for any intellectual discussions and provided constructive feedback. Dr.

Sridhar Nerur’s eagerness and involvement during different stages of my model

development and beyond helped me explore some new techniques and constructs. He

had an open door policy for discussing any creative ideas or even for casual

conversations. Dr. Kenneth Price was quite instrumental in steering me towards the

latest research approaches in small group research. His insights and valuable guidance

helped shape my research model and hypotheses and improve the theoretical and

methodological rigor. Dr. Craig Slinkman with his passion for this research area has

helped highlight the practical relevance of my research. Dr. Mark Eakin’s guidance was

invaluable in helping improve the rigor of my data analysis. Dr. James T. Teng lifted

my spirits and enlightened me to new realms of conceptual thinking. The collective

guidance of these committee members made my dissertation work much so much more

interesting and thought provoking. I thank them all. Special appreciations are due to Dr.

Riyaz Sikora for sparing his services as a software ‘expert’.

I am grateful to several of my friends who have provided valuable help and

support. In particular, I would like to thank Dr. Bharath Rayasam for his inspirational

 iii

support and editorial help, George Managalaraj for logistical help through out the

dissertation work, and Aakash Taneja for help in grading experimental tasks.

Most importantly, I would like to thank my mother Lalitha, who always trusted

me to do the right things. She was a constant source of inspiration and support. I

dedicate this dissertation to the memory of my late father Vidya Sagar, who would have

been proud of his son’s accomplishment. My wife Ramani was the source of love and

support particularly during stressful times. She never once complained about the

inattention that results from working on a project of this size. I am truly grateful to her.

December 5, 2005

 iv

ABSTRACT

TASK COMPLEXITY AND EFFECTIVENESS OF PAIR PROGRAMMING: AN

EXPERIMENTAL STUDY

Publication No. ______

Venugopal Balijepally, PhD.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Radha Mahapatra

 Extreme Programming, which is recently gaining popularity as an alternate

software development methodology, involves two programmers working

collaboratively to develop software. This study examined the efficacy of pair

programming by comparing the effectiveness of collaborating pairs with those of

programmers working individually. Student subjects participated in a controlled

laboratory experiment. Two factors were manipulated in the experiment: programming

task complexity (high vs. low) and programmers working individually vs. in pairs. The

performance of programmer pairs was compared with those of the best performer and

the second best performer from among nominal pairs.

 An important finding of the study is that programmer pairs outperform second

best programmers in nominal groups, but perform at comparable levels as the best

 v

programmers in nominal groups. The best programmers among collaborating pairs also

develop significantly better understanding of the problem domain, reflected in their task

mental model, compared to the second-best individuals working individually in nominal

pairs. Their mental models were however comparable to that of the best programmers in

the nominal groups. These two relationships were found to be consistent across

different levels of task complexity. In terms of perceptual outcomes, the best

programmers among the collaborating pairs have comparable levels of overall

satisfaction as the best and second-best individuals in the nominal groups, while

second-best programmers among collaborating pairs have higher satisfaction than the

best and second-best individuals in the nominal pairs. An additional finding was that

best programmers among the collaborating pairs have higher confidence in their

solution than best programmers in nominal pair when task complexity is low, but not

when it is high.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. v

LIST OF ILLUSTRATIONS... xii

LIST OF TABLES... xiv

Chapter . Page

 1. INTRODUCTION……… ... 1

 1.1 Research Questions ... 5

 1.2 Importance of Research .. 5

 1.3 Overview of the Dissertation .. 9

 2. LITERATURE REVIEW ... 10

 2.1 Agile Software Development ... 10

 2.2 Extreme Programming .. 17

 2.2.1 Core Practices of XP... 17

 2.3 Pair Programming … ... 22

 2.4 Theoretical Perspectives …... 23

 2.4.1 Problem Space Theory ... 23

 2.4.2 Mental Model Theory .. 25

 2.4.3 Distributed Cognition .. 29

 2.4.4 Group Task Typologies ... 30

 vii

 2.4.5 Task Complexity .. 34

 2.4.6 Individual versus Group Effectiveness 42

 2.4.7 Social Facilitation .. 48

 2.4.8 Monitoring …... 53

 2.4.9 Social Loafing .. 54

 2.4.10 Group Motivational Gains ... 58

 2.4.11 Satisfaction … .. 59

 2.4.12 Confidence ... 64

 3. HYPOTHESES DEVELOPMENT .. 67

 3.1 Research Questions ... 67

 3.2 Nature of Programming Tasks .. 67

 3.3 Effect of Individual versus Pair Programming on Software Quality 69

 3.4 Effect of Individual versus Pair Programming on Programmer’s
 Task Mental Model ... 74

 3.5 Effect of Individual versus Pair Programming on Programmer’s
 Overall Satisfaction ... 77

 3.6 Effect of Individual versus Pair Programming on Programmer’s
 Confidence in Solution ... 80

 3.7 Moderating Effect of Task Complexity on Programming Outcomes 82

 4. RESEARCH METHODOLOGY .. 86

 4.1 Methodology………. ... 86

 4.2 Subjects……………. ... 87

 4.3 Experimental Setting ... 88

 4.4 Planned Sample …… .. 88
 viii

 4.5 Design ………………... 89

 4.6 Experimental Task …….. 89

 4.7 Subject Compensation …… .. 91

 4.8 Response Variable Measurements …….. 92

 4.8.1 Software Quality .. 92

 4.8.2 Task Mental Model .. 93

 4.8.3 Satisfaction and Confidence in Solution 95

 4.8.4 Manipulation Checks ... 95

 4.8.5 General Questions .. 95

 4.8.6 Programming Ability ……….. .. 96

 4.8.7 Course Credit ... 96

 4.9 Debriefing …………. ... 96

 4.10 Statistical Analysis …… ... 96

 4.11 Pilot Testing ……….. 97

 5. RESEARCH RESULTS …………... 98

 5.1 Preliminary Analyses………... 98

 5.1.1 Sample Characteristics ... 98

 5.1.2 Factor Structure ... 101

 5.1.3 Reliability of Dependent Measures ……….. 104

 5.1.4 Test for the Effects of Demographic Factors 105

 5.1.5 Test for Interactions – ANCOVA and MANCOVA 107

 5.1.6 Test of Significance – ANCOVA and MANCOVA 110

 ix

 5.1.7 Tests of Assumptions ... 115

 5.2 Hypotheses Testing…………….. 118

 5.2.1 Hypotheses Concerning Software Quality 118

 5.2.2 Hypotheses Concerning Task Mental Model 122

 5.2.3 Hypotheses Concerning Overall Satisfaction 128

 5.2.4 Hypotheses Concerning Confidence in Solution 130

 5.2.5 Summary of Hypotheses Testing .. 139

 5.3 Manipulation Checks……………... 141

 6. SUMMARY, LIMITATIONS AND FUTURE RESEARCH ……….......... 143

 6.1 Summary of Research Findings …….. 146

 6.1.1 Software Quality ... 146

 6.1.2 Task Mental Model .. 149

 6.1.3 Overall Satisfaction ... 150

 6.1.4 Confidence in Solution .. 151

 6.2 Significance of Findings ………………... 151

 6.3 Limitations of Study …… ... 154

 6.4 Future Research Directions …… .. 155

Appendix

 A. PROFESSOR’S CONSENT FOR STUDENTS’ PARTICIPATION 157

 B. INFORMED CONSENT ... 159

 C. DEBRIEFING .. 161

 D. INSTRUCTIONS FOR SUBJECTS ... 163

 x

 E. WARMUP TASK .. 167

 F. EXPERIMENTAL TASK - LOW COMPLEXITY 171

 G. EXPERIMENTAL TASK – HIGH COMPLEXITY 175

 H. TASK MENTAL MODEL CONSTRUCT ... 180

 I. QUESTIONNAIRE FOR MEASURING PERCEPTUAL CONSTRUCTS
 AND DEMOGRAPHIC VARIABLES .. 188

 J. GRADING SHEETS .. 194

REFERENCES .. 197

BIOGRAPHICAL INFORMATION... 211

 xi

LIST OF ILLUSTRATIONS

Figure Page

 2.1 Traditional Vs. Agile Software Development (Adapted from (Beck, 1999))…….… 15

 2.2 McGrath’s Group Task Circumplex Adapted from (McGrath, 1984) 33

 2.3 Causes of Social Facilitation Adapted from (Forsyth, 1999).................................. 51

2.4 Effects of Task Difficulty and Group Work Condition on Maze
 Performance (Adapted from (Jackson & Williams, 1985)... 52

3.1 Research Model... 68

4.1 Experimental Treatments .. 89

5.1 Distribution of Subjects Across Different Treatment Conditions................... 99

5.2 3 x 2 ANCOVA Design for Analysis of Dependent Measure of Software

Quality... 100

5.3 4 x 2 MANCOVA Design for Analysis of Dependent Measures at the
 Individual Level ... 101

5.4 Marginal Means of Software Quality in the Three Conditions....................... 121

5.5 Marginal Means of Software Quality in the Three Conditions for Tasks of
 Low and High Complexity ... 122

5.6 Marginal Means of Task Mental Model ... 126

5.7 Marginal Means of Task Mental Model for Tasks of Low and High

Complexity ... 127

 5.8 Marginal Means of Overall Satisfaction .. 131

 xii

 5.9 Marginal Means of Confidence in Solution ... 132

 5.10 Marginal Means of Confidence in Solution for Tasks of Low and High
 Complexity ... 133

 xiii

LIST OF TABLES

Table Page

1.1 Post-Release Defects per Thousand Lines of Code Adapted from
 (Rubin, Johnson, & Iventosch, 2002) ... 6

 2.1 Important Differences Between Traditional and Agile Methodologies.......... 14

2.2 Different Task types and Task Complexity Dimensions Adapted from
 (Campbell, 1988) ... 38

 5.1 Correlation Matrix for the Perceptual Measure Items 102

 5.2 Varimax Rotated Orthogonal Factor Loadings .. 103

 5.3 Correlation Matrix of Dependent Measures Measured at Individual Level ... 104

 5.4 Power Analysis ... 106

 5.5 One-way ANOVA Results on Demographic Factors 108

 5.6 Results of Tests for Interactions Showing F (p) Values 110

 5.7 One-Way ANOVA Results on Software Quality ... 111

 5.8 MANCOVA Results for the Hypotheses ... 113

 5.9 One-Way ANOVA Results on Other Dependent Measures 114

 5.10 Diagnostic Information for ANCOVA Assumptions 116

 5.11 Diagnostic Information for MANCOVA Assumptions 117

5.12 Bonferroni’s Custom Contrast Report of Software Quality at
 Alpha = 0.05 ... 119

5.13 Means for Software Quality (A) ... 119

 xiv

5.14 Means for Software Quality (B) ... 120

5.15 Means for Software Quality (C) ... 121

5.16 Bonferroni’s Custom Contrast Report of Task Mental Model at
 Alpha = 0.05 ... 123

5.17 Means for Task Mental Model (A) .. 124

5.18 Means for Task Mental Model (B) ... 124

5.19 Means for Task Mental Model (C) ... 125

5.20 Means for Task Mental Model (D) .. 126

5.21 Bonferroni’s Custom Comparison Report of Overall Satisfaction at
 Alpha = 0.05 ... 128

5.22 Means for Overall Satisfaction (A) .. 128

5.23 Means for Overall Satisfaction (B) .. 129

5.24 Means for Overall Satisfaction (C) .. 130

5.25 Result of Test for Interactions ... 132

 5.26 Bonferroni’s Multiple Comparison Test of Cell Means for Confidence in

solution ... 134

5.27 Treatment Means for Confidence in Solution for Cells 11 and 31 134

5.28 Treatment Means for Confidence in Solution for Cells 12 and 32 135

5.29 Treatment Means for Confidence in Solution for Cells = 21 and 31 136

5.30 Treatment Means for Confidence in Solution for Cells 22 and 32 137

5.31 Treatment Means for Confidence in Solution for Cells = 21 and 41 138

5.32 Treatment Means for Confidence in Solution for Cells 22 and 42 139

5.33 Results of Hypotheses Testing ... 140

5.34 One-way ANOVA results for Manipulation Check 142

 xv

CHAPTER 1

INTRODUCTION

In the present knowledge economy driven by technological innovation, the

ubiquity and growing importance of software products and services are all too evident.

In the United States, software industry’s contribution to the national economy in terms

of value added was expected to exceed that of auto industry in the year 2000 and also

overtake for the first time the contribution of all manufacturing industry groups

(MacCormack, 2001). The average percent of IT spending on new packaged software

by US firms which went down from 48.1% in 1999 to 34.8% in 2000 bounced back to

41.4% in 2002 (Rubin et al., 2002). These figures suggest that despite some fluctuations

due to business cycles, organizations are continuing to invest in software products and

services to stay afloat in the present hyper competitive business environment.

Along with continuing improvements in software methodologies the IT project

management in organizations has been improving over the years. According to the

Standish group’s “Extreme Chaos” Report (StandishGroup, 2001), the projects that

meet the criteria of success have increased from 16% in 1994 to 28% in 2000. In their

survey, projects that were completed on time, on budget and with all features and

functions originally specified were categorized as success. During the same period the

failed projects (projects canceled before implementation or never implemented) have

 1

decreased from 31% to 23%. One of the important reasons for this improvement is

attributed to reduction in scope of projects as reflected in the reduction in average cost

of projects by more than half during this period. Other reasons cited were use of better

project management tools, better skilled project managers and better management

processes being used. There is however a big gray area between successful and failed

projects that were classified as challenged projects. These were projects completed and

operational, but over-budget, over the time-estimate, and with fewer features and

functions than originally specified. The challenged projects have decreased only

marginally from 53% in 1994 to 49% in 2000. Cost overruns over the original estimate

recorded a drastic decline from 189% in 1998 to 45% in 2000. Time overruns during the

same period fell more drastically from 222% to 63%. Another positive trend noticed

was that required features delivered on challenged projects increased from 61% to 67%.

With the average cost of projects going down, the number of projects is expected to

double for the year 2002 implying tight scoping of projects. In addition, minimized

scope of projects is found to be the fifth most important factor contributing to project

success (StandishGroup, 2001).

Though was improvement in the percentage of successful projects over the

years, the nearly two-thirds of the projects that fall into the failed or challenged

category underline the efforts needed to improve software development methodologies

and practices apart from project management and other organizational processes. Use of

a formal methodology is found to be one of the top ten critical success factors for

software project success (StandishGroup, 2001). The Software community is acutely

 2

aware of the efforts needed in this regard, as reflected in the advent of new

methodologies over the years.

Concurrent to the improvements in the software project performance, the nature

of software development has undergone dramatic changes during the last two decades.

While a silver bullet still eludes the software community, the need to build quality

systems that are flexible, scalable, and resilient to change has engendered a host of

approaches that challenge the wisdom that previously guided software development.

The motivation for such methodological changes stems not only from turbulent business

environments and the rapid strides made in technology (for example, new programming

languages and tools), but also from a growing realization that existing approaches are

inadequate and that there is an enormous scope for improvement.

A set of methods, collectively called Agile Development Methodologies, is

gaining increasing popularity among software community. Extreme Programming

(XP), Feature-Driven Development, Crystal Methods, Scrum, Dynamic Systems

Development, and Adaptive Software Development are some of the more popular agile

methods. What makes these methods philosophically and pragmatically different from

traditional software development methods is their emphasis on: 1) People rather than

processes and tools; 2) Adaptation rather than optimization; 3) High quality working

software rather than extensive documentation; 4) Customer involvement and

collaboration in the development cycle; 5) Embracing change rather than making futile

attempts to eliminate it; and 6) Adopting an approach that has short iterations of

planning, organizing, and coding along with continuous integration rather than

 3

following rigid plans that attempt to anticipate exceptional conditions and changes that

might arise (Beck, 2000; Cockburn, 2002; Highsmith & Cockburn, 2001b). In the

words of (Cockburn & Highsmith, 2001), "Agility requires that teams have a common

focus, mutual trust and respect; a collaborative, but speedy, decision making process;

and the ability to deal with ambiguity." In addition to increased agility, the vaunted

benefits of agile methods are increased productivity, higher quality, and greater

satisfaction/enjoyment of developers.

Extreme programming (XP) developed by Kent Beck (Beck, 1999) is one of the

more popular amongst the agile methodologies (Charette, 2001). In a recent survey on

XP projects in organizations more than 90% of respondents indicated that they would

use XP again in future projects and 100% of the respondents indicated that they would

actively advocate XP in the future (Rumpe & Schroder, 2002). At the heart of Extreme

Programming is the notion of pair programming, a technique in which two

programmers jointly plan, strategize, code, and inspect the software they develop. Pair

programming also ensures joint ownership of the code, which is another core concept of

XP. There is some anecdotal evidence to indicate that collaboration improves both the

performance and enjoyment of the whole problem solving process for programmers

(Cockburn & Williams, 2001; Nosek, 1998; Williams & Kessler, 2000; Williams,

Kessler, Cunningham, & Jeffries, 2000). There are also studies reporting inconclusive

findings on its efficacy (Nawrocki & Wojciechowski, 2001). However, pair

programming has been the most controversial and difficult to implement among the XP

practices . This could be a result of the traditional view of programming as a solitary

 4

activity (Weinberg, 1971) and the ensuing mindset of programmers. There is also some

apprehension among IT managers about deploying two programmers on programming

tasks that were being handled earlier by one programmer. Unfortunately, very little

research was conducted to understand this phenomenon of two programmers working

together as a team. The inconclusive empirical evidence is also suggestive of the need to

examine contingent factors and the mediating processes and states affecting the

outcomes of pair programming.

1.1 Research Questions

The following research questions concerning individual and pair programming

are proposed in this study:

1. Whether programming is done individually or in pairs has an effect on the

programming outcomes?

2. Whether task complexity moderates the effect of programming method

(individual versus pair) on the programming outcomes?

1.2 Importance of Research

With the advent of graphical user interfaces, object-oriented designs and other

innovations geared towards meeting the needs of the user in terms of required features

and enhanced usability, the sophistication and complexity of software increased

manifold. Despite organizations insisting on internal software inspections, rigorous

testing, and quality control procedures, the software released and shipped often contains

defects in terms of software bugs and security vulnerabilities. Though post release

defects per thousand lines of code have been steadily decreasing over the years

 5

especially for US companies (Table 1.1), any efforts and improvements in

methodologies that could address this issue and reduce defects further could result in

enormous savings for businesses.

Table 1.1 - Post-Release Defects per Thousand Lines of Code

Adapted from (Rubin et al., 2002)
 1997 1998 1999 2000 2001

US Companies 0.62 0.57 0.51 0.54 0.37
Non-US Companies 0.44 0.46 0.48 0.47 0.47
All Companies 0.46 0.48 0.47 0.47 0.36

High incidence of computer glitches in mission critical business systems

causing disruption or breakdown of operations not only affect the bottom line in terms

of costly fixes and lost revenues, but also impact customer and investor confidence. In a

recent incident, a software glitch in the flight operations system hosted by EDS Corp

affected the operations of two airlines for several hours. For US Airways, the glitch

affected 100 flights, while for American Airlines, the glitch affected nearly all of the

airline’s 2200 daily flights due to the “ripple effect” (Rosencrance, 2004). In another

incident, a software glitch caused payment chaos for Royal Bank of Canada due to

payroll delays for thousands of Canadian workers (Bruce, 2004). In the present era of

computer frauds, virus attacks, hacker intrusions, and cyber-terrorism, such defects and

software bugs could also end up as openings for unwelcome predators, thus seriously

compromising the security of the systems and the data with disastrous consequences for

organizations. Given the magnitude of impact the software glitches could potentially

cause during operations, any effort to improve software quality through reduction, or

 6

elimination of these bugs in the first place offers potentially huge payoffs to the

organizations.

While software consultants and practitioners are trying to address the issue of

software quality through new software practices and new methodologies, the software

community is left perplexed about the efficacy of these suggested practices. They are

often left wondering whether migrating to these new practices and methodologies is

worth the trouble of giving up the security of familiar practices and habits.

In Extreme Programming, pair programming is advocated as a core practice to

be followed for all tasks and all aspects of systems development. On the face of it, pair

programming appears as a wasteful practice consuming the talents and resources of two

people for the job of one. But XP proponents insist that benefits of XP cannot be

realized without pairing up as pair programming takes care of dispensing with the big

upfront design (BUFD) of traditional methodologies. Hence there is value in

establishing the efficacy of pair programming empirically along with any contingent

factors that potentially impact its efficacy.

Programming is traditionally conceived as an individual activity, and the

profession attracted people of certain dispositions who are comfortable with the

thinking and problem solving it involves, and the pleasure derived out of working with

systems. With the advent of agile methodologies, software development, which has

traditionally been a technical activity, is becoming more a socio-technical activity.

There is definitely some hesitation and initial resistance among software developers to

pair up. It is therefore important that they are convinced based on personal experience

 7

and based on evidence from well-conducted empirical studies about the efficacy of this

practice. This leads them to understand the implications and make a more informed

transition.

Though there is some anecdotal evidence suggestive of the efficacy of pair

programming, there is a need for rigorously conducted empirical studies. Even the

evidence available from existing studies is mixed with certain studies reporting positive

findings (Nosek, 1998; Williams, 2000) and others reporting inconclusive results

(Domino, 2004; Nawrocki & Wojciechowski, 2001).

Though pair programming for all types of software development tasks may

prove to be valuable, there is a need to examine whether the benefits of pairing are any

different for simple vs. complex tasks. Some practitioners have articulated that they see

merit in pairing up for complex tasks as against simple tasks. This needs empirical

confirmation to inform practice so that during periods of “death march” (critical phases

of project completion especially while trying to beat difficult deadlines) (Yourdon,

1997), whether they could avoid pairing up for certain kinds of tasks with less impact

on the performance outcomes.

Even without the context of XP and agile software development, understanding

the efficacy of pair programming is a highly topical and pertinent question given the

general scarcity of competent and brilliant programmers among IT developers. The

software community knew the importance and value of high caliber programmers for a

long time. Highly competent programmers are considered valuable resources in

software projects that help reduce project risk. However, they are often scarce and are in

 8

great demand. Given this reality, it is interesting to study whether programming pairs

could achieve software quality which could not be achieved with either of them

working alone.

This dissertation addresses the issues discussed above to inform software

practice of the efficacy of pair programming and the contingent effect of task

complexity on pair performance.

1.3 Overview of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 provides a review

of literature on both technical IS domain and the theoretical landscape from reference

disciplines. From the IS technical domain, review is provided on agile methodologies,

Extreme Programming and pair programming. For the theoretical perspectives, review

is provided on group task typologies, task complexity, social motivation, mental model

theory, distributed cognition theory, communication action theory, and individual

versus group effectiveness literatures. Chapter 3 focuses on the theoretical development

of the model and hypotheses. The experimental design, data collection methods are

discussed in Chapter 4. In this chapter, a discussion on the research setting and

sampling frame is first provided. Then, construct measures as well as method of

analysis used to empirically test the hypotheses are summarized. The analysis and

results are presented in Chapter 5, while the implications of the findings, relevance to

practitioners and IS academics are discussed in Chapter 6. Limitations of the study and

possible areas of future research are also presented here.

 9

CHAPTER 2

LITERATURE REVIEW

This chapter reviews literature relevant to the study of the influence of mode of

participation on the effectiveness of software development and the moderating role of

task complexity on this relationship. The chapter consists of four sections. The first

section examines agile software development and contrasts it with traditional software

development approaches. The next section reviews literature on Extreme Programming

(XP), one of the more popular agile methodologies and explores its practices. The third

section reviews pair programming, an important practice in XP, and discusses empirical

studies that investigated its effectiveness. Theoretical perspectives underpinning the

present research are reviewed in the fourth section. In this section research on problem

space theory, distributed cognition, mental model theories are reviewed along with

literatures on task typologies, task complexity, social motivation, and individual versus

group effectiveness. The last section introduces the proposed research model of the

study.

2.1 Agile Software Development

The nature of software development has undergone dramatic changes in the last

two decades. New Object Oriented programming languages, analysis and design

methodologies are gaining prominence over traditional languages and structured

 10

analysis and design approaches. A growing need has emerged to build quality systems

that are flexible, scalable, and resilient to change. The need for more control and ability

to respond to changes in the environment at any stage of software development has

engendered a host of approaches that challenge the conventional wisdom of software

development. Amidst these changes, software development continues to be an important

activity in various organizations with new systems being developed to meet the

changing business requirements.

A set of methods, collectively called Agile Development Methodologies, is now

beginning to capture the attention of software developers. These methods stress

cooperative software development as against individuals developing code to

predetermined specifications. The focus is more on the people and the dynamics of their

interactions rather than on elaborate requirements planning and rigid software

processes. Customers are now part of agile software development teams as full time

members, who bring users’ perspectives directly into the software development process.

Short iterations of planning, organizing, and coding are adopted along with continuous

integration to accommodate change throughout the system life cycle. Software

developers have to frequently iterate between these different phases of systems

development and alter their roles accordingly. Thus, there is a fundamental change in

the roles and expectations of software developers involved in these agile teams.

The agile methodologies generated great enthusiasm in the recent past among

both practitioners and researchers with several consultants championing different agile

methodologies. Extreme Programming (XP), Feature-Driven Development, Crystal

 11

Methods, Scrum, Dynamic Systems Development, and Adaptive Software Development

are some of the more popular agile methods. However XP is possibly the best

documented and most popular of these agile methodologies (Orr, 2002).

Traditional software development is based on the premise that changes in

software requirements at later stages of software development process are more costly

to implement and should be avoided through detailed upfront planning. The stress is on

extensive requirements gathering, detailed analysis and design of the system followed

by disciplined implementation and testing. Traditional software development process is

thus conceived as a ‘waterfall’ model involving sequential progress through these

various stages. Extensive planning, codified processes, and rigorous reuse are expected

to increase predictability and gradual maturing of the process towards perfection

(Boehm, 2002). However it became apparent over the years that despite elaborate

planning, changes are inevitable during software development. Hyper-competitive

environments, changing business requirements and rapid technological changes all call

for changes in requirements during various stages of the software development process.

Agile software development has evolved in this setting from ‘exploratory

projects’ that involved frontier technology, mission and time critical business

applications, characterized by constantly changing requirements. Agility entails the

ability to both create and respond to change (Highsmith, 2003; Highsmith & Cockburn,

2001b). In agile methodologies there is a conscious attempt to embrace change rather

than make futile attempts to eliminate it. Perceived inadequacies of existing software

practices prompted several like-minded consultants to come together and draft the Agile

 12

Manifesto (AgileManifesto, 2001), the principles of which are embedded in these

methodologies in varying degrees. These methods are philosophically and pragmatically

different from traditional software development methods in important ways. In agile

methodologies, there is an emphasis on people and their interactions rather than on

processes and tools. Collective teamwork is emphasized over individual creativity.

Producing high quality working software rather than extensive documentation is

considered paramount. Continuous customer involvement and collaboration throughout

the development cycle is another crucial requirement (Cockburn, 2002; Highsmith &

Cockburn, 2001a). Table 2.1 summarizes important differences between traditional and

agile software development methodologies.

Process Characteristics: The process characteristics of agile software

development differ substantially from traditional development. Agile software

development engenders short iterative cycles, feature based planning, constant

feedback, change tolerance, team proximity, and customer intimacy with focus on

overall team ecology (Highsmith & Cockburn, 2001a). User involvement and rapid

prototyping are some important tenets shared across agile methodologies. The users

prioritize the features and decide the scope and timing of product releases, while the IS

developers deal with the estimates, development process and detailed scheduling (Orr,

2002). Developers build software in short iterative cycles involving analysis, design,

and implementation, and testing phases to deliver incrementally the functionality

desired by the users. Honest working code is considered paramount and hence in each

of the iterations the individual stages are handled more in parallel.

 13

Table 2.1 – Important Differences Between Traditional and Agile Methodologies

 Traditional Agile
Focus Individual creativity

Processes and tools
Technical

Creative teamwork
People and interactions
Socio-technical

Process characteristics
Process focus Optimization Adaptation
Change Readiness Low High
Process flow Sequential Parallel and iterative.
User Involvement Partial Complete
Coding standards Low emphasis High emphasis
Dominant mode of
communication

Documentation Barrier-free interpersonal interaction

Management Issues
Decision makers Systems analysts and project

managers
Collocated team members

Level of
Management

Micro Macro

Management control Command and control Trust based collaboration and self
organization

People Issues
Roles Defined and remain constant Change, often at developer’s

discretion
Code ownership Individual accountability More of team based collective

ownership
Rewards Individual Team based

Figure 2.1 contrasts the iterative nature of agile software development with the

sequential nature of traditional approaches. Open and honest interaction among users

and other members of agile teams and not extensive documentation is the dominant

mode of communication. Collective team ownership of code as against individual

ownership in traditional software development is another hallmark of agile software

development. This requires developers to adhere to coding standards so as to make the

code understandable.
 14

Traditional Agile (XP)

Management Issues: Agile development calls for changes in management and

leadership styles. In agile methodologies software development has moved away from

the traditional command and control style management to more trust based

collaborative decision-making style. While traditional software development

methodologies place decision-making responsibilities with the systems analysts and the

project managers, agile methodologies empower and trust agile teams with decision-

making. Agile managers set goals and constraints and believe in macro management

and provide agile teams with boundaries within which innovation could flourish. Teams

themselves set priorities and schedules, design, test and deliver the software (Orr,

2002).

Analysis

Design

Implementation

Test

Scope

Figure 2.1 – Traditional Vs. Agile Software Development
(Adapted from (Beck, 1999)

Time

People Issues: Agile manifesto epitomizes the idea that people with all their

abilities, skills, experiences, idiosyncrasies, and personalities constitute first order

factors impacting project success. Agility demands valuing people, trusting them and

 15

supporting them in overcoming barriers of communication and collaboration

(Highsmith, 2002a). There is emphasis on creative teamwork with intense focus on

process maneuverability and effectiveness of software development (Highsmith &

Cockburn, 2001a). The software team and not the individual developer is the key

success factor as reflected in the collective ownership of the code. This entails huge

change for software developers and IS managers who are trained to be ‘hardy

individualists’ in traditional software development (Orr, 2002).

In agile software development, which involves collaborative teamwork, there is

however substantial scope for conflict. Joint ownership of code and collocation of team

members with stress on direct one to one interactions could cause conflict that could be

both task and relationship based. Task conflicts are the conflicts that arise over

substantive issues such as differences over ideas, opinions and ways of approaching a

task, while relationship conflicts refer to interpersonal or socio-emotional disagreements

generally related to feelings of animosity or annoyance (Bono, Boles, Judge, & Lauver,

2002). Relationship conflict is considered detrimental to the individuals involved and

for the groups while task conflict within limits could be beneficial. In agile

methodologies the opportunities for conflict are potentially higher than in traditional

development. Aspects of agile methodologies such as pluralistic decision-making

involving multiple stakeholders, self-organization, joint code ownership etc. could

trigger task related conflicts.

 16

2.2 Extreme Programming

Extreme programming (XP) is an agile software development methodology

developed and advocated by Smalltalk code developer and consultant Kent Beck with

colleagues Ward Cunningham and Ron Jeffries (Williams & Kessler, 2000). Among

agile methodologies, XP is well documented, found to be effective, and yet

controversial. XP stresses on small teams of 3 to 10 programmers, and requires

presence of one or more customers with the development team for providing ongoing

expertise. Development is done in iterations of about three-week durations. The

deliverable at the end of every iteration is a running and tested code that is ready for

customer use. Deliverables from two to five iterations are integrated and given as a

‘release’ to the customer.

A user visible functionality that can be developed in a single iteration, also

called “user story”, is the unit for requirements gathering. These user stories are written

by customers onto simple index cards and are used by programmers to estimate the time

required to complete the functionality given in the card. Customers and programmers

negotiate the scope and the time of releases. Customers prioritize, de-scope or alter the

stories as needed so that the most important functionality gets done during the agreed

time frame.

2.2.1 Core Practices of XP

XP advocates four values: communication, simplicity, feedback and courage.

There are also twelve core practices in XP. XP’s practices closely mirror the

quintessence of the agile manifesto. These practices emphasize communication and

 17

collaboration between the various participants that includes the users. Consistent with

the agile manifesto extensive documentation is not done in XP. The core practices of

XP are outlined below:

2.2.1.1 The Planning Game

In XP the planning game starts the development process encompassing the

requirements determination and project planning. User representatives and developers

actively participate in the planning game. Requirements of the systems are captured

through user stories. User stories are similar to use cases and help in documenting the

various requirements of the users. User representatives select and prioritize the stories

to be included in each iteration. Subsequently planning for a particular iteration and

release planning are done. Developers implement only the functionality demanded by

the stories in each iteration (Beck, 1999).

2.2.1.2 Small Releases

XP follows an iterative and incremental development approach. Frequent

releases of the system are delivered to users incorporating the most important functional

requirements prioritized by the users. Typically these releases are made after every two

to three weeks.

2.2.1.3 Metaphor

Metaphor in XP is equivalent to the system architecture. Metaphor helps the

people involved in a project to understand the basic elements in a system. Metaphor

concept is not new as highlighted by Beck. For example, a pension calculator

 18

application should be like a spreadsheet and here the spreadsheet is a metaphor of the

system (Beck, 1999). This spreadsheet analogy helps in visualizing the application.

2.2.1.4 Simple Design

XP emphasizes simple software design to address the immediate needs of the

customers. The designer is encouraged to focus on the requirements specified in user

stories as opposed to future requirements. Simple design also translates into minimum

numbers of classes and methods and no duplication of code (Beck, 1999).

2.2.1.5 Testing

Two types of testing procedures are emphasized in XP - unit tests and functional

tests. XP implements Test Driven Development. Here the test cases are developed prior

to the actual code with even the possibility of automating these tests. Customers write

the functional tests to test the features of the system.

2.2.1.6 Refactoring

Refactoring of software code is the practice of improving the actual code

without altering the observable behavior of a delivered system. Refactoring improves

program design, makes it easy to comprehend, eliminates bugs and improves

productivity. This is a time-tested concept that predates XP. Refactoring facilitates

incorporating changes in design at any stage of the project thereby increasing the

adaptability of the system.

