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ABSTRACT 

GRAPHICAL EVENT-DIRECTED SCENARIO BEHAVIORAL SPECIFICATIONS 

FOR THE SCENARIO-BASED ENGINEERING PROCESS (SEP) 

USING A DOMAIN SPECIFIC SOFTWARE 

ARCHITECTURE (ASSA) PHILOSOPHY 

Publication No. 	 

Miao Xia, M.S. 

The University of Texas at Arlington, 1993 

Supervising Professor: Stephen P. Hufnagel 

This thesis extends scenarios of a system into real-time event digraphs. A scenario 

is an event trace resulting from a particular thread of system execution. An event 

digraph is an event network. Multiple external stimuli result in a wave of execution in 

distributed and parallel architecture. 

A graph theoretic formal definition for event digraphs is developed with the finite 

sets of events and the scenario event order (SEO). A scenario language is developed 

from the event digraph. In modeling an event digraph, we introduce the frontier 

expansion mechanism which let the users and the developers go around the question if 

this is the last occurrence, what will be the next? The behavior of event digraphs is 

specified with the input and output of nodes and the event dictionary. The 

occurrences of events in event graphs are specified with the token. 
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CHAPTER 1 

INTRODUCTION 

Scenarios were incorporated into the life cycle model of Object-Oriented software 

development in [Wang 91] (SDOOD). In the Scenario-Based Engineering Process 

(SEP) [Hufnagel & Harbison 93], scenarios are fundamental. Scenarios provide 

consistent communication mechanism among users, managers, and developers. 

Scenarios are used to map among a system's requirement, specification, design, 

implementation, and other documentation. Scenarios fulfill the seamless software 

development goal [Hufnagel & Liou 90]. However, the method of building scenarios 

into a requirement document remains ad-hoc. The scenario representation format is 

very informal. This thesis formalizes that process and makes it deterministic. 

This thesis extends scenarios into real-time event digraphs. These digraphs 

combine system scenarios into graphical structures. A scenario is an event trace 

resulting from a particular system thread of execution [Rumbaugh 91] (p86), while an 

event digraph is an event network. Multiple external stimuli result in a wave of 

execution in distributed and parallel architecture. 

This thesis consists of six chapters and three appendices. Chapter 2 describes the 

fundamental concepts and terminology. It lays the foundation for event digraph 

construction for reactive systems. A scenario is redefined with a scenario event order 

(SEO), the system external stimuli, and the scenario boundary states. The boundary 

states are defined within the system execution. The external stimuli are defined by the 

property that the stimuli, including the external inputs, can occur spontaneously and 

randomly with respect to a system. An SEO is described with the assumption that the 
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followed event is the last occurrence in the current event occurrence wave. Chapter 3 

shows the perceptual view of event digraphs and the pragmatic steps to build an event 

digraph from an actual scenario. The Vending Machine System and the Cruise Control 

System are given as two small real-time examples. We give the formal definition and 

the behavior specifications for event digraphs in Chapter  4. In Chapter 4, a scenario 

language and the ED hierarchical expansion mechanism are also developed with the 

event digraph base. Chapter 5 compares event digraphs with other requirement 

analysis graphical representation. The last Chapter includes the summary, 

conclusions, and suggested future work. 



CHAPTER 2 

BACKGROUND 

The purpose of preparing developers with scenarios of a system is to get a better 

understanding of the expected system behavior [Rumbaugh 91] (p170). We will extend 

scenarios into an event digraph. The purpose of building an event digraph is to 

formally specify system behavior. The concepts, the terminology, and the abstractions 

discussed below are used later in the thesis. 

2.1 Event 

In Coad & Yourdon's kindergarten [Coad & Yourdon 90] (p1), the distinguishing 

object's feature often is the attribute defining the objects' distribution. We may note 

that a chair is located beside a table. We also may note that we observed the table 

first, then the chair, or vice versa. We may say that the table is previous to the chair 

because we saw the table first. The objects' distribution is the foundation of our spatial 

concept. The occurrence distribution is the foundation of our time concept. In Einstein's 

relativity, both are integrated together. The order abstraction takes an important part in 

their integration. The observation order depends on the position relationship among 

the objects and the observer. So with respect to the observer, the occurrence order is 

a kind of spatial object order. This consideration is only to illustrate the important 

relationship between events and observers. In system analysis, the events and the 

event order abstractions will first be informally described. 

3 
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2.1.1 The Definition of Events 

One of the intuitive human activities is to deal with the real world by partitioning 

time. Some examples are: Flight 098 departs from DFW Airport At 2:00 PM, today's 

seminar will be held after the class CSE 6325, the meeting is scheduled from 1:00 PM 

to 3:00 PM, etc. 

An event is the boundary of a time partition. In the partition today's seminar will be 

held after the class CSE 6325, the boundary can be represented as the seminar is 

finished or as the class CSE 6325 begins. In the partition the meeting will be held from 

1:00 PM to 3:00 PM, we can set the boundaries as such: the meeting begins at 1:00 

PM and the meeting ends at 3:00 PM. The example Flight 098 departs from DFW 

Airport at 2:00 PM itself is a partition boundary. It divides the time into two parts, before 

the departure and after the departure. We use events to mark time. Note that our 

public standard time is marked with the ticking of the clock. Each tick is a fundamental 

event. Imagine if there were no event occurrence in the universe, there would have 

been no time in this universe. "Processes are event-driven rather than clock driven" 

[Jonathan & W 90] (p133). 

2.1.2 The Event Abstraction and Properties 

By comparing the adjacent time segments partitioned by the events, we can always 

define distinguishing attributes. For example: Flight 098 was on the ground before 

2:00 PM; and after 2:00, it was in the air. During CSE 6325, the number of student is 

30. When the following class starts, there are 28 students. We use the word 

parameter to represent things that change in the different partitions. In the first 

example, the parameter refers to the position of the plane, Flight 098; in the second 



5 

example, the parameter refers to the number of student. The observer determines the 

significant attributes. 

To illustrate other event features, let us ride on a time train. This will enable us to 

see what will appear on the time mark. We observe that the appearance of time marks 

is instantaneous. The some attributes between adjacent segments have been changed 

on the time marks. The changing is caused by some mutual effects among objects. 

We have observed three properties of events: instantaneous attribute, parameter 

change, and mutual effect. The instantaneous attribute is the essential characteristic; 

parameter change and mutual effect are the intrinsic parts of the events. 

Of course, nothing is really instantaneous. If one of our observations is of a very 

short time duration relative to another observation, then the former observation can be 

seen as an event. Anything such as a process, object, concept, etc., can be abstracted 

as an event, when we study or observe the instantaneous state of its attributes. For an 

object, its existence can be abstracted as an event for a relatively time scale. The 

signal, interrupt, occurrence, happening, action, etc., are events that can have the at a 

point in time property. 

In computer science, the function, task, operation, process, and state concepts are 

fundamental. They all have a start time and an end time in their system execution. It 

is natural to consider the questions: 

When is a function called? 

When does a process start? 

When does a state exist? 

When is an object in active? 

Etc. 

Those start and end observations are events. They can be modeled with at a point in 

time attribute. 
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Time is always marked on the point where some parameters change or some 

mutual effects occur. For example, at 1:00 PM, a car hit a tree (mutual effect), the 

speed of Flight 098 stops increasing (parameter change), Flight 098 is on land (object 

state change). 

A mutual effect implies some parameter changes. For instance, a car hit a tree 

implies that the body of the car was damaged, I open the door implies that the position 

of the door is changed. 

A parameter change may not imply a mutual effect. For instance, the stopwatch is 

set for 2-minutes and 2-minute time passed does not imply any mutual effect. Note 

that 2-minute time passed itself may be a signal that causes some event occurrences. 

In some applications, we only abstract one side of mutual effects. For example a 

car is hit, the door is opened. A description of events can be done as a parameter 

change form. They can be either as a one sided effected form, or as a two-sides 

mutual effect form. In which form an event is abstracted depends on both the 

observers and the problem domain. With respect to the object-oriented approach, each 

side in mutual effect may be either an object or an attribute; a parameter change can 

be either an operation or a state transition; mutual effect can result from message 

passing. 

Applying the group mechanism among events results in the event class concept. 

Applying the inheritance mechanism among event classes, we get event class 

hierarchical structures. Examples and discussions about event classes and event 

inheritance can be find in [Rumbaugh 91] (p85, p98). 
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2.1.3 Event Value 

We define the event value as the value the changed parameter conveys. In Flight 

098 departures at 2:00, the event value is 098. For the door is opened, possible 

values of the door in this abstraction are open or closed. For the event check the 

plan's speed, the event value may be 200 mph, 600 mph, etc. An event may be 

described with a group of objects or attributes. The one that is changed conveys the 

identity of that event. 

2.2 State 

A state is the event partitioned time interval in which the event effects remain in 

effect. If we ride on the time train, the states appear as the colored distances between 

the events. The color here means the superposition of event effects. The current 

occurred event superposes its effect on the color that was made by the previously 

occurred events. That the next occurred event sweeps out the last event's effect is 

viewed as the special case of superposition. Each superposition causes a new state. 

In other words, an event may affect not only its incident state, but also its succeeding 

states. It follows that a state can be specified by several event values. 

In an example of an A/C system, consider the following event sequence 

Turn on power —> turn the cool to high —> turn the thermostat to 11 

—> turn the cool to low 

Each event causes a change of the NC. Note that turns the cool to low sweeps out the 

effect of turn the cool on high, but not that of turns the thermostat to 11.  The  turn on 

power affects not only its incident state, but also the other sates following it. Also note 

that each state is specified with a value combination of power, fan, and thermostat 

value. 
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2.3 Stimuli 

2.3.1 The Definition and the Properties of Stimuli 

We define Stimuli as a finite collection of external events of a system; each occurs 

spontaneously and randomly with respect to the system. For example, consider a TV 

set with the external events: turn on power, change to channel 8, adjust the bright 

button on low, etc. The TV can not predict which one will occur next. 

For an input event, if the input data is queried by the system and the data's coming 

is inevitable, then this event does not belong to Stimuli. A system queries of data from 

an external storage is not a stimulus, because we assume that the external storage will 

always supply what the system requires. The occurrence of the queried input is 

inevitable, and not spontaneous. The occurrence of an input of a system from a user 

belongs to Stimuli because the user may make an error data or the user may input 

some data even if the system does not require it. 

At a point in time, a single stimulus may occur or a group of stimuli may occur 

together. According to the event exclusive discussion [William 88], we follow the 

regulation that the two exclusive stimuli cannot stimulate a system at the same time. 

For instance, we can not turn the TV on and at the same time turn it off; we cannot 

change the channel to 8 and at the same time to 21. 

The occurrence of an event in a Stimuli set is an external effect of a system. Some 

external effect on a system will continue for a duration of time; the stimulus is the start 

or the end of the external effects. 

2.3.2 Stimuli-System Partition 

Two well-known software requirement analysis approaches are Structured Analysis 



9 

(SA) and Object-Oriented Analysis (OOA). In SA, the data flow diagram (DFD) is a 

typical graphical representation. To specify a requirement with DFDs, the 0-level DFD 

is what we give first [Pressman 92] (p209). A 0-level DFD represents the entire 

software element as a single bubble with input and output data indicated by incoming 

and outgoing arrows, respectively. In OOA, we always represent first a top level 00 

model with an environment-system partition form and a message passing mechanism 

between the environment and the system, both of which are abstracted as two high 

level objects. 

A common feature of 0-level DFDs and environment-system high level 00 model is 

a 2-partition, which is the first abstraction we developed to specify the relationship 

between a system and its external existence. 

When we specify a requirement with a scenario extended event digraph, we do a 

similar thing. We take stimuli-system 2-partition as our top level model in this case. 

The Stimuli has been defined in the last section. 

We compare stimuli-system abstraction with a 0-level DFD: 

1. The external part of DFD includes the system output, while a Stimuli doesn't. 

2. A Stimuli specifies the data input occurrences as well as any system external 

effective if they are spontaneous and random. 

The behavior of the system part in stimuli-system is referred as the function of the 

stimuli's behavior. 

2.4 Boundary State 

A boundary state is an externally visible state which users or domain experts or 

observers abstracted from a system. The identification of a boundary state for a 

system depends on the abstraction level in the application. Note that the users or 
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domain experts are permitted to stipulate only one boundary state for a system. The 

transition back to the boundary state means a scenario is finished or the objects return 

to their original state. The transition out of the boundary state means the beginning of 

a complete-scenario. The scenario and the complete-scenario will be introduced later. 

A boundary state may be the state that no external effective remains in the system or 

may be the state that no internal events occur in the system. We often view the 

system's OFF mode (When a system is not in execution) as a boundary state. For 

example: the A/C is in the state off, the TV is in the state off, etc. We also often refer 

the mode of system's waiting clients (When there is no effect of Stimuli remained in a 

system) as a boundary state. For example: the ATM machine is waiting for customers, 

the pharmacy is open, etc. 

Note that the users or domain experts can only stipulate one above case as the 

boundary state of a system. If the domain experts say that OFF mode is perceived as 

a boundary state, the Waiting Customer is not viewed as a boundary state. 

