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Abstract

TARGET DETECTION AND COGNITIVE RADIO CAPACITY ANALYSIS

BASED ON SENSOR NETWORKS

Ishrat Maherin, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Qilian Liang

In this dissertation, we studied two topics which are focused on target detection

through foliage and capacity analysis of cognitive radio. We propose a multi-step

information theory based scheme for target detection through foliage, using ultra

wide-band (UWB) radar sensor network (RSN). This method is motivated by the

fact that echoes from the stationary target, obscured by foliage, are more random

than the region without the target. This is resolved by three steps of information

fusion. Information fusion and integration is the process of combining data from

several radar sensors and can achieve results that are not possible by individual

radar operating independently. For first step of information fusion, we propose to

use Kullback-Leibler (K-L) divergence based weighting. By using the information

theoretic criterion known as method of types, we proved that false alarm can be

inversely proportional to the relative entropy or KL distance. In the second step,

we propose to use Maximum Entropy Method(MEM) and mutual information based

detection. Finally, we use Dempster and Shafer (D-S) theory of evidence for decision.

We further investigated and applied another information theoretic criterion known

vi



as Chernoff information to select the best radar sensor. We modified the algorithm

we developed for RSN for single radar case and applied for human detection through

wall. We successfully detected human behind a gypsum wall using single UWB radar.

This proved that our method is not adhoc and applicable to various scenarios.

Cognitive radio is an intelligent wireless device that can exploit the side in-

formation and maximize the spectral utilization. Efficient spectrum sensing along

with transmit power control can achieve the conflicting goal of increasing the ca-

pacity while keeping the interference under limit. In this dissertation, we propose

a sensor network aided cognitive radio system which will reduce the missed detec-

tion and reduce the interference. The non-convex optimization problem is divided in

two separate sub problems and solved to get a suboptimal solution. Mathematical

analysis shows that interference between primary and secondary depends on spectral

distance, when the parallel channels are orthogonal like an OFDM based system.
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Chapter 1

Introduction

Target detection through foliage which is a subject of intense research due to

the complexity of the environment. In order to deal with performance degradation,

Radar sensor network (RSN) based detection with multi-step information fusion is

proposed, which is shown in Fig. 1.1. In RSN, networks of multiple distributed

radar sensors are arranged to survey a large area and observe targets from different

angles. Information fusion and integration is the process to achieve result which is

not possible by individual sensors operating independently. We focus to more chal-

lenging environment when the signal quality is poor and probability of detection is

low. Traditionally, radars are bi-static and acts independently and they are pro-

cessed by, cluster-heads which use time and spatial diversity to combine them. In

our proposed method, we use information fusion based combinations to detect the

target. For many years, management of sensors, was performed by human opera-

tor. Human brain is more capable to understand abstract goal and make dynamic

decision which computer-based algorithm is unable to understand. However, many

military applications are moving toward the autonomous operation of management

to keep the soldiers away from harm.

Opportunistic Sensing (OS) refers to a paradigm for signal and information

processing in which a network of sensing systems can automatically discover and

select sensor platforms based on an operational scenario. It uses appropriate methods

to fuse the data, resulting in an adaptive network that automatically finds scenario-

dependent, objective driven opportunities with optimized performance. We tried to

1



Figure 1.1. Target detection with Radar Sensor Network (RSN).

develop algorithm so that we can select the best sensor that will give us the best

result.

A cognitive radio can sense the spectrum of the licensed user also known as

primary user (PU) and identify the under-utilized spectrum known as white space

or spectrum hole. Thus the reliability of the sensing scheme is crucial. However a

single sensor is limited by path loss, shadowing and fading. In order to enhance the

reliability of the detection a wireless sensor network (WSN), not necessarily embed-

ded in cognitive receiver can be used. In this WSN, single sensor will make local

decision and forward the decision to the fusion centre (FC). This sensor network will

combat the fading through space diversity and will cover a large geographical area.

There will be at least another sensor to detect the primary user which is far from

a secondary user. Hence the two performance metrics of the sensing: 1) probability

of detection and 2) probability of false alarm can be improved. The overall objec-

tive of CR is to increase the spectral efficiency and keeping the interference under

2



limit. However, as the sensing time is increased it can guarantee higher detection

probability but the overall throughput goes down. The traditional optimization of

throughput is achieved by water-filling power allocation. But water filling in CR is

complex due to the added constraints of interference and false alarm. So we have

three different metrics, we need to consider, sensing time, power and interference.

1.1 Preliminaries to UWB Based Detection

UWB communication is based on transmitting and receiving ultra short energy

pulses with very high fractional bandwidth (greater than 0.2). In this definition,

bandwidth means the difference between the highest and lowest frequencies of interest

and contains about ninety five percent of the signal power [1],[2]. In 1995, James

D. Taylor introduced UWB to engineers as a promising new concept for remote

sensing [1]. In [3], Immoreev gave an overview on new practical applications of

UWB radars. The primary advantages of UWB radar are very high bandwidth with

exceptional good resolution, high power efficiency because of its low duty cycle, low

probability of detection, low interference to legacy systems and ability to penetrate

through material. UWB radars are used nowadays for different applications such as

subsurface sensing, classification of aircrafts, collision avoidance, etc. In all of these

applications the ultra-high resolution of UWB radars is essentially used.

In this dissertation we are particularly interested to use UWB radar to detect

target in the forest because UWB has all the essential qualities needed for detection.

However, signal radiated by narrow band has harmonics which makes them good

candidates for match filtering and correlating with the reference. This does not

work for UWB radar with heavy clutter and unknown target. We needed to further

investigate to find the method that will combat the time varying channel we have in

the forest.
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1.2 Preliminaries to Target Detection Through Foliage

This dissertation deals with target detection through foliage which itself is a

subject of intense research due to the complexity of the environment. The studies on

foliage penetration can be categorized into two groups. One direction is to pursue

the foliage clutter modeling [4], [5] and the second group centers on advanced signal

processing [6], [7] and [8]. In [4], Liang applied two approaches to the wireless

channel modeling: Saleh and Valenzuela (S-V) method for UWB channel modeling

and CLEAN method for narrowband and UWB channel modeling. They validated

that UWB echo signals (within a burst) do not hold self-similarity, which means

the future signals cannot be forecasted based on the received signals and channel

modeling is necessary from statistical point of view. In [5], Jing proved that the

foliage clutter follows log-logistic model using maximum likelihood (ML) parameter

estimation as well as the root mean square error (RMSE) on PDF curves between

original clutter and statistical model data. In [6], Mayer performed whitening and

dewhitening to transform target signature. In [7], Nanis used adaptive filter to detect

target in foliage. In [9], Jing proposed a differential based approach and in [10], she

proposed short time fourier transform to detect target in foliage environment. In

[11], Liang proposed a Discrete-Cosine-Transform (DCT)-based approach for sense-

through-foliage target detection when the echo signal quality is good. They compared

their approach against the scheme in which 2-D image was created via adding voltages

with the appropriate time offset as well as the matched filter-based approach. They

observed UWB channel has memory and matched filter-based approach couldnot

work well.

As an alternative to these approaches information theory based target detection

is emerging [12], [13], [14], [15], [16] and [17]. In [12], authors investigated a multi-

target detector using mutual information for noise radar systems in low SNR regimes.
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In [17], Aughenbaugh applied information theory for metric selection for information

fusion. In [14], the authors studied target classification and detection with hidden

Markov models. Entropy is used as a tool for detecting small target in sea clutter

[18]. End point detection in speech signal can also be done by using entropy based

method [19]. Entropy is also an established method in detecting the anomaly in data

network traffic [20].

In this dissertation, we proposed to use entropy and mutual information based

method to detect target in forest with good signal quality. Entropy is a measure of

randomness which is capable of handling high amount of data and is real time efficient

[21]. Mutual information tells us how much information one random variable has

about another random variable [22]. Moreover, mutual information is insensitive to

nonlinearities. Mutual information based target detection for random noise radar in

low SNR region was already proposed [12]. However none of these studies used target

obscured by foliage in poor signal quality. First we analyzed the data and came into

conclusion that, targeted region is more random than the region without target. Two

information theory based metrics, entropy and mutual information are proposed to

detect the target. For entropy based detection based on Maximum entropy method,

we proved that unless there is unique situation where each window has uniform

distribution then entropy based target detection is possible using Maximum entropy

method. The proposed algorithm is fundamentally different from the conventional

wisdom, which assumes that we will have minimum information about the targeted

region. It is nonconventional that from data analysis we found, uniform distribution

of the targeted region, this will give higher entropy and lower conditional entropy,

and will give higher mutual information in the targeted region. We also applied

several quantization levels on the data for entropy based method and found best
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result in 32 level of quantization. Results show that our approach can detect target

successfully for good signal of real world data.

1.3 Preliminaries to Radar Sensor Network and Preprocessing

Networks of multiple distributed radar sensors, namely radar sensor networks

(RSNs) can be utilized to combat the performance degradation [23]. RSN has at-

tracted much interest in military and academia [24]. Some theoretical works on

radar sensor network-based target detection were reported in [4], [25], [26] and [27].

A RSN not only provides spatial resilience for target detection and tracking com-

pared to traditional radars, but also alleviates inherent radar defects such as the blind

speed problem. This interdisciplinary area offers a new paradigm for parallel and

distributed sensor research. In [24], Jing proposed both coherent and noncoherent

RSN detection systems applying selection combination algorithm (SCA) performed

by clusterhead to take the advantage of spatial diversity. Recently, the concept of

MIMO radar have been proposed in [28] [29] and [30] motivated by the development

in communication theory. Unlike the standard phased array radar that transmits

scaled version of a single waveform, a MIMO radar can overcome radar cross sec-

tion (RCS) scintillations by transmitting different signals due to the large spacing

between the transmitting or receiving elements.

Information fusion and integration is being studied in several studies before.

Varieties of technical perspective have been used to do the intelligent information

fusion depending on the task [31], [32] and [33]. In our work, information fusion is

done in three different steps, as categorized by Luo and Kay [35], [34], in different

literatures. Broadly, the methods of estimation are applied in preliminary incoming

signal at the first level, the classification methods are applied in medium level and

inference methods are applied for decision making at a higher level. Preprocessing
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is usually done by estimation. Popular recursive method of recursive estimation is,

Kalman Filtering (KF). Although computationally efficient, KF assumes the linear

Gaussian model. For target detection, we want to have a real time efficient non re-

cursive algorithm. Two mostly used method of non recursive estimation are weighted

average and least square estimation (LSE).

In this dissertation, we studied how to use UWB RSN and detect target in

much challenging environment of forest. We employed a rake structure and pre-

processed the data using information theory. In the first step a Kullback-Leibler

(K-L) divergence based weighting is done to modify the histogram. K-L divergence

maximized the information collected by multiple observations. Then two informa-

tion theoretic metrics: entropy and mutual information are applied on the modified

histogram. We also calculated the upper bound of the false alarm probability using

another information theoretic criterion known as method of types.

1.4 Preliminaries to Decision Fusion

Bayesian inference and Dempster and Shafer’s reasoning are the two popular

inference algorithms for decision fusion [36], [37], [38], [39], [40] and [41]. In our

study, we use three different inference algorithms and compare their performances.

The Dempster and Shafer (D-S) theory is a mathematical theory of evidence often

used in sensor fusion [42]. It was first developed by Dempster and extended by Shafer.

It can provide an optimal result from a set of options, without prior probability. D-S

theory makes decision by independently judging all the hypotheses by its individual

evidence [80]. Many researchers insist that normalization procedure in the DS com-

bination rule involves counterintuitive result when there is high conflict in evidence.

Several improved version have been proposed in literature as an alternative to DS

theory [43], [44], [45], [46] and [47]. One of the popular modified rule is Proportional
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Conflict Redistribution Rule 5 (PCR5). PCR5 is the most mathematically exact

redistribution rule for conflicting mass than all other PCR methods.

Dempster-Shafer theory, deals with measures of belief as opposed to probabil-

ity. In this dissertation, for our target detection algorithms, we have two different

propositions: target present (t) and target not present respectively (nt). Entropy

(E) and mutual information (MI) provides two different evidential sources m1 and

m2. We can find the belief function from the threshold value. The combined belief

of target present can be calculated by using the Dempster’s rule of combination. We

also applied PCR5 rule in our study.

Bayesian network (BN), also known as belief networks, belongs to family of

probabilistic graphical models (GMs). In our study we have a tree structured net-

work with a root node T, which has no parent. T is the parent node with two

children nodes Eh and MIh, which represents high entropy and high Mutual in-

formation respectively. In this dissertation, among the decision fusion algorithms,

Bayesian approach worked slightly better than PCR5 while combining evidential con-

flict. However PCR5 performed better than DS. Results show that accurate detection

can be achieved by applying DS in case of low conflict.

1.5 Preliminaries to Opportunistic Sensing Using Chernoff Information

Major limitations of conventional approaches in RSN include inadequate per-

formance for target recognition and huge processing load for big data. Opportunistic

Sensing (OS) refers to a paradigm for signal and information processing in which a

network of sensing systems can automatically discover and select sensor platforms

based on an operational scenario. It uses appropriate methods to fuse the data, re-

sulting in an adaptive network that automatically finds scenario-dependent, objective

driven opportunities with optimized performance. In [48], detecting and eliminating
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redundancy in a sensor network with a view to improving energy efficiency, while

preserving the networks coverage was studied using Voronoi diagrams. In [49], Liang

and Wang applied a singular-value decomposition (SVD)- QR algorithm to redun-

dancy reduction for acoustic sensor networks. In [50] and [51], Liang applied rate

distortion function for opportunistic sensing in RSN scenario.

The potential of Chernoff information is widely explored recently. A wide

variety of information theoretic problems and communication problems deals with

this new concept. Chernoff information was used in optimization of sensor network in

distributed detection [52]. Error exponents in target class detection was investigated

in [53]. It was used in UWB [54] and was also used in analysis of energy detectors

of cognitive radio [55].

In this dissertation, we used UWB based RSN. There can be redundancy in

the big data collected by various radars. Since it is possible that less sensors can

achieve better performance, and less sensors can save the bandwidth, energy, memory

and storage resource of sensor networks, its very desirable that principal sensors can

be selected. Also the error probability associated with the detection is crucial in

understanding the performance of the detection. Chernoff information gives the best

error exponent in hypothesis testing, thus can be used as sensor selection scheme

in fusion center. This OS reduces the processing load significantly and effectively

utilize the sensing assets. In order to optimize the performance, data fusion is done

based on Chernoff Stein Lemma.

1.6 Preliminaries to Human Detection

There have been several successful attempt to detect human using breathing

motion [56], [57] and [58]. Staderini [57] has developed an UWB radar for non-

intrusive breathing and heartbeat detection for medical purposes in LOS conditions.

9



Ossberger and al. [58] investigated feasibility of using UWB radar for through-

wall detection of breathing persons. The experimental data used in this study was

collected by [60], [59] and [61]. They applied several techniques such as short time

fourier transform, singular value decomposition and doppler based detection to detect

human target. As an alternative to these approaches we propose information theory

based human detection.

