
THE LIBRARY

THE UNIVERSITY OF TEXAS AT ARLINGTON

Manuscript Thesis

Any unpublished thesis submitted for the Master's or the Doctor's
degree and deposited in the Library of The University of Texas at
Arlington is open for inspection, but is to be used only with due regard
to the rights of the author. Bibliographical references may be noted, but
passages may be copied only in accord with the limitations of the "fair
use" provisions of the Copyright Law of the United States, and proper
credit must be given in subsequent written or published work. Exten-
sive copying or publication of this thesis in whole or in part requires the
permission of the author and the consent of the Dean of the Graduate
School of The University of Texas at Arlington.

GRAPHICAL EVENT-DIRECTED SCENARIO BEHAVIORAL SPECIFICATIONS

FOR THE SCENARIO-BASED ENGINEERING PROCESS (SEP)

USING A DOMAIN SPECIFIC SOFTWARE

ARCHITECTURE (ASSA) PHILOSOPHY

The members of Committee approve the masters
thesis of Miao Xia

Stephen Hufnagel
Supervising Professor

Karan Harbison

Diane Cook

Erik Mettala

ter -cx=2Arrzscrs

Copyright() by Miao Xia 1993

All Rights Reserved

GRAPHICAL EVENT-DIRECTED SCENARIO BEHAVIORAL SPECIFICATIONS

FOR THE SCENARIO-BASED ENGINEERING PROCESS (SEP)

USING A DOMAIN SPECIFIC SOFTWARE

ARCHITECTURE (ASSA) PHILOSOPHY

by

MIAO XIA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 1993

ACKNOWLEDGMENTS

I would like to solemnly express my appreciation to Dr. Hufnagel for the assistance,

guidance, and encouragement he has given me during my whole work on this thesis;

my efforts were supported by his knowledge and insight tremendously. I also would

like to present my thanks to Dr. Harbison, Dr. Cook, and Dr. Mettala for their

assistance. Without their assistance, this thesis could not have been completed.

Finally, I thank my wife, Qun Zhao, for sacrificing her personal interests for the sake of

my graduate work at UTA. This work is dedicated to her.

November 10, 1993

iv

ABSTRACT

GRAPHICAL EVENT-DIRECTED SCENARIO BEHAVIORAL SPECIFICATIONS

FOR THE SCENARIO-BASED ENGINEERING PROCESS (SEP)

USING A DOMAIN SPECIFIC SOFTWARE

ARCHITECTURE (ASSA) PHILOSOPHY

Publication No. 	

Miao Xia, M.S.

The University of Texas at Arlington, 1993

Supervising Professor: Stephen P. Hufnagel

This thesis extends scenarios of a system into real-time event digraphs. A scenario

is an event trace resulting from a particular thread of system execution. An event

digraph is an event network. Multiple external stimuli result in a wave of execution in

distributed and parallel architecture.

A graph theoretic formal definition for event digraphs is developed with the finite

sets of events and the scenario event order (SEO). A scenario language is developed

from the event digraph. In modeling an event digraph, we introduce the frontier

expansion mechanism which let the users and the developers go around the question if

this is the last occurrence, what will be the next? The behavior of event digraphs is

specified with the input and output of nodes and the event dictionary. The

occurrences of events in event graphs are specified with the token.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS 	 iv

ABSTRACT 	 v

LIST OF ILLUSTRATIONS 	 ix

1. INTRODUCTION 	 1

2. PREPARATION

2.1 Event 	 3

2.1.1 The Definition of Events 	 4

2.1.2 The Event Abstraction and Properties 	 4

2.1.3 Event Value 	 7

2.2 State 	 7

2.3 Stimuli 	 8

2.3.1 The Definition and the Properties of Stimuli 	 8

2.2.3 Stimuli-system Partition 	 8

2.4 Boundary State 	 9

2.5 Scenarios 	 10

2.5.1 SEO 	 11

2.5.2 More about Event 	 13

2.5.3 The Definition of Scenarios 	 13

3. PERCEPTUAL VIEWING OF EVENT DIGRAPH

3.1 The Abstraction of Event Digraph 	 14

3.2 Example 1, Vending Machine System 	 15

vi

3.3 Example 2, Cruise Control System 	 23

4. STRUCTURE AND ANALYSIS OF ED

4.1 The Definition in Formal Form 	 30

4.2 The Behavior of ED 	 32

4.2.1 The Concurrence within the Proceeding Set and the Succeding Set 	32

4.2.2 Using Token to Specify the Occurrence Wave 	 34

4.2.3 The Input and Output of Nodes 	 35

4.2.4 The Event Dictionary 	 38

4.3 Modeling 	 38

4.4 The Follow Trees 	 40

4.4.1 The Definition and the Algorithm 	 41

4.4.2 The Pages of the Following Trees for an ED 	 42

4.4.3 The E{n} 4-- e in Following Trees 	 42

4.5 Scenario Language 	 43

4.5.1 The Scenario Language Definition 	 43

4.5.2 Establish an Gs from an ED 	 43

4.6 Hierarchical Expansion of an ED 	 45

4.6.1 Sub-extension and Subgraph-Contraction 	 45

4.6.2 Establish a Sub-extension Grammar from the Gs 	 46

5. COMPARISON WITH OTHER GRAPHICAL REPRESENTATION

IN REQUIREMENT ANALYSIS PHASE

5.1 Comparison with Petri Nets 	 47

5.2 Comparison with Event Tace Diagram 	 49

5.3 Comparison with DFD 	 49

5.4 Companrison with STD 	 50

6. CONCLUSION AND FUTURE WORK 	 52

vii

ILLUSTRATIONS 	 58

APPENDIX A 	 79

APPENDIX B 	 82

APPENDIX C 	 98

REFERENCES 	 100

LIST OF ILLUSTRATIONS

Figure 1: ED of the Vending Machine System 	 59

Figure 2: Sub-ED of the Vending Machine System 	 60

Figure 3: The Follower Tree (Sub-ED) of the Vending Machine System 	 61

Figure 4: The Followe Tree of the Vending Machine System 	 62

Figure 5: ED of Scenario 1, Cruise Control; Cruise Control System 	 63

Figure 6: ED of Scenario 2, Inc/Dec the Maintained Speed; Cruise Control System 	64

Figure 7: ED of Scenario 3, Resume; Cruise Control System 	 65

Figure 8: ED of Scenario 4, Brake Application; Cruise Control System 	 66

Figure 9: ED of Scenario 5, Terrain Condition; Cruise Control System 	 67

Figure 10: The Follower Tree of Scenario 1; Cruise Control System 	 68

Figure 11: The Follower Tree of Scenario 2, 3, 4, 5; Cruise Control System 	69

Figure 12: The Paged Follower Tree of the Vending Machine System (page 1) 	70

Figure 13: The Paged Follower Tree of the Vending Machine System (page 2) 	71

Figure 14: The Paged Follower Tree of the Vending Machine System (page 3) 	72

Figure 15: The Paged Follower Tree of the Vending Machine System (page 4) 	73

Figure 16: The Paged Follower Tree of the Vending Machine System (page 5) 	74

Figure 17: The Paged Follower Tree of the Vending Machine System (page 6) 	75

Figure 18: The Transformation from I Arcs to Petri Net Structures 	 76

Figure 19: The Refinement of e9, Hierarchical Extension of an ED 	 77

Figure 20: The Object Model of the Vending Machine System 	 78

ix

CHAPTER 1

INTRODUCTION

Scenarios were incorporated into the life cycle model of Object-Oriented software

development in [Wang 91] (SDOOD). In the Scenario-Based Engineering Process

(SEP) [Hufnagel & Harbison 93], scenarios are fundamental. Scenarios provide

consistent communication mechanism among users, managers, and developers.

Scenarios are used to map among a system's requirement, specification, design,

implementation, and other documentation. Scenarios fulfill the seamless software

development goal [Hufnagel & Liou 90]. However, the method of building scenarios

into a requirement document remains ad-hoc. The scenario representation format is

very informal. This thesis formalizes that process and makes it deterministic.

This thesis extends scenarios into real-time event digraphs. These digraphs

combine system scenarios into graphical structures. A scenario is an event trace

resulting from a particular system thread of execution [Rumbaugh 91] (p86), while an

event digraph is an event network. Multiple external stimuli result in a wave of

execution in distributed and parallel architecture.

This thesis consists of six chapters and three appendices. Chapter 2 describes the

fundamental concepts and terminology. It lays the foundation for event digraph

construction for reactive systems. A scenario is redefined with a scenario event order

(SEO), the system external stimuli, and the scenario boundary states. The boundary

states are defined within the system execution. The external stimuli are defined by the

property that the stimuli, including the external inputs, can occur spontaneously and

randomly with respect to a system. An SEO is described with the assumption that the

1

2

followed event is the last occurrence in the current event occurrence wave. Chapter 3

shows the perceptual view of event digraphs and the pragmatic steps to build an event

digraph from an actual scenario. The Vending Machine System and the Cruise Control

System are given as two small real-time examples. We give the formal definition and

the behavior specifications for event digraphs in Chapter 4. In Chapter 4, a scenario

language and the ED hierarchical expansion mechanism are also developed with the

event digraph base. Chapter 5 compares event digraphs with other requirement

analysis graphical representation. The last Chapter includes the summary,

conclusions, and suggested future work.

CHAPTER 2

BACKGROUND

The purpose of preparing developers with scenarios of a system is to get a better

understanding of the expected system behavior [Rumbaugh 91] (p170). We will extend

scenarios into an event digraph. The purpose of building an event digraph is to

formally specify system behavior. The concepts, the terminology, and the abstractions

discussed below are used later in the thesis.

2.1 Event

In Coad & Yourdon's kindergarten [Coad & Yourdon 90] (p1), the distinguishing

object's feature often is the attribute defining the objects' distribution. We may note

that a chair is located beside a table. We also may note that we observed the table

first, then the chair, or vice versa. We may say that the table is previous to the chair

because we saw the table first. The objects' distribution is the foundation of our spatial

concept. The occurrence distribution is the foundation of our time concept. In Einstein's

relativity, both are integrated together. The order abstraction takes an important part in

their integration. The observation order depends on the position relationship among

the objects and the observer. So with respect to the observer, the occurrence order is

a kind of spatial object order. This consideration is only to illustrate the important

relationship between events and observers. In system analysis, the events and the

event order abstractions will first be informally described.

3

4

2.1.1 The Definition of Events

One of the intuitive human activities is to deal with the real world by partitioning

time. Some examples are: Flight 098 departs from DFW Airport At 2:00 PM, today's

seminar will be held after the class CSE 6325, the meeting is scheduled from 1:00 PM

to 3:00 PM, etc.

An event is the boundary of a time partition. In the partition today's seminar will be

held after the class CSE 6325, the boundary can be represented as the seminar is

finished or as the class CSE 6325 begins. In the partition the meeting will be held from

1:00 PM to 3:00 PM, we can set the boundaries as such: the meeting begins at 1:00

PM and the meeting ends at 3:00 PM. The example Flight 098 departs from DFW

Airport at 2:00 PM itself is a partition boundary. It divides the time into two parts, before

the departure and after the departure. We use events to mark time. Note that our

public standard time is marked with the ticking of the clock. Each tick is a fundamental

event. Imagine if there were no event occurrence in the universe, there would have

been no time in this universe. "Processes are event-driven rather than clock driven"

[Jonathan & W 90] (p133).

2.1.2 The Event Abstraction and Properties

By comparing the adjacent time segments partitioned by the events, we can always

define distinguishing attributes. For example: Flight 098 was on the ground before

2:00 PM; and after 2:00, it was in the air. During CSE 6325, the number of student is

30. When the following class starts, there are 28 students. We use the word

parameter to represent things that change in the different partitions. In the first

example, the parameter refers to the position of the plane, Flight 098; in the second

5

example, the parameter refers to the number of student. The observer determines the

significant attributes.

To illustrate other event features, let us ride on a time train. This will enable us to

see what will appear on the time mark. We observe that the appearance of time marks

is instantaneous. The some attributes between adjacent segments have been changed

on the time marks. The changing is caused by some mutual effects among objects.

We have observed three properties of events: instantaneous attribute, parameter

change, and mutual effect. The instantaneous attribute is the essential characteristic;

parameter change and mutual effect are the intrinsic parts of the events.

Of course, nothing is really instantaneous. If one of our observations is of a very

short time duration relative to another observation, then the former observation can be

seen as an event. Anything such as a process, object, concept, etc., can be abstracted

as an event, when we study or observe the instantaneous state of its attributes. For an

object, its existence can be abstracted as an event for a relatively time scale. The

signal, interrupt, occurrence, happening, action, etc., are events that can have the at a

point in time property.

In computer science, the function, task, operation, process, and state concepts are

fundamental. They all have a start time and an end time in their system execution. It

is natural to consider the questions:

When is a function called?

When does a process start?

When does a state exist?

When is an object in active?

Etc.

Those start and end observations are events. They can be modeled with at a point in

time attribute.

6

Time is always marked on the point where some parameters change or some

mutual effects occur. For example, at 1:00 PM, a car hit a tree (mutual effect), the

speed of Flight 098 stops increasing (parameter change), Flight 098 is on land (object

state change).

A mutual effect implies some parameter changes. For instance, a car hit a tree

implies that the body of the car was damaged, I open the door implies that the position

of the door is changed.

A parameter change may not imply a mutual effect. For instance, the stopwatch is

set for 2-minutes and 2-minute time passed does not imply any mutual effect. Note

that 2-minute time passed itself may be a signal that causes some event occurrences.

In some applications, we only abstract one side of mutual effects. For example a

car is hit, the door is opened. A description of events can be done as a parameter

change form. They can be either as a one sided effected form, or as a two-sides

mutual effect form. In which form an event is abstracted depends on both the

observers and the problem domain. With respect to the object-oriented approach, each

side in mutual effect may be either an object or an attribute; a parameter change can

be either an operation or a state transition; mutual effect can result from message

passing.

Applying the group mechanism among events results in the event class concept.

Applying the inheritance mechanism among event classes, we get event class

hierarchical structures. Examples and discussions about event classes and event

inheritance can be find in [Rumbaugh 91] (p85, p98).

7

2.1.3 Event Value

We define the event value as the value the changed parameter conveys. In Flight

098 departures at 2:00, the event value is 098. For the door is opened, possible

values of the door in this abstraction are open or closed. For the event check the

plan's speed, the event value may be 200 mph, 600 mph, etc. An event may be

described with a group of objects or attributes. The one that is changed conveys the

identity of that event.