2.5 Scenarios 

A scenario is defined in [Rumbaugh 91] (p463) as a sequence of events that occur 

during one particular system execution. To build an event digraph and to consider 

multiple execution threads of a system requires a more powerful definition. The 

definition above deals with a particular execution path, while an event digraph must 

consider all possible execution paths. A scenario is redefined with the boundary state 

and the scenario event order (SEO). In this section we discuss the SEO first, then 

define scenarios. 
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2.5.1 SEO 

SEO is a collection of ordered event pairs (tail, head); the tail is assumed to be the 

last occurrence in an occurrence wave with respect to the head and the head is 

assumed to follow the tail immediately. An example could be concurrently enjoying 

McDonald's Extra Value Meal package that includes Big Mac, fries and a soft drink. A 

person eats the Big Mac while eating fries and while drinking the soft drink. The person 

must at least take a bite on every food item. The last swallowed food item cannot be 

known in advance. If we want to consider the next event for the event swallowing Big 

Mac, we assume that the last swallowed is the Big Mac; if we search for the events that 

follow the event swallowing Fries, the last swallowed is assumed to be fries; and so on. 

Then we may have the following expression: 

(finish Big Mac, go), (finish fries, go), (finish drink, go) e SEO. 

Note that with respect to the event the person leaves, the last occurrence may be finish 

Big Mac, or finish fries, or finish drink. 

The same mechanism can be also applied if we want to consider the next 

occurrences from the occurred events. We suppose that all food and drink are 

possible from the start eating event. If we want to search for the follower of Big Mac, 

we say that Big Mac is the last started, and so on. We may have 

(start Big Mac, finish Big Mac), (start Big Mac, finish fries), 

(start Big Mac, finish drink), 

(start fries, finish Big Mac), (start fries, finish fries), 

(start fries, finish drink), 

(start drink, finish Big Mac), (start drink, finish fries), 

(start drink, finish drink) E SEO. 

There are three kinds of SEO orders. The tail and the head are causally related in 

the first kind SEO. The head occurs only if or iff the tail occurs. For example: it rains 
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—> the earth becomes wet (only if); the answer machine signal is flashing <-> 

somebody has left a massage (iff). 

The tail and head are conditionally causally related in the second kind of SEO. The 

head occurring depends on some particular value of tail or on some special states in 

which the tail occurs. In other words, the head implies the tail. For instance, if the 

deposited coin is enough for a candy bar, the machine returns the new inserted coin 

after the event insert coin; if the deposited coin is not enough, the machine sets a new 

state after the insert coin. Therefore, we have the second kind SEO as: insert coin <— 

sets a new state and insert coin <— returns new inserted coin. 

In the last kind SEO, the head, in a particular state, can possibly occur immediately 

after the occurrence of the tail, and the tail and the head are not causally related. This 

state may or may not be caused by the tail, and may or may not be result from the 

head. Note that not every event can occur in a particular state. An example is the 

following situation: a student is in the engineering building II, and he has the option to 

leave the building immediately, or he may go into the #2 elevator immediately, but he 

can not play football immediately. 

Again the essence of SEO is the relation that under the certain abstraction views 

the occurrence of an event follows another occurrence immediately either inevitably or 

possibly. This relation is partitioned into three parts by applying causality mechanism. 

In system analysis, whether an event order belongs to SEO is determined by users, 

domain experts. Similarly, abstraction viewers can define relations. In other word, 

whether the causality relation, conditionally causality, or possibly following under certain 

situation can be assigned between two events is decided by users or domain experts. 

The SEO can also be viewed as the domain experts or users defined logic. Therefore 

in system modeling both users and analysts can ask the question If this is the last 

occurrence, what will be the next?. 
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2.5.2 More about Events 

If two events have the same description (i.e., in the same parameter change form or 

in the same mutual effect form), but they occur in the different states, we will categorize 

them as two distinct events. In other words, an event is determined not only by its 

description but also by its position in time (sequence of events). There is a difference 

between a student leaving the library before the closing time or after the closing time, 

even though both leaving library events are of the same description. 

2.5.3 The Definition of a Scenario 

Scenario: A sequence of events where 

1. The start event is a stimulus, and after the last event occurs, the system 

state is the boundary state. 

2. Each immediate ordered pair in the sequence belongs to SEO. 

If the start event of a scenario also occurs in the boundary state, this scenario is called 

a complete-scenario. SE0 excludes the arbitrary event ordered pairs that do not 

belong to scenarios. A stimulus is permitted to be appear more than once in the 

interval of a scenario sequence. 



CHAPTER 3 

PERCEPTUAL VIEWING OF EVENT DIGRAPH 

SEO is actually the mechanism that provides us a heuristic to search for the 

followers for each event concerned. Since the mechanism for searching the next 

occurrence is simpler, we will first examine two small examples to show how to use this 

mechanism to build event digraphs; therefore, the perceptual viewing of event digraphs 

in this chapter will be illustrated. The formal definition and the analysis of the event 

digraphs are to be discussed in the next chapter. 

3.1 The Abstraction of an Event Digraph 

We abstract a system as a finite collection of events E that 

E {el , e2, ... en} 

We refer SEO to a relation such that 

SE0c Ex E 

The result of this abstraction (E, SEO) is a directed graph called an event digraph (ED). 

In building an ED according to a requirement document, an SEO is applied as the 

question if this event was the last occurred, what will be the next?. Developers can ask 

this question not only for themselves but also for the user's view. This question can be 

a center of the communication between users and developers if an ED is developed. 

Furthermore, developers and users can work together to build an ED since ED 

development only needs the next occurrence mechanism, which is intuitive and 

requires no knowledge of computer technique. 

14 
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3.2 Example 1, Vending Machine System 

This Example comes from the UTA course, Real-Time Design (CSE 6325 SPRING 

93). 

Requirement: The vending machine receives coins, then dispenses candy bars. 

The machine holds five types of candy bars, 200 of each type. The machine does not 

give change. The machine only accepts 5, 10, 25 coins. An incomplete transaction will 

be canceled after 2 minutes, if not successfully completed. Termination of transaction 

shall result in the return of all deposited money to the customer. Being ultra modem, 

the machine has an internal phone modem, and can alert the vendor when any of the 

following conditions occurs: 

1. The candy supply of any candy bar is less than 10; a delivery service will 

then fill the machine to capacity. 

2. There are more than 40 units of any coin, since the coin holders can only 

hold 50 units of any coin. An armored truck will remove all money from the machine. If 

the armored truck does not arrive within one hour, the machine will shut itself down. It 

will go into a protect-mode, to prevent robbery. 

ED Building: (The result is shown on Figure 1.) 

Assumption 1: The services of Armored truck and candy bar delivery are combined 

into one service, Truck Service. 

Step 1, Identify stimuli: Stimuli is a collection of the external effects in which each 

element occurs spontaneously and randomly with respect to a system. With respect to 

the vending machine, we see the following external events: 

el': insert a coin 

e2': push a candy button 

These events are spontaneous and random. A customer may push the button first, 

then push the button again, then insert 5-cent coin, then push button, etc. We may 
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assume that the indicators as machine asks customer to insert coin and machine asks 

customer to push the candy button are designed from the machine's view, but it is 

possible that customers may play with the machine and ignore those operation 

indications or that the customers may make some wrong operations. So the machine 

cannot expect what will occur to it, and in what order. The truck can be referred to as 

an external store. The machine puts the coins into and takes the candy bars from the 

truck. The truck service occurs only if the machine requests it. 

Let el', e2' E E. The primes on ei', e2 indicate that those events are stimuli. 

Let SEC ). O. 

Step 2, Determine the Boundary State: We determine that the vending machine 

enters its boundary state only if there are no coins deposited in the machine. 

Step 3, Make the Search Queue, Q: We add every element in E into a queue Q. At 

first, for the elements in Stimuli, the adding order is made by chance. However, the 

following discussion may offer some clues that will help in deciding what element in 

Stimuli is added into the front of Q. We can add the "normal" inputs, or "normal" stimuli 

in the front of Q. A "normal" input or a "normal" stimulus is the first event of the 

"normal" scenarios. The meaning of a "normal" scenario can be found in [Rumbaugh 

91] (p170). For a "normal" scenario, we do not consider unusual conditions, the 

"special" cases such as omitted input sequences, maximum and minimum values, and 

repeated values, the user error cases including invalid values and failures to respond. 

For the example of an ATM machine [Rumbaugh 91] (p151-185), we will look at the 

input sequence: 

user insert a cash card —4 user enters his password —> 

user selects the kind of transaction —> user enters the $100 
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This is a "normal" input sequence that an ATM machine expects. In our example, the 

machine normally expects that the a customer first inserts a coin. Therefore, the Q of 

the vending machine after adding the elements of Stimuli looks like 

Q ::-.=. (el', e2'). 

Step 4, Search for Followers: We remove 0 (Remove-Q(0), let the removed 

element occur, then search the following occurrences in the system in this step. What 

kind of following occurrences can be searched out depends on our abstractions. Users 

can help to make this searching more deterministic. For each new obtained event if it 

is not in E, we add it in E and do Add-Q(0. Then add the event ordered pair, which is 

constructed with Remove_Q(ei) as the tail and the new obtained event as the head to 

SEO. We repeat this step until 0 is empty. 

In our vending machine example, we do Remove_Q(ea What will occur next if 

Remove_Q(0 were the last occurrence on the vending machine system? After the 

occurrence of el, the count 2-minute time  should be executed while a new coin value 

state should be set. However, if the current coin value is already enough for a candy 

bar, the machine should return the new inserted coin directly instead of setting a new 

coin value state. That is to say that the machine needs to check the current coin value 

state before deciding whether to set a new state or to return the new received coin. 

We design an event check state 1 to deal with the situation above. The reason that we 

put a 1 after check state will be illustrated later. We have the following abstractions and 

manipulations: 

e3: check state 1, (a follower of el'). 

ea: count 2-minutes, (a follower of el') 

Let e3, ea E  E 

Let (el', e3), (el', ea) E SEO 

e5: return coin 1, (a follower of e3). 
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es: set state, (a follower of e3). 

Let e5, es E E 

Let (e3, es)', (e3, es)' E E 

Add_Q(e4), Add_Q(es) , Add_Q(es). 

Note that there are primes on (e3, e5)' and (e3, es)'. We use the prime symbol to make 

distinguish among the three kinds of SEO. A (ei, ei) indicates that ei and ei are causally 

related; a (ei, el)' indicates that ei and ei are conditionally causally related; a (ei, ei)" 

indicates that ei and ei are not causally related and that ei is "required" or "designed" to 

follow ei. In our example, whether e3 causes e5 or es depends on the value of the 

current coin state value (being enough for a candy bar or not), so (e3, e5)' and (e3, es)' 

belong to the second type of SEO. The immediate result so far is 

E = {e,', e2', e3, e4, es, es} 

SEO = {(el', e3), (el', e4), (es, es)', (es, es)'} 

Note that we don't Add_Q(e3), because the succeeding events of e3 have already been 

designed in the same time. The Q right now looks like 

Q = (e2', e4, e5, es). 

Remove_Q(e2'), let e2' occur. What will be the next events if e2' is the last occurrence 

on the vending machine? After a candy selecting button has been pushed, the next 

actions of the machine depend also on the current coin value state. If the current coin 

value is enough or too much for a candy bar, the machine dispenses the candy bar the 

customer has chosen. If a customer first pushes a candy button without depositing any 

coin, the machine will do nothing and continue to keep its boundary state. If a 

customer pushes a candy button under the state that the coin value is not enough for a 

candy bar, the machine will keep waiting until the 2-minute time is out or another coin is 

deposited or candy buttons are pushed again. The same event under different states 

will cause different state transitions. This is an outstanding characteristic shown on 



19 

State Transition Diagrams (STD). In ED building, this situation requires us to design 

again a State Checking event. For our vending machine ED building process, we 

design the event check state 2 to occur between pushes a candy button and the events 

that may be caused. We have another group of abstractions and manipulations as 

follow 

e7: check state 2, (a follower of e2) 

Let e7 E E 

Let (e2', e7) E SE0 

ea: 2-minute time is out, (a follower of e7). 

es: decrease the number of a candy bar, (a follower of e7). 

Eta": reset, (a follower of e7, the last event of a scenario). 

ei': (a follower of e7, already in E). 

e2': (a follower of e7, already in E). 

Let ea, es, elo" E  E 

Let (e7, ea)", (e7, es)', (e7, elo"),' (e7, el')", (e7, e2')"  E  SE0 

Add_Q(e8), Add_Q(es). 

Note that we have used the symbols as ei, ei', and ei" to distinguish the three kinds of 

nodes so far. The el' means that the event indicated can be the first event of a 

scenario, which is also a stimulus. The a" means that the event indicated can be the 

last event of a scenario. After ei", a system then goes back to its boundary state. The 

ei means that the event indicated can only be an interval event in a scenario. In our 

example, the event return coin 1 cannot start a scenario. The return coin 1 is not an 

external event and can not happen spontaneously and randomly. Furthermore, after 

the  return coin 1, there are still some processes going in the system. Something will 

happen before the boundary state and after the return coin 1. According to the 

definition, only a stimulus can start a scenario. In our example, the Stimuli includes el' 
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and e2' . After the event reset, the vending machine system goes back to its boundary 

state. Actually, if a customer pushes a candy button without deposit, there is no 

change on machine's state. However, since we view e7 as an internal event—a part of 

the system execution, we still let the event reset to follow e7 for our vending machine 

simulation. That also means that the system gets its boundary state one more time 

after the stimulus e2'. The following scenario is an illustration. 

Scenario: A Customer's Curiosity 

1. A customer pushes a candy button without any deposit (occurs under the 

boundary state). 

2. The machine checks that the current coin value is zero. 

3. The machine is resets, and goes back the scenario boundary state. 

Actually, no interval event in this scenario is in the active state. This is not a "normal" 

scenario. 

Note that we don't take Add-Q(e7) and Add_Q(elo"). The situation of e7 is the same 

as that of ea. We already have the succeeding events of e7, and we do not need to 

consider en's followers any more. We do not add elo" into Q because eio" is the end of 

the scenarios; there are supposed to be no followers of the ends of scenarios. The Q 

looks like Q a (e4, e5, ea, ea, ea). 