In this dissertation, we propose to use information theory to UWB radar to

detect human target. We applied relative entropy based preprocessing and entropy

based detection. Various walls are investigated for their various electro-magnetic

property.

1.7 Preliminaries to Capacity Analysis of Sensor Aided Cognitive Radio

Cognitive radio has the potential to solve the problem of spectrum [62] [63]. In

literature the research in CR has two clear directions. One group of researchers inves-

tigated on different sensing schemes. And another group of researchers concentrated

in power allocation scheme to optimize the throughput. In an effort to combine the

power and sensing time there are very few literatures. The authors in [64], [65], [66]

and [67] proposed energy efficient cooperative spectrum sensing in sensor aided CR.

They take into account the optimal scheduling of the each sensor active time. The

authors in [68] showed another interesting work on energy efficient detection. The

authors in [69], investigated spectrum sensing towards ultra low overhead. In [70],

Mosleh proposed the Bayesian network for the fusion centre of a distributed network

in cognitive radio. The authors in [71], studied a cooperative spectrum sensing in

multiple antenna based system. The authors in [72] propose power control schemes

for secondary femto cells and that are upper- bounded by interference limits. Maxi-

mum capacity for MIMO-OFDM system is derived by [73]. Optimal and suboptimal
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power allocation scheme in OFDM based CR was proposed by Bansal in [74]. In [75],

Chai studied the power allocation scheme for Nakagami fading model. The authors

in [76] showed trade-offs in cross layer approach to optimize the throughput. How-

ever they considered the single sensor embedded in the secondary user. Huang et

al.,[77] show joint detection and power allocation by alternating detection optimiza-

tion (ADO). The authors in [78] proposed the wideband based spectrum sensing to

optimize the sensing time and power allocation. The authors in [79] investigated on

optimization of sensing throughput in UWB network. The authors in [80] studied

on the low complexity algorithm of the cooperative resource allocation.

In this dissertation, we propose a sensor network aided cognitive radio system

which will reduce the missed detection and reduce the interference. The non-convex

optimization problem is divided in two separate sub problems and solved to get a

suboptimal solution. Mathematical analysis shows that interference between primary

and secondary depends on spectral distance, when the parallel channels are orthog-

onal like an OFDM based system. Results show that distance dependent modified

water filling (DDMWF) scheme can achieve the higher data rate for the cognitive

radio based secondary user.

1.8 Organization

The rest of this dissertation is organized as follows:

• Chapter2 applies information theory based scheme for target detection through

foliage. It presents data analysis for the data collected by AFOSR. It applies

various quantization level and applies Maximum entropy method and mutual

information based method in target detection.

• Chapter3 applies ultra wide-band (UWB) radar sensor network (RSN) based

Information fusion. It combines data from several radar sensors after applying
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Kullback-Leibler (K-L)divergence based weighting which can generate a modi-

fied histogram. Then it applies Maximum Entropy Method(MEM) and mutual

information based detection.

• Chapter4 introduces Dempster and Shafer (D-S) theory of evidence for decision.

It also introduce the improved version of D-S theory for conflicting evidence and

compared the performance with D-S and bayesian network. Dempster-Shafer

theory, deals with measures of belief as opposed to probability. Results show

that among the decision fusion algorithms, Bayesian approach worked slightly

better than PCR5 while combining evidential conflict. Accurate detection can

be achieved by applying DS in case of low conflict.

• Chapter5 applies Chernoff information to find the best error exponent in bayesian

approach of hypothesis testing. Chernoff information finds the best radar sen-

sor and minimizes the processing load. As an alternative to Bayesian approach,

we can minimize one of the error subject to the constraint of the other error,

which is known as Chernoff-Stein Lemma. Simulation results show that our

approach can work successfully with real world data. Using this novel ap-

proach we could significantly reduce the number of radars from 9 to 1 while

maintaining good performance. This new scheme of Opportunistic sensing(OS)

not only ensures effective utilization of sensing assets but also provides optimal

performance.

• Chapter6 modifies the algorithm developed in chapter 3 and chapter2 for single

radar, and applies in sense through wall human detection. Results show that

with this novel approach, accurate detection can be achieved when human is

hidden behind the gypsum wall. This method could also detect human hidden

behind the brick wall.
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• Chapter7 applies, a sensor network aided cognitive radio system which will

reduce the missed detection and reduce the interference. In sensor network

multiple sensors will individually sense the channel and send their decision to

the fusion center. We investigate the performance of various sensing and power

allocation schemes for cognitive radio system. We formulate an optimization

problem to design the optimal sensing time and transmit power to maximize

the throughput. The non-convex optimization problem is divided in two sep-

arate sub problems and solved to get a suboptimal solution. Mathematical

analysis shows that interference between primary and secondary in depends

on spectral distance, when the parallel channels are orthogonal like an OFDM

based system. Results show that distance dependent modified water filling

(DDMWF) scheme can achieve the highest data rate for the cognitive radio

based secondary user and then the optimal sensing time can be designed to

maximize the throughput.

• Chapter8 summarizes the dissertation and indicates the future direction.
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Chapter 2

Information Theory Based Target Detection

2.1 Introduction

Time varying and rich scattering complex environment of forest makes target

detection through foliage an ongoing challenge. However, forest provides safe harbor

to hostile forces and their malicious activities where war fighter has poor sensing

capabilities. Our purpose is to find a method for Target detection using Ultra-

wideband (UWB) radar sensor network(RSN) that is real time efficient, compact and

easily deployable in the forest. Signal radiated by narrow band has harmonics, which

makes them good candidates for match filtering and correlating with the reference

[2]. This does not work for UWB radar with heavy clutter and unknown target. The

ultra short energy pulses of UWB radar have very high bandwidth with exceptional

good resolution, high power efficiency, low probability of detection, low interference

to legacy systems and ability to penetrate through material. We can formulate

the target detection as a hypothesis testing to choose between the null (H0), when

the target is not present and the alternative hypotheses (H1), when the target is

present. However to apply the Bayesian detection, accurate statistical information is

necessary for this decision making problem. However, in many situations of practical

interest we do not know the statistics of the probability of the target present P (H1)

or it might be very small. Also the distribution of foliage clutter is important. In

general, the behavior of random process is governed by, Gaussian distribution. Since

radar signal is the sum of independent reflections from uneven surface, it is tempting

to invoke central limit theorem to justify the Gaussian clutter model. However it
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is shown that the foliage clutter behaves dynamically and it is impulsive in nature

[5]. Which also makes this classical theory of detection not appropriate for target

detection. The challenges that are unique for this study are:

• Foliage clutter is dynamic and impulsive.

• The prior statistical information about the target presence is unknown.

• UWB signal shape changes many times during radar viewing. So conventional

matched filters or correlators are unsuitable for target detection[2].

To deal with this problem we do the data analysis and introduce information based

target detection.

2.2 Data Measurement and Analysis

2.2.1 Data Measurement

In this section we provide an overview of the experimental and measurement

effort. Our work is based on the sense-through-foliage data from Air Force Research

Lab [81]. In our work we use the frequency range between 300 MHz to 3 GHz. This

has exceptional quality of good resolution and ground penetration. The foliage pene-

tration measurement effort began in August and continued through December. This

effort takes into account the late summer, fall and winter forest. Late summer has

decreased water content whereas fall and winter has defoliated but dense forest. The

measurements were taken on the grounds of virtual machine company of Holliston,

Massachusetts. The target is a trihedral reflector with a slant length of 1.5 as shown

in Fig. 2.1. This kind of reflector is used to represent metallic military equipment

under foliage cover. The target was located 300 feet away from the lift where the

entire measurement equipment was located as shown in Fig. 2.2. The foliage exper-
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iment was constructed on a seven-ton man lift. The principal pieces of equipment

secured on the lift include

1. HP signal Generator

2. Custom RF switch

3. Power supply

4. A Barth - pulsar

5. Tektronix model

6. 7704 B oscilloscope

7. Dual antenna mounting stand

8. Two antennas

9. Rack system

10. IBM laptop and

11. Weather shield (small hut)

The pulse generator uses a coaxial reed switch to discharge a charge line for a very

fast rise time pulse-outputs.

The model 732 pulse-generator provides pulses of less than 50 picoseconds (ps)

rise time, with amplitude from 150 V to greater than 2 KV into any load impedance

through a 50 ohm coaxial line. The generator is capable of producing pulses with

a minimum width of 750 ps and a maximum of 1 microsecond. This output pulse

width is determined by charge line length for rectangular pulses, or by capacitors

for 1/e decay pulses.Transmit and receive antennas required two degrees of rota-

tional freedom to permit accurate pointing at the metallic target. The antennas

could be adjusted during the course of experiment if they are misaligned. By policy,

for purposes of safety and data quality, no measurement was taken where the wind

gusts were more than 40 mph. The man lift was a 4-wheel drive diesel platform

that was driven up and down in graded track 25 meters long with an experimental
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lengthy of 10 meter. This track served as strip map of the radar track and extra

5 meters accommodate the length of the lift. Additional alignment was required at

each position on the track to maintain pointing accuracy. The goal of the alignment

procedure was to keep the antennas remained in a correct horizontal position aimed

at the direction of the target. In order to assure that, a parallel line was set up

to the desired line of antenna (string line) and a plumb line was established at the

each end of the antenna mount. When the plumb lines were at equal distance from

the string line the antennas were aligned in the proper direction relative to the strip

map. An additional check was made in the lift to determine that the lift platform

had remained in the horizontal position.

Figure 2.1. Target (A Trihedral Reflector) is shown 300 feet away.
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Figure 2.2. This figure shows the lift of the experiment.

2.2.2 Data Analysis

Our work is based on the sense-through-foliage data from Air Force Research

Lab [81]. Our purpose is to find the target when the signal quality is not good. Each

sample is spaced at 50 picoseconds interval, and 16,000 samples were collected for

total time duration of 0.8 microseconds at a rate of approximately 20 Hz. The target

was a trihedral reflector which was placed 300 feet away from the radar. The target

should then be located around sample 13900. Initially, the Barth pulse source was

operated at lower amplitude and 35 pulses of signals were obtained. This collection is

referred to as ”poor” data. The integration of these 100 pulses with higher amplitude

is referred to as ”good” data. The window size was used as 50. In Fig. 2.3 we provide
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the full reflected echoes for two different cases, with target and without target. We

provide expanded views of traces (with target) from sample 13,001 to 15,000 for two

collections of data without target and with target in Figs. 2.4(a) and 2.4(b). The

target response will be the echo difference between Fig. 2.4(a) and 2.4(b).

The echo difference for good signal is shown in Fig. 2.5 and the echo difference

of poor signal is shown in Fig. 2.6. Clearly the signature of target is not detected

around sample 13900 with poor signal. Fig. 2.7 is the representation of the average

no of transition between the states. In order to find the general tendency of the

echoes, we quantized the received echoes in 4 different states primarily. In Fig. 2.7,

x and y axis represent four different possible states of echoes. Axis z represents the

transition of states, which represent, what is the probability that an echo in time

index t will go to the four possible sates in the time index t+1 and it can have 16

different values. After careful analysis of the Figs. 2.4, 2.6 and 2.7 three

important observations are made:

1) Observe Fig. 2.4(a) and Fig. 2.4(b), echoes in the target region is more random

than echoes without the target.

2) Observe Fig. 2.6, when the signal quality is poor the difference of echoes does not

give signature of target.

3) Observe Fig. 2.7, when x and y have same dimensions, we have got the highest

value. In other words, number of samples, which are in a particular state remained in

that state for the next sample index, most of the time. That means smaller number

of echoes are changing their state, from one to another frame, when target is not

present.

These observations gave the important reason to choose information theory

based target detection. From observations 1 and 3, it is clear that the entropy

that will measure the uncertainty will provide higher values in the targeted region.
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Figure 2.3. Reflected echoes for two different cases: (a) no target (b) with target .
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Figure 2.4. Reflected echoes of sample index 13001 to 15000 for two different cases:
(a) no target (b) with target .
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Figure 2.5. Expanded view of the echo difference. Signature of the target is detected
around sample 13900.

However from observation 2, we conclude that entropy alone is not sufficient for poor

signal quality. We propose to use Mutual information also to detect the target. Also

due to the dynamic nature of the environment, it is possible that both entropy and

mutual information might not be able to detect the target all the time. In order

to make the inference, without a prior distribution, we might need to a solution for

decision fusion.

2.3 Information Theory Based Detection

In this stage we perform the real target detection by two different methods.

We found that smaller numbers of echoes are changing states and echoes are more

random in targeted region. Based on this analysis, we have chosen two information
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Figure 2.6. Expanded view of the echo difference. Signature of the target is not
detected around sample 13900.

theoretic criterion: namely entropy and mutual information to detect the target.

Since entropy is the measure of the randomness, echoes in targeted region should have

higher entropy. We also need to calculate the mutual information of the subsequent

radar return as second method of detection.

2.3.1 Maximum Entropy Method Based Target Detection

Entropy is a measure of uncertainty of a random variable [22]. Let X be a

discrete random variable with alphabet X and probability mass function (pmf) as

p(x), then the entropy H(X) of the discrete random variable is,

H(X) = −
n∑

i=1

p(xi)log2p(xi) (2.1)
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Figure 2.7. 3-D representation of the transition of the echoes in different state.

Maximum entropy method (MEM) finds the distribution which maximizes the en-

tropy. Let assume the alphabet size of X is n, so X = {x1, x2...xn}. PMF p(xi) with

maximum entropy is the one that does not introduce any additional assumption.

Then p(xi) must satisfy the following constraints [22]:

p(xi) ≥ 0 (2.2)

n∑
i=1

p(xi) = 1
(2.3)

n∑
i=1

p(xi)rk(xi) = αk (2.4)

this is for k ≤ m and pi satisfies certain moment constraints α1, α2, ..., αm, and rk(xi)

is the kth order power of xi.
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Now we can form the equation for the distribution that can achieve maximum

entropy,

J(p(xi)) = −
n∑

i=1

p(xi)lnp(xi) + λ0(1−
n∑

i=1

p(xi)+

m∑
k=1

λk(αk −
n∑

i=1

p(xi)rk(xi))

(2.5)

where λk(k = 0, 1, 2.., m) are Lagrange multipliers. Now differentiating (2.5) with

respect to p(xi),

δJ

δp(xi)
= −lnp(xi)− 1 + λ0 +

m∑
k=1

λkrk(xi) (2.6)

Setting (2.6) equals to zero we find the distribution of MEM

p(xi) = e{−1+λ0+
∑m

k=1 λkrk(xi)} (2.7)

If we do not have any constraints then from, (2.3) and (2.7) we obtain,

n∑
i=1

e(λ0−1) = 1 (2.8)

which yields,

λ0 = 1− ln
1

n
(2.9)

Substituting (2.9) in (2.7) we can conclude that,

p∗(xi) =
1

n
(2.10)

which is a constant. For discrete domain we can have various cases. Two particular

cases we are going to discuss based on the given constraints.

