SOCIAL DATA ANALYTICS USING TENSORS AND SPARSE TECHNIQUES

by
MIAO ZHANG

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
May 2014

Copyright(© by Miao Zhang 2014
All Rights Reserved

To my parents who support me as always.

Acknowledgements

I would like to thank my supervising professor Dr. Chris Diiog constantly teach-
ing, motivating and encouraging me, and also for his invaleiadvice during the pro-
cess of my doctoral studies. | wish to thank my academic adviBr. Heng Huang, Dr.
Chengkai Li, Dr. Jeff Lei for their interest in my researchddaor taking time to serve in
my dissertation committee.

I would also like to extend my appreciation to my labmatesamutational Science
Lab. Their constant thirst for knowledge and hard workinigisimspired me a lot. | am so
honored to have this opportunity to work with them. | am gt all the teachers who
taught me during the years | spent in school, first in Chinenih the Unites States.

Finally, | would like to express my deep gratitude to my pésaevho have encouraged
and inspired me and sponsored my undergraduate studiesextaemely fortunate to be
so blessed. | am also extremely grateful for their sacriBoepuragement and patience. |
also thank several of my friends who have helped me throughgwcareer.

Apr 4th, 2014

Abstract

SOCIAL DATA ANALYTICS USING TENSORS AND SPARSE TECHNIQUES

Miao Zhang, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Chris Ding

The development of internet and mobile technologies ismlyian earthshaking so-
cial media revolution. They bring the internet world a hugeant of social media content,
such as images, videos, comments, etc. Those massive matikatand complicate social
structures require the analytic expertise to transformsetitmod of information into action-
able strategies, because mining those data can help oagjanztake control of those data,
therefore organizations can improve customer satisfadti@ntify patterns and trends, and
make smarter marketing strategies. Mining those data sarha&lp the consumers to grasp
the most important and convenient information from the eweiming data sea. By and
large, there are three big constituents in social medieetntusers, resources/events and
user’s tags on those resources. In this thesis, we study tesetechnology areas to explore
the social media data. The first is viral marketing (word ofutig technology: we try to
identify the most influential individuals on the social netks. We propose highly efficient
and scalable methods to calculate the influence spread andliffierent greedy strategies
will be applied to find the most influential users. Second, e in a rich materialistic
society: too main choices on everything. Recommender systee the up-and-coming

new information technology. Traditional recommender eyst deal with users and items

\

(books, movie, etc). New web 2.0 technology enables andugages users to comment
items (images) by assigning tags (key words). This socggitay recommendation helps
new users (and existing users) to comment on more items watte nags — assist the
users to communicate with each other — inciting more a@twiin the social network —
thus attracting more users! The tagging information aldpsheeb sites to organize their
resources. We propose to use lower-order tensor decongootthniques to tackle the
extremely sparse social network data. Last but not leasharsocial tagging area, there
are many types of social media objects, data and resouncdspeage is the most over-
whelming part. Fast automatic analysis of vast number ofjgsas mostly based on image
annotation and segmentation. We propose an efficient angstamage reconstruction
model by applying L1 norm sparse coding techniques in thiecixdn of images (a tenor);
this help significantly the annotation and segmentatiortyai|a We did extensive exper-
iments on several real world data sets to evaluate our pegpbo®dels to the above three
social network tasks, and experimental results demoestinatt our methods outperform

state-of-the-art approaches consistently.

Vi

Acknowledgements
Abstract
List of lllustrations
List of Tables
Chapter

1.

Introduction

11

Approximate and Exact Evaluation of Influence Propagedio Networks

2.1

2.2

2.3

2.4
2.5
2.6

Table of Contents

Introduction

Introduction
211 RelatedWork
Independent Cascade Model
2.2.1 Exact Influence Spread for Small Networks
2.2.1.1 Solution for 3-node Network
2.2.1.2 Solution for 4-node Network
2.2.1.3 Solution for 5-node Network

Inclusion-Exclusion Theorem

2.3.1 Computing Activation Probability on a Single Node

2.3.2 Computing Activation Probability on Entire Network

Computing Exact Activations for DAG Networks

Injection Point Algorithm for Non-DAG Networks: Decologition

Injection Point Algorithm for Non-DAG Networks: Exactgorithm

2.6.1 lllustration of Recursive Reduction

Vii

C T

2.6.2 The Global Recursive Structure of Injection Poinatsgy 28

2.7 Injection Point Algorithm for Non-DAG Networks: Approwate Algorithm 29

2.8 Selecting Seed Set for Viral Marketing 31
2.8.1 Greedy Method to Solve Social Influence Maximization 31
28.1.1 GreedyMethod1 31
28.1.2 GreedyMethod2 33
2.8.1.3 Probabilistic Additive L. 33
2.8.1.4 Incremental Search Strategy 34
2.9 Experiments 34
291 DataSets 36
2.9.2 Inclusion-Exclusion Theorem V.S. Monte Carlo Simiola 37
2.9.3 Comparison of Injection Point Approximate Algorithm 40
2.9.3.1 TimeComparison 42
2.9.4 Comparison of Injection Point Exact Algorithm 43
29.4.1 Wiki-Votedataset, 44
2942 P2pdataset 46
2.9.5 Seeds Selected by Different Methods 46
2.10 Conclusion 47
. Social Tagging Recommendation 49
3.1 Introduction 49
3.2 Problem Definition 50
3.3 Low Order Tensor Decomposition 52
3.3.1 Motivation 52
3.3.2 Baseline Low Order Tensor Decomposition 55
3.4 MissingValueProblem o 65
3.5 Tensor Fold-in Algorithm for New Users 57

viii

3.5.1 Overview of Tensor DecompositionModels 57

3.5.2 Fold-inAlgorithms 59
3.5.2.1 Tucker Decomposition Fold-in Algorithm 95
3.5.2.2 ParaFac Fold-in Algorithm 60
3.5.2.3 LOTD Fold-in Algorithm 61
3.6 ExperimentResults, 16
3.6.1 Evaluation Strategy and Metrics 63
3.6.2 Performance of the LOTD Model 64
3.6.3 Performance of the Fold-inModels 64
3.6.3.1 Efficiency of the Proposed Fold-in Algorithms68
3.7 Conclusion 68
4. Robust Tucker Tensor Decomposition For Effective ImagprBsentation 70
4.1 Introduction 70
4.2 Robust Tucker Tensor Decomposition(RTD) 72
4.3 Efficient Algorithm for Robust Tucker Tensor Decompiosit. 73
4.3.1 Solving the Sub-optimization Problems 74
4.3.2 Updating Parameters 76
4.4 Efficient Algorithm forL,-PCA, 77
4.5 Experiments 79
451 DataDescription 79
452 Corruptedlimages. e 80
45.3 ExperimentResults 83
4.5.4 Reconstruction Images and Discussion 85
4.6 Conclusion 85
5. Conclusionand FutureWork 88
References 09

Biographical Statement

Figure
2.1
2.2

2.3

2.4

2.5

2.6
2.7

List of Illustrations

Page

Small networks: (a) 3-node network; (b) 4-node netw(@k5-node network 9

Different stages of influence propagation for a 3-nodeosk in (a). Graphs
(b),(c),(d),(e) are first stage results of seed node 1 atiagfo influence
nodes{2, 3} with corresponding probabilities given. Thick red edgedi-in

cate the influence action. Thick circle means the node isesstally influ-
enced, also indicated by a number 1 or O underneath. Fronhm gcypnode

2 tries to influence node 3; results are givenin (f),(g). 10
Different stages of influence propagation from a 4-noewvark of (a).
Node 1 is the seed. Symbols are same as Figure 2.2. From grapiode

2 attempts to influence node 4. Only successful result grgpis (shown.
Results of all unsuccessful attempts are skipped. 12
First stages of influence propagation of the 5-node m&twsode 1 is the
seed. Symbols are sameasinFigure2.2. 14

lllustration of the propagation process of IC modelis the target node,

Figure (a) is the first step; (b) is the second step; (c) istlihd step. 18

In-links are deleted for an activatednade. 21

(a) A DAG network. Probabilities on the edges are shovim). Topologi-
cal order of the seeded network. (c) Activations computedguBAG-IET

algorithm. e

Xi

2.8 lllustration of the injection point algorithm. Red-tiasl circle indicates a
strongly connected component (SCC). (a) is input netwotk wifluence
weight on each edge. (b,c,d,f) are 4 case of influence spreadihjection
nodeswy, v12, With branching probabilities given in Eq.(2.19). In (b} in
links to activated), v, are deleted. In (c) inlinks to, are retained because
vy could be activated by the influence coming frem In (f), no influence
passed on from;, v1, and thus all nodes have no possibility to be activated.
(e) and (j) give the exact and approximate solutions of atitw respectively. 23

2.9 A non-DAG seeded network decomposed into a collectistrohgly con-
nected components (SCC): the small circles are single naddsyreen ones
are seed nodes. There is no activated in-bound neighbof>6k, there-
fore nodes il C'C'; cannot be activated thus could be deleted from the network 24

2.10 Injectionequivalence e . 29

2.11 Activation probability comparison between IC MontelG&imulation and
Inclusion-Exclusion Theorem 38

2.12 Influence spreads computed by Inclusion-Exclusionofidra and Monte

Carlo Simulation given different sizesofseedsets 39
2.13 Influence spread comparison e e 41
2.14 RMSE comparison between our approximate algorithnivéidd 42

2.15 Accumulated absolute differences between exactisnlanhd Monte Carlo
simulation solutions when Monte Carlo simulations are momf 2000 to
20000tiMeS e 43

2.16 Influence spreads of seed sets selected by differeritonset Note, the
curves corresponding to incremental search 1 and increxdnesdrch 2 al-

most coincide with each other on p2p-223 network 44

Xii

2.17 Difference between exact solution and Monte Carlo Etimns on wiki-

3.1

3.2
3.3
3.4
3.5
3.6
3.7

4.1

4.2

Vote data set (number of seed nocg®3$. Shown are the absolute value of
the difference at each nodAury is the results of Monte Carlo simulations

of 2000 times. Similarly, foAT4000, ATg000, AT16000: « « « « « v v o v v . . 45
(a) An example of tensoX with 3 users and a post been masked. (b) The
predictedresults.
Tensor decompositionrelationship, 52

Three tensor models: (a) Tucker Model; (b) ParaFac M¢delLOTD Model. 58

The Precision-Recall curve for the Last.fmdataset 64
The Precision-Recall curve for the MovieLens dataset. 65
The Precision-Recall curve for the bibsonomy dataset. 65

Precision-Recall curves for three tensor Fold-in mé$han three datasets:
from left to right: Last.fm data, MovielLens data, Bibsonodata. The per-
formance gap between LOTD fold-in and ParaFac/Tucker ifolshethods
increases from the smaller subgeto larger subsett. 67
Samples of occluded images and reconstructed image$&n face data.

First row is the input occluded images; Second row is from RTibrd row

is from L;PCA; Fourth row is from Tucker decomposition; Fifth row ierfn

PCA. 86
Samples of type 2 (mixed) occluded images and reconstrimages using
different methods of AT&T data set. The first row is from inmgcluded
images; the second row is from RTDreconstructed imageshiterow is
from L, PCA; the fourth row is from Tucker tensor; and the fifth rowrisrh

PCA. The cross corruptions can only be removed by RTD. 87

Xiii

Table
2.1
2.2

2.3

2.4

2.5

2.6

2.7
2.8
3.1

3.2
3.3
4.1

List of Tables

Descriptionofdatasets. e 37
Mean squared errors (MSE) and mean absolute errors (\dAtjeen the

two activation probability vectors achieved Inclusionelssion Theorem

and Monte Carlo simulation on p2p-223 network 38
Mean squared errors (MSE) and mean absolute errors (\dAE)een the

two activation probability vectors achieved Inclusionelssion Theorem

and Monte Carlo simulationon p2p network 39
Mean squared errors (MSE) and mean absolute errors (\MA&)een the

two activation probability vectors achieved Inclusionelssion Theorem

and Monte Carlo simulation on wiki-Vote network 39
Time (sec) needed to compute the influence spread giffenedit sizes of
seed setgr on p2p-223 network oo oL 40

Time (sec) needed to compute the influence spread giffenedit sizes of

seedsetmmonp2pnetwork Lo 40
Running time (seconds) comparisonon p2p dataset 42
Running time (seconds) comparison on wiki-Vote dataset. 43

Real world tag data set statistics, with number of tagspber of items,

number of users, number of nonzero tensor elements (NNZ)edative NNZ. 50

Symbols 52
Time for folding in one new user vs. original algorithm 68
Descriptionofdatasets. 0. 80

Xiv

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Performance comparison (storage, noise-free errockasdification accu-

racy) on AT&T data with block occlusion

Performance comparison(storage, noise-free errorckEsgdification accu-
racy) on Yale data with block occlusion
Performance comparison(storage, noise-free errorckEsdification accu-
racy) on CMU PIE data with block occlusion

Performance comparison(storage, noise-free errorcksgdification accu-

racy) on AT&T data with mixed occlusion.

Performance comparison(storage, noise-free errorcksgdification accu-
racy) on Yale data with mixed occlusion
Performance comparison(storage, noise-free errorcksdification accu-
racy) on CMU PIE data with mixed occlusion

Parameters of differentdatasets ea ..

XV

CHAPTER 1
Introduction

1.1 Introduction

Social network technologies have been seeing a lot of clsaimgthis information
technology era. Social media content are not static libsafior users to passively receive
any more. They allow users to create their own content andraamcate with each other.
Every one can contribute to the web content. There are a hugéer of users on the web
and there are connections and communications/influencegée them. The social web
and mobile technologies have accelerated the speed at wiidchmation is shared and in-
fluence is propagated, and they also bring the internet vednlaolge amount of social media
content, such as images, videos, comments, etc. Ther#dierdevelopment of internet and
mobile technologies have helped to generate rich and bagtdatocial networks. There are
billions of users, billions of connections, billions of dents, which includes textual con-
tents and multimedia contents (images, videos, audig, éithose massive media content
and complicate social structure can be transformed intoraaitle strategies by analytic
expertise, Organizations can take control of those data ipjngthe latent information
and intrigue structures, and furthermore can improve costcsatisfaction, identify pat-
terns and trends, and make smarter marketing strategiesnd/ihose data can also help
the consumers to grasp important and convenient informadidacilitate their life styles.

We will analyze the complex social media content from thriffe@nt angles - users,
resources/events and user’s tag information on those nesmyuwhich we believe cover
the most important factors of social networks. Therefomethis thesis, we analyze the

social networks from three key technology areas. Firstttieruser dimension, we try

1

to identify the most influential individuals on the socialtwerks, which can be applied
to the viral marketing strategies. This problem is first dsdims influence maximization
problem in [1]. Kempe et al. proposed two basic stochastidets) which are extracted
from previous studies on social network analysis, one ispetident cascade (IC) model
and the other is linear threshold (LT) model. We first conaton providing both exact
and fast approximate solutions to IC model. And also we psepan greedy algorithm
based incremental search strategies to find the most intilendividuals. Second, for tag
dimension, we tackle the 3D social tagging recommendatioblpm. Different from the
traditional 2D recommender system, users are allowed tsluse phrases, which refer to
tags, to describe their social resources. Therefore, #rer¢hree dimensions involved in
tagging recommendation - the three constituents (userasittags) mentioned above. Tag
recommendation system helps the tagging process by agwdset of tags to the user that
he may use for a specific item. The tagging information helpb gites to organize their
resources, and also assist the users to communicate withottaer. We propose to use
lower-order tensor decomposition techniques to tacklextiemely sparse social network
data. We also propose three tensor fold-in algorithms tb wih new user problems in
tagging recommendation systems. Last but not least, fouress, there are many types
of social media resources, and image is a big component peégtpropose an efficient
model to represent the gigantic amount of images in socialianesing tensor and L1
norm sparse techniques, which can be applied in image a&atjon problems. We did
extensive experiments on several real world data sets toageaur proposed models to the
above three social network tasks, and experimental redeit®onstrate that our methods
outperform the state-of-art approaches consistently.

This thesis is organized as follows. Chapter Il analyzestegalutions of small
networks; one key finding from these analysis is the inclusrclusion principle which

we prove vigorously. We further propose exact probabdistlutions to influence spread
2

for both Directed Acyclic Graph (DAG) and non-DAG under IC ded and another fast
and scalable linear order approximate algorithm for norzDgxaph. We also propose an
incremental search strategy to continue refining the segdwvbéch is first obtained by
greedy methods. After incremental search, the influenceaspof the selected seed set
is improved. Chapter Il introduces the social tagging renwendation problem and our
proposed low-order tensor decomposition models to dedl thibse sparse data in social
networks specifically. Chapter IV gives an efficient and sibuodel using tensor and L1
norm based sparse techniques for image representatiomage icategorization problems.

Chapter V proposes the future work and summarize the thesis.

CHAPTER 2
Approximate and Exact Evaluation of Influence PropagatioiNetworks

2.1 Introduction

Independent cascade (IC) model is widely used to modellsoflizence propagation
on social networks, such as opinions, information, ideaspvations, etc. One important
task is to identify the most influential nodes in these neksorl his is especially useful for
viral marketing (word-of-mouth marketing), which aims atextain number of influential
consumers at the beginning, and relies on communicatiothdrast between individuals
within close social networks [2] [3] to market some produdieb 2.0 enables convenient
communications among people within or between differestaircles through online
social networks, such as Twitter, Facebook, Linkedin, anahs Information can propagate
from a small number of individuals to a huge number of usesomal networks in a short
time.