Note that if the current coin value is enough or over for a candy bar, e7 will cause 

ea. Therefore the arc (e7, ea)' has a prime come with as it up script. If the current coin 

value is not enough, el' or e2' or ea may follow e7. However e7 won't cause any one of 

them; the arcs (e7, el')", (e7, 'e2)", and (e7, ea)" come with double primes as their up 

scripts. 

Note that the actions conveyed by ea and e7 are the same — check state. However, 

we design check state into two distinct events. With the respect of the action check 

state, the succeeding event set depends on the history of the check state, i.e., we need 
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to be concerned with what has been happened before the check state occurred. In the 

graphical representation, we need to examine from where the check state comes. For 

the same value, for example the current coin value is enough, of the check state, if the 

check state comes from el', the machines return the newly deposited coin; if it comes 

from e2, the machine dispenses a candy bar. An event is identified not only by its 

instantaneous performance but also by its effect in time. We abstract an event by 

instantaneous performance of things; we distinguish events by the time effect of an 

instantaneous performance. Technically, our distinguishing events according to their 

different effect propagating in time guarantees that the occurrences of the succeeding 

events are only determined by the performance of the preceding event. 

The sub-ED of the vending machine so far is 

E = {el% 	e3, ea, es, es, e7, es, es, els"} 

SEO E {(el', e3), (el', ea), (e3, e5)', (e3, es)', (e2', e7), (e7, 	(e7, e2')", (e7, es)", 

(e7, es)', (e7, elo")'} 

The graphical representations of the sub-ED are shown on Figure 2. From the 

Figure 2, we may already have a premonition that an ED's graphical representation for 

even a medium system may become a chaotic picture. The solution to the chaos is to 

apply the follow tree as one of the ED's graphical representations. Figure 3 is the follow 

tree of the Figure 2. The follow tree of an ED is not only a method to help us to 

organize a good documentation format in ED requirement analysis approach but also a 

graphical expression emphasizing the question — what will be the next occurrences?. 

More discussions about the follow tree  is in the next chapter. 

We do Step 3  in iterative way, continuing to removing  0,  abstracting and designing 

the succeeding event set for each removed event by keeping in mind with the question 

as if this is the last occurrence, what will be the next?, then adding the new produced 

events into 0, until Q is empty. The graphical representations of the vending machine 
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are shown on Figure 1 and Figure 4. The Figure 4 is the follow tree of the final result. 

Since in our abstraction in the section 3.1, E is finite for a system. We can always get 

the time that Q becomes empty. 

The behavior of a graphical representation is specified by another ED component 

— Event Dictionary. An Event Dictionary plays a part as that a requirement dictionary 

[Pressman 90, Thomas 90] plays in DFD. The whole event dictionary of the vending 

machine system is located in Appendix B. We have more discussion about event 

dictionaries in the next chapter. 

Note that a scenario in an ED appears as a walk [Bondy & Murty 77] (p12). The 

start and the end of a walk are a stimulus and a sink point. The sink point is unique in 

a scenario; stimuli are not necessary to be distinct in a scenario. Furthermore, it is not 

required that there must be some interval events happening under the active states. 

The process we used to build an ED above is similar to the Breadth-First Search 

(BFS) algorithm [Larry & Sanford 90, Thomas 90]. We identify first the stimulus set, 

then initialize a queue to contain all the events in the stimulus set. While the queue is 

not empty do the following: 

1. Remove an event ei from the queue. 

2. Identify , abstract, and design all events ei following ei; 

If ej is new produced then add el to the queue. 

More discussion about this BFS like process will be given in the next Chapter. Besides 

the BFS like method, there is another way to build an ED for a system. The next 

section shows an alternative ED construction method by the example of cruise control 

system. 
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3.3 Example 2, Cruise Control System 

The ED construction method shown in this section is Scenario Architecture, which 

takes a "normal" scenario be a base, then installs several scenarios on a "normal" 

scenario to make a net structure. From a requirement document, we make scenarios in 

textual format first, just as those made in [Wang 91] (p31-34) for PBX on system level 

or in [Rumbaugh 91] (p171) for ATM machine. Then we pick up a "normal" one from 

the textual scenarios we just made, map the "normal" scenario to an ED form. Next, 

extend the ED by installing the rest of the textual scenarios. Recall that a scenario is a 

walk in ED. In Scenario Architecture, we actually build a single walk for ED first. 

The stimuli-system partition is still the first step here. This first level 2-partition is 

the foundation of the event-driven approach. 

The example we used in this section comes from the UTA's course CSE 5324 

Software Engineering (I) SUMMER 92. 

Requirement: A cruise control system must maintain a car's speed within 5 mph of 

the desired speed, even over varying terrain. The cruise control system's inputs are 

1. Cruise control on or off — if on, denotes that the cruise control system should 

maintain the car's speed. 

2. Engine on or off — if on, denotes that the car engine is turned on; the cruise 

control system is only activated if the engine is on. 

3. Pulses from wheel — a pulses is sent for every revolution of the wheel. 

4. Accelerator signal  —  indication of how far the accelerator has been depressed. 

5. Brake signal — on when brake is depressed; the cruise control system 

temporarily reverts to manual control if the brake is depressed. 

6. Increase or decrease — increase or decrease the maintained speed; only 

applicable if the cruise control system is on. 
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7. Resume speed — resume the last maintained speed; only applicable if the cruise 

control system is on. 

8. Clock pulse — timing pulse every millisecond. 

The cruise control system's output is throttle setting — values for the engine throttle 

setting. 

Assumption: 

1. We consider that increase or decrease are signals. Each time the driver 

pushes the increase decrease button, the cruise control system increases or decreases 

the speed by 5 mph once. The same as that for resume button 

2. When brake is released, the cruise control (if it is on previously) goes back to 

the previous work state. 

3. The effect of the accelerator on the cruise control system is the same as that 

of the brake. 

4. The minimum value of the maintained speed is 5 mph. The maximum value 

of the maintained speed is 110 mph. That is to say that if the driver turns the cruise 

control on when the car's current speed is only 2 mph, the cruise control will maintain 

the car's speed at 5 mph. If the car's speed is 140 mph when the cruise control is 

turned on, the car's speed is maintained at 110 mph. 

Step 1, Identify Stimuli: The input clock pulse is not a stimulus. With respect to the 

cruise control system, this clock pulse is not spontaneous and random. The clock pulse 

can be viewed as the results of the cruise control system's querying from somewhere. 

The stimuli of the cruise control system can be shown as: 

Stimuli a- (el', e2', e3', ea', e5', es', e7', e5', es', elo', ell') such that 

el': engine is on. 

e2': engine is off. 

e3': cruise control button is on. 
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ea': cruise control button is off. 

es': brake is on 

es': brake is off 

e7': accelerator is on 

es': accelerator is off 

es': increase/decrease signal (Inc/Dec sig). 

elo': resume speed signal(RSV sig). 

ell': terrain change. 

We can make a further abstraction on Stimuli to make things simpler. The cruise 

control works only if the engine is on and the cruise control button is on. We design 

the following event to demonstrate this point: 

CC on = el' A es' 

By the Demorgan's law, we write the equivalent expression: 

CC off = e2' V ea' 

Actually, the CC on and CC off are the one event with different values. However, for 

the specific application, we still design two events here. Furthermore, since both the 

effects of the brake and the accelerator on the cruise control system are related to the 

manual switch, we have the following design: 

B/A on = es' V e7' 

BA off= es' A es' 

Other relations in the Stimuli are el' e e2', e3' ED ea', and ell' —> el' 

We rebuilt Stimuli as 

Stimuli F_ (el', -el', e2', -e2', e3', ea', es'} such that 

ei': CC on. 

—tel': CC off. 

e2': B/A on. 
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—,e2': BA off. 

es': increase/decrease signal (Inc/Dec sig). 

ea': resume speed signal(RSV sig). 

ea': terrain change. 

Let Stimuli c E 

Let SEO = 0 

Step 2, Determine the Boundary State: We make the decision that the cruise 

control system gets its boundary state only if —,e2' is true. 

Step 3, Textual Scenarios: (Refer to the Appendix A) 

Step 4, The Walk Building for A "Normal" Scenario: Obviously, the first scenario 

depicted in Appendix A, Cruise Control, seems "longer" than other scenarios. We 

begin the ED building with scenario 1. 

(The graphical representation of the scenario 1's ED is shown on Figure 5.) 

The first event is el', which is already in the Stimuli. According the step 3 in the 

scenario 1, when el' happens, the CC system begins sampling the wheel pulses and 

the clock pulse, then calculates the current speed. We have the following abstractions: 

ea: sample whl pulse (sample wheel pulses, a follower of el'). 

e7: sample clock pulse (sample clock pulses, a follower of el'). 

es: calculate C-spd (calculate current speed, the follower of ea, es). 

Let ea, e7, es E E 

Let (el', e6), (el', e7), (e6, ea), (e7, ea) E SEO. 

Next, according to the step 4 in the scenario 1, the abstractions follow 

es: compare C-spd and M-spd (compare the current speed and the maintained 

speed, the follower of ea). 

Let es E E 

Let (ea, es) E SE0 
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However, before the occurrence of ea, the CC system must know the maintained speed 

from somewhere. If we just start the CC system, the first calculated current speed 

should be recorded somewhere as the maintained speed and should be also stored 

somewhere as the last maintained speed. The last maintained speed is stored for the 

resuming. 

Therefore the analysis goes as: 

If CC system is active, it queries the maintained speed. If the maintained speed 

is not zero (By the assumption 4, the minimum value of the maintained speed is 5 

mph), the next action is to compare the calculated speed with the queried value. If the 

queried value is zero, we know that the CC system has just started. So the current 

speed should be recorded as the maintained speed, and at the same time, the current 

speed should be also stored as the last maintained speed. If a new maintained speed 

is determined, it should be used in comparison with the current speed. The analysis 

above is still guided by the question if this is the last occurrence, what will be the next?. 

The events analyzed so far can happen on parallel way with ea, e7, and ea. We have 

the following abstractions: 

eio: query M-spd (1) (query the maintained speed, a follower of el' so far). 

eii: store L-spd (store the last maintained speed, a follower of eio and ea). 

e12: record M-spd (get the maintained speed ready, a follower of eio and ea). 

Let eio, eii, e12 E E 

Let (el', elo), (elo, es)', (elo, ell)', (elo, e12)', (ea, ell)", (ea, e12)", (e12, elo) E SEO. 

Note that we do not concern where elo queries M-spd and where el 1 stores L-spd. 

Those belong to the software design phase. What we are concerned with is that if 

some condition is satisfied, ell will follows elo. Similarly, we are not really concerned 

with the fact that eii may use the data from ea. The fact that the eii may use the data 

from e8 represents another fact that it is possible for eii to occur after the ea. 
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Still, according to the step 4 in scenario 1, the event adjusting the car's throttle 

follows the ell; however, it does so conditionally. 

e13: adjust throttle (adjust the car's throttle, the follower of es). 

Let ei3 E E 

Let (es, e13)' E SEO. 

According to the step 5 and 6 of the scenario 1, we have 

ei4": clean L-spd and M-spd (clean the last maintained speed and the 

maintained speed, a follower of -lel') 

Let eta" E E 

Let (e13, --ell)", (e13, eta") E SEO. 

Step 5, The Walk Extension: Now we install scenario 2 on the ED of scenario 1. 

The first step of scenario 2 says that scenario 2 begins at the occurrence of e5'. After 

that, according to step 2, the CC system needs to check if CC on is true before 

querying the maintained speed. If CC on is false, the CC system does nothing more. 

We have the following: 

els: check CC (1) (check if CC is on, a follower of e3'). 

e16: query M-spd (2) (query the maintained speed by increase or decrease, a 

follower of e15). 

e17": do nothing (go back to the previous state, a follower of e15 so far). 

Let els, els, e17" E E 

Let (e3', e15), (els, e16)', (e15, e17")' E SEO 

According to the step 2 and 3 of the scenario 2, we have 

eta: check spd limit (check the maintained speed limit, a follower of e16). 

els: inc/dec M-spd (increase/decrease the maintained speed, a follower of els). 

Let els, els E E. 

Let (els, eis)', (eta, e17")', (eia, els)', (els, ell)', (els, e12) E SEO. 
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So far scenario 2 has been connected with scenario 1 through the arcs (e1.9, ell)', (e18, 

e12). Next, we will examine both scenarios to see if there are some arcs from the 

scenario 1 to the scenario 2. We have 

(e12, e3')", (e13, e3')", (e14, e3')" E SEO. 

Now the scenario 2 is completely installed on the scenario 1. The graphical 

representation of the scenario 2 is shown on Figure 6. 

The installation of the scenarios 3, 4, 5 is shown on Figure 7, 8, 9 respectively. 

Figure 10, 11 are the follow trees. We build these follow trees according to the order of 

the scenario installation, so we will find that the size of the follower tree of scenario 1 

(Figure 1 0) is larger than the rest. The event dictionary of the cruise control system is 

in Appendix B. 



CHAPTER 4 

STRUCTURE AND ANALYSIS OF ED 

4.1 Definition in Formal Form 

An ED is a particular kind of directed graph. We use E to indicate the vertex 

set, SEO to indicate the arc set. E includes two distinct subsets S, V. The vertices in S 

are the sources of ED and those in V are the sinks of ED. S and V are assumed to be 

disjointed and non empty. SEO is partitioned into three parts, /, C, and T. 

Definition: 

An ED is a 7-tuple, ED= {E, SEO, S, V, I, C, T} where 

E  =  {ei, e2,  ...,  en} is a finite set of events, 

SEO  c  Ex E is a finite set of arcs, 

S  c  E, V  c  E, 

I  c  SEO, C  c  SEO, Tc SEO, 

S*0, V* 0, S r) V= 0, 

In Cn T. 0, lu Cu T= E. 

