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Abstract

DYNAMIC SIMULATION OF MULTIBODY SYSTEMS IN SIMULTANEOUS,

INDETERMINATE CONTACT AND IMPACT WITH FRICTION

ADRIAN RODRIGUEZ, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Alan Bowling

This research is focused on improving the solutions obtained using theory in

contact and impact modeling. A theoretical framework is developed which can sim-

ulate the performance of dynamic systems within a real world environment. This

environment involves conditions, such as contact, impact and friction. Numerical

simulation provides an easy way to perform numerous iterations with varying condi-

tions, which is more cost effective than building equivalent experimental setups. The

developed framework will serve as a tool for engineers and scientists to gain some

insight on predicting how a system may behave. The current field of research in

multibody system dynamics lacks a framework for modeling simultaneous, indeter-

minate contact and impact with friction. This special class of contact and impact

problems is the major focus of this research. This research develops a framework,

which contributes to the existing literature.

The contact and impact problems examined in this work are indeterminate

with respect to the impact forces. This is problematic because the impact forces are

needed to determine the slip-state of contact and impact points. The novelty of the
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developed approach relies on the formation of constraints among the velocities of the

impact points. These constraints are used to address the indeterminate nature of

the collisions encountered. This approach strictly adheres to the assumptions of rigid

body modeling in conjunction with the notion that the configuration of the system

does not change in the short time span of the collision. These assumptions imply

that the impact Jacobian is constant during the collision, which enforces a kinematic

relationship between the impact points.

The developed framework is used to address simultaneous, indeterminate con-

tact and impact problems with friction. In the preliminary stages of this research, an

iterative method, which incorporated an optimization function was used obtain the

solutions for numerical solution to the collision. In an effort to improve the time and

accuracy of the results, the iterative method was replaced with an analytical approach

and implemented with the constraint formulation to achieve more energetically con-

sistent solutions (i.e. there are no unusual gains in energy after the impact). The

details of why this claim is valid will be discussed in more detail in this dissertation.

The analytical framework was developed for planar contact and impact problems,

while a numerical framework is developed for three-dimensional (3D) problems. The

modeling of friction in 3D presents some challenging issues that are well documented

in the literature, which make it difficult to apply an analytical framework. Simula-

tions are conducted for a planar ball, planar rocking block problem, Newton’s Cradle,

3D sphere, and 3D rocking block. Some examples serve as benchmark problems, in

which the results are validated using experimental data.
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Chapter 1

Introduction

1.1 Overview

The goal of this research is to study the interaction of a dynamic system with

its environment by considering factors, such as friction and restitution. A dynamic

system here is referred to as a system of multiple, interconnected bodies, or multibody

system as known in the literature. It is assumed that the collisions experienced by the

multibody systems considered in this work are rigid body impacts. Herein, impact is

classified as the abrupt interaction between colliding bodies and contact is considered

as a succession of impacts. This allows impact and contact to be treated within the

same framework. The framework which will be developed is accomplished from a

rigid body dynamics approach. In other words, the multibody systems are strictly

assumed to be composed of rigid bodies, in which any local deformation as a result

of impact is considered to be very small and negligible. This assumption will serve as

the cornerstone of the method for treating a special class of problems encountered in

multibody dynamics: simultaneous, indeterminate contact and impact with friction.

Before moving forward with the details of this work, it is important to define

some other key aspects of the methods used to develop the analytical-numerical frame-

work. This work is focused on the impact dynamics of collisions, which takes into

consideration the forces, impulses and velocities involved as opposed to its mechanics.

The mechanics of collisions deal with stress, displacement (i.e. local indentation) and

wave propagation of forces, which are not considered in this research.

1



G
1

G
2

Impact Line

Figure 1.1. Rigid body impact of two bodies and line of impact.

Another key aspect of rigid body collisions is the type of impact encountered,

which can be classified into the following: collinear, eccentric, oblique, and direct.

Consider, for example, the rigid body impact of two bodies with respective mass

centers G1 and G2, as depicted in Fig. 1.1. Collinear, or central, impact involves

the case in which both mass centers of the bodies lie on the line of impact, whereas

eccentric impact means that one or none of the mass centers lie on the line of impact.

The latter case is a prominent one to consider for three-dimensional (3D) impact due

to the effect of the configuration on the nonlinear behavior of friction but is typically

only observed in single point impact [3, 4, 5, 6, 7, 8]. Oblique impact is similar to

the definition of eccentric impact but replaces mass centers with initial velocities of

the two bodies. Direct impact indicates that the initial velocities lie on the line of

impact. The primary types of impact simulated in this research are collinear and

direct impact but are not limited to these cases.

1.2 Motivation and Problem Statement

The motivation for this research is to narrow the gap between theory and prac-

tice in contact and impact modeling. The benefits of formulating a theoretical model,

2



or tool, which can accurately and efficiently simulate the behavior of a multibody

system in a real world environment are: 1) ease of testing design iterations, and 2)

reduction of manufacture time and costs. As mentioned previously, factors such as

impact and friction are important to consider in the modeling process because they

dictate the dissipation of energy and how a system behaves. Thus, a theoretical model

offers engineers and scientists the ability to easily perform numerous simulations of

a potential system design under different environment scenarios. Furthermore, the-

oretical simulation provides a way to improve and gain a better understanding of a

system’s performance, before the manufacture of a physical prototype begins. This

undoubtedly induces savings in the time and cost of producing needless prototypes

which may otherwise perform poorly during experimental testing.

The current field of research in multibody system dynamics lacks a framework

for modeling simultaneous, indeterminate contact and impact with friction. This

research develops a framework as a theoretical tool, which addresses this void in the

literature. In order to understand the terminology used to classify the special class

of problems examined in this research, an explanation will be given for clarification.

Contact and impact is assumed to be concentrated locally at a point in the colliding

region between bodies. This is the assumption followed herein, in the case of round

or spherical surfaces, whereas multiple points can be used to represent the contact

and impact region for flat surfaces. Simultaneous is understood to mean that a

multibody system is experiencing contact and/or impact at more than one point, or

multiple points, at the same instance in time. This situation is critical because it

often leads to an indeterminacy in the system equations of motion with respect to

the contact and impact forces; this is especially true when friction is considered at

the contact and impact points. The indeterminate nature of the system equations of

motion is one of the key issues this research addresses.
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Consider by way of example, the planar model of a ball with radius R, shown

in Fig. 1.2a. This planar system has three degrees-of-freedom (DOFs) with respect

to an inertial reference frame N denoted by generalized coordinates q1, q2 and q3,

which imply three equations of motion. For the purpose of demonstration, only two

impact points are considered with friction, such that there are four unknown impact

forces, ft1, fn1, ft2, and fn2 in Fig. 1.2b; the subscripts n and t distinguish between

normal and tangential terms. Here, the consideration of friction at the two impact

points introduces tangential forces, which lead to indeterminate equations of motion

with respect to the impact forces. Additional impact points can be considered but

only two are needed to introduce the indeterminate issue.

G

PNG = q1 N1 + q2 N2 

W
A

L
L

GROUND

N1

N2

N

q3

R

2

1

G

W
A

L
L

GROUND

N1

N2

N

q3

 ft2

fn2

fn1

ft1

2

1

PNG = q1 N1 + q2 N2 

(a) (b)

Figure 1.2. (a) Planar model of a ball example and (b) velocities and forces at impact
points 1 (ground) and 2 (wall).