There are various research topics in viral marketing sgjdiech as, (1) how to de-
termine the edge weights between different users; (2) haalttulate the social influence
given a set of activated nodes (seed set); (3) how to seleaptimal seed set, which has
the maximum social influence, i.e., the number of activatetes in the end are the largest.
This problem is defined as influence maximization problenijn The above three chal-
lenges rely on each other, such as, we need to know how tolatdhe social influence
given a seed set, if we want to find the most influential nodethit thesis, we concentrate
on solving the second topic and third topic. To address tbblpm of how to calculate the
social influence given each seed set, we first need to presestal influence model defin-

ing how the propagation proceeds under some circumstaitese are several influence

4

models those have been proposed and studied, and the mostpopes are linear thresh-
old model (LT) and independent cascade model (IC), whicleywezsented by Kempe et al.
in [1]. We study the influence propagation process under I@ehio this thesis. IC Model
can be described as a stochastic process based on someilptbabttings. For details,
social network can be modeled as one grafglr, £') with edge weights®. IC model starts
with an initial active seed node set; in the first step, thas@@nodes try to influence their
inactivated out-bound neighbors with probability of theresponding edge weights; each
active node only has one chance to influence its each ingativ@it-bound neighbor; in
next step, the newly activated nodes continue to influengie tivn inactivated out-bound
neighbors with one single chance to each neighbor; thisgsproceeds until no more
inactivated nodes become activated.

Kempe et al. proved the influence maximization problem un@emodel is NP-
hard in [1], and Wei Chen et al. proved that calculating thfeuénce spread of a seed
set under IC model is NP-hard too in [4]. Kempe et al. applieshM Carlo simulation
to approximate the influence spread, which is widely usedheropapers to approximate
the influence spread. which is time-consuming, because éGatlo simulation needs
to be run at least thousands of times to reach a good apprtogmat the true influence
spread. Therefore, as the first challenge, proposing anegffiapproximation method to
calculate the influence spread of a seed set is urgent. Tenlatve present probabilistic
solutions to calculate the influence spread under IC modéldxactly and approximately.
And then based on our fast and approximate solution giveth seks, incremental search
strategies are proposed to continue refining the seed sath whfirst obtained by two
greedy methods. After incremental search, the influenceaspof the selected seed set is
improved comparing with the input seed set selected by greexlhods.

Our main contributions are listed as follows:

(1) First we analyze the exact solutions to small networkd,iaspired by the analysis we
propose to compute activation probability on each nodegusiclusion-Exclusion theorem,
then activation probabilities on entire network can be waled by applying Inclusion-
Exclusion theorem iteratively.

(2) Second we propose an injection point algorithm to compioe spread of the network
exactly, and inspired by our exact solution, we also prowsgher approximate and fast
algorithm to compute the influence spread given seed setsajguoximate probabilistic
solution significantly speeds up the calculation of propiagespread given seed sets.

(2) We also propose an incremental search strategy to centefining the seed set, which
is first obtained by two greedy methods. After incrementarde, the influence spread
of the selected seed set is improved comparing with the isped set selected by greedy

methods.

2.1.1 Related Work

There have been a lot of research work studying and analydiffeyent aspects
of social influence, we group these related work into threegmies. The first category
includes research work on influence models. The second agtégcludes the related
work on how to compute social influence spread. The thirdgoatefocuses on solving
the ultimate viral marketing goal - find a set of seed nodesdhtmve the maximal social
influence.

For the first category, Domingos et al. [5] [6] first proposedhtine the customers’
network value, and then based on customers’ network valgelte the social influence
maximization problem. Kempe et al. [1] first presented the basic influence models - LT
and IC model, extracted from previous work [7] [8]. Aggane&hl. proposed a stochastic
information flow model to determine the authoritative indivals in [9], which is closely

related to IC model. Other aspects of influence models, ssitheaedge weights between
6

individuals were also studied in [10]. Tang et al. [11] [12Zpposed a Topical Factor Graph
(TFG) model to analyze social influence on a specific topic.

For the second and third categories, Kempe et al. [1] preddntuse Monte Carlo
Simulation to estimate the influence spread for given segdasel proposed a greedy
method to find a good seed set, which is not scalable to largle setworks, because
Monte Carlo Simulation needs to be run at least tens of thmlisenes to get a good es-
timation. Then many heuristic algorithms were introducedthe IC model. Kimura et
al. proposed two influence cascade models based on shpatibste approximate the in-
fluence spread of a seed set, and present algorithms to goa aproximations to I1C
model for finding good seed sets [13]. Chen et al. proposedidstie algorithm using
degree discount for a limited version of IC model, in which #dge weights/probabilities
between any two connected individuals are the same in [1Agnt al. also proposed a
maximum influence arborescence (MIA) heuristic model fergeneric IC model in [4]. In
MIA model, maximum influence paths (MIP) between every patwm nodes need to be
pre-computed, and then based on these MIPs, local MIA strestcan be formed. There

are other research work digging into this problem [15] [TK][[18].

2.2 Independent Cascade Model

In this section, we give a brief introduction to IC model. Ac&d network can be
represented by a directed gra@tiV,) with edge weight/probability?, i.e., P(u,v) or
P, in short denotes the propagation probability through €dge) € E from nodeu to
nodev. The total number of nodes i@ isn = |V/|.

Given an activated seed setthe independent cascade model works as folldwys=
S is the activated node set at stg@ndsS; denoted the activated node set at gtefat step

t+1, every newly activated nodein S, i.e.,{u|u € S;\S;_1}, is trying to influence its out-

bound non-activated neighbarswhich don’t belong te;, i.e. {v|(u ~» v) N (v € V\S;) }
with probability P(u, v). The process stops when an equilibrium state is reachethéee
are no more nodes being activated in next propagation stepdépendent cascade model,
once a node is activated (influenced), it will stay activateer after. Also, each activated
node{u|u € S;(t > 0)} can only influence its out-bound neighhoonce.

Now, we are ready to define the probabilistic solution to IQdelpwhich is the acti-
vation probability for each node in the graph in the final giaghe stationary/equilibrium
state), given a seed s€t

The solution of a IC model on a network is a probability distribution, i.e., the
activation probability for each node. At present, the wydeded method of computing this
probability distribution is using Monte Carlo computer silation method. Since the exact

solution is NP-hard, efficient algorithms are the focus ofent research.

2.2.1 Exact Influence Spread for Small Networks

In this section, we give three small network examples taifate the exact influence
propagation process. The three small networks are showigurd=2.1, where node 1 is
the seed (shaded in green) in each case. We present the ex@agation solution for each
network. These exact solutions can be extended to largeoni.

From these exact results we obtain three important benefits:

(1) We learn the rules of adding contributions from differpath of influence prop-
agation. At first glance, these contributions seems to lissstally independentBut the
exact results show they may not be independent and why. ftrzduces the inclusion-
exclusion principle we found useful in correctly enumargtcontributions from different
paths.

(2) The rules we learned in this process are helpful to foateuan exact computa-

tional algorithm.

i

A

-—

(@) 3-node (b) 4-node (c) 5-node
network network network

Figure 2.1: Small networks: (a) 3-node network; (b) 4-nodewvork; (c) 5-node network

(3) Exact solutions obtained can be used to evaluate appet&ialgorithms in pre-
vious studies [14, 13, 9, 18]. This may lead to refined methodarther improve these
existing approximate algorithms.

For those networks, we assume that transition probalsititiethe edges already exist

and remain fixed during the influence propagation.

2.2.1.1 Solution for 3-node Network

The IC influence propagation process for the 3-node netwokgure 2.1(a) can be
illustrated in Figure 2.2.

We start with Figure 2.2(a), where node 1 is a seed node amsdatiuays activated.
The four networks of Figure 2.2(b, c, d, e) are the four poksds of node 1 attempts to
activate nodes 2 and 3. The 4 probabilities are indicatetitogke arrow. For example the
case where nodes 2 and 3 are both been successfully actisaiedwn in Figure 2.2(b),
with probability P;5 P;5.

The cases in Figure 2.2(b) and 2.2(e) are terminal, i.ergethie no further possibili-
ties. In 2.2(c), node 2 (been successfully activated by dgadll attempt to activate node
3. The results are shown in Figure 2.2(f) and Figure 2.2(¢f) thie appropriate probabil-

ities indicated next to the arrows. Similarly, in Figure @2 node 3 (been successfully

(a)&
P12 P13 (1-P12)(1-P13)
P1a(1- Pl{ & P12)Pi3
b) @ © @ @ @ (e)
Pas ll—Pzg lpaz 1-Pg3,
) C); (h) (i)
— — — —
1 1 1 0 1 1 0 1

Figure 2.2: Different stages of influence propagation forreo8e network in (a). Graphs
(b),(c),(d),(e) are first stage results of seed node 1 atiag influence nodeg&2, 3} with
corresponding probabilities given. Thick red edges inditlae influence action. Thick cir-
cle means the node is successfully influenced, also inditgta number 1 or O underneath.
From graph (c), node 2 tries to influence node 3; results aendn (f),(g).

activated by node 1 will attempt to activate node 2. The tesare shown in Figure 2.2(h)
and Figure 2.2(i) with the appropriate probabilities irdéd next to the arrows

Now, we can compute the activation probabilities. Let'ssidar node 2. There are
3 cases where node 2 becomes activated:
(i) Figure 2.2(b) with probabilityP;s P; 5.
(il) Figure 2.2(c) with probabilityP»(1 — P;3). Note that this is equal to the sum of
probabilities of Figure 2.2(f) and Figure 2.2(g).
(iii) Figure 2.2(h) with probability(1 — Py5) P13 Ps,. This probability for the influence
flow path to Figure 2.2(h) equals to the probability to reajufe 2.2(d) multiplied by the
probability to further reach Figure 2.2(h).
Therefore, by adding these 3 probabilities, the activgpiabability for node 2 is,

Ty = Pio + P13 P3y — PiaPi3Pso. (2.1)
10

Another way to compute is by directly counting influence flow paths. First, node 2 can
be influenced by node 1 directly, with probabiliBy, (this is the sum of probabilities of
Fig.2.2(b),(c)). Second, If node 1 fails to influence nodth&re is another path node 2 can
be activated, which is illustrated by Figure 2.2(a)2.2(d) — 2.2(h). For this influence
path the probability i$1— P;5) P13 Ps,. Adding these two we get the same resultin Eq.(2.1).
Inclusion-exclusion The above two counting methods rely on the detailed inflagmop-
agation stages shown in Figure 2.2. The result of Eq.(21 beaobtained without relying
on Figure 2.2. We compute probabilities different pathstogether with an inclusion-
exclusion principle. For node 2, there are two paths:

() 1 — 2, with probability P, _,, = Pis.

(i) 1 — 3 — 2, with probability P, ,3_,o = Pi3P35 .

These two events are not independent because in (ii) we tideiode the factof1 — P5).

We use inclusion-exclusion principle to correct for overtating, i.e., we set
Ty = Pig+ Pz — PiooPig 0. (2.2)

This gives the same result of Eq.(2.1).

For node 3, the probability can be calculated similarly,

3 = P13 + P12P23 - P12P13P23- (23)

2.2.1.2 Solution for 4-node Network

Let us look at a more complicated case — the 4-node networkgoir& 2.1(b). The
IC influence propagation process is illustrated in FiguB Zhe settings in Figure 2.3 are
the same as those of Figure 2.2.

We start with Figure 2.3(a), where node 1 is a seed node. Té&iworks of Figure
2.3(b, c, d, e) are the four possibilities of node 1 attemptctivate nodes 2 and 3. The 4

probabilities are indicated next to the arrow.
11

@)

N\

P1s Pis @/ (1-P12)(1-P13)
A—Pls)l \LA
(b) © (d) (e)
NN N N
P2a+P34 - P24P341 P24 1 1 P3a

® (@ (h)

SO

VYl
SENNE

0] 0
W

Figure 2.3: Different stages of influence propagation frofareode network of (a). Node 1

is the seed. Symbols are same as Figure 2.2. From graph (8 ,2nattempts to influence

node 4. Only successful result graph (g) is shown. Resuldl ahsuccessful attempts are
skipped.

The cases in Figure 2.3(e, f, i, j) are terminal, i.e., theeena further possibilities. In
Figure 2.3(b), node 2 and 3 (been successfully activatectg a) will attempt to activate
node 4. The successful result is shown in Figure 2.3(f) withdppropriate probabilities
indicated next to the arrows, figures for failure resultsrareshown here. We will compute
the activation probabilities by directly counting influenitow paths, so the failure results
will reach irrelevant terminal cases. In Figure 2.3(c), @@d(been successfully activated
by node 1) will attempt to activate node 4. The successfullrésshown in Figure 2.3(g)
with the appropriate probabilities indicated next to theas, and the failure result will
reach an irrelevant terminal case, so we didn’t show thedigpere. In Figure 2.3(g), node
4 will attempt to activate node 3. The successful result@swhin Figure 2.3(i). Similarly,

in Figure 2.3(d), node 3 (been successfully activated byerbavill attempt to activate
12

node 4. The successful result is shown in Figure 2.2(h) véhappropriate probabilities
indicated next to the arrows, while the failure result is sledwn here. In Figure 2.3(h),
node 4 will attempt to activate node 2. The successful ressliown in Figure 2.3(j).

Now, we compute the activation probabilities. We comptjtby counting influence
flow paths. For node 2, first, it can be influenced by node 1, seishlts given in Fig. 2.3(b,
c). The corresponding probabilityiél) = Pps.

If node 1 fails to influence node 2, there is another path nodar2be activated,
which is illustrated by Figure 2.3(a) 2.3(d)— 2.3(h)— 2.3(j). For this influence path,

the probability i37r§2) = (1— Py3) P13 P34 Pso. Adding these two we get the following result,
Ty = P12 + P13P34P42 - P12P13P34P42- (24)

We note again that we may directly compute the probabilidesvo paths ()P, =
Pyo, and (i) P340 = Pi3P34 P and usdanclusion-exclusiorio correct for the non-

independence to obtain

Ty = P1—>2 + P1—>3—>4—>2 - P1—>2P1—>3—>4—>2- (2-5)

which gives the same result.

For node 3, the probability can be calculated symmetrically
T3 = P13 + P12P24P43 - P12P13P24P43~

For node 4, it can be activated by
(i) node 2 only, shown in Figure 2.3(9g);
(i) node 3 only, shown in Figure 2.3(h);
(iif) nodes 2 and 3 simultaneously, shown in Figure 2.3(f).
The total activation probability for node 4 is

w4 =(1 — P13)P12Pos + (1 — P12) P13 P34 + P12 P13(P2s + P34 — P4 P34) 26)

=P12P24 + P13P34 — (P12 P24)(P13P34).

13

Tt
@5
(a)

2N
P12(1-P13)

i A
@Di=® @O—=06 G—6
O(b)O O(C)O O(d)O

Figure 2.4: First stages of influence propagation of the &enmeetwork. Node 1 is the seed.
Symbols are same as in Figure 2.2.

Once again, this results can be derived using the inclusxahision principle mentioned

above, without counting detailed influence propagatiogesan Figure 2.3.

2.2.1.3 Solution for 5-node Network

As the last example, we compute activation probabilitiegiie 5-node network in
Figure 2.1(c). The first stages of node 1 attempts to influandes 2,3 are shown in Figure
2.4(b,c,d).

Let us compute the activation probability for node 2. Thetdbations are shown in
graphs Fig.2.4(b,c,d). The contributions of Fig.2.4(lsdy;-.

The contribution of Fig.2.4(d) is computed as the followii@pe probability to reach
Fig.2.4(d) is(1 — Py2) Py3. Starting from Fig.2.4(d), we may ignore node 1 and consider
the remaining network with nodeg, 3, 4,5}, and node 3 is activated. This situation is
identical to Figure 2.3, and we need to compue Following the results of Eq.(2.5), we
obtain

P32 + P35P54P42 - P32(P35P54P42)-

14

The contribution to node 2 of Fig.2.4(d) is a result of conmuntwo paths3 — 2 and
3 — 5 — 4 — 2 with the inclusion-exclusion principle. Therefore the fiseore for node

21is
Ty = Pio + (1 — P1o) P13 | Pso + P35 Psy Pyo — Pio(Pss PsaPao2) |- (2.7)

Now we compute activation probability for node 4. It can btvated by the follow-
ing 3 paths:

(1) Starting from the situation in Figure 2.4(b) and actévabde 4;

(2) Starting from the situation in Figure 2.4(c) and aceévabde 4; This is the same
as the 4-node graph in Figure 2.3 and the node of interestis 2o

(3) Starting from the situation in Figure 2.4(d) and acévabde 4; This is the same
as the 4-node graph in Figure 2.3 and the node of interestis #0

The total probability for node 4 being activated is

7y =PioPi3(Poy + Ps5Psy — PoyPss Psy)
+ Pio(1 — Pi3)(Pas + Pog P35 Psy — Poy Py3 P35 Psy) (2.8)
+ (1 — Pi2) Pi3(PsaPay + P35 Psy — Pyo Pyy Pys Psy)

We note that the 5-node network in Figure 2.1(c) includes tio¢ 3-node network
and the 4-node network cases, for example, 5-node netwstlttsdbecome the results of
the 3-node network, wheR,, = Pss = Psy = Py = Pss = Pyis = 0; whenPsy = Pys = 1,
the results become those of the 4-node network.

When it comes to much more complicated large-scale netwlelexact propagation
solution is hard to derive. It's an exponential growth cdse@the number of nodes .
Therefore, in this paper, we propose an approximationisoliw IC model, which is exact
solution for directed acyclic graph (DAG) and approximatgmlution for generic graphs.
The exact solution for generic case is introduced later.

15

2.3 Inclusion-Exclusion Theorem

The lessons we learned in previous section on exact solat®unseful. One of the
most important lessons is the inclusion-exclusion prilectpat we briefly mentioned in
previous section. Here we formalize the concept and proxigatrously.

Let7,(0 < m, < 1) denote the activation probability for each nodév € V\ Sy},
which means to what extentis activated.

We have the following Theorem, which is called inclusiorclesion theorem,
Theorem 1 Given fixed seed sét and edge weight#’, for every non-seed nodeand
its in-bound neighborsV, = (uy,--- ,u), i.e., N, = {u;lu; ~ v}, 7,, the stationary
probability ofv being activated, is related tpr,, }, stationary probabilities of its in-bound
neighbors, with the following relationship,

Ty = Z Tu; Pugw — Z (Wuz'Puw><7rujP“jU)

Ui~V Uiptj v,

1<J

D (T Pu) (T Py (M, Py

Uy Uy U~V
i<j<l

+-t (_1)k<7rulpulv>(7ruzpu2v) T (ﬂ-ukpukv)' (29)

To better understand this result, we compare it to a simptetehof random walk.
In this random-walk model, all neighbors ofcan activater any time it walks towards.
In this model, the activated probability would be

7 =3 1, Pu (2.10)

Ui~V

In contrast to the random walk model, in the IC model, anyracém only attempt
to affectv once Thus the activation probability in IC model is lower thamtin random

walk model. Comparing Eq.(2.9) and Eq.(2.10), we see thatr¢duction from random

16

walk model to IC model are the second term and later terms i(RE}. They are exactly
the inclusion-exclusion principle.