2.2 State

A state is the event partitioned time interval in which the event effects remain in

effect. If we ride on the time train, the states appear as the colored distances between

the events. The color here means the superposition of event effects. The current

occurred event superposes its effect on the color that was made by the previously

occurred events. That the next occurred event sweeps out the last event's effect is

viewed as the special case of superposition. Each superposition causes a new state.

In other words, an event may affect not only its incident state, but also its succeeding

states. It follows that a state can be specified by several event values.

In an example of an A/C system, consider the following event sequence

Turn on power —> turn the cool to high —> turn the thermostat to 11

—> turn the cool to low

Each event causes a change of the NC. Note that turns the cool to low sweeps out the

effect of turn the cool on high, but not that of turns the thermostat to 11. The turn on

power affects not only its incident state, but also the other sates following it. Also note

that each state is specified with a value combination of power, fan, and thermostat

value.

8

2.3 Stimuli

2.3.1 The Definition and the Properties of Stimuli

We define Stimuli as a finite collection of external events of a system; each occurs

spontaneously and randomly with respect to the system. For example, consider a TV

set with the external events: turn on power, change to channel 8, adjust the bright

button on low, etc. The TV can not predict which one will occur next.

For an input event, if the input data is queried by the system and the data's coming

is inevitable, then this event does not belong to Stimuli. A system queries of data from

an external storage is not a stimulus, because we assume that the external storage will

always supply what the system requires. The occurrence of the queried input is

inevitable, and not spontaneous. The occurrence of an input of a system from a user

belongs to Stimuli because the user may make an error data or the user may input

some data even if the system does not require it.

At a point in time, a single stimulus may occur or a group of stimuli may occur

together. According to the event exclusive discussion [William 88], we follow the

regulation that the two exclusive stimuli cannot stimulate a system at the same time.

For instance, we can not turn the TV on and at the same time turn it off; we cannot

change the channel to 8 and at the same time to 21.

The occurrence of an event in a Stimuli set is an external effect of a system. Some

external effect on a system will continue for a duration of time; the stimulus is the start

or the end of the external effects.

2.3.2 Stimuli-System Partition

Two well-known software requirement analysis approaches are Structured Analysis

9

(SA) and Object-Oriented Analysis (OOA). In SA, the data flow diagram (DFD) is a

typical graphical representation. To specify a requirement with DFDs, the 0-level DFD

is what we give first [Pressman 92] (p209). A 0-level DFD represents the entire

software element as a single bubble with input and output data indicated by incoming

and outgoing arrows, respectively. In OOA, we always represent first a top level 00

model with an environment-system partition form and a message passing mechanism

between the environment and the system, both of which are abstracted as two high

level objects.

A common feature of 0-level DFDs and environment-system high level 00 model is

a 2-partition, which is the first abstraction we developed to specify the relationship

between a system and its external existence.

When we specify a requirement with a scenario extended event digraph, we do a

similar thing. We take stimuli-system 2-partition as our top level model in this case.

The Stimuli has been defined in the last section.

We compare stimuli-system abstraction with a 0-level DFD:

1. The external part of DFD includes the system output, while a Stimuli doesn't.

2. A Stimuli specifies the data input occurrences as well as any system external

effective if they are spontaneous and random.

The behavior of the system part in stimuli-system is referred as the function of the

stimuli's behavior.

2.4 Boundary State

A boundary state is an externally visible state which users or domain experts or

observers abstracted from a system. The identification of a boundary state for a

system depends on the abstraction level in the application. Note that the users or

1 0

domain experts are permitted to stipulate only one boundary state for a system. The

transition back to the boundary state means a scenario is finished or the objects return

to their original state. The transition out of the boundary state means the beginning of

a complete-scenario. The scenario and the complete-scenario will be introduced later.

A boundary state may be the state that no external effective remains in the system or

may be the state that no internal events occur in the system. We often view the

system's OFF mode (When a system is not in execution) as a boundary state. For

example: the A/C is in the state off, the TV is in the state off, etc. We also often refer

the mode of system's waiting clients (When there is no effect of Stimuli remained in a

system) as a boundary state. For example: the ATM machine is waiting for customers,

the pharmacy is open, etc.

Note that the users or domain experts can only stipulate one above case as the

boundary state of a system. If the domain experts say that OFF mode is perceived as

a boundary state, the Waiting Customer is not viewed as a boundary state.

2.5 Scenarios

A scenario is defined in [Rumbaugh 91] (p463) as a sequence of events that occur

during one particular system execution. To build an event digraph and to consider

multiple execution threads of a system requires a more powerful definition. The

definition above deals with a particular execution path, while an event digraph must

consider all possible execution paths. A scenario is redefined with the boundary state

and the scenario event order (SEO). In this section we discuss the SEO first, then

define scenarios.

11

2.5.1 SEO

SEO is a collection of ordered event pairs (tail, head); the tail is assumed to be the

last occurrence in an occurrence wave with respect to the head and the head is

assumed to follow the tail immediately. An example could be concurrently enjoying

McDonald's Extra Value Meal package that includes Big Mac, fries and a soft drink. A

person eats the Big Mac while eating fries and while drinking the soft drink. The person

must at least take a bite on every food item. The last swallowed food item cannot be

known in advance. If we want to consider the next event for the event swallowing Big

Mac, we assume that the last swallowed is the Big Mac; if we search for the events that

follow the event swallowing Fries, the last swallowed is assumed to be fries; and so on.

Then we may have the following expression:

(finish Big Mac, go), (finish fries, go), (finish drink, go) e SEO.

Note that with respect to the event the person leaves, the last occurrence may be finish

Big Mac, or finish fries, or finish drink.

The same mechanism can be also applied if we want to consider the next

occurrences from the occurred events. We suppose that all food and drink are

possible from the start eating event. If we want to search for the follower of Big Mac,

we say that Big Mac is the last started, and so on. We may have

(start Big Mac, finish Big Mac), (start Big Mac, finish fries),

(start Big Mac, finish drink),

(start fries, finish Big Mac), (start fries, finish fries),

(start fries, finish drink),

(start drink, finish Big Mac), (start drink, finish fries),

(start drink, finish drink) E SEO.

There are three kinds of SEO orders. The tail and the head are causally related in

the first kind SEO. The head occurs only if or iff the tail occurs. For example: it rains

12

—> the earth becomes wet (only if); the answer machine signal is flashing <->

somebody has left a massage (iff).

The tail and head are conditionally causally related in the second kind of SEO. The

head occurring depends on some particular value of tail or on some special states in

which the tail occurs. In other words, the head implies the tail. For instance, if the

deposited coin is enough for a candy bar, the machine returns the new inserted coin

after the event insert coin; if the deposited coin is not enough, the machine sets a new

state after the insert coin. Therefore, we have the second kind SEO as: insert coin <—

sets a new state and insert coin <— returns new inserted coin.

In the last kind SEO, the head, in a particular state, can possibly occur immediately

after the occurrence of the tail, and the tail and the head are not causally related. This

state may or may not be caused by the tail, and may or may not be result from the

head. Note that not every event can occur in a particular state. An example is the

following situation: a student is in the engineering building II, and he has the option to

leave the building immediately, or he may go into the #2 elevator immediately, but he

can not play football immediately.

Again the essence of SEO is the relation that under the certain abstraction views

the occurrence of an event follows another occurrence immediately either inevitably or

possibly. This relation is partitioned into three parts by applying causality mechanism.

In system analysis, whether an event order belongs to SEO is determined by users,

domain experts. Similarly, abstraction viewers can define relations. In other word,

whether the causality relation, conditionally causality, or possibly following under certain

situation can be assigned between two events is decided by users or domain experts.

The SEO can also be viewed as the domain experts or users defined logic. Therefore

in system modeling both users and analysts can ask the question If this is the last

occurrence, what will be the next?.

13

2.5.2 More about Events

If two events have the same description (i.e., in the same parameter change form or

in the same mutual effect form), but they occur in the different states, we will categorize

them as two distinct events. In other words, an event is determined not only by its

description but also by its position in time (sequence of events). There is a difference

between a student leaving the library before the closing time or after the closing time,

even though both leaving library events are of the same description.

2.5.3 The Definition of a Scenario

Scenario: A sequence of events where

1. The start event is a stimulus, and after the last event occurs, the system

state is the boundary state.

2. Each immediate ordered pair in the sequence belongs to SEO.

If the start event of a scenario also occurs in the boundary state, this scenario is called

a complete-scenario. SE0 excludes the arbitrary event ordered pairs that do not

belong to scenarios. A stimulus is permitted to be appear more than once in the

interval of a scenario sequence.

CHAPTER 3

PERCEPTUAL VIEWING OF EVENT DIGRAPH

SEO is actually the mechanism that provides us a heuristic to search for the

followers for each event concerned. Since the mechanism for searching the next

occurrence is simpler, we will first examine two small examples to show how to use this

mechanism to build event digraphs; therefore, the perceptual viewing of event digraphs

in this chapter will be illustrated. The formal definition and the analysis of the event

digraphs are to be discussed in the next chapter.

3.1 The Abstraction of an Event Digraph

We abstract a system as a finite collection of events E that

E {el , e2, ... en}

We refer SEO to a relation such that

SE0c Ex E

The result of this abstraction (E, SEO) is a directed graph called an event digraph (ED).

In building an ED according to a requirement document, an SEO is applied as the

question if this event was the last occurred, what will be the next?. Developers can ask

this question not only for themselves but also for the user's view. This question can be

a center of the communication between users and developers if an ED is developed.

Furthermore, developers and users can work together to build an ED since ED

development only needs the next occurrence mechanism, which is intuitive and

requires no knowledge of computer technique.

14

15

3.2 Example 1, Vending Machine System

This Example comes from the UTA course, Real-Time Design (CSE 6325 SPRING

93).

Requirement: The vending machine receives coins, then dispenses candy bars.

The machine holds five types of candy bars, 200 of each type. The machine does not

give change. The machine only accepts 5, 10, 25 coins. An incomplete transaction will

be canceled after 2 minutes, if not successfully completed. Termination of transaction

shall result in the return of all deposited money to the customer. Being ultra modem,

the machine has an internal phone modem, and can alert the vendor when any of the

following conditions occurs:

1. The candy supply of any candy bar is less than 10; a delivery service will

then fill the machine to capacity.

2. There are more than 40 units of any coin, since the coin holders can only

hold 50 units of any coin. An armored truck will remove all money from the machine. If

the armored truck does not arrive within one hour, the machine will shut itself down. It

will go into a protect-mode, to prevent robbery.

ED Building: (The result is shown on Figure 1.)

Assumption 1: The services of Armored truck and candy bar delivery are combined

into one service, Truck Service.

Step 1, Identify stimuli: Stimuli is a collection of the external effects in which each

element occurs spontaneously and randomly with respect to a system. With respect to

the vending machine, we see the following external events:

el': insert a coin

e2': push a candy button

These events are spontaneous and random. A customer may push the button first,

then push the button again, then insert 5-cent coin, then push button, etc. We may

16

assume that the indicators as machine asks customer to insert coin and machine asks

customer to push the candy button are designed from the machine's view, but it is

possible that customers may play with the machine and ignore those operation

indications or that the customers may make some wrong operations. So the machine

cannot expect what will occur to it, and in what order. The truck can be referred to as

an external store. The machine puts the coins into and takes the candy bars from the

truck. The truck service occurs only if the machine requests it.

Let el', e2' E E. The primes on ei', e2 indicate that those events are stimuli.

Let SEC). O.

Step 2, Determine the Boundary State: We determine that the vending machine

enters its boundary state only if there are no coins deposited in the machine.

Step 3, Make the Search Queue, Q: We add every element in E into a queue Q. At

first, for the elements in Stimuli, the adding order is made by chance. However, the

following discussion may offer some clues that will help in deciding what element in

Stimuli is added into the front of Q. We can add the "normal" inputs, or "normal" stimuli

in the front of Q. A "normal" input or a "normal" stimulus is the first event of the

"normal" scenarios. The meaning of a "normal" scenario can be found in [Rumbaugh

91] (p170). For a "normal" scenario, we do not consider unusual conditions, the

"special" cases such as omitted input sequences, maximum and minimum values, and

repeated values, the user error cases including invalid values and failures to respond.

For the example of an ATM machine [Rumbaugh 91] (p151-185), we will look at the

input sequence:

user insert a cash card —4 user enters his password —>

user selects the kind of transaction —> user enters the $100

17

This is a "normal" input sequence that an ATM machine expects. In our example, the

machine normally expects that the a customer first inserts a coin. Therefore, the Q of

the vending machine after adding the elements of Stimuli looks like

Q ::-.=. (el', e2').

Step 4, Search for Followers: We remove 0 (Remove-Q(0), let the removed

element occur, then search the following occurrences in the system in this step. What

kind of following occurrences can be searched out depends on our abstractions. Users

can help to make this searching more deterministic. For each new obtained event if it

is not in E, we add it in E and do Add-Q(0. Then add the event ordered pair, which is

constructed with Remove_Q(ei) as the tail and the new obtained event as the head to

SEO. We repeat this step until 0 is empty.

In our vending machine example, we do Remove_Q(ea What will occur next if

Remove_Q(0 were the last occurrence on the vending machine system? After the

occurrence of el, the count 2-minute time should be executed while a new coin value

state should be set. However, if the current coin value is already enough for a candy

bar, the machine should return the new inserted coin directly instead of setting a new

coin value state. That is to say that the machine needs to check the current coin value

state before deciding whether to set a new state or to return the new received coin.

We design an event check state 1 to deal with the situation above. The reason that we

put a 1 after check state will be illustrated later. We have the following abstractions and

manipulations:

e3: check state 1, (a follower of el').

ea: count 2-minutes, (a follower of el')

Let e3, ea E E

Let (el', e3), (el', ea) E SEO

e5: return coin 1, (a follower of e3).

18

es: set state, (a follower of e3).

Let e5, es E E

Let (e3, es)', (e3, es)' E E

Add_Q(e4), Add_Q(es) , Add_Q(es).

Note that there are primes on (e3, e5)' and (e3, es)'. We use the prime symbol to make

distinguish among the three kinds of SEO. A (ei, ei) indicates that ei and ei are causally

related; a (ei, el)' indicates that ei and ei are conditionally causally related; a (ei, ei)"

indicates that ei and ei are not causally related and that ei is "required" or "designed" to

follow ei. In our example, whether e3 causes e5 or es depends on the value of the

current coin state value (being enough for a candy bar or not), so (e3, e5)' and (e3, es)'

belong to the second type of SEO. The immediate result so far is

E = {e,', e2', e3, e4, es, es}

SEO = {(el', e3), (el', e4), (es, es)', (es, es)'}

Note that we don't Add_Q(e3), because the succeeding events of e3 have already been

designed in the same time. The Q right now looks like

Q = (e2', e4, e5, es).