Multiple point contact and impact is further used here to stress two common

situations encountered. The first deals with the fact that a multibody system may

undergo contact and impact at multiple points (i.e. a biped robot may have simul-

taneous contact and impact with its feet and hands). The second situation suggests

4



that a contact or impact surface can be approximated by the definition of multiple

points on the body of interest in the system, as in the case of a flat surface. Combining

simultaneous and indeterminate introduces the specific class of contact and impact

problems examined in this research. The consideration of friction complicates the

modeling of these problems but adds value to the developed framework because it is

necessary to represent the actual characteristics encountered by a real world system.

In the initial stages of this research, an iterative method, which incorporated

an optimization function was used to obtain numerical solutions for the collisions

simulated [9, 10, 11, 12]. The implementation of velocity constraints were first devel-

oped using rigid body assumptions and Newton’s coefficient of restitution was used.

The numerical method was later replaced with an analytical approach using Stronge’s

energetic coefficient of restitution (ECOR) in conjunction with the constraint formu-

lation in an effort to improve the time and accuracy of the solutions obtained for

planar systems [13, 14, 15, 16]. Experimental validation was used in this work to

demonstrate that the developed framework makes a significant impact in the field of

multibody system dynamics.

1.3 Research Contributions

In Chapter 3, the indeterminate contact and impact problem is addressed by

deriving velocity constraints among the impact points, which are consistent with rigid

body assumptions. A general method for obtaining these constraints is demonstrated

for an arbitrary configuration of impact points. These velocity constraints are further

derived in terms of forces at the impact points using the dual properties of the impact

Jacobian. The projection of these constraints between velocity– and force-spaces are

proven to give physically meaningful constraints that are consistent with the rigid

body modeling approach used in this research.
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Chapter 4 discusses the restitution coefficient applied to account for the en-

ergy dissipated normal to the impacting bodies. The work done on the system is

determined from the Work-Energy Theorem by isolating the components of this cal-

culation that contribute to the normal work. This work is used in conjunction with

Stronge’s ECOR, which is reinterpreted in the developed framework to represent the

global energy loss for the impact events analyzed. The theory of Stronge’s ECOR is

further generalized to treat multiple point impact problems, which incorporates the

rigid body constraints developed in Chapter 3 to address indeterminate contact and

impact.

In Chapter 5, the analytical framework for treating two-dimensional (or planar)

indeterminate contact and impact problems with friction is developed. The analyt-

ical framework accounts for the complex slip behaviors of an impact point due to

the consideration of friction, such as slip-reversal, sticking, and slip-resumption. A

method for checking the no-slip condition, which also incorporates the rigid body

constraints developed in Chapter 3 is derived to visualize the regions defined by the

no-slip condition for an impact point.

The treatment of three planar example problems with multiple case studies are

analyzed using the developed analytical framework in Chapter 6. Several important

conclusions are made from the simulation results obtained, including: the interpre-

tation of the ECOR for multiple point impact problems, defining the range of values

for the ECOR, the observation of multiple impact events captured for a single colli-

sion, and using experimental validation from the simulation results for a frictionless

rocking block and three-ball Newton’s Cradle.

Chapter 7 presents an extension of the methods used in the analytical framework

of Chapter 5 to develop the numerical framework for treating 3D multiple point impact

problems with friction. The derivation of rigid body constraints is shown in differential
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form for an arbitrary configuration of impact points. The method for deriving these

constraints can be generalized for the consideration of additional impact points. An

event-based scheme is implemented to address the discontinuity that is encountered

at the stick-slip transition for 3D impact problems.

In Chapter 8, a further study is performed on two 3D example problems with

multiple cases to test the numerical framework developed in Chapter 7. The total

number and configuration of the impact points are varied to gain some insight about

the effects in behavior of a 3D rocking block problem with friction, as an equivalent

foot-ground interaction. The analysis of these 3D multiple point impact problems

demonstrates the effectiveness of the novel method developed in this research for

addressing indeterminate contact and impact.
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Chapter 2

Contact and Impact Modeling

2.1 Contact Models

Contact and impact of multibody systems has been extensively studied in the

literature due to its complex physical nature. There are many different approaches

which are used in an attempt to approximate the abrupt interaction between two

colliding bodies. Rigid body impacts occur over a very short time period and are

commonly characterized by rapid changes in the system velocities and the presence

of large forces on the bodies.

PRE IMPACT IMPACT POST-IMPACT

Figure 2.1. Pre– and post-impact regions for discrete modeling approach.

The two most common approaches used to treat rigid body impacts involve a

continuous or discontinuous method. In this work, the rigid body impacts are modeled

as discrete events using a discontinuous approach, as depicted in Fig. 2.1. This

approach, also termed as piecewise [17], nonsmooth [18], or impact and continuous

[19], characterizes the impact as an instantaneous change in the velocities of the

8



impacting bodies and impulse-momentum theory is used to treat the hard impacts

[20, 21]. The large impact forces are generated by very small local deformations when

a rigid body impact is assumed [3]. It is assumed that the impact event occurs over

a very short time period in which the position and orientation of the system remains

constant, which establish the Darboux-Keller impact dynamics [22, 23]. Figure 2.1

illustrates how this discrete approach defines a pre– and post-impact region with an

impact region that is assumed to be instantaneous. This approach is used in this work

and the short impact event is further treated as a continuous process, and examined

in the impulse-domain, as in [24, 25, 26] when the bodies are still in contact; here,

contact is treated as a succession of discrete impact events. A discrete, algebraic

approach is used to define enough equations to describe the system such that the

post-impact velocities are solved algebraically [27, 28]. These velocities dictate the

dynamic behavior of the system after impact.

An alternative to discrete approaches are continuous approaches, which use reg-

ularized [17], non-colliding [19], or compliant [29, 30] contact force models, and often

involve penalty methods. These models use the theory of elasticity and incorporate

the properties of stiff springs and/or dampers [31, 32] to model the impact. Some

of the first models proposed developed a relationship between the local deformations

and the time-varying forces on the bodies [33, 31, 34].

2.2 Friction Models

In order to develop a better understanding of the interactions between multi-

body systems and their surroundings, this work examines the effects of friction during

contact and impact. Continuous friction laws have been proposed and subsequently

modified, such as the LuGre [35, 36], Iwan [37] and Dahl [38] friction model. The

LuGre friction model uses the basis of bristles to account for the changing friction
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force with slipping velocity. Alternatively, the Iwan friction model is associated with

modeling the frictional impact using elastic-perfectly plastic theory, while the Dahl

friction model examines the behavior as a hysteretic force-displacement using differ-

ential analysis. Other approaches incorporate a maximum dissipation principle which

is used in conjunction with friction models to produce a physically accurate depiction

of friction behavior [27, 39].

fn

||f
t 

|| 
≤

 µ
s 

 |f
n

 |

ft2

ft1

Figure 2.2. Friction cone based on theory of Coulomb friction.

Researchers Banerjee, Bauchau et al. in [40, 41], present a modification to the

Coulomb friction model was applied using regularization factors which produced a

continuous friction law. This approach smooths the transition between slipping and

sticking regions but lacks a physical meaning to the parameters used in the model.

Even though these continuous friction laws attempt to avoid the discontinuity, which

arises from modeling friction, the discontinuous friction model of Coulomb’s law

proves to be very useful for multibody impact problems. Coulomb friction is used

in the framework developed to relate the tangential impulse to the normal impulse

10



by a coefficient of friction (COF) [42]. This relationship can be visualized using the

friction cone for Coulomb friction, depicted in Fig. 2.2. As mentioned before, the

friction force might be discontinuous because changes in the friction direction during

an impact event can occur due to sliding or sticking – a dynamic, µd or static, µs,

COF may be used, respectively.

The choice between µd and µs depends on the slip-state of an impact point.