2.2.1.7 Pair programming

Pair programming is one of the core requirements of XP. It involves two

programmers working side by side at one computer, collaborating on the design, coding

 19

or testing on a continuous basis. The programmer sitting in front of the computer is the

driver doing active coding. The partner acts as navigator overseeing the coding, looking

for errors in syntax and logic, and deviations from programming practices and norms.

2.2.1.8 Collective Ownership

In XP everyone in the development team is responsible for modifying the code

irrespective of owner authorship. Some common concerns regarding collective

ownership are that some programmers would not be happy about changes made to their

code by others. Managers also could be apprehensive about accountability in case of

problems in the code. However collective ownership encourages the entire team to work

together more cohesively with each pair striving that much harder to produce high

quality designs and code (Highsmith, 2002b).

2.2.1.9 Continuous Integration

As soon as a piece of code is ready it is integrated into the code-base. Before

accepting changes in the code all tests have to be run and passed. Typically the system

is integrated several times in a day. The software community knew the problems with

integration defects for a long time now. However, lack of tools and practices earlier

prevented this knowledge from being put to good use. XP provides a revised

perspective on practices and tools to focus on continuous integration.

2.2.1.10 Forty-hour Week

A maximum of 40-hour week is allowed and overtime weeks in succession are

discouraged. Any such occurrence is treated as a problem to be solved. This practice has

been enshrined as a rule to avoid burn out of the programmers. However what is

 20

important is whether there is a voluntary commitment on the part of the people and

whether they anticipate each day at the work with great relish.

2.2.1.11 On-site Customer

Customer presence is required full time for the team. This is based on one of the

oldest principles of software development i.e., user involvement. Customers write user

stories, prioritize the stories/features for immediate development, and test the

functionality of the systems during continuous integration process.

2.2.1.12 Coding Standards

Coding rules are laid down and developers are required to follow them. As

coding is done in pairs with community ownership of the code, coding rules become all

the more important. Communication through the code is encouraged. Peer pressure

during pair programming and the need to make the code comprehensible to the partner

is expected to lead to better compliance with coding standards (Beck, 1999).

Many of the practices outlined in XP are not new. However XP seeks to

integrate these proven and not-so-proven practices into a coherent methodology (Beck,

1999). XP advocates insist on implementing all the practices together as they form a

coherent system compensating for the lack of big upfront design and documentation.

There is some anecdotal evidence of XP’s success reported such as in Chrysler

Compensation system and Ford Motor Company’s Vehicle Cost and Profit System

(VCAPS) which were successfully completed using XP after initial development using

other methodologies ran into problems (Williams & Kessler, 2000).

 21

2.3 Pair Programming

Pair programming is a core practice of Extreme Programming. Pairing is

recommended to be dynamic with people pairing up with different individuals even in

the course of a day. People could enlist a partner with particular competencies for a task

unfamiliar to him/her or pair up with anyone in the team. The second programmer is

expected to also think strategically the overall scenario, looking at how the work fits

with the rest and the further directions they should be taking. The partners periodically

switch roles doing coding and code inspection alternately. The code generated by pair

programming is expected to be of much higher quality, as it has to pass the active

scrutiny of two programmers who try to identify any possible sources of errors, both

syntactical and logical. The code is expected to be much more readable. The

programmers are also likely to be more confident of their solution when coded jointly as

against working alone. Pair programming encourages each programmer to push the

other partner a little harder to excel (Beck, 1999).

The software community knows the superiority of inspections by two

programmers for a long time. However, what was little realized earlier was that

programming in pairs could be cost effective in not only uncovering defects, but also in

preventing defects in the first place through learning and incorporation of better

programming practices. There is also some anecdotal evidence to indicate collaboration

improved both the performance and enjoyment of the whole problem solving process

for the programmers (Nosek, 1998). It has been shown that when two programmers

work together, work more than twice as fast and think of more than twice as many

 22

solutions to a problem as two working alone, while achieving higher defect prevention

and removal (Domino, 2004), thus leading to a higher quality product (Williams &

Kessler, 2000).

2.4 Theoretical Perspectives

This section reviews some of the critical literature on the theoretical

perspectives informing this research.

2.4.1 Problem Space Theory

According to Newell and Simon’s problem-space theory, for any given problem,

there is an objective structure involving an initial state and a goal state. There are

always several alternate paths available for traversing from the initial state to the goal

state. At each stage there are certain legal operators available to navigate along with

possibly some restricted operators. An individual’s problem solving behavior involves

moving from an initial knowledge state to a goal state by the application of mental

operators. Mental operators encode the legal moves and restrictions that are applicable

at each state. For the given problem, basic problem space is conceived as the set of all

possible states as generated by the legal operators (Eysenck & Keane, 2000; Newell &

Simon, 1972).

Programming is considered a complex problem-solving activity involving

search in multiple problem spaces – rule space, instance space and representation space.

It is analogous to scientific discovery with programmers generating hypotheses in rule

space and testing them in instance space. When difficulties are encountered in rule

development or when alternate representations are available, programmers also change

 23

representations by searching in the representation space (Kim & Lerch, 1997). Similar

to hypothesis testing in scientific discovery, programmers are known to retrieve existing

schema from their long term memories and apply to the problem at hand with suitable

modifications during problem solving (Adelson & Soloway, 1985; Rist, 1989).

Programmers also traverse the solution instance for getting better insights into the

problem as well as the rules for problem solving. Thus they evaluate and refine the

existing rules based on test results from the instance space. When faced with the

situation where existing rules are not adequate to offer any clues, programmers are

known to engage in ‘exploratory mental simulation’ as the main operator for generation

of new rules (Kim & Lerch, 1997). “A representation is a mental model that encodes the

programmer’s current understanding of the target system” (Letovsky, 1986). Construct

and Map are the two operators used in representation space that manipulate components

of the current representation by either filling in empty slots or by changing the existing

ones. Filling in empty slot is akin to programmers developing an initial representation

before beginning problem solving. Any impasse in the rule or instance space triggers

search in the representation space with Construct operator. When programmers face an

impasse with the current representation, they invoke Map operator to change

representation (Kim & Lerch, 1997). At the end of the problem-solving task, the final

representation denotes the understanding of the programmer of the problem space. This

mental model of the programmer drives the program solution created and its resultant

effectiveness.

 24

2.4.2 Mental Model Theory

The concept of mental model is attributed to Scottish psychologist Kenneth

Craik as its originator. It is however Johnson-Laird (Johnson-Laird, 1981) who

articulated the theory of mental models. Mental models are the internal representations

of objects, people, situations, or actions. Johnson-Laird conceptualized mental model as

“a state of affairs and accordingly its structure… plays a direct representational or

analogical role. Its structure mirrors the relevant aspects of the corresponding state of

affairs in the world.” [(Johnson-Laird, 1981) p174]. Mental models are built based on

experience and observation, of the particular entity of interest or of the world in general

(Wilson, 2000). Even parsing of verbal propositions using procedural semantics creates

a mental model that is structurally congruent with the represented world (Johnson-

Laird, 1983). Depending upon the circumstances individuals may construct and use

several different mental models.

The theory of mental models is based on a functionalist perspective.

Functionalism allows defining mental states in terms of their causal effect on behaviors

or other mental states (Stubbart, 1989). The mental model theory competes with the

view that deduction is based on formal rules of inference. According to Johnson-Laird,

creation of a mental model and its manipulation underlies most human cognition. He

rejected the notion that cognition is based on formal logic and inference rules. He

argued that formal logic arises from the construction and manipulation of certain mental

models. Mental models enable individuals to understand the phenomena and make

inferences and predictions, thus helping to experience events by proxy. They help

 25

decide what action to take and how to control its execution (Johnson-Laird, 1983).

Mental models vary in the level of abstraction depending upon the context of

investigation. The representational capability and power of mental models stems from

the recursive operations on a set of tokens and from a different set of processes

directing the creation of “model examples and counter-examples and their evaluations”

(Wilson & Rutherford, 1989).

Mental models are distinct from related memory structures. Frames are data

structures for representing stereotypical entity. Schemata are active data structures and

are more specifically oriented towards psychological explanations. They emphasize

more on the control aspects of the operation of a system. Similar to the structure

inherent in a set of instructions or processes, schemas can be said to have a structure.

Mental model may be considered as the aggregate set of schemata instantiated at any

particular time. Alternatively, schemata may be conceptualized as providing procedures

from which mental models are constructed. While mental models are considered

temporary data structures created at the moment for understanding, it is schemata that

are stored and activated. They represent the background knowledge of the mental

models (Wilson & Rutherford, 1989).

Scripts and scenarios are typically used in language comprehension and refer to

‘extended’ activities and social situations. One similarity between different theoretical

cognitive constructs such as schemata, frames, scripts and scenarios is that they provide

declarative and procedural information in terms of a set of processing operations. They

all provide generic or prototypical information and represent knowledge by virtue of

 26

typical criteria and not based on a set of necessary and sufficient conditions. Frames and

particularly schemas are applied in a more varied manner such as in studies of

perception, story comprehension, memory, and sensory motor actions. Scripts,

scenarios, and even schemata may be considered as particular implementations of the

notion of frame (Wilson & Rutherford, 1989).

Mental models facilitate efficient information processing by making it

unnecessary to understand from scratch each time a novel situation is encountered.

They help organize knowledge in robust parsimonious ways and reduce complexity.

They facilitate learning by filling in gaps in information and memory and updating the

models. Mental models direct the perception and processing of stimuli, which in turn

help shape or change mental models (Vandenbosch & Higgins, 1996). Analogies help

people build a structural map that simulates the way the components of a system

interact. People use analogies to construct generative mental models by mapping the

rules of transition and interaction from a known domain to an unknown domain (Collins

& Gentner, 1987).

The notion of mental models is used in several disciplines. While the focus of

mental models in cognitive psychology literature is on explaining mental processes, in

other disciplines such as human factors the interest is on the product of such processes.

The mental model concept has also been extended into the team domain. Team mental

model refers to multiple levels of shared knowledge or aggregate of individual

knowledge as well as to “a synergistic functional aggregation of the team’s mental

functioning similarity, overlap, and complementarity” [(Langan-Fox, Anglim, &

 27

Wilson, 2004) p.335]. Team mental model embraces two team related concepts –

mental models and teamwork. Teamwork encompasses concepts such as common

valued goals, internal interdependence and coordination etc. Effective group work is

facilitated if the members perceive, encode, store, and retrieve information in similar

ways, that is, they have accurate and similar mental models and develop common

knowledge. One limitation is that mental model and its representation is a function of

the experimental paradigm and does not mean a true translation of the mental model. It

is however considered a ‘useful heuristic’ for interpreting the complexity of team

functioning as it spans across both knowledge and belief structures (Langan-Fox et al.,

2004). In this paper the individual mental models and not team mental models are the

focus.

In IS research, it is shown that executive support systems (ESS) help mainly in

the maintenance of mental model of the particular domain for the users through focused

search. To a lesser extent ESSs also help build mental models if users scan through

them to help formulate problems (Vandenbosch & Higgins, 1996). In IS training

literature it is shown that subjects who form conceptual mental models during training

performed significantly higher than people who formed procedural mental models

(Santhanam & Sein, 1994). In one study concerning code evaluation in programming,

conceptual models helped improve conceptual understanding reflected in mental models

of programmers. Also quality of mental models is found to be positively related to the

transfer ability of procedural skills from code evaluation to code generation (Shih &

Alessi, 1993).

 28

2.4.3 Distributed Cognition

According to the traditional view of cognition, problem solving is exclusively

internal phenomenon involving information processing at the individual level. Theory

of distributed cognition extends cognition beyond the individual to interaction of

individuals with the materials and resources in the environment (Hollan, Hutchins, &

Kirsh, 2000). According to theory of distributed cognition enunciated by Flor and

Hutchins (Flor & Hutchins, 1991), the collection of the individuals and the artifacts that

are involved in the performance of a task constitutes a complex cognitive system. The

mental state of this complex cognitive system comprises the external structures

exchanged by the agents of the system. Unlike the mental states of individual cognition

that are inaccessible, the external structures of complex cognitive system representing

its mental state are observable and hence available for direct analysis. Based on their

study of a programming pair undertaking a software maintenance task, Flor and

Hutchins identified seven properties of this complex cognitive system involving

distributed cognition (Flor & Hutchins, 1991). These seven properties are:

1. Reuse of system knowledge

2. Sharing of goals and plans

3. Efficient communication

4. Searching through larger spaces of alternatives

5. Joint production of ambiguous plan segments

6. Shared memory for old plans

7. Division of labor and collaborative interaction system.

 29

The above properties are considered important for the successful task

performance of the system. Active communication processes involving perspective

taking and perspective making are considered critical for the effectiveness of a complex

cognitive system (Boland & Tenkasi, 1995).

2.4.4 Group Task Typologies

During the long course of small group research, several task typologies have

been proposed to study the group task. Steiner’s task typology (Steiner, 1972),

McGrath’s task circumplex (McGrath, 1984) and Laughlin’s group task categorization

(Laughlin & Ellis, 1986) are the more popular ones used in the context of problem

solving research in groups.

Steiner proposed a typology based on the premise that a team performs a variety

of tasks that can be combined in different ways. It is based on three questions: 1) can

the task be divided? 2) Is quantity more important than quality? 3) How are the

individual’s inputs related to the group product? Based on divisibility, the tasks could

be considered as divisible (subtasks exist) vs. unitary (no subtasks exist). Unitary tasks

yield a single outcome and must be performed by the group as a whole. Based on the

importance of quantity vs. quality the tasks are divided as maximizing (quantity) vs.

optimizing (quality) (Steiner, 1972).

The unitary tasks are further classified based on how members’ efforts are

combined to yield the group product. Disjunctive tasks involve selecting from

individual judgments. They are typically unitary and optimizing, that is they are not

divisible into subtasks and quality of output is emphasized. The group must get to a

 30

single solution and the group discusses till its members agree on a solution such as in

juries and problem solving technical work teams. In Conjunctive tasks all group

members must contribute. Such tasks are usually divisible and maximizing. They are

not completed unless each of the group members has completed his/her parts as in

assembly line. The groups’ performance in such tasks is limited by the worst

performing member (Steiner, 1972). A group can control this factor by providing

support and motivation to this member to work harder, or by assigning the weakest

member to the easiest task (Levi, 2001). Additive tasks combine the group members’

contributions together such as when a group paints a house or sells a product. They are

usually divisible and maximizing. The productivity of a group exceeds that of an

individual, but is often less than the sum of individuals working alone due to

motivational losses (Levi, 2001). Compensatory tasks involve averaging the input of the

group members in creating a solution such as when a group leader seeks opinions of the

individual members and then forms a single recommendation from the responses. The

average score is typically better than most of the individual members’ scores. (Levi,

2001). In Discretionary tasks group decides how to organize such as in self-managed

teams. They could be divisible or unitary as well as maximizing or optimizing (Steiner,

1972). The performance is contingent upon whether a group selected an appropriate

method to perform the task and hence highly variable (Levi, 2001). The decisions of the

group could make it disjunctive (by assigning higher weight to the contributions of its

most capable members), conjunctive (by making everybody to complete their tasks),

 31

additive (by assigning equal weight to the contributions of each group member), or

some unique type (Shaw, 1981).

Laughlin articulated a group task continuum anchored by intellective and

judgmental tasks. Intellective tasks have a demonstrably correct answer, while

judgmental tasks are evaluative, behavioral, or aesthetic judgments with no correct

answers (Laughlin & Ellis, 1986). These tasks also figure in the more comprehensive

McGrath’s task typology discussed below.

McGrath proposed a task circumplex in which the task categories are mutually

exclusive, collectively exhaustive and logically related to one another (McGrath, 1984).

The vertical axis denotes the degree to which the task involves collaboration and

coordination or conflict resolution. The horizontal axis indicates the degree to which the

task entails cognitive or behavioral performance. Figure 2 provides a brief description

of the tasks in the circumplex. Intellectual and judgmental tasks of McGrath’s typology

that involve cognitive task performance are described below.

Intellective tasks or problem solving tasks have demonstrably correct answers,

and require choosing correct answers. Consensus is required but reaching solution is

straightforward and once the answer is recognized there is often little to debate. If

anyone in the group does solve the problem, then the group has solved it. The need to

coordinate may be limited. Laughlin’s intellective tasks with correct and compelling

answers, logic problems and other problem solving tasks with correct but not

compelling answers, tasks where expert consensus defines answers, all fall under this

category. The key notion is the correct answer.

 32

Decision-making tasks or judgment tasks involve reaching consensus on a

preferred answer. They do not have a correct answer. Attaining consensus requires

communicating not just facts, but also values, beliefs, and attitudes about the merits of

alternate solutions. The effort to establish group choice involves considerable

coordination activities. Jury tasks and tasks used in risky shift, choice shift, and

polarization studies fall under this category. The key notion for these tasks is to have a

preferred answer.

Solving
problems
w/correct
answers

Deciding
issues

w/no right
answer

Resolving
conflicts of
viewpoint

Resolving
conflicts of

interest

Resolving
conflicts of

power

Executing
performance

tasks

Generating plans Generating ideas

Negotiate

ExecuteChoose

Creativity
tasks

Planning
tasks

Intellective
tasks

Judgment
tasks

Cognitive
conflict tasks

Mixed motive
tasks

Contests/
battles

Psychomotor
tasks

I I

IV

IV

IIIIII

II

II

Conflict
Resolution

Collaborate

Cognitive Behavioral

Coordinate

Generate

Figure 2.2 – McGrath’s Group Task Circumplex
Adapted from (McGrath, 1984)

 33

2.4.5 Task Complexity

The task has been central to small group research during the past several

decades. A general finding of problem solving research is that the group performance is

affected by the task involved (Hackman & Morris, 1976) and task characteristics

moderate the relationship between group inputs, processes and outcomes (Goodman,

1986; McGrath, 1984). Among the task characteristics, task difficulty and related

concepts figured prominently in the group research. The early task typologies

categorized group task as simple versus complex (Shaw, 1954), and easy versus

difficult (Bass, Pryer, Gaier, & Flint, 1958). Task difficulty is variedly defined in terms

of the amount of effort required (Shaw, 1981) or the amount of thinking time required

(Hackman, 1968) to solve a problem task. Tasks could be easy (requiring few

operations, skills, and knowledge, and/or having a clear goal) or difficult (requiring

many operations, skills, and knowledge, and/or having no clear goal). The perceived

task difficulty of a group task is however related to several situational variables such as

members’ involvement, optimism, and quality of presentation (Hackman, 1968), and

process factors such as coordination patterns within the group (Dailey, 1978).

Campbell explicated the construct of task complexity and distinguished it from

task difficulty. He articulated the objective characteristics contributing to task difficulty

and highlighted the differences between objective task complexity and experienced task

complexity (Campbell, 1988). Complex tasks are by nature difficult, but not all difficult

tasks are complex. Tasks could be difficult, that is requiring high effort, without being

complex due to certain associated characteristics not intrinsic to the task such as

 34

communication failure in the group. The notion of difficulty represents a person x task

interaction. A task could be difficult for certain people though not for others, where as a

complex task is inherently complex without any connotation of person x task

interaction. Thus task complexity is conceptualized as emanating only from objective

task criteria based on task content but not based on task context (Campbell, 1988).

The review of complexity research by Campbell showed that task complexity

was variedly treated as a psychological experience (arousal, challenge, simulation etc.

as in (Taylor, 1981), as task-person interaction (familiarity, experience etc. as in (Shaw,

1981) and as a function of objective characteristics (inexact means and ends

connections, uncertain/unknown alternatives or outcomes etc. as in (March & Simon,

1958). The experienced complexity is clearly related to objective task complexity.

However other factors such as familiarity with the task, short-term memory, attention

span, computational efficiency, time constraints, tool availability, and so forth affect

this relationship. Other non-task related factors such as task context and anxiety, and

individual difference variables such as cognitive complexity also could affect

experienced complexity. For example, cognitively complex individuals are known to be

able to sustain their task performance on objectively complex tasks to a greater extent

than cognitively simple individuals (Campbell, 1988).

Campbell identified several task attributes that contribute to its complexity. Any

objective task characteristic that contributes to increase in information load, information

diversity, or rate of information change is considered as contributing to complexity

(Campbell, 1988). The four basic task characteristics meeting these criteria are:

 35

Path multiplicity - The presence of multiple potential ways to arrive at a desired

end state

Outcome multiplicity - The presence of multiple desired outcomes to be attained

Conflict interdependencies among outcomes - the presence of conflicting

interdependence among paths to multiple outcomes

Uncertainty or probabilistic linkages - the presence of uncertain or probabilistic

links among paths and outcomes.

Multiple paths – Multiple paths of arriving at desired outcomes lead to

information load. This increases complexity when only one path leads to goal

attainment among the seemingly possible multiple paths and there is an efficiency

criteria embedded in the task against which the multiple paths are evaluated.

Multiple outcomes – Each outcome can be visualized as task dimension

requiring a separate information-processing stream. Thus as the number of streams

increase, the information processing requirements increase except when the desired

outcomes are positively related. In such cases the degree of complexity is reduced due

to redundancy.

Conflicting interdependence among paths – Negative relationships among

desired outcomes could lead to increase in complexity, i.e., if achieving one desired

outcome conflicts with achieving another desired outcome. E.g. quality vs. quantity of

outcomes.

Uncertain or probabilistic linkages – Information-processing requirements

increase substantially if the connection between potential path activities and desired

 36

outcomes cannot be established with certainty. If probabilistic linkages exist, potential

paths cannot be eliminated quickly as different outcome contingencies need to be

evaluated. This increases the information load for the problem solver.

As a combination of the four levels of complexity Campbell detailed 16 task

categories. Further he grouped these 16 task categories under the four broad task types

(Table 2.2). For example the decision tasks are distinguished by the presence of

outcome multiplicity. Conflict interdependence and uncertainty when present could

further enhance complexity. Path multiplicity is not an issue in decision tasks though.

Problem tasks are distinguished by multiplicity of paths to a well-specified and desired

outcome. Problem tasks could differ in terms of path’s relationship to each other and to

the desired end. The task involves finding the best way to achieve the outcome. These

are analogous to the intellective tasks of McGrath’s task typology (McGrath, 1984).

Judgment tasks are complex from having conflicting interdependencies among

outcomes, while fuzzy tasks derive complexity from all four dimensions, though path

and outcome multiplicity are the primary drivers of complexity. Problem solving

requires analytical skills and convergent processes. Decision-making on the other hand

involves creativity and divergent processes (Campbell, 1988).

 37

Table 2.2 – Different Task types and Task Complexity Dimensions
Adapted from (Campbell, 1988)

 Task

Type
Source of Complexity due to the presence of Example

 Path
multiplicity

Outcome
multiplicity

Conflict
interdependencies
among outcomes

Uncertainty
or

probabilistic
linkages

A Decision
tasks X x x

Employee selection
Choosing a house
Selecting a building
site

B Judgmen
t tasks X x

Intelligence analysis
Stock market analysis
Multiple cue
probability learning

C Problem
tasks X

 x x
Chess problems
Personnel scheduling
Personal placement

D Fuzzy
tasks X X x

x

Business ventures

The effect of task complexity on human cognitive processing and on group

processes and outcomes may be explained through activation theory (Scott, 1966).

According to this explanation, the level of individual activation or arousal is related to

the intensity, meaningfulness, and variation of the cognitive stimulus. To the extent that

an objectively complex task provides greater number of stimulus sources, the individual

is expected to experience a heightened sense of arousal. This is in addition to the

arousal attributed to other factors such as presence of another person in the workroom

during task performance, performance-rewards expectations, and so forth (Campbell,

1988). While working on problem solving tasks individuals try applying their existing

heuristics to see if they work. As the complexity increases then the individual sets out to

create new programs specifically geared to the task (Newell & Simon, 1972). The

information processing paradigm has demonstrated that as the objective task complexity
 38

increases, there is a corresponding increase in the performance, till the task demands

match the cognitive capacity of the individual, beyond which the performance

deteriorates (Schroder, Driver, & Streufert, 1967).

In certain studies, task complexity is conceptualized as a predictor variable

affecting group process, simultaneously looking for other moderators of this

relationship. For example, in one study group cohesiveness has been found to moderate

the effect of task difficulty and task variability on group performance (Dailey, 1978).

However in majority of the studies task complexity is conceptualized as a moderator

affecting the process and outcomes. For example, task characteristics are investigated

for their effect on group information processing characteristics (Bystrom & Jarvelin,

1995; Ito & Peterson, 1986), group communication structures (Brown & Miller, 2000),

group decision-making activities (Ito & Peterson, 1986), individual and group goal-

setting effectiveness (Kernan, Bruning, & Miller-Guhde, 1994; Wood & Mento, 1987),

and leader-member dyadic relationships (Dunegan, Uhl-Bien, & Duchon, 2002) and

group performance (Jehn, Northcraft, & Neale, 1999).

Human information processing literature has demonstrated that as the

complexity of task increases, there is a corresponding increase in the complexity of

information needed, both domain information and problem solving information. Also

there is increase in the share of information obtained from general purpose sources, and

the number of sources accessed. However there is corresponding decrease in the share

of fact-oriented sources, internality of channels, and success of information seeking

(Bystrom & Jarvelin, 1995). In information processing systems, the task difficulty is

 39

found to be directly related to greater participation in decision making and higher

boundary spanning activities by the members of the system (Ito & Peterson, 1986).

According to a study by Brown and Miller, groups tend to adopt a more centralized

communication network while working on simple tasks. As the task complexity

increases, more decentralized group communication networks emerge. The effects of

task complexity were expected to magnify under conditions of high pressure with

decentralized communication networks being highest in high task complexity and high

time pressure setting. This task complexity and time pressure interaction was however

not supported (Brown & Miller, 2000).

Goal setting theory argues that specific and difficult goals are more motivating

for individuals and contribute to higher performance than easy or do-your-best goals

(Locke, 1968). However studies have shown that task complexity has a moderating

effect on the relationship between goal attributes and performance. It is demonstrated

that goal setting effects were stronger for easy tasks than for difficult tasks (Wood &

Mento, 1987). Increased performance on simple tasks is attributed to the direct

motivational effects of goal setting such as attention, effort and persistence. As task

complexity increases, universal and well learned task-specific strategies prove to be

progressively inadequate. The need for cognitive processes such as search, information

processing and task strategy development required in complex tasks could hamper the

goal setting effects in such tasks. Although difficult goals inspire strategy search

processes in difficult tasks, this may not contribute to improved performance

immediately as the strategy selected could be inappropriate or strategy execution

 40

misdirected (Kernan et al., 1994). Task complexity is also found to moderate the

relationship between individual participation in the goal setting process and task

performance. Individual participation is found to exert main effect on task performance

in the case of complex tasks, but not for simple tasks (Campbell & Gingrich, 1986).

In goal setting research, groups were found to be less affected by the task

complexity or availability of information on task strategy than individuals. This is

attributed to the pooling of resources and effective coordination in groups even in the

absence of information on task strategy. Independently working individuals benefited

significantly from such information, especially in more complex tasks (Kernan et al.,

1994). Group goals and task component complexity positively impact group

performance by affecting the amount, quality, and timing of planning and effort within

group (Weingart, 1992). Incidentally component complexity is a sub-dimension of task

complexity and is indicative of the number of unique acts required to perform a task

(Wood, 1986).

In Leader-Member exchange (LMX) literature task related characteristics such

as role conflict, role ambiguity, and intrinsic task satisfaction were found to moderate

the relationship between Leader-Member dyad exchange and subordinate performance

(Dunegan et al., 2002).

In IS research, task complexity has been investigated for its effect on student

programming task performance (Chang, 2005), effectiveness of different

communication modes (Carey & Kacmar, 1997), and effectiveness of negotiation

support systems (Delaney, Foroughi, & Perkins, 1997). In student programming

 41

projects, computer experience is found inversely related to computer anxiety of

students, which in turn is found positively related to perception of task complexity

(Chang, 2005). In software development projects task innovativeness has been found to

moderate the relationship between team work quality and team efficiency relationship

but not team work quality and team effectiveness relationship (Hoegl, Parboteeah, &

Gemuenden, 2003). As the task complexity and the corresponding information load

increases, face-to-face interactions are found to be superior to other communication

modes such as teleconferencing, in terms of reduced errors of communication and

improved satisfaction (Carey & Kacmar, 1997). In negotiation tasks it is shown that

negotiation support systems (NSS) enhance outcomes and overcome some of the

limitations of conventional face-to-face meetings (Delaney et al., 1997). However in

complex negotiation tasks, electronic communication component is found to add little

value over the decision support system (DSS) components with the result face-to-face

groups outperform electronic meeting system groups (Jain & Solomon, 2000).

2.4.6 Individual versus Group Effectiveness

In several problem solving situations, the individual could be as effective as the

group, and hence individual versus group comparisons of productivity are of interest in

such tasks (Hare, 1995). A general finding of research on group versus individual

effectiveness in problem-solving tasks is that groups are better than the average

individual, but rarely better than the best individual (Hill, 1982). Researchers were

constantly looking for tasks and situations where groups outperform individuals. Based

on information processing view of groups (Hinsz, Tindale, & Vollrath, 1997), it is

 42

reasoned that groups outperform individuals in highly intellectual problem solving tasks

with large information processing requirements. In such tasks groups typically benefit

from the pooling of information and perspectives brought in by the various members of

the group (Laughlin, Zander, Knievel, & Tan, 2003). Such process gains could result if

there is “cognitive stimulation” or the group members have the capacity to learn (Hill,

1982). Group effect emanates from having large number of people to generate ideas,

identify objects and remember facts. Hence groups could typically outperform

individuals in tasks of low creativity but involving large information processing

component (Kanekar, 1982). Some of the problem solving tasks where groups found to

outperform individuals are letters to number problems (Laughlin, Bonner, & Miner,

2002; Laughlin et al., 2003). In the case of spatial problems groups solved more

problems than best members of statistical aggregate. In the case of anagrams, the

evidence has been mixed (Faust, 1959)

Productivity of group may be conceived as determined by the most competent

member, plus process gains due to “assembly bonus effects” (resulting from efficient

group interaction) minus process losses (Collins & Guetzkow, 1964). Failing to identify

and use the resources of capable group members is one source of group process loss

(Kerr & Tindale, 2004). Assembly bonus effect is realized when group performance is

better than the performance of any individual or any combination of individual member

efforts. Such effects are generally modest. Any such claims need to be critically

evaluated as they may underestimate group potential or overstate group achievement

(Kerr & Tindale, 2004; Tindale & Larson, 1992).

 43

The behaviors essential for realizing assembly bonus effects are pooling of

information and integrating it to create solution. The information pooling effect

becomes more prominent for difficult tasks. In easy tasks, one competent member often

determines the performance. As the group task becomes more complex, the groups

benefit from members correcting each other, and the more competent member could

draw on the resources of other members in completing the task (Hill, 1982). For

example when solving easy crossword puzzles, the number of successful groups is

found to be proportional to the number of competent individuals in the group who could

potentially solve the puzzle. However when solving more complex crossword puzzles,

the number of successful groups is found to be greater than the proportion of successful

individuals suggesting information pooling effect in groups (Shaw & Ashton, 1976).

For problems involving multiple stages, there is a higher probability for the groups to

have at least one member competent in solving each stage (Hill, 1982).

Unit of Analysis - Groups typically benefit from the aggregation of members,

thus increasing the probability that there is at least one exceptionally competent member

to be available within the group. Hence, groups should be compared with a statistical

pooling of equal number of individuals or with the best member of such statistical

aggregates (Hill, 1982).

Group vs. Average Individual Performance - In solving spatial and verbal

problems, groups solved more problems than co-acting individuals (Faust, 1959).

Groups performance is qualitatively superior in complex problem-solving (Schoner,

 44

Rose, & Hoyt, 1974) and when group learning is transferred to individual performance

(Johnson, Johnson, & Scott, 1978).

Some factors found to facilitate group problem solving include having someone

to talk to during problem solving (Durling & Schick, 1976). In general working with

others may be more enjoyable (Garibaldi, 1979). In problem solving tasks requiring

higher levels of creativity as in computer programming, groups found to be more

efficient with difficult and complex tasks as groups are likely to have at least one

excellent problem solver (Laughlin & Barth, 1981). Individuals with low motivation

may become more highly motivated in situations facilitating group motivation for

success (Zander, 1974) and when others provide high performance role models (Hare,

1995). Groups generally do better after participating in a group problem solving due to

the experience with the task and learning from more highly skilled members (Goldman

& Goldman, 1981; Laughlin & Adamopoulos, 1980). Groups make fewer errors as

compared to nominal groups (Kanekar, Libby, Engels, & Jahn, 1978) possibly due to

someone in the group catching the errors. There is some research suggestive of higher

risk taking behavior in groups (Chlewinski, 1975; Forgas, 1981; Hashiguchi, 1974;

Yinon, Jaffe, & Feshbach, 1975), while others report no such differences (Felsental,

1979).

Decision tasks – group may be no better than the best individual member

(Miner, 1984)

Judgment tasks – groups report fewer but more accurate facts. In tasks requiring

no division of labor, group productivity is less than that of individuals (Hill, 1982). A

 45

more statistical group effect explaining the higher accuracy of groups is that the average

of a number of judgments is usually more accurate than that of one individual (Laughlin

& Barth, 1981).

Brainstorming Tasks – A robust finding of this stream of research is that

nominal groups with individuals working alone produce more ideas than interacting

brainstorming groups (Mullen & Salas, 1991). The process losses in brainstorming

groups are attributed to production blocking (inability of more than one person to talk or

even think at the same time), evaluation apprehension, and convergence on a relatively

low standard of performance due to social comparison effect in face-to-face groups

(Larey & Paulus, 1995).