Remove_Q(e2'), let e2' occur. What will be the next events if e2' is the last occurrence

on the vending machine? After a candy selecting button has been pushed, the next

actions of the machine depend also on the current coin value state. If the current coin

value is enough or too much for a candy bar, the machine dispenses the candy bar the

customer has chosen. If a customer first pushes a candy button without depositing any

coin, the machine will do nothing and continue to keep its boundary state. If a

customer pushes a candy button under the state that the coin value is not enough for a

candy bar, the machine will keep waiting until the 2-minute time is out or another coin is

deposited or candy buttons are pushed again. The same event under different states

will cause different state transitions. This is an outstanding characteristic shown on

19

State Transition Diagrams (STD). In ED building, this situation requires us to design

again a State Checking event. For our vending machine ED building process, we

design the event check state 2 to occur between pushes a candy button and the events

that may be caused. We have another group of abstractions and manipulations as

follow

e7: check state 2, (a follower of e2)

Let e7 E E

Let (e2', e7) E SE0

ea: 2-minute time is out, (a follower of e7).

es: decrease the number of a candy bar, (a follower of e7).

Eta": reset, (a follower of e7, the last event of a scenario).

ei': (a follower of e7, already in E).

e2': (a follower of e7, already in E).

Let ea, es, elo" E E

Let (e7, ea)", (e7, es)', (e7, elo"),' (e7, el')", (e7, e2')" E SE0

Add_Q(e8), Add_Q(es).

Note that we have used the symbols as ei, ei', and ei" to distinguish the three kinds of

nodes so far. The el' means that the event indicated can be the first event of a

scenario, which is also a stimulus. The a" means that the event indicated can be the

last event of a scenario. After ei", a system then goes back to its boundary state. The

ei means that the event indicated can only be an interval event in a scenario. In our

example, the event return coin 1 cannot start a scenario. The return coin 1 is not an

external event and can not happen spontaneously and randomly. Furthermore, after

the return coin 1, there are still some processes going in the system. Something will

happen before the boundary state and after the return coin 1. According to the

definition, only a stimulus can start a scenario. In our example, the Stimuli includes el'

20

and e2' . After the event reset, the vending machine system goes back to its boundary

state. Actually, if a customer pushes a candy button without deposit, there is no

change on machine's state. However, since we view e7 as an internal event—a part of

the system execution, we still let the event reset to follow e7 for our vending machine

simulation. That also means that the system gets its boundary state one more time

after the stimulus e2'. The following scenario is an illustration.

Scenario: A Customer's Curiosity

1. A customer pushes a candy button without any deposit (occurs under the

boundary state).

2. The machine checks that the current coin value is zero.

3. The machine is resets, and goes back the scenario boundary state.

Actually, no interval event in this scenario is in the active state. This is not a "normal"

scenario.

Note that we don't take Add-Q(e7) and Add_Q(elo"). The situation of e7 is the same

as that of ea. We already have the succeeding events of e7, and we do not need to

consider en's followers any more. We do not add elo" into Q because eio" is the end of

the scenarios; there are supposed to be no followers of the ends of scenarios. The Q

looks like Q a (e4, e5, ea, ea, ea).

Note that if the current coin value is enough or over for a candy bar, e7 will cause

ea. Therefore the arc (e7, ea)' has a prime come with as it up script. If the current coin

value is not enough, el' or e2' or ea may follow e7. However e7 won't cause any one of

them; the arcs (e7, el')", (e7, 'e2)", and (e7, ea)" come with double primes as their up

scripts.

Note that the actions conveyed by ea and e7 are the same — check state. However,

we design check state into two distinct events. With the respect of the action check

state, the succeeding event set depends on the history of the check state, i.e., we need

21

to be concerned with what has been happened before the check state occurred. In the

graphical representation, we need to examine from where the check state comes. For

the same value, for example the current coin value is enough, of the check state, if the

check state comes from el', the machines return the newly deposited coin; if it comes

from e2, the machine dispenses a candy bar. An event is identified not only by its

instantaneous performance but also by its effect in time. We abstract an event by

instantaneous performance of things; we distinguish events by the time effect of an

instantaneous performance. Technically, our distinguishing events according to their

different effect propagating in time guarantees that the occurrences of the succeeding

events are only determined by the performance of the preceding event.

The sub-ED of the vending machine so far is

E = {el% 	e3, ea, es, es, e7, es, es, els"}

SEO E {(el', e3), (el', ea), (e3, e5)', (e3, es)', (e2', e7), (e7, 	(e7, e2')", (e7, es)",

(e7, es)', (e7, elo")'}

The graphical representations of the sub-ED are shown on Figure 2. From the

Figure 2, we may already have a premonition that an ED's graphical representation for

even a medium system may become a chaotic picture. The solution to the chaos is to

apply the follow tree as one of the ED's graphical representations. Figure 3 is the follow

tree of the Figure 2. The follow tree of an ED is not only a method to help us to

organize a good documentation format in ED requirement analysis approach but also a

graphical expression emphasizing the question — what will be the next occurrences?.

More discussions about the follow tree is in the next chapter.

We do Step 3 in iterative way, continuing to removing 0, abstracting and designing

the succeeding event set for each removed event by keeping in mind with the question

as if this is the last occurrence, what will be the next?, then adding the new produced

events into 0, until Q is empty. The graphical representations of the vending machine

22

are shown on Figure 1 and Figure 4. The Figure 4 is the follow tree of the final result.

Since in our abstraction in the section 3.1, E is finite for a system. We can always get

the time that Q becomes empty.

The behavior of a graphical representation is specified by another ED component

— Event Dictionary. An Event Dictionary plays a part as that a requirement dictionary

[Pressman 90, Thomas 90] plays in DFD. The whole event dictionary of the vending

machine system is located in Appendix B. We have more discussion about event

dictionaries in the next chapter.

Note that a scenario in an ED appears as a walk [Bondy & Murty 77] (p12). The

start and the end of a walk are a stimulus and a sink point. The sink point is unique in

a scenario; stimuli are not necessary to be distinct in a scenario. Furthermore, it is not

required that there must be some interval events happening under the active states.

The process we used to build an ED above is similar to the Breadth-First Search

(BFS) algorithm [Larry & Sanford 90, Thomas 90]. We identify first the stimulus set,

then initialize a queue to contain all the events in the stimulus set. While the queue is

not empty do the following:

1. Remove an event ei from the queue.

2. Identify , abstract, and design all events ei following ei;

If ej is new produced then add el to the queue.

More discussion about this BFS like process will be given in the next Chapter. Besides

the BFS like method, there is another way to build an ED for a system. The next

section shows an alternative ED construction method by the example of cruise control

system.

23

3.3 Example 2, Cruise Control System

The ED construction method shown in this section is Scenario Architecture, which

takes a "normal" scenario be a base, then installs several scenarios on a "normal"

scenario to make a net structure. From a requirement document, we make scenarios in

textual format first, just as those made in [Wang 91] (p31-34) for PBX on system level

or in [Rumbaugh 91] (p171) for ATM machine. Then we pick up a "normal" one from

the textual scenarios we just made, map the "normal" scenario to an ED form. Next,

extend the ED by installing the rest of the textual scenarios. Recall that a scenario is a

walk in ED. In Scenario Architecture, we actually build a single walk for ED first.

The stimuli-system partition is still the first step here. This first level 2-partition is

the foundation of the event-driven approach.

The example we used in this section comes from the UTA's course CSE 5324

Software Engineering (I) SUMMER 92.

Requirement: A cruise control system must maintain a car's speed within 5 mph of

the desired speed, even over varying terrain. The cruise control system's inputs are

1. Cruise control on or off — if on, denotes that the cruise control system should

maintain the car's speed.

2. Engine on or off — if on, denotes that the car engine is turned on; the cruise

control system is only activated if the engine is on.

3. Pulses from wheel — a pulses is sent for every revolution of the wheel.

4. Accelerator signal — indication of how far the accelerator has been depressed.

5. Brake signal — on when brake is depressed; the cruise control system

temporarily reverts to manual control if the brake is depressed.

6. Increase or decrease — increase or decrease the maintained speed; only

applicable if the cruise control system is on.

24

7. Resume speed — resume the last maintained speed; only applicable if the cruise

control system is on.

8. Clock pulse — timing pulse every millisecond.

The cruise control system's output is throttle setting — values for the engine throttle

setting.

Assumption:

1. We consider that increase or decrease are signals. Each time the driver

pushes the increase decrease button, the cruise control system increases or decreases

the speed by 5 mph once. The same as that for resume button

2. When brake is released, the cruise control (if it is on previously) goes back to

the previous work state.

3. The effect of the accelerator on the cruise control system is the same as that

of the brake.

4. The minimum value of the maintained speed is 5 mph. The maximum value

of the maintained speed is 110 mph. That is to say that if the driver turns the cruise

control on when the car's current speed is only 2 mph, the cruise control will maintain

the car's speed at 5 mph. If the car's speed is 140 mph when the cruise control is

turned on, the car's speed is maintained at 110 mph.

Step 1, Identify Stimuli: The input clock pulse is not a stimulus. With respect to the

cruise control system, this clock pulse is not spontaneous and random. The clock pulse

can be viewed as the results of the cruise control system's querying from somewhere.

The stimuli of the cruise control system can be shown as:

Stimuli a- (el', e2', e3', ea', e5', es', e7', e5', es', elo', ell') such that

el': engine is on.

e2': engine is off.

e3': cruise control button is on.

25

ea': cruise control button is off.

es': brake is on

es': brake is off

e7': accelerator is on

es': accelerator is off

es': increase/decrease signal (Inc/Dec sig).

elo': resume speed signal(RSV sig).

ell': terrain change.

We can make a further abstraction on Stimuli to make things simpler. The cruise

control works only if the engine is on and the cruise control button is on. We design

the following event to demonstrate this point:

CC on = el' A es'

By the Demorgan's law, we write the equivalent expression:

CC off = e2' V ea'

Actually, the CC on and CC off are the one event with different values. However, for

the specific application, we still design two events here. Furthermore, since both the

effects of the brake and the accelerator on the cruise control system are related to the

manual switch, we have the following design:

B/A on = es' V e7'

BA off= es' A es'

Other relations in the Stimuli are el' e e2', e3' ED ea', and ell' —> el'

We rebuilt Stimuli as

Stimuli F_ (el', -el', e2', -e2', e3', ea', es'} such that

ei': CC on.

—tel': CC off.

e2': B/A on.

26

—,e2': BA off.

es': increase/decrease signal (Inc/Dec sig).

ea': resume speed signal(RSV sig).

ea': terrain change.

Let Stimuli c E

Let SEO = 0

Step 2, Determine the Boundary State: We make the decision that the cruise

control system gets its boundary state only if —,e2' is true.

Step 3, Textual Scenarios: (Refer to the Appendix A)

Step 4, The Walk Building for A "Normal" Scenario: Obviously, the first scenario

depicted in Appendix A, Cruise Control, seems "longer" than other scenarios. We

begin the ED building with scenario 1.

(The graphical representation of the scenario 1's ED is shown on Figure 5.)

The first event is el', which is already in the Stimuli. According the step 3 in the

scenario 1, when el' happens, the CC system begins sampling the wheel pulses and

the clock pulse, then calculates the current speed. We have the following abstractions:

ea: sample whl pulse (sample wheel pulses, a follower of el').

e7: sample clock pulse (sample clock pulses, a follower of el').

es: calculate C-spd (calculate current speed, the follower of ea, es).

Let ea, e7, es E E

Let (el', e6), (el', e7), (e6, ea), (e7, ea) E SEO.

Next, according to the step 4 in the scenario 1, the abstractions follow

es: compare C-spd and M-spd (compare the current speed and the maintained

speed, the follower of ea).

Let es E E

Let (ea, es) E SE0

27

However, before the occurrence of ea, the CC system must know the maintained speed

from somewhere. If we just start the CC system, the first calculated current speed

should be recorded somewhere as the maintained speed and should be also stored

somewhere as the last maintained speed. The last maintained speed is stored for the

resuming.

Therefore the analysis goes as:

If CC system is active, it queries the maintained speed. If the maintained speed

is not zero (By the assumption 4, the minimum value of the maintained speed is 5

mph), the next action is to compare the calculated speed with the queried value. If the

queried value is zero, we know that the CC system has just started. So the current

speed should be recorded as the maintained speed, and at the same time, the current

speed should be also stored as the last maintained speed. If a new maintained speed

is determined, it should be used in comparison with the current speed. The analysis

above is still guided by the question if this is the last occurrence, what will be the next?.

The events analyzed so far can happen on parallel way with ea, e7, and ea. We have

the following abstractions:

eio: query M-spd (1) (query the maintained speed, a follower of el' so far).

eii: store L-spd (store the last maintained speed, a follower of eio and ea).

e12: record M-spd (get the maintained speed ready, a follower of eio and ea).

Let eio, eii, e12 E E

Let (el', elo), (elo, es)', (elo, ell)', (elo, e12)', (ea, ell)", (ea, e12)", (e12, elo) E SEO.

Note that we do not concern where elo queries M-spd and where el 1 stores L-spd.

Those belong to the software design phase. What we are concerned with is that if

some condition is satisfied, ell will follows elo. Similarly, we are not really concerned

with the fact that eii may use the data from ea. The fact that the eii may use the data

from e8 represents another fact that it is possible for eii to occur after the ea.

28

Still, according to the step 4 in scenario 1, the event adjusting the car's throttle

follows the ell; however, it does so conditionally.

e13: adjust throttle (adjust the car's throttle, the follower of es).

Let ei3 E E

Let (es, e13)' E SEO.

According to the step 5 and 6 of the scenario 1, we have

ei4": clean L-spd and M-spd (clean the last maintained speed and the

maintained speed, a follower of -lel')

Let eta" E E

Let (e13, --ell)", (e13, eta") E SEO.

Step 5, The Walk Extension: Now we install scenario 2 on the ED of scenario 1.

The first step of scenario 2 says that scenario 2 begins at the occurrence of e5'. After

that, according to step 2, the CC system needs to check if CC on is true before

querying the maintained speed. If CC on is false, the CC system does nothing more.