Herein, the slip-state of an impact point refers to whether an impact point is sticking

(no-slip) or sliding (slipping). The inner region of the friction cone represents sticking,

whereas the outer region is sliding. The boundary of the friction cone between these

two regions is the stick-slip transition where an impact point with initial sliding comes

to rest and then resumes slip, slip-reverses or remains in the stick region [21, 43].

The conditions that will determine the outcome from the stick-slip transition are

discussed in the following section. The lower bound on COF which induces sticking

is represented by the critical COF, µ̄. Thus, it is necessary in this research to closely

examine the stick-slip transition because it will ultimately affect the post-impact state

a system will reach. This theory is developed and applied to dynamic, multibody

systems undergoing indeterminate, multiple point impact with friction.

2.3 Complementarity Conditions

The stick-slip transition is best defined in relation to the well-known comple-

mentarity conditions, which describe the relationships between friction, contact forces,

velocities, and accelerations [27]. Assuming that the distance between the impacting

points equals zero, the complementarity conditions are dependent on the value of the

pre-impact normal velocity and acceleration as,
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



vni(t) < 0 impact or contact

vni(t) = 0 and





v̇ni(t) ≤ 0 contact

v̇ni(t) > 0 separation

vni(t) > 0 separation

(2.1)

A transition between being in and out of contact or impact occurs when the pre-

impact normal velocity equals zero. The pre-impact acceleration must be checked to

determine whether impact forces will exist. According to classical Coulomb friction,

the post-impact tangential velocities satisfy,




vti = 0 and v̇ti = 0 then ‖fti‖ ≤ µs |fni| sticking

vti = 0 and v̇ti 6= 0 then ‖fti‖ = µs |fni| stick-slip transition

vti 6= 0 then ‖fti‖ = µd |fni
| slipping

(2.2)

where µs and µd are the static and dynamic coefficients of friction [27].

The no-slip condition is defined by the first relation in (2.2), the stick-slip

transition is defined by the second, and slipping, or sliding is defined by the third. In

(2.2) there is a discontinuous change in the coefficient of friction, assuming µs 6= µd,

and thus a discontinuous change in the friction forces. This discontinuity defines an

abrupt transition from sticking to slipping, a state often referred to as impending

motion. Once the impact point overcomes the static friction force, or stiction, it

begins to slip and the coefficient of friction drops discontinuously from µs to µd.

The relationships in Eqns. (2.1) and (2.2) are the basis for what is referred to

as a complementarity problem [44]. The complementarity conditions apply to both

contact and impact forces independently. Other friction models have been proposed

which provide a continuous transition between sticking and slipping including the

Karnopp model [45, 46]. Herein, impulsive forces are used to check the sticking
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condition. The complementarity conditions in terms of impulses are presented in

[47],




vti = 0 and v̇ti = 0 then ‖pti‖ ≤ µs |pni| sticking

vti = 0 and v̇ti 6= 0 then ‖pti‖ = µs |pni| stick-slip transition

vti 6= 0 then ‖pti‖ = µd |pni| slipping

(2.3)

Similar complementarity conditions can be developed for moments [48, 49].

2.4 Event-Based Simulation Technique

The two-dimensional and three-dimensional examples studied in this work are

simulated using an adaptive Runge-Kutta integrator, which employs the Dormand-

Prince method [50]. This integrator is needed to solve the equations of motion when

the systems are simulated using the discrete approach for the pre– and post-impact

simulations. In order to evaluate the integrity of the simulations performed, a check

function is used which is based on the Work-Energy Theorem. This check function is

calculated as,

check1,i = Ti − (T1 + W1→i) (2.4)

where Ti and T1 are the kinetic energies at the ith and first iteration step of the

integration, respectively, and W1→i is the work done by generalized active forces,

such as conservative and non-conservative, throughout the integration. Figure 2.3

illustrates this check function plotted versus the simulation time. Ideally, the check

function should remain constant and close to zero. Otherwise, increases or decreases

in this value indicate dynamic inconsistencies in the simulation process.

The use of collision detection algorithms are available in the literature, see

[51, 52, 53]. Here, an event-driven scheme, similar to [39, 54] in conjunction with

Matlab’s ode45 integrator stops the simulation when a collision is detected. Multiple
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Figure 2.3. Check function of numerical integration for simulation.

impact events can occur in the collisions simulated. This is further discussed in the

examples simulated. The developed approach is used to treat the impact events and

determine the post-impact velocities of the system. These velocities serve as the

initial conditions when the simulation is restarted. This technique is followed herein

each time a collision is detected in the simulations conducted.

A process flow chart is presented in Fig. 2.4 to illustrate the operations per-

formed during a simulation. This is true for the planar and 3D multiple point impact

problems studied using the analytical-numerical framework developed in this research.

The type of algorithm shown in Fig. 2.4 is commonly used in multibody dynamics

simulation [19].
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Figure 2.4. Flow process used for the simulation of impact problems.
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Chapter 3

Indeterminate Contact and Impact

3.1 Simultaneous, Multiple Point Impact

The central problem addressed in this work is the dynamic modeling of systems

involving simultaneous, multiple point impact with friction which yield equations of

motion that are indeterminate with respect to the impact forces [55, 56, 57, 58, 9,

10, 12]. This is problematic because the impact forces are needed to determine the

slip-state of the impacting point. The simultaneous aspect of the rigid body impacts

encountered separates the problem from simply multiple frictional impacts studied

by other researchers [59, 60, 29, 61].

The indeterminacy in the equations of motion was first addressed in this re-

search, see [9, 10], where velocity constraints were derived based on rigid body as-

sumptions and applied at the velocity level. This method was used in conjunction

with an optimization technique to solve for the post-impact velocities of the system.

An alternative method in the literature is to add more DOFs to the problem by

considering elasticity in the bodies, as in [55]. Adding more DOFs generates addi-

tional equations of motion so that the system is no longer indeterminate. Another

technique involves a QR decomposition of the Jacobian’s transpose to determine the

impact force components which have the least effect on the system [56]. Works in

robotic grasping eliminate infeasible force solutions based on the situation-specific

contact geometry of a grasped object to solve the indeterminate equations [57, 58].
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Figure 3.1. Planar ball model with two arbitrary impact points A and B.

In this work, velocity constraints are derived from the kinematic relationship

between the impact points but unlike [9, 10, 12], the constraints are applied at the

force level by using the dual properties of the impact Jacobian. This is supported

by the assumption that the system configuration remains constant in the short time

span of the collision, which implies that the impact Jacobian is also constant during

the impact event. These aspects of the analysis allow a conversion of physically

meaningful velocity constraints into force constraints.

3.2 Rigid Body Constraints

Consider, by way of example, two arbitrary impact points (A and B), located

on a planar rigid body, as shown in Fig. 3.1. Using classical rigid body dynamics [62],

the difference between the velocities of these two impact points is found as,

vA − vB = ω × (PGA − PGB) (3.1)

where ω is the angular velocity of the body and PGi is the position vector of impact

point i with respect to the body’s mass center. If the dot product of the unit direction
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between impact points A and B is applied to each side of (3.1), such that the right-

hand side is zero, then the rigid body assumption defines that,

(vA − vB) ·
PGA − PGB

|PGA − PGB|
= 0 (3.2)

yields,

(−sinφ cosθ + cosφ sinθ)vt,A + (1− cosφ cosθ − sinφ sinθ)vn,A

+ (−sinθ cosφ+cosθ sinφ)vt,B + (cosθ cosφ+sinθ sinφ−1)vn,B = 0 (3.3)

where the subscripts n and t correspond to the normal and tangential velocity com-

ponents of the impact point.