Complex tasks - Complex problems, similar to brainstorming tasks involve more

than one acceptable or correct answer. Group performance generally tends to be

superior to individual performance but not with respect to statistical pooling of

responses. The quality of group solution is found to be superior across situations (Hill,

1982). In such tasks, group interaction tends to be dysfunctional during the idea

generation phase, but is beneficial for integration of complementary information

(Howell, Gettys, Martin, Nawrocki, & Johnston, 1970). In the evaluation phase group

interaction is useful for clarification and justification. Discussion also improved

solution accuracy compared to written feedback (Hill, 1982). Groups performance is

found to be qualitatively superior to individual performance in complex problem-

solving (Schoner et al., 1974) and when group learning is transferred to individual

performance (Johnson et al., 1978). When the problem is more complex or subject to

 46

interpretation, the correct member could sometime be overruled by incorrect members

(Faust, 1959), especially in groups of low ability. In case of complicated tasks, the

group productivity could suffer due to difficulty in learning from group experience

(Allison & Messick, 1985) or if other people interfere with the activity (Hare, 1995).

Group vs. the most competent member of a statistical aggregate – This stream of

research produced mixed findings. Performance is found to be quantitatively similar in

number completing crossword puzzles (Shaw & Ashton, 1976), and qualitatively

similar in an executive decision making task (Schoner et al., 1974). Groups found to be

better than the best member in terms of number of correct solutions in an anagram task

(Faust, 1959), and worse in weather station morale problem (Fox & Lorge, 1962).

Group superiority over individuals in problem solving hinges on the

demonstrability of the strategies, operations, and procedures that lead to the problem

solution (Laughlin et al., 2003). This is consistent with the review findings that

performance superiority of groups over individuals is highest in problem solving,

intermediate in vocabulary tasks and lowest in world knowledge tasks (Hastie, 1986).

These tasks have decreasing levels of solution demonstrability. Four conditions of

demonstrability identified in literature are: a) availability of sufficient information; b)

group consensus on a conceptual system; c) incorrect members being able to correct

response when proposed; d) correct members have the sufficient time, ability and

motivation to demonstrate the correct response to other members. With increasing

demonstrability, problem-solving groups show distinctly superior performance over

individuals. Research comparing group performance with equal number of individuals

 47

showed that groups perform at the level of the best individual member or best group

member on problem solving tasks with highly demonstrable solutions as in

mathematical, insight, and rule induction problems. On vocabulary tasks, analogies, and

ranking tasks, groups perform at the level of the second best individual or group

member. On tasks involving weakly demonstrable estimations of quantities, groups

perform at the level of the average individual (Laughlin et al., 2002).

2.4.7 Social Facilitation

Social facilitation researchers have shown that in the presence of another

individual, the performance on well-learned tasks is facilitated, while performance on

novel or more complex tasks is hampered. The simple tasks where social facilitation

effect was found include negotiating simple mazes (Hunt & Hillery, 1973), dressing in

familiar clothes (Markus, 1978), fishing reel winding (Triplett, 1898) and copying

simple material (Sanders & Baron, 1975). Some tasks where presence of others was

found to hamper performance include solving difficult anagrams (Geen, 1977),

recognition of novel stimuli (Cottrell, Wack, Sekerak, & Rittle, 1968), dressing in

unfamiliar clothes (Markus, 1978), and negotiating difficult mazes (Hunt & Hillery,

1973). Based on these results it is argued that individuals perform better when working

in groups on simple tasks, but perform worse on difficult tasks than do individuals

working alone. Bond and Titus’s meta-analysis of social facilitation literature suggested

that the presence of others impairs both quantity and quality of performance in complex

tasks (Bond & Titus, 1983).

 48

The social facilitation effects are explained in terms of drive, evaluation

apprehension, cognitive processes and other theories (Aiello & Douthitt, 2001).

According to drive theory, working in groups increases drive. Increased drive facilitates

performance in simple tasks as more dominant and well-learned responses are

facilitated by the enhanced drive. When the dominant responses in situations are likely

to lead to poor performance as in difficult tasks, then individuals perform poorly in

drive state (Zajonc, 1965). Zajonc argued that though the significance of the presence

of another individual may vary depending upon the situation and the behavior of the

other, even mere presence is necessary and sufficient for social facilitation (Zajonc,

1980).

Based on social comparison theory Cottrell proposed that it is not the mere

presence, but when individuals are concerned about how others may evaluate them that

their drive levels could get elevated. Also prior evaluation experiences could help

develop ‘learned drive’ among individuals as a drive reaction. Cottrell’s theory tries to

account for social facilitation effects in animals through the ‘learned drive’ mechanism

(Cottrell, 1972).

Based on self-presentation theory Baumeister proposed that in the presence of

others, people with a desire to please others are motivated to present a certain public

image of them. Using drive as a potential mechanism influencing performance,

Baumeister suggested that presence of other individuals perceived as evaluative could

trigger more drive than the presence of others who could not evaluate performance

(Baumeister, 1982). Bond’s self-presentation theory could account for social facilitation

 49

effect without any recourse to the concept of drive. According to this explanation

people make an attempt to appear competent to others. When working on simple tasks

the impression management efforts of the individual could facilitate performance.

While working on difficult tasks, the embarrassment from committing mistakes could

impair performance (Bond, 1982).

Baron proposed a cognitive theory to explain social facilitation and argued that

attention conflict in the presence of others could produce drive-like effect on

performance, facilitating simple task performance, while impairing complex ones. The

conflict is likely to be triggered when a) the distraction is hard to ignore or is very

interesting, b) there is pressure to complete the task accurately and in time, c) it is hard

or impossible to simultaneously attend to the task and the distracter. The conflict itself

could result from both internal and external factors. The internal distractions could stem

from ruminations about task performance. The theory therefore also accounts for the

evaluation apprehension and self-presentation concerns. Performance may be facilitated

up to a point by the distraction, beyond which it starts to deteriorate (Baron, 1986).

Paulus’s Cognitive-motivational model (Paulus, 1983) and Sanna’s expectancy model

(Sanna, 1992) are the other theoretical explanations offered for social facilitation.

Figure 2.3 summarizes the main causes identified for the social facilitation effect.

 50

Increased
arousal

Evaluation
apprehension

Distraction

Cognitive
conflict

Figure 2.3 - Causes of Social Facilitation
Adapted from (Forsyth, 1999)

Social
facilitation of

dominant
responses

Presence of
other people

Jackson and Williams articulated that the condition of individual working alone

in social loafing studies is equivalent to group condition in social facilitation studies due

to the presence of other participants and the performance being monitored individually.

Social facilitation groups are constructed to have higher drive levels to facilitate

performance on simple tasks. Jackson and Williams reasoned that in social loafing

condition, there is opposite effect in play with groups designed to have lower drive,

resulting in poor performance on simple tasks. They argued that the tasks generally used

in social loafing studies such as shouting, clapping, pumping air, rope pulling and the

like are simple well learned tasks, in which the dominant response is to perform well.

Hence, individual working alone condition of social loafing (resembling group

condition of social facilitation) produces higher drive levels facilitating performance on

easy well learned tasks generally used in such studies. Based on previous research, they

argued that in uncertain or fearful situations, “working collectively is calming”

 51

[(Jackson & Williams, 1985) p.938]. Thus working on difficult tasks in social loafing

group condition, people might experience reduced drive levels than coworker individual

condition. If one could relax working on a difficult task, then it should help enhance

performance on these difficult tasks. In support of their assertions they found that

participants in collaborative-difficult task condition, performed significantly better than

coworker-difficult task condition (Figure 2.4)(Jackson & Williams, 1985).

Simple
Mazes

Difficult
Mazes

-6

-4

-2

0

2

4

6

8

Alone Coworker Collective

Work Condition

Lo
g-

S
ec

on
ds

 P
er

 C
or

re
ct

 M

M
ov

e

Figure 2.4 – Effects of Task Difficulty and Group Work Condition on Maze
Performance Adapted from (Jackson & Williams, 1985)

While social loafing is typically viewed as a negative phenomenon, the reduced

drive that contributes to social loafing also facilitates complex task performance and

possibly reduces stress when working in collaboration condition. The presence of others

 52

acts to arouse drive when they are the sources of drive, but contributes to drive

reduction if the others are also co targets (Jackson & Williams, 1985).

While social facilitation research has made enormous contributions to the

understanding of the effects of social presence on individuals, there are also problems

identified with the social facilitation theories. The boundary conditions for the various

theories are not clearly delineated. Issues that require attention in this regard are: the

kinds of people and relationships between them for which social facilitation predictions

could hold; conceptual distinction between social facilitation and competition; explicit

focus on both physical and virtual proximity of people; temporal variations in the

effects of social presence; the need to look beyond output/quality performance measures

such as citizenship or contextual performance. Assumptions in social facilitation

theories concerning how drive leads to performance, how information processing and

impression management are done need elucidation for empirical testing. The theoretical

constructs such as drive/arousal, task difficulty, performance and other mediators also

need better definitions and measures (Aiello & Douthitt, 2001).

2.4.8 Monitoring

The social facilitation effect is known to occur even when the observer is not

physically present or visible as in electronic performance monitoring (Aiello & Kolb,

1995). Computer monitoring has been associated with some impairment in complex

task performance, higher stress and less satisfaction among monitored individuals. The

ability to control monitoring is however associated with no impairment in performance

(Aiello & Svec, 1993; Stanton & Barnes-Farrell, 1996). Some factors found to affect the

 53

satisfaction levels of monitored employees are the way monitoring is used, feedback is

provided, and the consideration shown by the supervisors (Chalykoff & Kochan, 1989).

Satisfaction of monitored individuals is found related to perceived control over

monitoring but not actual control (Stanton & Barnes-Farrell, 1996). Some individual

difference variables such as negative affectivity (Douthitt & Aiello, 2000), and locus of

control (Kolb & Aiello, 1996) were found to moderate the relationship between

computer monitoring and outcomes such as stress and satisfaction. In one study low

negative affectivity individuals reported no difference in satisfaction between

monitoring and no monitoring conditions. Monitoring also found to affect higher ability

participants unless they have personal control over it (Douthitt & Aiello, 2000). In

another study internal locus of control individuals felt more stress when monitored

while external locus of control individuals experienced more stress when not monitored

(Kolb & Aiello, 1996). It is also argued that national culture dimensions such as

individualism/collectivism, uncertainty avoidance and others moderate the relationship

between electronic monitoring and outcomes (Panina & Aiello, 2005 (In press)).

2.4.9 Social Loafing

Studies in small group performance have found that when individuals work in

groups collectively on relatively simple tasks, they exert less effort in comparison to the

situations when they work individually. Reduced risks of evaluation, opportunity to free

ride on others’ efforts, and unwillingness to shoulder the work of a capable, free-riding

member of the group are some of the psychological mechanisms underlying social

loafing (Kerr & Tindale, 2004).

 54

Social loafing is found to occur when there is a higher possibility of redundant

effort (Harkins & Petty, 1982), lack of cohesiveness within group (Williams, Harkins,

& Latane, 1981) and when there is reduced responsibility for the final outcome (Petty,

Harkins, Williams, & Latane, 1977). Social loafing can be reduced where individuals

are made aware that their output in the group work is identifiable (Williams et al.,

1981), when task difficulty or challenge involved is high which results in the perception

that they could make unique contribution to the group effort (Harkins & Petty, 1982;

Jackson & Williams, 1985) or by giving each subject a different task to perform

(Harkins & Petty, 1982). While working on a collective task reduces drive to exert

effort, in difficult tasks where increased drive is not conducive to performance, working

collectively improves performance. For example, while working on maze problems

individuals were found to perform better working alone on simple tasks, but working

collaboratively on complex tasks. In situations involving working with a partner but

independently, performance was found to be between these two limits (Jackson &

Williams, 1985).

The social loafing research has adopted the approach of isolating individual

conditions under which social loafing could be minimized, rather than looking for an

overall theory to explain the phenomenon. The theoretical perspectives and concepts

used to explain social loafing are: social impact (Latane, 1981), arousal reduction

(Jackson & Williams, 1985), evaluation potential (Harkins, 1987; Williams et al.,

1981), dispensability of effort (Kerr & Brunn, 1983), matching of effort (Jackson &

Harkins, 1985b), and self-attention (Mullen, 1983).

 55

According to social impact theory, individuals in a social situation may be

viewed as either as source or targets of social impact. The extent of social impact

experienced by an individual is a function of the strength, immediacy, and number of

sources and targets of social impact (Latane, 1981). In the group condition of social

loafing studies, the experimenter urging the subjects to try as hard as possible may be

considered as the source of social impact with the subjects being the targets. The impact

of the experimenter is divided among the several target subjects thus resulting in

reduced effort with increase in the size of group (Karau & Williams, 1993a).

Jackson and Williams indicated that working in a group is drive reducing when

other individuals are not sources of social impact but co-targets of social impact. In

social facilitation studies the presence of others is considered as drive inducing, as

others are the sources of social impact. Thus reduced drive while working in groups

contributes to social loafing. However, it is shown that reduced drive experienced in

group working, while contributing to social loafing on simple tasks may in fact facilitate

performance in novel and difficult tasks (Jackson & Williams, 1985).

One explanation for social loafing in groups is lack of evaluation of individual

output so that members can “hide in the crowd” (Davis, 1969). People realize that they

may not get fair share of credit or blame for group performance. In many situations

making individuals’ collective inputs verifiable to anyone including oneself may be

sufficient to eliminate social loafing. However two requirements need to be satisfied for

evaluation to be possible from any source – the individual’s output should be known or

 56

identifiable and there should be a standard - objective, social or personal, available for

comparison (Harkins, 1987; Harkins & Jackson, 1985; Harkins & Szymanski, 1989).

Social loafing may also be attributed to members’ feeling that their contributions

are not essential to the group performance. In threshold tasks using disjunctive rule

where group succeeds if any of the group members reaches some performance criteria,

group members tend to reduce collective effort. Even when the individual contributions

of members is made available to themselves, other members, and the experimenter, this

reduction in effort is not affected (Karau & Williams, 1993a; Kerr & Brunn, 1983).

In groups people expect others to slack off and hence reduce their efforts to

maintain equity (Jackson & Harkins, 1985a). The job attitudes research also suggests

that workers’ perceptions and motivations towards task are influenced by the task

assessments of their peers. (Zalesny & Ford, 1990). When individuals expect their co-

workers to perform poorly on a meaningful task, they may even increase their effort in

what is called as social compensation effect (Williams & Karau, 1991).

Another explanation for social loafing is in terms of self-attention (Mullen,

1983). According to this perspective, individuals experience reduction in self-awareness

while working in groups. Thus some of the self-regulatory processes involving salient

performance standards may be disregarded in group condition. Individuals when

working alone are more attentive to such task demands and performance standards.

There is however not enough empirical support for this explanation (Karau & Williams,

1993a).

 57

Some of the factors moderating social loafing effect are evaluation potential,

expectation of co-worker performance, task meaningfulness, and culture. (Williams &

Karau, 1991), personal involvement (Brickner, Harkins, & Ostrom, 1986), and

increasing the instrumentality of individual members’ contribution (Shepperd & Taylor,

1999). Need for cognition is one individual differences variables found to moderate the

effect of social loafing (Smith, Kerr, Markus, & Stasson, 2001).

Social compensation research has demonstrated that individuals may increase

effort and work harder collectively than individually to compensate for the expected

poor performance of other group members. When paired with a group member who is

believed to exert low effort, group members work harder when the partner has low

abilities, but typically loaf when the partner has high abilities (Hart, Bridgett, & Karau,

2001).

2.4.10 Group Motivational Gains

People intuitively expect some motivational gains to occur in group work,

though a vast majority of studies have reported of motivational losses as in social

loafing. Some studies have however demonstrated motivational gains in certain

conditions of collective working as in social compensation (Williams & Karau, 1991)

and Koehler effect (Witte, 1989).

When individuals expect their co-workers to perform poorly on a meaningful

task, they may increase their effort in what is called as social compensation effect

(Williams & Karau, 1991). When paired with a group member who is believed to exert

 58

low effort, group members work harder when the partner has low abilities, but typically

loaf when the partner has high abilities (Hart et al., 2001).

Kohler demonstrated motivational gains in certain conjunctive tasks where its

weakest member drives performance of the group. Using a physical endurance task,

Kohler showed that when members of the dyad have moderate difference in ability (not

too similar or dissimilar), they performed better as a pair compared to their expected

individual performance (Witte, 1989). The motivational gains were found to result

mainly from the weaker member (Stroebe, Diehl, & Abakoumkin, 1996).

While social compensation effect is attributed to greater effort put in by the

more able partner, Kohler effect is credited to the motivational gains of the less able

partner. When there is ability discrepancy within a dyad, which of these two effects is

likely to result is contingent on the perceived instrumentality of individual effort to the

group performance. Social compensation effect is likely to result in an additive task,

when the higher ability partner is likely to work harder to compensate for the low ability

partner. Kohler effect is likely to occur in a conjunctive task where the contribution of

the low ability member holds the key to the group performance (Williams, Harkins, &

Karau, 2003).

2.4.11 Satisfaction

Satisfaction is defined as “the difference between the amount of rewards

workers receive and the amount they believe they should receive” (Robbins, 1998).

Locke conceptualizes job satisfaction as “the positive emotional response to a job

resulting from attaining what the employee wants and values from the job” (Locke,

 59

1976). Locke argued that satisfaction and dissatisfaction are value responses resulting

from an individual’s appraisal of an object or a situation against certain standard that is

considered desirable or beneficial. Values however differ in terms of the content (what

is valued) and intensity (how much is desired). Task related values include task activity,

and task success or achievement. Some individuals derive value in doing a task just for

the sake of the task, even in the absence of extrinsic rewards. Such tasks would be

perceived as ‘interesting’ and carry intrinsic value for them. Also when individuals set a

particular goal on a task and are successful in achieving it, it is experienced as a

pleasurable feeling. Conversely, failing to achieve the goal could be experienced as

unpleasant (Locke, 1970).

Organizational research has identified several factors that enhance job

satisfaction of individuals in work settings. Proposing an integrated model of work

motivation, Locke and Latham have categorized factors that contribute to

satisfaction/dissatisfaction in terms of values and personality, work characteristics,

organizational policies, and performance outcomes. Work characteristics such as mental

challenge are positively related to individual satisfaction. Also organizational policies

based on procedural justice, perceived fairness of resulting outcomes, and distributive

justice contribute positively to individual satisfaction (Locke & Latham, 2004). Job

characteristics theory identified five task characteristics, if when present could lead to

higher satisfaction. These factors are: personal significance, variety, responsibility and

autonomy, feedback, and identity (that is having a complete part of the work)

(Hackman, Oldham, Janson, & Purdy, 1975).

 60

Satisfaction and performance are different but somewhat correlated concepts.

The job satisfaction-performance relationship has been one of the most ‘venerable’

research areas in industrial-organizational psychology (Judge, Thoresen, Bono, &

Patton, 2001). Locke suggested that satisfaction should primarily be considered as a

consequence of performance and only indirectly as a predictor of performance (Locke,

1970). Despite a strong general belief among lay people that happy employees are more

productive employees (Fisher, 2003), the findings of several meta analytic studies are

suggestive of only a modest correlation between job satisfaction and job performance

(Iaffaldano & Muchinsky, 1985; Judge et al., 2001; Petty, McGee, & Cavender, 1984).

One previous meta-analysis based on a 16 studies by Petty and his colleagues has

shown a correlation of 0.31 between satisfaction and performance (Petty et al., 1984).

Another meta-analysis based on 217 correlations from 74 studies found a substantial

range in the correlation between the facets of satisfaction and performance (Iaffaldano

& Muchinsky, 1985). Judge and his colleagues based on a comprehensive review of

literature have argued that job performance and satisfaction have a reciprocal

relationship. They proposed an integrative model suggesting several mediators and

moderators of this relationship. The proposed mediating variables include success and

achievement, task specific self-efficacy, goal progress and positive mood. The

moderator variables suggested are need for achievement, performance-rewards

contingency, job characteristics, work centrality, and aggregation (Judge et al., 2001).

Based on value theory (Locke, 1970) task complexity is another potential factor that

 61

could moderate the relationship between performance and satisfaction, as performance

in complex tasks may satisfy many of the individuals’ values for intrinsic fulfillment.

Organizational researchers have noted that groups could hold the key to

employee satisfaction. In general group work is expected to lead to higher satisfaction

among the individuals and contribute to higher quality work. This is attributed to

reduced competition and enhanced cooperation among coworkers in group work

situations (Campion, Medsker, & Higgs, 1993). Thus organizations that use teams and

work groups are expected to generate higher satisfaction for their members (Forsyth,

1999).

Small group research has identified several factors contributing to satisfaction of

members of groups. Shaw and his colleagues have demonstrated that the satisfaction

and performance of group members is dependent on task interdependence, reward

interdependence, and individual’s preference for group work (Shaw, Duffy, & Stark,

2000). Task interdependence indicates the degree to which group members interact and

rely on each other to accomplish work and is found related to satisfaction (Campion et

al., 1993). Reward interdependence denotes the extent to which an individual’s reward

is dependent upon the performance of other group members. Higher levels of reward

interdependence denoting ‘community of fate’ (Besser, 1995) perspective of reward

structure is expected to contribute to higher group satisfaction (Wageman, 1995). Group

based reward structures are expected to reduce competition and increase cooperative

group effort (DeMatteo, Eby, & Sundstrom, 1998b). For example in dyads, reward

interdependence is found to be related to higher motivation and higher performance

 62

(Hom & Berger, 1994). Preference for group work denotes the extent to which an

individual prefers group work to autonomous work. This is a sub dimension of the

broader construct of individualism-collectivism (Wagner & Moch, 1986). Individuals

with higher preference for group work are likely to be more satisfied, while individuals

preferring autonomous working are likely to be dissatisfied in group working (Wagner

& Moch, 1986).

Goal setting research also has shed some light on the conditions that contribute

to individual satisfaction in work settings. According to goal setting theory, difficult

goals are more motivating and lead to superior performance than easy or ‘do best’ goals

through their effect on direction and persistence of effort. Goals serve as the

benchmarks for satisfaction/dissatisfaction. In any given attempt, exceeding the goal

enhances satisfaction to the extent of the positive discrepancy. Conversely, the negative

discrepancy resulting from not achieving the goal leads to dissatisfaction Also the effect

of goals on performance is moderated by goal commitment and feedback (Locke &

Latham, 1990). Goal orientation and task difficulty are known to interact in determining

performance satisfaction of individuals. When working with learning goal orientation,

individuals found to express higher performance satisfaction in complex tasks than in

simple tasks. However, while working with performance goal orientation, individuals

are found to express higher performance satisfaction in simple tasks than in complex

tasks (Steele-Johnson, Beauregard, Hoover, & Schmidt, 2000).

Some meta-analytic studies (O'Leary-Kelly, Martocchio, & Frink, 1994) have

demonstrated the existence of goal setting effect in groups as well. Compared to

 63

autonomous individuals, group members display higher goal commitment and more

positive attitudes towards goal attainment and report higher satisfaction with their

performance (Hinsz & Nickell, 2004). Also, group members tend to be more satisfied

with their performance even when their performance does not differ from that of

individuals (Hinsz, 1995).

There is a general tendency in group literature suggesting that group members

react positively to working in a group compared to working alone (Hinsz & Nickell,

2004). One reason articulated for this is that groups fulfill some of the social and

emotional needs of individuals (Levine & Moreland, 1998). Individuals may expect

group work to be an enjoyable experience though this may not always be the case

(Barker, 1993). Social identity theory also suggests that if group members feel attached

to the group, then they start to identify themselves with the group and derive some self-

esteem from group activities. Brainstorming research has shown that members may

have more positive attitude towards group work as they may have a perception of group

superiority in productivity, though this could be illusory (Paulus, Dzindolet, Poletes, &

Camacho, 1993).

2.4.12 Confidence

Confidence is the "strength of a person’s belief that a specific statement is the

best or most accurate response” (Peterson & Pitz, 1988). Confidence reflects the fit and

coherence of the rationale that people construct for their beliefs (Koehler, 1991).

Groups typically report higher confidence in their performance than do individuals

(Sniezek, 1992; Stephenson & Wagner, 1989). This is explained through ‘rational

 64

construction view’. According to this view “as people organize their thoughts and

articulate a coherent rationale for their choices during interaction, the increased

organization and coherence of their case makes them more confident in their decisions.”

(Heath & Gonzalez, 1995).

Interactive decision-making is “the procedure where individuals consult with

others but make their final decision alone” (Heath & Gonzalez, 1995). A consistent

finding in sports prediction and risky shift dilemmas is that interaction increases

people’s confidence in their decisions. Group interaction provides this opportunity to

develop a more coherent rationale for their choices (Heath & Gonzalez, 1995).

The correlation between confidence and accuracy is found to be highly

dependent upon the task. Confidence and accuracy (performance) tend to be highly

correlated for intellective tasks, while being weakly correlated for judgmental tasks. It is

reasoned that in judgment tasks, it is difficult to be sure of the accuracy of a judgmental

response and to convince others of it (Zarnoth & Sniezek, 1997). Whether a task is

judgmental or intellective is contingent upon the demonstrability of the solution. When

the solution demonstrability is high the tasks fall into the intellectual spectrum and

when it is weak, the tasks fit into the judgmental domain. Demonstrability of the task is

a function of not only the task but also of the group members and the decision

environment. The same task could be judgmental to low-ability members under time

pressure while it could be intellective for high ability members with infinite time.

Realism is another construct used in judging the confidence ratings of groups

and individuals. Realism is considered good when the probability assigned to a set of

 65

answers being correct is same as the proportion of correct answers. Realism measured

as over confidence is found to be less in pairs than in autonomously working individuals

(Allwood & Granhag, 1996).

 66

CHAPTER 3

HYPOTHESES DEVELOPMENT

This chapter focuses on hypotheses development and the conceptual models of

the study.

3.1 Research Questions

This study examines the following research questions relating to the effect of

mode of participation in software development and task complexity on programming

outcomes:

Whether programming done individually or in pairs has an effect on

programming outcomes?

Whether programming done individually or in pairs has an effect on the

programmers’ mental model developed during task performance

Whether task complexity moderates the effect of programming method

(individual versus pair) on task mental model and programming outcomes?

Figure 3.1 showcases the research model.

3.2 Nature of Programming Tasks

Software development typically involves problem analysis, design and

implementation, debugging and testing. However an implementation task in general

involves comprehending design, generating alternatives, choosing appropriate logic of

 67

implementation, and developing code to the correct semantics and syntax of the

programming language. Compiling, debugging and testing help make the program work

as per design specifications. However during actual implementation all these stages are

tackled more iteratively than sequentially.

Perceptual Outcomes

Task
Complexity

Individual
vs.
Pair

Overall Satisfaction

H4 Confidence in
Solution

H3

H5 H6

H1, H2

Software quality

Task Mental Model

Performance Outcomes

Figure 3.1 – Research Model

An implementation task in collaborative programming may be considered as an

intellective problem-solving task of the McGrath’s task typology. Programming tasks

are intellective tasks to the extent that they have a correct solution, though they may not

be very compelling. Some cognitive conflict as in McGrath’s cognitive conflict tasks

(McGrath, 1984) may also result while generating and choosing the program

implementation logic, debugging, and error correction. In terms of Steiner’s typology

(Steiner, 1972) programming tasks are unitary (not divisible and result in a single

 68

outcome or solution), disjunctive (involve choosing from different individual judgments

and approaches, but members need to agree on a single solution), and optimizing

(emphasis on quality over quantity). When programming is done by pairs, once a

partner figures out the logic and syntax of solving the problem and implements it, then

the group has solved the problem. In terms of creativity, systems analysis and design

tasks are highly creative, while coding and implementation tasks involve less creativity

in comparison. However during debugging, novel thinking is required to understand and

fix bugs.

Programming tasks are highly intellective tasks requiring high information

processing. For example, problem solving during coding task in any object-oriented

programming domain involves identifying the attributes and behaviors of various

objects, the relationships between them, data and control flow between different objects

for accomplishing required behaviors. The developer has to remember and

simultaneously keep track of program logic, data and control flow, and the signatures of

various methods in terms of the input and output parameters, and their data types.

In the next few sections various hypotheses concerning the effectiveness of pair

versus individual programming are derived.

3.3 Effect of Individual versus Pair Programming on Software Quality

Performance effectiveness of individuals versus groups on problem solving

tasks was investigated in social loafing, social facilitation, and individual versus group

effectiveness research. Social loafing literature argues that there are motivational losses

involved when individuals work in groups on relatively simple tasks. This results in

 69

individuals exerting less effort in groups as against working individually. When

programming is done collaboratively by pairs, there could be social loafing due to

higher possibility of redundant effort (Harkins & Petty, 1982), reduced responsibility

for the final outcome (Petty et al., 1977), especially when low coworker effort is

expected (Kerr, 1983). However social loafing effects in general are found to be

moderate in magnitude though generalizable across tasks and subject populations

(Karau & Williams, 1993b). Social loafing is likely to be less or eliminated when tasks

are perceived as high in meaningfulness or personal involvement (Brickner et al., 1986),

and when group size is small (Kerr & Brunn, 1983). Programming task in general could

be considered as meaningful as it is a cognitive problem solving activity and

programmers typically work on tasks that are part of software projects. In the

experimental setting involving student subjects, task may be considered as meaningful

if the problem domain is intrinsically interesting and related to the course content of the

students. There is some evaluation potential for the task performance in the pair context

as the partner is continually aware of the effort put in by the individual. According to

social impact theory (Latane, 1981), social loafing is directly proportional to the size of

the group. The group size of two in the pair-programming context also suggests that

social loafing even when present could be modest. Hence we expect social loafing

effects to be minimal or present to a modest degree.

Social facilitation literature argues that when an individual is working on a task,

mere presence of another individual causes arousal and facilitates dominant responses

while hampering less dominant ones. Thus there is facilitation effect in simple task

 70

performance, while there is impairment in complex task performance (Bond & Titus,

1983).

We argue that programming task by its very nature is much more complex than

the simple tasks where social facilitation effects have been reported in small group

research such as dressing in familiar clothes (Markus, 1978), fishing reel winding, and

copying simple material (Sanders & Baron, 1975). There may be simple subtasks

involved during programming that are comparable to the simple tasks used in social

facilitation studies. For an experienced programmer some well learned tasks could be

compiling the program, basic debugging involving correction of typographical errors or

syntax errors, reusing code from an existing implementation, reusing objects, creating

some routine methods such as set and get methods that initialize or set values for

attributes or return stored values of attributes. The dominant response while performing

such well-learned tasks is to do well. However most code implementation tasks involve

some aspects where even experienced programmers have to think through the problem,

decide on a particular logic path and carry out implementation. They may however take

less time to think through and implement code as against novices or students learning

programming. But, in any other meaningful programming task performance, the number

of such simple subtasks is few and far between. Even the simplest of programming

problems have some path multiplicity so that it could be implemented in multiple ways.

On most meaningful programming tasks, programmers cannot go by the most dominant

responses, but need to reflect and do some exploration to implement the tasks. The

difficulty inherent in even simple programming tasks is therefore comparable to that of

 71

difficult anagrams (Geen, 1977), recognition of novel stimuli (Cottrell et al., 1968), and

negotiating difficult mazes (Hunt & Hillery, 1973), though they may have a few simple

subtasks. So, it is argued that except for some trivial tasks, it is reasonable to expect

programmers to encounter some novel situations. In such complex tasks, social

facilitation studies have shown that the mere presence of others impairs performance

due to higher drive levels (Zajonc, 1980).

Jackson and Williams have shown that the presence of other individuals could

be drive reducing if they are not perceived as sources of social impact (evaluators of

their performance), but as co-targets of social impact (Jackson & Williams, 1985). The

presence of other individual in the pair-programming context is not evaluative presence

as in social facilitation studies, but as a co-target of the social impact. Also the pair

frequently switches roles during the programming task performance increasing the level

of collaboration and the likelihood of perceiving the partner as a co-target rather than

cause of social impact. Hence based on Jackson and Williams (Jackson & Williams,

1985) we argue that presence of others is drive reducing and facilitates task

performance in the context of pair programming, where the task is intrinsically

complex.

A robust finding of small group research is that performance in groups is better

than the average individual performance but rarely better than the best individual

performance (Hill, 1982). Group effect in general is attributed to having large number

of people to generate ideas, identify objects and remember facts. Hence groups could

typically outperform individuals in tasks of low creativity but involving large

 72

information processing component (Kanekar, 1982). Based on information processing

view of groups (Hinsz et al., 1997) groups are expected to outperform individuals in

highly intellectual problem solving tasks with large information processing

requirements. In such tasks groups typically benefit from the pooling of information and

perspectives brought in by the various members of the group (Laughlin et al., 2003).

Such process gains could result if there is “cognitive stimulation” or the group members

have the capacity to learn (Hill, 1982).

As brought out in the previous section, programming is an intellective problem-

solving task involving huge information processing component. Two programmers

working collaboratively on the programming task could benefit from pooling of ideas,

information, and perspectives brought in by each of them. Pair programming in agile

development involves one programmer actively doing coding at the keyboard as driver,

while the other programmer actively inspects the code and acts as the navigator. We

expect the ‘assembly bonus effect’ (Collins & Guetzkow, 1964) in the pair

programming condition due to the nature of programming task and the process of

collaborative working stipulated in Extreme Programming. Programming task has a

demonstrably correct answer, though may not be a very compelling one. We argue that

the four conditions of solution demonstrability articulated in the literature as

underpinning superiority of groups over individuals (Laughlin et al., 2003) are available

to a sufficient degree in the pair programming context. Specifically, the pairs working

collaboratively on the programming task are expected to have sufficient information

concerning the problem. The partners could typically arrive at a consensus on a

 73

conceptual system leading to the solution. Also we expect the member to have abilities,

sufficient time, and motivation to demonstrate the correct solution to their partners. The

wrong members also should be able to identify the correct approach when identified by

their partners. As program is compiled and debugged several times during the

development process, it contributes immensely to the demonstrability of strategies,

operations, and procedures leading to the problem solution. Hence programming tasks

have high demonstrability for the groups to be able to outperform best individuals.

Previous IS studies in collaborative programming provide anecdotal evidence

suggestive of software quality of pairs to be higher than individual programming

(Williams, 2000). Thus we expect programming pairs to outperform best and second

best individuals in the individual condition in terms of software quality.