We have the following:

els: check CC (1) (check if CC is on, a follower of e3').

e16: query M-spd (2) (query the maintained speed by increase or decrease, a

follower of e15).

e17": do nothing (go back to the previous state, a follower of e15 so far).

Let els, els, e17" E E

Let (e3', e15), (els, e16)', (e15, e17")' E SEO

According to the step 2 and 3 of the scenario 2, we have

eta: check spd limit (check the maintained speed limit, a follower of e16).

els: inc/dec M-spd (increase/decrease the maintained speed, a follower of els).

Let els, els E E.

Let (els, eis)', (eta, e17")', (eia, els)', (els, ell)', (els, e12) E SEO.

29

So far scenario 2 has been connected with scenario 1 through the arcs (e1.9, ell)', (e18,

e12). Next, we will examine both scenarios to see if there are some arcs from the

scenario 1 to the scenario 2. We have

(e12, e3')", (e13, e3')", (e14, e3')" E SEO.

Now the scenario 2 is completely installed on the scenario 1. The graphical

representation of the scenario 2 is shown on Figure 6.

The installation of the scenarios 3, 4, 5 is shown on Figure 7, 8, 9 respectively.

Figure 10, 11 are the follow trees. We build these follow trees according to the order of

the scenario installation, so we will find that the size of the follower tree of scenario 1

(Figure 1 0) is larger than the rest. The event dictionary of the cruise control system is

in Appendix B.

CHAPTER 4

STRUCTURE AND ANALYSIS OF ED

4.1 Definition in Formal Form

An ED is a particular kind of directed graph. We use E to indicate the vertex

set, SEO to indicate the arc set. E includes two distinct subsets S, V. The vertices in S

are the sources of ED and those in V are the sinks of ED. S and V are assumed to be

disjointed and non empty. SEO is partitioned into three parts, /, C, and T.

Definition:

An ED is a 7-tuple, ED= {E, SEO, S, V, I, C, T} where

E = {ei, e2, ..., en} is a finite set of events,

SEO c Ex E is a finite set of arcs,

S c E, V c E,

I c SEO, C c SEO, Tc SEO,

S*0, V* 0, S r) V= 0,

In Cn T. 0, lu Cu T= E.

SEO: Let ei, ei E E. If it is possible that the occurrence of ei immediately

follows that of el under the state determined by ei, then (el, ei) E SEO.

S : Let ei E E. If the occurrence of ei is spontaneous, then ei E S. If ei E S, then

donut(ei) 	1.

V : Let ei E E. If the occurrence of ei has the system state transferred to the

boundary state, then ei E V. If ei e V, then doout(ei) = 0.

/ : Let (ei, ei) E SEO. If ei 	ei or ei 	ei, then (ei, ei) E I.

C : Let (ei, ej) E SEO. If ei E- ej, then (ei, ej) E C.

30

31

T: SEO – (I u C).

Theorem 1: 1 El .. 2.

Proof: Suppose E . 1, then at least one of S . 0 and V. 0 must be true.

We call a vertex in S an S vertex. Similarly, we have V vertex, / arc, C arc, and T

arc.

We take an ED to model the event SEO order in the system executions. The

events we abstracted in the system requirement domain are represented with the

vertices. The SEO orders defined in Chapter 2 are represented with the arcs. The first

SEO is represented with the arcs in I; the second SEO, in C; the third, in T. The Stimuli

described in Chapter 2 is represented with S. The Sink described in Chapter 3 is

represented with V.

Definition: An S-walk is a walk of an ED with the origin in S and the terminus in V.

Theorem 2: An S-walk is equivalent to a scenario.

Proof: =: Consider an S-walk, say w, in ED. By the definition of a scenario in

Chapter 2, w is a scenario.

: Let s a scenario. By the definition of ED, there is a correspondent

sequence, say w, of s in ED; the origin and the terminus of this sequence are in S and

V respectively. The E does not include repeated nodes; the w is unique.

Corollary: The collection of all S-walks in the ED of a system is the scenarios of

the system.

Since we take S to model a Stimuli, we can think that S includes a group of

subsets, say S1, S2, etc. If the stimuli corresponding the elements in S within the same

subset, those stimuli can not occur at the same time.

The examples of modeling a system (Vending Machine System and Cruise Control

System) with ED are illustrated in Chapter 3. The graphical representations of the

examples are on Figure 1-10. We represent an S vertex with a circle with small dots

32

within it, in V with a circle with slice sloped lines within it. The arcs in I are represented

with the strong arrowhead lines; the arcs in C, with thin arrowhead lines; the arcs in T,

with dashed arrowhead lines. The E, S, V, I, C, and T of the ED for examples are

shown on Appendix C.

4.2 The Behavior of ED

An ED is an event network. The occurrence of an event, say el, in ED may be

caused by different event occurrence. The set of the events that may cause the

occurrence of ei is call the preceding set of ei. ei may cause the occurrence of several

other events. The set of events that may be caused by el is call succeeding set of ei.

For an event in an ED, some of its preceding events or succeeding events may or may

not be required to occur at the same time. We use a group of symbols and symbol

expressions to specify the concurrence or non-concurrence within a succeeding set or

a preceding set.

An ED can also be viewed as an event machine. We use tokens to specify the

occurrences of events in an ED. The token behaviors as well as the input and output

of arcs assigned for each vertex are specified in the Event Dictionary, which is viewed

as a component of an ED.

4.2.1 The Concurrence within Preceding Set and Succeeding Set

With respect to an event, some of its preceding events are concurrent, and some

are not. For example on Figure 3, e5 and ea are the succeeding set of e3 and within the

preceding set of el'; e5 and ea are not concurrent. On Figure 5, ea and e7 are the

preceding set of ea and within the succeeding set of el'; ea and e7 are required to be

concurrent.

33

Within the preceding set or the succeeding set of an event, we specify the

concurrence or non-occurrence among the elements with a group of symbols. The

connector {A, v, CO specifies the concurrence or non-concurrence of events. The arc

indicator {<-->, --->, .J} specifies the arc types. An expression is consists of several

events connected with several connectors and an arc indicator. Either left hand side or

right hand side of the arc indicator is a single event. The examples are:

(el A ej) v ek el

ei 	ej e ek

If the single event is on the right hand side, the left hand side is the preceding set. If

the single event is on the left hand side, the right hand side is succeeding. We use the

symbol E{A, v, e} to represent an expression with events as the literal and {A, v, ED} as

the connectors. We assign the meaning to the symbols as:

E{n} means that the events in the expression are required to occur at the same

time.

E{ED} means that the events in the expression can not occur at the same time.

E{v} means that the events in the expression may or may not occur at the same

time.

Let ei, ej E E.

ei <-4 ej means that (ei, ej) E / and ej occurs iff el occurs.

el 	ej means that (ei, ej) E / and ej occurs only if ei occurs.

ei 	ej means that (ei, ej) E C.

ei 4J ej means that (ei, ej) E T.

The formal expression of symbols is on Appendix B.1.1

34

4.2.2 Using Tokens to Specify the Occurrence Wave

At a point of time, we simulate a Stimuli by assigning a group of token creations on

some elements in S. We call that one assignment. For each assignment, we assume

the two regulations:

1. For each exclusive subset, only one element is allowed to create a token.

2. Exactly one element in a conflict pair should be assigned a token.

For the example of the cruise control system, in one assignment, only one of el' and

--el' is allowed to create a token and at least one of them has to create a token.

We assign each vertex in E the ability to create a token at one time. However only

the vertices in S can create a token by an assignment. The token creations in S stir

other vertices to create tokens. Therefore we say that an assignment can cause a

token creation wave in an ED network.

A token creation wave is propagated along path's arcs. This wave can only be

absorbed in V. For example in Figure 3, we let el' create a token, then e3 and es

create tokens, then perhaps the es creates a token, then maybe es, then ell, and then

elo". The event eio" is a sink that expires the creation wave.

Some S vertices stop creating tokens when their exclusive partners begin creating

tokens. For the example in Figure 3, if e3 and ea create tokens, the token in el' is

removed. In this situation, it seems that the tokens created in S travel in the ED

network. Some other S vertices stop creating tokens when their exclusive partners

begin creating tokens. For example on Figure 5, if we let el' create a token, el' will

continuing its creation until we let create a token. In this situation, the stimulus

seems to hold its token once it has created one, but we prefer that the vertex continues

to create tokens. What S vertices should be designed with the holding ability depends

on the applications. For the cruise control example in the last Chapter, we assign el',

e2', and with the holding ability.

35

4.2.3 The Input and Output of the Nodes

A vertex, for example ei in E, may be stirred up by its preceding vertices to create a

token. The creation of this token will stir other token creations in succeeding vertices.

The / input and output can be determined by an ED structure. The C and T inputs and

outputs are determined by the semantic of applications. All inputs and outputs are

specified in the Event Dictionary associated with an ED.

Suppose that the input and output arcs of ei include all three kinds of SEO arcs, /, C,

and T. If any one of ei's / tails have created a token, ei creates a token; if ei has

created a token, all of ei's / heads create tokens. In other words, between the / input

arcs, the logic relationship is OR; between the / output arcs the logic relation is AND.

Therefore, the / input/output is a logic. For the example of the vending machine system

in Figure 3, the / input logic can be found on els that creates a token only if either ela or

els creates a token; the / output logic can be found on els. The token creation on els

will cause both els and els to create tokens, respectively.

Therefore by the / input/output logic, if an S vertex is designed to be of the holding

ability, the token creation of this vertex will cause a sub-ED connected with / arcs to

allow all of its vertices to hold their tokens; in this case the sub-ED is said to be

saturated. For the example of the cruise control system of Figure 5, if el' continues its

token creation, the sub-ED = {ell, es, e7, es, es, els} is in saturation. A saturated sub-ED

corresponds to a state of the ED and the events saturated in the sub-ED become some

processes or activities of the system the ED modeled.

The / input and output logic of an ED comes directly from the logic defined in the

first SEO in which the head occurs only if or iff the tail occurs. The / input and output

logic can be determined completely by token creations.

The specification of / input of el can be E{A, v, e} —> ei or E{A, v, e}Het. Not that

the expression of ei EB ei —> ek does not mean that if ei and ej occur at the same time

36

the ek will not occur; this merely shows that it is not possible for ei and ej to occur at the

same time. So ei ED ej —> ek, ei A ej —> ek, and ei v ej -4 ek mean the same / input logic.

The specification of / output can be ei —+ E(A) or ei <-> E{A}. There is no application of

the expressions like el -4 E{e, v}, etc.

The input and output for C arcs cannot be completely determined by token creation

because the logic between the tail and the head, as defined in the second SEO, is such

that the occurrence of the head implies the occurrence of the tail. For a C arc, the

token creation on a tail only means a probability that the C arc is active even if this C

arc is the only output of the vertex. For the example in Figure 5, the arc (es, e13) is the

only output of es. However, the fact that the cruise control system is comparing the

current speed and the maintained speed (es) does not mean that the throttle is being

controlled by the cruise control system (e13); the throttle may be in manual control even

if the cruise control system is still running.

A C arc may remain active if this C arc comes from a saturated sub-ED. Suppose

that Al and A2 are two C arcs coming out from el. There are three cases of activity logic

of C arcs. One is that Al and A2 are active together. An example is Figure 5 in which

(elo, eli) and (elo, e12) are active simultaneously. We use the symbol elo ÷-- eli A e12 to

specify this case. The next case is that Al and A2 cannot be active together; only one

of them is active at one time. An example is Figure 6 in which either (eis, els) or (els,

e17") is active. We use the symbol eis <— els e e,7" to specify the second case. The last

case is that Ai and A2 may be active together or may not; whichever the case is does

not matter. An example is Figure 3, where it is possible that els and e17 occur together;

(els, els) and (els, e17) may or may not be active together. We use the symbol els 4-- els

v e17" to specify the last case. Generally, we use el *-- E{A, v, e} to represent the C

output assigned for el. Note that a C arc in active does not mean the head will create a

token unless that the C arc is the only input C arc of the head. On Figure 10, (es, em)

37

in active does not mean that e13 will create a token. However, in Figure 3, (es, els) is the

only C input of en, so (es, e13) in active means that e13 will create a token.

The C input of a vertex is similar to the C output. The C input of ei is specified with

E{A, v, e} E— e. An expression as ej A ek ei means that ei may create a token if both

(ej, e) and (ek, e) are active. For the example in Figure 10, elo keeps creating tokens if

both (es, e13) and (e2', ela) stay active. An expression as ej v ek ei means that either

(ej, ei) in active or (ek, ei) in active may stir e to create a token, and that the

occurrences of ej and ek may or may not be simultaneous. For example, a wet

backyard means that it is raining, that the sprinkler is on, or that it is both raining and

sprinkling at the same time. An expression as ej a ek ei means that either (ej, e) in

active or (ek, e) in active may stir ei to create a token and that ej and ek cannot occur at

the same time. An example is the game that A, B, and C throw two coins. The

regulation is such that if A gets exactly one head, D wins; if B gets two heads, D wins.

So if D wins, this means that either A was throwing or B was throwing, but A and B

cannot throw coins at the same time.

The T arcs don't stir the token creation between the tails or the heads. The token

creation on a T head removes the token from the T tails if some T tails have tokens.

The expression E{A, v, ED} ei means that ei may remove the tokens on the events in

E{A, v, e} and that there are some {A, v, e} relationship among those events. The

expression ei E{A, v, ED} means that the token on ei may be removed by the events in

E(A, v, e} and that there are some {A, v, e} relationship among those events.

The concurrent relation among I, C, T arcs with respect to a vertex is V. For the

example in Figure 3, e,2 and elo may or may not occur together; {es A eio'} and e2' may

or may not occur together.

38

4.2.4 The Event Dictionary

If we apply the SEO abstraction and develop an ED from a system in the real world,

an associated event dictionary is necessary. An event dictionary answers the following

questions:

What are the contents of the vertices represented in an ED with respect to the

system modeled?

What is the value of the events?

How does the value of an event, if any, determine the C input and output?

In Figure 3, for example, if e7 gets the value coin is enough or no deposit, the C I/O is

applied; if the e7's value is coin is not enough, then the T I/O is applied

An event dictionary is an organized listing of all the events in E that have been

abstracted from a system; the event contexts are precisely described. Both the users

and the system analysts will have a common understanding about what an ED means

with respect to a system, and both can execute the system on an ED in advance.