For the benchmark example presented in Ch. 1 of a planar ball, θ = π/2 and

φ = π, such that,

vt,A + vn,A − vt,B − vn,B = 0 (3.4)

or,

vt1 + vn1 − vt2 − vn2 = 0 (3.5)

where the subscripts n and t distinguish between normal and tangential velocities.

Additional rigid body constraints can be formulated using the method of (3.2) with

the consideration of more impact points. The benefit is clear from the simple nature

of (3.2) and permits the definition of a kinematic relationship among a collection of

impact points on a rigid body.

Similarly, the general form of the constraints can be formulated, by way of

example, for three impact points (B, C, and D) on a three-dimensional model of a

spherical ball, as shown in Fig. 3.2.
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Figure 3.2. Three dimensional model of a sphere impacting a corner.

If the velocity of the sphere’s center of mass at point G is known, vG, with

respect to an inertial reference frame, then the velocity of point B and C shown in

Fig. 3.2 are found as,

vB = vG + vGB = vG + ω ×PGB (3.6)

vC = vG + vGC = vG + ω ×PGC (3.7)

where vGB is the relative velocity between points G and B and vGC is the relative

velocity between points G and C [62]. Eliminating vG from the relations in (3.6)

yields

vB − vC = ω × (PGB − PGC) (3.8)

where,

ω = (q̇4 + s5 q̇6) N1 + (c4 q̇5 − s4 c5 q̇6) N2 + (s4 q̇5 + c4 c5 q̇6) N3 (3.9)

using short-hand notation for the sin and cos terms. The result in (3.8) gives three

independent equations, which are used to derive a relationship among the impact

points. If the dot product of the unit direction between impact points B and C is

19



applied to each side, such that the right-hand side of (3.8) is zero, then the rigid body

constraint is expressed as,

(vB − vC) ·
(PGB − PGC)

|(PGB − PGC)|
= 0 (3.10)

such that,

vn,B + vt1,B − vt1,C − vn,C = 0 (3.11)

where the subscripts n and t once again distinguish between normal and tangential

velocities. The constraint in (3.11) is easily related to the planar case presented if

points 1 and 2 are substituted for B and C in (3.11) to achieve the result in (3.5).

Similar expressions are obtained among the other impact points such that a total of

three constraints are formulated.

vn,B − vt2,B − vt1,D + vn,D = 0 (3.12)

vn,C + vt2.C − vt2,D − vn,D = 0 (3.13)

In this way, the rigid body assumption has allowed for the definition of three con-

straints which can be applied to the equations of motion to make them determinate.

3.3 Constraint Projection

The dual nature of the impact Jacobian expresses the relationship between

velocities and forces,

ϑ =




vt1

vn1

vt2

vn2




= J q̇ , Γ = JT F = JT




ft1

fn1

ft2

fn2




(3.14)

The question then becomes, what effect does the velocity constraint in (3.5) have on

the force space? It is necessary to examine the dual nature of the velocity and force
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constraint spaces. Consider an example where the term vt1 is constrained, without

any loss of generality,

ϑ =




vt1

vn1

vt2

vn2




=




−1 1 1

1 0 0

0 1 0

0 0 1







vn1

vt2

vn2




= Q v∗ (3.15)

where Q is a matrix of full rank containing the velocity constraint and ϑ
∗ contains

the constrained velocity space. Taking the left-inverse of Q yields,

ϑ
∗ =

(
QTQ

)−1
QT

ϑ = Q+
ϑ (3.16)

Applying the dual property of the impact Jacobian and solving for the constrained

force space, yields,

Γ = JTF = JT
(
Q+

)T
F∗ (3.17)

which yields,

F =
(
Q+

)T
F∗ or QT F = F∗ (3.18)

where Q+ is the left-inverse of Q. The second expression in (3.18) is used to solve for

F∗ as

F∗ = QT F =




−1 1 0 0

1 0 1 0

1 0 0 1







ft1

fn1

ft2

fn2




=




−ft1 + fn1

ft1 + ft2

ft1 + fn2




(3.19)

Using this result in the first relation in (3.19) gives,



ft1

fn1

ft2

fn2




= F = (Q+)T F∗ =




−0.25 0.25 0.25

0.75 0.25 0.25

0.25 0.75 −0.25

0.25 −0.25 0.75







−ft1 + fn1

ft1 + ft2

ft1 + fn2




21



=




0.75ft1 − 0.25fn1 + 0.25ft2 + 0.25fn2

−0.25ft1 + 0.75fn1 + 0.25ft2 + 0.25fn2

0.25ft1 + 0.25fn1 + 0.75ft2 − 0.25fn2

0.25ft1 + 0.25fn1 − 0.25ft2 + 0.75fn2




(3.20)

such that every relation in (3.20) yields the same force constraint:

ft1 + fn1 − ft2 − fn2 = 0 (3.21)

which is used to eliminate the dependent force in (3.20). Note that this process

essentially can be stated as

F =
(
Q+

)T
QT F (3.22)

noting that the matrix (Q+)
T

QT does not equal the identity matrix. This matrix

projects F on the right-hand-side of (3.22) into the space orthogonal to the velocity

constraint, which must equal the original F. Technically, any vector of forces in the

null space of (Q+)
T

QT can be added to the right-hand side and still satisfy (3.22).

However, the development of this solution was based on the existence of left-inverses

which only find a single solution. In addition, it is expected that adding constraints

to a problem would select a particular single solution and not involve the problem of

multiple solutions. This is further proved in Appendix A.

3.4 Summary

In this chapter, the rigid body assumptions were used to derive velocity con-

straints among the impact points and form the novel method for treating indetermi-

nate contact and impact. This special class of multiple frictional impact occurs in

situations where the multiple point impact is also simultaneous. A general method

was developed for obtaining the rigid body constraints for an arbitrary configuration
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and number of impact points considered. The velocity constraints were further de-

rived in terms of forces at the impact points using the dual properties of the impact

Jacobian. The projection of these constraints between velocity– and force-spaces were

proven to produce physically meaningful constraints because they are consistent with

the rigid body modeling approach used in this research.
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Chapter 4

Energy Dissipation

4.1 Restitution Coefficients

Another key issue addressed in this research concerns the estimation of energy

dissipation in the rigid body collisions simulated. Figure 4.1 depicts the compression

and restitution (relaxation) phases a body undergoes during impact. The energy loss

for an impact can be attributed to the net work done as a result of these processes.

This work is not focused on predicting a coefficient of restitution (COR) by using

the material properties of the impacting bodies, which is extensively done by [63, 64,

65]. Rather, the goal here is to implement classical hypotheses used in multibody

dynamics, such as Newton’s (velocities [66]), Poisson’s (impulses [67]), and Stronge’s

(energy [61]) to estimate the energy dissipated. Each of these hypotheses uniquely

define a COR to describe the relationship between the pre– and post-impact states

of a system normal to the impacting point(s). Adjacent tangential compliances due

to local deformation in the contact area are not accounted for by these hypotheses,

which [68, 64, 69] finds that it may affect the COR used; this is not pursued further

in this work.

COMPRESSION RESTITUTIONIMPACT

Figure 4.1. Example of compression and restitution effects on a compliant body.
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Figure 4.2. Normal velocity propagation for single point impact.