Case 1 : Let X = 1, 2, 3, 4, 5, 6, 7, 8. The distribution without constraints that maxi-

mizes the entropy is uniform distribution,

pi =
1

8
(2.11)
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Case 2: Let expectation of X is defined as, E(X) =
∑
ip(xi) = α. Then the

distribution that maximizes the entropy is,

p∗(xi) =
eλi∑8
i=1 e

λi
(2.12)

where λ is chosen so that
∑
ip(xi) = α [22].

This gives us the idea of determining the threshold and upper bound of the

Entropy based target detection. Since the echoes in the foliage do not have any

constraint [21], we consider case 1. In that way, we can conclude, unless we have a

unique distribution that some other windows might have uniform distribution then

target detection by entropy based method is possible.

2.3.2 Mutual Information Based Target Detection

Mutual information (MI) is a measure of the amount of information that one

random variable contains about another random variable. Mutual information be-

tween two random variables X and Y with joint probability mass function p (x,y)

and marginal probability mass function p(x) and p(y) is defined as,

MI(X; Y ) =
∑∑

p(x, y) log
p(x, y)

p(x)p(y)
(2.13)

This can be further simplified as,

MI(X; Y ) = H(X)−H(X|Y ) (2.14)

where H(X) is the entropy of X and H(X|Y ) is the conditional entropy of X given

Y. In our method, we have to find the MI(Qk;Qk−1) from (2.14),where Qk is the

quantized received echoes and k denotes the current sample index and k− 1 denotes

the previous sample index. The proposed algorithm is fundamentally different from

the conventional wisdom, which assumes that we will have minimum information
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about the targeted region. It is nonconventional that from data analysis we found

uniform distribution of the targeted region, this will give higher entropy and lower

conditional entropy, and will give higher mutual information in the targeted region

as shown in (2.14). The entropy and mutual information based target detection can

be summarized in the next section.

2.3.3 Algorithm for Information Theory Based Target Detection

The target detection by maximum entropy method and mutual information

which are discussed in previous section is summarized as follows:

(1) Let Q be the non-uniform quantized received signal with a particular code-book

and partition. Since the calculation of mutual information involved the processing

in the O(n2) when n is the quantization level, we try not to quantize too much.

(2) A threshold value T that is less than log2n is taken.

(3) Let N = [N1, N2, N3NM ] set of windows. Let L is the length of the signal and s

is the size of the window, then, M is L/s.

(4) The probability mass functions of the echoes, pj(Q) for quantized received echoes

is calculated for each window, j. Entropy Hj(Q) is calculated for all j = 1 :M .

(5) The conditional pmf of the echoes pj(Qk|Qk−1) for subsequent radar return is

calculated. Here k is the sample index that will vary between 1 : s. Conditional

entropy, Hj(Qk|Qk−1) is calculated for all j = 1 :M .

(6) Mutual information of subsequent radar return, MI(Qk;Qk−1) is calculated ac-

cording to for all j = 1 :M .

(7) If MIj(Qk;Qk−1) > T then target is detected.

(8) If Hj(Q) > T then target is detected.
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2.4 Simulation Results

In this section, we will discuss the simulation result we found in this chapter.

As already mentioned each sample of data is spaced at 50 picoseconds interval, and

16,000 samples were collected for total time duration of 0.8 microseconds at a rate of

approximately 20 Hz. We expect the target at sample no 13900. Initially, the Barth

pulse source was operated at lower amplitude and 35 pulses of signals were obtained.

This collection is referred to as ”poor” data. The integration of these 100 pulses with

higher amplitude is referred to as ”good” data. The window size was used as 50.

In Fig. 2.8 performance of entropy based target detection with a single radar

are presented for two different cases: Fig. 2.8(a) is for good quality data and Fig.

2.8(b) is for poor quality data. In this case signals were quantized before entropy

were calculated. At this stage, we applied 8 level of quantization. Single radar with

entropy based method could detect target for good signal quality but was unable to

detect target with poor signal quality as shown in Fig. 2.8(b).

Fig. 2.9 shows the signature of the target after quantization. It proves that

even after quantization the signature of target is visible.

Fig. 2.10 shows the conditional entropy when the background is given. The

interesting observation we can make here is that the conditional entropy is the lowest

at the targeted region. It emphasize that mutual information will also be higher in

the targeted region.

To demonstrate the performance of the mutual information we represent the

simulation in Fig. 2.11. Fig. 2.11(a) is the detection of the signal with single radar.

Fig. 2.11(b) is the mutual information with poor quality signal. It shows that with

poor quality data MI alone is unable to detect the target without significant false

alarm. Comparing the figure 2.8 and 2.11 we can say that entropy is more efficient

to detect target with poor quality data.
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Figure 2.8. Entropy of reflected echoes collected by single Radar for two different
cases: (a) good signal (b) poor signal .
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Figure 2.9. Quantized signature of target.
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Figure 2.11. Mutual information of echoes with two different condition (a) good
signal (b) poor signal .
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2.5 Conclusion

In this chapter we propose a new scheme for target detection using information

theory. Dynamic nature of the foliage imposes lot of challenges to detect target,

without statistical information. To enhance the performance of the poor signal we

apply information theory to UWB radar. This work is based on sense through foliage

data collected by AFOSR. First we analyzed the data and came into conclusion that,

targeted region is more random than the region without target. Two information

theory based metrics, entropy and mutual information are proposed to detect the

target. For entropy based detection we proved that unless there is unique situation

where each window has uniform distribution then entropy based target detection

is possible using Maximum entropy method. Results show that our approach can

detect target successfully from real world data. However entropy is more efficient in

target detection than mutual information.
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Chapter 3

Radar Sensor Network and KL Based Preprocessing

3.1 Introduction

When the pulse to pulse variability is high and the amplitude of the signal is

low, then single radar is unable to detect the target as shown in Fig. 3.1. In order

to deal with performance degradation, Radar sensor network (RSN) based detection

with multi-step information fusion is proposed. In order to get better performance,

we need to do some preprocessing. At first we used simple weight preprocessing and

then we use K-L divergence based weighted average as fusion technique. Kullback-

Leibler (K-L) divergence based weighting is done to modify the histogram. K-L

divergence maximized the information collected by multiple observations. Then two

information theoretic metrics: entropy and mutual information are applied on the

modified histogram.

3.2 Preprocessing

3.2.1 Simple Weight Preprocessing

RSN and rake structure that we employ in our work has 9 different radars each

collected 35 reading. These radars are mono-static and independent. RSN provides

better signal quality if they are spaced sufficiently far apart since two radars will not

experience deep fading at the same time. Also the collections of the reading from

different positions of the radar were not taken at the same time. This guarantees the

time as well as spatial diversity in the proposed RSN. Information collected by indi-
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Figure 3.1. Reflected echo difference on a single radar in position 1.

vidual radars, are combined by the fusion center by using the weighted average. The

power based weighting, wrfor each radar of the RSN can be given by the following,

wr =
E(Q2

r)∑9
r=1E(Q

2
r)

(3.1)

E(Q2
r) = var(Qr) + [mean(Qr)]

2 (3.2)

where Qr is the quantized received echoes for the rth radar. We applied this weighting

scheme in “good” signal quality and could detect the target. However in case of poor

signal quality we were unable to detect. So we change in preprocessing is incorporated

with a different technique based in relative entropy or KL distance.

3.2.2 Information Fusion by Information Theory

In order to improve the simple weight preprocessing, we propose to use informa-

tion theory based information fusion. To explain the foundation of the information
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fusion based on information theory, we need to introduce an information theoretic

concept known as Method of types. It is a powerful procedure in which we consider

the sequences that has the same empirical distribution [22]. With this restriction,

we can derive strong bounds on the number of sequences with a particular empirical

distribution and the probability of each sequence in this set. It is then possible to

derive strong error bounds in target detection problem when target detection is done

using information theoretic method like entropy which depends only on empirical

distribution.

Theorem 1 : False alarm probability is lower when the relative entropy or KL

divergence has higher value.

Proof: Let R number of radar sensors are collecting independent observations

s = S1, S2, ...Sn. Let the observed echoes generated by each of this radar, s has n

symbols from an alphabet S = {a1, a2, ...a|S|}. The type Qs(a)(empirical probability

distribution) of sequence is the relative proportion of occurrences of each symbol of

S and can be written as [22],

Qs(a) = N(a|s)/n, ∀a ∈ S (3.3)

where N(a|s) denotes the number of occurrences of the symbols a in the sequence.

Let Qn denote the set of types with denominator n. For example if S = {1, 2, 3}, the
set of possible types with denominator n is,

Qn = {(Q(1), Q(2), Q(3) : ( 0
n
,
0

n
,
n

n
), (

0

n
,
1

n
,
n− 1

n
)

... (
n

n
,
0

n
,
0

n
)}

(3.4)
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There are |S| components in the vector that specifies the types. The numerator

on each component can take only n+ 1 values. So we can write,

|Qn| ≤ (n+ 1)|S| (3.5)

The exact size of type class T (Q) for any type QεQn is a combinatorial problem

which is,

|T (Q)| =
(

n

nQ(a1), nQ(a2), ....nQ(a|S|)

)
(3.6)

The most interesting thing we need to observe is that there are only a polyno-

mial number of types of length n. In order to derive the probability of a particular

sequence that belongs to the target when generated by another distribution, we can

use this valuable concept. And this is related to entropy and relative entropy or

KL distance. For target detection using information theory, we need to calculate the

entropy related with the radar observations [88]. Entropy is a measure of uncertainty

of a random variable [22]. Let S be a sequence with n number of samples collected by

each radar and it has empirical distribution qi, then the entropy of S of this sequence

is,

H(S) = −
m∑
i=1

qilog2qi (3.7)

The KL divergence or relative entropy for probability mass functions of pi and

qi can be calculated as,

DKL(pi||qi) =
m∑
i=1

pi log2
pi
qi

(3.8)

here pi is pmf related with the sequence with target and qi is related with the target

not present. Here m in (3.7) and (3.8) depends on the quantization level.
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If X1, X2, ...Xn are drawn i.i.d. according to Q(x), the probability of x depends

on its type. Since all sequence in the same type has the same probability, Qn(xn) =∏n
i=1Q(xi), denotes the product distribution according to the distribution Q. [22],

Qn(x) =

n∏
i=1

Q(xi)

=
∏
a∈X

Q(a)N(a|x)

=
∏
a∈X

Q(a)nPx(a)

=
∏
a∈X

2nPx(a)logQ(a)

=
∏
a∈X

2n(Px(a)logQ(a)−Px(a)logPx(a)+Px(a)logPx(a))

= 2n
∑

a∈X
(−Px(a)log

Px(a)
Q(a)

+Px(a)logPx(a))

= 2−n(H(Px)+D(Px||Q))

(3.9)

From (3.9) and (3.5) for any P ∈ Pn and any distribution Q the probability of any

type class T (P ) under Qn is 2−nD(P ||Q) to first order in the exponent [22],

1

(n + 1)|S|
2−n(D(P ||Q) ≤ Qn(T (P )) ≤ 2−n(D(P ||Q) (3.10)

From this observation it is obvious that, when there is no target present the

sequence of reflected echoes can still have a chance to generate the sequence related

with target present which is given in (3.9) and (3.10). This is related with the false

alarm probability.

Based on theorem 1, we develop our information fusion algorithm. We can

apply our algorithm in several steps as shown in Fig.3.2
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Figure 3.2. Block diagram of multi-step information fusion.

Step1 : We create two n×R matrix “Tw” and “T0”. Here “Tw” represents the radar

collection with target and “To” represents the radar collection without target,

Tw =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Radar1 Radar2 Radar3 . . . RadarR

sample1 sample1 sample1 . . . sample1

sample2 sample2 sample2 . . . sample2

...
...

...
...

...

samplen samplen samplen . . . samplen

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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T0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Radar1 Radar2 Radar3 . . . RadarR

sample1 sample1 sample1 . . . sample1

sample2 sample2 sample2 . . . sample2

...
...

...
...

...

samplen samplen samplen . . . samplen

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
here R is the number of radars and n is the number of samples collected by

each radar.

Step 2 : Then the K-L divergence based weighting, wr for each column can be

calculated as,

wr =
Dr∑R
r=1Dr

(3.11)

and

Dr = DKL(pr||qr) (3.12)

here pr be the pmf of the quantized echoes of the rth column of the Tw matrix and

qr be pmf related with the quantized echoes of the rth column of the To and DKL

is the divergence calculated from the (3.8). The returned echoes are quantized and

pmf are calculated before applying (3.11).

Step3 : Each column of Tw is multiplied by the corresponding weight wr. After

performing the transpose of the matrix, we can calculate the summation of the

matrix. We can name that Matrix as P.

Step4 : Let W = [W1,W2,W3, . . .WM ] set of windows present with M number

of windows. Here M is n/k, and k is the size of the window. The probability mass

functions of the echoes, pj(P ) for quantized received echoes is calculated for each

window, j. Entropy Hj(P ) is calculated for all j = 1 :M .

Step5 : Threshold value T is chosen based on the ROC curve for a particular

probability of detection and for a particular probability of false alarm. If Hj(P ) > T
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then target is detected. For entropy based detection, T < log2m, should also be

considered, when m is the quantization level.

3.2.3 False Alarm Rate for Continuous Case

Lemma1 : If target has a type P which follows U (a, b) and the clutter Q follows

N (μ, σ), then the false alarm probability of target detection PFA can be expressed

as,

PFA ≤ 2−n(−ln(b−a)+ln
√
2πσ+ μ

6σ2 (b
2+ab+a2)− μ

4σ2 (b+a)+ μ2

2σ2 )

(3.13)

Proof : Foliage environment differs from indoor and we plotted the histogram of the

clutter in the far field which follows the Gaussian Distribution as shown in Fig. (3.3)

and (3.4). Also in Chapter2 we saw that targeted region is almost unform.

Now KL distance for the continuous case can be written as

D(p(x)||q(x)) =
∫ ∞

0

p(x)ln
p(x)

q(x)
dx (3.14)

For our case p(x) follows U (a, b) and q(x) follows N (μ, σ)can be expressed as,

p(x) =
1

b− a
(3.15)

and

q(x) =
1√
2πσ

e−
(x−μ)2

2σ2 (3.16)

KL distance between a uniform distribution p(x) and Gaussian distribution q(x) is,

D(p(x)||q(x)) =
∫ b

a

1

b− a
ln(

1
b−a

1√
2πσ

e−
(x−μ)2

2σ2

)dx (3.17)
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Figure 3.3. Clutter distribution in the farfield for the last 5000 samples collected by
9 different radars with 20 bin.

After simplification this can be written as,

D(p(x)||q(x)) =
1

b− a

∫ b

a

−ln(b− a)dx

+
1

b− a

∫ b

a

ln
√
2πσdx

+
1

b− a

∫ b

a

{x− μ}2
2σ2

dx

(3.18)

This can be further simplified as,
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Figure 3.4. Clutter distribution in the farfield for the last 5000 samples collected by
9 different radars with 100 bin.

D(p(x)||q(x)) = −ln(b − a) + ln
√
2πσ

+
μ

6σ2
(b2 + ab+ a2)

− μ

4σ2
(b+ a) +

μ2

2σ2

(3.19)

Now replacing (3.19) in (3.10), we can find the Lemma 1.