SEO: Let ei, ei E E. If it is possible that the occurrence of ei immediately 

follows that of el under the state determined by ei, then (el, ei)  E  SEO. 

S : Let ei  E  E. If the occurrence of ei is spontaneous, then ei  E  S. If ei  E  S, then 

donut(ei) 	1. 

V : Let ei  E  E. If the occurrence of ei has the system state transferred to the 

boundary state, then  ei E  V. If  ei e  V, then  doout(ei) =  0. 

/ : Let (ei, ei) E  SEO.  If ei 	ei or ei 	ei,  then  (ei, ei) E I. 

C  : Let (ei, ej) E  SEO. If  ei E- ej, then (ei, ej) E  C. 

30 
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T: SEO – (I u C). 

Theorem 1: 1 El .. 2. 

Proof: Suppose E . 1, then at least one of S . 0 and V. 0  must be true. 

We call a vertex in S an S vertex. Similarly, we have V vertex, / arc, C arc, and T 

arc. 

We take an ED to model the event SEO order in the system executions. The 

events we abstracted in the system requirement domain are represented with the 

vertices. The SEO orders defined in Chapter 2 are represented with the arcs. The first 

SEO is represented with the arcs in I; the second SEO, in C; the third, in T. The Stimuli 

described in Chapter 2 is represented with S. The Sink described in Chapter 3 is 

represented with V. 

Definition: An S-walk is a walk of an ED with the origin in S and the terminus in V. 

Theorem 2: An S-walk is equivalent to a scenario. 

Proof: =: Consider an S-walk, say w, in ED. By the definition of a scenario in 

Chapter 2, w is a scenario. 

: Let s a scenario. By the definition of ED, there is a correspondent 

sequence, say w, of s in ED; the origin and the terminus of this sequence are in S and 

V respectively. The E does not include repeated nodes; the w is unique. 

Corollary: The collection of all S-walks in the ED of a system is the scenarios of 

the system. 

Since we take S to model a Stimuli, we can think that S includes a group of 

subsets, say S1, S2, etc. If the stimuli corresponding the elements in S within the same 

subset, those stimuli can not occur at the same time. 

The examples of modeling a system (Vending Machine System and Cruise Control 

System) with ED are illustrated in Chapter 3. The graphical representations of the 

examples are on Figure 1-10. We represent an S vertex with a circle with small dots 
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within it, in V with a circle with slice sloped lines within it. The arcs in I are represented 

with the strong arrowhead lines; the arcs in C, with thin arrowhead lines; the arcs in T, 

with dashed arrowhead lines. The E, S, V, I, C, and T of the ED for examples are 

shown on Appendix C. 

4.2 The Behavior of ED 

An ED is an event network. The occurrence of an event, say el, in ED may be 

caused by different event occurrence. The set of the events that may cause the 

occurrence of ei is call the preceding set of ei. ei may cause the occurrence of several 

other events. The set of events that may be caused by el is call succeeding set of ei. 

For an event in an ED, some of its preceding events or succeeding events may or may 

not be required to occur at the same time. We use a group of symbols and symbol 

expressions to specify the concurrence or non-concurrence within a succeeding set or 

a preceding set. 

An ED can also be viewed as an event machine. We use tokens to specify the 

occurrences of events in an ED. The token behaviors as well as the input and output 

of arcs assigned for each vertex are specified in the Event Dictionary, which is viewed 

as a component of an ED. 

4.2.1 The Concurrence within Preceding Set and Succeeding Set 

With respect to an event, some of its preceding events are concurrent, and some 

are not. For example on Figure 3, e5 and ea are the succeeding set of e3 and within the 

preceding set of el'; e5 and ea are not concurrent. On Figure 5, ea and e7 are the 

preceding set of ea and within the succeeding set of el'; ea and e7 are required to be 

concurrent. 
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Within the preceding set or the succeeding set of an event, we specify the 

concurrence or non-occurrence among the elements with a group of symbols. The 

connector {A, v, CO specifies the concurrence or non-concurrence of events. The arc 

indicator {<-->, --->, .J} specifies the arc types. An expression is consists of several 

events connected with several connectors and an arc indicator. Either left hand side or 

right hand side of the arc indicator is a single event. The examples are: 

(el A ej) v ek el 

ei 	ej e ek 

If the single event is on the right hand side, the left hand side is the preceding set. If 

the single event is on the left hand side, the right hand side is succeeding. We use the 

symbol E{A, v, e} to represent an expression with events as the literal and {A, v, ED} as 

the connectors. We assign the meaning to the symbols as: 

E{n} means that the events in the expression are required to occur at the same 

time. 

E{ED}  means that the events in the expression can not occur at the same time. 

E{v} means that the events in the expression may or may not occur at the same 

time. 

Let ei, ej E E. 

ei <-4 ej means that (ei, ej) E / and ej occurs iff el occurs. 

el 	ej means that (ei, ej) E / and ej occurs only if ei occurs. 

ei 	ej means that (ei, ej) E C. 

ei 4J ej means that (ei, ej) E T. 

The formal expression of symbols is on Appendix B.1.1 
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4.2.2 Using Tokens to Specify the Occurrence Wave 

At a point of time, we simulate a Stimuli by assigning a group of token creations on 

some elements in S. We call that one assignment. For each assignment, we assume 

the two regulations: 

1. For each exclusive subset, only one element is allowed to create a token. 

2. Exactly one element in a conflict pair should be assigned a token. 

For the example of the cruise control system, in one assignment, only one of el' and 

--el' is allowed to create a token and at least one of them has to create a token. 

We assign each vertex in E the ability to create a token at one time. However only 

the vertices in S can create a token by an assignment. The token creations in S stir 

other vertices to create tokens. Therefore we say that an assignment can cause a 

token creation wave in an ED network. 

A token creation wave is propagated along path's arcs. This wave can only be 

absorbed in V. For example in Figure 3, we let el' create a token, then e3 and es 

create tokens, then perhaps the es creates a token, then maybe es, then ell, and then 

elo". The event eio" is a sink that expires the creation wave. 

Some S vertices stop creating tokens when their exclusive partners begin creating 

tokens. For the example in Figure 3, if e3 and ea create tokens, the token in el' is 

removed. In this situation, it seems that the tokens created in S travel in the ED 

network. Some other S vertices stop creating tokens when their exclusive partners 

begin creating tokens. For example on Figure 5, if we let el' create a token, el' will 

continuing its creation until we let create a token. In this situation, the stimulus 

seems to hold its token once it has created one, but we prefer that the vertex continues 

to create tokens. What S vertices should be designed with the holding ability depends 

on the applications. For the cruise control example in the last Chapter, we assign el', 

e2', and with the holding ability. 
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4.2.3 The Input and Output of the Nodes 

A vertex, for example ei in E, may be stirred up by its preceding vertices to create a 

token. The creation of this token will stir other token creations in succeeding vertices. 

The / input and output can be determined by an ED structure. The C and T inputs and 

outputs are determined by the semantic of applications. All inputs and outputs are 

specified in the Event Dictionary associated with an ED. 

Suppose that the input and output arcs of ei include all three kinds of SEO arcs, /, C, 

and T. If any one of ei's / tails have created a token, ei creates a token; if ei has 

created a token, all of ei's / heads create tokens. In other words, between the / input 

arcs, the logic relationship is OR; between the / output arcs the logic relation is AND. 

Therefore, the / input/output is a logic. For the example of the vending machine system 

in Figure 3, the / input logic can be found on els that creates a token only if either ela or 

els creates a token; the / output logic can be found on els. The token creation on els 

will cause both els and els to create tokens, respectively. 

Therefore by the / input/output logic, if an S vertex is designed to be of the holding 

ability, the token creation of this vertex will cause a sub-ED connected with / arcs to 

allow all of its vertices to hold their tokens; in this case the sub-ED is said to be 

saturated. For the example of the cruise control system of Figure 5, if el' continues its 

token creation, the sub-ED = {ell, es, e7, es, es, els} is in saturation. A saturated sub-ED 

corresponds to a state of the ED and the events saturated in the sub-ED become some 

processes or activities of the system the ED modeled. 

The / input and output logic of an ED comes directly from the logic defined in the 

first SEO in which the head occurs only if or iff the tail occurs. The / input and output 

logic can be determined completely by token creations. 

The specification of / input of el can be E{A, v, e} —> ei or E{A, v, e}Het. Not that 

the expression of ei EB ei —> ek does not mean that if ei and ej occur at the same time 
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the ek will not occur; this merely shows that it is not possible for ei and ej to occur at the 

same time. So ei ED ej —> ek, ei A ej —> ek, and ei v ej -4 ek mean the same / input logic. 

The specification of / output can be ei —+ E(A) or ei <-> E{A}. There is no application of 

the expressions like el -4 E{e, v}, etc. 

The input and output for C arcs cannot be completely determined by token creation 

because the logic between the tail and the head, as defined in the second SEO, is such 

that the occurrence of the head implies the occurrence of the tail. For a C arc, the 

token creation on a tail only means a probability that the C arc is active even if this C 

arc is the only output of the vertex. For the example in Figure 5, the arc (es, e13) is the 

only output of es. However, the fact that the cruise control system is comparing the 

current speed and the maintained speed (es) does not mean that the throttle is being 

controlled by the cruise control system (e13); the throttle may be in manual control even 

if the cruise control system is still running. 

A C arc may remain active if this C arc comes from a saturated sub-ED. Suppose 

that Al and A2 are two C arcs coming out from el. There are three cases of activity logic 

of C arcs. One is that Al and A2 are active together. An example is Figure 5 in which 

(elo, eli) and (elo, e12) are active simultaneously. We use the symbol elo ÷-- eli A e12 to 

specify this case. The next case is that Al and A2 cannot be active together; only one 

of them is active at one time. An example is Figure 6 in which either (eis, els) or (els, 

e17") is active. We use the symbol eis <— els e e,7" to specify the second case. The last 

case is that Ai and A2 may be active together or may not; whichever the case is does 

not matter. An example is Figure 3, where it is possible that els and e17 occur together; 

(els, els) and (els, e17) may or may not be active together. We use the symbol els 4-- els 

v e17" to specify the last case. Generally, we use el *-- E{A, v, e}  to represent the  C 

output assigned for el. Note that a C arc in active does not mean the head will create a 

token unless that the C arc is the only input C arc of the head. On Figure 10, (es, em) 
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in active does not mean that e13 will create a token. However, in Figure 3, (es, els) is the 

only C input of en, so (es, e13) in active means that e13 will create a token. 

The C input of a vertex is similar to the C output. The C input of ei is specified with 

E{A, v, e} E— e. An expression as ej A ek ei means that ei may create a token if both 

(ej, e) and (ek, e) are active. For the example in Figure 10, elo keeps creating tokens if 

both (es, e13) and (e2', ela) stay active. An expression as ej v ek ei means that either 

(ej, ei) in active or (ek, ei) in active may stir e to create a token, and that the 

occurrences of ej and ek may or may not be simultaneous. For example, a wet 

backyard means that it is raining, that the sprinkler is on, or that it is both raining and 

sprinkling at the same time. An expression as ej a ek ei means that either (ej, e) in 

active or (ek, e) in active may stir ei to create a token and that ej and ek cannot occur at 

the same time. An example is the game that A, B, and C throw two coins. The 

regulation is such that if A gets exactly one head, D wins; if B gets two heads, D wins. 

So if D wins, this means that either A was throwing or B was throwing, but A and B 

cannot throw coins at the same time. 

The T arcs don't stir the token creation between the tails or the heads. The token 

creation on a T head removes the token from the T tails if some T tails have tokens. 

The expression E{A, v, ED} ei means that ei may remove the tokens on the events in 

E{A, v, e} and that there are some {A, v, e} relationship among those events. The 

expression ei E{A, v, ED} means that the token on ei may be removed by the events in 

E(A, v, e} and that there are some {A, v, e} relationship among those events. 

The concurrent relation among I, C, T arcs with respect to a vertex is V. For the 

example in Figure 3, e,2 and elo may or may not occur together; {es A eio'} and e2' may 

or may not occur together. 
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4.2.4 The Event Dictionary 

If we apply the SEO abstraction and develop an ED from a system in the real world, 

an associated event dictionary is necessary. An event dictionary answers the following 

questions: 

What are the contents of the vertices represented in an ED with respect to the 

system modeled? 

What is the value of the events? 

How does the value of an event, if any, determine the C input and output? 

In Figure 3, for example, if e7 gets the value coin is enough or no deposit, the C I/O is 

applied; if the e7's value is coin is not enough, then the T I/O is applied 

An event dictionary is an organized listing of all the events in E that have been 

abstracted from a system; the event contexts are precisely described. Both the users 

and the system analysts will have a common understanding about what an ED means 

with respect to a system, and both can execute the system on an ED in advance. 

The examples of the event dictionaries associated with the vending machine 

system ED and the cruise control system ED are in Appendix B. In Appendix B, the 

format of an event dictionary is also suggested. 

4.3 Modeling 

We abstract the events from a system into the vertices of an ED. By each 

occurrence, we may abstract all possible immediate followers. The relationship of an 

event with its immediate followers is modeled as the arcs in an ED. This abstraction 

depends highly on the individual analysts; therefore, the result is non deterministic. 