A well-known comparison of the three hypotheses is done by considering the col-

lision process in Fig. 4.2 for a single point impact case. Newton’s COR (en) relates the

post-impact normal velocity to the pre-impact normal velocity as: en = −v+n /vn(0),

where v+n = −vn(0) for en = 1. Poisson’s COR (ep) relates the restitutive normal

impulse to the compressive normal impulse as: ep = pnr/pnc = (pnf − pnc)/pnc, where

pnr = pnc for ep = 1. Stronge’s hypothesis (e∗) relates the normal restitutive work to

the normal compressive work (shaded areas in Fig. 4.2) as: e2∗ = −Wnr/Wnc. Note

that the compression phase ends when vn = 0 for single point impact but this is not

so straight forward for multiple point impact and this research aims to narrow this

gap in understanding.

The differences of each COR hypothesis lie in the accuracy of representing phys-

ically consistent behavior of a system. For example, Newton’s hypothesis has been

noted to produce energy inconsistencies in the form of gains in mechanical energy

[70, 71]. Poisson’s hypothesis is useful for the solutions it gives to rigid body im-

pact problems but lacks a foundation in physical principles [55]. Stronge’s hypothesis

25



however, defines an energetic coefficient of restitution (ECOR) which incorporates

work-energy theory, as used in [3, 25, 26], and often leads to energetically consistent

results in rigid body impact modeling. The difference in this work is that the appli-

cation of the ECOR is extended to model the global dissipation of energy for multiple

point impact problems as opposed defining a local ECOR for each impact point. This

global representation of energy loss eliminates the need for tangential coefficients.

The use of the ECOR requires a work-energy analysis at the system level to

determine the energy dissipated from a collision [15, 16]. Even though the collisions

considered here are treated as rigid body impacts, the compression and restitution

phase of the work-energy analysis solely correspond to the change in kinetic energy

of the system. In other words, the goal in this work is not to model the physical

deformation local to the impact points. Herein, the work done by normal impulsive

forces is examined in the impulse domain, as a function of an independent normal

impulse parameter, which yields the invariant parabolic shape of the work-energy re-

lationship. In addition, the evolution, or changes, of the impact velocities throughout

the collision are also examined in the impulse domain. Changes in velocity directions

are largely affected by the coefficient of friction when an impact point comes to rest

after initial sliding. Thus, the examination of the stick-slip transition is a major focus

in this work. The sign of the corresponding tangential force is opposite of the sliding

direction of the impact point on the slip plane, which is represented by Coulomb fric-

tion and discussed in Sec. 2.2. This is problematic in the 3D case when the impact

point goes through the stick-slip transition (i.e. s = 0) because the direction becomes

undefined in this region. Iterative or recursive methods [25, 5, 6] work well to define

this region and resolve the direction of friction.

These developments lead to a generalized interpretation of Stronge’s hypothesis

for multiple point collision problems with friction, which is still applicable for single
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point impact problems. The methods used also lead to unique and energetically

consistent solutions of simultaneous, indeterminate contact and impact problems.

4.2 Work-Energy Theory

Next, the implementation of the work-energy theorem is discussed. The calcu-

lation of the work is given as the change in kinetic energy between the initial and

final states of the impact as,

T2 = T1 + W1−2 = T1 + U1 − U2 + (W1−2)d (4.1)

where Ti and Ui are the kinetic and potential energy at state i, and (W1−2)d is the

non-conservative, or dissipative, work done on the system between states 1 and 2.

In this work, the potential energy terms U1 and U2 are neglected due to the hard

impact assumptions, or negligible deformation, from the strict adherence to rigid

body modeling.

W1−2 = W = T2 − T1 =
1

2
q̇T (t + ǫ)M q̇(t + ǫ)− 1

2
q̇T (t)M q̇(t) (4.2)

Recall from (3.14) the relationship between the component velocities in ϑ and the

generalized speeds in q̇, such that the change in generalized speeds can be written as,

q̇(t+ ǫ) − q̇(t) = (JTJ)−1JT

︸ ︷︷ ︸J( q̇(t+ ǫ) − q̇(t) )

= J+( ϑ(t+ ǫ) − ϑ(t) ) (4.3)

By using the same representation of the generalized speeds q̇(t+ ǫ) and q̇(t) in (4.3),

then (4.2) is expressed as,

W =
1

2
( J+

ϑ(t + ǫ) )TM( J+
ϑ(t+ ǫ) ) − 1

2
( J+

ϑ(t) )TM( J+
ϑ(t) ) (4.4)

where the component velocities in ϑ(t+ǫ) and ϑ(t) become apparent in the calculation

of the work.
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The normal work done throughout an impact event is a function of the com-

ponent velocities normal to each impact point. To capture the effect that the right

hand side of (4.4) has on the normal work due to the normal component velocities, a

distinction must be made between the contributing and non-contributing terms.

W =
1

2

(
J+

t ϑt(t + ǫ) + J+

nϑn(t + ǫ)
)T

M
(
J+

t ϑt(t+ ǫ) + J+

nϑn(t+ ǫ)
)
−

1

2

(
J+

t ϑt(t) + J+

nϑn(t)
)T

M
(
J+

t ϑt(t) + J+

nϑn(t)
)

(4.5)

where J+
t = [ J+

1 | J+

3 ], J+
n = [ J+

2 | J+

4 ], and J+ = [ J+

1 | J+

2 | J+

3 | J+

4 ]. The

tangential and normal component velocities in (4.5) are distinguished by the terms

ϑt and ϑn. The product of the terms in (4.5) is carried out to determine the position

of the normal velocity terms with respect to the tangential terms so that only the

terms contributing to the normal work are extracted.

W =
1

2

(
ϑ

T
t (t + ǫ) J+T

t M J+

t ϑt(t+ ǫ) + 2 ϑ
T
t (t+ ǫ) J+T

t M J+

nϑn(t + ǫ) +

ϑ
T
n (t+ ǫ) J+T

n M J+

nϑn(t + ǫ)
)

− 1

2

(
ϑ

T
t (t) J

+T
t M J+

t ϑt(t) +

2 ϑ
T
t (t) J

+T
t M J+

nϑn(t) + ϑ
T
n (t) J

+T
n M J+

nϑn(t)
)

(4.6)

A careful look at all the terms in (4.6) shows tangential, normal, and coupled tangen-

tial and normal terms due to the multiple point impact modeling, and are indicated

by ϑt and ϑn. As it was stated earlier, the component velocities normal to the impact

points primarily contribute to the normal work in an impact event. Thus, if only the

terms that are a function of the normal velocities ϑn are considered, then the normal

work is calculated here as,

Wn =

(
ϑ

T
t (t + ǫ) J+T

t M J+

nϑn(t+ ǫ) +
1

2
ϑ

T
n (t+ ǫ) J+T

n M J+

nϑn(t+ ǫ)

)
−

(
ϑ

T
t (t) J

+T
t M J+

nϑn(t) +
1

2
ϑ

T
n (t) J

+T
n M J+

nϑn(t)

)
(4.7)
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where the only unknowns are ϑt(t + ǫ) and ϑn(t + ǫ), which are the elements of the

component velocities in ϑ(t+ ǫ).
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Figure 4.3. Example plot of the normal work for an impact event showing the shifts
that may occur from the stick-slip transition..