H1a - While working on a programming task, performance in terms of software

quality of a collaborating pair is higher than the performance of the best

programmer in a nominal pair

H1b - While working on a programming task, performance in terms of software

quality of a collaborating pair is higher than the second-best programmer in a

nominal pair

3.4 Effect of Individual versus Pair Programming on Programmers’ Task Mental Model

Mental models are internal representations people use while dealing with the

environment (Van der Veer & Melguizo, 2003). They are an amalgamation of the given

information that can be acquired from a situation or a context along with the prior

knowledge of the person retrieved from the long term memory (Schraw & Nietfeld,

 74

2003). For example mental models may be used during learning to understand the

working of a computer system or software. They may also be used in problem solving

as in performing a novel task or debugging an error (Carroll & Olson, 1988). Stern

(Stern, 1993) articulated episodic situation model (Reusser, 1990) and problem model

(Riley & Greeno, 1988) as two situation models that help problem solvers understand

and represent the problem in the context of word problem solving. While problem

situation model enables understanding of specific problem context, the problem model

includes only the structural and relational information directly relevant to the problem.

It is represented by abstracting data or elements such as names, objects, actions or

intentions of actors from the problem situation. The problem model drives the search

and identification of appropriate mathematical model in the case of word problem

solving tasks (Stern, 1993).

Similar to the problem model (Riley & Greeno, 1988), we conceptualize task

mental model as including the structural and relational information relevant to the

programming task. It represents the programmer’s understanding of the relationships

between various objects, attributes and behaviors (methods) of the problem task. The

task mental model drives the search for appropriate programming solution, which is

reflected in the software quality. While the software quality represents the final

implementation based on the particular language semantics and syntax, task mental

model represents the instantiated knowledge structures (Wilson & Rutherford, 1989)

facilitating such a solution. While a programmer could have a correct task mental

 75

model, this may result in higher software quality only if the programmer is able to

translate it into the particular language domain.

Based on information processing we expect more alternatives to be explored in

the pair context. In learning tasks involving computer systems, a collaborating pair is

found to develop mental models with higher inference potential than self-discovering

individuals. While self-discovering individuals tend to focus on surface structures of the

system, co-discovering individuals were found to have a better understanding of the link

between physical actions and goals (Lim, Ward, & Benbasat, 1997). The notion of

social construction of knowledge (Vygotsky, 1978) also argues that when individuals

interact with their peers, they constantly encounter information that is not consistent

with their existing beliefs or ideas. While working on a task collaboratively to generate

a unified outcome, people will have to reconcile their differences in ideas and

perspectives. This may involve adopting their own ideas, or abandoning them in favor

of others’ ideas or through an appropriate synthesis of multiple ideas and perspectives.

These interactions involve reorganization of their knowledge structures through filling

in gaps, adding details, and correcting misunderstandings (King, 1989). This facilitates

enhancement of their mental models.

Based on the theory of distributed cognition, a collaborative pair of

programmers and the artifacts involved in the task performance may be conceived as a

complex cognitive system. Some observed characteristics of such a system include

searching through larger space of alternatives, shared memory for old plans, and joint

production of ambiguous plan segments (Flor & Hutchins, 1991). Active

 76

communication processes involving perspective taking and perspective making are

considered crucial for the effectiveness of such a system (Boland & Tenkasi, 1995).

When programming is done individually, such dynamics are missing. Hence we expect

the ‘assembly bonus’ effects to occur for the pair condition in terms of superior task

mental model over the individual condition. Thus we hypothesize that

H2a - While working on a programming task, the task mental model of the best

programmer of a collaborating pair is better than the task mental model of the

best programmer in a nominal pair

H2b – While working on a programming task, the task mental model of the best

programmer of a collaborating pair is better than the task mental model of the

second-best programmer in a nominal pair

H2c – While working on a programming task, the task mental model of the

second-best programmer of a collaborating pair is better than the task mental

model of the second-best programmer in a nominal pair

3.5 Effect of Individual versus Pair Programming on Programmers’ Overall Satisfaction

In programming tasks programmers often have to introspect and deliberate about

the choices to be made at each stage. While programming with a partner, the partner

could serve as a sounding board for the ideas and approaches to be used. In problem

solving tasks talking to a partner is generally found to be helpful (Durling & Schick,

1976). Small group research suggests that group work in general is more enjoyable

(Garibaldi, 1979) and is therefore expected to lead to higher satisfaction among the

 77

individuals. This is attributed to reduced competition and enhanced cooperation among

coworkers facilitated by group work (Campion et al., 1993). It is reported that group

members tend to be more satisfied with their performance even though their

performance did not differ from that of individuals (Hinsz, 1995). Task and reward

interdependence in group tasks is also found to lead to higher satisfaction (Shaw et al.,

2000). Programming tasks when done collaboratively involve high task

interdependency. In terms of Steiner’s group task typology (Steiner, 1972),

programming tasks are unitary, disjunctive and optimizing. Also programming in pairs

involves high reward interdependence as Extreme Programming (XP) stipulates joint

code ownership and team based rewards. Group based reward structures are expected to

reduce competition and increase cooperative group effort (DeMatteo, Eby, &

Sundstrom, 1998a) and lead to higher satisfaction (Shaw et al., 2000).

Preference for group work is one individual difference variable that could

impact satisfaction/dissatisfaction of group members. Individuals with higher

preference for group work are likely to be more satisfied, while individuals preferring

autonomous working are likely to be dissatisfied in group working (Wagner & Moch,

1986). This is however not measured in the present study and could moderate the level

of satisfaction reported by individuals in the pair condition. However there is a general

tendency in group literature suggesting that group members react positively to working

in a group compared to working alone (Hinsz & Nickell, 2004). One reason articulated

for this is that groups fulfill some of the social and emotional needs of individuals

(Levine & Moreland, 1998). Individuals may expect group work to be an enjoyable

 78

experience though this may not always be the case (Barker, 1993). Social identity

theory also suggests that if group members feel attached to the group, then they start to

identify themselves with the group and derive some self-esteem from group activities.

Brainstorming research has shown that members may have more positive attitude

towards group work as they may have a perception of group superiority in productivity,

though this could be illusory (Paulus et al., 1993).

The higher satisfaction in the pair condition could also result from superior

performance. Satisfaction and performance are known to have a reciprocal relationship

(Judge et al., 2001). Several meta analytic studies have reported of a modest correlation

between satisfaction and performance (Iaffaldano & Muchinsky, 1985; Judge et al.,

2001; Petty et al., 1984). As argued in previous sections, we expect the pair

performance to be higher than the best individual performance. So, we expect the higher

performance also to contribute to higher satisfaction in the pair condition.

Group goal setting literature suggests that compared to autonomous individuals,

group members tend to have higher goal commitment and more positive attitudes

towards goal attainment and report higher satisfaction with their performance (Hinsz &

Nickell, 2004). Previous pair programming studies in IS also report of higher

satisfaction of programmers in the pair condition over the individual condition (Nosek,

1998; Williams, 2000). Consistent with the hypotheses derived earlier comparing the

performance of best programmers in the collaborating pairs and nominal pairs, we

expect best programmers in the collaborative pair to have higher satisfaction than best

programmers in the nominal pairs. We also expect the second-best programmer in the

 79

collaborating pair to report higher overall satisfaction than the second-best individual

programmer.

H3a – While working on a programming task, the overall satisfaction of the best

programmer in a collaborating pair is higher than the overall satisfaction of the

best programmer in a nominal pair

H3b – While working on a programming task, the overall satisfaction of the best

programmer in a collaborating pair is higher than the overall satisfaction of the

second-best programmer in a nominal pair

H3c – While working on a programming task, the overall satisfaction of the

second-best programmer in a collaborating pair is higher than the overall

satisfaction of the second-best programmer in a nominal pair

3.6 Effect of Individual versus Pair Programming on Programmers’ Confidence in

Solution

Based on Peterson and Pitz (Peterson & Pitz, 1988) confidence in solution is

defined as the strength of a programmer’s belief that the software solution produced is

the best or most accurate. Groups are known to typically report higher confidence in

their performance than do individuals (Sniezek, 1992; Stephenson & Wagner, 1989). A

consistent finding in sports prediction and risky shift dilemmas is that interaction

increases people’s confidence in their decisions. Based on ‘rational construction view’ it

is said that group interaction facilitates individuals to organize and articulate a coherent

rationale for their thoughts resulting in higher confidence in their decisions (Heath &

Gonzalez, 1995).

 80

In the pair-programming context, we expect similar dynamics to work

enhancing the confidence of collaborating pairs over that of programmers working

individually. The interaction facilitated by pair programming is expected to help bring

in new information relating to the problem. The interaction also helps programmer to

better organize and articulate a coherent rationale for the various programming

decisions they undertake during code development. Due to the better rationale

programmers develop for their beliefs about the software solution due to interaction, we

expect programmers to report higher confidence in their solution in the group context

than when working individually. Consistent with the previous hypotheses that compare

the best and second-best programmers in the collaborating pairs and nominal pairs, we

expect that

H4a - While working on a programming task, the confidence in solution of the

best programmer in a collaborating pair is higher than the confidence in

solution of the best programmer in a nominal pair

H4b - While working on a programming task, the confidence in solution of the

best programmer in a collaborating pair is higher than the confidence in

solution of the second-best programmer in a nominal pair

H4c - While working on a programming task, the confidence in solution of the

second-best programmer in a collaborating pair is higher than the confidence in

solution of the second-best programmer in a nominal pair

 81

3.7 Moderating Effect of Task Complexity on Programming Outcomes

When two programmers work on a programming task of low complexity, the

perception of redundant effort among the programmers is likely to be higher as each

individual may assume that other person should be able to finish the task without much

help. Lack of identifiability of individual’s contribution, reduced responsibility for the

final outcome, group based reward system as in XP, all contribute to some social

loafing (Karau & Williams, 1993b). As the complexity of task increases, the perception

of meaningfulness of task among group members increases. When the programming

pair work on a complex task, social loafing is likely to be less due to the perception of

members that their contributions are essential to the group performance. So, social

loafing is likely to be less when the task is more complex than when it is less complex.

As brought out earlier, most non-trivial programming tasks have certain

components that are inherently complex, especially due to the multiplicity of solution

paths. In most practical programming situations, there are often some simple subtasks

that are well learned, similar to the simple tasks of social facilitation studies. But, most

other subtasks involve some level of task complexity, and involve some new learning

similar to the complex tasks used in social facilitation studies. Based on Jackson and

Williams (Jackson & Williams, 1985) we argue that working in the pair condition will

be drive reducing. The presence of the partner would be perceived less as an evaluative

presence, but more as a co-target of the social impact of the supervisor. Hence

performance on complex tasks is facilitated but not hampered in the pair condition. As

the complexity of task increases, the effect of reduction in drive in the pair condition is

 82

likely to get accentuated resulting in better understanding of the task domain and

improved software quality compared to the individual condition.

Group effect emanates from pooling of information and ideas, group memory of

things, and identification of objects and patterns by multiple members of the group

(Hinsz et al., 1997). The behaviors essential for realizing assembly bonus effects are

pooling of information and integrating it to create solution. The information pooling

effect becomes more prominent for difficult tasks. In easy tasks one competent member

often determines performance. As the group task becomes more complex, the groups

benefit from members correcting each other, and the more competent member could

draw on the resources of other members in completing the task (Hill, 1982). As the task

complexity increases, there is a higher probability for the pair to have at least one

programmer competent in solving each stage of the problem. As the complexity of task

increases, programmers are also likely to experience higher ‘cognitive stimulation.’ In

tasks involving higher ‘cognitive stimulation’ groups are expected to realize ‘assembly

bonus effect’ and outperform individuals (Hill, 1982). When working on a complex

task, programming pair would be able to use the information better, explore more

alternatives, correct each other, and have higher probability of having the necessary

competency to solve the problem within team. Hence we expect the pair superiority

over best individual performance to get amplified with increasing task complexity.

H5 – While working on a programming task, the difference in performance in

terms of software quality between a collaborating pair and the best programmer

 83

in a nominal pair is higher for tasks of high complexity than for tasks of low

complexity

As the complexity of task increases, the information-processing requirements, in

terms of both domain information and problem solving information, increase.

Compared to independent programmers, programming pairs working on more complex

tasks are able to benefit more from the higher information processing abilities available

within the dyad. Research on individual information processing suggests that as task

complexity increases, there is an increase in the number of sources accessed, and in the

share of information gathered from general purpose sources by individuals (Bystrom &

Jarvelin, 1995). In groups, task complexity is associated with greater participation in

decision-making and higher boundary spanning activities by the members (Ito &

Peterson, 1986).

Based on distributed cognition theory, the programming pair and the artifacts

involved in task performance may be conceptualized as a complex cognitive system.

Such systems are characterized by shared memory of old plans, ability to search through

larger space of alternatives, and joint creation of ambiguous or more complex code

segments (Flor & Hutchins, 1991). When two programmers work collaboratively on a

more complex task as in XP, the programmer acting as the driver concentrates on

coding, while the navigating programmer is able to look for errors, explore the problem

domain more strategically and understand the relationships between the objects and

methods involved in the programming task. Based on distribution cognition theory (Flor

& Hutchins, 1991), mental model theory (Johnson-Laird, 2001) and information

 84

processing view (Hinsz et al., 1997), we expect the group effect in terms of superior

task mental model of the best programmer in the collaborating pair over the best

programmer in the individual condition, to get amplified in the difficult task condition.

Thus, due to the reasons articulated above, we expect programming pairs to explore the

task domain to a greater extent and develop much superior task mental model than

programmers in individual condition while working on a task of high complexity than

on a task of low complexity.

H6 – While working on a programming task, the difference between the task

mental models of best programmer in a collaborating pair and the best

programmer in a nominal pair is higher for tasks of high complexity than for

tasks of low complexity.

In the next chapter research design, definition of constructs and their measures,

experimental controls and related validity issues are discussed.

 85

CHAPTER 4

RESEARCH METHODOLOGY

In this chapter the methodology, research setting, sample size, manipulations

and measurement issues are discussed.

4.1 Methodology

A laboratory experiment was conducted to examine the effects of individual

versus pair programming and task complexity on the programming outcomes. A

laboratory experiment was chosen for the study so as to achieve a high degree of control

over extraneous factors likely to affect the relationships of interest. Improved control

leads to higher internal validity of the study, enabling more explicit causal attributions

to be made with a higher degree of confidence. To understand the dynamics involved in

pair programming, experimental study was considered as the most appropriate

methodology in view of the controls afforded (Pedhazur & Pedhazur-Schmelkin, 1991).

This experiment attempted to simulate software developers undertaking

programming tasks. Two methodological settings for programming were contemplated:

1. Individual programming

2. Pair programming

 86

Two task complexity levels were also contemplated:

1. Low complexity

2. High complexity

Four dependent variables were proposed to be measured.

1. Software quality

2. Task mental model

3. Overall Satisfaction

4. Confidence in Solution

Computers loaded with Java JDK5 (current Java platform) and WordPad were

provided to simulate the Java development environment to all the subject units. The

computers were also provided with installed Java documentation. No Internet access

was provided from these computers to prevent access to the online Java resources and

program solutions. Along with the task description, some minimal documentation help

on syntax for the Java classes relevant to the problem was provided as instructions. The

dependent variable measurements, manipulation checks and demographic data were

obtained, at the end of the experiment.

4.2 Subjects

The subjects were undergraduate and graduate students who were enrolled in

Information Systems courses in the College of Business, University of Texas at

Arlington. The subjects were required to have the knowledge of Java I, the first level

course in object-oriented programming. The subjects earned class credit for their

participation. The instructors provided alternative course assignments to the students

 87

who were not willing to participate in the experiment or had already participated in

earlier semesters. Subjects were recruited from programming related courses with the

approval of the instructors. Subjects were also asked to read and sign an Informed

Consent Form upon sign-up. As the experiment involved human subjects, prior

approval was obtained for the research protocol from the Institutional Review Board

(IRB) through the Office of Research Compliance, University of Texas at Arlington.

4.3 Experimental Setting

The setting was quiet cubicles in the behavioral research lab in the college of

business. All the cubicles were provided with stand alone laptop computers loaded with

identical versions of the needed software. Subjects could not see other computer screens

or other subjects, except their partners in the case of pair programming. The subjects in

the individual condition were not allowed to talk or otherwise communicate with other

subjects or outsiders. The subjects in the pair condition were not allowed to talk or

communicate with other subjects or outsiders except with their own programming

partners.

4.4 Planned Sample

The sample size for each of the four treatment conditions was planned to be

about 30 subjects. In the two pair conditions, there would be 15 pairs or 30 subjects

each. In the two individual programming conditions, there would be 30 subjects each.

The approximate total sample size was expected to be 120 (4x30). Each experimental

condition was run with a maximum of 9 individuals at a time and all treatment

conditions were planned for every session. As the availability of students from different

 88

courses in each semester was not expected to be large, experimental sessions were

planned across multiple semesters. A total of 33 sessions were planned across three

semesters (Spring, Summer and Fall 2005). To the extent feasible, it was attempted to

balance the subjects in different treatments for each semester.

4.5 Design

A two (methodology) by two (task complexity) fully factorial design was used

for the study. The two methodological settings were (1) Individual programming and

(2) Pair programming. The two conditions of task complexity were (1) Low complexity

and (2) High complexity.

Low High

Task Complexity

Individual

Condition
One

Condition

Four

Condition

Three

Condition

Two

Pair M

et
ho

do
lo

gy

Figure 4.1 – Experimental Treatments

4.6 Experimental Task

Initially, subjects were told that they are participating in an experiment

involving application development in Java. They were told that they would be working

individually or collaboratively with a partner. Subjects who turned up for different

 89

experimental sessions were randomly assigned to one of the four treatment conditions.

To the extent possible, it was attempted in every session to have subjects in all

treatment conditions. All the treatment groups were informed that the experiment

consisted of two sessions – first session of 15 minutes duration involved working on a

warm up task; the second session of 2-hour duration involved working on the

experimental task. They were then requested to go to the cubicle randomly assigned to

them, close the door and read the instructions provided therein. For all treatment groups

written instructions were provided for logging into the computer, and for compiling

Java programs developed using Notepad.

For treatment groups three and four, involving programming in pairs, written

instructions were provided on pair programming and how they should work

collaboratively. Instructions also included how one of them would be working as driver

typing with the keyboard, while the partner acted as navigator helping the driver. They

were also instructed to transfer the keyboard to the partner and switch their roles of

driver and navigator at frequent intervals. They were told to make the role switch every

10 to 15 minutes. The experimenter visited them every 15 minutes to remind them to

switch and maintained a log of the visits.

For all the treatment subjects, similar instructions were provided for a small

warm up programming task. They were asked to do the coding in Java. The subjects

were told that it was a warm up task and the purpose of the trial was to familiarize them

with the JDK environment and the Notepad application for doing coding. This would

give them a chance to recollect some of the Java language syntax. They were also

 90

informed that the code developed would not be graded or used for experimental

purposes. Additionally, in case of treatments involving paired subjects, they were

appraised that the trial helps them to get familiarized with the partner and ways of

collaboratively working on the problem task.

Stopwatches were used in all the cubicles to time the beginning and end of the

warm up task and the main experimental task. The students requiring to pick up

refreshments or go to restroom were allowed to do so with the consent of the

experimenter. Care was taken to see that subjects did not come in contact with other

subjects except with their own partner during such recess breaks. Stopwatches were

paused during such breaks to provide full time of 2 hours for the experimental task. If

they were able to complete the task ahead of time, the experimenter noted the

completion time. If they were not able to complete the task during the assigned time,

their work was still graded to the extent completed based on quality of the code.

Finally, at the end of task completion, they were provided with paper-based

questionnaires to fill out individually. The total duration of the experiment was three

hours.

4.7 Subject Compensation

Subjects earned class credit for their participation. To increase their motivation,

they were informed that they would be considered for a lottery of three prizes each of

$50 value to be drawn and announced after completion of the whole experiment. To

motivate them further, they were informed that whatever grade (software quality) they

make on the coding task, equal amount of money in terms of cents would be provided

 91

by the experimenter to a charity. After finishing filling in the questionnaire, all subjects

were debriefed about the experiment and the research objectives. The program

developed by different treatment subjects was independently graded by two doctoral

GTAs who were not directly involved with the experiment. The resultant scores were

normalized for different treatment conditions and the instructors were informed for

giving course credit to the students. However, original scores were used for

experimental purposes.

4.8 Response Variable Measurements

Measurements for various constructs are provided in Appendices. The response

variables are discussed below.

4.8.1 Software Quality

Software quality represents the objective task performance of the individual or

the pair on the programming task. Two doctoral GTAs who are experienced in grading

student programming solutions in Java courses independently evaluated the software

developed by the subjects in the experiment on a scale of 1-125. A common grading

scheme was developed in consultation with a faculty expert who taught programming

courses. While grading the pilot test tasks, the two graders grading approaches were

calibrated with that of a faculty expert and the experimenter. Separate scoring sheets

were created and refined while grading the pilot test tasks. The same grading sheets

were later used by the two doctoral GTAs to grade experimental tasks of subjects.

Where large discrepancies were noticed, they were requested to reconcile the scores to

prevent any errors in grading. To reduce any possible sources of bias, the average of the

 92

scores of the two raters was used as a measure of the software quality. The grading

sheets used for grading the two experimental tasks are provided as Appendix J.

4.8.2 Task Mental Model

Mental models are the internal representations of objects, people, situations, or

actions. They are built based on experience and observation, of the particular entity of

interest or of the world in general (Langan-Fox et al., 2004). The task mental model as

defined here is the level of similarity of programmer’s internal representation of the task

domain, based on experience and observation during task performance, with that of an

expert’s mental model. Mental model is a hypothetical construct specific to the task. For

the programming tasks involved in the present study, the various classes and the

methods involved in the problem domain and the programmer’s understanding of the

relationship between these task components represents the programmer’s mental model

of the task. An expert’s mental model of the task domain represents the benchmark for

the understanding of the task domain. So, the level of similarity of programmer’s task

mental model with the expert’s mental model objectively indicates the quality of task

mental model of the programmer. This was measured by eliciting programmer’s rating

of subjective similarities/relationships between the various components of the task

domain. This can be diagrammatically represented using visual modeling tools such as

pathfinder (Schvaneveldt, 1990).

Pathfinder (PF) is a technique that generates suitable psychological scaling with

regard to the underlying structure between concepts. The raw paired comparison ratings

elicited from individuals is taken as input by the pathfinder algorithm and transformed

 93

into a network structure. In the network, the nodes represent the concepts, while the

links indicate the relatedness of concepts. The NETSIM function in PF was used to

compare the similarity of two networks. The advantage of PF over other representation

techniques such as Multidimensional Scaling (MDS) is that PF provides index of

similarity that could be used as a variable in further analysis. PF is a popular tool used

to represent and analyze a wide range of cognitive structures in several research

domains such as training, and in studies of expertise and human-computer interaction

(Langan-Fox, Code, & Langfield-Smith, 2000; Mohammed, Klimoski, & Rentsch,

2000; Schvaneveldt, 1990).

In the present study, the task mental model score for a programmer was

measured as the similarity index between the PF networks of the programmer and the

expert. Two IS faculty members who teach programming and other technical courses

were requested to be the experts. First the two experts were requested to independently

provide what they considered as important objects and methods involved in the

programming task. The two experts then reconciled minor differences between their

lists and a consensual list was compiled separately for each of the experimental tasks.

For each task (low task complexity, high task complexity), the experts were then

requested to first independently rate the similarities between different objects and

methods involved therein and then discuss and come up with single rating scores. The

PF networks representing the consensual similarity rating of the two experts were

considered as the expert task mental models for the two experimental tasks (tasks of

high and low task complexity). The PF networks of individual subjects were compared

 94

with that of the expert using NETSIM function in the Pathfinder software. A task

mental model score of 1 represented perfect similarity with the expert task mental

model, while a score of 0 represented no similarity. Higher this score, higher the task

mental model of the programmer, reflecting the programmer’s understanding of the task

domain. Task mental model was measured in both individual and pair conditions at the

individual level of the programmer. For the simple and complex tasks used in the

present study, the questionnaires used for eliciting similarity ratings are provided in

Appendix H.

 4.8.3 Satisfaction and Confidence in Solution

Satisfaction represents affective response of the individual to the overall task

performance. The measure for this variable has been adapted from (Bhattacherjee,

2001). Confidence in solution is the strength of a programmer’s belief that the software

solution produced is the best or most accurate. The measure for this variable was

designed based on existing literature.

4.8.4 Manipulation Checks

For the four treatments administered in the study, manipulation check were done

using measures indicated in Appendix I.

4.8.5 General Questions

The questionnaire for eliciting general demographic information such as age,

number of years of programming experience, number of programming languages

known is provided in Appendix I.

 95

4.8.6 Programming Ability

Apart from the two manipulations, programming ability is a very important

variable likely to impact the performance of the subjects. To control for this effect, the

programming ability was measured and used as a covariate in the

ANCOVA/MANCOVA analysis. The programming ability was measured as the

average GPA of each of the subjects in all the previous Information Systems (IS)

courses taken at the UTA with the following weights: Grades in programming and

analysis and design courses were given twice the weight as other IS courses. This

information was obtained from the UTA records and consent of the subjects for using

this information was obtained as a part of Informed Consent.

4.8.7 Course Credit

The subjects for the experiment were drawn from students enrolled in multiple

IS courses during three semesters. All the instructors involved were requested to

provide a uniform course credit of 5% of the grade to control for any changes in the

motivation levels of subjects across semesters.

4.9 Debriefing

Debriefing was done for all the four treatment groups at the end of the

experiment. Debriefing form used for the experimental subjects is provided as

Appendix C.

4.10 Statistical Analysis

In planning this study, ANCOVA and MANCOVA were the anticipated

statistical methods of analysis to be used. The rationale for conducting two separate

 96

statistical analyses is discussed in the next chapter. Hypotheses 1 and 5 that involved

comparison between collaborating pair and the best, second-best programmers in

nominal pairs were tested using ANCOVA analysis. Hypotheses 2-4, and 6 that

involved comparison between the best, second-best programmers in collaborating pairs

and nominal pairs were tested using MANCOVA analysis. After assumption check and

testing the overall significance of the model using MANCOVA, individual ANOVAs

were run to test hypotheses including the interaction effects.

4.11 Pilot Testing

A pilot test of the experiment was conducted prior to the main experiment

where all four-treatment conditions were tested. A sample of 2 subjects in each of the

treatments involving pairs and a sample of 1 subject for treatments involving individual

programming (total 6 subjects) were used for the pilot study. Changes required in the

scripts and logistics of the experiment were fixed at this stage.

 97

CHAPTER 5

RESEARCH RESULTS

The results of preliminary analyses, hypotheses testing and posttest questions

are presented in this chapter.

5.1 Preliminary Analyses

This section provides the data and analyses regarding sample characteristics,

reliability of dependent measures, preliminary tests and methods of analysis.

5.1.1 Sample Characteristics

A total of 122 subjects participated in the experiments. Two subjects were

dropped from the study to balance the subjects across the four treatments. These

subjects either did not meaningfully complete the task or did not complete the

dependent variable measurements. The mean (standard deviation) age of the

experimental subjects was 27.50 (6.39) years and the gender composition was 89 (74%)

males and 31 (26%) females. In terms of academic level, 99 (82.5%) subjects were

undergraduate students, while 21 (17.5%) were graduate students. In terms of

nationality, 78 (66.7%) were US citizens with 39 (33.3%) being citizens from other

countries. Subjects’ self-reported programming experience in any language was as

follows: 0-1 years - 44 (37.9%) subjects, 1-2 years - 30 (25.9%) subjects, 2-4 years – 20

subjects (17.2%), and > 4 years – 22 (19.0%). In terms of self-reported programming

 98

experience in Java, the distribution was as follows: 0-1 years - 85 (73.3%) subjects, 1-2

years - 24 (20.7%) subjects, 2-4 years – 6 (5.2%) subjects, and > 4 years – 1 (0.9%)

subject. The experiment was conducted over three semesters and the distribution of

subjects across the three semesters was as follows: Spring – 49 (40.8%), Summer - 25

(20.8%), and Fall 46 (38.3%). Figure 5.1 shows the distribution of subjects across the

different treatment conditions.

 Total Sample size (N) – 120

Low High

M
et

ho
do

lo
gy

Individual
Condition

(1,1)
n = 30a

Condition
(2,2)

n = 30

(15 pairs)

Condition
(2,1)

n = 30

(15 pairs)

Condition
(1,2)

n = 30b

Pair

Task Complexity

a – one subject dropped from the sample for not meaningfully completing the task

b – one subject dropped from the sample for not meaningfully completing the task and for not completing the dependent

variable measurement

Figure 5.1 – Distribution of Subjects Across Different Treatment Conditions

 Two sets of analyses were done for testing various hypotheses involving

constructs defined at the team level and individual level. Software quality was

conceived as a team level construct for the collaborating pairs. Hence a 3 x 2 ANCOVA

design was used for analysis of the dependent measure of Software Quality with GPA

as a covariate. Figure 5.2 shows the distribution of subjects for the ANCOVA design.
 99

The best and second-best programmers in nominal pairs were determined based on the

software quality scores achieved by them.

Low
(1)

High
(2)

In
di

vi
du

al
 o

r
G

ro
up

Second-best in
Nominal Pair

(2)

Best in
Nominal Pair

(1)

Condition

(1,1)
n = 15

Condition

(2,1)
n = 15

Best in
Nomin air al P

Collaborating Pair
(3)

Condition

(3,2)
n = 15 pairs

Condition

(3,1)
n = 15 pairs

Condition

(2,2)
n = 15

Condition

(2,1)
n = 15

Task Complexity

Figure 5.2 – 3 x 2 ANCOVA Design for Analysis of Dependent
Measure of Software Quality

Task Mental Model, Overall Satisfaction, and Confidence in Solution were

conceived as individual level constructs for individuals working in both nominal pairs

and collaborating pairs. Hence a 4 x 2 MANCOVA Design was used for analysis of

these dependent measures with GPA as a covariate. The best, second-best programmers

in nominal pairs and collaborating pairs for the MANCOVA analysis were determined

based on the task mental model scores achieved by them. As software quality was

measured at the team level for collaborating pairs, it could not be used for determining

 100

the best, second-best among the collaborating pairs. Figure 5.2 shows the distribution of

subjects for the MANCOVA design.
Task Complexity

High
(2)

Low
(1)

Condition

(1,1)
n = 15

Condition

(2,1)
n = 15

Condition

(3,1)
n = 15

Condition

(4,2)
n = 15

Condition

(4,1)
n = 15

Condition

(3,2)
n = 15

Condition

(2,2)
n = 15

Condition

(2,1)
n = 15

Best in
Nominal Pair

(1)

Pe
rs

on

Best in
Nominal Pair

Best in
Collaborating Pair

(3)

Second-best in
Nominal Pair

(2)

Second-best in
Collaborating Pair

(4)

Figure 5.3 – 4 x 2 MANCOVA Design for Analysis of Dependent
Measures at the Individual Level

5.1.2 Factor Structure

Three perceptual variables were examined in this study: (1) overall satisfaction,

(2) performance assessment and (3) confidence in solution. Overall satisfaction was

measured by four questionnaire items, performance assessment by one item and

confidence in solution by two items. Table 1 is a correlation matrix of the items

measuring the three perceptual variables along with their means and standard

 101

deviations. The distribution of items was as follows: items 1-4 measured overall

satisfaction: items 5 measured performance assessment; items 6-7 measured confidence

in solution. The questionnaire used is provided as Appendix I. In addition there was one

performance measure for software quality. This was taken as the average of two scores

independently assessed by two doctoral GTA graders. Another dependent variable task

mental model was assessed as a questionnaire based measure. Software quality is a

group level construct in the pair condition while other measures were individual

measures in both individual and pair conditions.

Table 5.1 – Correlation Matrix for the Perceptual Measure Items

 1 2 3 4 5 6 7
1 4.08

(1.723)

2 0.896 4.13
(1.695)

3 0.717 0.747 3.79
(1.789)

4 0.741 0.779 0.814 4.13
(1.573)

5 0.595 0.529 0.521 0.610 5.59
(2.760)

6 0.620 0.576 0.562 0.596 0.871 3.92
(1.903)

7 0.620 0.572 0.589 0.592 0.865 0.972 3.87
(1.904)

Exploratory factor analyses on the perceptual measures with orthogonal

(Varimax) rotation revealed that the questionnaire item measuring performance

assessment (item 5) and the two items measuring confidence in solution were highly

 102

correlated and load into one factor (Table 5.2). The four items indicative of overall

satisfaction load into a separate factor. As performance assessment was not found to be

distinct from confidence in the solution, this item is combined with the two items

measuring confidence in solution. However the scales for items measuring performance

assessment and confidence in solution were different. Item for performance assessment

(item 5) was measured on 1-10 Likert scale while the two items for Confidence in

solution (items 6 and 7) were measured on 1-7 Likert scale. A summated scale was

created for confidence in solution by adding the standardized individual items and then

again standardizing the resultant summated variable. The resultant confidence in

solution variable had a mean of 0 and SD of 1.

Table 5.2 – Varimax Rotated Orthogonal Factor Loadings

Questionnaire
Item

Factor 1
Overall

Satisfaction

Factor 2
Confidence in

Solution

Communality
Estimate

hi
2

1 0.843 0.362 0.843
2 0.897 0.280 0.883
3 0.843 0.300 0.801
4 0.839 0.351 0.827
5 0.323 0.886 0.889
6 0.341 0.919 0.961
7 0.349 0.914 0.956

Eigen Value λj 5.112 1.048
Cum. Variance

Explained 73.03% 88.00%

 103

Rotated factor scores better reflect the orthogonality of the rotated variables.

Summated scales using factor scores may be created and used if correlation in the items

is likely to adversely impact subsequent analysis. However summated scales using item

scores may be preferred if generalizability of questionnaire items is of interest (Hair,

Anderson, Tatham, & Black, 1998). The summated item scores for overall satisfaction

and summated standardized item scores for confidence in solution were used in the

present analysis in the interest of generalizability of questionnaire items.