Figure 2.5 illustrates the propagation process of IC mddehis figure, node is the
target node. Its in-bound neighbok§ = {u,,--- ,ux} attempts to influence it. Suppose
there is only one activated neighbey in step 1, theny; tries to influencev. If u, fails
to influencev in step 1, then newly activated tries to activate in step 2. Ifu, fails to
influencev in step 2, then newly activated tries to activate in step 3, and so on so forth.
Proof of Theorem 1

To simplify the notations, we defing,, = 7, P,,.

Step 1 : The probability thatis activated by, is

w0

= Ty, Puyo = 0w, - (2.11)

Step 2 : Ifu; failed to activatev in step 1, the failure probability i$ — 7. Now uy

attempts to influence; the probability that:, succeed in this is,, P,,, = o.,; Therefore,
the conditional probability that, failed butu, succeed in activating is (1 — m()l))o—w.

This should be added to the total probability thdtecomes activated. Thus

v v

Step 3 : Nowus attempts to activate under the condition that neithef nor u, activated

v. The probability that:; succeed in this is,, P,.,, = o.,; The probability that neitheu,
nor us activatedv is 1 — m()?). Therefore, the conditional probability that, u, failed but
ug succeed in activating is (1 — m(?))aug. This should be added to the total probability

thatv becomes activated. Thus
78 =72 4+ 1 - 7)oy,
= Uul + ng + ng - 0u10u2 - Uulgug - nggug

+ Ouy OuyOus - (2.13)

17

(a)step 1 (b) step 2 (c)step 3

Figure 2.5: lllustration of the propagation process of ICdelov is the target node, Figure
(a) is the first step; (b) is the second step; (c) is the thigd.st

Using induction, we can include the valuemfin step k.
Step k : Nowu, attempts to activate under the condition that none ofs previous in-

neighbors activated. The total probability that becomes activated is,

v v v
= E Ou; — E Ou;Ou; + E Ou;Ou;Oyy
UZENU Uy quNu, u; uj.,ule./\/'l
1<j i<j<l
k—1
+ -+ (1) oy 0y - O, (2.14)

This completes the proof.

2.3.1 Computing Activation Probability on a Single Node
Based on the inclusion-exclusion theorem, we can get th@dolg Lemma,
Lemma 2 Given a single node’s in-bound neighborgu;|u; ~~ v} and edge weight#®,
to calculate the probability that nodebecomes activated, we have the following iterative

update equation,

70D = 720 1 (1 — 7)) g, i=1,--- k-1 (2.15)

i+17

Thus, now we can present the algorithm to compute the aictivarobability of

single nodev in the following,
18

Input: N, = {u;|u; ~ v}, {0y}, k = |N,| denotes the number of in-bound

neighbors ofy

Output: 7 =)

Initialize i = 1, 7" = oy,

fore=1:k—1do

7T1(;i+1) — ﬂgi) + (1 — Wi()i))UUi+1

end

Algorithm 1: Activation Probability orw

2.3.2 Computing Activation Probability on Entire Network
Now we are ready to describe the algorithm to compute aativgirobability on
entire network. Given fixed seed setind edge weight®, the activation probability to IC

model for each node can be represented in the following,

T, =F(ry,), v=1---,n. (2.16)
which can be obtained by the following updating strategyerelr,, denotes a vector
whose elements are the activation probabilities'®in-bound neighbors.

D) F(?T,(\t/))y v=1,---,n. (2.17)

where,F'(-) denotes a function, which is represented in Eq.(2.15).
The detailed algorithm for computing activation probalas for all noded/ is given
in Algorithm 2, wherer denotes the activation probability vector whose elememtseti-

vation probabilities for all nodes.

19

2.4 Computing Exact Activations for DAG Networks

Although, the above iterative strategy gives approximatet®ns to the entire net-
work, Independent Cascade Model only allows each node tgbated (influence) once.
This can be achieved in DAG (directed acyclic graph), whetepalogical order can be
established.

In this section, we describe the algorithm to compute thecteaativations when
the network is a directed acyclic graph (DA&)The algorithm for non-DAG network is
presented in next section.

Given the network(V, E) and the seed sef. If G\S is a DAG, then we can
compute all activations by passing through all the nodess iBma linear time algorithm,

linear in both|V| and|E|.

Lin fact, we only requir€?\ S to be a DAG, because the seed Setre already activated.

Input: G(V, E), n = |V|, edge weight, activated seed sé, = S, m = |5],
maxlter
T 0 0
Initialize Wf;e)s =1, 7r£¢)5 =0

forl =1 : maxiter do

fori=1:n,v; ¢ Sdo

({
7Tvz~

)+ Activation probability onv;
end

if |70 — 7D, < §then
break;

end

end

Output: stationary activation probability for each nogde= 7
Algorithm 2: Activation probability on entire network

20

(un) (u2) (1) (u2)
1 = 1
(u5) (us) (us) (uy)

Figure 2.6: In-links are deleted for an activated node

In this algorithm, we utilize the above inclusion-exclustbeorem (IET). In IET the
activation onv is easily computed from the activations Af (the in-bound nodes to).

A key observation is that if7\ S is a DAG, then the ordering of nodes can be arranged in
such a way that the activations g, are available (already computed) beforis visited
(see Theorem 2). With this, activations are computed faligwhe order in one pass.

We call this algorithm as DAG-IET algorithm. The main steps.a
(a) constructed the seeded network,

(b) compute the topological ordering of the seeded network,
(c) compute activations on nodes using the ordering.

Below, we discuss the algorithm in details. We first definesbeded network : A
seeded network: s is the original networlG with seed sef activated and all in-links to
these seed nodes are deleted.

The reason that in-links are deleted is that once a nodeiisated, it remains acti-
vated. Such in-links to this node will not affect the solatiand thus can be deleted. Figure
2.6 illustrates the situation.

If G is a DAG, the seeded networtks is a DAG, andG\S is a DAG. If G\S is a
DAG, GGg must be a DAG. Even if7 is not a DAG, the seeded netwaik could be a DAG.

When(Gys is a DAG, the topological ordering is obtained by the welblm topolog-
ical sort algorithm. This is a ordef| algorithm.

After the topological ordering is computed, activationsnam-seed nodes are com-

puted using this ordering. One can easily prove the follgwin

21

0 @-0-) @~E<T=® 0

(b)

0 1 0.044 0.032

1 0.067 0.383 0.244

(©

Figure 2.7: (a) A DAG network. Probabilities on the edgessrewn. (b) Topological
order of the seeded network. (c) Activations computed uBIAG-IET algorithm.

Theorem 3 In the topological ordering of the DAG-IET algorithm, all des pointing ta
are located before.

Figure 2.7 gives an illustration of the DAG-IET algorithm.
lllustration: The network in Figure 2.7 is a DAG. Node 2 andrB aeed nodes. First,
edges (1,2) and (4,5) are deleted to obtain the seeded tketwdris network is sorted
to topological sort order, shown in Figure 2.7(b). Then we DAG-IET algorithm in
Algorithm 1 to compute the activation probabilities for bamn-seed node, and the results
are shown in Figure 2.7(c). Note that the final resultsifoarer; = 0 because there are

no activated nodes to influence it.

2.5 Injection Point Algorithm for Non-DAG Networks: Decomgition
In this and next two sections, we describe the algorithmsdbring networks whose

seeded networks are non-DAG.
22

1 ! @1 (121
07008 _ _ _ ________ 0203 _ _ pm—gmmmmmmmm e P
I'd
\ I(\ . v 30 . . \
| \ . , . 1 2 3 4 5
1\ o700t 2 Josaa' 2 esre 4 orare > : I :
| |
| 0.5081 10.2002 10.7442 0.1929 .95I15 | & l l :
| I |
. . . [10 9 8 7 6
8 10)%50999\ ° boass. & batze\ /S0t 8, L /)
(a) original graph . v;; and v, are injection nodes (f) v1 not activated; v, not activated

@ 1 @)1

1 1
@'?'? | ORNERFWo dOF WoWoRoNoR¥s

(b) v; activated; v, activated (g) topological order of graph (b)

1 0 \
1 o 2 » 3 .{ 4 » 5 :
[T (] | @GR OROSO
I
@‘ 9)e 8 J—L{ 7) 6 :
A ,
(c) v1 activated; v4 not activated (h) topological order of graph (c)

\
0 |
|
1,23
| 1699,
. = @— (== sk
|

—— - ————

9 8 7 6
.~ e e e e T 7/
(d) v; not activated; v, activated (i) topological order of graph (d)
l % 1 1 % 1

0.7025 0.4921 0.4154 0.4918 0.3580

1 .7008 'G\QAQOQ 7/1_3\9.41447 4 0.4914' 5 0.3577 1 » 2 » 3 ‘\ff/ » 5
l 0.0112 l 0.1119 l 0.3096 0.0043 0.3406

é0.0lll 9 0.1113 i\QGOQS jiD.OOAB 6 .3403 10 9 8 7 6

(e) exact solution of activation (i) approximate solution of activation

Figure 2.8: lllustration of the injection point algorithnrRed-dashed circle indicates a
strongly connected component (SCC). (a) is input netwotk wifluence weight on each
edge. (b,c,d,f) are 4 case of influence spread from injectomtesy, |, v12, with branching
probabilities given in Eq.(2.19). In (b) in-B8ks to actteal v;, v, are deleted. In (c) inlinks

to v, are retained becausg could be activated by the influence coming from In (f), no
influence passed on from, v;, and thus all nodes have no possibility to be activated. (e)
and (j) give the exact and approximate solutions of activatespectively.

Figure 2.9: A non-DAG seeded network decomposed into a aadle of strongly con-
nected components (SCC): the small circles are single nades green ones are seed
nodes. There is no activated in-bound neighborsstor’;, therefore nodes iISCC, can-
not be activated thus could be deleted from the network

In this section we describe how to decompose the non-DAG ar&tio a series of
logical units which is calledinjection-nodes + strongly connected component (SCC)”
sub-network In next section, we describe how to solve these sub-netexctly Using
the insights obtained there, in Section 7, we describe hosotee these sub-networks
approximatelyusing a linear algorithm.

A non-DAG seeded network can be decomposed into a colleofietrongly con-
nected components (SCC). Themponent graplé;SCC is obtained if we view each SCC
as a single node (contracting all edges in a SCC). Figur¢ i{RuStrates this process.

This component grap&S©Cis acyclicand we build a topological order on this com-
ponent graph. Along this ordering on the component graphjrttbound neighbors of a
SCC (all nodes in the SCC) are all located before this SCCe Mt a seed node can not
be inside a SCC because in-bound links to the seed nodes latecd&hen constructing
the seeded network. Thus seed nodes become 1-node SCCsaamtpenent graph (we
call them seed SCCs).

In general, on the topological ordering the first several SG€fore the first seed
SCC are deleted since there is no activated nodes to inflteeoe. The activations on

them are set to zero.
24

Computing activations on the component graph are thus eetliaca series of tasks
of computing activations on a
“in-bound neighboring nodes + SCC” sub-network.

The first of these sub-networks is the one where “in-boundhi®ring nodes” are seed
nodes. Here the activations on the in-bound neighboringsate known and our goal is
to compute activations on the nodes in the SCC.

We further analyze the “in-bound neighboring nodes + SC@-isetwork, and re-
duce “in-bound neighboring nodes” on the component netwmfinjection nodes” in the
original seeded network. Each of these in-bound neighbamimdes in the component
graph could be: (a) a SCC, (b) a single non-seed node in thmakinetwork, (c) the seed
node.

In case (b), single non-seed node will remain un-activatieles like this are deleted
from the network.

In case (a), we denote SEC@s the in-bound neighbor of SGCThis implies some
nodesV;, in SCG points to some nodes in SG@ the original network. Note that the
activations on the nodes in S¢C@re already computed. Nod&%, in SCCG are retained
(since they will influence SCgJ and other nodes in SGGre deleted (since they will not
influence SCE). NodesV;, are called injection nodes for SGCThe activations on these
nodes are in general in, 1].

In case (c), the seed node is an injection node for SCC

In summary, we have decompose the original seeded non-DA@orieto a series

of logical units, “injection-nodes + SCC” sub-networks.

25

2.6 Injection Point Algorithm for Non-DAG Networks: Exactlgorithm

The key network structure we deal with is the "injection-aed SCC” sub-network.
Here there are several injection nodes that attempt to miki@ SCC, as illustrated in
Figure 2.8(a). Nodes;, v, are injection nodes. They have been activated and theypittem
to influence nodes; - - - v1o which form a SCC.

Injection nodes: it is important to note that injection nedeg, v;5 in Figure 2.8(a)
could be either seed nodes, or intermediate nodes, sughim$igure 2.8(c). If injection
nodesv;1, vi2 are intermediate nodes, they have activation probalsititie 7. If v11, v12
are seed nodes, we say they also have activation probediilit, = 1 andm, = 1, i.e.,
they are activated with probability 1.

Injection nodes standardization: we note there are sevasas as shown in Figure
2.10. In Figure 2.10(a), nodehas several injection nodes. This case can be transformed
equivalently to “one injection-node” case where injectimtles combined into one node
which injects intaw. Herer, = 1 and the edge weiglf, , equals the activation probability
of v computed using Theorem 1 (algorithm 1). In Figure 2.10(lodew attempts to
influence nodes, - - - , v,. This can be equivalently viewed as eagh- - - , v, has its own
injection nodeu.

Injected nodes: inside the SCC, nodes who are immediabedgtly influenced by
the injection nodes. In Figure 2.8(a), nodgsy, are injected nodes.

The computational algorithm is recursive reduction by eerating all possible situ-
ations/states/cases of injected nodes. For each cadegrstar on this reduced network. If
the reduced network is a DAG, we use DAG-IET algorithm to eaty If the reduced net-
work is a non-DAG, start anew. This is repeated until the cedunetwork is small enough
and the solution can be directly read from a recomputed amddtibrary. Solutions of

different cases are combined together with appropriateahitities.

26

2.6.1 lllustration of Recursive Reduction

Before we proceed further, we explain how our algorithm wiankthe network of
Figure 2.8(a). This illustrates the essential elementh@btgorithm.

Figure 2.8(a) has two injection nodes, v, with activation probabilityr;;, 71,. The
injected nodes are;, v,. The next stage of influence propagation are the 4 cases shown
Figure 2.8(b), (c), (d), (f). We first evaluate the activ:snticurobabiIitiesﬂf’{O for the case
in Figure 2.8(b). This case is arrived with probabil®?) = 71, Py; 1712 P124. Similarly,
we evaluater.®), for the case in Figure 2.8(c) and”), for the case in Figure 2.8(d). Note
thatﬂ{?o = 0 for the case in Figure 2.8(f) because there is no influeneetiojn. The final

activation probability are the weighted sum:
T:10 = P(b)ﬂlgo + P(C)Wgo + P(d)ﬂ?o (2.18)
where the branching probabilities are

P(b) — 7T11P11,17T12P12,47
Pl = T Primi(1 — Prag), (2.19)

pd — m11(1 — Piy1)m2Pioa.

The network of Figure 2.8(b) is a DAG and the activation pholitees are computed
using DAG-IET algorithm.

The network of Figure 2.8(c) is non-DAG and its topologicaler is shown in Figure
2.8(h). We use DAG-IET algorithm to compute, 73. Note thatGy 567 = (v4, v5, vg, v7)
is a SCC. Thugvs|JGa567} form an “injection-node + SCC” structure. We use the
injection point algorithm to compute their activation patigities.

The network of Figure 2.8(d) is non-DAG and its topologicadler is shown in

Figure 2.8(1). We use DAG-IET algorithm to compute, 7, m7. NOW G1238910 =

77777

27

77777

sub-network. We use the injection point algorithm to coregbieir activation probabilities.

The essence of the injection point algorithm is a divide-aodquer strategy: it re-
peatedly reduce an “injection-nodes + SCC” sub-networknalker “injection-nodes +
SCC” sub-network until these SCCs become small enough tmlveds using the exact

solutions explained in Section 2.2.1.

2.6.2 The Global Recursive Structure of Injection Poinatatyy

As shown in Figure 2.8, the injection point algorithm is usedolve an “injection-
nodes + SCC” sub-network in a recursive manner where the $®Glved are gradually
reduced in size until they are small enough and can be solvectlg using the method of
Section 2.2.1 (pre-implemented as a suit of library rojne

The Injection Point Algorithm is the following:
Injection-Point-Algorithm (IPA)

Input: “injection-nodes + SCC” sub-network
Output: activation probabilities of all nodes
Perform injection on “injection-nodes + SCC” sub-network.
FOR each injection result, DO
Step 1. Find all SCCs of current network.
Step 2. Contracting all SCCs and establishing a topologictr.
Step 3. Use DAG-IET to compute activation probabilities:
IF no SCC, all activation probabilities on current networ& aomputed
IF encountering a SCC which is small enough, call a librarydive it
IF the SCC is not small, identifying injection nodes to theCS&hd call
injection-point-algorithm on this sub-network.

Continue to compute activation probabilities on the conmgubrder until

28

the end or another SCC
Step 4. Accumulate activation probabilities from differepection branch.

RETURN

(b)

Figure 2.10: Injection equivalence

2.7 Injection Point Algorithm for Non-DAG Networks: Approrate Algorithm

In this section, we develop an approximate algorithm toesdie “injection-node +
SCC” sub-network efficiently in two passes of the nodes and ih linear time.

The algorithm is a modification of the DAG-IET algorithm of 3ien 4. When
the sub-network is a DAG, the topological ordering ensuhe@s when visiting each “un-
touched” nodev (where activation has not been evaluated so far), activatom the in-
bound neighboring node¥, have already been correctly computed.