From (4.7), it can be shown that the normal work is a function of the indepen-

dent parameter |pn1| and takes the form,

Wn = Wn(|pn1|) = a |pn1|2 + b |pn1| (4.8)

where a and b are constant coefficients. No |pn1|0 term, or constant, appears in

(4.8), which is consistent for |pn1| = 0 that corresponds to Wn = 0 at the start of

an impact event, shown for example in Fig. 4.3. This plot illustrates the invariant

parabolic shape of the work-energy relationship event when a discontinuity occurs, as

in Fig. 4.3 at vt = 0. Differentiating (4.8) with respect to |pn1| and setting the result

equal to zero yields the normal impulse |pnc| at the end of the compression phase
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for the system. This result is substituted back into (4.8) to evaluate the associated

compressive work Wnc as,

dWn

d|pn1|
= 2a |pn1|+ b = 0 −→ |pnc| = − b

2a
(4.9)

Wnc = Wn(|pnc|) (4.10)

Note that |pnc| and subsequently Wnc may change if the end of the impact event is

not reached before a subsequent point reaches the stick-slip transition, as in the case

between Shift 1 and Shift 2 in Fig. 4.3. Similarly, if no point reaches the stick-slip

transition, then no shifts occur. In the event that multiple shifts occur, then the

normal work curve for the latter shift is used with the ECOR to determine the net

normal work Wnf for the impact event as,

Wnf = Wnc(1 − e2∗) (4.11)

where (4.11) is the system normal work done and e∗ ∈ [−1, 1] is a global ECOR which

accounts for the energy dissipated by the system in an impact event. In this work,

e∗ < 0 means that in a simultaneous, multiple point collision subsequent impact events

may begin while an initial impact event has not completed its compression phase. The

value of e∗ is usually not known in a predictive sense, unless a good understanding

of the material properties and physical behavior of the system is accounted for, as

in [63, 64], which is not the goal in this work. Alternately, e∗ functions more as a

parameter to estimate the energy dissipated and its value in the present framework

can be selected to correlate with experimental studies of an equivalent system.

As it was mentioned previously, a change in the direction of a sliding velocity in

(5.6) can also create a discontinuity in the curves of the normal work plot, as shown

in Fig. 4.3. As a consequence, the length of a collision is extended by increasing the

compression phase, or Wnc. These discontinuities are addressed until a segment of
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the curve includes a zero slope, which indicates the end of the compression phase and

defines |pnc|, and consequently Wnc, used in (4.11) to determine the end of the impact,

Wnf and |pnf |. In turn, this allows determination of the post-impact velocities, shown

later using (5.6).

4.3 Stronge’s Hypothesis For Multiple Point Impact

The compression phase end is also noted under Stronge’s hypothesis to occur

when the normal velocity reaches zero for single point impact, but is not as intuitive

when multiple point impact is examined. A different approach to the calculation of

the normal work, as in [25], is presented here to gain a better understanding of how

Stronge’s hypothesis is interpreted in the case of multiple point impact.

Consider the work done during a collision to be the integration of the dot

product between force and displacement as,

W =

∫
F1 · dx1 +

∫
F2 · dx2

=

∫
F1 · d(xt1N1 + xn1N2) +

∫
F2 · d(xn2N1+ xt2N2) (4.12)

where F1 and F2 contain the vector representations for normal and tangential forces

for impact points 1 and 2. The normal work is expressed as,

Wn =

∫
fn1 dxn1 +

∫
fn2 dxn2 (4.13)

and the normal forces are simply the time differentiation of the normal impulses which

gives,

Wn =

∫
dpn1

dxn1

dt
+

∫
dpn2

dxn2

dt
=

∫
vn1 dpn1 +

∫
vn2 dpn2

=

∫
vn1 |dpn1| +

∫
vn2 |dpn2| (4.14)

where the magnitude of the normal impulses is applied. This is acceptable since

the the normal work done is dissipative and the normal velocities are decreasing.

31



Similarly, the relationship between the normal impulses C, which was presented in

Sec. 3.2 for planar impact problems, is used to express (4.14) in terms of |dpn1|,

Wn =

∫
(vn1 + C vn2) |dpn1| (4.15)

The significance of the normal velocities is apparent from (4.15) in the determination

of the normal work during the collision. Unlike for single point impact, the end of

compression phase does not occur when one normal velocity reaches zero. Rather,

it is defined by the combination of normal velocities during the collision and must

satisfy,

dWn

|dpn1|
= vn1 + C vn2 = 0 (4.16)

which is the differentiation of (4.15) with respect to |pn1| and set equal to zero. It

should be noted that (4.16) can be simplified to treat single point impact. The

result in (4.16) provides a generalized interpretation of Stronge’s hypothesis for the

consideration of multiple point impact with friction and applicable for the planar

impact problems studied here.

4.4 Summary

An extensive comparison of restitution coefficients used in multibody dynamics

was reviewed, in which Stronge’s ECOR is implemented in this research to account for

the energy dissipated normal to the impacting bodies. The work done on the system is

determined from the Work-Energy Theorem, where the rigid body assumptions used

lead to the change in kinetic energy of a system. By isolating the components of this

calculation that contribute to the normal work, then the energy dissipated is evaluated

in conjunction with Stronge’s ECOR. It was further shown that Stronge’s hypothesis

was reinterpreted in the developed framework to represent the global energy loss for

the impact events analyzed. The compression and restitution phases for a collision
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were intuitive for single point impact problems (i.e. vn = 0 marks the compression

phase end) but this was not the case for multiple point impact problems. The theory

of Stronge’s ECOR was also generalized to treat multiple point impact problems,

which incorporates the rigid body constraints developed in Chapter 3 to show for the

case of two point impact that the compression phase end is at vn1+C vn2 = 0. These

developments can be applied to address indeterminate contact and impact problems.
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Chapter 5

Two-Dimensional Impact: Analytical Framework

In this section, the details of the analytical framework are developed for a

rigid body system with two impact points, by way of example but not limitation, to

demonstrate the basic approach of the proposed work. Additional impact points may

be considered with accompanying rigid body constraints using the general method

demonstrated in Sec. 3.2 and further derived in Appendix B, as in [12, 15, 16]. The

equations of motion are first expressed as a function of an independent normal impulse

parameter for use with work-energy theory. These equations are then presented to

consider the possible changes in slip-state of an impact point due to friction and

properties of the system.

5.0.1 Equations of Motion

Examination of the impulsive forces requires a consideration of the impact forces

in the equations of motion found using Kane’s method [70] and shown in Appendix C,

M q̈ + b(q, q̇) + g(q) = Γ(q) = JT (q) F = JT (q) [ft1 fn1 ft2 fn2]
T (5.1)

where M is the mass matrix, while b and g are vectors of Coriolis terms and gravity.

The generalized coordinates and accelerations are included in q and q̈, Γ contains

the generalized active forces, and J is the impact Jacobian matrix that defines the

configuration of the impact points. A definite integration of (5.1) over a very short

time interval ǫ for the impact event,

∫ t+ǫ

t

(M q̈ + b(q, q̇) + g (q)) dt =

∫ t+ǫ

t

JT (q) F dt (5.2)
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yields,

M ( q̇(t + ǫ) − q̇(t) ) = JTp = JT [pt1 pn1 pt2 pn2]
T (5.3)

where the Coriolis and gravity vectors are omitted because the impact event is as-

sumed to occur over an infinitesimally small duration ǫ in which the configuration

remains constant. The terms q̇(t) and q̇(t + ǫ) represent the pre- and post-impact

generalized speeds.
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Figure 5.1. Evolution of velocities during initial sliding when (a) one point, or (b)
two points come to rest.

5.0.2 Initial Sliding

It is assumed that at the start of the impact event, the tangential velocities are

non-zero and therefore in a slip-state of initial sliding, as shown by way of example in

Fig. 5.1. Coulomb friction is used to relate the change in the magnitude of the normal

impulse to the change in tangential impulse during sliding by using a coefficient of

friction µi for impact point i. This provides two equations, one for each impact point,
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and a third equation is derived from the rigid body constraint that relates the normal

impulses,

pt1 = −sgn(vt1) µ1 |pn1| pt2 = −sgn(vt2) µ2 |pn2| |pn2| = C |pn1| (5.4)

where sgn(vti) gives the direction of friction based on the sliding velocity of impact

point i. The term C is developed from the rigid body constraint on the velocity of

two points attached to the same rigid body.