5.1.3 Reliability of Dependent Measures

Table 5.3 shows the correlation matrix of the dependent measures at the

individual level of analysis along with the means (standard deviation). Reliability of

measures in terms of Cronbach’s alpha was found to be 0.934 and 0.945 for overall

satisfaction and confidence in solution respectively. Cronbach’s value is an estimate of

the internal consistency or homogeneity of the variable items in measuring a given

construct (Kerlinger, 1986). According to Nunnally, reliabilities exceeding 0.70 are

considered acceptable (Nunnally, 1978).

Table 5.3 – Correlation Matrix of Dependent Measures Measured at Individual Level

 Task Mental Model Satisfaction Confidence
Task Mental Model .409

(0.128)

Satisfaction .05 4.03
(1.55)

Confidence .149 .657* 0.018
(0.980)

 104

Task mental model was measured as the similarity score between the PF

networks of the subject and the expert. This measure was computed using the Pathfinder

software. Similar to software quality, this was computed as one score. While the

reliability of attitudinal measures containing multiple items could be judged from

Cronbach’s alpha values, no such computational measures are available to judge the

reliability of task mental model.

A power analysis was also conducted on the experimental results. The

power/effect sizes of the statistical results at an alpha level of 0.05 are tabulated in

Table 5.4. The effect size was estimated by the non-centrality parameter. An effect size

of 1.0 is considered small, 2.0 as medium and 3.0 as large (Neter, Kutner, Nachtsheim,

& Wasserman, 1996). Determining the adequacy of power levels for detecting

differences in dependent variables is highly subjective with no clear guidelines. The

power levels presented here appear to be sufficiently strong to detect important

differences between treatment conditions where they exist. The observed power

tabulated here is based on two-tailed tests provided by statistical packages. For a given

sample size and effect size, power is typically higher for one-tailed tests over two-tailed

tests. As all the hypotheses in the study were set up for one-tailed tests, the observed

power levels reported here are quite conservative.

5.1.4 Test for the Effects of Demographic Factors

The effect of various demographic variables on the dependent measures was

tested using individual one-way ANOVAs. This was done to identify factors that could

be used as blocking variables to help reduce error variance in the dependent measures.

 105

Table 5.4 – Power Analysis

Dependent Variable Parameter Effect Size
(Non-centrality

Parameter)

Power*

Software Quality I1 – P 2.565 0.718
 I2 – P 1.979 0.382
 C1 – C2 2.969 0.835
 I1*C1 – I1*C2 1.862 0.452
 I2*C1 – I2*C2 0.847 0.133
Task Mental Model I1 – P2 6.315 1.000
 I2 – P2 0.967 0.160
 P1 – P2 4.171 0.985
 C1 – C2 4.222 0.987
 I1*C1 – I1*C2 2.427 0.672
 I2*C1 – I2*C2 0.659 0.100
 P1*C1 – P1*C2 0.947 0.155
Overall Satisfaction I1 – P2 0.713 0.109
 I2 – P2 2.065 0.534
 P1 – P2 0.333 0.063
 C1 – C2 1.677 0.383
 I1*C1 – I1*C2 2.155 0.569
 I2*C1 – I2*C2 0.238 0.056
 P1*C1 – P1*C2 1.075 0.187
Confidence in Solution I1 – P2 0.229 0.056
 I2 – P2 1.998 0.221
 P1 – P2 0.721 0.110
 C1 – C2 2.443 0.677
 I1*C1 – I1*C2 3.286 0.902
 I2*C1 – I2*C2 0.303 0.060
 P1*C1 – P1*C2 1.255 0.237
Legend:

I1 – Best individual in Nominal Pair
I2 – Second best Individual in Nominal Pair
P – Pair Condition
P1 – Best Individual in Collaborating Pair
P2 – Second-best Individual in Collaborating Pair
C1 – Low Complexity task
C2 – High Complexity task
*computed at alpha = 0.05

As software quality was measured at the group level for collaborative pairs and

demographic variables could not be aggregated to the group level, ANOVA testing was

not done on this dependent measure. Table 5.5 summarizes the results of one-way

 106

ANOVA tests for the various demographic factors on the dependent measures of task

mental model, overall satisfaction, and confidence in solution.

It is evident from the ANOVA test results in Table 5.5 that subjects’ gender,

citizenship and experience in Java did not have any significant effect on the dependent

measures. Also there were no significant differences noticed in the dependent measures

across semesters. In terms of academic level of subjects, ANOVA analysis identified

significant differences between undergraduate and graduate student subjects for

satisfaction and confidence. However when academic level of subjects was used as a

blocking factor in the MANCOVA analysis, the effect size (non-centrality parameter)

and power of the tests for the main effects was adversely affected possibly due to

reduction in the degrees of freedom. As graduate students constituted a small

percentage (17.3%) of the subject pool, when academic level was used as a blocking

factor, the sample size in the treatment blocks within the graduate student subjects was

too small for any meaningful interpretation. Since there was no net benefit to be gained,

academic level of subjects was not included as a blocking factor.

In terms of programming experience of subjects, ANOVA analysis identified

significant differences on this factor for task mental model but not for overall

satisfaction or confidence in solution. Self-reported programming experience was

measured on four levels. Again, when used in the MANCOVA analysis as a blocking

factor, the effect size and power for main effects were adversely affected due to

reduction in the degrees of freedom. As there was no net-benefit to be gained,

programming experience was not included as a blocking factor.

 107

Table 5.5 – One-way ANOVA Results on Demographic Factors

Task Mental Model Satisfaction Confidence
Factor

N Mean SD F

(p-value)
Mean SD F

(p-value)
Mean SD F

(p-value)
Gender
 Male
 Female

88
31

0.405
0.420

0.131
0.120

0.315
(0.576)

4.170
3.630

1.428
1.820

2.871
(0.093)

0.037
-0.108

0.943
1.160

0.481
(0.489)

Semester
 Spring
 Summer
 Fall

49
25
46

0.404
0.428
0.404

0.137
0.143
0.112

0.330
(0.719)

4.220
3.710
4.010

1.656
1.518
1.452

0.913
(0.404)

-0.055
0.162
-0.030

1.050
1.027
0.942

0.415
(0.661)

Academic Level
 Undergrad
 Grad

99
21

0.401
0.447

0.128
0.127

2.269
(0.135)

3.870
4.830

1.479
1.688

6.597
(0.011*)

-0.110
0.519

0.961
1.039

7.205
(0.008*)

Citizenship
 US
 Others

78
39

-0.161
0.214

0.947
1.023

1.178
(0.280)

3.800
4.340

1.466
1.616

3.210
(0.076)

-0.161
0.214

0.946
1.024

3.881
(0.051)

Programming Experience
 0 to 1 years
 1 to 2 years
 2 to 4 years
 > 4 years

44
30
20
22

0.380
0.440
0.453
0.371

0.116
0.117
0.146
0.138

2.84
(0.041*)

3.790
3.880
4.140
4.420

1.540
1.481
1.390
1.696

0.941
(0.423)

-0.178
0.060
-0.117
0.260

0.984
0.880
1.096
0.975

1.122
(0.343)

Experience in Java
 0 to 1 years
 1 to 2 years
 2 to 4 years
 > 4 years

85
24
6
1

0.401
0.434
0.414
0.207

0.128
0.134
0.111

1.237
(0.300)

3.910
3.970
5.420
2.750

1.470
1.597
1.744

2.082
(0.107)

-0.061
-0.097
0.681
0.766

0.977
0.946
1.044

1.352
(0.261)

* significant at alpha =0.05

108

5.1.5 Test for Interactions - ANCOVA and MANCOVA

As discussed earlier, in the pair condition, software quality was measured at the

group level while other dependent measures (task mental model, overall satisfaction and

confidence in solution) were all measured at the individual level. GPA of students on a

continuous scale of 1-4 was used as a covariate.

The test for significance of effects was done using 3 (best individual, second-

best individual, collaborating pair) x 2 (low task complexity – high task complexity)

ANCOVA and 4 (person – best, second-best in nominal pair and collaborating pair) x 2

(low task complexity – high task complexity) MANCOVA. ANCOVA analysis was

used to compare software quality of collaborating pair with the software quality of

individuals in the nominal pairs, while MANCOVA analysis was used to compare other

dependent measures between individuals in collaborating pair and nominal pair

conditions.

The purpose of these initial tests was to check for significant interactions. If

initial tests reveal significant interactions, cell means model should be used to examine

the differences between treatment means (Neter et al., 1996). Table 5.6 summarizes the

results. The table shows the F-ratios (p-values) for the main effects and interaction

effects. The interaction term for software quality, task mental model, and overall

satisfaction were not significant at alpha = 0.05. The interaction term for confidence in

solution was however found to be highly significant (p = 0.006). Hence confidence in

solution was separately examined later using ANCOVA cell means model with 8 levels

representing the 8 treatment conditions in the research design matrix.

 109

Table 5.6 – Results of Tests for Interactions Showing F (p) Values

Dependent Variable Individual or Group Task Complexity Interaction

Software Quality 12.727 (0.000*) 8.548 (0.004)* 1.737 (0.182)

Dependent Variable Person Task Complexity Interaction
Task Mental Model 20.765 (0.000*) 32.561 (0.000*) 2.118 (0.103)
Overall Satisfaction 4.577 (0.005*) 0.889 (0.348) 1.920 (0.131)
Confidence in Solution 4.081 (0.009*) 2.326 (0.130) 4.447 (0.006*)
*Significant at alpha = 0.05

5.1.6 Test of Significance- ANCOVA and MANCOVA

GPA of students, which was used as a covariate, was collected at the individual

level. For ANCOVA analysis, average GPA for the pair was used as the covariate. For

ANCOVA analysis, the best and second best individuals in nominal pairs were

determined by the software quality of their solutions. Results of the 3 (best individual,

second best individual, pair) by 2 (low task complexity, high task complexity)

ANCOVA analysis on the software quality indicated a significant main effect for the

best, second-best individuals, and pair (that is individual or pair condition) with p value

of 0.000. The ANCOVA analysis also revealed a significant main effect for the task

complexity dimension with a p value of 0.004. The interaction between the two main

factors was however not found to be significant (p = 0.182). Table 5.7 summarizes the

2-way ANOVA results for software quality and other dependent measures.

 110

Table 5.7– One-Way ANOVA Results on Software Quality

A. Individual or Pair
 Individual or Pair

 Best Individual in
nominal pair

Second-best
Individual in
nominal pair

Collaborating Pair
F

Value
Sig

p value

 Mean SD Mean SD Mean SD
Software Quality 75.000 22.927 42.45 23.371 61.483 31.644 12.727 0.000*

B. Task Complexity

 Task Complexity
 Low High
 Mean SD Mean SD

F Value Sig p
value

Software Quality 66.267 27.825 53.022 29.447 8.548 0.004*

C. Individual or Pair x Task Complexity

 Individual or Pair
 Best Individual in

nominal pair
Second-best
Individual in
nominal pair

Collaborating Pair
F

Value
Sig

p value

111

 Mean SD Mean SD Mean SD
Software Quality

Task Complexity Low
Task Complexity High

74.420
71.626

5.968
5.936

50.790
35.969

5.973
5.939

74.983
50.080

5.938
5.935

1.737 0.182

* significant at p=0.05

To protect against inflated type I error, each of the significant p-values was less

than 0.025 (the Bonferroni’s alpha adjustment), which should alleviate concerns over

the experiment-wise error rate.

A 4 (best, second-best in nominal pairs, best, second-best in collaborating pairs)

by 2 (low task complexity, high task complexity) MANCOVA analysis was conducted

on the three dependent variables measured individually in both collaborating pair and

nominal pair conditions with GPA as covariate. The best, and second best individuals

in both collaborating pairs and nominal pairs were determined by their task mental

model values. Where their scores were equal, they were randomly designated as the best

or the second-best. The MANCOVA model was found to be significant with Pillai’s

Trace F = 7.397, p = 0.000. The MANCOVA analysis also revealed a significant main

effect for the task complexity dimension on the task mental model with Pillai’s Trace F

= 10.948, p = 0.000. Results of the 4 (best, second-best individual in nominal pairs and

collaborating pairs) by 2 (low task complexity, high task complexity) MANCOVA

analysis on the three dependent measures indicated a significant main effect for the

person (best, second-best individuals in the collaborating pair and nominal pair

conditions) factor. Table 5.8 summarizes the MANCOVA results for software quality

on the two treatment factors.

 112

Table 5.8 – MANCOVA Results for the Hypotheses

 Value F Value Degrees of Freedom
Sig p
value

Between
Group Within Group

Condition (best, second-best in nominal pairs and collaborating pairs) vs. Dependent
Measures

Pillai's Trace 0.536 7.397 9 306 0.000*
Wilks' Lamda 0.519 8.377 9 244 0.000*
Hotelling-Lawley Trace 0.825 9.040 9 296 0.000*
Roy's Largest Root 0.682 23.185 3 102 0.000*

Task Complexity vs. Dependent Measures
Pillai's Trace 0.247 10.948 3 100 0.000*
Wilks' Lamda 0.753 10.948 3 100 0.000*
Hotelling-Lawley Trace 0.328 10.948 3 100 0.000*
Roy's Largest Root 0.328 10.948 3 100 0.000*

GPA (Covariate) vs. Dependent Measures
Pillai's Trace 0.046 1.625 3 100 0.188
Wilks' Lamda 0.954 1.625 3 100 0.188
Hotelling-Lawley Trace 0.049 1.625 3 100 0.188
Roy's Largest Root 0.049 1.625 3 100 0.188

Condition x Task Complexity vs. Dependent Measures
Pillai's Trace 0.153 1.828 9 306 0.063
Wilks' Lamda 0.847 1.905 9 244 0.052
Hotelling-Lawley Trace 0.180 1.969 9 296 0.043*
Roy's Largest Root 0.177 6.002 3 102 0.001*
* significant at p=0.05

With a significant MANCOVA model, individual ANOVA results were

analyzed for the three dependent variables and the results summarized in Table 5.9. It

can be seen that the main effect in the ANOVA model was significant for the person

(best, second-best individuals in both collaborating pairs and nominal pairs) factor on

the dependent measures of task mental model (p = 0.000), overall satisfaction (p =

0.005), and confidence in solution (p = 0.009).

 113

114

Table 5.9 – One-Way ANOVA Results on Other Dependent Measures

A. Person
Person

 Best Individual in
nominal pair

Second-best Individual
in nominal pair

Best individual in
collaborating pair

Second-best individual
in collaborating pair

F
Value

Sig
p value

 Mean SD Mean SD Mean SD Mean SD
Task Mental Model 0.494 0.107 0.347 0.117 0.461 0.973 0.333 0.109 20.765 0.000*
Overall Satisfaction 3.590 1.473 3.590 1.424 4.190 1.559 4.790 1.565 4.577 0.005*
Confidence in Solution

-0.380

0.785

-0.156

0.939

0.263

1.106

0.314

0.948

4.081

0.009*

B. Task Complexity

Task Complexity

 Low High
 Mean SD Mean SD

F Value Sig p
value

Task Mental Model 0.459 0.112 0.360 0.124 32.561 0.000
*

Overall Satisfaction 4.170 1.553 3.880 1.580 0.889 0.348
Confidence in Solution

1.341 1.004

-0.133

0.944

2.326

0.130

C. Person x Task Complexity
 Person
 Best Individual in

nominal pair
Second-best Individual

in nominal pair
Best individual in

pair
Second-best individual

in collaborating pair

F
Value

Sig p
value

 Mean SD Mean SD Mean SD Mean SD
Task Mental Model

Task Complexity Low
Task Complexity High

0.510
0.478

0.105
0.111

0.406
0.288

0.119
0.084

0.511
0.408

0.101
0.058

0.407
0.252

0.807
0.073

2.118 0.103

Overall Satisfaction
Task Complexity Low
Task Complexity High

3.160
3.980

1.577
1.297

4.020
3.160

1.476
1.281

4.270
4.100

1.321
1.833

5.210
4.330

1.220
1.804

1.920 0.131

Confidence in Solution
Task Complexity Low
Task Complexity High

-0.776
-0.011

0.796
0.585

0.213

-0.525

0.796
0.950

0.391
0.126

1.036
1.203

0.708

-0.110

0.778
0.957

4.447 0.006*

* significant at p=0.05

To protect against inflated type I error, it can be seen that each of these p-values

was less than 0.025 (the Bonferroni’s alpha adjustment), which should alleviate

concerns over the experiment-wise error rate.

5.1.7 Tests of Assumptions

ANOVA models rely on the assumptions of normality, constant variance and

independence of error terms (Neter et al., 1996). The omnibus normality test was

conducted on the dependent measure of software quality across the two factors and the

results are summarized in Table 5.10. The normality assumption could not be rejected

for the first factor of ‘individual or pair’ (best, second-best individuals in nominal pair,

pair). For the second factor of ‘task complexity’, the normality assumption was rejected

suggesting the grades distribution across the two levels of task complexity may not be

normal. However, Martinez and Iglewicz normality test for grades across individual

treatment cells (3 levels of ‘Individual or pair’ x 2 levels of ‘task complexity’) could not

be rejected at a significance level of alpha = 0.05. The Modified Levene test was

conducted for testing the equality of error variance of grades across the two factors

individually. The results tabulated in Table 8 suggest that the assumption of equal

variance of error terms across the two factors could not be rejected at a significance

level of alpha = 0.05 across both the factors. The assumption of equality of error

variances across the groups (six treatment groups) also could not be rejected (p= .063).

 115

Table 5.10 - Diagnostic Information for ANCOVA Assumptions

Omnibus

Normality Test
Modified Levene

Test
 Statistic Sig Statistic Sig

Software Quality vs. Individual or Pair 0.6450 0.7243 3.098 0.0501
Software Quality vs. Task Complexity 12.2690 0.0022* 0.5549 0.4583
* significant at p=0.05

MANCOVA analysis involved three dependent variables (task mental model,

overall satisfaction and confidence in solution) across two factors (person and task

complexity) with one covariate (GPA). MANCOVA may be viewed as MANOVA of

the regression residuals, or variance in the dependent variable not explained by the

covariates (Hair et al., 1998). The person factor involved 4 levels (best and second best

individuals in nominal pair and collaborating pair conditions). The second factor of task

complexity involved two levels (low and high). MANCOVA models also rely on the

assumptions of multivariate normality, constant variance and equality of error variance

(Hair et al., 1998). The omnibus normality test across the two factors on the three

dependent measures suggested that the assumption of normality of error terms could not

be rejected at a significance level of alpha = 0.05 for the dependent measures of task

mental model and overall satisfaction. For the third dependent variable of ‘confidence

in solution’, the normality assumption is rejected across both the factors suggesting the

error term distribution of this factor across the two factors may not be normal and

needed further investigation. The, Martinez and Iglewicz normality test for error terms

of confidence in solution across individual treatment cells (4 levels of person x 2 levels

 116

of task complexity) could not be rejected at a significance level of alpha = 0.05. Thus,

the assumption of normality of errors terms was satisfied for the MANCOVA analysis.

The Modified Levene test was conducted for testing the equality of error variances of

the three dependent variables across the two factors individually. The results tabulated

in Table 5.11 suggested that the assumption of equal variance of error terms could not

be rejected at a significance level of alpha = 0.05 across both the factors.

Equality of covariance matrices across the groups (eight cells) was tested by

Box’s M test. Table 9 shows the Box’s M test results across the two factors separately.

The Box’s M statistic was significant with a p value of 0.108 suggesting that the

assumption of equality of covariance matrices could not be rejected at a significance

level of alpha = 0.05.

Table 5.11 - Diagnostic Information for MANCOVA Assumptions

Omnibus Normality Modified Levene

Test
Box' M Test Bartlett's Test of

Sphericity
 Statistic Sig Statistic Sig Statistic Sig Statistic Sig

A. Dependent Measures vs. Individual or Pair
Task Mental Model 3.7466 0.1536 0.4141 0.7432 13.0118 0.8268 67.502 0.000*
Overall Satisfaction 4.0712 0.1306 0.2003 0.8960
Confidence in Solution 10.9760 0.0041* 0.6891 0.5605
B. Dependent Measures vs. Task Complexity
Task Mental Model 0.3310 0.8475 0.0244 0.8762 9.5171 0.1602
Overall Satisfaction 0.8777 0.6448 0.1308 0.7183
Confidence in Solution 20.4612 0.0000* 0.9043 0.3436
* significant at p=0.05

 117

5.2 Hypotheses Testing

As most interactions were not found to be significant, ANCOVA/MANCOVA

models were used to examine each dependent variable. Bonferroni’s multiple inference

procedure was used to test the hypothesized family of inferences. Bonferroni’s

procedure was used as it is considered superior to other multiple inference procedures

when the family of inferences is finite (about the same as the number of factor levels or

less) and could be specified in advance (Neter et al., 1996). In the ANCOVA analysis,

the differences in the factor level means on the first factor (individual or pair) were of

interest. The second factor (task complexity) was of interest mainly for its interaction

effect with the main factor. In view of lack of significance found for the interactions in

the ANCOVA model tested earlier, pair wise differences on the task complexity factor

were not further investigated.

5.2.1 Hypotheses Concerning Software Quality

In this section, Hypotheses 1 and 5 are examined which involve only ANCOVA

models and the resultant hypothesized comparisons on the dependent variable of

software quality. Table 5.12 shows the results of Bonferroni’s custom contrast report for

software quality means. Software quality was estimated as the average score provided

by two examiners who graded the software solutions independently. Software quality

was tested separately from other dependent variables as it was measured at the group

level for collaborating pairs, while other dependent measures were measured at the

individual level even within collaborating pairs.

 118

Table 5.12 – Bonferroni’s Custom Contrast Report of Software Quality at

Alpha = 0.05

Treatment
Condition

Mean Standard
Deviation

 1 2 3
1 75.000 22.927 1
2 42.450 23.371 2 --
3 61.483 31.644 3 p = 0.083 p = 0.000*

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – collaborating pair
* significant at alpha = 0.05

5.2.1.1. Hypothesis H1a

H1a - While working on a programming task, performance in terms of software

quality of a collaborating pair is higher than the performance of best

programmer in a nominal pair

Table 5.13 shows the relevant means.

Table 5.13 – Means for Software Quality (A)

Factor Level Means
Best Programmer in Nominal Pair 75.000
Collaborating Pair 61.483
* significant at p=0.05

The performance in terms of software quality of collaborating pair was not

found to be higher than the performance of best programmer in nominal group (p =

0.959 for one-tailed test). It was found to be somewhat less than the performance of best

programmer in nominal group, though the difference was not significant. Hypothesis1a

is therefore not supported. It can therefore be said that performance of collaborating

 119

programming pair was found to be comparable to that of the best individual

programmer in nominal pair.

5.2.1.2 Hypothesis1b

H1b - While working on a programming task, performance in terms of software

quality of a collaborating pair is higher than the performance of second-best

programmer in a nominal pair

Table 5.14 shows the relevant means.

Table 5.14 – Means for Software Quality (B)

Factor Level

Means

Second-best Programmer in Nominal Pair 42.450*
Collaborating Pair 61.483
* significant at p=0.05

The performance in terms of software quality of collaborating pair was found to

be significantly higher than the performance of second-best programmer in nominal pair

(p=0.000 for one-tailed test). Hypothesis 1b is therefore fully supported. It can therefore

be said that performance of collaborating programming pair is higher than that of the

second-best programmer in nominal pair and comparable to that of the best programmer

in nominal pair. Figure 1 shows a plot of the marginal means of software quality.

 120

Estimated Marginal Means of Software Quality

IndOrTeam

321
E

st
im

at
ed

 M
ar

gi
na

l M
ea

ns

80

70

60

50

40

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – collaborating pair

Figure 5.4 – Marginal Means of Software Quality in the Three Conditions

5.2.1.2 Hypothesis 5

H5 - While working on a programming task, the difference in performance in

terms of software quality between a collaborating pair and the best programmer

in a nominal pair is higher for tasks of high complexity than for tasks of low

complexity.

Table 5.15 shows the relevant means.

Table 5.15 – Means for Software Quality (C)

Treatment Level

Means

Best Programmer in Nominal Pair
Task Complexity Low
Task Complexity High

77.400
72.600

Second-best Programmer in Nominal Pair
Task Complexity Low
Task Complexity High

47.633
37.267

Collaborating Pair
Task Complexity Low
Task Complexity High

73.767
49.200

 121

In the ANCOVA model tested for significance earlier, interactions between the

two factors (individual or group and task complexity) were found to be not significant

(p=0.182). In ANCOVA models when there are no significant interactions, factor means

could be compared based on significance of the main factors. When the interactions

were not significant, no meaningful information could be obtained by comparing the

cell means. Hence, hypothesis 4 is not supported. It can therefore be said that the

difference in performance in terms of software quality between the collaborating pair

and the best programmer in nominal group is not significantly different between tasks

of different complexity. Figure 5.5 shows a plot of the marginal means of software

quality for tasks of low and high complexity.

Estimated Marginal Means of Software Quality

IndOrTeam

321

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

80

70

60

50

40

30

Task Complexity

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Collaborating pair

Figure 5.5 – Marginal Means of Software Quality in t
tasks of Low and High Complexity

5.2.2 Hypotheses Concerning Task Mental Model

In this section, hypotheses 2 and 6 are examin

MANCOVA models and the resultant comparisons of means

 122
 1

 2

Low

High

he Three Conditions for

ed which involve only

 on one of the dependent

variables, namely task mental model. Table 5.16 shows the results of Bonferroni’s

custom contrast report of task mental model means. Bonferroni’s procedure was used

as it is considered superior to other multiple inference procedures when the family of

inferences is finite (about the same as the number of factor levels or less) and could be

specified in advance (Neter et al., 1996). Task mental model was estimated as the

similarity between the mental models of individual subjects and the expert mental

model of the problem solution.

Table 5.16 – Bonferroni’s Custom Contrast Report of Task Mental Model at
Alpha = 0.05

Factor
Level

Mean Standard
Deviation

 1 2 3 4
1 0.493 0.107 1
2 0.347 0.117 2
3 0.461 0.973 3 p=0.172 p=0.000*
4 0.333 0.109 4 p=0.476

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Best programmer in collaborating pair
4 – Second-best programmer in collaborating pair
* significant at alpha = 0.05

5.2.2.1 Hypothesis 2a

H2a - While working on a programming task, task mental model of the best

programmer of a collaborating pair is better than the task mental model of the

best programmer in a nominal pair

 Table 5.17 shows the relevant means.

 123

Table 5.17 – Means for Task Mental Model (A)

Factor Level

Means

Best Programmer in Nominal Pair 0.493
Best Programmer in Collaborating Pair 0.461
* significant at alpha = 0.05

The task mental model of the best programmer of the collaborating pair was not

found to be better than the task mental model of the best programmer in the nominal

pair at alpha = 0.05 (p = 0.914 in a one-tailed test). Hypothesis 2a is therefore not

supported. Hence it can be inferred that the task mental model of the best programmer

in the collaborating pair is comparable to that of the best programmer in nominal pair.

5.2.2.2 Hypothesis 2b

H2b - While working on a programming task, task mental model of the best

programmer of a collaborating pair is better than the task mental model of the

second-best programmer in a nominal pair

Table 17 shows the relevant means and pairwise comparisons

Table 5.18 – Means for Task Mental Model (B)

Factor Level

Means

Second-best Programmer in Nominal Pair 0.347
Best Programmer in Collaborating Pair 0.461*
* significant at alpha = 0.05

The task mental model of the best programmer of the collaborating pair was

found to better than the task mental model of the second-best programmer in the

nominal pair (p = 0.000 in a one-tailed test). Hypothesis 2b is therefore fully supported.

 124

It can therefore be said that the task mental model of the best programmer in the

collaborating group is better than that of the second-best programmer in the nominal

pair and is comparable to that of the best programmer in nominal pair.

5.2.2.3 Hypothesis 2c

H2c - While working on a programming task, task mental model of the second-

best programmer of a collaborating pair is better than the task mental model of

the second-best programmer in a nominal pair

Table 5.19 shows the relevant means.

Table 5.19 – Means for Task Mental Model (C)

Factor Level

Means

Second-best Programmer in Nominal Pair 0.347
Second-Best Programmer in Collaborating Pair 0.333
* significant at p=0.05

The task mental model of the second-best programmer of the collaborating pair

was not found to be better than the task mental model of the second-best programmer in

the nominal pair at alpha = 0.05 (p = 0.762 in a one-tailed test). Hypothesis 2c is

therefore not supported. It can therefore be said that the task mental model of the

second-best programmer in the collaborating group is comparable to that of the second-

best programmer in nominal pair. Figure 5.6 shows a plot of the marginal means of task

mental model.

 125

Estimated Marginal Means of Task Mental Model

Person

4321

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

Figure 5.6 – Marginal Means of Task Mental Model

5.2.2.4 Hypothesis 6

H6 - While working on a programming task, the difference between the task

mental models of best programmer in the collaborating pair and the best

programmer in the nominal pair is higher for tasks of high complexity than for

tasks of low complexity.

Table 5.20 shows the relevant means.

Table 5.20 – Means for Task Mental Model (D)

Treatment Level Means
Best Programmer in Nominal Pair

Task Complexity Low
Task Complexity High

0.510
0.478

Second-best Programmer in Nominal Pair
Task Complexity Low
Task Complexity High

0.406
0.288

Best Programmer in Collaborating Pair
Task Complexity Low
Task Complexity High

0.511
0.408

Second-best Programmer in Collaborating Pair
Task Complexity Low
Task Complexity High

0.407
0.252

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Best programmer in collaborating pair
4 – Second-best programmer in collaborating pair

 126

In the MANCOVA model tested for significance earlier, interactions between

the two factors (person and task complexity) were found to be not significant (p =

0.103). Hence, hypothesis 4 is not supported. In ANCOVA models when there are no

significant interactions, factor means could be compared depending upon significance

of the main factors. When the interactions are not significant, no additional information

could be obtained by comparing the cell means. It can therefore be said that the

difference in task mental model between the best programmer in the collaborating pair

and the best programmer in nominal pair is not significantly different between tasks of

differing complexities. Figure 5.7 shows a plot of the marginal means of task mental

model for tasks of low and high complexity.

Estimated Marginal Means of Task Mental Model

Person

4321

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

Task Complexity

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Best programmer in collaborating pair
4 – Second-best programmer in collaborating pa

Figure 5.7 – Marginal Means of Task Mental Model fo
Complexity

 127
 1

 2

Low

High

ir

r Tasks of Low and High

5.2.3 Hypotheses Concerning Overall Satisfaction

In this section, Hypotheses 3 is examined which involves MANCOVA models

and the resultant comparisons on one of the dependent variables, namely overall

satisfaction. Table 5.21 shows the results of Bonferroni’s custom contrast report of the

overall satisfaction means. Overall satisfaction was estimated as the summated score on

four items.

Table 5.21 – Bonferroni’s Custom Comparison Report of Overall Satisfaction at
Alpha = 0.05

Factor Level Mean SD

 1 2 3 4
1 3.590 1.473 1
2 3.590 1.424 2
3 4.190 1.559 3 p=0.117 p=0.110
4 4.790 1.565 4 p=0.002*

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Best programmer in collaborating pair
4 – Second-best programmer in collaborating pair
* significant at p=0.05

5.2.3.1 Hypothesis 3a

H3a - While working on a programming task, the overall satisfaction of the best

programmer in a collaborating pair is higher than the overall satisfaction of the

best programmer in a nominal pair

 Table 5.22 shows the relevant means.

Table 5.22 – Means for Overall Satisfaction (A)

Factor Level

Means

Best Programmer in Nominal Pair 3.59
Best Programmer in Collaborating Pair 4.19
* significant at p=0.05

 128

The overall satisfaction of the best programmer of the collaborating pair was not

found to be higher than the overall satisfaction of the best programmer in the nominal

pair at alpha = 0.05 (p = 0.059 in a one-tailed test). Hypothesis 3a is therefore not

supported. It can therefore be inferred that the overall satisfaction of the best

programmer in the collaborating pair is comparable to that of the best programmer in

the nominal pair.

5.2.3.2 Hypothesis 3b

H3b - While working on a programming task, the overall satisfaction of the best

programmer in a collaborating pair is higher than the overall satisfaction of the

second-best programmer in a nominal pair

 Table 5.23 shows the relevant means.

Table 5.23 – Means for Overall Satisfaction (B)

Factor Level

Means

Second-best Programmer in Nominal Pair 3.59
Best Programmer in Collaborating Pair 4.19
* significant at p=0.05

The overall satisfaction of the best programmer in the collaborating pair was not

found to be higher than the overall satisfaction of the second-best programmer in the

nominal pair at alpha = 0.05 (p = 0.055 in a one-tailed test). Hypothesis 3b is therefore

not supported. It can therefore be concluded that the overall satisfaction of the best

 129

programmer in the collaborating group is comparable to that of the second-best

programmer in the nominal pair.

5.2.3.3 Hypothesis 3c

H3b - While working on a programming task, the overall satisfaction of the

second-best programmer in a collaborating pair is higher than the overall

satisfaction of the second-best programmer in a nominal pair

 Table 5.24 shows the relevant means.

Table 5.24 – Means for Overall Satisfaction (C)

Factor Level

Means

Second-best Programmer in Nominal Pair 3.59
Second-best Programmer in Collaborating Pair 4.79*
* significant at p=0.05

The overall satisfaction of the second-best programmer in the collaborating pair

was found to be higher than the overall satisfaction of the second-best programmer in

the nominal pair at alpha = 0.05 (p = 0.001 in a one-tailed test). Hypothesis 3c is

therefore fully supported. It can therefore be said that the overall satisfaction of the

second-best programmer in the collaborating group is higher than that of the second-

best programmer in the nominal pair (Figure 5.8).

5.2.4 Hypotheses Concerning Confidence in Solution

In this section, Hypothesis 4 is examined which involves MANCOVA model and the

resultant comparisons on one of the dependent variables, namely confidence in solution.