When the sub-network is non-DAG, the topological orderiogginot exist. How-
ever, we can follow a DFS (depth-first-search) to visit eamtberand compute its activation.
The problem here is that for some un-touched nodes, théioimd neighboring nodes (or
some of them) could also be un-touched, and thus the cotitnbfrom these un-touched
neighboring nodes are unknown — the computation can noegihc

We solve this problem bgre-computinghe activations. We do the DFS-and-compute-
activation pass twice. The first pass pre-computes theadicths (approximately). In the

second pass, for each node, all its in-bound neighboringsade already touched, i.e.,

29

have non-zero activation values (could be under-valuedindJIET, we compute the acti-
vation on this node (in facypdatingthe value since this node is already touched).

The essence of the algorithm can be seen from computing; of the 3-node non-
DAG network of Figure 2.1(a). These activations will sergevalues onV, for all un-

touched node. At first iteration,
ﬂél) = Po, 7r§1) = Pi3
With these values, activations ¢V, } are available for all. At second iteration,
7T§2) = Py + Pi3P3y — P1a P13 P, 7T:(;2) = P13+ P1oPa3 — Pi3P1aPas

At this point, the results are exactly correct.

The key observation is that even if there are SCCs in a non-[384Gh as SCGY,, v3)
in Figure 2.1(a)), influence does not propagate infinitelgyades. This is because, in IC
model, once a non-seed node is activated, it remains sogfior®wce the node is activated,
the in-link is effectively broken as shown in Figure 2.6 —Ilib¢ks the cycle.

Weighted DFS: intuitively, we wish to follow a traverse oritkg that propagates
influence most efficiently. A greedy approach is to follow timks with largest weight.
This naturally motivates the weighted depth-first-sealRS): when deciding who to visit
among all links out of node, we follow the link with highest edge weight (the activation
probability). Standard DFS algorithm can be slightly maatifto achieve this.

In summary, the algorithm is given below.

Approximate algorithm for “injection-node + SCC” sub-neink:
(1) Pick the injected node with highest activation prokiapil
(2) Do weighted DFS pass and update/compute activations.

(3) Repeat step (2) once more.

30

Figure 2.8(j) gives the approximate activation probailesifor nodes in seeded graph
of Figure 2.8(a), while Figure 2.8(e) shows the exact attbwgprobability for each node.

The differences between approximate solutions and exadi®as are all very small.

2.8 Selecting Seed Set for Viral Marketing

To this end, we can define the objective function of maxingaime social influence

as follows,
max o(S) = ;m (2.20)
st. |S|=m,
o = F(mp,), v=1,---,n.

where,m is the size of seed set. We will present an probabilistictaskdstrategy to solve

the above social influence maximization problem using greeethods.

2.8.1 Greedy Method to Solve Social Influence Maximization

As discussed above, influence maximization is to determinactivated seeds at
the beginning of the information propagation, in order toxmmaze the social influence in
the end. We first propose an probabilistic additive strategy two greedy methods, then
based on these two greedy methods, another efficient inatahsearch strategy will be

introduced.

2.8.1.1 Greedy Method 1

The basic idea is to select each nages a single seed, i.eS, = {v;}, and then
compute the stationary activation probability using Aigan 2 for all the other nodes

{ulu ¢ S}. We let3,; denote the stationary activation probability for every @aehen

31

v; is selected as the seed node. Bet= (513, B2y, - - - , Brny) Obviously, the elements on
diagonal of matrixB are all 1. After getting every stationary activation proitigbvector
in B, we calculate the influence spread of each node, denoted) which is the sum

of B¢;;. The following Algorithm 3 describes the detailed processiow to calculatédB.

Input: Edge weightP
fori=1:n,5={v}do
0 = 1,49, =0,
7 <— Call Algorithm 2(P,S = {v;}),
By = 7.
end

Output: Stationary activation probability matrid
Algorithm 3: Computing stationary activation probability vector whale node

is selected as the seed node

After we get the social influence spread for each node beied sede, we sort the
influence spread scores in descending order,d(@;,) > o(ve) > --- > o(v,), and then
select the topn nodes with largest influence scores as the initializatied sets.

Greedy method 1 is based on our inclusion-exclusion theoaauwhit's much faster
than greedy method using Monte Carlo Simulation, which segdeast thousands of sim-
ulations even for calculating the influence score of aachot mention the entire stationary
activation probability matrixB. We will present the time needed for both methods in the

experiment section.

32

2.8.1.2 Greedy Method 2

Before presenting Greedy Method 2, we first introduce a goiisic additive strat-

egy when adding more nodes to a current seed set.

2.8.1.3 Probabilistic Additive

Suppose we have a current seed$ednd its activation probability vectgis_, cal-
culated by Algorithm 2, and now we are going to agddo the current seed set, notés
activation probability vectof;; can be get from matrii. We have the following defini-
tion,

definition 4 Probabilistic Additive of vectofs, and 3y;; is defined as follows,

Bs.oqiy = Bs. |H By =1— (1= Bs.). + (1 = Bryy) (2.21)

where.x means element wise multiplication. Similarly, Probalitig\dditive ofm vectors

is defined as follows,

Bryuiey-uimy = By [By -+ [Bmy = 1 =T, (1 = By) (2.22)

wherell also means element wise multiplication.

We can use the Probabilistic Additive of each nodg'ifi,(;;csy as the initialization
when calculating the activation probability for entirewwetk using Algorithm 2 with seed
setS, which is much faster than 0 or 1 initialization used in Aligom 2.

As Greedy Method 1 did, Greedy Method 2 first uses algorithra Galculate the
stationary probability distribution matriBB, and then calculate influence score for each
nodeo (v;). Different with Greedy Method 1, Greedy Method 2 adds onlg nade to seed
set at a time, which is described in the following,

(1) Add nodei; with the largestinfluence score to seedsgtS; = {i;}, and the activation

probability vector is3s, = B}
33

(2) Add nodeis, which can lead to the largest influence score of seedset, = S; U

{io} = {i1,i2}. Then we use probabilistic additive 6§, andj;,; to initialize 7° when
calculating the activation probability vector & using Algorithm 2,7 = B¢ g, =

Bs: ¥ Briay:

(3) Repeat the above process until we need to add npdand node,, should lead to
the largest influence score of seed Sgt S,, = Sy—1 U {im} = {é1, - ,im}. Then we

use probabilistic additive gfs,,_, andfy;, , to initialize 7° when calculating the activation

m—1
probability vector forS,, using Algorithm 2,7 = B¢ vy = Bsny W Bt
In this way, we get another seed gét To get a better seed set, we do Incremental

Search starting from the seed sets calculated from botlilgraethods.

2.8.1.4 Incremental Search Strategy

After we get an initialization seed set by those two greedthods introduced in last
section, we want to keep digging more efficient seed set dacam the nodes those have
least contribution in the current seed set to the final infteestore.

First, we give two important procedures, addode to current seed s&t and drop
k node fromsS,, which are listed in Algorithm 4 and Algorithm 5, respectiveFor k, we
normally choosé = 1, 2, 3.

Now, we are ready to present the incremental search strateggorithm 6,

After using incremental search on seed set obtained froedgrmethods, we get a

seed set with larger influence sore.

2.9 Experiments
To validate the performance of our Inclusion-Exclusion dieen, we conduct ex-

periments on real data sets to compare the results usingsiootExclusion Theorem (Al-

34

gorithm 2) and that of using Monte Carlo Simulation. We castdanother two groups

of experiments. One is to compare the solutions of our fagtagimate algorithm with

Input: Current Seed Sefs., the size ofS..: ¢ = |S.|, Activation Probability
Matrix: B

fori=1:CFk_, do
Select nodes to add{w;,, - - - ,v;, },

Sp = ScU{viy, - vt
7O = Bs i }0lin s
7 +— Call Algorithm 2P, S,,, 7(),
0(Sn) = 22, M-
end
{vi, -+, v, } ¢— argmax(c(S5,)),

Output: S, = S.U{v;y, -+, v}, Bs. =7, 0(Se) = (Sy)
Algorithm 4: Add k£ node

Input: Current Seed Sefs., the size ofS.: ¢ = |S.|, Activation Probability
Matrix: B

fori=1:CVdo
Select nodes to drop{w;,, - - - , v;, },

Sn =S\ viy, v

7 = Bujljesn}

7 +— Call Algorithm 2(P, S,,, 7),
o(Sn) =22, M.

end
{i, -+, 05, } +— argmax(o(Sh)),

Output: S, = S \{vi,, -, v, }» Bs. = m, 0(S;:) = 0(Sy)

Algorithm 5: Drop k£ node

35

those of other state-of-the-art approximate algorithmk) Monte Carlo simulations, (2)
maximum influence arborescence (MIA) model in [4]. The othreg is to demonstrate the
correctness of our injection point algorithm for the examtuson to IC model. We also
conduct experiments on real world data sets to compare fliemnte spread of seed set get

from our incremental search strategy with those of seedysttisom various algorithms.

2.9.1 Data Sets

We use two real world data sets - p2p-Gnutella08 and wikeVethich are two
directed networks, and downloaded from SNAFable 2.1 lists the detailed information
of these two data sets.

p2p-Gnutella08 is a snapshot of Gnutella peer-to-peertideisg network from Au-
gust 2002. Nodes represent hosts in the Gnutella netwoddgp and edges represent

connections between the Gnutella hosts. We call this né&tp@yp in this paper.

2http://snap.stanford.edu

Input: Current Seed SefS., the size ofS.: ¢ = |S.|, k

for i = 1 : maxIter do
Sa,0(S,) «— Add k nodes,

Sq,0(Sq) «— Drop k nodes,

if [|o(S,) — a(Sq)|| < 6 then
break;

end

end

Output: S, = 54
Algorithm 6: Incremental search strategy

36

Table 2.1: Description of data sets

Name # Nodes| # Edges
p2p-Gnutella0§ 6301 | 20,777
wiki-Vote 7115 | 103,689

Wiki-Vote contains the Wikipedia voting data from the intep of Wikipedia till
January 2008. Nodes in the network represent wikipedissiesaal a directed edge from
nodei to node; represents that uséroted on usey.

We also generate one subgraph from p2p-Gnutella08, whigl22a nodes and 954
edges. We call this subgraph p2p-223.

2.9.2 Inclusion-Exclusion Theorem V.S. Monte Carlo Sintiola

First, we present the influence spread (activation prolvgbor each node) compari-
son between IC Monte Carlo Simulation and Inclusion-Exclud heorem (Algorithm 2),
to verify the effectiveness of Inclusion-Exclusion Thaarm approximating the influence
spread for entire network. For demonstration purpose, \segdnesent the results for each
node on p2p-223 subgraph. We randomly selected 10 nodesdaages. The results from
Monte-Carlo Simulations are the average of 20000 simulatrealizations. Edge weight
P is fixed for both methods. The activation probabilities facke node from two methods
are shown in Figure 2.11. There are 223 nodes and 954 edge?pe?2@ network, and
we omit the nodes with activation probability O, which left less than 90 nodes presented
in the figure. For convenient comparison, we sort the adtimgbrobabilities of Monte
Carlo Simulations, and present their corresponding aabivgorobabilities calculated by
Inclusion-Exclusion Theorem. Apparently, the two curvesf these two methods almost
coincide with each other.

We then present more comparisons between activation pittiestachieved by ap-
plying Monte Carlo simulation and those achieved by Indogexclusion Theorem. Fig-

37

activation probability
© o o o o
4 o ~) © -

o
IS
T T

o
w

Monte Carlo Simulation
Inclusion—Exclusion Theorem

o
N

I
o

0

.
(0] 10 20 30 40 50 60 70 80 90
node ID

Figure 2.11: Activation probability comparison betweenNtonte Carlo Simulation and
Inclusion-Exclusion Theorem

Table 2.2: Mean squared errors (MSE) and mean absoluteséM#E) between the two
activation probability vectors achieved Inclusion-Exsttn Theorem and Monte Carlo sim-
ulation on p2p-223 network

m = 20 m = 30 m = 40 m = 50
MSE | 85x107° | 7.9x 107 | 7.8 x 10~ | 7.1 x 10~°
MAE | 48 x10~% | 4.7x107% | 45x 10~ | 3.8 x 10~ %

ure 2.12 shows the influence spreads by those two methodBeaedt sizes of the same
seed set m = {10, 20, 30,40,50} on the three data sets - p2p-223, p2p and wiki-Vote.
The influence spreads are almost the same on p2p-223 subgiragblare very close on
p2p and wiki-Vote data sets. As shown on the figures, theudks of the histogram at
the samen are almost the same for those two methods. We also show the sneared
errors (MSE) and mean absolute errors (MAE) between tweatain probability vectors
achieved by those two methods. Table 2.2, 2.3 and 2.4 shoM8teand MAE results at

m = {20, 30,40, 50} (results atn = 10 are omitted due space limit) on the three data sets
mentioned above, which demonstrate that the two vectoralarest the same when given
the same seed set, i.e., the approximate results achieviettliogion-Exclusion Theorem

are effective for generic graphs.

38

s y y w7 R 53 = T T T T

E T T T T T
9261 9261
ool | inclusion-Exclusion Thereom |
[Vonte Caro Simulation 8493 8494

7579 758 wnt

65.77 6576

e

influence spread

r)

30 40 50 ¢ 0 2 0 @ E] ¢ 0 2 F) 9
ber of seed nod number of seed nodes T nclusion-Exclusion Thereom| number of seed nodes I rclusion-Exclusion Thereom)
numoer of seed noaes I Vonte Caro Simuiation I Vonte Carlo Simulation

10 20

(a) p2p-223 (b) p2p (c) wiki-Vote

Figure 2.12: Influence spreads computed by Inclusion-Ekafu Theorem and Monte
Carlo Simulation given different sizes of seed sets

Table 2.3: Mean squared errors (MSE) and mean absoluteséM#E) between the two
activation probability vectors achieved Inclusion-Exsttn Theorem and Monte Carlo sim-
ulation on p2p network

m = 20 m = 30 m = 40 m = 50
MSE | 7.5 x107° | 85x107° | 84 x107° | 83 x 10~°
MAE | 3.0x 1073 | 3.8x1073 | 37x 1073 | 33 x 103

Second, we compare the time needed to compute the influereadspiven different
sizes of seed sets. Table 2.5 and Table 2.6 list the time ddedboth Inclusion-Exclusion
Theorem and Monte Carlo Simulation on two data sets - p2pa&2Bp2p, at different
m, wherem denotes the number of seed nodes selected. And at thersaitie same
seed set is selected for both methods. Let’s look at Tablewhénm = 50, the time for
Inclusion-Exclusion Theorem is just 2.8450 seconds, wHibeite Carlo Simulation needs
36945.6 seconds for 20000 realizations. So the time fousich-Exclusion Theorem is
Table 2.4: Mean squared errors (MSE) and mean absolutes€M#E) between the two

activation probability vectors achieved Inclusion-Exsitan Theorem and Monte Carlo sim-
ulation on wiki-Vote network

m = 20 m = 30 m = 40 m = 50
MSE | 5.0x107% | 5.1x107% | 52x107% | 51 x10°°
MAE | 81x107° | 81x10° | 82x10~° | 80 x 10~°

39

28 7 538 257 2608 2601 2618 20668 2058 2149

Table 2.5: Time (sec) needed to compute the influence spreex different sizes of seed
setsm on p2p-223 network

Methods m=10 | m=20 | m =30
Inclusion-Exclusion | 0.1079 | 0.02531| 0.01925

Monte Carlo Simulation
(20000 times) 95.3935| 94.0613| 93.1055

Table 2.6: Time (sec) needed to compute the influence spreex different sizes of seed
setsm on p2p network

Methods m=10 | m =30 | m =50
Inclusion-Exclusion | 3.2012 | 3.0126 | 2.8450

Monte Carlo Simulation
(20000 times) 32345.4| 35372.2| 36945.6

competitive with that of just one time Monte Carlo Simulatidowever, Monte Carlo
Simulations need thousands of times simulations to reatdsalg solution. Therefore, our
probabilistic solutions speed up the computation of infagespread, especially on large

data sets, which make greedy methods to viral marketingleato large data sets.

2.9.3 Comparison of Injection Point Approximate Algorithm

The purpose of experiments here is to validate the apprdidmaccuracy of our
fast algorithm introduced in Section 2.7. Monte Carlo siatioin [1] is widely used and
regarded as one good estimation of IC model. The maximuneinfie arborescence (MIA)
model [4] is also a good way to approximate the spread gived sedes. We compare the
results of our approximate method to those two methods giversame seed sets. For
each data set, given a seed Sewve run Monte Carlo simulations for 20000 times to get
the final activation probability for each node. And for MIA del’s threshold, we tune the
value of threshold according to the papers suggestion - fipdirst where the change of

arborescence size slows down.

40

We first compare the total influence spread given seed,sghich is the sum of the

activation probability of each node, which is shown in FEg(2.13). As we can see, the

spread of our approximate algorithm is more near to the gptlonte Carlo simulations.

For example, on wiki-Vote data set, when number of seed s&0,ghe spread of our

algorithm is 2267, which is near to Monte Carlo simulatia?2270, while MIA get 2200,

underestimating the influence spread of seed nodes.

Next we compare root-mean-square error (RMSE) of our apprabe solution with

that of MIA, assuming Monte Carlo simulation gives the cotrealues. The results are

shown in Figure (2.14). As we can see, our approximate dlgurgets more accurate

approximation to the results of Monte Carlo simulations. FVof our approximate algo-

rithm is less than 0.005, while RMSE of MIA is around 0.035.

influence spread

influence spread comparison on p2p data set
T

000

250

20001

1500

10001

VA

28232 2831

Il Vonte Carlo Simulation
[_Jour Approximate Algorithm

29629 29703]
28764 2882)0 20390158
21705 A

50 100
number of seed nodes

(@) p2p

influence spread

influence spread comparison on wiki-note data set
T

20001

1500

10001

500

VA

[l Vonte Carlo Simulation
[_Jour Approximate Algorithm

22383 22424
[] 21687

2267 2270.2
2200.1

2299.8 2303.9,
[] 22372

Figure 2.13: Influence spread comparison

41

50
number of seed nodes

(b) wiki-Vote

100

2.9.3.1 Time Comparison

Our approximate algorithm is fast, since we follow a weighié#-S traverse ordering

to update the activations twice. Monte Carlo simulatiomstame consuming, because they

need to run 20000 times to get a good and steady approximahtiA is also slower

than our algorithm, because for each node, they need to thélchaximum influence in-

arborescence tree structure first. We list the running tiameparison in Table 2.7 for p2p

data set and Table 2.8 for wiki-Vote data set. Our experisang run on a PC with a

3.0GHz Intel Core 2 Duo Processor and 12GB memory.