Solving for the post-impact generalized speeds in (5.3) and using the three

equations in (5.4) yields,

q̇ = q̇(0) + Ãsliding(µ1, µ2) · |pn1| (5.5)

where Ãsliding depends on C, which is a function of µ1 and µ2. Equation (5.5) gives

an expression for the post-impact generalized speeds as a function of an independent

normal impulse parameter, which is chosen as |pn1| without any loss of generality. In

effect, the calculation of the generalized speeds in (5.5) is converted from the time

domain to the impulse domain. The evolution of the velocities are determined by

multiplying (5.5) by the impact Jacobian such that,

ϑ = ϑ(0) + Asliding(µ1, µ2) · |pn1| (5.6)

where Asliding represents the conditions for initial sliding and depends on C, which is

a function of µ1 and µ2.

During initial sliding, (5.6) is used with µi = µd, the dynamic coefficient of

friction, at impact point i to model the evolution of velocities as the impulsive normal

force monotonically increases in the impact event, seen for example in Fig. 5.1. Note

that only the tangential velocities appear in the plot to underscore their importance

in the consideration of the stick-slip transition. If vt1 continues its state of initial,
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or forward sliding (FS), and vt2 comes to rest at |pn1| = |ps2|, as in Fig. 5.1a, it

is necessary to evaluate the slip-state to determine the subsequent evolution of the

velocities. Similarly, it is possible that both vt1 and vt2 come to rest at |pn1| = |ps1,2|,

as shown in Fig. 5.1b. When one and/or two points come to rest at the stick-slip

transition, there are three possible outcomes: slip resumption (R), slip-reversal (S-

R) and sticking (S), which are shown in Fig. 5.2. The next four sections discuss

the treatment of the stick-slip transition to determine whether slip resumption, slip-

reversal or sticking will occur, and how (5.6) is modified to reflect the new slip-state

of the impact points.
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5.1 Evaluating the Stick-Slip Transition (ST)

Consider, by way of example, the case in Fig. 5.2a where only impact point 2

comes to rest, vt2 = 0, at |ps2|. The evolution of velocities in (5.6) in this case become,

ϑ =




vt1(|ps2|)

vn1(|ps2|)

0

vn2(|ps2|)




+ AST (µ1, µ̄2) · (|pn1| − |ps2|) , vt2 = 0 = A3,ST (µ1, µ̄2)

(5.7)

where AST (µ1, µ̄2) defines the conditions at the transition stage of the impact and µ̄2

is the critical coefficient of friction for stick for point 2. Setting vt2 = 0 is equivalent

to the third element of AST (µ1, µ̄2) equal to zero, which yields µ̄2 from the second

equation in (5.7). For the impact point to remain in stick, µ̄2 ≤ µ2. If this condition

is not met, then the impact point will resume slip or slip-reverses.

Another possible scenario is where both impact points come to rest at the

impulse |ps1,2|, as shown in Fig. 5.2b. The evolution of velocities in (5.6) in this case

become,

ϑ =




0

vn1(|ps1,2|)

0

vn2(|ps1,2|)




+AST (µ̄1, µ̄2)·(|pn1| − |ps1,2|) ,
vt1 = 0 = A1,ST (µ̄1, µ̄2)

vt2 = 0 = A3,ST (µ̄1, µ̄2)

(5.8)

where µ̄1 and µ̄2 are the critical coefficients of friction for stick for point 1 and 2,

respectively. Setting vt1 = vt2 = 0 yields µ̄1 and µ̄2 from the second and third

equations in (5.8). Similar to the previous case, for an impact point to remain in

stick, µ̄1 ≤ µ1 and µ̄2 ≤ µ2. If one or both conditions are not met, then the respective

impact point will resume slip or slip-reverse.
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5.1.1 Slip Resumption (R)

Slip resumption is not commonly encountered in rigid body impact but results

from a model with a large coefficient of friction (µi > 1) and unbalanced configura-

tions (i.e. eccentric impacts), as noted by [26, 72, 24]. The imbalance between the

mass center and impact point results in a positive acceleration of the impact point

that leads to slip resumption, which is recognized in the Painlevé problem [73]. To

determine if the configuration is unbalanced, consider the matrix JM−1JT used to

form Asliding(µ1, µ2),

Asliding(µ1, µ2) = (JM−1JT ) Ĉ(µ1, µ2) [1 C]T · |pn1| (5.9)

where Ĉ(µ1, µ2) is a matrix containing the Coulomb friction relations. The elements

a12 = a21 and a34 = a43 in the matrix JM−1JT are used to determine the config-

uration balance of a system [26, 72, 24] because they correspond to the inertia and

configuration properties of impact points 1 and 2, respectively. If a12, a34 < 0, then

the configuration is unbalanced and slip-resumption will occur. Otherwise, if a12,

a34 = 0, then the configuration is balanced, and configurations with a12, a34 > 0 will

result in slip-reversal which is discussed in the following section.

5.1.2 Slip-Reversal (S-R)

In the event that vt2 comes to rest and slip-reversal occurs, then the direction

of slip changes, such that µ̄2 = −µ2 in (5.7),

ϑ =




vt1(|ps2|)

vn1(|ps2|)

0

vn2(|ps2|)




+ AS−R(µ1,−µ2) · (|pn1| − |ps2|) (5.10)
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where AS−R(µ1,−µ2) represents the conditions for slip-reversal of point 2. Equation

(5.10) describes how the velocities evolve after |ps2|. The condition for vt1 remains

unchanged since it continues its state of initial, or forward sliding. The change in sign

of µ2 introduces a discontinuity in the model, which is represented by a change in

slope in the evolution of all the velocities; Fig. 5.2a only depicts the change in slope

for the tangential velocities.

Similarly, if two points reach the stick-slip transition and slip-reversal occurs

for both impact points, then the signs of the coefficient of friction change in (5.8),

such that µ̄1 = −µ1 and µ̄2 = −µ2,

ϑ =




0

vn1(|ps1,2|)

0

vn2(|ps1,2|)




+ AS−R(−µ1,−µ2) · (|pn1| − |ps1,2|) (5.11)

where AS−R(−µ1,−µ2) represents the conditions for slip-reversal of points 1 and 2.

5.1.3 Sticking (S)

The alternative to slip-reversal is stick. For the example in which vt2 remains

in stick after the stick-slip transition, its velocity will remain equal to zero until the

no-slip condition in (2.3) is violated. The Coulomb friction relation in (5.4) for point

2 no longer describes the relationship between the normal and tangential friction

force, which was used to develop (5.6) and subsequently (5.7). In the case of stick,

this relationship is represented by the critical coefficient of friction, for example µ̄2
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Figure 5.3. Check of the no-slip condition in (2.3) for (a) one point using (5.13), or
(b) two points using (5.15) for stick after the stick-slip transition.

obtained from the second equation in (5.7), such that the evolution of velocities are

described by,

ϑ =




vt1(|ps2|)

vn1(|ps2|)

0

vn2(|ps2|)




+ AS(µ1, µ̄2) · (|pn1| − |ps2|) (5.12)

where AS(µ1, µ̄2) represents the conditions for stick of point 2. However, it is still

necessary to check the no-slip condition in (2.3) to determine whether the impact

point remains in stick or slip-reverses throughout the remainder of the impact event.