However, if there are some users taking part in this development process, the outcome 

will be less non deterministic. 
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In the last chapter, using the vending machine and the cruise control system 

examples, we introduced two methods with which to model a system into an ED. The 

first method mimics the Breadth First Search Algorithm (BFS). "Breadth First Search is 

so named because it expands the frontier between the discovered and the 

undiscovered nodes uniformly across the breadth frontier." [Thomas 90] (p469). For an 

ED, we expand the frontier between abstracted events and the events that will be 

abstracted across the breadth frontier. The question if this event is the last occurrence 

in the system, what will be the next? is the key guideline in our expansiveness. The 

second method installs the scenarios together to form an ED. 

Sometimes, some immediate followers of an event depend greatly on the states. In 

other words, an event may possibly occur under several states. These states may 

cause different succeeding sets of the event. In this case, the analyst design the event 

check state in ED; the different states become the values of the event check state. The 

e3 and e7 in Figure 3, els and ela in Figure 6, e20 in Figure 7, and e24 in Figure 9 are the 

examples. 

The following are the general steps applied to the mechanism of the frontier 

breadth expansiveness: 

1. Establish a  Stimuli 

2. Let  E. Stimuli 

3. Initialize a queue, say Q, with a "normal" sequence of the vertices in  E. 

4. While  Q  is not empty, do 

a. Remove a vertex v from  Q. 

b. For each abstracted follower w of v do the following: 

i. If w has no succeeding set, do 

w E E. 
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Add w into Q. 

ii. let (v, w) E SEO. 

The vending machine system in the last Chapter is an example of the application of the 

BFS-like approach. 

The cruise control system in the last chapter is an example of an altemative way to 

model a system with an ED. This method actually transfers the scenarios of a system 

from textual form to graphical form. We have the following steps as the guide: 

1. Identify the Stimuli 

2. Define a boundary state. 

3. For each stimulus, write a textual scenario. 

4. Select a "normal" scenario, do the following 

a. For each event v in the scenario event sequence 

If Ito E, let vo E. 

b. For each ordered pair (v, w) in the scenario event sequence 

If (v, w) SEO, let (v, w) SEO. 

5. For the remaining textual scenarios, do 4. 

4.4 The Follow Trees 

We introduce follower trees of an ED to emphasize the development follow feature 

and to have a chaotic ED organized using the hierarchical representation form. Follow 

tree that is a mechanism for braking a large ED down into a series of pages make the 

software analysis document more easily understood. 
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4.4.1 The Definition and the Algorithm 

A follow tree is a copied hierarchical structure produced in an iteration of the 

following algorithm: 

1. For each node, say r, in Stimuli do the following 

2. Copy r; 

3. Initialize the queue, say Q, with r 

4. While Q is not empty do 

5. Remove 0, say v, 

6. For each adjacent head, say h, of v, do the following 

7. Copy h as a child of v; 

8. If h e S and h e V and h is not colored, do the following 

9. Color h in ED; 

10. Add h into Q; 

Note that the follow trees are not mathematical trees instead of a documentation 

form with the tree structures. 

A follow tree is of a tree structure. 

Proof: No operation in the algorithm produces an arc connecting two copied 

structures. Consider the i-th iteration of the Algorithm. The Copy operation of step 2 

creates a node, and each Copy operation of the step 7 creates a node, as well as an 

edge connected with a parent node. Therefore, we have a connected graph, say (FE, 

FA), that I FA I = I FE I —1. 

A group of follow trees produced from the same ED has the following features. 

1. A node in E, say ei, corresponds dpin(ei) number nodes in the follow tree 

group. Exactly one of those nodes corresponded by ei has children; the rest are 

leaves. 
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2. A root belongs to S. 

Proof 1: Step 6 and 7 in the Algorithm say that each arc in ED corresponds to a 

head copy. The ei will be copied doin(ei) times. 

The first step of the Algorithm adds each S vertex into Q exactly one time. 

The color mechanism of the Algorithm adds each immediate vertex in ED exactly one 

time in Q. Only one vertex is removed from Q each time, then each vertex has only 

one chance to have children. 

Proof 2: It is obvious from the first step in the Algorithm. 

Figure 4 shows an example of a group of follow trees produced from the ED in 

Figure 1. In this example, e2 is the first taken as a root. 

4.4.2 The Pages of the Follower Trees for an ED 

If we come across an  ED  with several hundreds of events, it is sometimes 

necessary to group the vertices into page size for the sack of documentation. A page 

is just a notational convenience, not a logical construction. 

The size of a page is the number of vertices indicated in a sub follow tree. We take 

George Miller's magical number "the magical number seven, plus or minus two" [Miller 

56] to be the reference number of the vertices in a page. An example of paging a 

group of follow trees is shown by Figures 12, 13, 14, 15, 16, and 17. 

4.4.3 The E{n} <— et in Follow Trees 

For our convenience, we make the following rule: for each node in the follower 

tree, say ei, if ei has more than one C inputs with the "A" relation each other, we list all 

those nodes as ei's parents. For example, on figure 10, e13 has two parents, es and 

e2'. There is no harm done in maintaining the tree's property by this rule. 
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4.5 Scenario Language 

4.5.1 Scenario Language Definition 

The scenario grammar is a regular grammar [Sudkamp 88] (p57), say 

Gs = (V, I, P, Scnr) 

V: Finite set of variables; 

I: Finite set of terminal symbols which maps E of ED. 

Scnr: Distinguished element of V of Gs which implies the name Scenario and 

starts derivations; 

P: Finite set of rules which is the form 

A .— aB 

A -4 X. 

The scenario language is defined as: 

Ls = (w 1 Scnr • w}, 

(w. Sentence; 

•: The derivation utilizes the rules of Gs). 

4.5.2 Establishing an Gs from an ED 

Consider an  ED. We execute the following algorithm: 

Let 1 =  E 

Use Scnr to name a S-Walk  in the  ED. 

Create V as: 

1. V = 0; 

2. For each et E E, create a variable Ai, and let Ai E V 

Create P as: 
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1. For each ei E 

2. If et corresponds an element in Stimuli, 

3. let Scnr 	E P; 

4. Else if et corresponds an element in Sink, 

5. let Ai 	X E P; 

6. Else for each (ei, ej)  E  SE0 

7. letAI->eJAj E P. 

All S-Walks in an ED can be derived by Gs. In other words, all scenarios of the 

system can be derived by Gs. 

Proof: Consider a S-Walk = ele2...en. ei  E  Stimuli, so we apply Scnr 	eiAl. (el, 

e2) E SEO, so we apply Ai —> e2A2. Suppose we have already applied the rules in P i 

times and have derived the string ele2...ei, we apply At —> because (et, E 

SEO. At the end of the string, we apply An-, —> enAn and An -4 X. Note that en E Sink 

A Gs only derives the S-Walks of the ED. 

Proof: Consider a string Str = ele2...en which is not a S-Walk of an ED. 

Case 1: Some terminal symbols in Str do not belong E. Let ei e E, then ei 

e  Z. Gs can not derives a string with the terminal symbol ei included. 

Case 2: Some concatenations in Str have no correspondence to the 

elements in SEO. Let (et, ej) e SEO. Let eiej is included in Str, then At —> elAj must be 

applied. However, Ai —> ejAi e P. 

Case 3: el e Stimuli, then we can not start the derivation for Str with Gs. 

Case 4: en Sink, then we can not eliminate the variable in the sentential 

form ele2...enAn with Gs. 
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4.6 Hierarchical Expansion of an ED 

In a certain specific application, we may refine some events into the atomicity 

processes. For example in Figure 1, we may refine es as 

es-i: motor connects the screw for the i-th bar type; 

es-2: motor starts running; 

es-3: open the i-th type door, 

es-4: i-th type bar comes out 

es-5: signal e12; 

es-6: decrease #1 type by 1 

as well as SE0 abstraction as 

(e7, es-1)', (es-1, es-2), (es-1, es-3), (es-2, es-4)', (es-3, es-4)', (es-4, es-s), (es-4, es-6), (es-6, 

e12), (es-6, e12), (es-6, ei3) 1 . The illustration is on Figure 20. 

4.6.1 Sub-Extension and Subgraph-Contraction 

Difinition: Let G(E, SEO) be a graph. A sub-extension of G is a graph that can be 

obtained from G by the following: 

1). Lett=1, r-i 	1E1 

2). While t n, do 

a). Let Gt'(Et', SEOt) be a graph. Let et E E; 

b). E= E u Et' - {et} that et 0 Et, 

c). Replace each input arc of et, say (ei, et), with one or more arcs, say (ei, 

eok), (ei, eGk+1), ... that eGk, eGk+1 ... E Et; 

d). Replace each output arc of et, say (et, ej), with one or more arcs, say (eoi, 

et), (eGi+1, et), ... that eGI, eGI+1 ... E Et; 

e). t=t±1. 
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With respect of a sub-extension, G is called subgraph-contraction. 

Note that a subgraph-contraction must correspond a sub-extension. Only if a sub-

extension operation be applied, can a subgraph-contraction operation be applied. 

Definition: The lower-level expansion of an ED is the sub-extension of the ED that 

I, C, and T arcs are replaced with I, C, and T arcs respectively. 

4.6.2 Establish a Sub-Extension Grammar from the Gs 

We can establish a sub-extension grammar Gss = {Vs, I, Ps, Scnr} from Gs by 

1). Extend an ED = (E, SEO) with (Eti, SEOt1), (Et2, SEOt2), ..., (Etn, SEOtn); 

2). Let E' = Eti' uEt2' u... uEtni., 

3). 1 = ZuE 1  - {et I et e E} ; 

4). Vs = V u{Ai I Ai has one-to-one correspondence with an elements in El —{Ai 

I Ar has one-to-one correspondence with an elements in {et I et 0 E}}; 

5). Let Ps = P; 

6). For each rule, say r, in Ps, if there is no i's correspondence arc in SEO, 

then 

Ps = Ps - {4; 

7). For each arc, say seo, in SEO, if there is no seo's correspondenc in Ps, 

then 

a). create a rule, say r, according to the algorithm in 4.5.2; 

b). Ps = Ps + {r}. 

We can use the same proof methods in 4.5.2 to prove that all scenarios in a sub-

extension can be derived by Gss, while a Gss can only derive the terminal strings which 

correspond the elements in the S-Walks of a sub-extension. Obviously, a Gss is a 

extended scenario grammar. 



CHAPTER 5 

COMPARISON WITH OTHER GRAPHICAL REPRESENTATION 

OF REQUIREMENT ANALYSIS 

5.1 Comparison with Petri Nets 

A Petri Net is also a particular kind of directed graph [Tadao 89], [Peterson 81], 

[Wolfgang 92], and [Joanthan 92] with bipartite structure of places and transitions. An 

ED is not necessary to be a bipartite directed graph. 

In modeling, Petri Net uses bipartite abstraction on the real world. The structure of 

Input Place --> Transition -> Output Place is often interpreted as ([Tadao 89]) 

Precondition -> Event -+ Postcondition 

Input Data ---> Computation -> Output Data 

Input Signals -4 Signal Processor -4 Output Signals 

Resources needed --> Task or Job -> Resources Released 

Conditions -4 Clause in Logic -3 Conclusion(s) 

Buffers -4 Processor -4 Buffers 

Etc. 

A place in a Petri Net cannot be Input data, as well as a Condition, as well as a Signal, 

etc., at the same time. If a place fires several tokens simultaneously, it is not possible 

that some tokens go to Output Data by Computing, some go to Conclusion(s) by 

Clause in Logic, and some go to State by Occurrences. If it is necessary to model all 

those aspects for a system, several Petri Nets on different abstraction levels are 

necessary. However, in the Object-Oriented world, an event may change a state for 

the first object, send a message to stir an operation in the second object, and also be 
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an input data for a process of the third object, all at the same time. A Petri Net has 

difficulty describing such diverse situation at the same time because the bipartite 

abstraction implies a kind of mutual constraint, or mutual dependence between the two 

partitioned parts. That is to say that transitions could not exist if there were not places; 

without places, the transitions lose their significance. If we abstract Buffer from the real 

world, we have to take Processor or some other related abstraction as the bipartite 

partner for Processor, we can not take Clause in Logic as the bipartite partner of Buffer. 

Furthermore, the semantic relationship between two bipartite parts has to be kept 

consistent throughout a whole Petri Net. 

The foundation of an ED modeling is time (a scenario, a sequence of events with 

respect to an observer). An ED only considers the immediate following relation. 

Regardless of whatever the input data, the buffer, the computation, the procedure, the 

operation, the job, the condition, the clause in logic, the message passing, etc., we can 

model them as the vertices in an ED only if we perceive them on a point in time or only 

if they are of time point attributes. 

It is a straightforward approach to make the transformation from the / input/output 

logic to Petri Net structures. This is illustrated by Figure 19. However, the 

transformation from the C input/output or the T arc behavior to some Petri Net structure 

is complex. This complexity is due to the "v" relation in preceding or succeeding sets of 

a node in an ED. In Figure 1, for example, we have els .J el' v e2'. This means that 

sometimes el' and e2' occur simultaneously after els, and sometimes they do not. The 

corresponding Petri Net structure is then required to have its tokens going two places 

simultaneously as well as alternatively. Whether it is possible to make the 

transformation from an ED to a Petri Net is reserved for future work. 



5.2 Comparison with Event Trace Diagram 

There are discussions about the Timing Diagram in [Booch 91] (p173-174) and the 

Event Trace in [Rumbaugh 91] (p86-87). Both are event graphical representations of 

objects developed in Static Object Models. 

An event trace diagram corresponds with a walk of an ED, because for each event 

in an Event Trace or in a Timing Diagram, only one possible follower is specified. An 

Event Trace or a Time Diagram is a 1-D time line; an ED represents all possible event 

sequences for a system. 

An event trace diagram is developed on the basis of a static object model; an ED is 

developed on the basis of scenario using the methods of frontier expansion and 

scenario installation. 