0.045

0.04

0.035

0.03F

RM

0.015

0.01F

0.005

Table 2.7: Running time (seconds) comparison on p2p data set

0.025

0.02

seed nodes |S] =10 |S|=50 | |S|=100

Monte Carlo | 1.62 x 10* | 1.59 x 10* | 1.58 x 10*

MIA 2.53 x 103 | 2.61 x 103 | 2.64 x 103

Our approximate 1.04 x 10 | 0.93 x 10? | 1.01 x 102

performance comparison between our fast algorithm and MIA on p2p data set performance comparison between our fast algorithm and MIA on wiki-vote data set
T T T 0.04 T T
5= 0035f B— & — — - -
_— — —©©— our approximate algorithm
o — —&— MIA
0.03
—©— our approximate algorithm 0.025F
—B8— MIA
)
E 0.02
0.015
0.01
S 0.005 -
5‘0 160 1‘50 200 OO 5‘0 160 1‘50 200
of seed nodes # of seed nodes
(a) p2p (b) wiki-Vote

Figure 2.14: RMSE comparison between our approximate igtgorand MIA

42

Table 2.8: Running time (seconds) comparison on wiki-Vatadet

seed nodes |S| =10 |S| =50 | |S|=100
Monte Carlo | 4.45 x 10* | 4.51 x 10* | 4.53 x 10?
MIA 8.23 x 10° | 8.31 x 10% | 8.42 x 103

Our approximate 2.85 x 10% | 2.81 x 10 | 2.79 x 10?

0.24 T T T T T T T T 13
I 4 121
0.22 \
\
02F \ 11r
\ \
ir \
0.181 \0 1 A\
\ \
SN 0.9 R
_ 016 E _ \
5 S L \
& AN g 08 \
0.14 \ 4 \
\ 0.7 \ E
0.12f A\ 1
b@) 06} b\ 1
01f \ 1 o5k N x |
_o.
0.08} ~d 04l o . i
e
0.06 L L L L L L L L L L L L L L L L -
0.2 0.4 0.6 0.8 1 12 1.4 1.6 18 2 0.2 0.4 0.6 0.8 1 12 1.4 1.6 18 2
number of Monte Carlo Simulations X 10 number of Monte Carlo Simulations x10*
(a) p2p data set (b) wiki-Vote data set

Figure 2.15: Accumulated absolute differences betweentes@ution and Monte Carlo
simulation solutions when Monte Carlo simulations are mamf2000 to 20000 times

2.9.4 Comparison of Injection Point Exact Algorithm

We do experiments here is to demonstrate that the solutbom fonte Carlo simula-
tions, as the number of simulations increase, approachtbe texact solution by injection
point algorithm. For each data set, given a seedSsetve run Monte Carlo simulations
from 2000 to 20000 times and check the differences betweaénasd solution by Monte
Carlo simulations and our exact solution. Because the etgotithm is slow, we do these
experiments on sub-networks. Sub-network from wiki-Vaaéacset has 233 nodes and 456
edges and sub-network from p2p data set has 105 nodes anddéd. e

The differences between Monte Carlo simulations solutiwh @ur exact algorithm

solution are defined as

AT = |(Tegact)i — (Tme)il, Error="Y " Ax’ (2.23)
=1

43

- ¢ -random j j i -

= & -random

= & -random .
degree - 3350) degree P degree
110{ - B - distance - - -dstance .- 20 _ - distance z
[2e incremental 1 - -
incremental search 1 s 3300 .- incremental 1 -
. - = @ -incremental 2 -z 23001 P4 -
- @ -incremental search 2 . A - @ -incremental 2 - P
100 - - 250 p » .
. - . .
o - A - o - -
@ - P 3 .7 @ L Pid -7
g Bd -7 0 2000 - - o 2% PR
a 90 ‘ - 5 - - o - -
& SR & - & et .
P . a o 3150 L © 22801 PR IPhe
5] . .] - Q . -
c 4 - - c c - -
g, .o - e - g Lo7 "
2 ¢ .- - H " 2onr L2 L7
£ - - = = £ - - _
oF -7 3050 z=° y - . e
¢ 2260 ~ >
" L Y W
S T T - Y =257
. 2950) R TR 250 2 2 -
5
10 15 20 25 30 35 40 10 15 20 25 30 35 40 10 15 20 25 30 35 40
number of seed nodes number of seed nodes number of seed nodes
(a) p2p-223 (b) p2p (c) wiki-Vote

Figure 2.16: Influence spreads of seed sets selected byediffmethods. Note, the curves
corresponding to incremental search 1 and incrementatis@aalmost coincide with each

other on p2p-223 network

where,n is the number of nodes in the graph ang,.; is the exact activation probabilities

calculated by our injection point algorithm;,,. is the activation probabilities by Monte

Carlo simulations (averaged over the specified number of MtlIations).

2.9.4.1 Wiki-Vote data set

We randomly select 5 nodes as the seed nodes. Figure 2.1%8 #imaccumulated

differences between our exact solution and Monte Carlo Isitiaun solutions on wiki-Vote

data set, which is calculated by Eq.(2.23)

On Figure 2.15b, red circle represents the differences dmvihe exact solution

and the Monte Carlo simulation solution at different numbg× (indicated along

horizontal axis). The curve is roughly descending, whictossistent with our intuition -

the more times Monte Carlo simulations, the more accurad/tbnte Carlo solution will

be. This verifies the correctness of our exact solution toesexient.

Figure 2.17 shows the difference of exact solution and M@wdo simulation so-

lution on every node on wiki-Vote data set. The horizontalilmate represents the index

44

(c) Amsooo VS. ATi6000

Figure 2.17: Difference between exact solution and MontéoGamulations on wiki-Vote
data set (hnumber of seed nodég. Shown are the absolute value of the difference at
each node Ay is the results of Monte Carlo simulations of 2000 times. &y, for

AT4000, ATs000, AT16000-

45

of each nodeAmyy, means the absolute value of the difference between the twloote
when Monte Carlo simulations are run 2000 times and singildYir4o00, A7s000, AT16000
mean the absolute value of the difference between the twbadstwhen Monte Carlo
simulations are run 4000, 8000, 16000 times. To presentiffexahce clearly, we show
three 2-group comparisom\moggg VS. Ama000, ATa000 VS. Agooo @aNdmggoo VS. Amig000-
The overall difference is decreasing when the running tiofdgonte Carlo simulations
are doubled. The biggest differencedrygy is around 0.025, and iy, it's reduced

t0 0.02. INnA76000, it’s reduced to 0.008, which is small enough to ignore.

2.9.4.2 P2p data set

We randomly select 5 nodes as the seed nodes. Figure 2.1%a st accumu-
lated differences between the two methods, which is caledlay Eq.(2.23). The curve is

roughly descending too, similarly with that on wiki-Votetdaet.

2.9.5 Seeds Selected by Different Methods

This part is to compare the social influence of seed setstsdléy our incremental
strategies with those of seed sets selected by other metW&dsompare the following set
of algorithms.
(1) Random selection: seleet nodes randomly fron as the seed nodes.
(2) Degree selection: seleet nodes with the largest out-degree as the seed nodes.
(3) Distance selection: seleet nodes with smallest average shortest-path distances to all
other nodes as the seed nodes.
(4) Incremental search 1: it's a combination of greedy methand incremental search.

¢ Compute activation probability matri® using Algorithm 3.

e Selectm nodes with the largest influence score)).

46

e Apply incremental search strategy using Algorithm 6 on seedes selected by last
step, with parametér = [1, 2, 3.
(5) Incremental search 2: it's a combination of greedy methand incremental search.
e Selectm nodes using greedy method 2 introduced in section 5.3.
e Apply incremental search strategy using Algorithm 6 on seedes selected by last
step, with parameter = [1, 2, 3.
Note, for all the above 5 methods, we apply our Algorithm 2 ¢anpute the influence
spread for the entire network for a given seed set. And edgghivE remains fixed for the
same data set. The experiments are run on a PC with a 3.0G#Liorte 2 Duo Processor
and 12GB memory.
The results on 3 data sets are shown in Figure 2.16. Our methatgperform the
other methods significantly. The point is that once we getttivation probability matrix
B, a lot of recalculation can be omitted by combining our psgzbprobabilistic additive

strategy.

2.10 Conclusion

In this chapter, we first propose an inclusion-exclusiomtbm to compute the ac-
tivation probability for each node on the network, then wepgmse an injection point al-
gorithm to compute the influence spread under IC model bgbthoxgmately and exactly.
The exact solution can provide guidance on developing efficéstimate solutions. The
structures used in the exact algorithm provides a conveniayto design the approximate
algorithm which runs linear in both number of edges and no#@speriments shown our
approximate algorithm gives good approximations to atitvaprobabilities, with RMSE
about seven times smaller than the state-of-art MIA appnaie algorithm while signif-

icantly faster than MIA algorithm. We believe the “injeatimode + SCC” structure and

a7

their solution algorithms could be useful for solving a niembf problems in IC model. We
also propose an incremental search strategy to furtheerdigselected seed sets, which
are first gained by greedy methods, and the incrementallsstrategies improve the final

spread greatly.

48

CHAPTER 3
Social Tagging Recommendation

3.1 Introduction

Social Tagging is an important feature of Web 2.0, which énaiany users add key-
words (tags) to items/resources like music (last.fm) yves(flickr), web pages(del.icio.us).
This tagging information helps those websites organizie theources and assist the users
to communicate with each other. Tag recommendation systdps lthe tag process by
advising a set of tags to the user that he may use for this itéumst like the traditional
recommendation system, the tag recommendation systesvi®ated on the similarly ob-
servation, "a user always marks an item with the tag whichahesady been used by the
other users”. However, different from the traditional iteiser (two dimensions) recom-
mendation system, the tag recommendation system conta@esdimensions - users, tags,
items. Although some traditional methods, such as Colkia Filtering, link mining,
etc, can be directly extend to the tag recommendation byriglthree dimensional space
into three bipartite relationship item-tag, tag-user rit@En, these methods miss the holis-
tic interactions between three dimensions. Symeonidis[@B&first use the tensor model
for the tag recommendation system and predict the tags toses. Several studies using
tensors also appeared in [20][21][22].

However, most of these tensor decomposition methods [Z8jrsuiom several in-
herent weakness. One of the most well known challenge isghess data problem. In
Table 3.1, we list the statistics of three widely used tergaia sets. We use tensor to
model the data. The number of nonzero tensor elements steomuthber of tags actually

been attached to items. (Note that a specific tag can be attaolmany different items;

49

Table 3.1: Real world tag data set statistics, with numbéags$, number of items, number
of users, number of nonzero tensor elements (NNZ) andvelBtiNZ.

Dataset #1ltem #Tag #User NNZ Rel-NNZ

Last.Fm 1278327 272605 51992 10274749 5.6E-10
Movie Lens 7601 14810 4009 95499 2.1E-7

Delious 67 1472 2387 9212 3.9E-5

each of these attachment constituent a nonzero tensor mignteom the statistics, the

relative number of nonzero tensor elements is defined as

number of tags actually attached
litems| X |tags| x |users]|

are extremely low, less than 1.0E-04=0.0001=0.01%, whidicates that all of these real

Relative NNZ=

world tag data sets are sparse networks. Many tensor deaitopacalgorithms are im-

peded by the sparse problem, hence can't handle users wbeareked few items. Fur-

thermore, previous tensor approaches simply set the mamskedhlues to zero and com-
pute tensor decomposition once as the prediction. Thittilgse tensor decomposition
methods have high space and time complexity, and are impaafdr large data sets.

In this chapter, we present a new tensor decomposition ntbdespecifically deals
with very sparse data. The model utilizes low-order polyrasto improve/enhance statis-
tics among users, items and tags. In contrast, traditi@redr decomposition methods
such as Tucker and Parafac decompositions use only high potignomials (3rd order
polynomials for 3rd order tensor) which appear to overfistheery sparse social tagging
data. Experiments on many social tagging data shows thdowusrder tensor decompo-
sition model outperforms traditional decompositions ¢stesitly and significantly for the

tag prediction problem. In addition, this low order tensadel has lower time complexity.

3.2 Problem Definition

Our research work focuses on how to provide a user with a thhigeof tags for a

special item. For example, Figure 3.1a shows an exampleafsbr-tag-item-relationship.
50

\

— ol o] oft]
User . [1|0 (0] 1 116| O
T57lo]| o000
‘//34‘1120011 0| o |oa| o
STTaTe][elo o ol folelelt g 0| 1 03] o
g :
° ollololo]o — (o] 0O |033| O
Tag .
olofz1]o0 e (0] 0O |-066| O
l o o "'_/
— tem —> Item
(a) TensorX (b) Result

Figure 3.1: (a) An example of tensof with 3 users and a post been masked. (b) The
predicted results.

If we want to recommend the tag for user 1 on item 3, we will mégkcolumn of user 1
item 3, which has been drawn as the yellow color and set thisraoas the missing values.
Then, we run tag recommendation algorithm which providelisted values for each tag
that may be used by this user. Figure 3.1b shows these prddietues. Then, we sort
these values, and return the tdptags to the user. In this example Nfis equal to 1, we
will return tag 2 to this user.

We formalize the notion of user-tag-item relationship aoihfulate the tag recom-
mendation problem. The tag dataset is a tuplé&'ef (U, T, I, R), whereU, T and/ are
the subset of users, tags and items respectivelyraisca relationship betweehU andT,
which R € TUT. For example(i, j, k) € R, that means usdr mark item: with the tag;.
For the tag recommendation, we will recommend for the spesier-item paif:, k) a list
of tagsT'(i, k). We define these user-item pairs as the post as following.

Post(i, k) ={(i,k)|ie I,ke U, 3j €T :(i,5,k) € I x T x U}

In the real application]'(i, k) is calculated by ranking on the set of tags by some
criterion and quality and then select the topnused tags to recommend the user.

We list all the notations in our paper in table 3.2.

51

Table 3.2: Symbols

Symbol | Definition

X original tensorX = Xq + Xm
Xe°ld 1 the original training tensor
Xnew the fold-in tensor

Xa elements with observed value X

Xm elements with missing value ik

N; the total number of items

N; the total number of tags

Ny, the total number of users

[1X]| Frobenius norm|| X ||2 = Zf\ﬁl Zj.v:jl Zﬁ:"l ijk

Xitt+ | Xigt = Z;V:jl Sk X+, X4y Similarly defined
Xiwx Xiwsx = Xip 4 /NjNi. Xujs, Xsxi are similarly defined
Xij+ Xij+ = Zg:’“l Xijk- X4 1. X4k are similarly defined
Xij« Xijx = Xij+ /N Xyjr Xixk are similarly defined
Xypy | Xypqy =20 Z;\r:jl lej:kl Xijk
Xioses T = X+++/NL'NtNk
€ the convergence factar,= 0.001

3.3 Low Order Tensor Decomposition
3.3.1 Motivation

Most social tagging data are very sparse. This refers taslaive number of nonze-
ros in the data are very low. For example, for the last.fm ddi@ percentage number of
actually assigned tags abe %.

We first mention an idea often used for improving rare siaistLet us consider
a rare disease such as a certain type of cancer. Supposeshkus ta count the rate of

its occurring per thousand people for a county. This ratéfluictuate significantly from

d %bj Yi
— o+ —

Xijk Pk
C Wi

—_—
oh—Order

1st—Order
—

—~—
2rd—Order

3d9—Order

Figure 3.2: Tensor decomposition relationship

52

county to county because the number of samples are too sinatead, we can average
over a large population or a larger region (say both the goaimd its neighboring counties)
to improve the statistics.

Now we demonstrate how to improve the statistics for tengaothposition. The
key idea is to use low-order polynomials. We will discuss@Heé, 1st, 2nd order decom-
positions. Figure 3.2 shows the relationship between eatdot decompositions.

Consider the zero-th order polynomial. We set
whered is a constant, and obtain the optimal solution by

min J = > (X — d)? (3.2)
ijk
Clearly,
ijk ijk ijk

Settingd.J/0d = 0, we obtain the optimal solution
d = Xusx, (3.3)

where X.., is defined in Table 3.2. Clearlyis the average of the tensar in all dimen-
sions. Interestingly, this clearly matches our intuition.

Consider the first order polynomials. We set
and obtain the optimal solution by

minJ = (X — a;)° (3.5)
‘ ijk

53

Clearly,

J o=) (XD —2Xia; + af) (3.6)

ijk

= Y X2 -2 X+ NN d? (3.7)

ijk
where X, ., X;.. are defined in Table 3.2. Setti®y//0a; = 0, we obtain the optimal

solution

Clearly,q; is the average over & dimensions. This significantly improve the statistics (by
a factor of N;N;). We can do this for other dimension and the decompositiodehof

Eq.(3.4) can be expanded to general 1st order terms
Y;'jk =a; + bj + C (39)

The optimal solution of this model is given similarly by theesages of other dimensions.

Consider the second order polynomials. We set
Yiie = Uij (3.10)
and obtain the optimal solution by

minJ = (Xip — Uy)* (3.11)
* ijk
Clearly, J can be expanded as
S (XP = 2XipUy +UR) =Y X7 =2 Xy Uy + N > U
ijk ijk i i
where X, , X;;. are defined in Table 3.2. Settigy//0U;; = 0, we obtain the optimal

solution

Uij == Xij*a (312)
54

i.e., U;; is the average over thedimension. This clearly improve the statistics. We can
do this for other dimension and the decomposition model ofEt0) can be expanded to
generic 2nd order terms

Yijk = Uij + Vig + Wi (3.13)

The optimal solution of this model is given similarly by theesages of other dimensions.