3.3 Simulation Results

To demonstrate the performance of RSN based target detection using weight

based weighting and entropy we performed simulation for different quantization lev-
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els. Level of quantization was varied between 8 and 32 as shown in Figs. 3.5(a), and

3.5(b). Target is detected more clearly for higher level of quantization as shown in

Fig. 3.5(b).

The performance evaluation in terms of the false alarm and probability of

detection is given in Fig. 3.6(a) and 3.6(b). Here the x axis correspondence various

threshold value. It is important to note that level of quantization plays an important

role. Comparing the Figs. 3.6(a) and 3.6(b), it is clear that false alarm is never zero

for 100 percent detection probability. However, in Fig. 3.6(b), when threshold is

4.25 to 4.5, result indicates 100 percent detection.

To demonstrate the performance of the mutual information we represent the

simulation in Fig. 3.7. Fig. 3.7(a) is the detection of the signal with single radar.

Fig. 3.7(b) is the mutual information of RSN with poor quality signal. It shows that

with poor quality data RSN alone is unable to detect the target without significant

false alarm. Comparing the figure 3.5(b) and 3.7(b) we can say that entropy is more

efficient to detect target with poor quality data.

Figs. 3.8 and 3.9 illustrate two-step information fusion with K-L based weight-

ing with entropy and mutual information respectively. We can see the RSN with

two-step information fusion can clearly detect the target with the target as the high-

est point around sample13900 with much more certainty. It is clear both entropy

and mutual information with K-L distance based weighting in Fig. 3.8 and Fig. 3.9

gave significant performance improvement than the traditional power based weight-

ing from the previously illustrated results in Figs. 3.5 and 3.7. This significant

performance improvement is the vital achievement of this paper.

Another way of representing this performance improvement is through ROC

curves as shown in Fig. 3.10. ROC represent the probability of detection versus

probability of false alarm for different threshold value. Fig. 3.10 (a) represents the
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Figure 3.5. Entropy of echoes of poor signal with power based weighted RSN for two
quantization level: (a) level of quantization=8 (b) level of quantization=32.
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Figure 3.6. Performance evaluation in terms of probability of detection and proba-
bility of false alarm for two quantization levels (a) level=8 (b) level=32.
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Figure 3.7. Mutual information of echoes with two different condition (a) good signal
(b) poor signal .
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Figure 3.8. Entropy of echoes in RSN with K-L based weighting. Clear target is
visible around sample 13900.

ROC with entropy with 8 level of quantization with power based weighting. However,

with two step K-L weighting improved the detection and ROC moved toward the

upper left corner, as shown in Fig. 3.10(b).

3.3.1 Computational Complexity

Computational complexity of this algorithm is fairly low. There is no compu-

tationally exhaustive process such as FFT or JPD involved. From MATLAB profiler

it was checked that the complexity was in the O(N) where N is the data size. All

other target detection algorithm where signal processing is involved is highly depen-

dent on FFT, complex multiplication, matrix multiplication and can have very high

computational load.
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Figure 3.9. Mutual information of echoes in RSN with K-L based weighting. Clear
target is visible around sample 13900.

3.4 Conclusion

In this chapter, we propose to use information fusion scheme for target de-

tection through foliage using ultra wide-band (UWB) radar sensor networks (RSN).

We proposed to use relative entropy or KL based weighting on each branch of the

radar sensor. The performance of the algorithm was evaluated, based on real world

data. Results show that our algorithm does provide huge improvement while it is

compared with the existing method of power based weighting. This method can be

an excellent alternative to signal processing based methods as it is computationally

efficient and it has less processing load. In future this algorithm can be applied to

big data scenario. It can also be applied to human detection. We can also collect

more data and apply it to multi-target environment.
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Figure 3.10. Performance evaluation in terms of probability of detection versus
probability of false alarm (ROC) for(a) without (b) with KL divergence..
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Chapter 4

Decision Fusion Based on Dempster Shafer’s Theory and Bayesian Network

4.1 Introduction

By Decision Fusion, we need to achieve decision that are not possible by indi-

vidual radars operating individually. In our method, radars in RSN are not collect-

ing the information at the same time and place. It is possible that decision based

on entropy and mutual information can be different. We want to resolve the con-

flict of decision by applying different methods. Bayesian inference and Dempster

and Shafer’s reasoning are the two popular inference algorithms for decision fusion

[35][80][39][40] and [41]. In our study, we use three different algorithms and compare

their performances. We used Dempster and Shafer’s theory and Bayesian network

to diffuse the decision. We also introduce the improved version of D-S theory known

as Proportional conflict redistribution rule-5(PCR-5) for conflicting evidence and

compared the performance with D-S and Bayesian network.

Two of the main philosophies or paradigms of Decision Fusion are Bayes the-

orem and Dempster and Shafer theory. One advantage of using one approach over

the other is the extent to which prior information is available. The oldest paradigm,

and the one with the strongest foundation, is Bayes theory, which deals with proba-

bilities of events. Dempster-Shafer theory, deals with measures of belief as opposed

to probability. While probability theory states whether something is or is not true,

Dempster-Shafer theory allows for more nebulous states of a system (or really, our

knowledge), such as unknown. Both theories have a certain initial requirement.

Dempster-Shafer theory requires masses to be assigned in a meaningful way to the
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Figure 4.1. Block diagram of centralized fusion for target detection.

various alternatives, including the unknown state; whereas Bayes theory requires

prior probabilities, the alternatives to which they are applied are all well defined.

Although Dempster-Shafer theory does not need prior probabilities to function, it

does require some preliminary assignment of masses that reflects our initial knowl-

edge of the system. A further paradigm which is not discussed in this Chapter is

fuzzy logic.

Figs. 4.1, 4.2 and 4.3 depicts several ways to fuse data from several sensors.

Figs. 4.1 shows centralizing the fusion and combines all of the raw data from the

sensors in one main processor. In principle this is the best way to fuse in the sense

that nothing has been lost in preprocessing; but in practice centralised fusion leads

to a huge amount of data traversing the network, which is not necessarily practical

or desirable. Fig. 4.2 shows preprocessing the data at each sensor which reduces the

amount of data flow needed, while in practice the best setup might well be a hybrid

of these two types as shown in Fig. 4.3. We chose to use the preprocessing on each

radar as shown in Fig.4.2

4.2 Block Diagram

The block diagram of the multi-step information fusion based target detection

is shown in Fig. 4.4. The first step of the information fusion is done by K-L divergence
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Figure 4.2. Block diagram of centralized fusion with preprocessing on each branch.

Figure 4.3. Block diagram of hybrid fusion for target detection.

and is clearly explained in Chapter 3. The second stage of the processing is explained

in chapter 2 and the last stage of the decision fusion will be explained in this Chapter.

The numerical values of the BBA are given in the simulation result part of this

Chapter which is calculated based on the threshold values. It is important to note

that we have to quantize the received echoes before we apply our method. These

echoes are collected by nine different radars and each collected 35 different readings.

These collections were summed before the quantization takes place.

4.3 Decision Fusion

4.3.1 DS Theory

The Dempster and Shafer (D-S) theory is a mathematical theory of evidence

often used in sensor fusion [42]. It was first developed by Dempster and extended

by Shafer. It can provide an optimal result from a set of options, without prior
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Figure 4.4. Detailed block diagram of the three step information fusion for target
detection.

probability. D-S theory makes decision by independently judging all the hypotheses

by its individual evidence [80]. This section provides some brief overview of the

Evidence theory.

Definition1: Let U be a finite set of mutually exclusive proposition commonly

known as frame of discernment. The power set of 2U is the set of all subsets, in-

cluding the null set φ and itself. Each subset in the power set is called the focal

element. A value between [0, 1] is given to each focal element, which is based on the

evidence. Basic belief assignment (BBA) is also known as the mass function(m) of
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the individual proposition. It is assigned to every subset of the power set, satisfying

the following:

m(∅) = 0∑
A⊂U

m(A) = 1
(4.1)

where m(A) can be considered as the accurate belief degree of proposition A.

Definition2: Two other functions are also associated with the m(A) are belief

function Bel (A) and the plausibility function Pl(A). The belief and plausibility

functions are derived from the value of m(A), where belief is the lower bound of the

probability P(A) and the plausibility is the upper bound of the P(A). The belief is

the global measure that the hypotheses is true, while Pl(A) may be viewed as the

amount that could be potentially be placed. The definition of these two quantities

are given below,

Bel(A) =
∑
B⊆A

m(B), ∀A ⊆ U (4.2)

P l(A) =
∑

B∩A=∅
m(B), ∀A ⊆ U (4.3)

Rule of combination: Dempster’s rule of combination combines two indepen-

dent sets of mass assignments by orthogonal sum. If m1 and m2 are two BBAs

pertaining to two different evidential sources, the combined basic belief assignments

is obtained via Dempster’s rule of combination as follows:

(m1 ⊕m2)(C) =

∑
B∩A=C m1(A)×m2(B)

1−∑B∩A=∅m1(A)×m2(B)
(4.4)

This rule ignores the conflict of evidence by a normalizing factor K, while K is given

by the following,

K =
∑

A∩B=∅
m1(A)×m2(B) (4.5)
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In our study we have frame of Discernment as

U = {t, nt}
(4.6)

Two different propositions are target present (t) and target not present re-

spectively(nt). Entropy (E) and mutual information (MI) provides two different

evidential sources m1 and m2. We can find the belief function from the threshold

value. The combined belief of target present can be calculated as follows,

(m1 ⊕m2)(t) =
m1(t)×m2(t)

1−m1(nt)×m2(t)−m2(nt)×m1(t) (4.7)

4.3.2 Proportional Conflict Redistribution Rule 5

Many researchers insist that normalization procedure in the DS combination

rule involves counterintuitive result when there is high conflict in evidence. A lot of

modified rule that can solve the problem are proposed. One of the popular one is

Proportional Conflict Redistribution Rule 5 (PCR5)[37]. PCR5 is the most mathe-

matically exact redistribution rule for conflicting mass than all other PCR methods

[37]. We saw several successful use of PCR5 in sensor simulations in various litera-

tures [44], [45] and [46].

For our frame of discernment as given by 4.6 the PCR5 rule will be

(m1 ⊕m2)(t) = m1(t)×m2(t) +
m2

1(t)×m2(nt)

m1(t) +m2(nt)

+
m2

2(t)×m1(nt)

m2(t) +m1(nt)
(4.8)

The details for more than two pieces of evidence combining can be referred to [37].

A numerical example can be presented here to compare the combination of the two
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rules. A body of evidence (BOE) is the set of all the focal elements,(�, m) =

([{A}, m(A)]|A ⊂ P (U), m(A) > 0};here P (U) is the power set of frame of dis-

cernment, U . Three body of evidence are showed as follows:

(�1, m1) = ([{t}, .8], [{nt}, .2]); (4.9)

(�2, m2) = ([{t}, .7], [{nt}, .3]); (4.10)

(�3, m3) = ([{t}, .0], [{nt}, 1]); (4.11)

Table I shows the comparison of the calculation for the DS and PCR5 method. From

Table I it is clear, when there is less conflict, DS and PCR-5 give similar results, as

sown in combining m1 and m2. But when the conflict is high PCR5 gives better

result than DS as shown by the last column while combining m1 and m3. This kind

of conflicting situation is also known as ‘Zadeh’s Paradox’ [43].

Table 4.1. Combination Result for DS and PCR5

Rule combination m1

⊕
m2 m1

⊕
m3

DS rule m(t) .903 0
m(nt) .097 1

PCR5 rule m(t) .843 .356
m(nt) .157 .644

4.3.3 Bayesian Network

Bayesian network (BN), also known as belief networks, belongs to family of

probabilistic graphical models (GMs). BN correspond to another GM structure

known as a directed acyclic graph (DAG). BN represents a Joint probability dis-

tribution (JPD) over a set of random variables. The nodes of the DAG represent

the random variables. The graph encodes independence assumption, by which each
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variable is independents of its non-descendants, given its parent is in DAG. Thus a

BN can represent a JPD in factored form by conditional probability table (CPT).

Consider the case where we have n no of evidential sources S1, S2, S3.....Sn for a

particular node D. We can write Bayes’ theorem as,

P (D|S1, S2, S3...Sn) =
P (D)× P (S1, S2, ...Sn|D)

P (S1, S2, ...Sn)
(4.12)

If we make assumption as sources are independent given D then we can write,

P (S1, S2, · · ·Sn|D) = P (S1|D)× P (S2|D)× · · ·P (Sn|D)
(4.13)

The term P (S1, S2, · · · , Sn) can be eliminated by normalization.

In our study we have a tree structured network with a root node T, which

has no parent. T is the parent node with two children nodes Eh and MIh, which

represents high entropy and high Mutual information respectively. This structure is

shown in Fig. 4.5. T can have two different states, T=t or T=nt. T=t means target

is present and T=nt means target is not present. Now as explained in (4.13), the

conditional probability of target present with high entropy and mutual information

can be calculated as,

P (T = t|Eh,MIh) = α× P (T = t)× P (Eh|T = t)

×P (MIh|T = t) (4.14)

here α is the normalization constant. We assume Eh andMIh is independent of each

other and we also assume prior distribution is uniform and P (T = t) = .5. Details

for this method can be referred to[38] [47].
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4.3.4 Computational Complexity

The computational complexity for the DS is related to the element in the frame

of Discernment, which in our case is only two.

4.4 Simulation Results

In this chapter, we want to combine the decision of two methods based on

entropy and mutual information. It should also be noted that the level of quantization

is also different for these two different methods, that is why we are unable to compare

their performance in a single simulation and we use Dempster rule of combination

to combine them.

Results we found in Figs. 3.8 and 3.9 are combined by (4.7),(4.8) and (4.14).

Before applying (4.7), we need to assign our belief function for the evidential support.

We consider “Zadeh’s paradox” [43] and applied a very small value instead of zero

for small probability. The belief function of entropy, m1(t) is assigned as shown by

the following,

m1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.8 when H(Q) ≥ 3

0.5 when 2.5 ≤ H(Q) < 3

0.01 when H(Q) < 2.5

(4.15)

where H(Q) is the entropy of the quantized received echoes in the kth window after

K-L distance based weighting. The belief function of mutual information, m2(t)

assigned is shown by the following,

m2(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.8 when MI(Qk : Qk−1) ≥ 2.1

0.5 when 1.5 ≤ MI(Qk : Qk−1) < 2.1

0.01 when MI(Qk : Qk−1) < 1.5

(4.16)
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where MI(QK ;Qk−1) is the mutual information of the quantized received echoes in

the subsequent radar return in the window after K-L distance based weighting. The

Dempster based combination successfully detects the target presence as shown in

Fig. 4.6. It is important to note that three-step information fusion identifies the

target with complete certainty.