 130

Estimated Marginal Means of Satisfaction

Person

4321

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

5.0

4.8

4.6

4.4

4.2

4.0

3.8

3.6

3.4

Figure 5.8 – Marginal Means of Overall Satisfaction

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Best programmer in collaborating pair
4 – Second-best programmer in collaborating pair

5.2.4.1 Hypothesis 4a

H4a - While working on a programming task, the confidence in solution of the

best programmer in a collaborating pair is higher than the confidence in

solution of the best programmer in a nominal pair

Table 5.25 shows the results of tests for significance in the ANCOVA model for

the main effect and the interaction effect for the dependent variable of confidence in

solution. As can be seen from the table, both the main effect and the interaction effect

were significant. When interactions are significant and important, then it is only

meaningful to interpret cell means and not the factor means (Neter et al., 1996). Hence

the hypotheses for the main effect of confidence in solution were tested in terms of the

sub-hypotheses involving differences in the cell means. That is the hypotheses were

tested separately for the two levels of Task complexity.

 131

Table 5.25 – Result of Test for Interactions

Dependent Variable Person Task Complexity Interaction

Confidence in Solution 4.081 (0.009*) 2.326 (0.130) 4.447 (0.006*)

Figure 5.9 shows the plot of marginal means of confidence in solution (main

effect) and Figure 5.10 shows the plot of marginal means of confidence for tasks of low

and high complexity. It can be seen that the interaction between person and confidence

is disordinal with mean difference between confidence levels for complex and simple

tasks being positive or negative for different types of person.

Estimated Marginal Means of Confidence

Person

4321

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.4

.2

-.0

-.2

-.4

-.6

Figure 5.9 – Marginal Means of Confidence in Solution

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Best programmer in collaborating pair
4 – Second-best programmer in collaborating pair

 132

Estimated Marginal Means of Confidence

Person

4321

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

1.0

.5

0.0

-.5

-1.0

Task Complexity

1 – Best programmer in nominal pair
2 – Second-best programmer in nominal pair
3 – Best programmer in collaborating pair
4 – Second-best programmer in collaborating pair

Figure 5.10 – Marginal Means of Confidence in So
Low and High Complexity

Table 5.26 shows the post-hoc Bonferroni’s multiple

cell means for the dependent measure of confidence in solut

technique (e.g. Bonferroni’s) was chosen to help control fo

across the family of tests (Neter et al., 1996).

Hypotheses 4a was divided into two sub hypotheses 4

significance as given below:

Hypothesis 4a-1 - While working on a programming

confidence in solution of the best programmer in a co

than the confidence in solution of the best programme

 133
 1

 2

Low

High

lution for Tasks of

 comparison test results of

ion. A multiple comparison

r the confidence coefficient

a-1 and 4a-2 and tested for

task of low complexity, the

llaborating pair is higher

r in a nominal pair

Table 5.26 – Bonferroni’s Multiple Comparison Test of Cell Means for Confidence in
solution

Treatment

Cell
Mean SD Cell “ * ” Significant, “ -- " Insignificant

 11 21 31 41 12 22 32 42
11 -0.776 0.796 11
21 0.213 0.796 21 --
31 0.391 1.036 31 * --
41 0.708 0.778 41 * -- --
12 -0.011 0.585 12 -- -- -- --
22 -0.525 0.950 22 -- -- -- * --
32 0.126 1.203 32 -- -- -- -- -- --
42 -0.110 0.957 42 -- -- -- -- -- -- --

Legend
11 – Best programmer in nominal pair
21 – Second-best programmer in nominal pair
31 – Best programmer in collaborating pair
41 – Second-best programmer in collaborating pair
12 – Best programmer in nominal pair
22 – Second-best programmer in nominal pair
32 – Best programmer in collaborating pair
42 – Second-best programmer in collaborating pair

Low Task Complexity
Low Task Complexity
Low Task Complexity
Low Task Complexity
High Task Complexity
High Task Complexity
High Task Complexity
High Task Complexity

* significant at alpha = 0.05

Table 5.27 shows the relevant treatment means.

Table 5.27 – Treatment Means for Confidence in Solution for
Cells 11 and 31

Person

Task

Complexity
Means

1 - Best Programmer in Nominal Pair 1- Low -0.776
3 - Best Programmer in Collaborating Pair 1- Low 0.391*
* significant at alpha=0.05

While working on tasks of low complexity, the confidence in solution of the best

programmer in the collaborating pair was found to be higher than the confidence in

 134

solution of the best programmer in the nominal pair at alpha = 0.05 (p < 0.025 in a one-

tailed test). Hypothesis 4a-1 is therefore fully supported.

H4a-2 - While working on a programming task of high complexity, the

confidence in solution of the best programmer in a collaborating pair is higher

than the confidence in solution of the best programmer in a nominal pair

Table 28 shows the relevant treatment means and pairwise comparisons

Table 5.28 – Treatment Means for Confidence in Solution for
Cells 12 and 32

Person

Task

Complexity
Means

1 - Best Programmer in Nominal Pair 2 - High -0.011
3 - Best Programmer in Collaborating Pair 2 - High 0.126
* significant at p=0.05

While working on tasks of high complexity, the confidence in solution of the

best programmer in the collaborating pair was found to be not higher than the

confidence in solution of the best programmer in the nominal pair at alpha = 0.05.

Hypothesis 4a-1 is therefore not supported.

In view of the mixed results for the two sub-hypotheses involving treatment

means, the main hypothesis of 4a involving comparison of factor means is considered as

not supported.

5.2.4.2 Hypothesis 4b

H4b - While working on a programming task, the confidence in solution of the

best programmer in a collaborating pair is higher than the confidence in

solution of the second-best programmer in a nominal pair

 135

In view of significant interactions between the two factors, Hypotheses 4b is

divided into two sub hypotheses 4b-1 and 4b-2 and tested for significance as given

below:

H4b-1 - While working on a programming task of low complexity, the

confidence in solution of the best programmer in a collaborating pair is higher

than the confidence in solution of the second-best programmer in a nominal pair

Table 5.29 shows the relevant treatment means.

Table 5.29 – Treatment Means for Confidence in Solution for
Cells = 21 and 31

Person

Task

Complexity
Means

2 - Second-best Programmer in Nominal Pair 1 - Low 0.213
3 - Best Programmer in Collaborating Pair 1 - Low 0.391
* significant at p=0.05

While working on tasks of low complexity, the confidence in solution of the best

programmer in the collaborating pair was not found to be higher than the confidence in

solution of the second-best programmer in the nominal pair at alpha = 0.05. Hypothesis

4b-1 is therefore not supported.

H4b-2 - While working on a programming task of high complexity, the

confidence in solution of the best programmer in a collaborating pair is higher

than the confidence in solution of the second-best programmer in a nominal pair

Table 5.30 shows the relevant treatment means.

 136

Table 5.30 - Treatment Means for Confidence in Solution for
Cells 22 and 32

Person

Task

Complexity
Means

2 - Second-best Programmer in Nominal Pair 2 - High -0.525
3 - Best Programmer in Collaborating Pair 2 - High 0.126
* significant at p=0.05

While working on tasks of high complexity, the confidence in solution of the

best programmer in the collaborating pair was not found to be higher than the

confidence in solution of the second-best programmer in the nominal pair at alpha =

0.05. Hypothesis 4b-2 is therefore not supported.

As the two sub-hypotheses involving treatment means were not supported, the

main hypothesis of 4b involving comparison of factor means is considered not

supported.

Therefore while working on a programming task, the confidence in solution of

the best programmer in collaborating pair is not higher than the confidence in solution

of the second-best programmer in the nominal pair

5.2.4.3 Hypothesis 4c

Hypothesis 4c - While working on a programming task, the confidence in

solution of the second-best programmer in a collaborating pair is higher than

the confidence in solution of the second-best programmer in a nominal pair

In view of significant interactions between the two factors, Hypotheses 4c is

divided into two sub hypotheses 4c-1 and 4c-2 and tested for significance as given

below:

 137

H4c-1 - While working on a programming task of low complexity, the

confidence in solution of the second-best programmer in a collaborating pair is

higher than the confidence in solution of the second-best programmer in a

nominal pair

Table 5.31 shows the relevant treatment means and pairwise comparisons

Table 5.31 – Treatment Means for Confidence in Solution for Cells 21 and 41

Person Task Complexity Means
2 - Second-best Programmer in Nominal Pair 1 - Low 0.213
4 – Second best Programmer in Collaborating Pair 1 - Low 0.708
* significant at p=0.05

While working on tasks of low complexity, the confidence in solution of the

second-best programmer in the collaborating pair was not found to be higher than the

confidence in solution of the second-best programmer in the nominal pair at alpha =

0.05. Hypothesis 4c-1 is therefore not supported.

H4c-2 - While working on a programming task of high complexity, the

confidence in solution of the second-best programmer in a collaborating pair is

higher than the confidence in solution of the second-best programmer in a

nominal pair

Table 5.32 shows the relevant treatment means and pairwise comparisons

Table 5.32 - Treatment Means for Confidence in Solution for Cells 22 and 42

Person Task Complexity Means

2 - Second-best Programmer in Nominal Pair 2 - High -0.525
4 – Second-best Programmer in Collaborating Pair 2 - High -0.110
* significant at p=0.05

 138

While working on tasks of high complexity, the confidence in solution of the

second-best programmer in the collaborating pair was not found to be higher than the

confidence in solution of the second-best programmer in the nominal pair at alpha =

0.05. Hypothesis 4c-2 is therefore not supported.

As the two sub-hypotheses involving treatment means were not supported, the

main hypothesis of 4c involving comparison of factor means is considered not

supported.

Therefore while working on a programming task, the confidence in solution of

the second-best programmer in collaborating pair is not higher than the confidence in

solution of the second-best programmer in the nominal pair.

5.2.5 Summary of Hypotheses Testing

Three hypotheses in all were fully supported. For one hypothesis (Hypotheses

4a) there was mixed support with the hypothesis supported for tasks of low complexity

but not for tasks of high complexity. The results of hypotheses testing are summarized

in Table 5.33. A complete discussion on the reasons for exceptions is presented in

chapter 6.

 139

Table 5.33 - Results of Hypotheses Testing

Hypothesis Description Result
1a While working on a programming task, performance in terms of

software quality of a collaborating pair is higher than the performance
of best programmer in a nominal pair

Not Supported

1b While working on a programming task, performance in terms of
software quality of a collaborating pair is higher than the second-best
programmer in a nominal pair

Supported

2a While working on a programming task, the task mental model of the
best programmer of a collaborating pair is better than the task mental
model of the best programmer in a nominal pair

Not Supported

2b While working on a programming task, the task mental model of the
best programmer of a collaborating pair is better than the task mental
model of the second-best programmer in a nominal pair

Supported

2c While working on a programming task, the task mental model of the
second-best programmer of a collaborating pair is better than the task
mental model of the second-best programmer in a nominal pair

Not Supported

3a While working on a programming task, the overall satisfaction of the
best programmer in a collaborating pair is higher than the overall
satisfaction of the best programmer in a nominal pair

Not Supported

3b While working on a programming task, the overall satisfaction of the
best programmer in a collaborating pair is higher than the overall
satisfaction of the second-best programmer in a nominal pair

Not Supported

3c While working on a programming task, the overall satisfaction of the
second-best programmer in a collaborating pair is higher than the
overall satisfaction of the second-best programmer in the nominal pair

Supported

4a While working on a programming task, the confidence in solution of
the best programmer in a collaborating pair is higher than the
confidence in solution of the best programmer in a nominal pair

Not Supported

4b While working on a programming task, the confidence in solution of
the best programmer in a collaborating pair is higher than the
confidence in solution of the second-best programmer in a nominal
pair

Not Supported

4c While working on a programming task, the confidence in solution of
the second-best programmer in a collaborating pair is higher than the
confidence in solution of the second-best programmer in a nominal
pair

Not Supported

5 While working on a programming task, the difference in performance
in terms of software quality between a collaborating pair and the best
programmer in a nominal pair is higher for tasks of high complexity
than for tasks of low complexity.

Not Supported

6 While working on a programming task, the difference between the task
mental models of best programmer in a collaborating pair and the best
programmer in a nominal pair is higher for tasks of high complexity
than for tasks of low complexity.

Not Supported

 140

5.3 Manipulation Checks

Manipulation check questions were asked to determine whether subjects

correctly perceived the treatment condition they were assigned randomly to. One

question was asked to check whether the subjects worked individually (nominal pair) or

with a partner (collaborating pair). This was to verify after the experiment that subjects’

responses were consistent with their allotted conditions, and correct questionnaires

pertaining to their treatments were administered to them. A cursory check revealed that

there were no discrepancies between the condition allotted to the subjects and their

responses regarding the condition they were in.

The perceived difficulty of the experimental task was elicited from the subjects

in terms of two sets of questions. In the first set of two questions subjects were asked to

judge the difficulty of the experimental task in an absolute sense on a scale of 1-7. In

the second set of two questions subjects were asked to judge the difficulty of the

experimental task with that of the warm-up task. Warm up task used was common

across treatments. As difficulty is perceived as a subject x complexity interaction, the

second set of questions involving comparison with the warm up task was expected to

better serve the purpose of manipulation check. Table 5.34 provides results of one-way

ANOVA tests for the difference in the means of perceived task difficulty across the

treatments involving tasks of low and high complexity. Both the manipulation check

measures were significantly different between factor levels of low and high task

complexity. Hence, there is no reason to doubt the effectiveness of the manipulation of

task complexity across treatment conditions.

 141

Table 5.34 - One-way ANOVA results for Manipulation Check

Manipulation Check Measure Reliability Task complexity
Low

Task complexity
High

F
(p-value)

 Mean SD Mean SD
Perceived task difficulty
 Absolute terms

 Compared to warm up task

0.822

0.868

3.856

4.283

1.339

1.240

4.644

5.195

1.207

1.178

11.273

(0.001*)
16.895

(0.000*)
*significant at alpha = 0.05

The next chapter discusses the summary of the research findings along with

significance of the findings. The limitations of the study and possible future research

extensions are also presented.

 142

CHAPTER 6

SUMMARY, LIMITATIONS AND FUTURE RESEARCH

Pair programming is an important practice in agile methodologies such as XP.

The growing adoption of pair programming in software projects is evident from a recent

global survey, which indicated of its use in 35% of 104 projects sampled. The adoption

has been highest in India (58.3% of projects sampled) followed by US (35.5%), Europe

(27.2%) and Japan (22.2%) (Cusumano, MacCormack, Kemerer, & Crandall, 2003).

Proponents of XP believe in the effectiveness of pairing and underscore its

importance as a core practice in XP. The continuous inspection of code inherent in pair

programming helps facilitate other XP practices such as simple design, collective code-

ownership, minimal documentation, small releases, and continuous integration.

Anecdotal evidence and evidence from some empirical studies highlighted the

benefits of pair programming such as improved code readability, reduction in errors in

the code, higher satisfaction and higher reported confidence in the generated solution by

the programmers. After some jelling period, the additional time taken for completion by

pair programmers to arrive at the software solution was also found to be not

significantly different from the time taken by the individual programmers (Nosek, 1998;

Williams, 2000). These studies are extensively cited as evidence for the effectiveness of

pair programming. There are other studies conducted using student projects in

 143

programming courses of computer science departments that reported benefits of pair

programming such as improved retention of students in introductory programming

courses, and reduction in the burden on the lab instructors as pairs helped each other

(Nagappan et al., 2003).

A subsequent experimental study suggested that pair programming as in XP

might not be as efficient as claimed by the previous studies. It was argued that XP is an

expensive practice as the time taken is significantly higher than that of individual

programming with no significant benefits in terms of reduction in defect rates

(Nawrocki & Wojciechowski, 2001). The initial positive evidence for effectiveness of

pair programming however needed to be empirical confirmed and extended through

rigorously conducted experimental studies. This is considered particularly important in

view of some mixed results reported in previous research studies.

Small group research literature has grappled for a long time with the issue of

effectiveness of individuals and groups on various tasks including problem-solving

tasks. A robust finding of this stream of research was that in intellective problem

solving tasks, groups typically outperform average individuals but rarely exceed the

performance of best individuals (Hill, 1982). Most research designs used for

comparison of group effectiveness over individuals both in small group research and in

IS research made comparison between groups and equal number of independently

working individuals. Such designs allow comparison of group performance with that of

an average individual. Group superiority over average individuals is expected based on

probabilities alone, as groups are likely to have at least one good problem solver who

 144

could lead the group to the solution (Hill, 1982). A more illuminating research question

would be to compare group performance with the best individual or the second-best

individual in nominal groups. Using nominal group designs some recent small group

research studies have shown that on certain problem solving tasks involving high

information processing requirements, groups could potentially outperform best

individuals [e.g. Letters to numbers tasks used in Laughlin et. al (Laughlin et al., 2002;

Laughlin et al., 2003) studies].

We consider that programming task involves high information processing

requirements. Similar to Laughlin’s letters to numbers tasks, there could be ‘assembly-

bonus’ effect when pairs collaboratively develop software code. We expected that the

conditions of demonstrability required for groups to generate the ‘assembly-bonus’

effect would be available to a sufficient extent when programmers collaboratively work

in pairs to develop software code.

It is also expected that when pairs work on the task, they may explore the

problem domain better, which should lead to a better solution. Mental model is a

construct that could capture programmers understanding of the programming task

domain. The understanding reflected in the mental model is expected to drive code

implementation and the resulting quality of solution. Mental models are used in

cognitive psychology and human computer interaction studies to capture the

understanding of individuals’ knowledge of the systems and problem situations to

predict performance. Task mental model could help capture whether pairs have better

understanding of the situation over individual programmers.

 145

There is some evidence in small group research suggesting that benefits of group

work increase with increase in complexity of group task. Proponents of XP and agile

methodologies have also speculated that benefits of pair programming should

accentuate with increase in the complexity of programming task.

In light of the above, this research endeavored to examine whether programming

pairs outperform independently working best and second-best programmers of nominal

pairs in terms of software quality achieved. A related question was whether pairs

develop superior task mental models compared to their independently working

counterparts. The research hypotheses in this study were built on theoretical and

empirical underpinnings from small group research and cognitive psychology domains.

The findings of the study suggested that pairs approach the performance of best

individuals but do not outperform them.

6.1 Summary of Research Findings

This section discusses the experimental results on the effect of pair programming

on software quality, task mental model, overall satisfaction, and confidence in solution.

6.1.1 Software Quality

The findings of this study suggest that while working on a programming task,

performance in terms of software quality of a collaborating pair is higher than the

performance of second-best programmer in nominal pair, but is comparable to that of

the best programmer in nominal pair. The best individual’s performance is in fact

marginally higher than that of the pair, though the difference was not statistically

significant. To the best of our knowledge, no previous IS study has attempted such

 146

comparisons using nominal groups. Hence we cannot comment on the plausibility of

this finding from previous IS research. This finding is however consistent with the

general finding in small group research that suggests groups to be rarely better than the

best individuals. Research comparing group performance with equal number of

individuals showed that groups perform at the level of the best individual member or

best group member on problem solving tasks with highly demonstrable solutions as in

mathematical, insight, and rule induction problems. On tasks involving weakly

demonstrable estimations of quantities, groups perform at the level of the average

individual (Laughlin et al., 2002). Groups could potentially outperform best individuals

in intellective tasks with high information processing requirements. Four conditions of

demonstrability identified in literature were: a) availability of sufficient information; b)

group consensus on a conceptual system; c) incorrect members being able to correct

response when proposed; d) correct members having sufficient time, ability and

motivation to demonstrate the correct response to other members. With increasing

demonstrability, problem-solving groups are expected to show distinctly superior

performance over individuals (Laughlin, VanderStoep, & Hollingshead, 1991).

In the present study, we could speculate on some potential reasons for pairs not

outperforming the best individuals. First, the effect even when present could be small

and realized only in conditions of high solution demonstrability. Second, the conditions

of solution demonstrability may not be available to the desired extent in the

experimental setting: availability of sufficient information and best member in the

group having sufficient abilities to demonstrate the solution to the partner.

 147

Demonstrability of the task is a function of not only the task but also of the group

members and the decision environment. The same task could be judgmental to low-

ability members under time pressure while it could be intellective for high ability

members with infinite time (Zarnoth & Sniezek, 1997). Student programmers typically

have problem remembering the syntax of the programming language. Though access to

online documentation is provided, they may lack familiarity and expertise in getting to

the required help resource or correctly interpreting it. Though subjects working

independently in nominal groups also experience similar problem, this particularly

reduces the level of solution demonstrability that is so crucial for realizing group

superiority over the best individuals. It is again speculated that certain minimum

competency levels may be required of the programmers to realize this effect. Third,

anecdotal evidence from previous IS studies that used multiple student projects during a

semester suggests the importance of initial ‘jelling period’ for the pairs to click as a

team. It is only after the ‘jelling period’ that pairs start to show performance

improvements expected of them (Williams, 2000). In the present study, a warm up task

of short duration (15 minutes) was used before the main task to allow the subjects to get

familiarized with the procedures, setting, and with the partners when present. This

would not be sufficient time for the pairs to jell. Longitudinal repeated measure designs

would be required for the ‘pair jelling’ effect to be tested.

The relative performance differences between groups and individuals in nominal

pairs were found to be consistent across tasks of different levels of complexity. That is

task complexity was not found to have a moderating effect on the effect of

 148

individual/pair programming on the software quality. In fact it is noticed that software

quality of pair suffered marginally compared to that of the individuals when working on

complex task, though the difference was not significant. It is again speculated that

process losses were higher when pairs worked on complex tasks. When the solution

demonstrability was not high in the experimental condition due to the reasons

articulated above, the process losses could outweigh process gains.

6.1.2 Task Mental Model

In addition to software quality, performance was also measured in terms of the

task mental model. We conceptualized mental model as including the structural and

relational information relevant to the programming task. For the purpose of this study

we conceptualized task mental model as the similarity between programmer’s and the

experts’ networks of the structural and relational information relevant to the

programming task. It represented the programmer’s level of understanding of the

relationships between various objects, attributes, and behaviors (methods) of the

problem task. Unlike software quality, which was evaluated at the group level, task

mental model was measured at the individual level for subjects in both collaborating

and nominal pairs.

The findings of this study suggest that while working on a programming task,

the task mental model of the best programmer of the collaborating pair is better than the

task mental model of the second-best programmer in the nominal pair, but is

comparable to that of the best programmer in the nominal group. This relationship was

found to be consistent across tasks of different levels of complexity. This finding is also

 149

consistent with the previous finding concerning software quality. The best programmer

in the pair condition did not outperform the best individual in the nominal pair as

hypothesized. We again speculate the reasons behind this finding to be very similar to

the discussion in the previous section. That is, solution demonstrability may not be

adequate in the pair condition for the pair superiority to be realized. Again in the

absence of high levels of solution demonstrability, process losses could match or

outweigh process gains when pairs work on complex tasks. Thus the hypothesized

moderating effect of task complexity was also not found.

6.1.3 Overall Satisfaction

An interesting finding of the study is that best programmers in the collaborating

pairs have comparable levels of overall satisfaction as the best and second-best

individuals in the nominal pairs, while second-best programmers among collaborating

pairs have higher satisfaction than second-best individuals in the nominal pairs. Prior IS

research findings, and findings from small group research suggested that group work is

generally more satisfying. A post-hoc comparison indicated that second-best individuals

among collaborating pair were more satisfied than even the best individuals in the

nominal pair. The best programmers in the collaborating pairs also reported marginally

higher satisfaction than programmers in the nominal groups, though the difference was

not statistically significant. It is plausible that second-best programmers among the

collaborating pairs were more satisfied, as they were able to perform at significantly

higher levels in the group than they would when performing individually.

 150

6.1.4 Confidence in Solution

Task complexity had a significant moderating effect on the effect of individual/

pair programming on the programmers’ confidence in their solutions. This was not

hypothesized for lack of prior insights into this interaction effect. An interesting finding

of the study based on post-hoc analysis was that the best programmers among

collaborating pairs have higher confidence in their solution than best programmers in

nominal pair when task complexity is low, but not when it is high. As discussed in the

previous sections, with increasing task complexity, solution demonstrability levels

could potentially go down especially if the abilities or information is lacking to tackle

the problem, thus increasing the judgmental content (no right answers) of the task. An

important finding in small group research is that confidence and accuracy

(performance) are highly correlated for intellective tasks, but not for judgmental tasks.

It is reasoned that in judgment tasks, it is difficult to be sure of the accuracy of a

judgmental response and to convince others of it (Zarnoth & Sniezek, 1997). Coupled

with the process losses inherent in group working that could affect pair performance,

the best programmers in collaborating pairs have no extra means of bolstering their

confidence over best programmers working alone. This could possibly explain the lack

of significant differences in the confidence levels of best programmers in the

collaborating pairs and nominal pairs for complex tasks.

6.2 Significance of Findings

This study makes significant contributions in understanding the effectiveness of

pair programming. First, collaborating pairs were found to produce software solutions

 151

of significantly better quality than second-best programmers working individually in

nominal group, but of comparable quality as the solutions of best programmers working

individually.

Second, best programmers among collaborating pairs develop significantly

better understanding of the problem domain reflected in their task mental model

compared to the second-best individuals working individually in nominal pairs. Their

mental models were however comparable to that of the best programmers in the

nominal groups.

Third, best programmers in the collaborating pairs have comparable levels of

overall satisfaction as the best and second-best individuals in the nominal groups, while

second-best programmers among collaborating pairs have higher satisfaction than best

and second-best individuals in the nominal pairs.

Fourth, best programmers among the collaborating pairs have higher confidence

in their solution than best programmers in nominal pair when task complexity is low,

but not when it is high.

Fifth, by adopting nominal group design, this study has compared performance

and perceptual outcomes of best/second-best programmers among collaborating pairs

with best/second-best individual programmers in nominal pairs. Previous studies on pair

programming typically compared performance of pair with the performance of average

individual. Superiority of groups over average individuals is expected based on

probabilities alone, as groups are more likely than individuals to have at least one

exceptional programmer who could solve the problem at hand. This study has raised the

 152

bar for evaluating the effectiveness of pairs by demonstrating through a controlled

experiment that pair performance may not surpass that of the best individuals.

Sixth, this study drew theoretical perspectives from social psychology and

cognitive psychology and established sound theoretical underpinnings for evaluating the

performance effectiveness of pair programming.

For enhancing practice of pair programming in organizations, this study has made

the following contributions. First, pair programming could be used to achieve reduced

defect rate and higher software quality comparable to that of the solutions of the best

programmers, even when they do not have such programmers in sufficient numbers. It

is said that for effective software development, developers’ experience of building

systems is important in both agile and traditional software development teams. While in

traditional teams, about 25% to 33% of developers should be ‘experienced and

competent’ for project success, this figure could be much smaller in the range of about

10% in teams adopting pair programming, due to the mentoring involved (Lindvall et

al., 2002). Given the general shortage of exceptional software developers, pair

programming could be viewed as an insurance mechanism to achieve software quality

comparable to that produced by best programmers.

Second, pair programming contributes to increased satisfaction especially for the

low ability members. Though satisfaction does not contribute directly to the bottom

line, it is a necessary though not sufficient condition for employee productivity and

retention.

 153

6.3 Limitations of Study

The types of software developers simulated in this study were programmers

engaged in systems development in organizations. The student subjects used in this

study may not be truly reflective of programmers in the organizational settings. It is

reasonable to speculate that university students in general and undergraduate student

subjects in particular might be considerably different from real world programmers on

salient features such as age, education, intellect, and maturity. Also, many complex

situational variables of the work place may be absent in the sterile laboratory

environment. However we have no reason to doubt that the underlying cognitive and

psychological processes reflected in these findings operate very similarly in the

workplace. Social psychologists have examined the effectiveness of individuals and

groups on problem-solving tasks (e.g. with real world groups) and have reported similar

results.

 Some previous studies of pair programming had suggested that pair

performance improves after an initial ‘jelling’ period. This was however not simulated

in the present study except for providing a little adjustment time while working on a

warm up task of 15 minutes duration.

The time to completion of the problem task was not measured in the study. The

experimental task involved working on the programming task for a maximum of two

hours. In all, the experimental session required student participation for three hours. It is

reasonable to speculate that time pressure could have impacted the performance

outcomes. The time of 2 hours for the main experimental task was set based on pilot

 154

testing after seeking input from the subjects. There were some programmers who could

finish the task within the time limit. Having a longer experimental session was not

considered possible, as it would be difficult to maintain the motivation and interest of

subjects for such extended time.

6.4 Future Research Directions

Agile methodologies in general and pair programming in particular have

transformed programming from being a technical endeavor to a socio-technical

phenomena. Establishing the effectiveness of pair programming over individual

programming is the logical first step before seeking to understand the effect of other

contingent variables on this phenomenon.

Social psychologists have used performance of best individual in nominal group

as the benchmark for judging the performance effectiveness of groups over individuals.

This is a logical performance standard to be adopted in IS research to judge the

performance effectiveness of groups in general and programming pairs in particular. As

per the findings of the present study, this is difficult to achieve in pair programming.

However, examining the individual differences, contextual and process variables that

will help realize the ‘assembly-bonus’ effect in pair programming would be an

interesting and rewarding research program to pursue.

 Among the different individual difference variables, programmer’s ability holds

the maximum potential in realizing the ‘assembly bonus’ effect. Based on findings of

current research it is speculated that there may be certain minimum threshold of

programming ability required of the programmers being paired up to realize this effect.

 155

In general, the solution demonstrability for the problem task should be high for the pair

to potentially outperform best individuals. However solution demonstrability involves

not just task characteristics but also person characteristics. Among the conditions for

solution demonstrability articulated by Laughlin et. al. (Laughlin et al., 1991), ability

could hold the key to achieving higher demonstrability and thereby pair performance

superior to that of the best individuals. This is an interesting avenue to pursue with

potentially huge impact on software practice.

With the advent of agile methodologies, software development is undergoing

‘extreme makeover’. Software practice is in need of robust research findings to wade

through the methodological quagmire facing them. An enlightened perspective is

however needed that stresses rigorous and generalizable research to avoid such

deleterious consequences as wasted developer productivity, software project failures,

and operational disruptions caused by defective software.

 156

APPENDIX A

PROFESSOR’S CONSENT FOR STUDENTS’ PARTICIPATION

 157

Professor’s Consent for Students’ Participation
Dear Professor ________:

Venu Balijepally needs your help to complete his dissertation research. He wants the
students in your classes to participate in systems design/ programming experiments that
he will run this semester. You are requested to provide suitable course credit to
encourage student participation. The participation of the students is entirely voluntary.
If any student decides not to participate in the experiment, he/she may complete an
alternative written class assignment in Java. I hope you will encourage your students to
participate in these experiments and support Venu’s research efforts.
Thank you for your support.

Best regards,

RadhaKanta Mahapatra
Associate Professor
INSY Ph.D. Coordinator
Department of Information Systems &
Operations Management
The University of Texas at Arlington
Box 19437
Arlington, TX 76019-0437
Phone: 817 272-3590
Fax: 817 272-5801
Email: mahapatra@uta.edu

I consent to permit students in my section to take part in the research study.

Professor’s Signature _________________________ Date __________________

Professor’s Name _________________________

Course __________________ Section ______________________ Semester ________

 158

mailto:mahapatra@uta.edu

APPENDIX B

INFORMED CONSENT

 159

INFORMED CONSENT

In this study you will be asked to work on a problem involving programming in Java.
You may be working individually or with another partner. You will work initially on a practice
task before proceeding to work on the experimental task. An outline of the problem and some
java code will be provided to you. Using the given code you should do further coding to
implement the tasks given in the problem statement. After completing the task you will be
asked to complete a questionnaire about your reactions to working on the task. The total
experimental session will last approximately three hours.

Since you may be working with other people you may experience some emotional
discomfort, similar to what you could experience in the workplace when working on tasks of
this nature. Those discomforts may include fatigue, boredom or frustration when you work with
other people to solve problems.

The major benefits that you will receive from participation in this research are increased
familiarity with behavioral science research methods and exposure to specific software
development techniques. Additionally, you will be debriefed after the experiment and will
receive credit for your research participation and performance. You will also be included for
winning a lottery of $50, which will be drawn at the end of all the experiments. Also an amount
in cents equal to your performance grade in the task will be donated to the charity by the
investigator. The benefits to the investigator are increased understanding of performance
implications and reactions to programming in Java.

Your participation in this experiment is voluntary. If you decide not to participate in the
experiment, you may complete an alternative written class assignment in Java. If you find any
procedures objectionable you can withdraw your informed consent at any time during the
experiment without any penalty, but to fulfill an alternative written assignment in Java to be
provided by your course instructor. Records of your participation and any data collected will be
held in strict confidence. Only your teacher will be informed of your performance scores on the
task in order to give course credit.

This research study has been reviewed and approved by the University of Texas at
Arlington Institutional Review Board. In the event you are injured in the course of this study,
you may go to the UTA Health Service Center and be treated in the usual way, provided that
you are a student currently registered at UTA. Otherwise, you may be covered under optional
medical insurance that you carry. UTA does not offer any other compensation for injury.

This research is under the supervision of Dr. Radha Mahapatra. Dr. Mahapatra’s office
is room 502 of the Business Building, College of Business. His phone number is (817) 272-
3590. If you have any questions about your rights as a subject or about a research related injury,
you may contact the office of Research Compliance at 817-272-3723.

I had a chance to ask all questions regarding this study. I hereby consent to participate
in the experiment and understand the above procedures.

Signature ________________________ Print Name __________________________

Date ______________

 160

APPENDIX C

DEBRIEFING

 161

DEBRIEFING

In this study we were interested in examining the effectiveness of programming
individually versus programming in pairs. We were also interested to study the effect of
task complexity on the effectiveness of pair versus individual programming. We were
looking to see if working in pairs or individually affected the understanding of the task
domain, quality of programming solution, and overall task experience.

To examine this question we randomly selected which individuals are allotted to
the individual condition or the pair condition, and less complex task condition or more
complex task condition. The quality of your program, your overall understanding of the
task domain and overall satisfaction with the task performance will be used to judge the
effect of various factors on the effectiveness of pair versus individual programming.
Your grades based on the quality of software developed will be normalized with respect
to your experimental condition so that you are not penalized in any manner for lower
performance on a complex task.