The examples of the event dictionaries associated with the vending machine

system ED and the cruise control system ED are in Appendix B. In Appendix B, the

format of an event dictionary is also suggested.

4.3 Modeling

We abstract the events from a system into the vertices of an ED. By each

occurrence, we may abstract all possible immediate followers. The relationship of an

event with its immediate followers is modeled as the arcs in an ED. This abstraction

depends highly on the individual analysts; therefore, the result is non deterministic.

However, if there are some users taking part in this development process, the outcome

will be less non deterministic.

39

In the last chapter, using the vending machine and the cruise control system

examples, we introduced two methods with which to model a system into an ED. The

first method mimics the Breadth First Search Algorithm (BFS). "Breadth First Search is

so named because it expands the frontier between the discovered and the

undiscovered nodes uniformly across the breadth frontier." [Thomas 90] (p469). For an

ED, we expand the frontier between abstracted events and the events that will be

abstracted across the breadth frontier. The question if this event is the last occurrence

in the system, what will be the next? is the key guideline in our expansiveness. The

second method installs the scenarios together to form an ED.

Sometimes, some immediate followers of an event depend greatly on the states. In

other words, an event may possibly occur under several states. These states may

cause different succeeding sets of the event. In this case, the analyst design the event

check state in ED; the different states become the values of the event check state. The

e3 and e7 in Figure 3, els and ela in Figure 6, e20 in Figure 7, and e24 in Figure 9 are the

examples.

The following are the general steps applied to the mechanism of the frontier

breadth expansiveness:

1. Establish a Stimuli

2. Let E. Stimuli

3. Initialize a queue, say Q, with a "normal" sequence of the vertices in E.

4. While Q is not empty, do

a. Remove a vertex v from Q.

b. For each abstracted follower w of v do the following:

i. If w has no succeeding set, do

w E E.

40

Add w into Q.

ii. let (v, w) E SEO.

The vending machine system in the last Chapter is an example of the application of the

BFS-like approach.

The cruise control system in the last chapter is an example of an altemative way to

model a system with an ED. This method actually transfers the scenarios of a system

from textual form to graphical form. We have the following steps as the guide:

1. Identify the Stimuli

2. Define a boundary state.

3. For each stimulus, write a textual scenario.

4. Select a "normal" scenario, do the following

a. For each event v in the scenario event sequence

If Ito E, let vo E.

b. For each ordered pair (v, w) in the scenario event sequence

If (v, w) SEO, let (v, w) SEO.

5. For the remaining textual scenarios, do 4.

4.4 The Follow Trees

We introduce follower trees of an ED to emphasize the development follow feature

and to have a chaotic ED organized using the hierarchical representation form. Follow

tree that is a mechanism for braking a large ED down into a series of pages make the

software analysis document more easily understood.

41

4.4.1 The Definition and the Algorithm

A follow tree is a copied hierarchical structure produced in an iteration of the

following algorithm:

1. For each node, say r, in Stimuli do the following

2. Copy r;

3. Initialize the queue, say Q, with r

4. While Q is not empty do

5. Remove 0, say v,

6. For each adjacent head, say h, of v, do the following

7. Copy h as a child of v;

8. If h e S and h e V and h is not colored, do the following

9. Color h in ED;

10. Add h into Q;

Note that the follow trees are not mathematical trees instead of a documentation

form with the tree structures.

A follow tree is of a tree structure.

Proof: No operation in the algorithm produces an arc connecting two copied

structures. Consider the i-th iteration of the Algorithm. The Copy operation of step 2

creates a node, and each Copy operation of the step 7 creates a node, as well as an

edge connected with a parent node. Therefore, we have a connected graph, say (FE,

FA), that I FA I = I FE I —1.

A group of follow trees produced from the same ED has the following features.

1. A node in E, say ei, corresponds dpin(ei) number nodes in the follow tree

group. Exactly one of those nodes corresponded by ei has children; the rest are

leaves.

42

2. A root belongs to S.

Proof 1: Step 6 and 7 in the Algorithm say that each arc in ED corresponds to a

head copy. The ei will be copied doin(ei) times.

The first step of the Algorithm adds each S vertex into Q exactly one time.

The color mechanism of the Algorithm adds each immediate vertex in ED exactly one

time in Q. Only one vertex is removed from Q each time, then each vertex has only

one chance to have children.

Proof 2: It is obvious from the first step in the Algorithm.

Figure 4 shows an example of a group of follow trees produced from the ED in

Figure 1. In this example, e2 is the first taken as a root.

4.4.2 The Pages of the Follower Trees for an ED

If we come across an ED with several hundreds of events, it is sometimes

necessary to group the vertices into page size for the sack of documentation. A page

is just a notational convenience, not a logical construction.

The size of a page is the number of vertices indicated in a sub follow tree. We take

George Miller's magical number "the magical number seven, plus or minus two" [Miller

56] to be the reference number of the vertices in a page. An example of paging a

group of follow trees is shown by Figures 12, 13, 14, 15, 16, and 17.

4.4.3 The E{n} <— et in Follow Trees

For our convenience, we make the following rule: for each node in the follower

tree, say ei, if ei has more than one C inputs with the "A" relation each other, we list all

those nodes as ei's parents. For example, on figure 10, e13 has two parents, es and

e2'. There is no harm done in maintaining the tree's property by this rule.

43

4.5 Scenario Language

4.5.1 Scenario Language Definition

The scenario grammar is a regular grammar [Sudkamp 88] (p57), say

Gs = (V, I, P, Scnr)

V: Finite set of variables;

I: Finite set of terminal symbols which maps E of ED.

Scnr: Distinguished element of V of Gs which implies the name Scenario and

starts derivations;

P: Finite set of rules which is the form

A .— aB

A -4 X.

The scenario language is defined as:

Ls = (w 1 Scnr • w},

(w. Sentence;

•: The derivation utilizes the rules of Gs).

4.5.2 Establishing an Gs from an ED

Consider an ED. We execute the following algorithm:

Let 1 = E

Use Scnr to name a S-Walk in the ED.

Create V as:

1. V = 0;

2. For each et E E, create a variable Ai, and let Ai E V

Create P as:

44

1. For each ei E

2. If et corresponds an element in Stimuli,

3. let Scnr 	E P;

4. Else if et corresponds an element in Sink,

5. let Ai 	X E P;

6. Else for each (ei, ej) E SE0

7. letAI->eJAj E P.

All S-Walks in an ED can be derived by Gs. In other words, all scenarios of the

system can be derived by Gs.

Proof: Consider a S-Walk = ele2...en. ei E Stimuli, so we apply Scnr 	eiAl. (el,

e2) E SEO, so we apply Ai —> e2A2. Suppose we have already applied the rules in P i

times and have derived the string ele2...ei, we apply At —> because (et, E

SEO. At the end of the string, we apply An-, —> enAn and An -4 X. Note that en E Sink

A Gs only derives the S-Walks of the ED.

Proof: Consider a string Str = ele2...en which is not a S-Walk of an ED.

Case 1: Some terminal symbols in Str do not belong E. Let ei e E, then ei

e Z. Gs can not derives a string with the terminal symbol ei included.

Case 2: Some concatenations in Str have no correspondence to the

elements in SEO. Let (et, ej) e SEO. Let eiej is included in Str, then At —> elAj must be

applied. However, Ai —> ejAi e P.

Case 3: el e Stimuli, then we can not start the derivation for Str with Gs.

Case 4: en Sink, then we can not eliminate the variable in the sentential

form ele2...enAn with Gs.

45

4.6 Hierarchical Expansion of an ED

In a certain specific application, we may refine some events into the atomicity

processes. For example in Figure 1, we may refine es as

es-i: motor connects the screw for the i-th bar type;

es-2: motor starts running;

es-3: open the i-th type door,

es-4: i-th type bar comes out

es-5: signal e12;

es-6: decrease #1 type by 1

as well as SE0 abstraction as

(e7, es-1)', (es-1, es-2), (es-1, es-3), (es-2, es-4)', (es-3, es-4)', (es-4, es-s), (es-4, es-6), (es-6,

e12), (es-6, e12), (es-6, ei3) 1 . The illustration is on Figure 20.

4.6.1 Sub-Extension and Subgraph-Contraction

Difinition: Let G(E, SEO) be a graph. A sub-extension of G is a graph that can be

obtained from G by the following:

1). Lett=1, r-i 	1E1

2). While t n, do

a). Let Gt'(Et', SEOt) be a graph. Let et E E;

b). E= E u Et' - {et} that et 0 Et,

c). Replace each input arc of et, say (ei, et), with one or more arcs, say (ei,

eok), (ei, eGk+1), ... that eGk, eGk+1 ... E Et;

d). Replace each output arc of et, say (et, ej), with one or more arcs, say (eoi,

et), (eGi+1, et), ... that eGI, eGI+1 ... E Et;

e). t=t±1.

46

With respect of a sub-extension, G is called subgraph-contraction.

Note that a subgraph-contraction must correspond a sub-extension. Only if a sub-

extension operation be applied, can a subgraph-contraction operation be applied.

Definition: The lower-level expansion of an ED is the sub-extension of the ED that

I, C, and T arcs are replaced with I, C, and T arcs respectively.

4.6.2 Establish a Sub-Extension Grammar from the Gs

We can establish a sub-extension grammar Gss = {Vs, I, Ps, Scnr} from Gs by

1). Extend an ED = (E, SEO) with (Eti, SEOt1), (Et2, SEOt2), ..., (Etn, SEOtn);

2). Let E' = Eti' uEt2' u... uEtni.,

3). 1 = ZuE 1 - {et I et e E} ;

4). Vs = V u{Ai I Ai has one-to-one correspondence with an elements in El —{Ai

I Ar has one-to-one correspondence with an elements in {et I et 0 E}};

5). Let Ps = P;

6). For each rule, say r, in Ps, if there is no i's correspondence arc in SEO,

then

Ps = Ps - {4;

7). For each arc, say seo, in SEO, if there is no seo's correspondenc in Ps,

then

a). create a rule, say r, according to the algorithm in 4.5.2;

b). Ps = Ps + {r}.

We can use the same proof methods in 4.5.2 to prove that all scenarios in a sub-

extension can be derived by Gss, while a Gss can only derive the terminal strings which

correspond the elements in the S-Walks of a sub-extension. Obviously, a Gss is a

extended scenario grammar.

CHAPTER 5

COMPARISON WITH OTHER GRAPHICAL REPRESENTATION

OF REQUIREMENT ANALYSIS

5.1 Comparison with Petri Nets

A Petri Net is also a particular kind of directed graph [Tadao 89], [Peterson 81],

[Wolfgang 92], and [Joanthan 92] with bipartite structure of places and transitions. An

ED is not necessary to be a bipartite directed graph.

In modeling, Petri Net uses bipartite abstraction on the real world. The structure of

Input Place --> Transition -> Output Place is often interpreted as ([Tadao 89])

Precondition -> Event -+ Postcondition

Input Data ---> Computation -> Output Data

Input Signals -4 Signal Processor -4 Output Signals

Resources needed --> Task or Job -> Resources Released

Conditions -4 Clause in Logic -3 Conclusion(s)

Buffers -4 Processor -4 Buffers

Etc.

A place in a Petri Net cannot be Input data, as well as a Condition, as well as a Signal,

etc., at the same time. If a place fires several tokens simultaneously, it is not possible

that some tokens go to Output Data by Computing, some go to Conclusion(s) by

Clause in Logic, and some go to State by Occurrences. If it is necessary to model all

those aspects for a system, several Petri Nets on different abstraction levels are

necessary. However, in the Object-Oriented world, an event may change a state for

the first object, send a message to stir an operation in the second object, and also be

47

48

an input data for a process of the third object, all at the same time. A Petri Net has

difficulty describing such diverse situation at the same time because the bipartite

abstraction implies a kind of mutual constraint, or mutual dependence between the two

partitioned parts. That is to say that transitions could not exist if there were not places;

without places, the transitions lose their significance. If we abstract Buffer from the real

world, we have to take Processor or some other related abstraction as the bipartite

partner for Processor, we can not take Clause in Logic as the bipartite partner of Buffer.

Furthermore, the semantic relationship between two bipartite parts has to be kept

consistent throughout a whole Petri Net.

The foundation of an ED modeling is time (a scenario, a sequence of events with

respect to an observer). An ED only considers the immediate following relation.

Regardless of whatever the input data, the buffer, the computation, the procedure, the

operation, the job, the condition, the clause in logic, the message passing, etc., we can

model them as the vertices in an ED only if we perceive them on a point in time or only

if they are of time point attributes.

It is a straightforward approach to make the transformation from the / input/output

logic to Petri Net structures. This is illustrated by Figure 19. However, the

transformation from the C input/output or the T arc behavior to some Petri Net structure

is complex. This complexity is due to the "v" relation in preceding or succeeding sets of

a node in an ED. In Figure 1, for example, we have els .J el' v e2'. This means that

sometimes el' and e2' occur simultaneously after els, and sometimes they do not. The

corresponding Petri Net structure is then required to have its tokens going two places

simultaneously as well as alternatively. Whether it is possible to make the

transformation from an ED to a Petri Net is reserved for future work.

5.2 Comparison with Event Trace Diagram

There are discussions about the Timing Diagram in [Booch 91] (p173-174) and the

Event Trace in [Rumbaugh 91] (p86-87). Both are event graphical representations of

objects developed in Static Object Models.

An event trace diagram corresponds with a walk of an ED, because for each event

in an Event Trace or in a Timing Diagram, only one possible follower is specified. An

Event Trace or a Time Diagram is a 1-D time line; an ED represents all possible event

sequences for a system.

An event trace diagram is developed on the basis of a static object model; an ED is

developed on the basis of scenario using the methods of frontier expansion and

scenario installation.

5.3 Comparison with DFD

Both ED and DFD make 2-partition abstractions on their top level. We have the

following structure: Inputs —> System --- Output for a 0-level DFD, Stimuli —> System for

the first step of an ED modeling. A Stimuli does not consider the output data of a

system. In an ED model, the response of a system is viewed as a part of the system's

behavior. Not all input data belongs to Stimuli, input data that is not spontaneous or

random to the system does not belong to Stimuli.

In a DFD, there are not only the note representative processes but also other

notations to represent such things as actor and data store that are different from

processes [Rumbaugh 91] p(124). Processes and data stores are the computer

oriented terms, which prevent users from taking an active part in a system specification

phase. An ED has only one kind vertex of event represented. An event can be

49

50

abstracted not only as a starting (or an ending) process but also as a getting into a

state, a message passing, updating a data storage, etc.