3.3.2 Baseline Low Order Tensor Decomposition
From the above analysis, combing zero order Eq.(3.3) ,fidgtrd=q.(3.8) and second

order Eq.(3.13), our low-order model of tensor decompasiis defined as
Yijk = a; +b; + cp +d+ Uy + Vig + Wiy (3.14)

Thus the model parameters @e- (a,b,c,d, U, V,W).
This model has a very important property that it's optimduson can be found in
closed form, as showing in the following theorem:

Theorem 5 The optimization of

minJ =Y (Xijx — Yiju(6))? (3.15)
ik
has the optimal solution
d= X***, a; = —XZ‘**, bj = —X*j*, Cr — —X**k, (316)
or combined together

55

3.4 Missing Value Problem

In recommender systems for both rating data and socialriggista, there are miss-
ing values. Here we discuss the algorithm to deal with mgssadue in tensor and prove
its convergence.

The tensor missing value problem can formulated as

@Mw—y%zuggum—nmz (3.19)

where() represent the collection of tensor elements which have assigned values. The
missing value problem is to solve for the tensor decompmwsitiodelY” such as Eq.(3.14)
while only parts ofX are known.

We now describe the solution algorithm. First, we ulsgto represent the elements
of tensorA whose values are missing. Therefore for any tensoA = Ag + A,,. Our
approach is to iteratively computé®, Y'!, Y2 ... by filling up the missing values and

solving the standard tensor decomposition

min ||(Xq + Y) — Y2 (3.20)

yt+l

whereY* is the solution at-th iteration, and’’, is the missing value part df*. Note that
Xqo = X is the input tensor with missing values.
We now prove that this iterative algorithm converges:

Theorem 6 The solution to the optimization of Eq.(3.20) satisfies
IX — V'3 > |X — Y3 (3.21)

fort=0,1,2,---.

Proof. We have

IX =Yg = (X +Y) = YII* 2 (X +Yy) = Y2 (3.22)
56

The first equality is due the definition ¢f- |,. The second inequality is due to the way

Y*! through Eq.(3.20). Furthermore, notihg*! = Y™ + V! we have

I(X +Y5) = Y2 = [[(X =Y g + (Y = V)7

= X =Y"HG + Y =YL = IX =Y (3.23)

Combining Eq.(3.22) and Eq.(3.23), we obtain Eq.(3.21)s Tompletes the proof.
This theorem guarantees the convergence of the algoritluawle the error goes

down monotonically and but remains bigger than zero:

X =YOIe > IX =Y & = X =Yg > - (3.24)

3.5 Tensor Fold-in Algorithm for New Users

As social networks become popular, each day, thousandsiotisers are added to
the system and the decompositions must be updated daily onlame fashion. In this
section, we provide analysis of the new user problem, anseptefold-in algorithms for

Tucker, ParaFac, and Low-order tensor decompositionsogempin last section.

3.5.1 Overview of Tensor Decomposition Models

In tensor decomposition, we u3g, to reconstruct/approximate the tensor;,
Xijk = Yijk, (3.25)

Y is formed using several factors/parameters, and the optiahaes of those parameters
are obtained by the following optimization,
min J = > (Xijk — Yiji(6))? (3.26)
ijk
Different forms ofY;;;, constitute different models. Here we list three most imgatreind

widely used decomposition models in tag recommendaticm are
57

D
k

ilm X : @ - ilm X - LJ
l Y Wold \ynew J g g/' Wold yynew

/ /
Xold Xnew Xold Xnew
(a) Tucker model (b) ParaFac model

Wrew
< user ——> % crew "
| = ot =./+U" é
item X o
l /4 G Vi

a j

Xold Xnew rew

(c) LOTD model

Figure 3.3: Three tensor models: (a) Tucker Model; (b) Pacd®odel; (c) LOTD Model.

Tucker Model [24]: It can be exemplified in Fig. 3.3a. And thedel parameters
areU,,«ps Va,x@r Wayxr, Spxgxr. Note that matrix sizes are shown as subscripts. The

optimal values of those parameters are obtained by theafisipoptimization,

n;ning P Q@ R
min J = Z (ka - Z Z Z Uip‘/qukTSqu>27 (327)
ijk p=1 ¢=1 r=1

ParaFac Model [23]: It can be exemplified in Fig. 3.3b. Andriedel parameters
areUy,,xr, Va,xr, Wha,xr. The optimal values of those parameters are obtained by the

following optimization,

NN R
minJ = > (Xijp — Y U Vir Wi)?, (3.28)
ijk r=1

Low-order Tensor Decomposition Model: Both Tucker and Pacadecomposition
applied third order interpolation (three factors multiphvhile Low-order Tensor Decom-
position (LOTD) uses zeroth order, first order and seconeroirtterpolation. This low-

order scheme has better performance for sparse tensobdataise it has lower chance to
58

overfit the extremely sparse tensor data than higher ordemses. LOTD can be exem-
plified in Fig. 3.3c. The optimal values of the parametersab&ined by the following
optimization,

N;N;Ny

ijk

This model has the following closed form solution,

d= X***a a; = _Xi**7 bj = _X*j*a Cr = —X**ka
(3.30)
Uij = Xij*? Vik = Xi*k, ij = X*jk

where the notations such &5..,, X;.. are explained in Table 3.2.

3.5.2 Fold-in Algorithms

As mentioned above, a large number of new users log on thalsagging systems
everyday. To deal with the problem of recommending persoedltags to those new users
efficiently, we propose fold-in methods for different tensiecompositions. This paper

focuses on fold-in new users into the system.

Tensor factors of{°¢ are computed using models in last section. Based on those

factors, we can fold in{™** without decomposing = (X°!4, X"*) all over again to get
the prediction values ok <>,
3.5.2.1 Tucker Decomposition Fold-in Algorithm

For Tucker, the fold-in process is shaded in Fig. 3.3a. Tlaelet part ofX rep-
resents new usets"*. Among model parameter§l/, V, .S) remain unchanged, and the

size of W in Eqg. 3.27 will change from;, x R to (ns + 1) x R, wherel is the number of

59

new users. Then we split’,,, 1)« r as the following /"¢ remains unchanged, so our task

here is to comput&l/ v,

Wngstyxr = (Wil g, WEE)
Weld = (W, Wy, - - - W) (3.31)
W = (W41, Wi g2, -+ s Wy 41).

Theorem 7 SubstitutingX = (X4, X"ew) and W = (W4 W) into Eq. 3.27, while

fixing the old parameters, the optimd ™" is obtained by the following algorithm.

(1) Rearrange the inpuk ™ as a matrix
X = (ved X™ 1) - ved X)) (XF) = X, (3.32)
(2) Rearrange the computed core-tensoas a series of matrices
S=(5"+,5%), (8 = Spar (3.33)
(3) Compute the following,;n,;-by-R matrix
A= (vedAY),--- ,vedAR)), A" =US"VT, (3.34)
(4) Wrev is given by

pmew — xmewT g(AT A)1, (3.35)

3.5.2.2 ParaFac Fold-in Algorithm

For ParaFac, the fold-in process is shaded in Fig. 3.3b. fihéexl part ofX repre-
sents new user& <. Among model parameterd/, ') remain unchanged an@f needs
to be splitas Eq.3.31.

Theorem 8 SubstitutingX = (X4 X ew) andW = (We, Wrew) into Eq. 3.28, while

fixing the old parameters, the optimd "< is obtained by the following algorithm.
60

(1) Rearrange inpuX ™" as a matrix
Xmew = (ved X™) - ved X)) (XM = X, (3.36)
(2) Compute the followingn;n,)-by-R matrix C, whose element is
Clijir = Ui Vjr, (3.37)

(3) Wnev is given by
wrew = xnewTo ot oyt (3.38)

3.5.2.3 LOTD Fold-in Algorithm

For LOTD, The fold-in process is shaded in Fig. 3.3c. The skguhrt of X' rep-
resents new user&"*. Among model parameters$q, b, d, U) remain unchanged and
¢, V, W need to be split the same way @5 does in Eq.3.31c°, Vo4 W94 remains un-
changed. Our task is to compuf&®, VVmev Jmew,

Theorem 9 SubstitutingX = (X°4, X"v) andc = (¢!, cnew), V = (Vold yrew) 1) =
(Wetd jmew) into Eq. 3.29, while fixing the old parameters, the optiatat, Vrew Jynew
is obtained by the following algorithm.

(1) Compute a new tenset as follows,
Az’jk = Xl-njiw — (d + a; + bj + Uzj) (339)
(2) Computecv, Vrew Jymev as follows,

Cr = —A**k, Vik = Ai*k, ij = A*jk (3-40)

3.6 Experiment Results

We carried out experiments on several real world datasetsioate the performance

of our methods.
61

DataSets: Our experiments use the dataset in table 3.1.

Many recommendation algorithms produce the bad recomntiendasults on the
"long tail” of users who marks only few items. All of the recamendation methods are
based on the statistic method. If the data sample are vesydag method will not receive
any good result. Thus, we restrict the evaluation on the sdépart of the tag dataset
following the traditional approach. For each dataset, weduce how we prune these
dataset.

Last.fm DataSet[25]: Last.fm dataset consists of web pagagled from the Last.fm
web site which is a social media systems that provide theopatized media for its users
and also promise the users to add the tags on that media. @a&ss®t is crawled in the
first half of 2009. We first choose the active users which maokenthan 2400 tags but
less than 5000 times on the items. The reason for us to daketesers who marks the tags
more than 5000 times is that these users have a great chaheeattake user. Then, we
select the tags which is used by 1000 times but less than 40@8.tIn the end, we choose
the items which is marked more than 88 times but less than 80@3.

MovieLens DataSet[26]: MovieLens dataset collect the #tagruser information
from the online movie recommender service MovieLens. We ¢ineose the active users
which mark more than 30 tags but less than 600 times on thesitdiinen, we select the
tags which is used by 30 times but less than 1000 times. Inrtievee choose the items
which is marked more than 25 times but less than 1000 times.

Bibsonomy DataSet[27]: The bibsonomy dataset is downloaa bibsonomy.org.
We first choose the active users which mark more than 100(iatgsess than 2600 times
on the items. Then, we select the tags which is used by 42@ tiudess than 2000 times.
In the end, we choose the items which is marked more than 7sthut less than 1000

times.

62

3.6.1 Evaluation Strategy and Metrics

We use the same evaluation protocol in [20] [22]. From thesiripnsor, for every
user, we randomly mask one post, i.e., this post becomengissiues. (If there is only
one post in this user, we don’t move that post.) This formstémsor on which we run
various recommendation algorithms to fill up the maskede&lu he filled-up values are
the predictions.

We measure the prediction quality using traditional Pienifkecall methods in a
top-N fashion. For each postk), we sort the predicted valuesd); values forN; tags.
We pick N = 1,2,3,---,10 top values and asset that the tags associated with theslpick
values are predicted as “positive”. We assess the predatysdvith the known information

which have been masked out. The precision and recall areediedis

_|[teTop(i,k,N)Nt e Post(i, k)|

Precision(Post(i, k)) = (3.41)
N
Precision(Post(i
Precision(Ties;, N) = recision(Post(i, k) (3.42)
| Post]|
: |t € Top(i,k, N)Nt € Post(i, k)|
ll(Post(i, k)) = 3.43
Recall(Post(i, k)) (At e Post(i, k)| (3-43)
Recall(Post(i, k))
Ty, N) = 3.44
Recall(Ties, N) Post ()
F1(Tu, N) = 2 - Precision(Tyest, N) - Recall(Ties, N) (3.45)

Recall(Tiess, N) + Recall(Tiess, N)
Clearly, at smallN (less tags picked), precision is high and recall is low; Aghar N
(more tags picked) recall is higher and precision is lowaisTorms the well-known ROC
curve, as shown in Figures 3.4-3.6.

All the parameters for the different algorithms in theseeskpents are set according
to the original papers. We note that many recommendatiarigthgn requires initialization
of the missing values (masked out values). In our experiseve use the average value of
all 3 dimensions for initialization. This is better thanngizero as for initialization.

63

Last.Fm Dataset For Accuracy

« Tucker
* Parafac
Painwise
Popular Tags
PageRank
> FolkRank
051 A 1stLOTD
. 2nd LOTD
> 31d LOTD

Precision
v

. . .)
0.4 05 0.6 0.7 08 09
Recall

Figure 3.4: The Precision-Recall curve for the Last.fm sketta

3.6.2 Performance of the LOTD Model

We compare the prediction quality of LOTD to the other modElgure 3.4, 3.5 and
3.6 show the comparison to (1) FolkRank, (2) PageRank, (RyviR@ decomposition, (4)
Tucker Decomposition, (5) Parafac Decomposition, (5) Raplags, together with our (6)
1storder LOTD, (7) 2nd order LOTD, (8) 3rd order LOTD meth@8isl order is illustrated
in Figure 3.2).

The experiment results indicate : (A) In general, the 2naeotdDTD method has
the best precision-recall curves for all datasets. (B) Tdréogpmances of PageRank,Popular
Tags and First Order Tensor decomposition is much lowertt@nther methods. The rea-
son is these three methods only capture the global infoomaind recommend different
users the same tag sets. (C) Tucker and Parafac method araditienal tensor decompo-
sition methods, but the accuracy of these two methods arerlivan the other factorization

models.

3.6.3 Performance of the Fold-in Models

Considering the possible adoption of the social taggindipten in real systems, a

new user registers and logins the system and assigns somttagme items. Based on

64

MovieLens Dataset For Accuracy

- Tucker

* Parafac
Pairwise
Popular Tags

04 PageRank

> FolkRank

0351 A 1stLOTD

> 2nd LOTD

3rd LOTD

0.451 [

Precision
o
X

L L L L L L L)
0 0.1 02 03 0. 5 0.6 0.7 08 0.9

4 0.
Recall

Figure 3.5: The Precision-Recall curve for the MovieLenssget

Bibsonemy Dataset For Accuracy
0.8

+ Tucker
* Parafac
Pairwise
07 Popular Tags|
PageRank
*. > FolkRank
06 > A 1stLOTD
2nd LOTD
3rd LOTD

Precision

02 L

o
01 I - SN

01 0.2 03 0.4 05
Recall

Figure 3.6: The Precision-Recall curve for the bibsonontaskzt

this information, the system makes a prediction/recomragod to this new user, that is,
produces a ranked list of tags to this user. There could b&pteupredictions occurring at
the same time. For evaluation part, we evaluate the qudlittyeoranked list of tags. For
example, if we want to provide uséra ranked list of tags for itemy we first mask the
tagging activities regarding to uskrtowards item; and set them as missing values, then
tensor fold-in algorithms predict these missing values.défine a user-item pair as a post.
10-fold cross-validation is adopted in our all experimer®r each dataset listed
above, we randomly partition the input tensor into 10 paBEach part is retained as the

testing dataX <" (fold-in tensor) for once. For every userXi*<*, we randomly mask one

65

post, i.e., this post becomes missing values. This formsathgor defined aX;cv, ., on
which we run various fold-in algorithms to fill up the maskedues. All the rest parts of
input tensor constitute a training tensor, whiclXi€¢?. For each time, we use tensor factors
of X4 and X", . to predict the missing values k"<, .: the average of precision and
recall results is the final prediction result.

For each fold-in prediction, we use traditional PreciskRecall methods in a top-N
fashion. For each post¢), we sort the predicted values. We pisk= 1,2,3,--- , 10 top
values and return the corresponding tags associated veisie fhicked values.

Last.fm DataSet[25]: Last.fm is a social media system thatides the personalized
media for its users and also promises the users to add thertiahat media.

Subset A: Subsetl of Last.fm dataset has 203 items, 241 tags, 425 users and the
Relative NNZ (density) i9.11%.

Subset B: SubseB has 100 items, 157 tags, 280 users and the Relative NNZ is
0.27%.

MovieLens DataSet[26]: MovieLens dataset collects theitag-user information
from the online movie recommender service MovielLens.

Subset A: Subset of MovieLens dataset has 345 items, 369 tags, 465 users and th
Relative NNZ is0.0175%.

Subset B: SubseB has 98 items, 199 tags, 263 users and the Relative NNZ is
0.078%.

Bibsonomy DataSet[27]: The bibsonomy dataset is downld&den bibsonomy.org.

Subset A: Subset of Bibsonomy dataset has 362 items, 116 tags, 361 usersand th
Relative NNZ is0.065%.

Subset B: SubseB has 117 items, 101 tags, 204 users and the Relative NNZ is
0.24%.

66

Precision

Precision

0
045 05 055 0.6 065 07 075 08 085 09
Recall

(a) Last.fm data : subset

05 06 0.7 0.8 0.9
Recall

(d) Last.fm data : subsd?

Precision

Precision

0.1 0.2 03 0.4 05 06 07 08

0.9

0.2 03 0.4 05 0.6 0.7 0.8 0.9
Recall

(e) MovielLens data: subsé&t

1

Precision

Precision

[
L]
=

e

0.4 05 0.8 0.9

0.6 0.7
Recall

(c) Bibsonomy data: subseit

1

0.4 05 0.6 0.7 0.8 0.9
Recall

(f) Bibsonomy data: subsé?

Figure 3.7: Precision-Recall curves for three tensor Foldiethods on three datasets:
from left to right: Last.fm data, MovieLens data, Bibsonodgta. The performance gap
between LOTD fold-in and ParaFac/Tucker fold-in methodseases from the smaller
subsetB to larger subset.

We compare the prediction qualities of the three fold-iralpms. Figure 3.7a, 3.7b

and 3.7c show the comparison between (1) Tucker Fold-irRé2aFac Fold-in, (3) LOTD

Fold-in on subset! of each dataset, and Figure 3.7d, 3.7e and 3.7f show the cmopa

on

subsef3 of each subset.

The experiment results indicate: (A) LOTD Fold-in method liae best precision-

recall curves for all datasets, because of the sparsityabiverld dataset. (B) Tucker and

ParaFac fold-in methods are based on the traditional telesmmposition models, and they

overfit these sparse tensor data. The results are consigtarthe results in last section,

in which, the original LOTD model gains better performanitart the original Tucker and

ParaFac decompositions. (C) For each dataset, we notidbédifference between LOTD

fold-in and Tucker/ParaFac fold-in methods on subset much bigger than that of subset

67

1

B, which means that LOTD fold-in can gain relatively much eefterformance than the
other two fold-in methods on sparser dataset. It is illusttaagain that LOTD fold-in

method is targeted at sparse data.