However as we have already shown in Table I that D-S sometimes are not so

efficient for high conflict. We select a set of data without K-L divergence, with 8

level of quantization and applied DS rule of combination. It gives several windows

with higher values as shown in Fig. 4.7 (a). However this was resolved better by

PCR5 as shown in Fig. 4.7(b). Here the conflicting windows lowered down. We

also applied Bayesian network and it performed slightly better than PCR5 as shown

in Fig. 4.7(c). In this figures we did not consider “zadeh’s paradox”. We consider

“zadeh’s paradox” in Figs. 4.8, 4.9 and 4.10

4.4.1 Conclusion

In this chapter, we propose three different schemes Dempster and Shafer (D-S)

theory of evidence, proportional conflict redistribution rule 5(PCR) and Bayesian

network for decision fusion. In previous chapters, we propose to use information the-

ory and mutual information based method to be applied to RSN and preprocessed the

data using KL. However due to the complexity of the environment it is possible we

might get conflicting result. We want to resolve the conflict of decision by applying

different methods. Dempster-Shafer theory, deals with measures of belief as opposed

to probability. For our target detection algorithms, two different propositions are

target present (t) and target not present respectively(nt). Entropy (E) and mutual

information (MI) provides two different evidential sources m1 and m2. We can find

the belief function from the threshold value. The combined belief of target present
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can be calculated by using the Dempster’s rule of combination. Many researchers

insist that normalization procedure in the DS combination rule involves counterin-

tuitive result when there is high conflict in evidence. A lot of modified rule that can

solve the problem are proposed. One of the popular one is Proportional Conflict Re-

distribution Rule 5 (PCR5). PCR5 is the most mathematically exact redistribution

rule for conflicting mass than all other PCR methods. Bayesian network (BN), also

known as belief networks, belongs to family of probabilistic graphical models (GMs).

In our study we have a tree structured network with a root node T, which has no

parent. T is the parent node with two children nodes Eh and MIh, which represents

high entropy and high Mutual information respectively. Among the decision fusion

algorithms, Bayesian approach worked slightly better than PCR5 while combining

evidential conflict. However PCR5 performed better than DS. Results show that

accurate detection can be achieved by applying DS in case of low conflict.
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Figure 4.5. Bayesian network for Target Detection.
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Figure 4.6. Probability of target present after decision fusion. Target is detected
with certainty.
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Figure 4.7. Performance evaluation in terms of probability of detection for high con-
flict in three different methods: (a)D-S, (b)PCR5 and (c) Bayesian not considering
Zadeh’s paradox.
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Figure 4.8. Performance evaluation in terms of probability of detection for high
conflict using D-S, considering Zadeh’s paradox.
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Figure 4.9. Performance evaluation in terms of probability of detection for high
conflict using PCR5 considering Zadeh’s paradox.
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Figure 4.10. Performance evaluation in terms of probability of detection for high
conflict with Bayesian Network considering Zadeh’s paradox.

64



Chapter 5

Sensor Selection Based on Chernoff Information

5.1 Introduction

In this chapter, we propose to use information theory to automatically select

the best sensors in a Ultra Wide Band (UWB) Radar Sensor Network (RSN) to

detect target in foliage environment. Information theoretic algorithms such as en-

tropy and mutual information are discussed in Chapter 2 that can be applied to

data collected by various sensors for target detection. However, the complexity of

the environment possess uncertainty in fusion center and the big data collected by

sensors can have huge processing load. In this chapter, we propose to use another

information theoretical criterion known as Chernoff information that can provide the

best error exponent of detection in Bayesian approach. We also used Chernoff Stein

Lemma for fusing the data to optimize the performance. The performance of the

algorithm was evaluated, based on real world data. Results show that our oppor-

tunistic sensing (OS) algorithm does efficient utilization of sensing assets and provide

same performance while it is compared with the existing method without OS.

In Radar Sensor Network (RSN), multiple distributed radar sensors survey a

large area and observe targets from different angles. Major limitations of such con-

ventional approaches include inadequate performance for target recognition and huge

processing load for big data. Opportunistic Sensing (OS) refers to a paradigm for

signal and information processing in which a network of sensing systems can auto-

matically discover and select sensor platforms based on an operational scenario. It

uses appropriate methods to fuse the data, resulting in an adaptive network that au-

65



tomatically finds scenario-dependent, objective driven opportunities with optimized

performance. From the experimental data collected by Air Force, it has been found

that echoes with target are more random than the region without target. This find-

ing leads us to use Maximum entropy Method (MEM) and mutual information as

the target detection tool. However, there can still be redundancy in the big data

collected by various radars. Since its possible that less sensors can achieve better

performance, and less sensors can save the bandwidth, energy, memory and storage

resource of sensor networks, its very desirable that principal sensors can be selected.

Also the error probability associated with the detection is crucial in understanding

the performance of the detection. Chernoff information gives the best error exponent

in hypothesis testing, thus can be used as sensor selection scheme in fusion center.

This OS reduces the processing load significantly and effectively utilize the sensing

assets. In order to optimize the performance, data fusion is done based on Chernoff

Stein Lemma.

The rest of the chapter is organized as follows. In Section 5.2, we describe the

system model. In Section 5.3, we explain design and analysis of Chernoff information

based sensing and Chernoff Stein Lemma based data fusion. In Section 5.4, we

present the simulation results. We conclude this paper and propose some future

research in Section 5.5.

5.2 System Model

RSN and rake structure that we employ in our work has nine different radars,

each collected 35 reading as shown in Fig.5.1. These radars are mono-static and

independent. Since two radars will not experience deep fading at the same time,

RSN provides better signal quality when they are spaced sufficiently far apart. Also

the collections of the reading from different position of the radar were not taken at
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Figure 5.1. Detailed block diagram for information theory based opportunistic sens-
ing in Radar Sensor Network.

the same time. This guarantees the time as well as spatial diversity in the proposed

RSN. Information collected by individual radars are quantized and sent to fusion

center to combine by using the weighted average. But before the weighted average

is applied best sensors will be selected based on their Chernoff information. Also

the weight will be applied based on Chernoff Stein Lemma. Detailed analysis of

these theorems are discussed in the Section 5.3. Finally an information theoretic

algorithm, Maximum entropy Method(MEM) is used to detect target.
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5.3 Design and Performance Analysis Based on Chernoff Information and Chernoff

Stein Lemma

Chernoff information gives best error exponent for hypothesis testing in Bayesian

approach. The higher the Chernoff information the lower the probability of error in

detection. In this chapter, we propose to use Chernoff information as sensor selec-

tion scheme. This will significantly reduce the processing delay and improves the

performance as well.

If we assume the R radar sensors are independent and the observations of the

sensors are i.i.d then; let X1, X2...Xn be i.i.d Q(x); let An ⊆ χn is acceptance region

for hypothesis H1; we can consider the two hypothesis as follows,

H1 : Q = P1 Target present

H2 : Q = P2 Target absent

(5.1)

Consider the general decision function when g(X1, X2....Xn) = 1 mean H1 is accepted

and g(X1, X2....Xn) = 2 means H2 is accepted. We can define the two probabilities

of error, one is the missed detection αn and other is the false alarm βn,

αn = Pr(g(X1, X2, ......Xn) = 2|H1true = P n
1 (A

c
n) (5.2)

and

βn = Pr(g(X1, X2, ......Xn) = 1|H2true = P n
2 (An) (5.3)

Now if we assume that Q = P1 with prior probability π1 and Q = P2 with prior

probability π2, the overall probability of error is,

P (n)
e = π1αn + π2βn (5.4)
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In order to get the minimum probability of error, in general we wish to min-

imize both error as expressed by (5.4). The probability of error in detection Pe

asymptotically it holds that[22],

lim
n→∝

logPe

n
= −CI∗ (5.5)

In other words for large n we obtain

Pe ≈ exp(−nCI∗) (5.6)

here CI∗ is the Chernoff information. The Chernoff information between two pmf p

and q is defined as[22],

CI∗ = C(p, q) = − min
0≤λ≤1

log
M∑
k=1

pλkq
1−λ
k (5.7)

where M is related to quantization level. λ value should be chosen by the following,

D(p||λ) = D(q||λ) (5.8)

Here D is defined by (3.8).

Chernoff Stein Lemma As an alternative to Bayesian approach, we can mini-

mize one of the error subject to the constraint of the other error, which is known as

Chernoff-Stein Lemma. In that case αn < ε, and βn for two distribution P1 and P2

can be expressed as,

lim
n→∞

1

n
logβε

n = −D(P1||P2) (5.9)

here αn and βn is defined in (5.2) and (5.3), D is KL distance. From this we can say

that the false alarm probability is inversely proportional to KL distance. This finding

is consistent to Chapter 3, where we found the relation between false alarm and KL

based on Method of types. In this section same can be explained with Chernoff Stein

Lemma.
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Figure 5.2. Clutter distribution in the farfield for the last 5000 samples collected by
9 different radars with bin 20 bin.

One of the popular indoor UWB channel model is S-V model. But the foliage

environment differs from indoor and we plotted the histogram of the clutter in the

far field which follows the Gaussian Distribution as shown in Figs. 3.3 and 3.4. Also

in a previous paper, it has been shown that the outdoor UWB channel follows a

Rician distribution [4], whereas the target region is uniform.

Theorem2 : If target has a distribution which follows U (a, b) and the clutter

Q follows N (μ, σ), then the probability of error in target detection Errd can be

expressed as,

Errd ≈ exp(−n(C)) (5.10)

where C can be denoted as,

C = −λ(b− a)ln(b− a)− (1− λ)(b− a)ln(
√
2πσ)

−(1− λ)

[
(
b3 − a3

6σ2
)− μ(

b2 − a2

2σ2
) +

μ2

2σ2
(b− a)

]
(5.11)
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Figure 5.3. Clutter distribution in the far-field for the last 5000 samples collected by
9 different radars with 100 bin.

Proof

Chernoff information between a uniform density p(x) and Gaussian distribution

q(x) can be written as,

CI = C(p(x), q(x))

= − min
0≤λ<1

ln

∫ b

a

[
1

b− a

]λ [
1√
2πσ

e−
(x−μ)2

2σ2

]1−λ

dx

(5.12)

Now denoting the natural log term as C(λ) this can be further simplified as

C(λ) = −λ
∫ b

a

ln(b− a)dx− (1− λ)

∫ b

a

ln(
√
2πσ)dx

−(1− λ)

∫ b

a

(x− μ)2

2σ2
dx

(5.13)
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= −λ(b− a)ln(b− a)− (1− λ)(b− a)ln(
√
2πσ)

−(1 − λ)

[
(
b3 − a3

6σ2
)− μ(

b2 − a2

2σ2
) +

μ2

2σ2
(b− a)

]
(5.14)

As the theoretical close form approximation of Chernoff information between

a uniform and gaussian density can be expressed as (5.14), theorem 1 can be proved

from (5.14) and (5.6).

Since Figs. (5.2) and (5.3) shows the Rician distributed clutter we calculated

C for Rician distribution and is attached in Appendix B.

Lemma 2 : If target has a distribution which follows U (a, b) and the clutter Q

follows N (μ, σ) and missed detection is fixed, the false alarm rate can be expressed

as Errf can be expressed as,

Errf ≈ exp(−n(D(P ||Q))) (5.15)

where D can be denoted as,

D(P ||Q) = −ln(b− a) + ln
√
2πσ +

μ

6σ2
(b2 + ab+ a2)

− μ

4σ2
(b+ a) +

μ2

2σ2

(5.16)

Proof : Proof is attached in Chapter 3.

Since Figs. (5.2) and (5.3) shows the Rician distribution, we calculated D for

Rician distribution and attached in the appendix A.

5.4 Simulation Results

Our work is based on the sense-through-foliage data from Air Force Research

Lab [81]. Initially, the Barth pulse source was operated at lower amplitude and 35
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pulses of signals were obtained. This collection is referred to as “poor” data. The

integration of these 100 pulses with higher amplitude is referred to as ”good” data,

and some works have been done on target detection based on such data sets, such as

DCT-based approach [9] and differential-based approach [11]. The window size was

used as 50.

In Fig. 5.4, we assess the proposed method of target detection in terms of

the probability of error for nine different radars, in 16 levels of quantization. To

compare the performance in terms of probability of error in detection, we used three

different methods, Chernoff Information, Chernoff Stein Lemma and the theoretical

approximation of Chernoff Stein Lemma. Clearly the probability of error in detection

decreases as number of radars increases. Between these methods Chernoff Informa-

tion performs much better than Chernoff Stein Lemma. Chernoff information can

achieve less than 0.1 of probability of error in detection with only 2 radars whereas

Chernoff Stein Lemma needs at least 7 radars for achieving similar performance.

Fig. 5.5 shows the Chernoff information in various radar position. The purpose

of this study is to apply OS so that we can utilize the sensing assets efficiently. We

want to select the radars which will provide the highest Chernoff information as

they will provide the lowest error in detection while hypothesis testing is done using

Bayesian approach.

Fig. 5.6 shows the performance of an entropy based target detection using

Chernoff information as sensor selection scheme. Here only five sensors are chosen

with the highest Chernoff information. Clearly the position of the radar with highest

Chernoff is selected as position 3,4,5,6,9. The target is detected around sample 13900.

Fig. 5.7 shows the performance of an entropy based target detection while only

three radars are chosen based on their Chernoff information. The target is detected

around sample 13900.
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Figure 5.4. Probability of error versus number of sensors, with 16 level of quantiza-
tion.

Fig. 5.8 shows the performance of an entropy based target detection while

only one radar is chosen based on their Chernoff information. The target is detected

around sample 13900. Fig. 5.9 shows the performance of the target detection algo-

rithm without OS. If we compare the performance between Figs. 5.8 and 5.9, clearly

the performance with OS is equally good as the performance without OS. This proves

the effectiveness of our algorithm in detection while significantly reducing the huge

processing load of the big data, collected by 9 different radars in 35 different position

with 16000 sample. The reduction in processing load is 9:1.

5.5 Conclusion

We propose theory and algorithm for a new scheme of Opportunistic sens-

ing(OS) that not only ensures effective utilization of sensing assets but also provides
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Figure 5.5. Chernoff Information versus radar in nine different positions.

optimal performance. We propose to use Chernoff information as sensor selection

scheme and we also propose to use Chernoff Stein Lemma based information fusion

in the fusion center. We derived the close form approximation for the Chernoff in-

formation and KL distance between uniform and Gaussian densities. This is a novel

approach since it has not been investigated so far. Simulation results show that

our approach can work successfully with real world data. Using this novel approach

we could significantly reduce the number of radars from 9 to 1 while maintaining

good performance. In future we shall acquire more data and apply this algorithm to

multi-target detection.
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Figure 5.6. Entropy based Target detection with five sensors(position 3,4,5,6,9) se-
lected by Chernoff Information with 16 level quantization. Target is detected.
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Figure 5.7. Entropy based Target detection with three sensors(position 3,4,5) selected
by Chernoff Information with 16 level quantization. Target is detected.
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Figure 5.8. Entropy based Target detection with one sensor(position 4) selected by
Chernoff Information with 16 level quantization. Target is detected.
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Figure 5.9. Entropy based Target detection without OS.
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Chapter 6

Human Detection Based on Information Theory

6.1 Introduction

The detection of human hidden by walls are of interest for rescue, surveillance

and security operations. The problem of rescuing people from beneath the collapsed

buildings does not have an ultimate technical solution that would guarantee efficient

detection and localization of victims. Due to the ability to penetrate through typical

building materials, UWB radar is considered as preferred tool for detection. Detec-

tion of human beings with radars is based on movement detection such as respiratory

motions and movement of body parts. These motions cause changes in frequency,

phase, amplitude and time-of-arrival as scattered pulses come from the target. In this

study, we implemented an information theory based human detection using UWB

radar. We applied relative entropy based weighting for preprocessing and in second

step we calculated the entropy for several fixed window.