An arc in a DFD conveys data. In an ED, an arc represents the time relationship

between two occurrences. An ED does not consider to where the data goes and from

where the data comes. With respect to a user, the problem of to where the data goes

and from where the data comes belongs to the how scope instead of the what scope.

5.4 Comparison with STD

A STD consists of a finite collection of states and the finite collection of connections

among the states. Each arc is associated with a label to describe the event that

causes the state transition. This model can also be specified with the formal graphical

specification. However, in modeling there are following disadvantages compared with

ED.

1. Not every user is of finite state machine concept, which is not good for the

communication between the users and the analysts.

2. The abstraction of states is complex to that of events. If we went to identify

a state, we need to consider the features for every element in a system or changes for

every attribute of an object. However, if we went to identify an event, it is sufficient for

us to take care the instantaneous behavior of only one element in a system or only one

attribute of an object.

3. Suppose we apply the frontier expansion mechanism to model a STD. The

question around which both the user and the analyst go should be: "If the system

under this state, what events are possible or inevitable?". 	At the beginning step,

corresponding to a node in STD, the state in analyst's brain is hard to keep consistence

with that in the user's brain because only if the analyst completely understands the

whole system's behavior, can he figure out each state.

51

Unlike STD that takes the finite state machine base, ED takes the scenario event

base. If different states cause different followers for an event, analysts design an event

check state. The analysts only abstract these states as the values of the event check

state without taking care about what users mean by those states first.

CHAPTER 6

CONCLUSION AND FUTURE WORK

The goal of this thesis was to solve the ad-hoc situation of scenario building, which

inevitably requires the formal representation and the rigorous definition of scenarios.

In [Rumbaugh 91] (p462), we have the definition of scenarios for Rumbaugh's

dynamic modeling as a sequence of events that occur during one particular execution

of a system. We extended this definition to general cases with the SEO, the Stimuli,

and the boundary state. SEO assigns the essence to scenarios, in that each event pair

in the event sequence must either be of some causality (1st SEO, 2nd SEO) or be

determined (rehearsed) under certain situation (3rd SEO) by the users/domain experts.

SEO states that not every ordered event pair can be the source material of a story, and

different situations provide the different possibilities. The boundary state and the

Stimuli provide the limit on a scenario; as a result, scenarios must carry something

through to the end; just like a drama needs the rise of the curtain at beginning and the

curtain call at the end. The SEO, the Stimuli and the boundary state have scenarios

well defined. A scenario is defined as an event sequence that each event order in the

sequence belongs to SEO; the start event must be in Stimuli and the end event has the

system state transferred to the boundary state.

From the observations of the scenario model building for the Vending Machine

System and the Cruise Control System, it is concluded that SEO provided the

foundation with the question of if this is the last occurrence, what will be the next? to

carry the frontier expansion mechanism. The advantage of this is that users and

52

53

developers can work together to specify the behavior of a system; each frontier

expansion of an ED can be "determined" by users.

All events and SEO in a system construct a directed graph (ED); a graph is a formal

structure. We have proved that a scenario corresponds to an S-walk in an ED and

established the correspondence between scenarios and the collection of all S-walks of

an ED. Therefore, the scenarios of a system are formally represented within one

structure. Therefore, the forthcoming conclusion is that an ED model, in the entire life

cycle of a software system, inherits all the advantages of scenarios. From the

observation of the ED of the Vending Machine System and the Cruise Control System,

it is also concluded that an ED specifies the behavior of scenarios concurrently.

ED provides that the occurrences of the events in the scenarios of a system are

specified by the token propagation wave and that the behaviors of the tokens are

described with input and output. Therefore an ED can be a machine or a prototype.

The advantage is that developers or even users can execute the specified software in

advance. Upon the observation of the ED of the Vending Machine System and the ED

of the Cruise Control System, we know that we can "insert" coins into the Vending

Machine ED and then "push" the select button to see if the "dispensing bar" happens,

or we know that we may "push" the resume button, "push" the inc/dec button, "depress"

the break, etc., on the Cruise Control ED to see if the expected happens.

Another formal method development for scenarios in this thesis is the scenario

language. A scenario language is a collection of terminal symbol strings that are

derived from the scenario grammar. The scenario grammar is a regular grammar that

is inferred directly from an ED. We also have proved that the all scenarios for a

system can be derived by the scenario language and the scenario language can only

derive the scenario of the system.

54

The future work concerning ED scenario modeling is to provide a full development

environment with automatic tools to support ED scenario modeling. These tools are

needed to maintain consistency of design documents such as ED matrix, ED graphical

representation, Paged Follow Trees, Event Dictionary and to retrieve information

quickly from the design documents.

One more future work is to develop a Static Object Model from an ED. The

following is an attempt.

Fact 1: So far no proof says that only from a textual requirement document can an

Object Model be established.

Fact 2 So far no proof says that the best way to develop an Object Model is to

started with the textual requirement document.

Observation: The object identification is an art. "The identification of classes and

object is the hardest part of object-oriented design. Our experience shows that

identification involves both discovery and invention." [Booch 91] (p133). There are two

reasons. The first is that the two essential themes, the encapsulation and the

inheritance, don't support the object identification directly in object-oriented design.

The encapsulation, separating the external aspects from the internal implementation in

detail, is the mechanism that is better to be thought as designed, invented, and

constructed for an object than to be thought as identified, or discovered. The

inheritance deals with a kind of relationship among objects. It implies that if we have

already gotten a group of objects, we can consider their commonality. The second

reason is that we define objects in isolated way ("We define an object as a concept,

abstraction, or thing with crisp boundaries and meaning for the problem at hand."

[Rumbaugh 91] (p21)); however when identifying them, we have to let them interact

each other ("An object has state, exhibits some well-defined behavior, and has a

unique identity" [Booch 91] p(77). The same philosophy can be summed up in the

55

phase, only if he is dancing, can we say he is a dancer). To execute something in

order to identify something is a dilemma. We solve this dilemma with scenario models

(ED). The goal of developing an Object Model from an ED is to lessen the difficulty of

object identification.

Assumption: An event in ED occurs either on an object or among objects. "Each

event transmits information from one object to another" [Rumbaugh 91] (p86). Actually,

when we make the Stimuli — System partition, we have already implied that there are

two objects in the top level abstraction in an ED approach. Both Stimuli and System

are viewed as collections of events; the objects that will be developed from an ED are

also first viewed as collections of events. The encapsulation property and the

inheritance relationship can be invented or built afterward.

Method: (The example is on Figure 19 of Vending Machine System. The notation

comes from [Coed & Yourdon 92])

1. Construct objects by grouping the events in ED according to the principles

such as coupling, cohesion [Booch 91] p(124), and inheritance. The inheritance can be

applied not only among objects but also among events, behavior, etc. "When we

classify, we seek to group things that have a common structure or exhibit a common

behavior" [Booch 91] (p133). Here Booch's things are events.

(After the step 1, we get a new directed graph: OD = (0, M) (see Figure 19). 0 is

the collection of vertices. Each vertex in 0 corresponds to an event group that has just

been approached. If an arc in SEO is totally in a group, contract the arc. For example:

Figure 19, (el', e3) has been contracted in coin mechanism; M is the collection of arcs

which includes the all rest first SEO and second SEO. If an event is grouped into two

groups, we add the arc (actor, passive) between the two groups. For example in Figure

19, both customer and coin mechanism have el', so we have the message passing

from customer to coin mechanism to convey the arc (actor, passive) caused by el'.

56

This situation corresponds with the mutual effect case discussed on Chapter 2. Note

that if an event causes an (actor, passive) arc, the inputs of the event in ED are

considered on the actor side, while the outputs are considered on the passive side. For

example, in Figure 19, consider els in truck and candy mechanism. The input of els,

(els, els), is conveyed in the message passing from Modem to truck, the output of els,

(els, eio"), is conveyed in the message passing from candy mechanism to coin

mechanism.)

2. Within each event group, map the events into operations or services. "The

operations in the object model correspond to events in the dynamic model and

functions in the functional model" [Rumbaugh 91] (p18).

3. For each group, build data structures with the reference on the behavior of

the services. Name each group with an object name. Behaviors have to be

determined by requirement documents, while structures can be somehow constructed

or invented by the developers themselves.

(From now on, we already have an object model with each event group as an object

and arcs in M as message passing representation.)

4. For each node in 0, develop the aggregation and generalization relationships

if it is necessary. (For example, in Figure 19, we may further develop objects as coin

state, shut down as the parts of coin mechanism).

5. Cancel the redundant multiple arcs between any two objects. This means

that we use a message passing notation to represent more than one of the arcs.

6. Check if all the 1st and 2nd SEO are "resolved". That means that for each

1st and 2nd SEO, either it is contracted or it is conveyed by some message passing

notation in (0, M).

7. Make refinement.

57

Note that on Figure 19, the event els is abstracted as an object, which is permitted

in [Shlaer & Mellor 88] (p15), [Ross 87] (p9), and [Goad & Yourdon 90] (p62) that

events can be candidate classes and objects.

Note that the grouping some events together into an object is different from that for

a regular module; this grouping is easier to manage [Pressmen 92] (p324). If we want

to divide an ED simply into modules, our principle is to partition the ED so that each

part has a small number of cut edges and a large number of cordiality with a minimum

number of edges contracted within the partitioned part. Each module performs a single

task. If we group events into an object, the main principle is the application of

semantic abstraction, inheritance and encapsulation.

ILLUSTRATIONS

58

Ainsert::.
'_a coins ■

S
\ •

■.■ 	4
■

'
`A 	I
/ ' &
	•

59

Symbol Dictionary: (Refer Figur 2.)

Figure 1: ED of the Vending Machine System

insert
a coin

■

■

set
state

e9 	

dispen se
candy b2

60

Symbol Dictionary:

A resourse (stimulus), an origine of scenarios.

A sink (sink point), a termination of scenarios

The third SEO, the tail and the head are not causally
related.
The second SEO, the tail and the head are conditionally
causally related.
The first SEO, the tail and the head are causally related.

Figure 2: Sub-ED of the Vending Machine System

e

e9
dispense
candy bar

61

Symbol Dictionary: (Refer Figure 2.)

Figure 3. The Follower Tree (Sub-ED) of the Vending
Machine System

Symbol Dictionary: (Refer Figure 2.)
The behavior is refered on the Event Dictionary or on Figure 3.
Figure 4. The Follower Tree of the Vending Machine

System

adjuct 	el3
throttle

63

Symbol Dictionary: (Refer Figure 2).
Figure 5: ED for the scenario 1, Cruise Control;

Cruise Control System

e17

check 	e18
spd limit

19

Scenario 1.

query
M-spd (2) do nothing

64

Symbol Dictionary: (Refer Figure 2).

Figure 6: ED of the Scenario 2, Inc/Dec the
Maintained Speed. Cruise Control System

e22
pop
L-spc)

17
do nothing

Scenario 1, 2.

65

Symbol Dictionary: (Refer Figure 2).

Figure 7: ED of the Scenario 3, Resume
Cruise Control System

1'

e9

compare

QM
-spd and
-spd

•••••

.••••

B/A on e2

manual
control

-e2'

e23

66

Symbol Dictionary: (Refer Figure 2).

Figure 8: ED for the scenario 4, Brake Application.
Cruise Control System

adjust
throttle

Scenario 1, 2, 3, 4.

e13

1

I

I

1 	 e23

I 	manual

I 	control

I 	 /

	 ell

store
L-spd

errain
change

67

Symbol Dictionary: (Refer Figure 2.)

Figure 9: ED for scenario 5, Terrain Condition Changing
Cruise Control System

The behavior is refered onthe Event Dictionary.
The Construction Order: Senario(1, 2, 3, 4, 5).
Symbol Dictionary: (Refer Figure 2.)

Figure 10: The Follower Tree of The Scenario 1
for Cruise Control System.

68

69

The behavior is refered on the Event Dictionary.
The Construction Order: Scenario(l, 2, 3, 4, 5)
Symbol Dictionary: (Refer Figure 2.)

Figure 11: The Follower Trees of The Scenario 2, 3, 4, 5
for Cruise Control System.

Page 1.

Symbol Dictionary: (Refer Figure 2.)

Figure 12: The Paged Follower Tree
of the Vending Machine System

(Page 1)

70

\

	

/ 	I

	

/ 	I

/ 	I 	\

/ I
/

/

check
state 1

3

\

Page 2.

71
(From Page 1.)

Symbol Dictionary: (Refer Figure 2.)

Figure 13: The Paged Follower Tree
of the Vending Machine System

(Page 2)

Page 3

Symbol Dictionary: (Refer Figure 2.)

Figure 14. The Paged Follower Tree
of the Vending Machine System (Page 3)

72

(To Page 5)

Page 4

Symbol Dictionary: (Refer Figure 2.)

Figure 15: The Paged Follower Tree
of the Vending Machine System (Page 4)

73

(To Page 6)

Symbol Dictionary: (Refer Figure 2.)

Figure 16: The Paged Follower Tree
of the Vending Machine System (Page 5)

74

(From Page 5)

Page 6

Symbol Dictionary: (Refer Figure 2.)

Figure 17: The Paged Follower Tree
of the Vending Machine System (Page 6)

75

(a)

76

(b)

Figure 18: The Transformation from I Logic
to Petri Net Structure

bar type
is empty

e13

coins
go bank

e12

open the
door of the

i-th bar

77

The symbol dectionary: (refer Fihure 2.)

Figure 19: The Refinement of e9, Hierarchical
Extension of an ED.

bank

coin: 5, 10, 25

capability: 50

get coin lei 2)?

say toll (el 4)1

dear stock le 19)?

78

I .1

timer

2-minute

1-hour

count 2-m (e4)?

2-m out (eV

count 1-hour?

1-4o out (el 7)1
It. 	 /

Insert coin [Olt

push button (e2')1

L 44 	

set state (e6)1

check state 1 /eV

return depo (el l

return coin (e5)1

to bank (el 2)1

reset (el 0")

shut down (e2O)

get coin fell?

4,

candy mechanism

N

button: 1..5

capability: 200

dispense candy (e9g

say empty (e13)1

load type (ele)?

button pushed je2')?

check state 2 (e7)?
%, 	 I' .1

truck

coin

candy

take coin (el 9)1

load candy 00

br enabled (ett)?
5. 	 .0)

Modem

truck I

dull (e15)!
S. 	

coin mechanism customer

deposited coin

state: 1..3

coin: 5,10,25

candy: 1..5 	is

The Scenarios: (Refer Figure 1)

Figure 20: The Object Model of the Vending Machine System

APPENDIX A

THE SCENARIOS FOR CRUISE CONTROL SYSTEM

79

80

Scenario 1: C wise Control (CC)
Date Created: June 12, 1992
Date last Revised: July 30, 1993
Level: System Level

Situation: The car is located in a parking lot.