5.3 Comparison with DFD 

Both ED and DFD make 2-partition abstractions on their top level. We have the 

following structure: Inputs —> System --- Output for a 0-level DFD, Stimuli —> System for 

the first step of an ED modeling. A Stimuli does not consider the output data of a 

system. In an ED model, the response of a system is viewed as a part of the system's 

behavior. Not all input data belongs to Stimuli, input data that is not spontaneous or 

random to the system does not belong to Stimuli. 

In a DFD, there are not only the note representative processes but also other 

notations to represent such things as actor and data store that are different from 

processes [Rumbaugh 91] p(124). Processes and data stores are the computer 

oriented terms, which prevent users from taking an active part in a system specification 

phase. An ED has only one kind vertex of event represented. An event can be 
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abstracted not only as a starting (or an ending) process but also as a getting into a 

state, a message passing, updating a data storage, etc. 

An arc in a DFD conveys data. In an ED, an arc represents the time relationship 

between two occurrences. An ED does not consider to where the data goes and from 

where the data comes. With respect to a user, the problem of to where the data goes 

and from where the data comes belongs to the how scope instead of the what scope. 

5.4 Comparison with STD 

A STD consists of a finite collection of states and the finite collection of connections 

among the states. Each arc is associated with a label to describe the event that 

causes the state transition. This model can also be specified with the formal graphical 

specification. However, in modeling there are following disadvantages compared with 

ED. 

1. Not every user is of finite state machine concept, which is not good for the 

communication between the users and the analysts. 

2. The abstraction of states is complex to that of events. If we went to identify 

a state, we need to consider the features for every element in a system or changes for 

every attribute of an object. However, if we went to identify an event, it is sufficient for 

us to take care the instantaneous behavior of only one element in a system or only one 

attribute of an object. 

3. Suppose we apply the frontier expansion mechanism to model a STD. The 

question around which both the user and the analyst go should be: "If the system 

under this state, what events are possible or inevitable?". 	At the beginning step, 

corresponding to a node in STD, the state in analyst's brain is hard to keep consistence 

with that in the user's brain because only if the analyst completely understands the 

whole system's behavior, can he figure out each state. 
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Unlike STD that takes the finite state machine base, ED takes the scenario event 

base. If different states cause different followers for an event, analysts design an event 

check state. The analysts only abstract these states as the values of the event check 

state without taking care about what users mean by those states first. 



CHAPTER 6 

CONCLUSION AND FUTURE WORK 

The goal of this thesis was to solve the ad-hoc situation of scenario building, which 

inevitably requires the formal representation and the rigorous definition of scenarios. 

In [Rumbaugh 91] (p462), we have the definition of scenarios for Rumbaugh's 

dynamic modeling as a sequence of events that occur during one particular execution 

of a system. We extended this definition to general cases with the SEO, the Stimuli, 

and the boundary state. SEO assigns the essence to scenarios, in that each event pair 

in the event sequence must either be of some causality (1st SEO, 2nd SEO) or be 

determined (rehearsed) under certain situation (3rd SEO) by the users/domain experts. 

SEO states that not every ordered event pair can be the source material of a story, and 

different situations provide the different possibilities. The boundary state and the 

Stimuli provide the limit on a scenario; as a result, scenarios must carry something 

through to the end; just like a drama needs the rise of the curtain at beginning and the 

curtain call at the end. The SEO, the Stimuli and the boundary state have scenarios 

well defined. A scenario is defined as an event sequence that each event order in the 

sequence belongs to SEO; the start event must be in Stimuli and the end event has the 

system state transferred to the boundary state. 

From the observations of the scenario model building for the Vending Machine 

System and the Cruise Control System, it is concluded that SEO provided the 

foundation with the question of if this is the last occurrence, what will be the next? to 

carry the frontier expansion mechanism. The advantage of this is that users and 
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developers can work together to specify the behavior of a system; each frontier 

expansion of an ED can be "determined" by users. 

All events and SEO in a system construct a directed graph (ED); a graph is a formal 

structure. We have proved that a scenario corresponds to an S-walk in an ED and 

established the correspondence between scenarios and the collection of all S-walks of 

an ED. Therefore, the scenarios of a system are formally represented within one 

structure. Therefore, the forthcoming conclusion is that an ED model, in the entire life 

cycle of a software system, inherits all the advantages of scenarios. From the 

observation of the ED of the Vending Machine System and the Cruise Control System, 

it is also concluded that an ED specifies the behavior of scenarios concurrently. 

ED provides that the occurrences of the events in the scenarios of a system are 

specified by the token propagation wave and that the behaviors of the tokens are 

described with input and output. Therefore an ED can be a machine or a prototype. 

The advantage is that developers or even users can execute the specified software in 

advance. Upon the observation of the ED of the Vending Machine System and the ED 

of the Cruise Control System, we know that we can "insert" coins into the Vending 

Machine ED and then "push" the select button to see if the "dispensing bar" happens, 

or we know that we may "push" the resume button, "push" the inc/dec button, "depress" 

the break, etc., on the Cruise Control ED to see if the expected happens. 

Another formal method development for scenarios in this thesis is the scenario 

language. A scenario language is a collection of terminal symbol strings that are 

derived from the scenario grammar. The scenario grammar is a regular grammar that 

is inferred directly from an ED. We also have proved that the all scenarios for a 

system can be derived by the scenario language and the scenario language can only 

derive the scenario of the system. 
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The future work concerning ED scenario modeling is to provide a full development 

environment with automatic tools to support ED scenario modeling. These tools are 

needed to maintain consistency of design documents such as ED matrix, ED graphical 

representation, Paged Follow Trees, Event Dictionary and to retrieve information 

quickly from the design documents. 

One more future work is to develop a Static Object Model from an ED. The 

following is an attempt. 

Fact 1: So far no proof says that only from a textual requirement document can an 

Object Model be established. 

Fact 2 So far no proof says that the best way to develop an Object Model is to 

started with the textual requirement document. 

Observation: The object identification is an art. "The identification of classes and 

object is the hardest part of object-oriented design. Our experience shows that 

identification involves both discovery and invention." [Booch 91] (p133). There are two 

reasons. The first is that the two essential themes, the encapsulation and the 

inheritance, don't support the object identification directly in object-oriented design. 

The encapsulation, separating the external aspects from the internal implementation in 

detail, is the mechanism that is better to be thought as designed, invented, and 

constructed for an object than to be thought as identified, or discovered. The 

inheritance deals with a kind of relationship among objects. It implies that if we have 

already gotten a group of objects, we can consider their commonality. The second 

reason is that we define objects in isolated way ("We define an object as a concept, 

abstraction, or thing with crisp boundaries and meaning for the problem at hand." 

[Rumbaugh 91] (p21)); however when identifying them, we have to let them interact 

each other ("An object has state, exhibits some well-defined behavior, and has a 

unique identity" [Booch 91] p(77). The same philosophy can be summed up in the 
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phase, only if he is dancing, can we say he is a dancer). To execute something in 

order to identify something is a dilemma. We solve this dilemma with scenario models 

(ED). The goal of developing an Object Model from an ED is to lessen the difficulty of 

object identification. 

Assumption:  An event in ED occurs either on an object or among objects. "Each 

event transmits information from one object to another" [Rumbaugh 91] (p86). Actually, 

when we make the Stimuli — System partition, we have already implied that there are 

two objects in the top level abstraction in an ED approach. Both Stimuli and System 

are viewed as collections of events; the objects that will be developed from an ED are 

also first viewed as collections of events. The encapsulation property and the 

inheritance relationship can be invented or built afterward. 

Method: (The example is on Figure 19 of Vending Machine System. The notation 

comes from [Coed & Yourdon 92]) 

1. Construct objects by grouping the events in  ED  according to the principles 

such as coupling, cohesion [Booch 91] p(124), and inheritance. The inheritance can be 

applied not only among objects but also among events, behavior, etc. "When we 

classify, we seek to group things that have a common structure or exhibit a common 

behavior" [Booch 91] (p133). Here Booch's things are events. 

(After the step 1, we get a new directed graph: OD = (0, M) (see Figure 19). 0 is 

the collection of vertices. Each vertex in 0 corresponds to an event group that has just 

been approached. If an arc in SEO is totally in a group, contract the arc. For example: 

Figure 19, (el', e3) has been contracted in coin mechanism; M is the collection of arcs 

which includes the all rest first SEO and second SEO. If an event is grouped into two 

groups, we add the arc (actor, passive) between the two groups. For example in Figure 

19, both customer and coin mechanism have el', so we have the message passing 

from customer to coin mechanism to convey the arc (actor, passive) caused by el'. 
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This situation corresponds with the mutual effect case discussed on Chapter 2. Note 

that if an event causes an (actor, passive) arc, the inputs of the event in ED are 

considered on the actor side, while the outputs are considered on the passive side. For 

example, in Figure 19, consider els in truck and candy mechanism. The input of els, 

(els, els), is conveyed in the message passing from Modem to truck, the output of els, 

(els, eio"), is conveyed in the message passing from candy mechanism to coin 

mechanism.) 

2. Within each event group, map the events into operations or services. "The 

operations in the object model correspond to events in the dynamic model and 

functions in the functional model" [Rumbaugh 91] (p18). 

3. For each group, build data structures with the reference on the behavior of 

the services. Name each group with an object name. Behaviors have to be 

determined by requirement documents, while structures can be somehow constructed 

or invented by the developers themselves. 

(From now on, we already have an object model with each event group as an object 

and arcs in M as message passing representation.) 

4. For each node in 0, develop the aggregation and generalization relationships 

if it is necessary. (For example, in Figure 19, we may further develop objects as coin 

state, shut down as the parts of coin mechanism). 

5. Cancel the redundant multiple arcs between any two objects. This means 

that we use a message passing notation to represent more than one of the arcs. 

6. Check if all the 1st and 2nd SEO are "resolved". That means that for each 

1st and 2nd SEO, either it is contracted or it is conveyed by some message passing 

notation in (0, M). 

7. Make refinement. 
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Note that on Figure 19, the event els is abstracted as an object, which is permitted 

in [Shlaer & Mellor 88] (p15), [Ross 87] (p9), and [Goad & Yourdon 90] (p62) that 

events can be candidate classes and objects. 

Note that the grouping some events together into an object is different from that for 

a regular module; this grouping is easier to manage [Pressmen 92] (p324). If we want 

to divide an ED simply into modules, our principle is to partition the ED so that each 

part has a small number of cut edges and a large number of cordiality with a minimum 

number of edges contracted within the partitioned part. Each module performs a single 

task. If we group events into an object, the main principle is the application of 

semantic abstraction, inheritance and encapsulation. 
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Symbol  Dictionary:  (Refer Figur 2.) 

Figure 1: ED of the Vending Machine System 
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Symbol Dictionary: 

A resourse (stimulus), an origine of scenarios. 

A sink (sink point),  a  termination of scenarios 

The third SEO, the tail  and  the  head  are not causally 
related. 
The second SEO, the tail and the head are conditionally 
causally related. 
The first SEO, the tail and the head are causally related. 

Figure 2: Sub-ED of the Vending Machine System 
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Symbol Dictionary: (Refer Figure 2.) 

Figure 3. The Follower Tree (Sub-ED) of the Vending 
Machine System 



Symbol Dictionary: (Refer Figure 2.) 
The behavior is refered on the Event Dictionary or on Figure 3. 
Figure 4. The Follower Tree of the Vending Machine 

System 
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Symbol Dictionary: (Refer Figure 2). 
Figure 5: ED for the scenario 1, Cruise Control; 

Cruise Control System 
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Symbol Dictionary: (Refer Figure 2). 

Figure 6: ED of the Scenario 2, Inc/Dec the 
Maintained Speed. Cruise Control System 
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Symbol Dictionary: (Refer Figure 2). 

Figure 7: ED of the Scenario 3, Resume 
Cruise Control System 
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Symbol Dictionary: (Refer Figure 2). 

Figure 8: ED for the scenario 4, Brake Application. 
Cruise Control System 
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Symbol Dictionary: (Refer Figure 2.) 

Figure 9: ED for scenario 5, Terrain Condition Changing 
Cruise Control System 



The behavior is refered onthe Event Dictionary. 
The Construction Order: Senario( 1, 2, 3, 4, 5). 
Symbol Dictionary: (Refer Figure 2.) 

Figure 10: The Follower Tree of The Scenario 1 
for Cruise Control System. 
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The behavior is refered on the Event Dictionary. 
The Construction Order: Scenario(l, 2, 3, 4, 5) 
Symbol Dictionary: (Refer Figure 2.) 

Figure 11: The Follower Trees of The Scenario 2, 3, 4, 5 
for Cruise Control System. 
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Symbol Dictionary: (Refer Figure 2.) 

Figure 12: The Paged Follower Tree 
of the Vending Machine System 

(Page 1) 
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(From Page 1.) 

Symbol Dictionary: (Refer Figure 2.) 

Figure 13: The Paged Follower Tree 
of the Vending Machine System 

(Page 2) 
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Symbol Dictionary: (Refer Figure 2.) 

Figure 14. The Paged Follower Tree 
of the Vending Machine System (Page 3) 
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(To Page 5) 

Page 4 

Symbol Dictionary: (Refer Figure 2.) 

Figure 15: The Paged Follower Tree 
of the Vending Machine System (Page 4) 
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(To Page 6) 

Symbol Dictionary: (Refer Figure 2.) 

Figure 16: The Paged Follower Tree 
of the Vending Machine System (Page 5) 
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(From Page 5) 

Page 6 

Symbol Dictionary: (Refer Figure 2.) 

Figure 17: The Paged Follower Tree 
of the Vending Machine System (Page 6) 
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(b) 

Figure 18: The Transformation from I Logic 
to Petri Net Structure 
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The symbol dectionary: (refer Fihure 2.) 