In Chapter 2 we proposed entropy based method to detect target in forest with

good signal quality. The current scenarios are different as human target behaves

differently than the metallic target. Human body has complex shape and spatial

extent of human body is larger than the transmitted UWB pulse. Returned UWB

signals are consists of multipath components as signals, returned from different body

parts, are scattered independently. Even the dielectric of the wall will have significant

effect on detection. Antenna coupling with the wall and multiple reflections from the

wall will further deteriorate the performance. In order to reduce the performance
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degradation we, propose to use relative entropy based weighting after the clutter

reduction on several scans collected from the same radar.

The rest of the Chapter is organized as follows: Data collection is described in

Section 6.1.1. Two step information theory based detection is discussed in Section

6.2. In Section 6.3, we present the simulation results. We conclude this paper and

propose some future research in Section 6.4.

6.1.1 Measurement Setup

This study considers PulseON P220 UWB radar, developed by time domain,

in monostatic mode. Here waveform pulses are transmitted from a single Omni-

directional antenna and the scattered waveforms are received by a collocated Omni-

directional antenna as shown in Fig.6.1 [82] [83] [84]. It has a center frequency of 4.3

GHz. An Ethernet cable is used to connect the radio to the PC and radar can be

controlled using application software provided with the radios. Extremely low power,

spectral efficiency, immunity to interference and excellent wall penetration character-

istics make this radar suitable for indoor human detection. In general, UWB signal

is noise-like due to the low energy density. Random noise waveform is inherently

low probability of intercept (LPI) and low probability of detection (LPD). The large

bandwidth along with discontinuous transmission makes UWB signal resistant to

severe multi-path interference and jamming. Thus, it is an ideal candidate to work

as a sensor for obscured regions in hostile environments [85].

Fig. 6.2 shows high-level block diagram of a TM-UWB transceiver [82]. It can

be seen that the transmitter does not contain a power amplifier. Instead a pulse

generator generates the transmission pulse at requisite power. A vital part of the

pulse generation circuit is the antenna, which acts as a filter. The architecture of re-

ceiver resembles the transmitter, except that the pulse generator feeds the multiplier
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Figure 6.1. P220 in monostatic mode.

with a template waveform within the correlator. Also, baseband signal processing

must extract the modulation and control signal acquisition and tracking. TM-UWB

transmitters emit very short duration Gaussian monocycles with tightly controlled

pulse-to-pulse intervals. The pulse-to-pulse intervals are relatively long. Thus, the

short duration pulse leads to wide band signal and long pulse-to-pulse interval leads

to low duty cycle. Time Domain UWB products have monocycle pulse widths of

between 0.20 and 1.50 nanoseconds and pulse-to-pulse intervals of between 25 and

1000 nanoseconds [82], [86]. Pulse position modulation (PPM) scheme is used in the

systems and pulse-to-pulse interval is varied on a pulse-by-pulse basis in accordance

with two components: an information signal and a channel code. A single bit of

information is transmitted using multiple pulses. The PulseON systems use long

sequences of monocycles for communications instead of single monocycles. Based

on the information signal and channel code, PPM is used to vary the pulse-to-pulse

intervals. When the sequences of monocycles are sent, it is important to ensure the

spectral quality integrity.

Few important related parameters related to radio configuration are important

in analyzing captured scans. These are hardware and software integration, window
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Figure 6.2. TM-UWB Transceiver block diagram.

Figure 6.3. A periodic pulse wave in time and frequency domain.
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size, number of pulses per scan, number of sample per scan, pulse rate and scan

rate. Integration is the number of radio pulses that radar combines to increase the

signal-to-noise ratio. There are two types of integration. Hardware integration is

performed by the radios hardware. Software integration is performed by the radios

kernel software and occurs after hardware integration. The total integration is the

total number of UWB pulses per waveform sample, and is found by multiplying

hardware and software integration. Window Size (ft) is the difference between stop

position and the start position. Pulses per waveform is the number of UWB radio

pulses required for the entire waveform (single scan). If we denote number of sample

point per scan as nsample, then

nsample =
2 ∗ windowsize ∗ .3048

c ∗ stepsize (6.1)

Now number of pulses per scan can be denoted as npulse and can be calculated as,

npulse = hi ∗ si ∗ nsample (6.2)

here hi is hardware integration and si is software integration. Thus the scan rate can

be calculated as follows,

ScanRate =
npulse

pulserate
(6.3)

Totalscan = Scanrate ∗ data− collecton− time (6.4)

From the above expressions we can see that increasing the scan Window Size

or Integration size increases the scan time and thus reduces the Scan Rate. However

increasing the Step Size increases the Scan Rate. The specifications for PulseOn

P220 is given in Table 6.1.
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Table 6.1. PulseOn 220 Specifications

Parameter PulseOn set up
Center freq 4.3 GHz
Bandwidth (percentile) 53.4
10 dB Bandwidth 2.3 GHz
Pulse type Gaussian monocycle
pulse duration 4.3 ps
resolution 6.5 cm
pulse repetition frequency 9.6 MHz
EIRP -12.8 dBm

6.2 Four Step Method

In this chapter, we use two information theoretic criterion entropy and relative

entropy to detect human in indoor environment. In our previous study, we have

successfully applied our algorithm in sensing through foliage for metallic target, in

UWB Radar Sensor Network. The current scenario is totally different from our

previous study. Here the target is human, the environment is indoor and the human

is behind three different kind of wall; gypsum wall, brick wall and wooden door. Also

here we have single radar collecting multiple scans in contrast with Radar Sensor

Network.

We have already define entropy and relative entropy or KL divergence in (2.1)

and in (3.8)respectively. Since entropy measure the randomness in Chapter 2 for

detecting the target with maximum entropy method, we assume the targeted region is

more random and has more uniform distribution than the clutter. However, we need

to do the preprocessing to make the detection more effective. For preprocessing, we

generally use the methods of estimation. Two mostly used method of non recursive

estimation are weighted average and least square estimation (LSE)[35]. In this study

we use relative entropy or K-L divergence based weighted average as fusion technique
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and the foundation of this is in information theory. In Chapter 3, it is shown that the

KL divergence can detect the change in histogram quickly and can be used for the

weighting. Breathing motion in human will cause periodic changes in the received

signal at a distance where target is located. We can apply our algorithm in several

steps.

Step1 :In order to reduce the clutter in the environment we need to take the

difference in multiple scans. For that purpose we create two N x M matrix “A1” and

“A2” with and without target, which is constructed using M = 100 scans, each of

length N = 6400,

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

scan1 scan2 scan3 . . . scanM

sample1 sample1 sample1 . . . sample1

sample2 sample2 sample2 . . . sample2

...
...

...
...

...

sampleN sampleN sampleN . . . sampleN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Two other matrix C1 and C2 can be constructed, where difference is taken

between successive columns of the matrix A1 and A2, which captures changes from

one scan to another and helps to suppress the static clutter signal. The matrix

construction for the difference matrix C is shown below:

C =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

scan1− scan2 scan2− scan3 scan3− scan4 . . . scan(M − 1)− scan(M)

sample1 sample1 sample1 . . . sample1

sample2 sample2 sample2 . . . sample2

...
...

...
...

...

sampleN sampleN sampleN . . . sampleN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Step2 :We transpose that difference matrix C and construct two Cinv matrices

for with target and without target.
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Step 3 :We applied relative entropy based weighting on each of this row. Now

the matrix Cinv is a(M − 1)×N matrix. Now each row corresponds to the number

of scans and weight is applied on each row based on their KL divergence. si be the

pmf of the quantized echoes of the ith row of the Cinv matrix and bi be pmf related

with the quantized echoes of the ith row of the Cinv without target then the K-L

divergence based weighting, wi for each row of can be applied by the following,

wi =
Di∑M−1

i=1 Di

(6.5)

and

Di = DKL(si||bi) (6.6)

where DKL is the divergence calculated from the (3.8). The returned echoes are

quantized and pmf are calculated before applying (6.5).

Step4 :After this each row is multiplied by the corresponding weight, we take

the summation of the matrix Cinv. Then we applied our second step and applied

entropy based detection with 16 level of quantization. Now we can calculate the

entropy for fixed number of window.

6.3 Simulation Results

After configuring the radio as shown in Table 6.1, the radar starts scanning.

Fig. 6.4 shows the monostatic radar analysis tool. The hardware integration was 512

and software integration was 2. Pulse repetition frequency was 9.6 MHz, step size

was 1 bin and window size was 10 feet. Fig. 6.5 shows one single raw scan. For each

measurement set, scans were acquired for duration of around 1 minute. The number

of scans acquired depends on the scan rate which in turn depends on the waveform

scan resolution, the window size, and the Integration size.
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Figure 6.4. MSR analysis tool setup tab.

Figure 6.5. Window displaying a single raw scan.
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In this study we considered the measurement taken at three different positions:

behind gypsum wall, behind brick wall and behind wooden door. Fig. 6.6 shows the

location of the radar and human target on different sides of a 1 ft thick Gypsum

partition wall. Person is at a distance of 6.5 ft from the radar on the other side of

the wall and the height of the antennas from ground is 3 feet 4 inches. Fig. 6.7

shows the location of the radar in one sides of a 12 cm Brick wall. Person is standing

at a distance of 8 from the radar on the other side of the door. Fig. 6.8 shows the

location of the radar and Human target on different sides of a 4 cm wooden door.

Person is standing at a distance of 7.5 feet from the radar on the other side of the

door.

Fig. 6.9 shows the entropy based target detection when human is behind the

gypsum wall. In this case matrix A is constructed using 100 scans captured at scan

rate of 0.6827 scans/sec for total time duration of 68 sec. Total number of sample

was 6400. We applied our algorithm and calculated entropy for 128 different window

with 50 size of samples on each. Human was detected around sample 4200 as shown

in Fig. 6.9.

Fig. 6.10 shows the entropy based target detection when human is behind the

brick wall. After applying our algorithm we can see in Fig. 6.10 that there is a pick

around the 5120 sample. Since human was located about 8 feet away from the wall,

it was expected in the range.

Fig. 6.11 shows the entropy based target detection when human is behind the

wooden door. For this particular case human was around sample 4800. In Fig. 6.11,

we can see a pick around sample 4800, however that is not the highest point. In that

case this algorithm is not suitable for wooden door.
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(a)

(b)

Figure 6.6. Location of the Human target and UWB radar on different sides of a 1
ft thick Gypsum partition wall (a) human target and (b) UWB radar.

6.4 Conclusions

Detection of human hidden behind the walls is a challenging task. In this study,

we propose to use information theory to UWB radar to detect human target. We

applied relative entropy based preprocessing and entropy based detection. Results

show that with this novel approach, accurate detection can be achieved when human

is hidden behind the gypsum wall. This method could also detect human hidden

behind the brick wall. However this method did not work for detecting human

behind the wooden door.
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(a)

(b)

Figure 6.7. Location of the brick wall and UWB radar on different sides brick wall
(a) brick wall and (b) UWB radar.

An important parameter that affects through-wall sensing is the Wall Dielec-

tric Constant. The frequencies used are less than 960MHz or between 1.99GHz to

10.6 GHz as per the FCC regulations. Metal walls are fully reflective and thus de-

tection through such walls is impossible using radar. However, most wall materials

in use are wood, concrete, glass, and stone. Although these are low loss dielectric

materials, there may be situations where the transmission loss through walls may be

high at specific frequencies or frequency bands. Examples include wave propagation

through concrete walls containing reinforced bars or moist concrete . The transmis-

sion of electromagnetic waves through the wall causes decrease in velocity due to the
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(a)

(b)

Figure 6.8. Location of the Human target and UWB radar on different sides wooden
door (a)UWB radar and (b) Human Target.

dielectric constant of the wall. Higher the dielectric constant and more the thickness

of the wall, larger will be the delay. This results in the targets behind the wall to

appear farther away than they actually are [87]. To overcome the attenuation in

frequency bands, wide-band signal ensures that at least some of the energy will get

through the wall and permit the processing of the target-reflected signals.

In future, we can acquire data on multi position of the radar and apply our

method in Radar Sensor Network. We can also consider the posture of the human

and conduct study for various position of human such as standing, sitting or facing

the wall.
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Figure 6.9. Human target detection using two step information fusion. Target is
detected around sample 4200.
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Figure 6.10. Human target detection using two step information fusion. Target is
detected around sample 5120 .
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Figure 6.11. Human target detection using two step information fusion. Target is
behind door and expected around sample 4800.
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Chapter 7

Throughput Optimization of Cognitive Radio Using Sensor Network and Power

Allocation

Federal Communications Commission report has shown that most of the spec-

trum that is statically assigned to licensed users is heavily underutilized [62]. Cog-

nitive Radio (CR) solves the scarcity of spectrum for wireless communication by

opportunistically using the under-utilized spectrum. A cognitive radio can sense the

spectrum of the licensed user also known as primary user (PU) and identify the

under-utilized spectrum known as white space or spectrum hole. Thus the reliability

of the sensing scheme is crucial. However a single sensor is limited by path loss,

shadowing and fading. In order to enhance the reliability of the detection a wireless

sensor network (WSN), not necessarily embedded in cognitive receiver can be used

[63]. In this WSN, single sensor will make local decision and forward the decision

to the fusion centre (FC). This sensor network will combat the fading through space

diversity and will cover a large geographical area. There will be at least another

sensor to detect the primary user which is far from a secondary user. Hence the two

performance metrics of the sensing: 1) probability of detection and 2) probability of

false alarm can be improved. The overall objective of CR is to increase the spectral

efficiency and keeping the interference under limit. However, as the sensing time is

increased, it can guarantee higher detection probability but the overall throughput

goes down. The traditional optimization of throughput is achieved by water-filling

power allocation. But water filling in CR is complex due to the added constraints of
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interference and false alarm. So we have three different metrics, we need to consider,

sensing time, power and interference.