We apologize if not meeting your expectations of the level of complexity of the
task given to you. We will be conducting this study with more students in the next few
months. It is vitally important to us and the success of this experiment that you keep the
information that you have learned here in confidence. Please do not tell anyone about
this experiment. We are confident that we can trust you. Thank you.

Please sign below to indicate that you understand this debriefing and that you
promise to keep what you have learned in confidence. Again, thank you very much for
your participation.

Signature ________________________ Print Name_________________________

Date ___________________

 162

APPENDIX D

INSTRUCTIONS FOR SUBJECTS

 163

INSTRUCTIONS FOR USING THE COMPUTER

Computer Login - You may log into the computer using “student login” option with
the password “user”. The laptops are standalone computers and are not connected to the
Internet.

Launching Notepad – If the Notepad is not already open on your computer, you may
open the Notepad application by double clicking the shortcut provided on the desktop.

Opening Command Window – If the command window is not already open, you may
launch it by clicking Windows Start button, then clicking “Run” option and typing
‘cmd’ in the Run window.

Opening Java API documentation – If the Java API documentation window is not
already open, you may launch it by double clicking the shortcut “Java 2 Platform API
Specification” provided on the desktop.

Opening Java class files of warm up task and subsequent experimental task – The
files for java classes are available in the floppy drive kept on your table. You may insert
the floppy in the floppy drive of the laptop computer and open these files. You may use
these files to develop code further as indicated in the problem statement. You are
finally required to save all the files on the floppy and leave it on the table in your
room. Please do not save any data onto the hard drive.

Compiling .java files – the code written in say Student.java file can be compiled by
typing the command “javac Student.java” at the command prompt.

Warm up Task – Warm up task is provided to give you a feel of the computer and the
environment. You are not expected to finish the warm up task in the 15 minutes of time
provided.

Main Experimental Task – In case you are not able to complete the experimental task
in the time provided (120 minutes), your performance would be still be evaluated to the
extent of features and coding completed. So, you may utilize the full time provided,
unless you are able to complete the task ahead of time.

 164

ADDITIONAL INSTRUCTIONS FOR NOMINAL PAIRS

Today you will work on the following: First, you will work on a practice task
involving coding in Java. The duration of the practice task is for 15 minutes. Then you
will work on an experimental problem involving developing code in Java to accomplish
the functionality described in the problem statement. The duration of this task is 120
minutes (2 hours). Your computer is loaded with Notepad and JDK5 for developing and
compiling your program. In both the warm up task and the main task, you are provided
with a program template, which may be used for developing code further. Also some
basic documentation on Java syntax is provided for some of the statements you may
have to use during coding. The documentation is however not exhaustive. You may
access Java API documentation that is available on the computer. There is a link
provided on the desktop, which may be used to launch it if it is not already opened on
your computer. While you may talk your ideas loud, you may not converse with any
other person during task performance. You may use paper and pencil during task
performance if you will. But the program coded in Notepad and saved as “.class” files
and compiled with JDK5 will be used for evaluating the performance.

The template files for various classes for the two tasks (warm up task and main
experimental task) are available in the floppy provided to you. You may modify these
program files in Notepad to accomplish the desired functionality. You may save these
files in the floppy finally after completion of the tasks. At the end of the experiment,
make sure that your program files are saved on to the floppy and the floppy left on the
table in your room.

 165

ADDITIONAL INSTRUCTIONS FOR COLLABORATING PAIRS

Today you will work on the following: First, you will work collaboratively on a
practice task involving coding in Java. The duration of the practice task is for 25 15
minutes. Then you will work on an experimental problem involving developing code in
Java to accomplish the functionality described in the problem statement. The duration
of this task is 120 minutes (2 hours). Your computer is loaded with Notepad and JDK5
for developing and compiling your program. In both the warm up task and the main
task, you are provided with a program template, which may be used for developing code
further. Also some basic documentation on Java syntax is provided for some of the
statements you may have to use during coding. The documentation is however not
exhaustive. You may access Java API documentation that is available on the computer.
There is a link provided on the desktop, which may be used to launch it if it is not
already opened on your computer. While you may talk your ideas loud, and converse
with your partner, you may not converse with any other person other than your partner
during task performance. You may use paper and pencil during task performance if you
will. But the program coded in Notepad and saved as .class files and compiled with
JDK5 will be used for evaluating the performance.

The template files for various classes for the two tasks (warm up task and main
experimental task) are available in the floppy provided to you. You may modify these
program files in Notepad to accomplish the desired functionality. You may save these
files in the floppy finally after completion of the tasks. At the end of the experiment,
make sure that your program files are saved on to the floppy and the floppy left on the
table in your room.

When working collaboratively on the programming task, you are required to
follow the following procedure. At any time, one of you will be acting as the driver
doing coding at the keyboard. The other person will act as the navigator, and assist the
partner by actively inspecting the code, and looking for errors of syntax or logic. You
may actively converse with each other to discuss the task at hand. Frequently at logical
points during coding, you should be switching roles. The driver programmer will take
on the role of the navigator and vice versa. Switching of roles can be done as often as
desired, but should certainly be done once every 15 minutes. I will be coming to you to
at about 15 minute intervals to remind you of switching. It is highly essential that you
frequently switch your roles and take turns with the keyboard.

 166

APPENDIX E

WARMUP TASK

 167

BANK APPLICATION

A banking application with two classes is provided to you. The application has
an Account class and an AccountTest class. The application creates two bank accounts
and implements methods for doing banking transactions such as money deposit and
withdrawal.

You are required to modify the classes suitably to accomplish the following:
a. A minimum balance of $200.00 for each bank account should be specified so

that money cannot be withdrawn beyond the minimum balance limit.
b. The account number should be generated automatically by the program for

each new account. In the present implementation the account numbers are
provided manually for each new account.

//class that tests the Account class
//has only one method - main(..)

public class AccountTest {
 public static void main(String[] args)
 {
 //First, test the default constructor
 Account firstAccount = new Account();
 //display it - balance and account number should be 0
 System.out.println(firstAccount); //account's toString() is
 //being tested by this

 //test the second constructor
 Account secondAccount = new Account(1, 500.00);
 //account number is 1 and initial balance is 500
 //display it
 System.out.println(secondAccount);

 //do some transactions on both
 firstAccount.deposit();
 firstAccount.withdraw();
 secondAccount.deposit();
 secondAccount.withdraw();

 //display new values
 System.out.println(firstAccount);
 System.out.println(secondAccount);
 } //end of main
} //end of class

 168

import java.util.*;

public class Account
{
 //This section defines the attributes. The following attributes are
 //typical of an account
 //1. accountNumber - this is declared as an integer. This establishes
 //an account object's identity because it is a unique identifier. This
 //should ideally be set automatically
 //2. balance - this is declared as a double. Each account object has its own
 //copy of balance. Therefore, balance is an instance variable.

 private int accountNumber;
 private double balance;

 //This section defines the methods for the class. We will have the following
 //methods:
 //Constructors to create an account object. There will be two of them:
 //First constructor: public Account() { ..} is the default constructor
 //Second constructor: public Account(int accountNumber, double balance) {,….}
 //The second constructor takes an account number and a balance as
 //parameters
 //withdraw() - method prompts the user for amount and deducts it from balance
 //deposit() - method prompts the user for amount and adds it to balance
 //getAmount(String prompt) a helper method used by withdraw() and deposit()
 //to get an amount to be withdrawn or deposited
 //toString() - method that converts an account to a string

 //default constructor
 public Account()
 {
 accountNumber = 0;
 balance = 0.0;
 }

 //second constructor

 public Account(int accountNumber, double balance)
 {
 this.accountNumber = accountNumber;
 this.balance = balance;
 }

 169

 //transactions to be performed by account
 public void withdraw()
 {
 double withdrawAmount;
 withdrawAmount = getAmount("Enter amount to withdraw: ");
 balance = balance - withdrawAmount;
 System.out.println("New balance is: " + balance);
 }

 public void deposit()
 {
 double depositAmount;
 depositAmount = getAmount("Enter amount to be deposited: ");
 balance = balance + depositAmount;
 System.out.println("New balance is: " + balance);
 }

 public double getAmount(String prompt)
 {
 System.out.print(prompt);
 Scanner input = new Scanner(System.in);
 return input.nextDouble();
 }

 //toString() to convert an account object to a string
 public String toString()
 {
 return "Account# " + accountNumber + "\n" +
 "Balance: " + balance + "\n";
 }

}

 170

APPENDIX F

EXPERIMENTAL TASK - LOW COMPLEXITY

 171

STUDENT GRADES

You are to complete an application that involves a Student class. An initial effort at
creating the Student class resulted in Student.java. Complete the methods in the Student
class. A brief description of these methods is shown below:

Student(String id, String name) – constructor for the Student class. The two parameters
are for initializing the student’s id and name

getScores() – A student has two exam scores. This method prompts the user for the
score on each of the exams.

computeAverage() – This method computes the average of the two exam scores and
returns the value

computeGrade() – The purpose of this method is to compute a letter grade based on the
average of the two exam scores. The grade calculation is as follows:
average score >= 90.0 is an ‘A’
average score between 80.0 and 89.99 is a ‘B’
average score between 70.0 and 79.99 is a ‘C’
average score between 60.0 and 69.99 is a ‘D’
average score < 60.0 is an ‘F’
Notice that the method returns a character.

toString() – This method is used to convert a student object to a String. It returns a
Student record as a string that contains the id, name, average score, and letter grade.

After you implement these methods, complete the StudentTest.java application. The
application creates three students objects and adds them to the array. It then gets the
exam scores for each of the students. Finally, display the three students in the following
format:
ID Name Average Grade

Example:
Assume that we have the following student objects:
Student 1: studentID = “111”, name = “Doug Walters”, examOneScore = 90.0,
examTwoScore = 80.0
Student 2: studentID = “222”, name = “Garry Sobers”, examOneScore = 92.0,
examTwoScore = 100.0
Student 3: studentID = “333”, name = “Viv Richards”, examOneScore = 80.0,
examTwoScore = 78.0

The output is shown below:

 172

111 Doug Walters 85.00 B
222 Garry Sobers 96.00 A
333 Viv Richards 79.00 C

public class Student {
 private String studentID;
 private String name;
 private double examOneScore;
 private double examTwoScore;

 //constructor - takes two parameters, the first is the id of the
 //student and the second is the name of the student
 //to be written

 //method to read in two scores. Get the two exam scores and assign them
 //to examOneScore and examTwoScore
 public void getScores()
 {

 }

 //compute the average of the scores
 public double computeAverage()
 {
 //return the average of examOneScore and examTwoScore
 }

 //method to compute grade - assume the following:
 //An average >= 90.0 is an A
 //average between 80 and 89 is a B, between 70 and 79 is a C
 //60-69 is a D and anything below 60 is an F
 //The method returns the grade as a character
 public char computeGrade()
 {

 }

 //override the toString method to display a student object as a String
 //The returned string contains the id, name, average score, and the
 //letter grade followed by a newline character
 public String toString()
 {
 173

 }
}

public class StudentTest {
 public static void main(String[] args)
 {
 //The application creates three student objects and
 //stores them in an array called students. The declaration
 //of the array is given below
 Student[] students = new Student[3]; //can store 3 student objects

 //create 3 student objects and add them to the array

 //use a for loop to iterate through the array to get the
 //exam scores for each of the students

 //display the student objects in the array
 }
}

 174

APPENDIX G

EXPERIMENTAL TASK – HIGH COMPLEXITY

 175

MOVIE RENTAL APPLICATION

Summary of task: Provide a way to keep a list of movies and a way to display a movie,
given its title. Assume that movie titles are unique.

An incomplete application is available to fulfill this task. The application displays three
options: 1) Add Movie; 2) Display Movie; and 3) Exit. These options have not been
implemented. It is your responsibility to implement them. A brief description of each
option follows.
Add Movie: This option should prompt the user for a title, create a movie object using
the title, and then add the movie to a list of movies maintained in another class.
Display Movie: This option asks for a title, retrieves the movie and displays its title. If
the given title is not found, it should display a message to that effect.
Exit – exits the application.

Modify the Movie class to include the following instance variables:
Category – which tells you what type of movie it is. This could be “Comedy”,
“Mystery”, “Western”, “Classic”, “Action”, etc.
Rating – indicates the rating of the movie (e.g. PG, PG-13, R, NC-17, etc.)
Write appropriate constructor(s) and methods to handle these changes.

Modify the addMovie method in the user interface to reflect these changes. In other
words, the method should now get title, category, and rating, and then create a movie
object with those values.
Modify the displayMovie method in the user interface to display title, category, and
rating of the retrieved movie.

Add a menu option called “About”. Make it the 3rd option and make Exit the fourth
option. The About option displays a message that reads as follows:
 Movie list application programmed by your name

 176

Hashtable description

A hashtable may be used to store key-value pairs. You may think of the key as the
primary key of a relational table. A value may be retrieved using the key. The following
example shows how a hashtable can be used.

Hashtable employees = new Hashtable(); //creates a hashtable called employees

//in this table, employee id will be used as the key, and the corresponding employee
//object will be the value associated with that key
Employee e = new Employee(“111-11-1111”, “Doug Walters”, “102 Oak St”);

//here e is an employee object with id “111-11-1111”, name of “Doug Walters”, and the
//last parameter is the address
employees.put(“111-11-1111”, e); //inserts the employee object in the hashtable

Employee a = new Employee(“999-99-9999”, “Garry Sobers”, “1111 Hemlock St”);
Employees.put(“999-99-9999”, a); //inserts a second employee object in the hashtable

To retrieve an employee object, we must provide the id. So, to retrieve and display an
employee object, you might do something like this….

String id = JOptionPane.showInputDialog(“Enter employee id: “);
Employee temp = (Employee) employees.get(id); //use the id to retrieve the employee
//object
//Notice that the hashtable returns an Object which must be cast to what you need – in
//this case an Employee

The two main methods are:
put – takes two arguments, the key and the value, both of which should be objects
get – takes one argument, the key that it uses to retrieve the Object

Other Notes:
JOptionPane.showMessageDialog is used to display a message in a window. A sample
is shown below:
String display = “Hello there!!”;
JOptionPane.showMessageDialog(null, display); //notice that the first argument here is
//null and the second is the string to be displayed

JOptionPane.showInputDialog is used to retrieve data as a String from the keyboard.
Here is how it is used:

 177

String name = JOptionPane.showInputDialog(“Enter your name: “); //this pops up a
//window with “Enter your name:” as the prompt and displays a text box in which the
//user can input a response. When the user selects the OK button, the response is
returned //as a String

public class Movie {
 private String title;

 public Movie(String title)
 {
 this.title = title;
 }

 public String getTitle()
 {
 return title;
 }
}

public class Application {
 public static void main(String[] args)
 {
 UserInterface u = new UserInterface();
 u.run();
 System.exit(0);
 }
}

import java.util.*;

public class MovieCollection {
 private Hashtable movies;

 public MovieCollection()
 {
 movies = new Hashtable();
 }

 public void add(Movie m)
 {
 movies.put(m.getTitle(), m);
 }
}

 178

import java.util.*;
import javax.swing.*;

public class UserInterface {

 public int menu()
 {
 String display = "1. Add Movie\n" +
 "2. Display Movie\n" +
 "3. Exit\n" +
 "Enter selection: ";
 return Integer.parseInt(JOptionPane.showInputDialog(display));
 }

 public void run()
 {
 int choice = menu();
 while (choice != 3)
 {
 switch (choice)
 {
 case 1: addMovie();
 break;
 case 2: displayMovie();
 break;
 default: JOptionPane.showMessageDialog(null, "Inavlid choice");
 }

 choice = menu();
 }
 }

 public void addMovie()
 {
 JOptionPane.showMessageDialog(null,
 "You have to implement this");
 }

 public void displayMovie()
 {
 JOptionPane.showMessageDialog(null,
 "You have to implement this");
 }
}
 179

APPENDIX H

TASK MENTAL MODEL CONSTRUCT

 180

GUIDELINES FOR ASSESSING STRENGTHS OF RELATIONSHIPS BETWEEN

CONCEPTS

(Guidelines that may be used to answer questions related to task mental model)

Relationships between classes
In general, a class A has a relatively high strength of relationship with class B if they
are involved in an

• association,

• an aggregation -whole-part relationship,

• a composition - a stronger whole-part relationship in which the part:

o can belong to only one whole and

o cannot exist independent of the whole,

• or a dependency (e.g. class A uses an object of type/class B either as a parameter
or as a local reference in a method.

Of these, composition is semantically stronger than aggregation which, in turn, is
stronger than association.

Relationships between a method and a class
In deciding on the strength of the relationship between a method, say foo(), and a class,
say A, one may ask the following questions:

• Is foo() within class A?

• Does foo() rely ONLY on data/attributes/references and/or methods in class A in
order to accomplish its task?

• Does foo() rely on data and/or methods in other classes to get its job done?

• The criticality of the method foo() in class A?

Relationships between methods
A method, say foo(), is strongly related to another, say do(),

• if foo() includes the behavior of do() (that is, foo() always calls do()).

• If foo() calls do() under certain conditions, then the strength of the relationship
is slightly lower. In this case, we say that do() extends the behavior of foo().

In addition to include and extend, two methods may have a somewhat strong
relationship because of the fact that they both belong to the same class.

Relationships between methods and attributes/references

 181

In assessing the strength of the relationship between a method (foo()) and an
attribute/reference (say, a), ask yourselves the following questions:

• Does foo() need the attribute or reference a?

• Is the attribute in the parameter list of the method?

• Is it a local variable in the method?

• Is it a class or instance variable belonging to the class in which foo() is defined?

• Is the attribute or reference that foo() uses from a different class?

Does foo() access the attribute or reference indirectly (that is, through a public method)?

 182

TASK MENTAL MODEL QUESTIONS FOR STUDENT GRADES APPLICATION

(LOW COMPLEXITY)

Please answer the following questions based on your understanding of the

programming task that you had just completed. Please indicate your perception of how
closely related are the following classes and methods of the programming task.
Use a rating scale from 1 – Not at all related to 7 – Highly related

Student class StudentTest class 1 2 3 4 5 6 7

Student class getScores () 1 2 3 4 5 6 7

Student class computeAverage () 1 2 3 4 5 6 7

Student class computeGrade () 1 2 3 4 5 6 7

Student class toString () 1 2 3 4 5 6 7

Student class main () 1 2 3 4 5 6 7

StudentTest class getScores () 1 2 3 4 5 6 7

StudentTest class computeAverage () 1 2 3 4 5 6 7

StudentTest class computeGrade () 1 2 3 4 5 6 7

StudentTest class toString () 1 2 3 4 5 6 7

StudentTest class main () 1 2 3 4 5 6 7

getScores () computeAverage () 1 2 3 4 5 6 7

getScores () computeGrade () 1 2 3 4 5 6 7

getScores () toString () 1 2 3 4 5 6 7

getScores () main () 1 2 3 4 5 6 7

computeAverage () computeGrade () 1 2 3 4 5 6 7

computeAverage () toString () 1 2 3 4 5 6 7

computeAverage () main () 1 2 3 4 5 6 7

computeGrade () toString () 1 2 3 4 5 6 7

computeGrade () main () 1 2 3 4 5 6 7

toString () main () 1 2 3 4 5 6 7

 183

The above questions capture the perceived relationships between the following
seven classes/methods of the student grades application:

1. Student class
2. StudentTest class
3. getScores()
4. computeAverage()
5. computeGrade()
6. toString()
7. main()

Two experts jointly identified these classes/methods as the most important

concepts of the problem task. The perceived strength of relationships between these
concepts reflects the subject’s understanding of the programming task. Path Finder
technique was used to create network representing the mental model for the subject.
Task mental model was calculated as the similarity of the Path Finder network of the
subject with that of the expert, using Netsim function of the Path Finder software.

 184

TASK MENTAL MODEL QUESTIONS FOR MOVIE RENTAL APPLICATION

(HIGH COMPLEXITY)

Please answer the following questions based on your understanding of the

programming task that you had just completed. Please indicate your perception of how
closely related are the following classes and methods of the programming task.
Use a rating scale from 1 – Not at all related to 7 – Highly related

Application Movie 1 2 3 4 5 6 7

Application MovieCollection 1 2 3 4 5 6 7

Application UserInterface 1 2 3 4 5 6 7

Application getTitle () 1 2 3 4 5 6 7

Application add () 1 2 3 4 5 6 7

Application run () 1 2 3 4 5 6 7

Application addMovie () 1 2 3 4 5 6 7

Application displayMovie () 1 2 3 4 5 6 7

Application menu () 1 2 3 4 5 6 7

Movie MovieCollection 1 2 3 4 5 6 7

Movie UserInterface 1 2 3 4 5 6 7

Movie getTitle () 1 2 3 4 5 6 7

Movie add () 1 2 3 4 5 6 7

Movie run () 1 2 3 4 5 6 7

Movie addMovie () 1 2 3 4 5 6 7

Movie displayMovie () 1 2 3 4 5 6 7

Movie menu () 1 2 3 4 5 6 7

MovieCollection UserInterface 1 2 3 4 5 6 7

MovieCollection getTitle () 1 2 3 4 5 6 7

MovieCollection add () 1 2 3 4 5 6 7

MovieCollection run () 1 2 3 4 5 6 7

MovieCollection addMovie () 1 2 3 4 5 6 7

MovieCollection displayMovie () 1 2 3 4 5 6 7

 185

MovieCollection menu () 1 2 3 4 5 6 7

UserInterface getTitle () 1 2 3 4 5 6 7

UserInterface add () 1 2 3 4 5 6 7

UserInterface run () 1 2 3 4 5 6 7

UserInterface addMovie () 1 2 3 4 5 6 7

UserInterface displayMovie () 1 2 3 4 5 6 7

UserInterface menu () 1 2 3 4 5 6 7

getTitle () add () 1 2 3 4 5 6 7

getTitle () run () 1 2 3 4 5 6 7

getTitle () addMovie () 1 2 3 4 5 6 7

getTitle () displayMovie () 1 2 3 4 5 6 7

getTitle () menu () 1 2 3 4 5 6 7

add () run () 1 2 3 4 5 6 7

add () addMovie () 1 2 3 4 5 6 7

add () displayMovie () 1 2 3 4 5 6 7

add () menu () 1 2 3 4 5 6 7

run () addMovie () 1 2 3 4 5 6 7

run () displayMovie () 1 2 3 4 5 6 7

run () menu () 1 2 3 4 5 6 7

addMovie () displayMovie () 1 2 3 4 5 6 7

addMovie () menu () 1 2 3 4 5 6 7

displayMovie () menu () 1 2 3 4 5 6 7

The above questions capture the perceived relationships between the following

ten classes/methods of the movie rental application:
1. Application class
2. Movie class
3. MovieCollection class
4. UserInterface class
5. getTitle ()
6. add ()
7. run ()

 186

8. addMovie ()
9. displayMovie ()
10. menu ()

Two experts jointly identified these classes/methods as the most important

concepts of the problem task. The perceived strength of relationships between these
concepts reflects the subject’s understanding of the programming task. Path Finder
technique was used to create network representing the mental model for the subject.
Task mental model was calculated as the similarity of the Path Finder network of the
subject with that of the expert, using Netsim function of the Path Finder software.

 187

APPENDIX I

QUESTIONNAIRE FOR MEASURING PERCEPTUAL CONSTRUCTS AND
DEMOGRAPHIC VARIABLES

 188

NOMINAL PAIRS

1. Please indicate how you worked on the programming task today

a. Individually b. With a partner

2. How do you feel about the main programming task you performed today?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very

Complex

3. How do you feel about the main programming task you performed, as compared to the warm

up task?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very

Complex

4. How do you feel about your overall experience of working on the programming task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

5. Imagine that we selected ten results at random from those who participated in this task. How
would your performance rank among these ten results?

Worst results out of Ten. 1 2 3 4 5 6 7 8 9 10 Best results out of Ten

6. How do you feel about the quality of your programming solution?

Not at all Confident 1 2 3 4 5 6 7 Very Confident

Not at all Certain 1 2 3 4 5 6 7 Very Certain

 189

7. How do you feel about your own performance on the programming task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

 190

COLLABORATING PAIRS

1. Please indicate how you worked on the programming task today

a. Individually b. With a partner

2. How do you feel about the main programming task you performed today?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very

Complex

3. How do you feel about the main programming task you performed, as compared to the warm

up task?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very

Complex

4. How do you feel about your overall experience of working on the programming task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

5. Imagine that we selected ten results at random from those who participated in this task. How
would your group performance rank among these ten results?

Worst results out of Ten. 1 2 3 4 5 6 7 8 9 10 Best results out of Ten

6. How do you feel about the quality of your programming solution?

Not at all Confident 1 2 3 4 5 6 7 Very Confident

Not at all Certain 1 2 3 4 5 6 7 Very Certain
7. How do you feel about your own performance on the programming task today?

 191

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

8. How do you feel about the performance of your group on the programming task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

 192

DEMOGRAPHIC AND BACKGROUND VARIABLES

1. Please circle your gender: Male Female

2. Please indicate your age on your last birthday __________

3. Please indicate your country of citizenship __________

4. Is English your first language? Yes No

5. What are the programming languages you are familiar with other than Java? (Tick all

that apply)

a) C b) C++ c) Dot Net d) C# e) Visual Basic

f) HTML g) Cobol h) None i) Others (Name others)

6. Indicate number of years of your programming experience in any programming

language?

A. 0 – 1 B. 1 - 2 C. 2-4 D. > 4

7. Indicate number of years of your programming experience in Java?

A. 0 – 1 B. 1 - 2 C. 2-4 D. > 4

 193

APPENDIX J

GRADING SHEETS

 194

GRADING SHEET FOR SIMPLE TASK
Session _____ Room ________

SNo Description Max

Points
Points
Scored

Remarks

I Student class evaluation
A Student(String id, String name)

• Proper parameters
• Visibility: public
• No return type
• Method name: same as class name (i.e. Student)
• Should only initialize id and name of student
• For name, this.name = name should be used

10

B getScores()
• visibility: public
• return type: void
• assignments

20

 Give 5 additional points if the getScores() method is generic. That is,
it asks the user for the number of courses and then gets that many
exam scores.

5

C computeAverage() 10
D computeGrade() 12
E toString() 10

II Student Test Class Evaluation:
A Creating three student objects (to be put in the array called

students):

A1 Option 1:
Solution is hard coded.
E.g. students[0] = new Student(“111”, “Viv Richards”);

9

A2 Option 2:
Generic solution using loop: Example..
for(int i = 0; i < students.length; i++)
{
 //code for initializing
}

14

B Getting the exam scores for each
B1 Option 1: No loop 9
B2 Option 2: With loop (generalizable): 14
C Displaying the three students:
C1 Option 1: Hard coded solution (no loop, don’t use toString() concept,

etc.): 20 Points
Use the following criteria for evaluation:
• Output format
• Accuracy of results

20

C2 Option2: Generic solution. They use a loop and
System.out.println(studentObject).

25

III Going beyond requirements:
Maintainability considerations –
• appropriate comments
• indentation.

5

 Total 125

 195

GRADING SHEET FOR COMPLEX TASK
Session _____ Room ________

SNo Description Max

Points
Points
Scored

Remarks

I Movie class evaluation
A Add 2 String variables for category and rating

If data type is wrong, deduct 3 points
5

B Add a constructor:
public Movie(String title, String category, String rating)
{

this.title = title;
this.category = category;
this.rating = rating;

}
Check for: return type (none for constructor), variable names
– deduct some points if they are incorrect.

10

C Add gettor/accessor methods for category and rating 5
D Additional points if toString() is implemented 5

II Display of menu – if correct 5
III AddMovie class evaluation
A Get title, category, rating (5 points each) 15
B Create a movie object:
B1 Make sure they have a reference to MovieCollection in the

UserInterface class
OR

They could handle this by making the add and get methods
static in the MovieCollection class

5

B2 Movie object created with proper parameters 10
C Adding the movie – proper call to MovieCollection’s “add”

method
5

!V Implementation of Display Movie Option
A Adding a “get” method to the MovieCollection that takes the

title as a parameter and return a movie object
10

A1 if they display “Title not found” when movie is not found. 5
A2 Additional points if they use exceptions 10
B Getting/reading the title 5
C Displaying the movie 10
C1 Additional points if toString() is implicitly used 5
V “About” option implementation 5
VI Exit – if correct 5
VII Going beyond requirements:

Maintainability considerations –
• appropriate comments
• indentation.

5

 Total 125

 196

REFERENCES

Adelson, B., & Soloway, E. (1985). The Role of Domain Experience in Software

Design. IEEE Transactions on Software Engineering, 11, 1351-1360.
AgileManifesto. (2001). Agile Manifesto. Retrieved 12/20/04 Website:

http://www.agilemanifesto.org/
Aiello, J. R., & Douthitt, E. A. (2001). Social Facilitation from Triplett to Electronic

Performance Monitoring. Group Dynamics, 5(3), 163-180.
Aiello, J. R., & Kolb, K. J. (1995). Electronic Performance Monitoring and Social

Context: Impact on Productivity and Stress. Journal of Applied Psychology,
80(3), 339-353.

Aiello, J. R., & Svec, C. M. (1993). Computering Monitoring of Work Performance:
Extending the Social Facilitation Framework to Electronic Presence. Journal of
Applied Social Psychology, 23, 537-548.

Allison, S., T., & Messick, D. M. (1985). The Group Attibution Error. Journal of
Experimental Social Psychology, 21, 563-579.

Allwood, C. M., & Granhag, P. A. (1996). Realism in Confidence Judgments as a
Function of Working in Dyads or Alone. Organizational Behavior & Human
Decision Processes, 66(3), 277-289.

Barker, J. R. (1993). Tightening the Iron Cage: Concertive Control in Self-Managing
Teams. Administrative Science Quarterly, 38(3), 408-437.

Baron, R. S. (1986). Distraction-Conflict Theory: Progress and Problems. Advances in
Experimental Social Psychology, 19, 1-36.

Bass, B. M., Pryer, M. W., Gaier, E. L., & Flint, A. W. (1958). Interacting Effects of
Control Motivation, Group Practice and Problem Difficulty on Attempted
Leadership. Journal of Abnormal and Social Psychology, 56, 352-358.

Baumeister, R. F. (1982). A Self Presentational View of Social Phenomena.
Psychological Bulletin, 91, 3-26.

Beck, K. (1999). Embracing Change with Extreme Programming. IEEE Computer,
32(10), 70-77.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Reading, MA:
Addison Wesley Longman Inc.

Besser, T. L. (1995). Rewards and Organizational Goal Achievement: A Case Study of
Toyota Motor Manufacturing in Kentucky. Journal of Management Studies,
32(3), 383.

Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An
Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370.

Boehm, B. (2002). Get Ready for Agile Methods with Care. IEEE Computer, 35(1), 64-
69.

 197

http://www.agilemanifesto.org/

Boland, R. J., & Tenkasi, R. V. (1995). Perspective Making and Perspective Taking in
Communities of Knowing. Organization Science, 6(4), 350-372.

Bond, C. F. (1982). Social Facilitation: A Self-Presentational View. Journal of
Personality and Social Psychology, 42, 1042-1050.

Bond, C. F., & Titus, L. J. (1983). Social Facilitation: A Meta-Analysis of 241 Studies.
Psychological Bulletin, 94, 265-292.

Bono, J. E., Boles, T. L., Judge, T. A., & Lauver, K. J. (2002). The Role of Personality
in Task and Relationship Conflict. Journal of Personality, 70(2), 311-344.

Brickner, M. A., Harkins, S. G., & Ostrom, T. M. (1986). Effects of Personal
Involvement: Thought-Provoking Implications for Social Loafing. Journal of
Personality and Social Psychology, 51, 763-770.

Brown, T. M., & Miller, C. E. (2000). Communication Networks in Task-Performing
Groups: Effects of Task Complexity, Time Pressure, and Interpersonal
Dominance. Small Group Research, 31(2), 131-157.

Bruce, L. (2004, Jun 4). Canadian Bank Tackles Processing Glitch. Computer World.
Bystrom, K., & Jarvelin, K. (1995). Task Complexity Affects Information-Seeking and

Use. Information Processing & Management, 31(2), 191-213.
Campbell, D. J. (1988). Task Complexity: A Review and Analysis. Academy of

Management Review, 13(1), 40-52.
Campbell, D. J., & Gingrich, K. F. (1986). The Interactive Effects of Task Complexity

and Participation on Task-Performance - a Field Experiment. Organizational
Behavior and Human Decision Processes, 38(2), 162-180.

Campion, M. A., Medsker, G. J., & Higgs, C. A. (1993). Relations Between Work
Group Characteristics and Effectiveness: Implications for Designing Effective
Work Groups. Personnel Psychology, 46(4), 823-850.

Carey, J. M., & Kacmar, C. J. (1997). The Impact of Communication Mode and Task
Complexity on Small Group Performance and Member Satisfaction. Computers
in Human Behavior, 13(1), 23-49.

Carroll, J. M., & Olson, J. R. (1988). Mental Models in Human-Computer Interaction.
In Halender, M. (Ed.), Handbook of Human-Computer Interaction (pp. 45-65).
North Holland: Elsevier Science Publishers.

Chalykoff, J., & Kochan, T. A. (1989). Computer-Aided Monitoring: Its Influence on
Employee Job Satisfaction and Turnover. Personnel Psychology, 42(4), 807-
834.

Chang, S. E. (2005). Computer Anxiety and Perception of Task Complexity in Learning
Programming-Related Skills. Computers in Human Behavior, 21(5), 713-728.

Charette, R. (2001). The Decision is In: Agile versus Heavy Methodologies. Cutter
Consortium e-Project Management Advisory Service, 2(19).

Chlewinski, Z. (1975). Cognitive Conservatism and Radicalism in Individual and Group
Decisions. Polish Psycholgical Bulletin, 6, 139-146.

Cockburn, A. (2002). Agile Software Development Joins the "Would-Be" Crowd.
Cutter IT Journal, 15(1), 6-12.