1. The driver gets into the car and starts the engine.
2. When the speed of the car gets to 60 mph, the driver puts the CC button on.
3. The CC system picks up the wheel pulse and the clock pulse, then calculates the
current speed.
4. The CC system takes the speed that has just been calculated as the maintained
speed and compares it with the next speed. The compared result is used to adjust the
throttle.
5. The driver turns the CC button off.
6. The CC system clears any stored information, and the work stops.

Scenario 2: Increase/Decrease the Maintained Speed
Date Created: June 12, 1992
Date last Revised: July 30, 1993
Level: System Level

Situation: The CC system is working. The maintained speed is 60 mph

1. The driver pushes the increase button.
2. The CC system checks if the change makes the maintained speed out of range.
3. The change will be all right. CC system increases the maintained speed by 5 mph.
The current maintained speed becomes 65 mph.
4. The driver pushes the increase button again.
5. CC system checks if the change makes the maintained speed out of range.
6. The change will be okay if CC system increases the maintained speed by another 5
mph. The current maintained speed becomes 70 mph.
7. The driver pushes the decrease button.
8. The maintained speed goes back to 65 mph.

Scenario 3: Resume the Last Maintained Speed
Date Created: June 12, 1992
Date last Revised: July 30, 1993
Level: System Level

81

Situation: The CC system is working. The maintained speed is 60 mph; the last
maintained speed is 65 mph. The speed before the last maintained is 50 mph.

1. The driver pushes the resume button.
2. The CC system queries the last maintained speed, say 65 mph.
3. The current maintained speed is replaced by 65 mph.
4. The driver pushes the resume button one more time.
5. The CC system queries the speed 50 mph.
6. The current maintained speed is replaced by 50 mph.

Scenario 4: Brake Application
Date Created: June 12, 1992
Date last Revised: July 30, 1993
Level: System Level

Situation: The CC system is working. The maintained speed is 60 mph.

1. The driver sees a dog on the street. He depresses the brake.
2. The throttle control is switched from the CC system to manual operation.
3. The driver releases the brake.
4. The throttle control is switched back to the CC system
5. The CC system works with 60 mph as the maintained speed.

Scenario 5: Terrain Condition Changing
Date Created: June 12, 1992
Date last Revised: July 30, 1993
Level: System Level

Situation: The CC system is working. The maintained speed is 60 mph.

1. The car is climbing a slope. The wheel pulse becomes slow.
2. The calculated speed becomes low, say 55 mph.
3. The CC system compares the calculated speed with the maintained speed of 60 mph
and finds that the current speed is 5 mph low.
4. The CC system commands that the throttle opens wider until the current speed is
equal to the maintained speed.

APPENDIX B

THE EVENT DICTIONARY- FORMAT AND EXAMPLES

82

83

B.1 The Event Dictionary Format and Symbol

B.1.1 The Symbols

Symbol = Arc u Operator u

Arc E 	—>, .J}

Operator a. {A, v,

Event a {ei, 	i = 1, 2,...,n

Events: Event I Event Operator Event I (Events) Operator (Events)

Events Arc Events : The left is tails (or a tail); the right is heads (or a head).

Events e Events : Exclusive Or of the occurrences of the left and the right.

Events v Events : The left hand side and the right hand side occur parallel to

each other.

Fan_In : Events Arc Event I Fan_In; Fan_In

Fan_Out: Event Arc Events I Fan_Out; Fan_Out

A : In Fan_In, the states specified by the left and the right are both true.

In Fan_Out, the occurrences of the left and the right are both true.

: The first SEO, the tail and the head are identity.

—> : The first SEO, the tail implies the head.

: The second SEO, the head implies the tail.

: The third SEO, the tail and the head have no logical relation, but the head may

be an immediate follower in the same state in which both the tail and the head

occur. The tail may causes a transition into the state; the head may causes a

transition out of the state.

B.1.2 The Format

Event Dictionary: The Name of a System.
Date Created:
Date Last Revised:
Group:

Event (The same as that in ED): The Name of the Event
Definition: The Description of the Event
Value: The Value of the Event
Behavior With

Preceding Set: The List of the Event;
Fan_In
The Explanation of Fan_In

Succeeding Set: The List of the Event;
Fan_Out
The Explanation of Fan_Out

B.2 The Event Dictionary of the Vending Machine System

Event Dictionary: The Vending Machine System.
Date Created: June 1, 1993
Date Last Revised: August 5, 1993
Group:

el': INSERT COIN.
Definition: A customer inserts a coin into the machine. A stimulus.
Value: 5, 10, 25 (cent).
Behavior With

Preceding Set: ea, e5, es, e7, els;
ea v (e5 ED es) v e7 v el5 .Jel'
It may occur in the scenario boundary state;
Or it may occur after the occurrences of ea, e5, es, e7 and els.

Succeeding Set: e3, ea;
ei' ÷-> e3 A ea
The system checks the current coin value (es) and the 2-minute time limit
counting begins (ea) iff it occurs.

e2': PUSH A CANDY BUTTON.
Definition: A customer pushes a candy selection button. A stimulus.

84

Value: Candy bar type; 1, 2, ..., 50.
Behavior With

Preceding Set: (the same as those of el').
Succeeding Set: e7;
e2 <4 e7
The system checks the current coin value for e2' sake (e7) iff it occurs.

ea: CHECK STATE 1
Definition: Machine checks the current coin value after a coin is inserted.
Value: Boolean; current coin value is enough (Y) for a candy bar or not (N).
Behavior With

Preceding Set el;
el' <4 ea
It occurs iff a coin is inserted into the machine (el').

Succeeding Set es, ea;
ea <- es e ea
If its value is Y, then the new deposited coin is returned (es),
else a new coin value state is calculated and set (ea).

ea: COUNT 2-MINUTE
Definition: Counting 2-minute time begins.
Value: [0, 2 min]
Behavior With

Preceding Set: el';
el' <4 ea
It occurs iff a coin is inserted into the machine (el').

Succeeding Set: el', e2, ea;
ea -I eii v e2'; ea <- ea
ea implies that e4 happened.
The next occurrence to e4 may be el', e2', el' and e2', or ea.

es: RETURN COIN 1
Definition: The machine returns the new deposited coin.
Value: 5, 10, 25 cent
Behavior With

Preceding Set ea;
ea <- es
It implies that the machine has checked the state for el' sake.

Succeeding Set: ei', e2, e8;
ea ...I (e,' e ea) v (e2' ED ea)
The next occurrence to ea may be el', e2', el' and e2', or ea.

85

ea: SET STATE

86

Definition: A new coin state is set.
Value: (The same as those of e3)
Behavior With

Preceding Set: (The same as those of e5);
Succeeding Set: (The same as those of e5).

e7: CHECK STATE 2
Definition: Machine checks the current coin value after a candy button is pushed.
Value: 1. no deposit;

2. coin value is not enough for a candy bar.
3. coin value is enough for a candy bar.

Behavior With
Preceding Set: el';

el' 4-> e7
It occurs iff a candy select button is pushed (e2').

Succeeding Set: el', e2', ea, es, elo";
e7 4-- es ED elo"; e7 J (e,' e ea) v (e2' e ea)
If its value is 1, then the machine reset (elo");
else if its value is 2, then the next occurrence may be el', e2 , el' A e2, or ea;
else the machine dispense a candy bar (es).

ea: 2-MINUTE TIME IS OUT
Definition: 2-minute time is out.
Value:
Behavior With

Preceding Set: ea, e5, ea, e7;
ea 4-- ea; (e5 ED ea) v e7) .J ea
ea implies that ea has happened but not necessary to be the last happened.
ea implies that the last occurrence may be ea, es, ea, and e7.

Succeeding Set: ell;
ea 4-> eil
the machine returns all deposits iff it occurs.

es: DISPENSE CANDY BAR
Definition: A candy bar is dispensed.
Value: The amount for each bar type (0, 1, ...,40).
Behavior With

Preceding Set: e7;
e7 <-- es
It implies that e7 gets the value 3.

Succeeding Set: e12, els;
es 4-> e12; es 4-- e13
The machine put the deposit to the bank iff es has occurred.
That the amount of a bar type is zero implies that es has occurred.

els": RESET
Definition: The machine is reset. A sink.
Value: The deposit is zero.
Behavior With

Preceding Set: e7, ell, e12, ele, els;
ell ED e12 e (e18 A e19) <--> els"; e7 <— els"
e18 and els happen together. After that elo" is inevitable.
elo" occurs only if ell or e12 occur.
els" implies that e7 gets the value 1.

Succeeding Set: (N/A).

ell: RETURN COIN 2
Definition: The machine returns all the deposited coins.
Value: 5x cent
Behavior With

Preceding Set: e8;
es 4--> ell
It occurs iff 2-minute time is out.

Succeeding Set: elo";
ell -4 elon
If it occurs, the machine is reset.

e12: COINS GO BANK
Definition: The machine puts the all deposited coins into the bank.
Value: The amount for each coin type, 1,...,40.
Behavior With

Preceding Set: es;
es 	el2
It occurs iff a candy bar has been dispensed.

Succeeding Set: els", eta;
e12 --> els"; e12 <— eta
If it occurs, the machine is reset;
That the amount of a bar is 5 (els) implies that it has occurred.

els: BAR TYPE IS EMPTY
Definition: The amount of a bar is 5.
Value:
Behavior With

Preceding Set: es;
e9 <--- els
It implies that one value of es has got 5.

Succeeding Set: els

87

e13 -4 e15
If it occurs, the machine dials the truck service.

eta: BANK IS FULL
Definition: The amount of a coin is less than 35.
Value:
Behavior With

Preceding Set: e12;
e12 	eta
It implies that one value of e12 has got 35.

Succeeding Set: (The same as those of e13).

e15: DIAL
Definition: The machine dials the truck service.
Value:
Behavior With

Preceding Set: el', e2, e13, eta;
(e13 v em) -4 e15
It happens if els, eta happen or if eta and eta happen together.

Succeeding Set: el', e2', els, e17;
e15 <— e16 ED e17; e15 (el' v e2')
Truck service implies that els occurred and e17 won't occur.
1-hour time out implies that e15 happened and els doesn't happen.
Before els or e17 happen, the el' or e2' may also happen. But only els or e17

can removes the token from e15.

els: TRUCK ARRIVE
Definition: The service truck accesses the machine.
Value:
Behavior With

Preceding Set: e20, e15;
els 	els; e20 —) e16

e16 is the only resolution for the shut down state (got into with the e2o).
It may be the next occurrence after the machine has dialed for the truck.

Succeeding Set: els, els;
els <-› els A e19

els and els happen together iff it occurs.

e17: 1-HOUR TIME OUT
Definition: The 1-hour time is out.
Value:
Behavior With

88

Preceding Set: eis;
els <— e,7
It implies that the machine has dialed for the truck.

Succeeding Set: ego;
el7 	e20

The machine is shut down iff it occurs.

els: ALL TYPE IS FULL
Definition: The service truck fills the amount for each bar type.
Value: (The same as those of es)
Behavior With

Preceding Set: els;
els <-4 els
It occurs iff the service truck arrives (els).

Succeeding Set: els";
els 	els"
If it occurs the machine is reset (els").

els: BANK IS EMPTY
Definition: The service truck takes all the coins from the bank.
Value: (The same as those of e12)
Behavior With

Preceding Set: (The same as those of els).
Succeeding Set: (The same as those of els).

e20: SHUT DOWN
Definition: The machine is shut down.
Value:
Behavior With

Preceding Set: e,7;
el7 	ea,
It occurs iff the 1-hour time is out (e17).

Succeeding Set: e16;

e20 	els
If it occurs only els can changes state caused by it.

B.3 The Event Dictionary of the Cruise Control System

Event Dictionary: The Cruise Control System.
Date Created: July 1, 1 993
Date Last Revised: August 10, 1993

89

90

Group:

el' : CC ON
Definition: The CC system starts working if the engine is on and the CC is turned

on. Its effect can only be canceled by its complement event --el'. A
Stimulus.

Value: True (false for --el), False (true for —iel').
Behavior With

Preceding Set: (None)
(It may happen after any stimulus occurrence. The possible occurrence
order in a stimuli don't need to specify in the ED.

ell and el3 are of the assumption that the CC system is working (starting with
ell.
If we didn't do the abstraction that

"engine is on" and "CC button is on" = CC on
"engine is off" or "CC button is off" = CC off,

we would have the arc ("engine is on", "manual control"). But that abstraction
will cause the event "manual control" to be out of the CC system domain.)

Succeeding Set: els, es, e7;
el' <---> es A e7 A elo
If it occurs, then

The maintained speed is queried (els)
The wheel pulse is queried (es)
The clock pulse is queried (e7).

--,e,': CC OFF
Definition: The CC system stops working if the engine is off and the CC is turned

off. Its effect can only be canceled by its complement event el'. A
stimulus.

Value: True (false for el'), False (true for el').
Behavior With

Preceding Set: e,3, era;
e,3 e e23 .J --el'
It may happen in the manual control state (starting with e23) or in the state
that the throttle is being controlled by the CC system (starting with e13).

Succeeding Set: ela
—,ei' <--> ela
If it occurs, then the CC system is reset (e14).

e2': B/A ON
Definition: The driver depresses the brake or accelerator. It has the complement

event —,e2'. A stimulus.
Value: True (false for -,e2'), False (true for —,e2').
Behavior With

91

Preceding Set: ell, e,3;
(ell v e13) 	e2'
It may happen in the state that the throttle is being controlled by CC system
(starting with el3). Or if ell (a speed is stored for the further resuming) were
the last occurrence, it may be the next.

Succeeding Set: e23;
e2 -4 e23

If it occur then the car gets into manual control state (e23).

B&A OFF
Definition: Both the brake and the accelerator are released. It has the

complement event e2'. A stimulus.
Value: True (false for e2'), False (true for e2').
Behavior With

Preceding Set: ell, e23.
eil V e23 J —,e2
This stimulus may happen in the manual control state (starting with e23).
If ell (a speed is stored for the further resuming) were the last occurrence, it
may be the next.