7.1 System Model

In this chapter, we consider a communication system based on OFDM. Or-

thogonality of the OFDM system allows high spectral efficiency and guarantees less

cross talk between the sub-carriers. It simplifies the equalizer and it does not need

guard interval between the carriers. The whole bandwidth is divided into N no of

sub-carriers and each subcarrier is having the bandwidth as Δf . In frequency do-

main we consider the unoccupied bands are located on each side of PU as shown in

Fig. 7.1. Secondary users (SU) are sparsely located and there exist a WSN to assist

the secondary transmitter in spectrum sensing. Each nodes of the WSN are energy

detectors that will locally made decision based on the local observation and pass

the decision to the Fusion centre for the decision fusion. Fusion centre can apply

different decision fusion algorithm such as OR logic, majority rule or log likelihood to

make the final decision. Then after the necessary spectrum allocation, power control

will be applied for throughput optimization. We assume there are three instanta-

neous fading gains that are known to the transmitter of the SU. The fading gain

between SU transmitter and SU’s receiver for the nth carrier is denoted as hssn , the

gain between the SU’s transmitter and the mth PU receiver is denoted as hmsp and

the gain between the mth PU’s transmitter and SU’s receiver denoted as hmps. It is

assumed that each sub-carrier transmits in Raleigh fading channel and the channels

are estimated by channel estimation mechanism before the transmission.The system

model is shown in Fig. 7.2.
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Figure 7.1. Frequency domain distribution of primary and secondary user.

7.2 WSN Based Spectrum Sensing

In this chapter, the wireless sensor network is responsible for sensing the spec-

trum and allocating the sub-carriers to the secondary system. During the sensing

the CRs are not transmitting. The sensors in the WSN are energy detectors.

The binary hypothesis testing for spectrum detection at a certain subcarrier n

is given as follows:

Rn = Zn : H0 PU absent

Rn = ζnHn + Zn : H1 PU present

(7.1)

where ζn is the received signal of the nth subcarrier at the ith sensor and Rn is

the signal transmitted by the PU at the nth subcarrier and the Zn is the normally
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Figure 7.2. System model on wireless sensor network (WSN) aided Cognitive Radio
Network. Each individual sensor working as energy detector sends the local decision
to the Fusion centre (FC).

distributed noise with zero mean and σ2
n is the variance. For each subcarrier L no of

samples are being collected and the test statistics of the energy detector is given by:

En =
1

L

L∑
l=1

|Rn|2 (7.2)

where En follow chi-square distribution with 2L degrees of freedom, if the signal

is complex or L degrees of freedom if it is non-complex. Based on the probability

distribution function of the test statistics, the detection probability, P i
d and the false

alarm P i
fa, of the i

th sensor can be approximated by [76],

P i
d = Pr{En ≥ ηi|H1} = Q[{ηi − γi − 1}

√
L

2γi + 1
] (7.3)

P i
fa = Pr{En ≥ ηi|H0} = Q[{ηi − 1}

√
L] (7.4)
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where ηi is the detection threshold and γi is the SNR for the ith sensor. Now,

we can replace the L values as the multiplication of sensing time with sampling

frequency. Then the sensing time τ can be expressed in term of the of the targeted

detection probability, P tar
d and targeted false alarm probability P tar

fa . The expressions

are,

τ =
1

fs
{Q

−1(P tar
fa )

ηi − 1
}2 (7.5)

τ =
2γi + 1

fs
{Q

−1(P tar
d )

ηi − γi − 1
}2 (7.6)

where τ is the sensing time and fs is the sampling frequency.The local decision based

on the single sensor will need a low bandwidth control cannel and will be passed to

the FC. We will discuss three different method of decision fusion in the FC.

7.2.1 Decision Fusion by OR Logic

It is already been shown [70] that the OR based decision for the decision fusion

at the fusion center can detect the spectrum hole. If the sensor network has D no

sensors the OR based decision can be applied in the fusion center as follows:

PD = 1−
D∏
i=1

(1− P i
d) (7.7)

PFA = 1−
D∏
i=1

(1− P i
fa) (7.8)

However this is always not the best method as shown in literature.

7.2.2 Majority rule

In this rule the local sensing is fused in one bit binary decision rule based on

the following,

qi =

⎧⎪⎨
⎪⎩

1, En ≥ ηi

0, En < ηi

⎫⎪⎬
⎪⎭ (7.9)
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Now the one bit decision will be fused together so that if more than half of the sensors

are voting for PU presence the FC will make the decision as PU present. The fusion

decision can be shown by the following,

Y =
D∑
i=1

qi =

⎧⎪⎨
⎪⎩

≥ [D
2
], H1

< [D
2
] H0

⎫⎪⎬
⎪⎭ (7.10)

Now if we assume all the sensors are employing the same detection threshold then

the detection probability and the probability of the false alarm can be given by,

PD = Pr{H1|H1} =

D∑
i=
D

2
�

(
D

i

)
P i
d(1− P i

d)
D−i (7.11)

PFA = Pr{H1|H0} =
D∑

i=
D
2
�

(
D

i

)
P i
fa(1− P i

fa)
D−i (7.12)

7.2.3 Log Likelihood Ratio

In this rule we can assume that the single bit decision qi is kept in a decision

vector q̄ = (q1, q2, · · · qD)T . The decision at the fusion centre will be taken by the

following log likelihood ratio [70],

L(q̄) =
Pr{q̄ | H1}
Pr{q̄ | H0} =

D∏
i=1

Pr{qi | H1}
Pr{qi | H0} ≤H1

H0
ζ (7.13)

Also it is defined that,

P (qi|H1) =

⎧⎪⎨
⎪⎩

P i
d qi = 1

1− P i
d qi = 0

(7.14)

Here if D=2, then q will have four different values. If q4 is [1, 1]T , q3 is [1, 0]T , q2 is

[0, 1]T and q1 is [0, 0]T then,
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L(q̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 1
d
P 2
d

P 1
fa

P 2
fa

, q4

P 1
d
(1−P 2

d
)

P 1
fa

(1−P 2
fa

)
, q3

1−P 1
d
P 2
d

(1−P 1
fa

)P 2
fa

, q2

(1−P 1
d
)(1−P 2

d
)

(1−P 1
fa

)(1−P 2
fa

)
, q1

(7.15)

However this might take lots of processing time.

7.3 Throughput Analysis with Sensing Time and Interference Constraint

In this section, we formulate the throughput as a function of the sensing time and

power allocation. Our objective is to optimize the throughput of the CR, while

taking the interference to the PU as one of the major consideration. The CR user

tries to find the spectrum holes that are not being used by the PU. When the energy

detectors are sensing the spectrum, four different scenarios can happen. If we consider

the same hypothesis as shown in (7.1), the scenarios can be illustrated as follows:

S1 = Pr{H0|H0}

S2 = Pr{H0|H1}

S3 = Pr{H1|H1}

S4 = Pr{H1|H0}

(7.16)

If we want to further illustrate, S1 and S3 are the correct decisions. Here only S1 is

the desirable correct decision, in CR’s point of view. S2 represent the scenario when

the PU is active however the decision of the sensor network is wrong. This missed

detection will be the major reason for the interference. Scenario 4 is another incorrect

decision that will generate the false alarm, further degrading the spectrum usage.

Two kinds of interferences are introduced in OFDM system. One is introduced by
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Figure 7.3. Consecutive orthogonal sub-carriers in time domain.

the SU to the PU which is due to the situation S2. The other is the interference

introduced by the primary user to the nth subcarrier of the secondary user. Both

of them depend on the spectral distance and transmit power. The power density

spectrum assuming the nyquist pulse can be written as [74],

Φn(f) = PnTs(
sinπfTs
πfTs

)2 (7.17)

where Ts is the symbol duration and Pn is the transmit power allocated to the nth

subcarrier. Fig. 7.3 shows the orthogonal subcarrier generated in OFDM based

system. The interference that will be introduced to the PU is the integration of

the Power density spectrum across the PU band. This can be expressed as,

I
(n)
SU (dnm, Pn) = |hspn |2PnTs

∫ dnm+BM/2

dnm−BM/2

(
sinπfTs
πfTs

)2df (7.18)

100



where dnm represents the distance in frequency between the nth subcarrier and mth

PU band and BM is the band width of the mth primary. The interference introduced

by the mth PU to the nth subcarrier, will be the integration of the power density

spectrum of the PU signal across the nth subcarrier can be written as,

IPU =| hspn |2 PnTs

∫ dnm+ΔF/2

dnm−ΔF/2

E{IN (ω)}dω, (7.19)

where, EIN(w) can be written as,

EIN(ω) =
1

2πs

∫ π

−π

ΦPU(ejω)(
sin(ω − ψ)s/2

sin(ω − ψ)s/2
)2 (7.20)

is the power density spectrum of the PU after S FFT process. Here w represents the

frequency normalized to the sampling frequency.

Now if we assume the interference between the secondary users is negligible due to

the orthogonality of the OFDM system, throughput of the CR network in N no of

carrier can be expressed as,

C =

[
N∑

n=1

(
T − τ

T
)ΔfPr{H0}(1− P n

FA)log2(1 +
Pn | hssn |2

σ2
n

)

]

+

[
N∑

n=1

(
T − τ

T
)ΔfPr{H1}(1− P n

D)log2(1 +
Pn | hssn |2
IPU + σ2

n

)

]

(7.21)

where T is the total frame time and IPU can be calculated from (7.19), P n
fa and P n

D

is the decision feed back from the FC for the nth carrier and they are function of

sensing time, τ . However we know that in the design of the CR, the interference

that is introduced by the secondary user to the PU has a threshold that we need to

maintain.
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Our objective is to optimize the throughput considering all the constraints. So we

can do the problem formulation of the optimization as follows,

max
Pn,τ

C

s.t.
M∑

m=1

N∑
n=1

I
(n)
SU (dnm, Pn) ≤ Ith (7.22)

Pn ≥ 0 ∨ n = 1, 2, · · ·N (7.23)

PFA(τ) =

D∑
i=D

2

(
D

i

)
P i
fa(1− P i

fa)
D−i ≤ α (7.24)

N∑
n=1

≤ PT (7.25)

This problem is non convex and the constraint in (7.24) is non convex too. Thus

finding the optimal solution is difficult. In order to find the suboptimal solution we

can divide the problem in two sub-problems and find the optimal power and sensing

time.

7.4 Power Control and Sensing Time Design

7.4.1 Power Allocation

In order to allocate the power to the user by relaxing the sensing time con-

straint, we can easily apply the waterfilling algorithm with interference constraint.

Then Pn optimal can be written as [74]

P ∗
n = max

{
0,

1

λ
∑M

m=1Q
(m)
n

− σ2 + IPU

|hnss|2
}

(7.26)

where λ is the Lagrange multiplier for the inequality, where Qnm can be expressed

as,

Q(m)
n = |hspm |2Ts

∫ dnm+BM/2

dnm−BM/2

(
sinπfTs
πfTs

)2df (7.27)
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From (7.26) we can conclude

M∑
m=1

N∑
n=1

Q(m)
n max

{
0,

1

λ
∑M

m=1Q
(m)
n

− σ2 + IPU

|hnss|2
}

≤ Ith (7.28)

The objective of water filling is to achieve maximum data rate while exploiting the

varying channel gain. The channel with better channel gain is allocated higher power

so that better data rate is achieved. For the Cognitive radio the optimized power

allocation is achieved by (7.26). Since the calculation of λ value is quiet complicated

and required several steps, we try to avoid this optimal solution. If we ignore the

second term in (7.26) the power is inversely proportional to the Qn which depends

on the spectral distance between primary and secondary. Then we can apply distant

dependent modified water filling (DDMWF) where the initial water line is achieved

by allocating the power in step method.

We consider five sub-carriers where the middle one will be given the highest power

considering that it is furthest from the primary. Two of the subcarrier will be given

the medium step power and two of them will be given the lowest power as they

are closest. The total power is still remain constant and depend on the given SNR.

Then we repeat this allocation for three different blocks and total fifteen sub-carriers

are considered on both sides of the PU. Let PT denotes total power, sc is no of

subcarrier per block and l is the no of block, for our particular case we divide the

steps of the waterline, by the following: 1. If we have sc=5 per block, then three

strong sub-carriers in three different block has initial power allocation as

Pi =
Pt

3× l
(7.29)

2. If we have sc=5, then six of the sub-carriers can have the initial power as

Pi =
Pt

6× l
(7.30)
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3. If we have sc=5, six of the sub-carriers can be given the initial power as,

Pi =
Pt

9× l
(7.31)

After the initial power allocation the water line will be updated and sub-optimal

solution will be found by the iterative process. Finally the capacity of the secondary

user is measured. We made the assumption that since the sub-carrier that is spec-

trally far from the PU, has been given the highest power it will cause less interference

and the interference threshold will not exceed the limit. However, we need to check

the interference threshold time to time. If it exceeds the given threshold then the

waterline has to be updated with a factor.

7.4.2 Sensing Time Design

As already mentioned in section 7.4, power and sensing time cannot be jointly

determined to maximize the throughput. Thus we develop another sub-problem of

optimizing the sensing time while keeping the Pfa minimum. It is interesting to note

the developed expression for interference is not depending on the sensing time as

well, however the portion of the throughput that is due to the missed detection is

multiplied by the term (1− Pd) is neglected. The optimization problem becomes,

max
τ

C =

[
N∑

n=1

(
T − τ

T
)Δf(1− P n

FA)log2(1 +
Pn | hssn |2

σ2
n

)

]

PFA(τ) =

D∑
i=D

2

(
D

i

)
P i
fa(1− P i

fa)
D−i ≤ α (7.32)

where α is the P tar
fa . The constraint here is multiplication of two Q functions we apply

the majority rule in the fusion center. As we know that Q function is constantly

decreasing we change the non convex problem in a linear problem. A careful analysis

can be made while choosing the maximum and minimum value of the τ . As already
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shown in section 3.3 that τ can be easily expressed in terms of the P tar
d andP tar

fa and

the max and the min value of the canτ be found following expression:

τmax =
1

fs
{Q

−1(P tar
fa )

ηi − 1
}2 (7.33)

τmin =
2γi + 1

fs
{Q

−1(P tar
d )

ηi − γi − 1
}2 (7.34)

7.5 Simulation Results

In simulation we consider the number of sub-carriers N is 15. The channel is

considered as Raleigh fading channel. SNR is varied from -20 to 30 dB. The frame

time T is 100 ms.

In Fig. 7.4, we plot, probability of detection of three different sensing schemes.

Number of sensor, for OR and majority rule fusion schemes, are taken as 10. Based on

the simulation, clearly the sensor network based schemes show better performance

than the single sensor based scheme. The probability of detection increases as a

function of SNR. Fig. 7.4 shows that OR based fusion rule has higher probability of

detection than the majority rule for low SNR.

Fig. 7.5 shows performances of the three different power allocation schemes,

equal power allocation, water filling traditional and DDMWF while keeping the sens-

ing time constant. The initial water line is set by the (7.29)-(7.31). Clearly DDMWF

out performs the traditional water-filling as well as the equal power allocation. This

result proved the suboptimal power allocation in CR based OFDM system is a good

method to increase the data rate of the spectrum and the cognitive radio user as a

whole.

In Fig. 7.6 with a constant SNR of 10 dB, we plot the throughput of the

cognitive radio as a function of the sensing time. We calculate the optimal power for
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Figure 7.4. Probability of detection versus SNR for three different sensing schemes.

three different power allocation schemes. Clearly there exist a optimal sensing time

that maximizes the throughput.

In Fig. 7.7 three dimensional representation of throughput is shown. Total

throughput is plotted as a function of sensing time and SNR. This clarifies that we

can maximize the throughput by power control and then design an optimal sensing

time. For this figure we use DDMWF as our power allocation scheme.