3.6.3.1 Efficiency of the Proposed Fold-in Algorithms

Table 3.3: Time for folding in one new user vs. original aiggon

Alg. Time for one new user(sec)
Tucker 33
ParaFac 16000
LOTD 21
Tucker Fold-in 0.72
ParaFac Fold-in 0.0024
LOTD Fold-in 0.00077

Table 3.3 gives the runtime of the fold-in methods and odfjmethods on Last.fm
dataset. As the original algorithms, the same convergeslegance factoe = 0.001
is used. We can see that the consuming time for the fold-irhoast is much less than
the corresponding original algorithm, because we don’drteecalculate the whole ten-
sor decomposition again. We can see that LOTD Fold-in meihoduch faster than the

traditional Tucker and ParaFac Fold-in methods.

3.7 Conclusion

In this chapter, we present a systematic study of low-ordesdr decomposition
approach that are specifically targeted at the very sparse ptablem in tagging rec-
ommendation problem. We demonstrate that low-order potyals are uniquely capable
of enhancing statistics and avoids overfitting than traddi tensor decompositions such
as Tucker and Parafac decompositions. We performed exéeagperiments on several

68

datasets and compared with six existing methods. Expetahsgsults demonstrate that
our approach outperform existing approaches.

We also propose three tensor fold-in techniques to dealwéathuser problem. The
tensor factors coming fronX ° carry the historic information and also the similar users
activities. While factors fromX"<* indicate the new users’ personalized preference and
features those can help to detect their potential activiti#hen/ gets bigger, social tag-
ging system can combine curreAt*” into X°“, and then reproduce the decomposed
factors. With new decomposed factors, which carry morestatéormation and trends,
the system can do online recommendations again. The fdkekhmiques proposed in this
paper have fast online performance, requiring just a fewpkmmatrix operations for new
users. Meanwhile, the experiment results demonstratethibaiold-in methods can pro-
vide comparable prediction quality. Especially, LOTD fotdmethod based on Low-order
Tensor Decomposition model is specifically targeted at plaessty challenge in tag recom-
mendation systems, because low-order polynomials cameglibe statistics of the sparse
tagging datasets. Therefore, it can gain better predietiiegracy than the other two fold-in
methods, which are based on two traditional tensor decomnposiodels. The traditional
tensor methods (Tucker and ParaFac) obviously overfit taessgensor decompositions.
The fold-in methods can help social tagging recommendatystems achieve high scala-

bility while providing good predictive accuracy.

69

CHAPTER 4
Robust Tucker Tensor Decomposition For Effective Imager8smtation

4.1 Introduction

The development of online social media provides tons of esaand videos every-
day, which makes image or video storage and denoising prti@o important and urgent
research topics.

In a typical image storage problem, an image is represerged lad long feature
vector, and then this long vector denotes one data point igladimensional space. But
as we all know, an image can be naturally represented as a&stknwith each element
denoting the feature value on that specific spot. The 1-dovet#notation of an image
makes it convenient for subspace learning, such as prirmpaponent analysis (PCA)[28]
and linear discriminant analysis (LDA)[29] used in faceaguaition area.

Recently, some of other subspace learning algorithms egoln 1-d vector data
are studied, such as locality preserving projection (LB®)and localized linear models
(LLM)[31], which are proven to be efficient. However, the Ixgttor denotation strategy as
a whole ignores the neighborhood feature information witine image, while 2-d matrix
denotation retains the important spatial relationshipvbet features within one image.

Therefore, a lot of tensor decomposition techniques amiesfun computer vision
applications. For example, Shashua and Levine [32] adateklone decomposition to
represent images, which was described in detail in [33].g¥etral. [34] introduced a two
dimensional PCA (2DPCA), in which, one-side low-rank apgmation was applied. Gen-
eralized Low Rank Approximation of Matrices (GLRAM) was pased by Ye et al. [35],

and the method projected the original images onto one twewnsonal space. Ding and Ye

70

proposed a two dimensional singular value decompositibs{ZD) [36], which computes
principal eigenvectors of row-row and column-column casace matrices. Other tensor
decomposition methods are also proposed and some of thepraren to be equivalent
to 2DSVD and GLRAM in [37]. High order singular value decorsjimon (HOSVD) [38]
were proposed for higher dimensional tensor by Vasilesdulanzopoulos [39].

In above tensor analysis algorithms, an image is denoted2sg enatrix or second
order tensor as itself, which retains the neighborhoodimé&tion within the image itself,
and then a set of images can be denoted by a third-order tefisey minimize the sum
of squared errors, which is known as frobenious norm, in twvkacge errors due to outliers
and feature noises such as occlusion, after being squasedndte the error function and
force the low rank approximation to concentrate on thesedata points and features,
while nearly ignoring most of other data points.

Over the years, there are many different approaches prdapgos®lve this problem
both on 1-d vector data and 2-d matrix data. [40] [41] [42]][¢R!] [45] [46] [47] [48].
The approach using pute -norm is used widely because it offers an simple and elegant
formulation [43] [44] [45] [47] to suppress the impact comiinom noisy data or features.

A difficulty of pure L-based methods is that the optimization tends to be hard. Sev
eral computational methods have been proposed [43] [44][43. These methods are
either complicated or difficult to scale to large problems.

In this chapter, we propose a robust Tucker tensor decotmmo$RTD) model to
deal with images occluded by noisy information, and alsgppse a simple yet computa-
tionally efficient algorithm to solve thé,-norm based Tucker tensor decomposition opti-
mization. This method also provides some insights to themepation problem such as the
Lagrangian multiplier and KKT condition. We also carry outensive experiments in face
recognition, and verify the robustness of the proposed oakth image occlusions. Both

numerical and visual results demonstrate the effectiveeaesur proposed method.
71

4.2 Robust Tucker Tensor Decomposition (RTD)

Standard Tucker tensor decomposition [38] uses reconsttuensorn” to approxi-
mate the original tensaoX,,

P Q R

Y;jk = Z Z Z Uip‘/qukrSpqr (41)

p=1 ¢=1 r=1

whereY is a third order tensoly € R xmixme U € RMXEPV € RxQ W e Rruexi

S € RP*@xF s a core tensor, which couples different 3rd order muftedir polynomials.
Therefore, mathematically; can be expressed as the following (Eq.(4.2)), which simpli-

fies the tensor constructing expressions in next sections.
Y=Ux VR, W®s3S (4.2)

Tucker tensor decomposition has the following cost fumcf88],

ng Nj ng

i VIR =305 (K- Vi)

i=1 j=1 k=1 (4.3)
st. U'U=1,VIV=I,WIw =1
It is well-known that the solution to the above optimizatismiven by high order singular
value decomposition (HOSVD) [38], which will be introducedthe algorithm part. As
we can see, the standard Tucker tensor decomposition uslesrfius norm to decompose
the original tensor. Frobenius norm is known for being desesio outliers and feature
noises, because it sums the squared errors. Whijleorm just sums the absolute value
of error, which reduces the influence of the outliers commgatbd the Frobenius norm.
So the more robust against outlier version of Tucker tensgpohposition is formulated

using L;-norm. L;-norm of a third order tensod with sizen; x n; x ny; is defined

72

as||Ally = > >0 Dok, |age]. Therefore, the robust Tucker tensor decomposition

(RTD) is formulated as,

ng Ny ng

Uf‘l}’iWT{SHX V=)) 0 | Xk — Y

i=1 j=1 k=1 (4.4)
st. UtU=1,VIV =1I,WIW =1

lllustration: before going any further, we want to give argla at the denoising effect
by RTD first. Figure 4.1 and Figure 4.2 illustrate the recnnged effect on AT&T data set,
with existence of two different occlusion strategies, vihidll be explained in details in
the experiment part. In both figures, images of the secondepwesent the reconstructed
images by RTD and those of the fourth row represent imagemnstacted by Tucker
tensor decomposition. In both noise and corruption caseByu& Tucker decomposition

gives clearly better reconstruction.

4.3 Efficient Algorithm for Robust Tucker Tensor Decompiasit

The standard Tucker decomposition can be efficiently sakgath the HOSVD algo-
rithm [38]. In this chapter, we propose an efficient algortto solve robust Tucker tensor
decomposition. We employ the Augmented Lagrange Multigid.M) method [49] to
solve this problem. ALM has been successfully used in ofheelated problems [50].

One important finding is that ALM is extremely well suited toas RTD model. The
algorithm iteratively solves two sub-problems: One is a@ified LASSO (see Eq.(4.7))
with simple exact solution; Another is a standard Tuckesternlecomposition of Eq.(4.3).

This enables us to utilize existing software to efficientiyve the RTD.

73

Outline of the algorithm: we first rewrite the objective ftioo of robust Tucker tensor

decomposition equivalently as

min || £,
UV,W,S,E

st. E=X-U& Ve, Wess (4.5)
U'v=1V'V=IWWw=1I
Now we use ALM approach by enforcing the equality constraint= X — U ®;
V ®y W ®3 S using Lagrange multipliers (matrix) and quadratic penalty. Then ALM

becomes to solve the following problem,

E,IIJ{lX/I',II}V,S ||E||1 + <A,X — UV W®sS— E>

+§||X—U®1V®2W®3S—E||§ (4.6)
st. Ulu=1,VIV=I,W'W =1
where scalay. is the penalty parametel”, @) is defined as _, ;. FijrQiji.-
The ALM is an iteratively updating algorithm. There are twajor parts, solving the

sub-problems and updating parameters, which will be ptedan the following sections.

4.3.1 Solving the Sub-optimization Problems

The key step of the algorithm is solving the two sub-prografisq.(4.6) for each
set of parameter values af ;.. Fortunately, this can be solved in closed form solutioms fo
E and group of 7, V, W, 5).
A: solve for E. First, we solver while fixing U, V', W andS. From Eq.(4.6), the objective

function becomes
min || £, + 5|1 - P} (4.7)

whereP is a constant matrix independent Bf

A
P:X—U®1V®2W®3S+;. (4.8)

74

This problem has closed form solution

E:,. = sign(Py;,) max (| Pji| — 1/p, 0). (4.9)

ijk

B: solve for (U, V, W, S). In this step, we solvé&/, V, W and .S together while fixingE'.

From EQ.(4.6), the objective function becomes

. H B 2
Jping S1Q— U@ Ve W ey S|, 410)

st. UU=IVIV=IW'W =1
where

Q=x-E+2 (4.11)
1

This is exactly the usual Tucker tensor decomposition. Ehsolved by the known
HOSVD algorithm [38]. HOSVD is an iterative algorithm. Givénitial guess o, V, W
we updatd/, V, W until convergence.

U is given by theP eigenvectors with largest eigenvaluesfgfwhere
Fir = Z Qijk@i’j’k’(VVT)jj’(WWT)kk’ (4-12)
Ji'kk!
V is given by the) eigenvectors with largest eigenvaluesfwhere
Gjjr = Z QijkQuryrrr (UUT)i (WWT) g (4.13)
i’ kk!
W is given by theR eigenvectors with largest eigenvaluestbfwhere
Hyp = Z Qijk Qe (VVT) 15 (UTUT). (4.14)
4j'id’
These steps are repeated until convergence. Afterl*, 1W*) are obtainedy' is given by

Spqr = Z Qiijip‘/qukr~ (415)

ijk

75

4.3.2 Updating Parameters
In each iteration of ALM, after obtaining consistdtitand (/, V, W, 5), the parame-

tersA andy are updated as the following

A < A+M(X—U®1V®2W®3S—E) (4.16)

po= pp (4.17)

wherep > 1 is a constant.

The complete algorithm is described in Algorithm 1.

Input: X, P,Q, R
Output: U, V,W,S
Initialize p = 1/||X||F, p = 1.01, Uy, Vi, Wy

repeat
ComputeF using Eq.(4.9)

ComputelU, V., W, S using Eq.(4.12 - 4.15)
A:A+M(X—U®1V®2W®3S—E)

jt = min(up, 10'%)
until Converge
Algorithm 7: RTD Algorithm

We initialize U, V, W) either by random or by the solution to the standard Tucker
decomposition. In all these cases the ALM algorithm did esge. The converged solu-
tions from different initialization are very close to eadher[51], and there are no visible

differences in the reconstructed images.

76

Convergence Analysis: by taking derivative of the Lagrandgunction w.r.t.E/, we obtain
the Karush-Kuhn-Tucker (KKT) condition,
whered|E; ;| € [—1, 1] is the subgradient of functiofi(x) = |z|.

here we viewA,;;, as Lagrangian multipliers. We now verify the KKT condition

of our algorithm. The following are examples from AT&T datgswhose tensor size is

56x46x400. More detailed dataset information will be idoed in the experiment part.
At convergence, the firsts elements of computed;;;, are,

0.0012 —0.0003 0.0000 —0.0005 0

0.0005 —0.0005 0 —0.0007 —0.0011
E = —0.0001 0 —0.0005 —0.0008 0
—0.0002 0 —0.0015 —0.0001 0

0 0 —0.0012 0 0.0001

The corresponding5 elements\,;; are

1.0000 —1.0000 1.0000 —1.0000 0.2806
1.0000 —1.0000 —0.8213 —1.0000 —1.0000
A= —1.0000 —-0.5164 —1.0000 —1.0000 0.3976
—1.0000 —-0.2643 —1.0000 —1.0000 —0.4540
0.0630 0.1762 —1.0000 0.3274 1.0000

We see that the above KKT condition are satisfied for evenyetds. Whert;, is

nonzero;; is its sign. Wher;; is zero,A,; is its subgradient (a value jr-1, 1]).

4.4 Efficient Algorithm forL,-PCA

In standard computer vision problems, each image is caawéota vector and a set
of images is represented by a matrix. Here PCA is mostly wiakelu The advantage of
tensor approach is that each image retains its 2D form iroterepresentation and thus

tensor analysis retains more information on image cobesti
77

We need to compare the tensor approaches with matrix agmea¢hus we imple-

ment the algorithm for computing,; PCA. L, PCA is formulated as the following

n p
min ||X—UV||1:Z;Z;|(X—UVM’|7 (4.19)
Jj=1i=
whereX = (zq,---,x,) containn images.X € RP*" wherep = rc for r-by-c images.

The factor matrice#/, V have sizes of/ € 3#P** V € Rkxn,

Similarly with solving RTD, Eq.(4.19) can be rewritten egalently as
min ||E|;, st. E=X—-UV, (4.20)
E,.UV
ALM solves a sequence of sub-problems
. _ _ By 2
min || Bl + (A, X - UV = B) + 5[|X UV - B[} (4.21)

where matrixA is the Lagrange multipliers.
A: solve for E. First, we solvely while fixing U andV. From Eq.(4.21), the objective
function becomes

A
min [|E| + £|1E — (X = UV +)12 (4.22)
E 2 L
This problem has closed form solution:
* , A
By = sign(Py)(1Pyl =1/, P=X-UV+ 2. (4.23)

B: solve forU, V. Next we solvel/ andV together while fixingtl. From Eq.(4.21), the

objective function becomes
min <A,X—UV—E>+%HX—UV—E||%. (4.24)

Which is is equivalent to

n Llo—UVIE, Q=X —E+ 2

78

The solution is given by standard PCA. Denote the singularevdecomposition (SVD) of

Q as
Q= FxG" (4.26)
Only first k& largest singular values and associated singular vecteraegded. Then the

solution ofU, V' are given by

U= Fk7
(4.27)
V =G}
In each iteration of ALM, after obtaining consistefitand (U, V'), the parameterd andu

are updated as the following

A < A+u(X-UV —E) (4.28)
W= pp (4.29)

wherep > 1 is a constant.

4.5 Experiments

In this section, three benchmark face databases AT&T, YAhdE@MU PIE are used

to evaluate the effectiveness of our proposed RTD tenstwriaation approach.

4.5.1 Data Description

The properties of the three data sets we used are summaniZedblie 4.1, and the
detailed information of each data set is given as the fohowi

AT&T: The AT&T face data contains 400 upright face images 6fiddividuals,
collected by AT&T Laboratories Cambridge. Each image iszexbto 56x46 pixels in this
experiment.

YALE: There are totally 38 classes (10 subjects in origirebthase with 28 subjects

in the extended database) under 576 viewing conditions §@gpwith 64 different illu-
79

Table 4.1: Description of data sets

Data set | #images;, | #Dimensiongy; x n; | #ClasskK
AT&T 400 56 x 46 40
YALE 1984 48 x 42 31
CMU PIE 680 32 x 32 68

Table 4.2: Performance comparison (storage, noise-free &nd classification accuracy)
on AT&T data with block occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 1,030,400 4.7269 x 10* 0.6050
RTD 19,672 3.0457 x 10% 0.7125
L,PCA 119,040 3.1435 x 10* 0.7025

Standard Tensor 19,6723.3834 x 10* 0.6775
Standard PCA 119,0403.4959 x 10* 0.6675

mination conditions). 64 images in different illuminatioanditions from 31 classes are
selected for our experiment, so there are totally 1984 image

CMU PIE: CMU PIE is a face database of 41,368 images of 68 peapllected
by Carnegie Mellon Robotics Institute between October aaddiber 2000. Each image
is resized into 32x32 pixels in our experiment. We randonelgat 10 images from each

class with different combinations of pose, face expresarahillumination condition.

4.5.2 Corrupted Images

For evaluation purpose, we generate occluded images fremalibve three image
data sets. One added advantage of this approach is that veecgrare the reconstructed
images with the original uncorrupt images to assess thetafémess of removing the cor-
ruption (occlusion).