Succeeding Set: e,3.
ei3

It is necessary for the CC system to control the throttle. (—,e2' A e9 4-> el3).

ea': INC/DEC SIG
Definition: Driver pushes the increase/decrease button once. A stimulus.
Value:
Behavior With

Preceding Set: ell, e13, e23;
ell v (eia 	e23) ea'
This stimulus may occur in the state of manual control (starting with e23) or of
the cruise control (starting with el3). Or if ell (a speed is stored for the further
resuming) were the last occurrence, it may be the next.

Succeeding Set: els
ea' H em
If it occurs, then the CC system needs to see if the CC button is on.

ea': RS SIG
Definition: Driver pushes the resume button once. A stimulus.
Value:
Behavior With

Preceding Set: (The same as those of ea').
Succeeding Set: e20;

e4' H e20
If it occurs, then the CC system needs to see if the CC button is on.

e5': TERRAIN CHANGE
Definition: The change of the terrain condition occurs. A stimulus.
Value: [0, f(140 mph)]
Behavior With

Preceding Set: (The same s those of e3').
Succeeding Set: e24.

e5' H e24

If it occurs, then CC system need to see if CC button is on.

ea: SAMPLE WHL PULSE
Definition: The CC system samples the wheel pulses.
Value: [0, f(140 mph)]
Behavior With

Preceding Set: el', e24.
el' <-+ ea; e24 	ea
The CC system samples the wheel pulse iff the CC button is on.
If e24 gets it value "CC on", then ea's value will be changed.

Succeeding Set.• ea.
ea <--> ea
If it occurs, then the CC system calculates the current speed.

e7: SAMPLE CLK PULSE
Definition: CC system samples the clock pulses.
Value: Constant
Behavior With

Preceding Set: ea;
e7 <-> ea
If it occurs, then the CC system calculates the current speed.

Succeeding Set: (The same as those of ea).

ea: CALCULATE C-SPD
Definition: The CC system calculates the current speed.
Value: [0, 140 mph]
Behavior With

Preceding Set: ea, e7;
ea e7 	ea
ea uses the data from ea and e7 iff ea and e7 are being processed.

Succeeding Set: es, ell, e,2;
ea ÷-> es; ea ell A el2
If it occurs, then the current speed and the maintained speed are compared.
ell and e12 will use its value if the CC system starts working.

92

93

es: COMPARE C-SPD AND M-SPD
Definition: The CC system processes the current speed and the maintained speed

in order to adjust the throttle.
Value:
Behavior With

Preceding Set: ea, elo;
ea A elo 4-> es
e9 uses the data from ea and elo iff ea and elo are being processed.

Succeeding Set: e,3.
e9 <— els
It is necessary for the CC system to control the throttle. (—,e2' A e9 E-> els).

elo: QUERY M-SPD (1)
Definition: The CC system queries the maintained speed in order to adjust the

throttle.
Value: (Null, [5 mph, 110 mph])
Behavior With

Preceding Set: el', e,2;
el' <--> elo; e,2 -+ elo
If e12 occurs then elo will query the new value.
It keeps querying iff the CC button is in the "on" state got into with ei'.

Succeeding Set: ell, e12, es;
eio <— ell A el2; els <--> es
If the state which was caused by elo keeps going, then the comparison of the
current speed and the maintained speed will keep going.
If its value is Null, then ell and e,2 occur.

ell: STORE L-SPD
Definition: The CC system pushes the maintained speed into a stack for the future

resuming.
Value:
Behavior With

Preceding Set: ea, eio, ela, e21;
elo ED els ED e21 <— ell; ea .J ell
If elo is Null or els is within the speed limit or e21 occurs, then it happens. But

the last stored speed has to be only one at a time.
If elo is Null, the last maintained speed is ea's value.

Succeeding Set: —,e,', e2, --,e2', es', ea', e5';
ell ..J (—tel' 0 e5') v (e2' 0 —,e2) v (e3' 0 ea')
All elements in stimuli except el' may follow ell. The ell is a termination of
some causality chain. After the occurrence of ell, the system is in some states
except the scenario boundary state.

94

e12: RECORD M-SPD
Definition: CC system determines the maintained speed for the querying.
Value: [5 mph, 110 mph]
Behavior With

Preceding Set: e8, eio, e18, e22;
eio ED ela e e22 <--- e12; ea ...1 e,2
If elo is Null or eta is within the speed limit or e22 occurs, then it happens. But
the current maintained speed has to be only one at a time.
If elo is Null, the current maintained speed is ea's value.

Succeeding Set: el.);
e12 --> ell)
If a maintained speed is newly determined, that speed should be immediately
used by CC system.

e13: ADJUST THROTTLE
Definition: The CC system adjusts the throttle.
Value:
Behavior With

Preceding Set: --,e2', es;
-1e2' A e9 -4 eta
If the brake and the accelerator are off, the state got into with ei3 keeps going.

Succeeding Set: —,et', e2', e3', ea', es', e17";
e13 .J (—el' e e5') v e2 v (e3 e ea') v e17'
If a maintained speed is newly determined, that speed should be immediately
used by the CC system.

el.': CLEAN S-SPD AND M-SPD
Definition: The CC system clears the record maintained speed and stored

maintained speed. A sink point (system goes back scenario boundary
state).

Value:
Behavior With

Preceding Set: -,et';
—,eit <--> e14

Succeeding Set: (N/A).

e15: CHECK CC (1)
Definition: CC system's state is checked for e3' sake.
Value: CC on, CC off.
Behavior With

Preceding Set: ea';
e3' <-> els
If driver pushes inc/dec button, it occur.

Succeeding Set: els, e17";
e15 <— els ED e17"
If its value is CC on, then els
else go scenario boundary state (e17").

els: QUERY M-SPD (2)
Definition: The maintained speed is queried for inc/dec sake.
Value: [5 mph, 110 mph]
Behavior With

Preceding Set: els;
e15 <-- els
If els gets value CC on, it occurs

Succeeding Set: els;
els ÷4 els
The maintained speed limit is checked iff it occurs.

e17: DO NOTHING
Definition: The system goes back scenario boundary state.
Value:
Behavior With

Preceding Set: els, els, ego;
els El) els e e20 <— el7

Succeeding Set: (N/A).

ele: CHECK SPD LIMIT
Definition: To check if the maintained speed ± 5 mph is out of the limit.
Value: True, False
Behavior With

Preceding Set: els;
els +4 els.
els occurs iff the maintained speed is queried for inc/dec sake.

Succeeding Set: ell, e17", els;
els <— (els A ell) El) el7
If its value is False, then do nothing
else store the maintained speed and inc/dec the maintained speed.

els: INC/DEC M-SPD
Definition: Let the maintained speed ± 5 mph.
Value: [5 mph, 110 mph]
Behavior With

Preceding Set: els.
els <— els.
It implies that the speed limit is OK.

95

Succeeding Set: e12.
els -4 e12.
Determine a new maintained speed with the eig's value.

e20: CHECK CC (2)
Definition: The CC system's state is checked for ea' sake.
Value: CC on, CC off.
Behavior With

Preceding Set: e4';
ea' <4 e20.

If driver pushes resume button, it occur.
Succeeding Set: e17", e21, e22;

e20 f-- (e21 A e22) 0 e17"
If its value is CC off, then e17"
else pope the maintained speed stack twice.

e21: POP POP L-SPD
Definition: The CC system queries the element next to the top of the maintained

speed stack.
Value: [5 mph, 110 mph]
Behavior With

Preceding Set: e20;
e20 <--- e21
It implies that e20's value is CC on.

Succeeding Set: ell;
e21 ---> ell
The top point of the maintained speed goes down one position.

e22: POP L-SPD
Definition: The CC system queries the top of the maintained speed stack.
Value: [5 mph, 110 mph]
Behavior With

Preceding Set: e20;
e20 <-- e21
It implies that e2ols value is CC on.

Succeeding Set: e12;
e21 —4 e12
Determine a new maintained speed with the e21's value.

e23: MANUAL CONTROL
Definition: The CC system is in the manual control state (get into with e23). The

assumption of the e23 is that the CC system is still running.
Value:

96

Behavior With
Preceding Set: e2';

e2' <---> e23
It occurs iff the brake or the accelerator are depressed.

Succeeding Set: -,e1', e3 1 , ea', es'.
e23 .J (-,el' 0 e5') v (e3' 0 e4')
In the state started with e23, the elements in the set {-el', e3', ea', es') are
spontaneous and random.

e24: CHECK CC (3)
Definition: The CC system's state is checked for es' sake.
Value: CC on, CC off.
Behavior With

Preceding Set: e5';
es' <4 e24

It occurs iff the terrain condition changes.
Succeeding Set: ei7", es;

e24 <— es 0 el7"
If its value is CC off, then e17"
else the value of e5' is sampled (e6).

97

APPENDIX C

THE ED'S FORMAL REPRESENTATION AND

ADJACENCY MATRIX FOR

VENDING MACHINE SYSTEM (EXAMPLE 1)

AND

CRUISE CONTROL SYSTEM (EXAMPLE 2)

98

C.1 The Formal Representation of the Vending Machine's ED

The graphical representation is on Figure 3.

E = {ei', e2', ea, ea, es, es, e7, es, es, elo", ell, e,2, e,3, ela, els, els, e,7, ela, els, e20},

S = {el', e21,

V = {eio"},

SE0=luCuT,

I = {(eis, e3), (el', ea), (e2' e7), (e8, ell), (ell, &,o"), (ea, e12), (e12, elo"), (e13, els),
(eia, els), (e16, e18), (els, els), (e17, e20), (e18, eiou), (els, elo"), (20, els)},

C = {(e3, es), (e3, e5), ea, ea), (e7, es), (e7, eio"), (es, el3), (e12, e14), (ea, el3), (els, ei6),
(els, el7)},

T = {(ea, el'), (ea, e2'), (es, el'), (e5, e2'), (es, es), (e6, ell, (es, e2'), (es, ea), (e7, el'),
(e7, e2'), (e7, es), (els, el'), (els, e2')}.

C.2 The Formal Representation of the Cruise Control System's ED

The graphical representation is on Figure 5, 6, 7, 8, 9.

E = {el', ---,e,', e2', e3', ea', es', es, e7, ea, ea, elo, ell, e12, e13, ela", els, els, ei7", els,

els, e20, e21, en, en, e24},

S = {ei', -lel', e2', e3', ea', e5'},

V = {e14", evi},

SE0=luCuT,

= {(el', es), (el', e7), (el', elo), (es, ea), (e7, es), (e8, es), (-lel', e-.4'), (e2', en),

(ea', els), (els, els), (els, el2), (ea', e20), (e21, ell), (en, el2), (es', e24)},

C = yew, es), (eio, ei2), (elo, ell), (ea, ei3), (-,e2', e13), (els, els), (els, el7"), (els, ell),

(els, el71 '), (els, ela), (e2o, e21), (e2o, en), (e2o, ell, (e24, es), (e24, ell},

T = {(ea, ell), (ea, el2), (ell, e3'), (ell, e2'), (ell, -el), (ell, -,e2'), (ell, ea'), (ell, e5'),

(e13, --ell), (e13, e2'), (e13, e3'), (e13, ea'), (e13, e5'), (en, -,e1'), (en, -,e2'), (en, e3'),

(en, ea'), (en, es')}.

99

REFERENCES

[Wang 91] Wei Wang, "An Application-Specific, Scenario-Driven, Object-Oriented

Software Development Technique", MS-Thesis, UTA, 1991.

[Hufnagel & Harbison 93] Stephen P. Hufnagel & Karan Harbison, "Health Care Mega-

System Analysis & Design: Using DSSA Scenario-Based Engineering Process

(SEP)", Health Care Information System Proposal, UTA, 1993.

[Hufnagel & Liou 90] Hufnagel S. and T. Liou, "Seamless Objected-Oriented

Specifications, Design, Design and Implementation Method (SOSDIM)", Midcon

1990, Dallas, Texas, September 1990.

[Pressman 92] Roger S. Pressman, "Software Engineering: A Practitioner's

Approach", McGraw-Hill Inc., NY 1992.

[Rumbaugh 91] James Rumbaugh, et al., "Object-Oriented Analysis and Design"

Prentice Hall, Englewood Cliffs, NJ 07632, 1992.

[Larry & Sanford 90] Larry Nyhoff & Sanford Leestma, "Data Structures and Program

Design in Modula-2", Macmillan Publishing Company, New York, 1990.

[Thomas 90] Thomas H. Comien & et al., "Introduction to Algorithms", McGraw-Hill

Book Company, 1990.

[Bondy & Murty 77] J. A. Boundy & U. S. R. Murty, "Graph Theory with Applications",

American Elsevier Publishiing Co. INC, New York, 1977

[Coad & Yourdon 91] Peter Coad 7 Edward Yourdon, "Object-Oriented Analysis",

Prentice Hall Building, Englewood Cliffs, NJ 07632, 1991.

100

101

[Miller 56] Miller G. A., "The magical Number Seven, Plus or Minus Two: Some Limits

on Our Capacity for Processing Information", Studies in Long Term Memory,

edited by A. Kennedy. Wiley, 1975.

[Tadao 89] Tadao Murata, "Petri Nets: Properties, Analysis and Applications",

Proceeding of the IEEE, VOL. 77, NO. 4, April 1989.

[James 81] James L. Peterson, "Petri Net Theory and the Modeling of Systems",

Prentice-Hall, INC., Englewood Cliffs, NJ 0762, 1981.

[Wolfgang 92] Wolfgang Reising, "A Primer in Petri Net Design", Springer-Verlag

Berlin Heidelberg New York, 1992.

[Shlaer & Mellor 88] Shlaer, S. and Mellor, S. "Object-Oriented System Analysis:

Modeling the World in Data", Englewood Cliffs, NY, Yourdon Press, 1988.

[Ross 87] Ross, R., "Entity Modeling: Techniques and Application", Boston, MA,

Database Research Group, 1987.

[Jonathan & W 90] Jonathan S. Ostroff & W. Murray Wonham, "A Framework for Real-

Time Discrete Event Control", Transactions on Automatic Control, IEEE Volume

35, Number 4, April 1990.

[Jonathan 92] Jonathan S. Ostroff, "Formal Methods for the Specification and Design

of Real-Time Safety Critical Systems", The journal of Systems and Software,

April 1992.

[Sudkamp 88] Thomas A. Sudkamp, "Languages and Machines: An Introduction to

the Theory of Computer Science", Addison-Wesley Publishing Company, Inc.,

1988.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111