7.6 Conclusion

In this study we consider an interweaved Cognitive radio network, which can

sense the spectrum and communicate in the white space of the spectrum while keep-

ing the interference due to the missed detection under limit. Throughput optimiza-

tion while keeping the interference under the threshold is one of the most challenging

issues in Cognitive Radio network. In this chapter, we combined the sensing schemes
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Figure 7.5. Capacity versus SNR for three different power allocation schemes.

along with sub optimal power allocation. We designed the optimal sensing time while

initially applying the DDMWF scheme for power allocation. Results show that this

method can greatly improves the overall throughput. We assume the threshold to be

a constant, in this chapter. In future we shall apply this method where threshold can

be dynamic and the sensors will apply the cognition from the learned environment.

In this work we only apply the technology for the interweaved Cognitive network

where communication for secondary is based on the white space, we can also extend

this work for underlay cognitive network, where both primary and the secondary can

coexist in the same frequency band. We can also extend this work for a macro femto

network where the femtocell can work as a secondary device.
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schemes.
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Chapter 8

Conclusion and Future Works

This chapter concludes the whole dissertation. It begins with a summary of

the dissertation results and contributions, which will follow a discussion of future

research directions for further investigation.

8.1 Summary

This dissertation has focused on but not limited to Target detection using

information theory and capacity analysis of the cognitive radio using sensor network.

The contributions of this dissertation are:

• Information Theory Based Target Detection In this chapter we propose a new

scheme for target detection using information theory. Dynamic nature of the fo-

liage imposes lot of challenges to detect target, without statistical information.

To enhance the performance of the poor signal we apply information theory

to UWB radar. This work is based on sense through foliage data collected by

AFOSR. First we analyzed the data and came into conclusion that, targeted

region is more random than the region without target. Two information the-

ory based metrics, entropy and mutual information are proposed to detect the

target. For entropy based detection we proved that unless there is unique sit-

uation where each window has uniform distribution then entropy based target

detection is possible using Maximum entropy method. The proposed algorithm

is fundamentally different from the conventional wisdom, which assumes that

we will have minimum information about the targeted region. It is nonconven-
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tional that from data analysis we found uniform distribution of the targeted

region, this will give higher entropy and lower conditional entropy, and will

give higher mutual information in the targeted region. We also applied several

quantization levels on the data for entropy based method and found best result

in 32 level of quantization. Results show that our approach can work success-

fully for good signal of real world data. However entropy is more efficient in

target detection than mutual information based detection [88] [89].

• Radar Sensor Network and KL Based Preprocessing When the pulse to pulse

variability is high and the amplitude of the signal is low, then single radar is

unable to detect the target. In order to deal with performance degradation,

Radar sensor network (RSN) based detection with multi-step information fu-

sion is proposed. Since two radars will not experience deep fading at the same

time, RSN provides better signal quality when they are spaced sufficiently far

apart. Also the collections of the reading from different position of the radar

were not taken at the same time. This guarantees the time as well as spatial

diversity in the proposed RSN. Information collected by individual radars are

quantized and sent to fusion center to combine by using KL based weighting.

Results show that our algorithm does provides huge improvement while it is

compared with the existing method of power based weighting. This method

can be an excellent alternative to signal processing based methods as it is com-

putationally efficient and it has less processing load. We also calculated the

upper bound of the false alarm probability for the clutter and target distribu-

tion using another information theoretic criterion known as method of types

[90] [91].

• Decision Fusion Based on Dempster Shafer’s Theory and Bayesian Network

In this chapter, we propose three different schemes Dempster and Shafer (D-
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S) theory of evidence, proportional conflict redistribution rule 5(PCR) and

Bayesian network for decision fusion. In previous chapters, we propose to use

information theory and mutual information based method to be applied to RSN

and preprocessed the data using KL. However due to the complexity of the en-

vironment it is possible we might get conflicting result. We want to resolve the

conflict of decision by applying different methods. Dempster-Shafer theory,

deals with measures of belief as opposed to probability. For our target detec-

tion algorithms, two different propositions are target present (t) and target not

present respectively(nt). Entropy (E) and mutual information (MI) provides

two different evidential sources m1 and m2. We can find the belief function

from the threshold value. The combined belief of target present can be calcu-

lated by using the Dempster’s rule of combination. Many researchers insist that

normalization procedure in the DS combination rule involves counterintuitive

result when there is high conflict in evidence. A lot of modified rule that can

solve the problem are proposed. One of the popular one is Proportional Con-

flict Redistribution Rule 5 (PCR5). PCR5 is the most mathematically exact

redistribution rule for conflicting mass than all other PCR methods. Bayesian

network (BN), also known as belief networks, belongs to family of probabilistic

graphical models (GMs). In our study we have a tree structured network with

a root node T, which has no parent. T is the parent node with two children

nodes Eh and MIh, which represents high entropy and high Mutual informa-

tion respectively. Among the decision fusion algorithms, Bayesian approach

worked slightly better than PCR5 while combining evidential conflict. How-

ever PCR5 performed better than DS. Results show that accurate detection

can be achieved by applying DS in case of low conflict [92].
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• Sensor Selection Based on Chernoff Information We propose theory and al-

gorithm for a new scheme of Opportunistic sensing(OS) that not only ensures

effective utilization of sensing assets but also provides optimal performance.

We propose to use Chernoff information as sensor selection scheme. Before the

weighted average is applied in the fusion center, best sensors will be selected

based on their Chernoff information. Chernoff information gives best error ex-

ponent for hypothesis testing in Bayesian approach. The higher the Chernoff

information the lower the probability of error in detection. As an alternative to

Bayesian approach, we can minimize one of the error subject to the constraint

of the other error, which is known as Chernoff-Stein Lemma. From this we can

say that the false alarm probability is inversely proportional to KL distance.

This finding is consistent to Chapter 3. We derived the close form approx-

imation for the Chernoff information and KL distance between uniform and

Gaussian densities. This is a novel approach since it has not been investigated

so far. Simulation results show that our approach can work successfully with

real world data. Using this novel approach we could significantly reduce the

number of radars from 9 to 1, while maintaining good performance [93] [94].

• Human Detection Based on Information Theory Detection of human hidden

behind the walls is a challenging task. The transmission of electromagnetic

waves through the wall causes decrease in velocity due to the dielectric con-

stant of the wall. Higher the dielectric constant and more the thickness of the

wall, larger will be the delay. This results in the targets behind the wall to

appear farther away than they actually are. To overcome the attenuation in

frequency bands, wide-band signal ensures that at least some of the energy will

get through the wall and permit the processing of the target-reflected signals.

In this chapter, we propose to use information theory to UWB radar to detect
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human target. We applied relative entropy based preprocessing and entropy

based detection. Results show that with this novel approach, accurate detec-

tion can be achieved when human is hidden behind the gypsum wall. This

method could also detect human hidden behind the brick wall. However this

method did not work for detecting human behind the wooden door [95].

• Throughput Optimization of Cognitive Radio Using Sensor Network and Power

Allocation In this study we consider an interweaved Cognitive radio network,

which can sense the spectrum and communicate in the white space of the

spectrum while keeping the interference due to the missed detection under limit.

Throughput optimization while keeping the interference under the threshold

is one of the most challenging issues in Cognitive Radio network. In this

dissertation, we combined the sensing schemes along with sub optimal power

allocation. We designed the optimal sensing time while initially applying the

DDMWF scheme for power allocation. From simulation result we found that

OR based sensing scheme performed the best than any other sensing scheme.

We also found that there exist an optimal sensing time where the throughput

is maximum. Results show that this method can greatly improves the overall

throughput. We can also extend this work for a macro femto network where

the femtocell can work as a secondary device [96] [97].

8.2 Future Direction

8.2.1 Extending Information Theory Based Target Detection in Multi-target Envi-

ronment

Using information theory based method, we successfully detected two different

kinds of Target: Metallic reflector and human. In future this method can be success-
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fully applied in multi-target environment. Various technical perspectives have been

investigated by researchers in this domain, [98], [99], [100] and [101]. However none

of these methods worked on information theory.

8.2.2 Applying Chernoff Information and KL Based Processing in Big Data

Big data has received increasing attention for its broad research and applica-

tion prospects [102], [103], [104] and [105]. Big data refers to huge datasets that

are difficult to acquire, store, search, visualize, and analyze. Nowadays the data

scale expands rapidly and exceeds the current processing capability of computer. At

present the global data storage and processing capability has already been far behind

the growth of data. There are three basic steps for big data preprocessing, namely

data Extraction, Transformation and Loading. ETL is responsible for extracting the

data from the multiple data sources to a temporary intermediate layer for conversion,

integrated, and finally loaded into the target database or the corresponding file in

the storage system, which is the basis of data mining. Big data mining uses parallel

processing such as MapReduce [102], it means resolving mass data and distributed

storage, and then using data mining by parallel processing and finally outputting the

results together.

Our method of KL based preprocessing can be applied in this scenario and

Chernoff information can be applied in the stage of extracting the data. We can

verify the integration error using Chernoff information.

8.2.3 Interweaved Cognitive Radio for Optimizing the Femto Macro Capacity

The demand for higher capacity in mobile network is unrelenting. The rapid

development of the smart phone and tablet PCs has changed the cellular network

from the voice network to mostly data network. Also due to attenuation of the
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signal in indoor, some of the area in indoor has very poor coverage by macrocell.

Femtocell provide the solution of these problems. The integrated femtocell/macrocell

networks offer an efficient way to increase access capacity by improving coverage

and quality of service, while on the other side the deployment cost of the service

provider is kept in extremely low levels. A large wireless capacity can be increased

by reducing the cell size and transmit distance. Femtocells are low cost, low power

base stations, maintained by the consumer. It gives the opportunity to the service

provider to extend the service indoors and other places where coverage is not available

otherwise. However femtocell can cause interference to the macrocell user if they are

both operating in the same channel, which in turn will reduce the capacity. In [106],

the interference mitigation technique for the femtocell was presented by LDOmethod.

In[107], a centralized resource management was proposed to mitigate the interference.

In [108] authors presented CR as the solution, so there was cooperation between the

macro and femtocell. Femtocell would share its information such as number of user,

power and frequency. Resource would be allocated based on CR. Fractional frequency

reuse was proposed as a method in [109]. In [110] the interference between macro and

femtocell was presented for the open access, in heterogeneous tow-tier network. A

cross layer interference control considering the QOS was proposed in [111]. In [112]

the behavior of the macrocell and femtocell interference was modeled. In [113] beam

forming was proposed as a method to mange the interference in femtocell by using

directional antennas. In [114]self organizing method, was used where the network

is based on Q learning and changed its parameter by self organization. Interference

alignment was introduced as a technique to increase the multiplexing gain of a MIMO

X channel [116],[117], [115] and [118]

In future, we can design the cognitive radio as an underlay cognitive radio

instead of an interweave cognitive radio. In an attempt to get the information theo-
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retic boundary of the capacity region, we propose to analyze the degree of freedom

of the underlay cognitive radio network. We propose to investigate the interference

alignment technique to mange the interference in a cognitive femto cell.
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Appendix A

Closed Form Approximation Between Rician and Gaussian for KL

118



A.1 Closed Form Approximation Between Rician and Gaussian for KL

One of the popular indoor UWB channel model is S-V model. But the foliage

environment differs from indoor and it has been already shown that the outdoor

UWB channel follows a Rician distribution [4], whereas the target region is uniform

[88]. Now KL distance for the continuous case can be written as

D(p(x)||q(x)) =
∫ ∞

0

p(x)ln
p(x)

q(x)
dx (A.1)

For our case p(x) follows U (a, b) and q(x) follows Rice(ν, σ)can be expressed as,

p(x) =
1

b− a
(A.2)

and

q(x) =
x

σ2
e−

x2+ν2

2σ2 I0[
xν

σ2
] (A.3)

Here I0 is the modified Bessel function of the first kind with order 0. Now the(A.1)

becomes,

D(p(x)||q(x)) =
∫ b

a

1

b− a
ln

⎛
⎝ 1

b−a

x
σ2 e

−x2+ν2

2σ2 I0[
xν
σ2 ]

⎞
⎠ dx (A.4)

After simplification this can be written as,

D(p(x)||q(x)) =
1

b− a

[∫ b

a

ln
x

σ2
dx+

∫ b

a

x2 + ν2

2σ2
dx

]

+
1

b− a

∫ b

a

ln[I0
xν

σ2
]dx+ ln(b− a)

(A.5)

Now the third term in (A.5) is difficult to integrate. So we need to approximate the

closed form. The mean of Rician distribution is

E[x] =

√
πσ2

2
e−

ν2

4σ2

[
(1 +

ν2

2σ2
)I0(

ν2

4σ2
) + (

ν2

2σ2
)I0(

ν2

4σ2
)

]
(A.6)

and the variance is,

var(x) = ν2 + 2σ2 − E2(x) (A.7)
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It is shown in Chapter 3 in (3.19)that the KL between a uniform and gaussian

distribution can be written as,

D(p(x)||q(x)) = −ln(b− a) + ln
√
2πσ +

μ

4σ2

[{a− μ}2 + {b− μ}2]
(A.8)

Now using the mean and the variance from (A.6) and (A.7) in (A.8), the closed

form expression of the KL for our target detection can be calculated.
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Appendix B

Closed Form Approximation of Chernoff Information Between Rician and Uniform

Distribution
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B.1 Closed Form Approximation of Chernoff Information Between Rician and Uni-

form Distribution

Chernoff information for continuous case can be defined as,

C(p(x), q(x)) = − min
0≤λ<1

{
ln

∫
x

p(x)λq(x)1−λdx

}
(B.1)

For our case p(x) follows U (a, b) and q(x) follows Rice(ν, σ)can be expressed as,

p(x) =
1

b− a
(B.2)

and

q(x) =
x

σ2
e−

x2+ν2

2σ2 I0[
xν

σ2
] (B.3)

Here I0 is the modified Bessel function of the first kind with order 0. Now if we

define the natural log term as C(λ), then using p(x) and q(x) from (B.2) and (B.3)

C(λ) = ln

{∫ b

a

[
1

b− a

]λ [
x

σ2
e−

x2+ν2

2σ2 I0[
xν

σ2
]

]1−λ

dx

}
(B.4)

This can be further expanded and written as,

C(λ) = −(λ)(b− a)ln(b− a) + λ

[∫ b

a

ln
x

σ2
dx

]

−(1− λ)

[∫ b

a

ln
x2 + ν2

2σ
dx−

∫ b

a

lnI0(
ν2

σ2
)dx

]
(B.5)

Now we can find the closed form expression of Chernoff information between Uniform

and Gaussian distribution from Chapter5. The expression is,

C(λ) = −(b− a)

[
1− λ

2
ln(2πσ2) + (λ)ln(b− a)

]
+

−(1− λ)
1

6σ2

[
(b− μ)3 − (a− μ)3

]
(B.6)
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Now replacing the mean and variance from (A.6) and (A.7), we can get an approx-

imate closed form expression for the Chernoff information for our target detection

case.
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