Figure 19: The Refinement of e9, Hierarchical 
Extension of an ED. 
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Scenario 1: C wise Control (CC) 
Date Created: June 12, 1992 
Date last Revised: July 30, 1993 
Level: System Level 

Situation: The car is located in a parking lot. 

1. The driver gets into the car and starts the engine. 
2. When the speed of the car gets to 60 mph, the driver puts the CC button on. 
3. The CC system picks up the wheel pulse and the clock pulse, then calculates the 
current speed. 
4. The CC system takes the speed that has just been calculated as the maintained 
speed and compares it with the next speed. The compared result is used to adjust the 
throttle. 
5. The driver turns the CC button off. 
6. The CC system clears any stored information, and the work stops. 

Scenario 2: Increase/Decrease the Maintained Speed 
Date Created: June 12, 1992 
Date last Revised: July 30, 1993 
Level: System Level 

Situation: The CC system is working. The maintained speed is 60 mph 

1. The driver pushes the increase button. 
2. The CC system checks if the change makes the maintained speed out of range. 
3. The change will be all right. CC system increases the maintained speed by 5 mph. 
The current maintained speed becomes 65 mph. 
4. The driver pushes the increase button again. 
5. CC system checks if the change makes the maintained speed out of range. 
6. The change will be okay if CC system increases the maintained speed by another 5 
mph. The current maintained speed becomes 70 mph. 
7. The driver pushes the decrease button. 
8. The maintained speed goes back to 65 mph. 

Scenario 3: Resume the Last Maintained Speed 
Date Created: June 12, 1992 
Date last Revised: July 30, 1993 
Level: System Level 
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Situation: The CC system is working. The maintained speed is 60 mph; the last 
maintained speed is 65 mph. The speed before the last maintained is 50 mph. 

1. The driver pushes the resume button. 
2. The CC system queries the last maintained speed, say 65 mph. 
3. The current maintained speed is replaced by 65 mph. 
4. The driver pushes the resume button one more time. 
5. The CC system queries the speed 50 mph. 
6. The current maintained speed is replaced by 50 mph. 

Scenario 4: Brake Application 
Date Created: June 12, 1992 
Date last Revised: July 30, 1993 
Level: System Level 

Situation: The CC system is working. The maintained speed is 60 mph. 

1. The driver sees a dog on the street. He depresses the brake. 
2. The throttle control is switched from the CC system to manual operation. 
3. The driver releases the brake. 
4. The throttle control is switched back to the CC system 
5. The CC system works with 60 mph as the maintained speed. 

Scenario 5: Terrain Condition Changing 
Date Created: June 12, 1992 
Date last Revised: July 30, 1993 
Level: System Level 

Situation: The CC system is working. The maintained speed is 60 mph. 

1. The car is climbing a slope. The wheel pulse becomes slow. 
2. The calculated speed becomes low, say 55 mph. 
3. The CC system compares the calculated speed with the maintained speed of 60 mph 
and finds that the current speed is 5 mph low. 
4. The CC system commands that the throttle opens wider until the current speed is 
equal to the maintained speed. 
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B.1 The Event Dictionary Format and Symbol 

B.1.1 The Symbols 

Symbol = Arc u Operator u 

Arc E 	—>, .J} 

Operator a. {A, v, 

Event a {ei, 	i = 1, 2,...,n 

Events: Event I Event Operator Event I (Events) Operator (Events) 

Events Arc Events : The left is tails (or a tail); the right is heads (or a head). 

Events e Events : Exclusive Or of the occurrences of the left and the right. 

Events v Events : The left hand side and the right hand side occur parallel to 

each other. 

Fan_In : Events Arc Event I Fan_In; Fan_In 

Fan_Out: Event Arc Events I Fan_Out; Fan_Out 

A : In Fan_In, the states specified by the left and the right are both true. 

In Fan_Out, the occurrences of the left and the right are both true. 

: The first SEO, the tail and the head are identity. 

—> : The first SEO, the tail implies the head. 

: The second SEO, the head implies the tail. 

: The third SEO, the tail and the head have no logical relation, but the head may 

be an immediate follower in the same state in which both the tail and the head 

occur. The tail may causes a transition into the state; the head may causes a 

transition out of the state. 



B.1.2 The Format 

Event Dictionary: The Name of a System. 
Date Created: 
Date Last Revised: 
Group: 

Event (The same as that in ED): The Name of the Event 
Definition: The Description of the Event 
Value: The Value of the Event 
Behavior With 

Preceding Set: The List of the Event; 
Fan_In 
The Explanation of Fan_In 

Succeeding Set: The List of the Event; 
Fan_Out 
The Explanation of Fan_Out 

B.2 The Event Dictionary of the Vending Machine System 

Event Dictionary: The Vending Machine System. 
Date Created: June 1, 1993 
Date Last Revised: August 5, 1993 
Group: 

el': INSERT COIN. 
Definition: A customer inserts a coin into the machine. A stimulus. 
Value: 5, 10, 25 (cent). 
Behavior With 

Preceding Set: ea, e5, es, e7, els; 
ea v (e5 ED es) v e7 v el5 .Jel' 
It may occur in the scenario boundary state; 
Or it may occur after the occurrences of ea, e5, es, e7 and els. 

Succeeding Set: e3, ea; 
ei' ÷-> e3 A ea 
The system checks the current coin value (es) and the 2-minute time limit 
counting begins (ea) iff it occurs. 

e2': PUSH A CANDY BUTTON. 
Definition: A customer pushes a candy selection button. A stimulus. 
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Value: Candy bar type; 1, 2, ..., 50. 
Behavior With 

Preceding Set: (the same as those of el'). 
Succeeding Set: e7; 
e2 <4 e7 
The system checks the current coin value for e2' sake (e7) iff it occurs. 

ea: CHECK STATE 1 
Definition: Machine checks the current coin value after a coin is inserted. 
Value: Boolean; current coin value is enough (Y) for a candy bar or not (N). 
Behavior With 

Preceding Set el; 
el' <4 ea 
It occurs iff a coin is inserted into the machine (el'). 

Succeeding Set es, ea; 
ea <- es e ea 
If its value is Y, then the new deposited coin is returned (es), 
else a new coin value state is calculated and set (ea). 

ea: COUNT 2-MINUTE 
Definition: Counting 2-minute time begins. 
Value: [0, 2 min] 
Behavior With 

Preceding Set: el'; 
el' <4 ea 
It occurs iff a coin is inserted into the machine (el'). 

Succeeding Set: el', e2, ea; 
ea -I eii v e2'; ea <- ea 
ea implies that e4 happened. 
The next occurrence to e4 may be el', e2', el' and e2', or ea. 

es: RETURN COIN 1 
Definition: The machine returns the new deposited coin. 
Value: 5, 10, 25 cent 
Behavior With 

Preceding Set ea; 
ea <- es 
It implies that the machine has checked the state for el' sake. 

Succeeding Set: ei', e2, e8; 
ea ...I (e,' e ea) v (e2' ED ea) 
The next occurrence to ea may be el', e2', el' and e2', or ea. 
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ea: SET STATE 
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Definition: A new coin state is set. 
Value: (The same as those of e3) 
Behavior With 

Preceding Set: (The same as those of e5); 
Succeeding Set: (The same as those of e5). 

e7: CHECK STATE 2 
Definition: Machine checks the current coin value after a candy button is pushed. 
Value: 1. no deposit; 

2. coin value is not enough for a candy bar. 
3. coin value is enough for a candy bar. 

Behavior With 
Preceding Set: el'; 

el' 4-> e7 
It occurs iff a candy select button is pushed (e2'). 

Succeeding Set: el', e2', ea, es, elo"; 
e7 4-- es ED elo"; e7 J (e,' e ea) v (e2' e ea) 
If its value is 1, then the machine reset (elo"); 
else if its value is 2, then the next occurrence may be el', e2 ,  el' A e2, or ea; 
else the machine dispense a candy bar (es). 

ea:  2-MINUTE TIME IS OUT 
Definition: 2-minute time is out. 
Value: 
Behavior With 

Preceding Set: ea,  e5,  ea,  e7; 
ea 4-- ea;  (e5 ED  ea)  v  e7) .J ea 
ea implies that ea has happened but not necessary to be the last happened. 
ea implies that the last occurrence may be ea, es, ea, and e7. 

Succeeding Set: ell; 
ea 4-> eil 
the machine returns all deposits iff it occurs. 

es: DISPENSE CANDY BAR 
Definition: A candy bar is dispensed. 
Value: The amount for each bar type (0, 1, ...,40). 
Behavior With 

Preceding Set: e7; 
e7 <-- es 
It implies that e7 gets the value 3. 

Succeeding Set:  e12, els; 
es 4-> e12; es 4-- e13 
The machine put the deposit to the bank iff es has occurred. 
That the amount of a bar type is zero implies that es has occurred. 



els": RESET 
Definition: The machine is reset. A sink. 
Value: The deposit is zero. 
Behavior With 

Preceding Set: e7, ell, e12, ele, els; 
ell ED e12 e (e18 A e19) <--> els"; e7 <— els" 
e18 and els happen together. After that elo" is inevitable. 
elo" occurs only if ell or e12 occur. 
els" implies that e7 gets the value 1. 

Succeeding Set: (N/A). 

ell: RETURN COIN 2 
Definition: The machine returns all the deposited coins. 
Value: 5x cent 
Behavior With 

Preceding Set: e8; 
es 4--> ell 
It occurs iff 2-minute time is out. 

Succeeding Set: elo"; 
ell -4 elon 
If it occurs, the machine is reset. 

e12: COINS GO BANK 
Definition: The machine puts the all deposited coins into the bank. 
Value:  The amount for each coin type, 1,...,40. 
Behavior With 

Preceding Set: es; 
es 	el2 
It occurs iff a candy bar has been dispensed. 

Succeeding Set: els", eta; 
e12 --> els"; e12 <— eta 
If it occurs, the machine is reset; 
That the amount of a bar is 5 (els) implies that it has occurred. 

els: BAR TYPE IS EMPTY 
Definition: The amount of a bar is 5. 
Value: 
Behavior With 

Preceding Set: es; 
e9 <--- els 
It implies that one value of es has got 5. 

Succeeding Set: els 
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e13 -4 e15 
If it occurs, the machine dials the truck service. 

eta: BANK IS FULL 
Definition: The amount of a coin is less than 35. 
Value: 
Behavior With 

Preceding Set: e12; 
e12 	eta 
It implies that one value of e12 has got 35. 

Succeeding Set: (The same as those of e13). 

e15: DIAL 
Definition: The machine dials the truck service. 
Value: 
Behavior With 

Preceding Set: el', e2, e13, eta; 
(e13 v em) -4 e15 
It happens if els, eta happen or if eta and eta happen together. 

Succeeding Set: el', e2', els, e17; 
e15 <— e16  ED  e17; e15 (el'  v  e2') 
Truck service implies that els occurred and e17 won't occur. 
1-hour  time  out  implies  that  e15  happened and  els  doesn't  happen. 
Before  els  or  e17 happen,  the  el'  or  e2'  may also happen. But  only els  or  e17 

can removes the token from e15. 

els: TRUCK ARRIVE 
Definition: The service truck accesses the machine. 
Value: 
Behavior With 

Preceding Set: e20, e15; 
els 	els; e20 —) e16 

e16 is the only resolution for the shut down state (got into with the e2o). 
It may be the next occurrence after the machine has dialed for the truck. 

Succeeding Set: els, els; 
els <-› els A e19 

els and els happen together iff it occurs. 

e17: 1-HOUR  TIME OUT 
Definition: The 1-hour time is out. 
Value: 
Behavior With 
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Preceding Set: eis; 
els <— e,7 
It implies that the machine has dialed for the truck. 

Succeeding Set: ego; 
el7 	e20 

The machine is shut down iff it occurs. 

els: ALL TYPE IS FULL 
Definition: The service truck fills the amount for each bar type. 
Value: (The same  as those of es) 
Behavior With 

Preceding Set: els; 
els <-4 els 
It occurs iff the service truck arrives (els). 

Succeeding Set: els"; 
els 	els" 
If it occurs the machine is reset (els"). 

els: BANK IS EMPTY 
Definition: The service truck takes all the coins from the bank. 
Value: (The same  as those of  e12) 
Behavior With 

Preceding Set: (The same as those of els). 
Succeeding Set: (The same as those of els). 

e20: SHUT DOWN 
Definition:  The machine is shut down. 
Value: 
Behavior With 

Preceding Set: e,7; 
el7 	ea, 
It occurs iff the 1-hour time is out (e17). 

Succeeding Set: e16; 

e20 	els 
If it occurs only els can changes state caused by it. 

B.3 The Event Dictionary of the Cruise Control System 

Event Dictionary: The Cruise Control System. 
Date Created: July 1, 1 993 
Date Last Revised: August 10, 1993 
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Group: 

el' : CC ON 
Definition: The CC system starts working if the engine is on and the CC is turned 

on. Its effect can only be canceled by its complement event --el'. A 
Stimulus. 

Value: True (false for --el), False (true for —iel'). 
Behavior With 

Preceding Set: (None) 
(It may happen after any stimulus occurrence. The possible occurrence 
order in a stimuli don't need to specify in the ED. 

ell and el3 are of the assumption that the CC system is working (starting with 
ell. 
If we didn't do the abstraction that 

"engine is on" and "CC button is on" = CC on 
"engine is off" or "CC button is off" = CC off, 

we would have the arc ("engine is on", "manual control"). But that abstraction 
will cause the event "manual control" to be out of the CC system domain.) 