Cockburn, A., & Highsmith, J. (2001). Agile Software Development 2: The People
Factor. IEEE Computer, 34(11), 131-133.

 198

Cockburn, A., & Williams, L. (2001). The Costs and Benefits of Pair Programming. In
Succi, G. & Marchesi, M. (Eds.), Extreme Programming Explained (pp. 223-
248): Addison Wesley.

Collins, A., & Gentner, D. (1987). How People Construct Mental Models. In Holland,
D. & Quinn, N. (Eds.), Cultural Models in Language and Thought (pp. 243-
265). Cambridge: Cambridge University Press.

Collins, B. E., & Guetzkow, H. G. (1964). Social Psychology of Group Processes for
Decision-Making. New York, NY: Wiley.

Cottrell, N. B. (1972). Social Facilitation. In McClintock, C. G. (Ed.), Experimental
Social Psychology (pp. 185-236). New York: Holt.

Cottrell, N. B., Wack, D. L., Sekerak, G. J., & Rittle, R. H. (1968). Social Facilitation of
the Dominant Responses by the Presence of an Audience and the Mere Presence
of Others. Journal of Personality and Social Psychology, 9, 245-250.

Cusumano, M., MacCormack, A., Kemerer, C. F., & Crandall, B. (2003). Software
Development Worldwide: The State of the Practice. IEEE Software, 20(6), 28-
34.

Dailey, R. C. (1978). Perceived Group Variables as Moderators of the Task
Characteristics - Individual Performance Relationship. Journal of Management,
4(2), 69.

Davis, J. H. (1969). Group Performance. Reading, MA: Addison-Wesley.
Delaney, M. M., Foroughi, A., & Perkins, W. (1997). Am Empirical Study of the

Efficacy of a Computerized Negotiation Support System. Decision Support
Systems, 20, 185-197.

DeMatteo, J. S., Eby, L. T., & Sundstrom, E. (1998a). Team-based rewards: Current
empirical evidence and directions for future research. In Research in
Organizational Behavior, Vol 20, 1998 (Vol. 20, pp. 141-183).

DeMatteo, J. S., Eby, L. T., & Sundstrom, E. (1998b). Team-Based Rewards: Current
Empirical Evidence and Directions for Future Research. In Staw, B. M. &
Cummings, L. L. (Eds.), Research in Organizational Behavior (Vol. 20, pp.
141-183): Elsevier Science/JAI Press.

Domino, M. A. (2004). Three Studies of Problem Solving in Collaborative Software
Development. Unpublished Ph.D. Dissertation, University of South Florida,
Tampa, FL.

Douthitt, E. A., & Aiello, J. R. (2000). The Impact of Computer Monitoring and
Negative Affectivity on Task Performance and Satisfaction. Paper presented at
the Annual Meeting of the Academy of Management.

Dunegan, K. J., Uhl-Bien, M., & Duchon, D. (2002). LMX and Subordinate
Performance: The Moderating Effects of Task Characteristics. Journal of
Business & Psychology, 17(2), 275-285.

Durling, R., & Schick, C. (1976). Concept Attainment by Pairs and Individuals as a
Function of Vocalization. Journal of Educational Psychology, 68, 83-91.

English, A. (2002). Extreme Programming: It's Worth a Look. IT Pro, 4, 48-50.
Eysenck, M. W., & Keane, M. T. (2000). Cognitive Psychology: A Student's Handbook.

Philadelphia, PA: Psychology Press.
 199

Faust, W. L. (1959). Group versus Individual Problem-Solving. Journal of Abnormal &
Social Psychology, 59, 68-72.

Felsental, D. S. (1979). Group versus Individual Gambling Behavior: Reexamination
and Limitation. Behavioral Science, 24, 334-345.

Fisher, C. D. (2003). Why do Lay People Believe that Satisfaction and Performance are
Correlated? Possible Sources of a Commonsense Theory. Journal of
Organizational Behavior, 24(6), 753.

Flor, N. V., & Hutchins, E., L. (1991). Analyzing Distributed Cognition in Software
Teams: A Case Study of Team Programming During Perfective Software
Maintenance. In Koenemann-Belleveau, J., Moher, T. G. & Robertson, S. P.
(Eds.), Proceedings of the fourth annual workshop on emprical studies of
programmers (pp. 36-63). Norwood, NJ: Ablex Publishing.

Forgas, J. P. (1981). Responsibility Attribution by Groups and Individuals: The Effects
of the Interaction Episode. European Journal of Social Psychology, 11, 87-99.

Forsyth, D. R. (1999). Group Dynamics (Third ed.). Belmont, CA: Wadsworth
Publishing.

Fox, D. J., & Lorge, I. (1962). The Relative Quality of Decisions Written by Individuals
and by Groups as the Available Time for Problem Solving is Increased. Journal
of Social Psychology, 57(1), 227-242.

Garibaldi, A. M. (1979). Affective Contributions of Cooperative and Group Goal
Structures. Journal of Educational Psychology, 71, 788-794.

Geen, R. G. (1977). The Effects of Anticipation of Positive and Negative Outcomes on
Audience Anxiety. Journal of Consulting and Clinical Psychology, 45(715-
716).

Goldman, F. W., & Goldman, M. (1981). The Effects of Dyadic Group Experience in
Subsequent Individual Performance. Journal of Social Psychology, 115, 83-88.

Goodman, P. S. (1986). Impact of Task and Technology on Group Performance. In
Goodman, P. S. (Ed.), Designing Effective Work Groups (pp. 120-167). San
Francisco, CA: Jossey-Bass.

Hackman, J. R. (1968). Effects of Task Characteristics on Group Products. Journal of
Experimental Social Psychology, 4(2), 162-187.

Hackman, J. R., & Morris, C. G. (1976). Group Tasks, Group Interaction Processes and
Group Performance Effectiveness: A Review and Proposed Integration. In
Berkowitz, L. (Ed.), Advances In Experimental Social Psychology (Vol. 8, pp.
45-99). New York: Academic Press.

Hackman, J. R., Oldham, G., Janson, R., & Purdy, K. (1975). A New Strategy for Job
Enrichment. California Management Review, 17(4), 57.

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data
Analysis (Fifth ed.). Upper Saddle River, NJ: Prentice-Hall.

Hare, A. P. (1995). Individual Versus Group. In Hare, A. P., Blumberg, H. H., Davies,
M. F. & Kent, M. V. (Eds.), Small Group Research: A Handbook (pp. 261-270).
Norwood, NJ: Ablex Publishing Corp.

Harkins, S. G. (1987). Social Loafing and Social Facilitation. Journal of Experimental
Social Psychology, 23, 1-18.

 200

Harkins, S. G., & Jackson, J. M. (1985). The Role of Evaluation in Eliminating Social
Loafing. Personality and Social Psychology, 11, 575-584.

Harkins, S. G., & Petty, R., E. (1982). Effects of Task Difficulty and Task Uniqueness
on Social Loafing. Journal of Personality and Social Psychology, 43(6), 1241-
1229.

Harkins, S. G., & Szymanski, K. (1989). Social Loafing and Group Evauation. Journal
of Personality and Social Psychology, 56, 934-941.

Hart, J. W., Bridgett, K. J., & Karau, S. J. (2001). Coworker Abiity and Effort as
Determinants of Individual Effort on a Collective Task. Group Dynamics, 5(3),
181-190.

Hashiguchi, K. (1974). The Number of Decision Makers and the Level of Risk Taking
Within a Group. Japanese Journal of Experimental Social Psychology, 14(2),
121-131.

Hastie, R. (1986). Review Essay: Experimental Evidence on Group Accuracy. In Owen,
G. & Grofman, B. (Eds.), Information Pooling and Group Decision-Making (pp.
129-157). Westport, CT: JAI Press.

Heath, C., & Gonzalez, R. (1995). Interaction with Others Increases Decision
Confidence but Not Decision Quality: Evidence against Information Collection
Views of Interactive Decision Making. Organizational Behavior & Human
Decision Processes, 61(3), 305-326.

Highsmith, J. (2002a). Agile Software Development Ecosystems. Boston: Addison-
Wesley.

Highsmith, J. (2002b). Extreme Programming (White paper): Agile Project
Management Advisory Service, Cutter Consortium.

Highsmith, J. (2003). Agile Project Management: Principles and Tools. Agile Project
Management Advisory Service, 4(2), 37.

Highsmith, J., & Cockburn, A. (2001a). Agile Software Development 1: The Business
of Innovation. IEEE Computer, 34(9), 120-122.

Highsmith, J., & Cockburn, A. (2001b). Agile Software Development 1: The Business
of Innovation. IEEE Computer, 34(9), 120-127.

Hill, G. W. (1982). Group versus Individual Performance: Are N + 1 Heads Better than
One? Psychological Bulletin, 91, 517-539.

Hinsz, V. B. (1995). Goal Setting by Groups Performing an Additive Task: A
Comparison with Individual Goal Setting. Journal of Applied Social
Psychology, 25(11), 965-990.

Hinsz, V. B., & Nickell, G. S. (2004). Positive Reactions to Working in Groups in a
Study of Group and Individual Goal Decision Making. Group Dynamics, 8(4),
253-264.

Hinsz, V. B., Tindale, R. S., & Vollrath, D. A. (1997). The Emerging Conceptualization
of Groups as Information Processors. Psychological Bulletin, 121(1), 43-64.

Hoegl, M., Parboteeah, K. P., & Gemuenden, H. G. (2003). When Teamwork Quality
Matters: Task Innovativeness as a Moderator of the Teamwork-Performance
Relationship in Software Development Projects. Journal of Engineering
Technology Management, 20, 281-302.

 201

Hollan, J., Hutchins, E., L., & Kirsh, D. (2000). Distributed Cognition: Toward a New
Foundation for Human-Computer Interaction Research. ACM Transactions on
Human-Computer Interaction, 7(2), 174-196.

Hom, H. L., & Berger, M. (1994). The Effects of Cooperative and Individualistic
Reward on Intrinsic Motivation. Journal of Genetic Psychology, 155(1), 87.

Howell, W. C., Gettys, C. F., Martin, D. W., Nawrocki, L. H., & Johnston, W. A.
(1970). Evaluation of Diagnostic Tests by Individuals and Small Groups.
Organizational Behavior & Human Performance, 5(3), 211.

Hunt, P. J., & Hillery, J. M. (1973). Social Facilitation in a Coaction Setting: An
Examination of the Effects over Learning Trials. Journal of Experimental Social
Psychology, 9, 563-571.

Iaffaldano, M. T., & Muchinsky, P. M. (1985). Job Satisfaction and Job Performance: A
Meta-Analysis. Psychological Bulletin, 97(2), 251-273.

Ito, J. K., & Peterson, R. B. (1986). Effects of Task Difficulty and Interunit
Interdependence on Information Processing Systems. Academy of Management
Journal, 29(1), 139.

Jackson, J. M., & Harkins, S. G. (1985a). Equity in Effort: An Explanation of the Social
Loafing Effect. Journal of Personality and Social Psychology, 49, 1199-1206.

Jackson, J. M., & Harkins, S. G. (1985b). Equity in Effort: An Explanation of the Social
Loafing Effect. Journal of Personality and Social Psychology, 49(5), 1199-
1206.

Jackson, J. M., & Williams, K. D. (1985). Social Loafing on Difficult Tasks: Working
Collectively can Improve Performance. Journal of Personality and Social
Psychology, 49(4), 937-942.

Jain, B. A., & Solomon, J. S. (2000). The Effect of Task Complexity and Conflict
Handling Styles on Computer-Supported Negotiations. Information &
Management, 37, 161-168.

Jehn, K. A., Northcraft, G. B., & Neale, M. A. (1999). Why Differences Make a
Difference: A Field Study of Diversity, Conflict, and Performance in
Workgroups. Administrative Science Quarterly, 44(4), 741-763.

Johnson, D. W., Johnson, R. T., & Scott, L. (1978). The Effects of Cooperative and
Individualized Instruction on Student Attitudes and Achievement. Journal of
Social Psychology, 104(2), 207.

Johnson-Laird, P. N. (1981). Mental Models in Cognitive Science. In Norman, D. A.
(Ed.), Perspectives on Cognitive Science (pp. 147-191). Norwood, NJ: Ablex.

Johnson-Laird, P. N. (1983). Mental Models. Cambridge, England: Cambridge
University Press.

Johnson-Laird, P. N. (2001). Mental Models and Human Reasoning. In Dupoux, E.
(Ed.), Language, Brain and Cognitve Development: Essays in Honor of Jacques
Mehler (pp. 85-102). Cambridge, MA: MIT Press.

Judge, T. A., Thoresen, C. J., Bono, J. E., & Patton, G. K. (2001). The Job Satisfaction-
Job Performance Relationship: A Qualitative and Quantitative Review.
Psychological Bulletin, 127(3), 376-407.

 202

Kanekar, S. (1982). Individual and Group Performance on an Anagrams Task.
Australian Journal of Psychology, 34, 337-344.

Kanekar, S., Libby, C., Engels, J., & Jahn, G. (1978). Group Performance as a Function
of Group Type, Task Condition and Scholastic Level. European Journal of
Social Psychology, 8, 439-451.

Karau, S. J., & Williams, K. D. (1993a). Social Loafing: A Meta-Analytic Review and
Theoretical Integration. Journal of Personality and Social Psychology, 65(4),
681-706.

Karau, S. J., & Williams, K. D. (1993b). Social Loafing: A Meta-Analytic Review and
Theoretical Integration. Journal of Personality and Social Psychology, 65(4),
681-706.

Kerlinger, F. N. (1986). Foundations of Behavioral Research. Fort Worth, TX: Holt,
Rinehart & Winston, Inc.

Kernan, M. C., Bruning, N. S., & Miller-Guhde, L. (1994). Individual and Group
Performance: Effects of Task Complexity and Information. Human
Performance, 7(4), 273-289.

Kerr, N. L. (1983). Motivation Losses in Groups: A Social Dilemma Analysis. Journal
of Personality and Social Psychology, 45, 819-828.

Kerr, N. L., & Brunn, S. (1983). The Dispensability of Member Effort and Group
Motivation Loses: Free Rider Effects. Journal of Personality and Social
Psychology, 44, 78-94.

Kerr, N. L., & Tindale, R. S. (2004). Group Performance and Decision Making. Annual
Review of Psychology, 55(1), 623-655.

Kim, J., & Lerch, F. J. (1997). Why is Programming (Sometimes) so Difficult?
Programming as Scientific Discovery in Multiple Problem Spaces. Information
Systems Research, 8(1), 25.

King, A. (1989). Verbal Interaction and Problem-Solving Within Computer-Assisted
Coperative Learning Groups. Journal of Educational Computing Research, 5(1),
1-15.

Koehler, D. J. (1991). Explanation, Imagination, and Confidence in Judgment.
Psychological Bulletin, 110(3), 499-519.

Kolb, K. J., & Aiello, J. R. (1996). The Effects of Electronic Performance Monitoring
on Stress: Locus of control as a Moderator Variable. Computers in Human
Behavior, 12(3), 407-423.

Langan-Fox, J., Anglim, J., & Wilson, J. R. (2004). Mental Models, Team Mental
Models, and Performance: Process, Development, and Future Directions.
Human Factors and Ergonomics in Manufacturing, 14(4), 331-352.

Langan-Fox, J., Code, S., & Langfield-Smith, K. (2000). Team mental models:
Techniques, methods, and analytic approaches. Human Factors, 42(2), 242-271.

Larey, T. S., & Paulus, P. B. (1995). Social Comparison and Goal Setting in
Brainstorming Groups. Journal of Applied Social Psychology, 25(18), 1579-
1596.

Latane, B. (1981). The Psychology of Social Impact. American Psychologist, 36, 343-
356.

 203

Laughlin, P. R., & Adamopoulos, J. (1980). Social Combination Processes and
Individual Learning for Six-Person Cooperative Groups on an Intellective Task.
Journal of Personality and Social Psychology, 38, 941-947.

Laughlin, P. R., & Barth, J. M. (1981). Group-to-Individual and Individual-to-Group
Problem-Solving Transfer. Journal of Personality and Social Psychology, 41,
1087-1093.

Laughlin, P. R., Bonner, B. L., & Miner, A. G. (2002). Groups Perform Better than the
Best Individuals on Letter-to-Numbers Problems. Organizational Behavior and
Human Decision Processes, 88, 605-620.

Laughlin, P. R., & Ellis, A. L. (1986). Demonstrability and Social Combination
Processes on Mathematical Intellective Tasks. Journal of Experimental Social
Psychology, 22, 177-189.

Laughlin, P. R., VanderStoep, S. W., & Hollingshead, A. B. (1991). Collective Versus
Individual Induction: Recognition of Truth, Rejection of Error, and Collective
Information Processing. Journal of Personality and Social Psychology, 61(1),
50-67.

Laughlin, P. R., Zander, M. L., Knievel, E. M., & Tan, T. K. (2003). Groups Perform
Better Than the Best Individuals on Letters-to-Numbers Problems: Informative
Equations and Effective Strategies. Journal of Personality and Social
Psychology, 85(4), 684-694.

Letovsky, S. (1986). Cognitive Processes in Program Comprehension. In Soloway, E. &
Iyengar, S. (Eds.), Empirical Studies of Programmers (pp. 58-79). Norwood,
NJ: Ablex Publishing.

Levi, D. (2001). Group Dynamics for Teams. Thousand Oaks, CA: Sage Publications.
Levine, J. M., & Moreland, R. L. (1998). Small Groups. In Gilbert, D. T. & Fiske, S. T.

(Eds.), Handbook of Social Psychology (4 ed., Vol. 2, pp. 415-469). New York,
NY: McGraw-Hill.

Lim, K. H., Ward, L. M., & Benbasat, I. (1997). An Empirical Study of Computer
System Learning: Comparison of Co-discovery and Self-discovery Methods.
Information Systems Research, 8(3), 254-272.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Tesorier, R., Williams, L., &
Zelkowitz, M. (2002). Empirical Findings in Agile Methods. Paper presented at
the Second XP Universe and First Agile Universe Conference, Chicago, IL.

Locke, E. A. (1968). Toward a Theory of Task Motivation and Incentives.
Organizational Behavior and Human Performance, 3, 157-189.

Locke, E. A. (1970). Job Satisfaction and Job Performance: A Theoretical Analysis.
Organizational Behavior & Human Performance, 5(5), 484-500.

Locke, E. A. (1976). The Nature and Causes of Job Satisfaction. In Dunnette, M. D.
(Ed.), Handbook of Industrial and Organizational Psychology (pp. 1297-1349).
Chicago: Rand McNally.

Locke, E. A., & Latham, G. P. (1990). Work Motivation and Satisfaction: Light at the
End of the Tunnel. Psychological Science, 1(4), 240-246.

 204

Locke, E. A., & Latham, G. P. (2004). What Should we Do About Motivation Theory?
Six Recommendations for the Twenty-First Century. Academy of Management
Review, 29(3), 388-403.

MacCormack. (2001). How Internet Companies Build Software. MIT Sloan
Management Review, 75-84.

March, J., & Simon, H. (1958). Organizations. New York: Wiley.
Markus, H. (1978). Mere Presence and Social Facilitation. Journal of Experimental

Social Psychology, 14, 389-397.
McGrath, J. E. (1984). Groups: Interaction and Performance. Englewood Cliffs, N. J.:

Prentice-Hall, Inc.
Miner, F. C. (1984). Group versus Individual Decision Making: An Investigation of

Performance Measures, Decision Strategies, and Process Losses/Gains.
Organizational Behavior and Human Performance, 33, 112-124.

Mohammed, S., Klimoski, R. J., & Rentsch, J. R. (2000). The Measurement of Team
Mental Models: We Have no Shared Schema. Organizational Research
Methods, 3(2), 123-165.

Mullen, B. (1983). Operationalizing the Effect of the Group on the Individual: A Self-
Attention Perspective. Journal of Experimental Social Psychology, 19, 295-322.

Mullen, B., & Salas, J. C. (1991). Productivity Loss in Brainstorming Groups: A Meta-
Analytic Integration. Basic Applied Social Psychology, 12(1), 3-23.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S.
(2003). Improving the CS1 Experience with Pair Programming. Paper presented
at the 34th SIGCSE Technical Symposium on Computer Science Education,
Reno, Navada.

Nawrocki, J., & Wojciechowski, A. (2001). Experimental Evaluation of Pair
Programming. Paper presented at the 12th European Software Control and
Metrics Conference, ESCOM, London, UK.

Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear
Models (Fourth ed.). Chicago: Irvin.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall, Inc.

Nosek, J. T. (1998). The Case for Collaborative Programming. Communications of the
ACM, 41(3), 105-108.

Nunnally, J. C. (1978). Psychometric Theory. New York, NY: McGraw-Hill.
O'Leary-Kelly, A. M., Martocchio, J. J., & Frink, D. D. (1994). A Review of the

Influence of Group Goals on Group Performance. Academy of Management
Journal, 37(5), 1285.

Orr, K. (2002). CMM Versus Agile Development: Religious Wars and Software
Development. Agile Project Management Advisory Service, 3(7), 29.

Panina, D., & Aiello, J. R. (2005 (In press)). Acceptance of Electronic Monitoring and
its Consequences in Different Cultural Contexts: A Conceptual Model. Journal
of International Business, 1-39.

Paulus, P. B. (1983). Group Influence on Individual Task Performance. In Paulus, P. B.
(Ed.), Basic Group Processes (pp. 97-120). New York: Springer-Verlag.

 205

Paulus, P. B., Dzindolet, M. T., Poletes, G., & Camacho, L. M. (1993). Perception of
Performance in Group Brainstorming: The Illusion of Group Productivity.
Personality & Social Psychology Bulletin, 19(1), 78-89.

Pedhazur, E. J., & Pedhazur-Schmelkin, L. (1991). Measurement, Design, and Analysis:
An Integrated Approach. Hillsdale, NJ: Lawrence Erlbaum.

Peterson, D. K., & Pitz, G. F. (1988). Confidence, Uncertainty, and the Use of
Information. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 14(1), 85-92.

Petty, M. M., McGee, G. W., & Cavender, J. W. (1984). A Meta-Analysis of the
Relationships Between Individual Job Satisfaction and Individual Performance.,
Academy of Management Review (Vol. 9, pp. 712): Academy of Management.

Petty, R., E., Harkins, S. G., Williams, K. D., & Latane, B. (1977). The Effects of
Group Size on Cognitive Effort and Evaluation. Personality and Social
Psychology Bulletin, 3, 575-578.

Reusser, K. (1990). From Text to Situation to Equation: Cognitive Simulation of
Understanding and Solving Mathematical Word Problems. In Mandl, H.,
DeCorte, E., Bennett, N. & Friedrich, H. F. (Eds.), Learning and Instruction:
Analysis of Complex Skills and Complex Knowledge Domains (Vol. 2.2, pp.
477-498). Elmsford, NY: Pergamon Press.

Riley, M. S., & Greeno, J. G. (1988). Developmental Analysis of Understanding
Language About Quantities and of Solving Problems. Cognition & Instruction,
5(1), 49.

Rist, R. (1989). Schema Creation in Programming. Cognitive Science, 13, 389-414.
Robbins, S. P. (1998). Organizational Behavior: Concepts, Controversies, Applications

(Fourth ed.). Upper Sadler River, NJ: Simon and Schuster.
Rosencrance, L. (2004, Aug 2). Computer Glitch Hits Two Airlines. Computer World.
Rubin, H., Johnson, M., & Iventosch, S. (2002). The US Software Industry. IEEE

Software, 19(1), 95-97.
Rumpe, B., & Schroder, A. (2002). Quantitative Survey on Extreme Programming

Projects. Paper presented at the Third International Conference on Extreme
Programming and Flexible Processes in Software Development (XP2002),
Alghero, Italy.

Sanders, G. S., & Baron, R. S. (1975). The Motivating Effects of Distraction on Task
Performance. Journal of Personality and Social Psychology, 32, 956-963.

Sanna, L. J. (1992). Self-Efficacy Theory: Implications for Social Facilitation and
Social Loafing. Journal of Personality and Social Psychology, 62(5), 774-786.

Santhanam, R., & Sein, M. K. (1994). Improving End-user Proficiency: Effects of
Conceptual Training and Nature of Interaction. Information Systems Research,
5(4), 378-399.

Schoner, B., Rose, G. L., & Hoyt, G. C. (1974). Quality of Decisions: Individuals
versus Real and Synthetic Groups. Journal of Applied Psychology, 59(4), 424-
432.

Schraw, G., & Nietfeld, J. (2003). Mental Models. In Guthrie, J. W. (Ed.), Encyclopedia
of Education (pp. 1600-1602). New York: Thomson.

 206

Schroder, H., Driver, M., & Streufert, S. (1967). Human Information Processing. New
York: Holt, Rinehart and Winston.

Schvaneveldt, R. W. (1990). Pathfinder Associative Networks: Studies in Knowledge
Organization. Norwood, NJ: Ablex Publishing Corp.

Scott, W. E. (1966). Activation Theory and Task Design. Organizational Behavior &
Human Performance, 1(1), 3-30.

Shaw, J. D., Duffy, M. K., & Stark, E. M. (2000). Interdependence and Preference for
Group Work: Main and Congruence Effects on the Satisfaction and Performance
of Group Members. Journal of Management, 26(2), 259-279.

Shaw, M. E. (1954). Some Effects of Problem Complexity upon Problem Solution
Efficiency in Different Communication Nets. Journal of Experimental
Psychology, 48, 211-217.

Shaw, M. E. (1981). Group Dynamics: The Psychology of Small Group Behavior (Third
ed.). New York: McGraw-Hill Publishing Company.

Shaw, M. E., & Ashton, N. (1976). Do Assembly Bonus Effects Occur on Disjunctive
Tasks? A Test of Steiner's Theory. Bulletin of the Psychonomic Society, 8(6),
469-471.

Shepperd, J. A., & Taylor, K. M. (1999). Social Loafing and Expectancy-Value Theory.
Personality and Social Psychology Bulletin, 23, 1147-1158.

Shih, Y.-F., & Alessi, S. M. (1993). Mental Models and Transfer of Learning in
Computer Programming. Journal of Research on Computing in Education,
26(2), 154-175.

Smith, B. N., Kerr, N. A., Markus, M. J., & Stasson, M. F. (2001). Individual
Differences in Social Loafing: Need for Cognition as a Motivator in Collective
Performance. Group Dynamics, 5(2), 150-158.

Sniezek, J. A. (1992). Groups under Uncertainty: An Examination of Confidence in
Group Decision Making. Organizational Behavior & Human Decision
Processes, 52(1), 124.

StandishGroup. (2001). Extreme Chaos: The Standish Group International Inc.
Stanton, J. M., & Barnes-Farrell, J. L. (1996). Effects of Electronic Performance

Monitoring on Personal Control, Task Satisfaction, and Task Performance.
Journal of Applied Psychology, 81(6), 738-745.

Steele-Johnson, D., Beauregard, R. S., Hoover, P. B., & Schmidt, A. M. (2000). Goal
Orientation and Task Demand Effects on Motivation, Affect, and Performance.
Journal of Applied Psychology, 85(5), 724-738.

Steiner, I. D. (1972). Group Process and Productivity. New York: Academic Press.
Stephenson, G. M., & Wagner, W. (1989). Origins of the Misplaced Confidence Effect

in Collaborative Recall. Applied Cognitive Psychology, 3(3), 227-236.
Stern, E. (1993). What Makes Certain Arithmetic Word Problems Involving the

Comparison of Sets so Difficult for Children?. Journal of Educational
Psychology, 85(1), 7-23.

Stroebe, W., Diehl, M., & Abakoumkin, G. (1996). Social Compensation and the
Kohler Effect: Toward a Theoretical Explanation of Motivation Gains in Group
Productivity. In Witte, E. H. & Davis, J. H. (Eds.), Understanding Group

 207

Behavior: Consensual Action by Small Groups (Vol. 2, pp. 37-65). Mahwah, NJ:
Erlbaum.

Stubbart, C. I. (1989). Managerial Cognition: A Missing Link in Strategic Management
Research. Journal of Management Studies, 26(4), 325-347.

Taylor, M. S. (1981). The Motivational Effects of Task Challenge: A Laboratory
Investigation. Organizational Behavior and Human Decision Processes, 27,
255-278.

Tindale, R. S., & Larson, J. R. (1992). Assembly Bonus Effect or Typical Group
Performance?: A Comment on Michaelsen, Watson, and Black (1989). Journal
of Applied Psychology, 77(1), 102-105.

Triplett, N. (1898). The Dynamogenic Factors in Pacemaking and Competition.
American Journal of Psychology, 9, 507-533.

Van der Veer, G. C., & Melguizo, M. d. C. P. (2003). Mental Models. In Jacko, J. A. &
Sears, A. (Eds.), The Human-Computer Interaction Handbook (pp. 52-80).
Mahwah, NJ: Lawrence Erlbaum.

Vandenbosch, B., & Higgins, C. (1996). Information Acquisition and Mental Models:
An Investigation into the Relationship Between Behaviour and Learning.
Information Systems Research, 7(2), 198-214.

Vygotsky, L. S. (1978). Internalization of Higher Cognitive Functions. In Cole, M.,
John-Steiner, V., Scribner, S. & Souberman, E. (Eds.), Mind in Society: The
Development of Higher Psychological Processes. Cambridge, MA: Harvard
University Press.

Wageman, R. (1995). Interdependence and Group Effectiveness. Administrative Science
Quarterly, 40(1), 145-180.

Wagner, J. A., & Moch, M. K. (1986). Individualism-Collectivism: Concept and
Measure. Group and Organization Studies, 11, 280-304.

Weinberg, G. M. (1971). The Psychology of Computer Programming. New York, NY:
Van Nostrand Reinhold.

Weingart, L. R. (1992). Impact of Group Goals, Task Component Complexity, Effort,
and Planning on Group Performance. Journal of Applied Psychology, 5, 682-
693.

Williams, K. D., Harkins, S. G., & Karau, S. J. (2003). Social Performance. In Hogg,
M. A. & Cooper, J. (Eds.), The SAGE Handbook of Social Psychology (pp. 494-
511). Thousand Oaks, CA: Sage Publications.

Williams, K. D., Harkins, S. G., & Latane, B. (1981). Identifiability as a Deterrent to
Social Loafing: Two Cheering Experiments. Journal of Personality and Social
Psychology, 40, 303-311.

Williams, K. D., & Karau, S. J. (1991). Social Loafing and Social Compensation: The
Effects of Expectations of Co-Worker Performance. Journal of Personality and
Social Psychology, 61(4), 570-581.

Williams, L. (2000). The Collaborative Software Process. Unpublished Ph.D.
Dissertation, University of Utah.

 208

Williams, L., A., & Kessler, R. R. (2000). All I Really Need to Know About Pair
Programming I Learned in Kindergarten. Communications of the ACM, 43(5),
108-114.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the
Case for Pair Programming. IEEE Software, 17(4), 19-25.

Wilson, J. R. (2000). Mental Models. In Karwowski, W. (Ed.), International
Encyclopedia of Ergonomics and Human Factors (pp. 493-496). London:
Taylor and Francis.

Wilson, J. R., & Rutherford, A. (1989). Mental Models: Theory and Application in
Human Factors. Human Factors, 31(6), 617-634.

Witte, E. H. (1989). Kohler Rediscovered: the Anti-Ringelmann Effect. European
Journal of Social Psychology, 19(2), 147-154.

Wood, R. E. (1986). Task Complexity - Definition of the Construct. Organizational
Behavior and Human Decision Processes, 37(1), 60-82.

Wood, R. E., & Mento, A. J. (1987). Task Complexity as Moderator of Goal Effects: A
Meta-Analysis. Journal of Applied Psychology, 72(3), 416-425.

Yinon, Y., Jaffe, Y., & Feshbach, S. (1975). Risky Aggression in Individuals and
Groups. Journal of Personality and Social Psychology, 31, 808-815.

Yourdon, E. (1997). Death March: The Complete Software Developer's Guide to
Surviving 'Mission Impossible' Projects. New Jersey: Prentice Hall Computer
Books.

Zajonc, R. B. (1965). Social Facilitation. Science, 149, 269-274.
Zajonc, R. B. (1980). Copresence. In Paulus, P. B. (Ed.), Psychology of Group Behavior

(pp. 35-60). Hillsdale, NJ: Erlbaum.
Zalesny, M. D., & Ford, J. K. (1990). Extending the Social Information Processing

Perspective: New Links to Attitudes, Behaviors, and Perceptions.
Organizational Behavior and Human Decision Processes, 47, 205-246.

Zander, A. F. (1974). Productivity and Group Success: Team Spirit vs. the Individual
Achiever. Psychology Today, 8(6), 64-68.

Zarnoth, P., & Sniezek, J. A. (1997). The Social Influence of Confidence in Group
Decision Making. Journal of Experimental Social Psychology, 33(4), 345-366.

 209

BIOGRAPHICAL INFORMATION

Venugopal Balijepally received his doctorate in Business Administration with a

major in Information Systems from the University of Texas at Arlington. He holds

Postgraduate Diploma in Management (equivalent to MBA) from Management

Development Institute, India and Master of Technology in civil engineering from Indian

Institute of Technololgy, India. He received his Bachelor of Engineering in civil

engineering from Osmania University, India.

He has over ten years of industry experience in management positions. His

current research interests include software development, social networks, knowledge

management, IS management, and research methodologies.

 210

	Table 5.2 – Varimax Rotated Orthogonal Factor Loadings
	75.000
	77.400
	72.600
	0.493
	0.347
	0.347
	0.510
	0.478
	3.59
	3.59
	3.59
	1- Low
	-0.776
	2 - High
	-0.011
	1 - Low
	0.213
	2 - High
	-0.525
	1 - Low
	0.213
	2 - High
	-0.525
	6.1 Summary of Research Findings
	6.1.1 Software Quality
	6.1.2 Task Mental Model
	6.1.3 Overall Satisfaction
	6.1.4 Confidence in Solution

	6.2 Significance of Findings
	6.3 Limitations of Study
	6.4 Future Research Directions

	Professor’s Consent for Students’ Participation