We use two type of occlusions added to the original input iesag evaluate the ef-
fectiveness of proposed RTD tensor method against outhénst, square block occlusions
with different size are added. The occlusion is generatatieollowing, given the size

80

Table 4.3: Performance comparison(storage, noise-free and classification accuracy)
on Yale data with block occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 3,999,744 6.9070 x 10* 0.3766
RTD 64,204 4.3685 x 10* 0.3896
L,PCA 124,000 4.6886 x 10* 0.3311

Standard Tensor 64,2044.8164 x 10* 0.3831
Standard PCA 124,0005.0806 x 10% 0.2989

Table 4.4: Performance comparison(storage, noise-free and classification accuracy)
on CMU PIE data with block occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 696,320 2.4501 x 10? 0.4735
RTD 47,840 0.8578 x 10% 0.5294
L,PCA 115,872 1.0388 x 10% 0.5279

Standard Tensor 47,8401.7610 x 10* 0.4926
Standard PCA 115,8721.8419 x 10* 0.4882

of occlusiond, we randomly pick up thé x d block position for each image, and we set
pixels in thisd x d area to zero. There are some examples of occluded imageagsthgn
method in Figure 4.1.

Second, mixed occlusions with 3 different corrupting metthare added to the origi-
nal images. First corruption methods are called cross simnig, and the cross has specified
lengthl/ and widthw. For each class, we randomly selectmages to add cross occlusions.
We also randomly select the position of the cross, and sqtixieds in the cross to the aver-
age pixel value of the whole data set. To make the occlusieaisstic and diversified, for
each class, on the basis of cross occlusions, we randondgtselimages to add square
block occlusions introduced above. In the end, rectangudeusions are added. Similarly,
for each class, we randomly selectimages to add rectangular occlusions. We randomly

set the sizes of each rectangle within a permitted rangd,[and within each rectangle,

81

Table 4.5: Performance comparison(storage, noise-free and classification accuracy)
on AT&T data with mixed occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 1,030,400 2.9635 x 10* 0.8725
RTD 19,672 1.8536 x 10* 0.9450
L,PCA 119,040 1.9924 x 104 0.9325

Standard Tensor 19,6722.4942 x 10* 0.8875
Standard PCA 119,0402.5723 x 104 0.8800

Table 4.6: Performance comparison(storage, noise-free and classification accuracy)
on Yale data with mixed occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 3,999,744 4.5618 x 10* 0.3725
RTD 64,204 3.3482 x 10* 0.4134
L,PCA 124,000 3.6471 x 10* 0.3916

Standard Tensor 64,2044.1843 x 10* 0.3678
Standard PCA 124,0004.0981 x 10* 0.3714

some of the pixels are set to 0, and the rest are set to 1. Theofirsn Figure 4.2 demon-
strates this mixed occlusion method.

Figure 4.1 and Figure 4.2 only show 1 person of 400 people &TAdiata set due to
space limitation. For AT&T data set, &x 8 occlusion is added to every image of each
class in the first type of occlusion. For the second type ofusaan, within each class of
images, we first randomly selest = 2 images to add the cross, and for each selected
image the length of cross Is= 22 and width isw = 3. Second, we randomly select
m = 2 images to add the square block. Third, we randomly seteet 2 images to add
the rectangle, and for each added rectangle, the sizesratemawithin a ranger ofd, b]
=[4, 10]. Similarly, for Yaleb data set] = 8 andl = 20, w = 3, m = 12, [a, b] = [4, 10].
For CMU PIE data set, we sét= 6 andl = 15, w = 3, m = 3, [a, b] =[3, 10].

82

Table 4.7: Performance comparison(storage, noise-free and classification accuracy)
on CMU PIE data with mixed occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 696,320 2.4532 x 10? 0.4562
RTD 47,840 1.7856 x 10% 0.5332
L,PCA 115,872 1.8442 x 10* 0.5106

Standard Tensor 47,8402.1427 x 10* 0.4762
Standard PCA 115,8722.1019 x 10* 0.4632

4.5.3 Experiment Results

In this section, we compare the performance of our RTD methitkd standard
Tucker tensor method,;-norm PCA method; PCA) and standard PCA method at stor-
age space, the noise reduction effect and classificatiarmacye

One of the biggest advantage of our proposed RTD method s/®image storage
space, because for Tucker tensor decomposition methodscoastruct the images, we
only need to storé/, VV andW, the core tensof can be calculated using, V, W. The
sizes ofU, V, W aren; x P, n; x @, n; x R, respectively. So the storage space for our
L{-norm tensor are

nixP—l—nij—l—nka

While for PCA based method&, andV need to be stored, and the sizedo&ndV are
p x k andk x n respectively, and hene= n; x n; andn = n;. So the storage space for

PCA based methods would be
n; X nj X k+k xny

The parameters we used in our experiment for each data seeisig Table 4.8. Accord-
ingly, the needed storage space for each method on evergetatean be calculated, which
are given in Table 4.2, 4.3, 4.4. Noise-free Reconstrudiioor: let X be the original

images and) be the occlusion. TheX + O are the input data to tensor decompositions
83

Table 4.8: Parameters of different data sets

Dataset | PxQ xR | k
AT&T 36 x 36 x 40 | 40
YALE 30 x 30 x 31|31
CMUPIE | 25 x 25 x 68 | 68

and PCA. LetY” be the reconstructed images from Eq.(4.1). All tensor asignd PCA
minimize || (X + O) — Y||r. However, our goal is to recover ttiie, noise-freémages.
For occluded data, we take the original images as the appatiin of the true noise-free
images, and considéX’ — Y'||r as a measure of the ability to recover the noise-free im-
ages. We thus callX — Y| as the noise-free reconstruction error. It can be compuated f
PCA and tensor decompositions.

The noise-free error for each method is listed in Table 42,414 for the first type of
occlusion and Table 4.5, 4.6, 4.7 for the second type of semfu We can see (1) the noise-
free errors for RTD and.; PCA arealwayssmaller than those for Tucker decomposition
and PCA; This shows the effectivenesdgnorm for removing corruptions. (2) Noise-free
errors for RTD are always smaller than those fgPCA; This demonstrates the advantage
of Tensor decomposition approach.

A byproduct of image denoising is improved classificationusacy. Here we per-
form classification as the demonstration and evaluationeobasing effectiveness of the
proposed RTD. We use k nearest neighbor (kNN) (we use 1NN lasréghe multi-class
classifier. Classification accuracy on occluded image datéisted in Table 4.2, 4.3, 4.4
for the first type of occlusion and Table 4.5, 4.6, 4.7 for taeasnd type of occlusion. All
classification results are based on 2-fold cross-validattor each class, we randomly split
the images into 2 parts, and then we set each of the two pattaiamg set and the rest

part as testing set. The reported accuracy is the averad®dfries of cross validations.

84

4.5.4 Reconstruction Images and Discussion

Figure 4.1 and Figure 4.2 demonstrate the sample occludadesnand the corre-
sponding reconstructed images from different methods. A€an see, the reconstructed
images from our RTD method reduce the occlusion more suittlysthan other methods,
which is also shown by the noise-free errorin Table 4.2,4.8,4.5, 4.6, 4.7, the noise-free
error of our methods are smaller than other methods. Ouradetkeds far less storage
space than PCA based methods, for example, the storage fob&&d method is 119,040
for AT&T data set, while for our RTD method, the storage isyoi9,672, that is to say,
PCA based methods need 6 times bigger storage than tendoyaseto on AT&T data set.
Classification accuracies on the reconstructed imagesRbilhmethod are higher in most

cases, which demonstrated the effectiveness our method.

4.6 Conclusion

In this chapter, we propose dn-norm based robust Tucker tensor decomposition
(RTD) method, which is effective for correcting corruptesbiges. Our method requires far
less storage space than PCA based methods. We also proposgatationally efficient
algorithm to solve the proposed RTD model. Extensive expents are carried out to
evaluate the proposed RTD. Both numerical and visual resu# consistently better for
images with outliers or noisy features than standard PCACA and standard Tucker

tensor decomposition methods. This validates the effecéss of the proposed RTD.

85

Figure 4.1: Samples of occluded images and reconstructagdsion AT&T face data.
First row is the input occluded images; Second row is from RTrd row is from L, PCA,;
Fourth row is from Tucker decomposition; Fifth row is from RC

86

Figure 4.2: Samples of type 2 (mixed) occluded images anohsgucted images using
different methods of AT&T data set. The first row is from inpadcluded images; the
second row is from RTDreconstructed images; the third rofvas L, PCA; the fourth
row is from Tucker tensor; and the fifth row is from PCA. Thess@orruptions can only
be removed by RTD.

87

CHAPTER 5
Conclusion and Future Work

In this dissertation, we study three key technology are&xptore the social media
data. The first is viral marketing (word of mouth) technologye try to identify the most
influential individuals on the social networks. We proposghly efficient and scalable
methods to calculate the influence spread and then diffgrertdy strategies will be ap-
plied to find the most influential users. We do extensive aerpamnts on real world data
sets to justify the effectiveness and efficiency of our atbars. Second, we tackle the 3D
social tagging recommendation problem. Different from tifaglitional 2D recommender
system, users are allowed to use short phrases, which oetfi@gd, to describe their social
resources. Therefore, there are three dimensions invalvéagging recommendation -
the three constituents (users, items, tags) mentioneceabiiag recommendation system
helps the tagging process by advising a set of tags to thehesdne may use for a specific
item. The tagging information helps web sites to organizsértfesources, and also assist
the users to communicate with each other. We propose to wee-larder tensor decompo-
sition techniques to tackle the extremely sparse socialor&tdata. Experiments on real
world data sets demonstrate the better performance of opoped models comparing to
state-of-the-art methods. Last but not least, in the st&igjing area, there are many types
of social media resources, and image is a big component\Warpropose an efficient and
robust model by applying tensor ald norm sparse coding techniques for effective im-
age representations and image categorization. Expersnséotiv the effectiveness of our

models.

88

We mainly focused on independent cascade model in the studyab marketing
part. We will keep studying and solving other models in theiadnfluence area, such as

linear threshold model.

89

References

[1] D. Kempe, J. M. Kleinberg, ané. Tardos, “Maximizing the spread of influence
through a social network,” iKDD, 2003, pp. 137-146.

[2] 1. R. Misner,The Worlds Best Known Marketing Secret: Building Your Bessrwith
Word-of-Mouth Marketing Bard Press, 2nd edition, 1999.

[3] J. Nail, “The consumer advertising backlash,” ForreResearch and Intelliseek Mar-
ket Research Report, Tech. Rep., May 2004.

[4] W. Chen, C. Wang, and Y. Wang, “Scalable influence maxatian for prevalent viral
marketing in large-scale social networks,’KIDD, 2010, pp. 1029-1038.

[5] P. Domingos and M. Richardson, “Mining the network vabfeustomers,” irkKDD,
2001, pp. 57-66.

[6] M. Richardson and P. Domingos, “Mining knowledge-shgrsites for viral market-
ing,” in KDD, 2002, pp. 61-70.

[7] M. Granovetter, “Threshold models of collective belwayi The American Journal of
Sociologyvol. 83, pp. 1420-1443, 1978.

[8] T. Liggett, Interacting Particle Systemser. Classics in Mathematics. Springer,
1985.

[9] C. C. Aggarwal, A. Khan, and X. Yan, “On flow authority dseery in social net-
works,” in SDM, 2011, pp. 522-533.

[10] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Learnimfuence probabilities in
social networks,” irWSDM 2010, pp. 241-250.
[11] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influencdyesis in large-scale net-

works,” inKDD, 2009, pp. 807-816.

90

[12] J. Tang, S. Wu, B. Gao, and Y. Wan, “Topic-level ssocitwork search,” irKDD,
2011, pp. 769-772.

[13] M. Kimura and K. Saito, “Tractable models for informati diffusion in social net-
works,” in PKDD, 2006, pp. 259-271.

[14] W. Chen, Y. Wang, and S. Yang, “Efficient influence maxation in social net-
works,” inKDD, 2009, pp. 199-208.

[15] A. Anagnostopoulos, R. Kumar, and M. Mahdian, “Influerand correlation in social
networks,” inkKDD, 2008, pp. 7-15.

[16] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, andLén, “Group formation in
large social networks: Membership, growth, and evolutionKDD. ACM, 2006,
pp. 44-54.

[17] E. Bakshy, I. Rosenn, C. Marlow, and L. A. Adamic, “Théerof social networks in
information diffusion,” iInWWW 2012, pp. 519-528.

[18] Y. Yang, E. Chen, Q. Liu, B. Xiang, T. Xu, and S. A. Shad,i‘@pproximation of
real-world influence spread,” BCML/PKDD (2) 2012, pp. 548-564.

[19] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos g facommendations based
on tensor dimensionality reduction,” Proceedings of the 2008 ACM conference on
Recommender systemsACM, 2008, pp. 43-50.

[20] S. Rendle, L. Balby Marinho, A. Nanopoulos, and L. Sctitrlihieme, “Learning
optimal ranking with tensor factorization for tag recomration,” in Proceedings of
the 15th ACM SIGKDD International Conference on Knowledggebvery and Data
Mining. ACM, 2009, pp. 727-736.

[21] S. Rendle and L. Schmidt-Thieme, “Pairwise interactiensor factorization for per-
sonalized tag recommendation,”lmoceedings of the third ACM International Con-

ference on Web Search and Data MiningACM, 2010, pp. 81-90.

91

[22] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, fAfied framework for pro-
viding recommendations in social tagging systems basedroaty semantic analy-
sis,” IEEE Transactions on Knowledge and Data Engineeri2@09.

[23] G. Tomasi and R. Bro, “Parafac and missing valu€$yemometrics and Intelligent
Laboratory Systemsol. 75, no. 2, pp. 163—-180, 2005.

[24] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A muiéar singular value de-
composition,"SIAM J. Matrix Anal. Applvol. 21, pp. 1253-1278, 2000.

[25] R. Schifanella, A. Barrat, C. Cattuto, B. Markines, @ndMenczer, “Folks in folk-
sonomies: Social link prediction from shared metadataProceedings of the Third
ACM International Conference on Web Search and Data MiningCM, 2010, pp.
271-280.

[26] “Movielens dataset, http://www.grouplens.org.”

[27] “Bibsonomy dataset, http://www.kde.cs.uni-kas$elbibsonomy/dumps.”

[28] M. Turk and A. Pentland, “Eigen faces for recognitiodgurnal of Cognitive Neuro-
sciencevol. 3, pp. 71-86, 1991.

[29] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman,éeidares vs. fisherfaces:
Recognition using class specific linear projectid&EE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 7, pp. 711-720, 1997.

[30] X.He, S.Yan, Y. Hu, and H. jiang Zhang, “Learning a latapreserving subspace for
visual recognition,” inin Proc. IEEE International Conference on Computer Vision
2003, pp. 385-393.

[31] Y. Fu, Z. Li, J. Yuan, Y. Wu, and T. S. Huang, “Locality wers globality: Query-
driven localized linear models for facial image computinBEE Trans. Circuits Syst.
Video Techn.vol. 18, no. 12, pp. 1741-1752, 2008.

[32] A.Shashuaand A. Levin, “Linear image coding for regres and classification using

the tensor-rank principle.” i€VPR 2001, pp. 42—-49.
92

[33] L. R. Tucker, “Some mathematical notes on three-mod#faanalysis, Psychome-
trika, vol. 31, pp. 279-311, 1966c.

[34] J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang, “Two-@insional pca: A new ap-
proach to appearance-based face representation and itemogtEEE Trans. Pattern
Anal. Mach. Intell, vol. 26, no. 1, pp. 131-137, 2004.

[35] J. Ye, “Generalized low rank approximations of matsitén ICML, 2004.

[36] C. H. Q. Ding and J. Ye, “2-dimensional singular valuea®position for 2d maps
and images,” irSDM, 2005.

[37] K. Inoue and K. Urahama, “Equivalence of non-iteratigorithms for simultaneous
low rank approximations of matrices,” @VPR (1) 2006, pp. 154-159.

[38] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A muiéar singular value de-
composition,"SIAM J. Matrix Anal. Applvol. 21, pp. 1253-1278, 2000.

[39] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear dysis of image ensembles:
Tensorfaces,” iIECCV (1) 2002, pp. 447-460.

[40] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principamponent analysisJ. Com-
putational and Graphical Statisti¢sol. 15, pp. 265-286, 2006.

[41] F. D. Torre and M. J. Black, “A framework for robust subsp learning,’Int’l J.
Computer Visionpp. 117-142, 2003.

[42] J. Galpin and D. Hawkins., “Methods of |11 estimation af@ariance matrix,Com-
putational Statistics and Data Analysi®l. 5, pp. 305-319, 1987.

[43] A. Baccini, P. Besse, and A. D. Falguerolles, “An L1-moPCA and a heuristic ap-
proach,”Ordinal and Symbolic Data Analysis, edited by E. Diday, ¥hewalier and
O. Opitz, Springerl1996.

[44] J. Bolton and W. J. Krzanowski, “A characterization ofgipal components for pro-

jection pursuit,” Mar. 26 2001.

93

[45] Q. Ke and T. Kanade, “Robust |1 norm factorization in iresence of outliers and
missing data by alternative convex programming,1lHEE Conf. Computer Vision
and Pattern Recognitiqr2004, pp. 592-599.

[46] N. Kwak, “Principal component analysis based on L1manaximization,”|IEEE
Trans. Pattern Anal. Mach. Intelivol. 30, no. 9, pp. 1672-1680, 2008. [Online].
Available: http://dx.doi.org/10.1109/TPAMI.2008.114

[47] J. Gao, “Robust L1 principal component analysis and#gesian variational infer-
ence,”"Neural Computationvol. 20, no. 2, 2008.

[48] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust pririgomponent analysis,”
Dec. 18 2009.

[49] D. P. Bertsekad\onlinear Programming, 2nd Ed.MIT Press, 1998.

[50] A. Y. Yang, A. Ganesh, Z. Zhou, S. Sastry, and Y. Ma, “Aiev of fast I1-
minimization algorithms for robust face recognitiorCoRR vol. abs/1007.3753,
2010.

[51] D. Luo, C. Ding, and H. Huang, “Are tensor decompositsmtutions unique? on the

global convergence of hosvd and parafac algorithms,” 2008.

94

Biographical Statement

Miao Zhang was born in Shandong, China, in 1984. She recéiee®.S. degree
from Shanghai Jiao Tong University, China, in 2007, and heDPdegree from The Uni-
versity of Texas at Arlington in 2014 in Computer Science Emgineering. Her current
research interest is in the area of data mining, machineilggand their applications in

social network areas.

95