Succeeding Set: els, es, e7; 
el' <---> es A e7 A elo 
If it occurs, then 

The maintained speed is queried (els) 
The wheel pulse is queried (es) 
The clock pulse is queried (e7). 

--,e,': CC OFF 
Definition: The CC system stops working if the engine is off and the CC is turned 

off. Its effect can only be canceled by its complement event el'. A 
stimulus. 

Value: True (false for el'), False (true for el'). 
Behavior With 

Preceding Set: e,3, era; 
e,3 e e23 .J --el' 
It may happen in the manual control state (starting with e23) or in the state 
that the throttle is being controlled by the CC system (starting with e13). 

Succeeding Set: ela 
—,ei' <--> ela 
If it occurs, then the CC system is reset (e14). 

e2': B/A ON 
Definition: The driver depresses the brake or accelerator. It has the complement 

event —,e2'. A stimulus. 
Value: True (false for -,e2'), False (true for —,e2'). 
Behavior With 
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Preceding Set: ell, e,3; 
(ell v e13) 	e2' 
It may happen in the state that the throttle is being controlled by CC system 
(starting with el3). Or if ell (a speed is stored for the further resuming) were 
the last occurrence, it may be the next. 

Succeeding Set: e23; 
e2 -4 e23 

If it occur then the car gets into manual control state (e23). 

B&A OFF 
Definition: Both the brake and the accelerator are released. It has the 

complement event e2'. A stimulus. 
Value: True (false for e2'), False (true for e2'). 
Behavior With 

Preceding Set: ell, e23. 
eil V e23 J —,e2 
This stimulus may happen in the manual control state (starting with e23). 
If ell (a speed is stored for the further resuming) were the last occurrence, it 
may be the next. 

Succeeding Set: e,3. 
ei3 

It is necessary for the CC system to control the throttle.  (—,e2' A e9 4-> el3). 

ea': INC/DEC SIG 
Definition: Driver pushes the increase/decrease button once.  A  stimulus. 
Value: 
Behavior With 

Preceding Set: ell, e13, e23; 
ell v (eia 	e23) ea' 
This stimulus may occur in the state of manual control (starting with e23) or of 
the cruise control (starting with el3). Or if ell (a speed is stored for the further 
resuming) were the last occurrence, it may be the next. 

Succeeding Set: els 
ea' H em  
If it occurs, then the CC system needs to see if the CC button is on. 

ea': RS SIG 
Definition: Driver pushes the resume button once. A stimulus. 
Value: 
Behavior With 

Preceding Set: (The same as those of ea'). 
Succeeding Set: e20; 

e4' H e20 
If it occurs, then the CC system needs to see if the CC button is on. 



e5': TERRAIN CHANGE 
Definition: The change of the terrain condition occurs. A stimulus. 
Value: [0, f(140 mph)] 
Behavior With 

Preceding Set: (The same s those of e3'). 
Succeeding Set: e24. 

e5' H e24 

If it occurs, then CC system need to see if CC button is on. 

ea: SAMPLE WHL PULSE 
Definition: The CC system samples the wheel pulses. 
Value: [0, f(140 mph)] 
Behavior With 

Preceding Set: el', e24. 
el' <-+ ea; e24 	ea 
The CC system samples the wheel pulse iff the CC button is on. 
If e24 gets it value "CC on", then ea's value will be changed. 

Succeeding Set.• ea. 
ea <--> ea 
If it occurs, then the CC system calculates the current speed. 

e7: SAMPLE CLK PULSE 
Definition: CC system samples the clock pulses. 
Value: Constant 
Behavior With 

Preceding Set: ea; 
e7 <-> ea 
If it occurs, then the CC system calculates the current speed. 

Succeeding Set: (The same as those of ea). 

ea: CALCULATE C-SPD 
Definition: The CC system calculates the current speed. 
Value: [0, 140 mph] 
Behavior With 

Preceding Set: ea, e7; 
ea e7 	ea 
ea uses the data from ea and e7 iff ea and e7 are being processed. 

Succeeding Set: es,  ell, e,2; 
ea ÷-> es; ea ell A el2 
If it occurs, then the current speed and the maintained speed are compared. 
ell and e12 will use its value if the CC system starts working. 
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es: COMPARE C-SPD AND M-SPD 
Definition: The CC system processes the current speed and the maintained speed 

in order to adjust the throttle. 
Value: 
Behavior With 

Preceding Set: ea, elo; 
ea A elo 4-> es 
e9 uses the data from ea and elo iff ea and elo are being processed. 

Succeeding Set: e,3. 
e9 <— els 
It is necessary for the CC system to control the throttle. (—,e2' A e9 E-> els). 

elo: QUERY M-SPD (1) 
Definition: The CC system queries the maintained speed in order to adjust the 

throttle. 
Value: (Null, [5 mph, 110  mph]) 
Behavior With 

Preceding Set: el', e,2; 
el' <--> elo; e,2 -+ elo 
If e12 occurs then elo will query the new value. 
It keeps querying iff the CC button is in the "on" state got into with ei'. 

Succeeding Set: ell, e12, es; 
eio <— ell A el2; els <--> es 
If the state which was caused by elo keeps going, then the comparison of the 
current speed and the maintained speed will keep going. 
If its value is Null, then ell and e,2 occur. 

ell: STORE L-SPD 
Definition: The CC system pushes the maintained speed into a stack for the future 

resuming. 
Value: 
Behavior With 

Preceding Set: ea, eio, ela, e21; 
elo ED els ED e21 <— ell; ea .J ell 
If elo is Null or els is within the speed limit or e21 occurs, then it happens. But 

the last stored speed has to be only one at a time. 
If elo is Null, the last maintained speed is ea's value. 

Succeeding Set: —,e,', e2, --,e2', es', ea', e5'; 
ell ..J (—tel' 0 e5') v (e2' 0 —,e2) v (e3' 0 ea') 
All elements in stimuli except el' may follow ell. The ell is a termination of 
some causality chain. After the occurrence of ell, the system is in some states 
except the scenario boundary state. 
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e12: RECORD M-SPD 
Definition: CC system determines the maintained speed for the querying. 
Value: [5 mph, 110  mph] 
Behavior With 

Preceding Set: e8, eio, e18, e22; 
eio ED ela e e22 <--- e12; ea ...1 e,2 
If elo is Null or eta is within the speed limit  or e22 occurs, then it happens. But 
the current maintained speed has to be only one at a time. 
If elo is Null, the current maintained speed is ea's value. 

Succeeding Set: el.); 
e12 --> ell) 
If a maintained speed is newly determined, that speed should be immediately 
used by CC system. 

e13: ADJUST THROTTLE 
Definition: The CC system adjusts the throttle. 
Value: 
Behavior With 

Preceding Set: --,e2', es; 
-1e2' A e9 -4 eta 
If the brake and the accelerator are off, the state got into with ei3 keeps going. 

Succeeding Set: —,et', e2', e3', ea', es', e17"; 
e13 .J  (—el' e  e5')  v  e2  v (e3 e  ea')  v e17' 
If a  maintained speed is newly determined,  that speed  should be immediately 
used by the CC system. 

el.': CLEAN S-SPD AND M-SPD 
Definition: The CC system clears the record maintained speed and stored 

maintained speed. A sink point (system goes back scenario boundary 
state). 

Value: 
Behavior With 

Preceding Set: -,et'; 
—,eit <--> e14 

Succeeding Set: (N/A). 

e15: CHECK CC (1) 
Definition: CC system's state is checked for e3' sake. 
Value: CC on, CC off. 
Behavior With 

Preceding Set: ea'; 
e3' <-> els 
If driver pushes inc/dec button, it occur. 



Succeeding Set: els, e17"; 
e15 <— els ED e17" 
If its value is CC on, then els 
else go scenario boundary state (e17"). 

els: QUERY M-SPD (2) 
Definition: The maintained  speed is queried for inc/dec sake. 
Value: [5 mph, 110 mph] 
Behavior With 

Preceding Set: els; 
e15 <-- els 
If els gets value CC on, it occurs 

Succeeding Set: els; 
els ÷4 els 
The maintained speed limit is checked iff it occurs. 

e17: DO NOTHING 
Definition: The system goes back scenario boundary state. 
Value: 
Behavior With 

Preceding Set:  els,  els,  ego; 
els El) els e e20 <— el7 

Succeeding Set:  (N/A). 

ele: CHECK  SPD LIMIT 
Definition:  To check  if  the maintained speed  ±  5 mph  is out  of the  limit. 
Value: True, False 
Behavior With 

Preceding Set: els; 
els +4 els. 
els occurs iff the maintained speed is queried for inc/dec sake. 

Succeeding Set: ell, e17", els; 
els <— (els A ell)  El)  el7 
If its value is False, then do nothing 
else store the maintained speed and inc/dec the maintained speed. 

els:  INC/DEC M-SPD 
Definition: Let the maintained speed  ±  5 mph. 
Value:  [5  mph,  110  mph] 
Behavior With 

Preceding Set: els. 
els <— els. 
It implies that the speed limit is OK. 

95 



Succeeding Set: e12. 
els -4 e12. 
Determine a new maintained speed with the eig's value. 

e20: CHECK CC (2) 
Definition: The CC system's state is checked for ea' sake. 
Value: CC on, CC off. 
Behavior With 

Preceding Set: e4'; 
ea' <4 e20. 

If driver pushes resume button, it occur. 
Succeeding Set: e17", e21, e22; 

e20 f-- (e21 A e22) 0 e17" 
If its value is CC off, then e17" 
else pope the maintained speed stack twice. 

e21: POP POP L-SPD 
Definition: The CC system queries the element next to the top of the maintained 

speed stack. 
Value: [5 mph, 110 mph] 
Behavior With 

Preceding Set: e20; 
e20 <--- e21 
It implies that e20's value is CC on. 

Succeeding Set: ell; 
e21 ---> ell 
The top point of the maintained speed goes down one position. 

e22: POP L-SPD 
Definition: The CC system queries the top of the maintained speed stack. 
Value: [5 mph, 110 mph] 
Behavior With 

Preceding Set: e20; 
e20 <-- e21 
It implies that e2ols value is CC on. 

Succeeding Set: e12; 
e21 —4 e12 
Determine a new maintained speed with the e21's value. 

e23: MANUAL CONTROL 
Definition: The CC system is in the manual control state (get into with e23). The 

assumption of the e23 is that the CC system is still running. 
Value: 
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Behavior With 
Preceding Set: e2'; 

e2' <---> e23 
It occurs iff the brake or the accelerator are depressed. 

Succeeding Set: -,e1', e3 1 , ea', es'. 
e23 .J (-,el' 0 e5') v (e3' 0 e4') 
In the state started with e23, the elements in the set {-el', e3', ea', es') are 
spontaneous and random. 

e24: CHECK CC (3) 
Definition: The CC system's state is checked for es' sake. 
Value: CC on, CC off. 
Behavior With 

Preceding Set: e5'; 
es' <4 e24 

It occurs iff the terrain condition changes. 
Succeeding Set: ei7", es; 

e24 <— es 0 el7" 
If its value is CC off, then e17" 
else the value of e5' is sampled (e6). 
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APPENDIX C 

THE ED'S FORMAL REPRESENTATION AND 

ADJACENCY MATRIX FOR 

VENDING MACHINE SYSTEM (EXAMPLE 1) 

AND 

CRUISE CONTROL SYSTEM (EXAMPLE 2) 
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C.1 The Formal Representation of the Vending Machine's ED 

The graphical representation is on Figure 3. 

E = {ei', e2', ea, ea, es, es, e7, es, es, elo", ell, e,2, e,3, ela, els, els, e,7, ela, els, e20}, 

S = {el', e21, 

V = {eio"}, 

SE0=luCuT, 

I  = {(eis, e3), (el', ea), (e2' e7), (e8, ell), (ell, &,o"), (ea, e12), (e12, elo"), (e13, els), 
(eia, els), (e16, e18), (els, els), (e17, e20), (e18, eiou), (els, elo"), (20, els)}, 

C  = {(e3, es), (e3, e5), ea, ea), (e7, es), (e7, eio"), (es, el3), (e12, e14), (ea, el3), (els, ei6), 
(els, el7)}, 

T = {(ea, el'), (ea, e2'), (es, el'), (e5, e2'), (es, es), (e6, ell, (es, e2'), (es, ea), (e7, el'), 
(e7, e2'), (e7, es), (els, el'), (els, e2')}. 

C.2 The Formal Representation of the Cruise Control System's ED 

The graphical representation is on Figure 5, 6, 7, 8, 9. 

E = {el', ---,e,', e2', e3', ea', es', es, e7, ea, ea, elo, ell, e12, e13, ela", els, els, ei7", els, 

els, e20, e21, en, en, e24}, 

S = {ei', -lel', e2', e3', ea', e5'}, 

V = {e14", evi}, 

SE0=luCuT, 

= {(el', es), (el', e7), (el', elo), (es, ea), (e7, es), (e8, es), (-lel', e-.4'), (e2', en), 

(ea', els), (els, els), (els, el2), (ea', e20), (e21, ell), (en, el2), (es', e24)}, 

C = yew, es), (eio, ei2), (elo, ell), (ea, ei3), (-,e2', e13), (els, els), (els, el7"), (els, ell), 

(els, el71 '), (els, ela), (e2o, e21), (e2o, en), (e2o, ell, (e24, es), (e24, ell}, 

T = {(ea, ell), (ea, el2), (ell, e3'), (ell, e2'), (ell, -el), (ell, -,e2'), (ell, ea'), (ell, e5'), 

(e13, --ell), (e13, e2'), (e13, e3'), (e13, ea'), (e13, e5'), (en, -,e1'), (en, -,e2'), (en, e3'), 

(en, ea'), (en, es')}. 
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