For the case in which vt2 sticks and vt1 continues forward sliding, then the no-slip

condition is derived in Sec. 5.2 as a function of |pn1| by combining (2.3), (5.18), and

(5.21), yielding,

pt2 − µs2 |pn2| =
a31sgn(vt1)µ1 − a32 − a34C − a33µs2 C

a33
(|pn1| − |ps2|) +

vt2
a33

≤ 0

(5.13)
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where aij are the elements of the matrix formed by JM−1JT describing the system

inertia and configuration, and used to form AS(µ1, µ̄2) in (5.12). It is assumed that

a33 6= 0 and µs2 is the static coefficient of friction at point 2. Equation (5.13) repre-

sents the shaded region shown in Fig. 5.3a. If vt2 remains within the shaded region,

then the point will stick, otherwise it will slip-reverse. A similar process is used to

obtain the no-slip condition for vt1.

For completeness, the scenario involving two points remaining in stick after the

stick-slip transition, shown in Fig. 5.3b, results in,

ϑ =




0

vn1(|ps1,2|)

0

vn2(|ps1,2|)




+ AS(µ̄1, µ̄2) · (|pn1| − |ps1,2|) (5.14)

where AS(µ̄1, µ̄2) represents the conditions for two points in stick. Correspondingly,

the no-slip conditions for points 1 and 2 yield,

pt1 − µs1 |pn1| =
−a11µs1 − a12 − (a14 + a13µs2) C

a13
(|pn1| − |ps1,2|) +

vt1
a13

≤ 0

(5.15)

pt2 − µs2 |pn2| =
−a31µs1 − a32 − (a34 + a33µs2) C

a33
(|pn1| − |ps1,2|) +

vt2
a33

≤ 0

(5.16)

where µs1 and µs2 are the respective static coefficients of friction for points 1 and 2,

and it is also assumed that a13, a33 6= 0. Equations (5.15) are represented by the

shaded region depicted in Fig. 5.3b. Each impact point is governed by its respective

no-slip condition and indicate whether the slip-state of the impact point will change

before the impact event ends. It is possible to interrupt an impact point in sticking

if another point comes to rest during the impact event—any changes to the slip-state

of the impact points will result in slope changes in the evolution of velocities.
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5.2 No-Slip Condition

Here, an attempt is made to present the derivation of the no-slip condition

from (2.3) as a function of |pn1|, without any loss of generality. Consider the case in

Fig. 5.2a where only vt2 = 0. The evolution of velocities in (5.3) before the application

of any equations from (5.4) are expressed as,



vt1

vn1

vt2

vn2




=




vt1(|ps2|)

vn1(|ps2|)

0

vn2(|ps2|)




+ JM−1JT




pt1

pn1

pt2

pn2




(5.17)

Setting vt2 = 0 yields a scalar constraint of the form,

vt2 = 0 = a31 pt1 + a32 pn1 + a33 pt2 + a34 pn2 (5.18)

where aij are the elements of the matrix formed by JM−1JT describing the system

inertia and configuration. Equation (5.18) is used instead of the second Coulomb

relation in (5.4) for vt2 but note that the first Coulomb relation in (5.4) is still valid

for vt1. These two constraints yield,

pt2 = −a31
a33

pt1 − a32
a33

pn1 − a34
a33

pn2 =
a31sgn(vt1)µ1 − a32

a33
|pn1| −

a34
a33

|pn2| (5.19)

where µ1 = µd and assuming that a33 6= 0; it is reasonable to assume that the impulse

at pt2 would have some relation to the speed at vt2. Using (5.19) gives an equation

similar to (5.6) as

ϑ =




vt1(|ps2|)

vn1(|ps2|)

0

vn2(|ps2|)




+ JM−1JT




−sgn(vt1)µ1 0

1 0

a31sgn(vt1)µ1 − a32
a33

−a34
a33

0 1







1

C


·(|pn1| − |ps2|)

(5.20)
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which describes how the velocities evolve after |ps2|. Note that for this case, C is only

a function of µ1 = µd.

However, it is still necessary to check the no-slip condition to determine whether

this point might slip-reverse. This is accomplished by using (5.18) without setting

vt2 = 0 which yields a relation similar to (5.19):

vt2 = −a31
a33

pt1 − a32
a33

pn1 − a34
a33

pn2 +
vt2
a33

=
a31sgn(vt1)µ1 − a32 − a34 C

a33
(|pn1| − |ps2|) +

vt2
a33

(5.21)

such that the no-slip condition for point 2 becomes,

pt2 − µs2 |pn2| =
a31sgn(vt1)µ1 − a32 − a34 C − a33µs2 C

a33
(|pn1| − |ps2|) +

vt2
a33

≤ 0

(5.22)

where µs2 is the static coefficient of friction for point 2 and this condition applies from

the start of stick until the impact event ends, or the slip-state changes. A similar

process can be followed to obtain the no-slip condition for vt1 and the case for two

points in stick.

5.3 Summary

Here, the analytical framework for treating two-dimensional (or planar) inde-

terminate contact and impact problems with friction was developed. The complex

slip behaviors of an impact point due to friction, such as slip-reversal, sticking, and

slip-resumption are accounted by this framework. The rigid body constraints were

also adapted to work in conjunction with these various slip behaviors throughout an

impact event. This framework leads to analytical solutions to the post-impact veloci-

ties of a system undergoing indeterminate contact and impact. In addition, a method

for checking the no-slip condition, which also incorporates the rigid body constraints
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is developed to visualize the regions defined by the no-slip condition for an impact

point. The plots generated with these regions provide a verification of the slip-state

for a given impact point.
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Chapter 6

Simulation Results: Two-Dimensional Examples

In this section, simulation results for the planar ball, rocking block problem and

three-ball Newton’s Cradle are presented. These examples are studied to demonstrate

that the developed analytical framework produces experimentally consistent behav-

iors. In the following simulations that consider friction, the static µs and dynamic

µd coefficient of friction are 0.6 and 0.35 for all impacting surfaces. The stick-slip

transition is a major characteristic behavior of multibody systems with contact and

impact. The effects of this transition region will be apparent in the results obtained

from the cases analyzed.

6.1 Example 1: Planar Ball

G

PNG = q1 N1 + q2 N2 
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L
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PNG = q1 N1 + q2 N2 

(a) (b)

Figure 6.1. (a) Planar model of the ball example (repeated) and (b) velocities and
forces at impact points 1 (ground) and 2 (wall) (repeated).
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Here, the planar ball example introduced in Ch. 1 impacting a corner, as shown

in Fig. 6.1a, is analyzed as a benchmark to show that the proposed method can be

applied to other multiple point impact problems. The simulation of the ball is depicted

in Fig. 6.2a and ends when a second collision is detected with the ground. A plot of

the system energy is shown in Fig. 6.2b to show energy consistency throughout the

simulation. Only one impact event is detected in the simulation of the first collision,

an indeterminate collision involving points 1 and 2. An e∗ = 0.715 and µ1 = µ2 = 0.35

is used and the data for this case is given in Table 6.1.
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Figure 6.2. (a) Simulation of the planar ball example and (b) energy consistency for
the simulation.

The ball has no angular velocity prior to impact but rebounds with a negative

angular velocity after impact. This angular velocity is attributed to the slip-state

of the wall contact point undergoing slip reversal, while the ground contact point

sticks and remains at zero throughout the remainder of the impact event. This is

also consistent with the post-impact trajectory of the ball’s mass center shown in

Fig. 6.2a, which is higher than its pre-impact trajectory.

47



Table 6.1. Velocities and generalized speeds for the planar ball simulation.

Initial Pre-impact Post-impact

Position

q1 0.000 m 3.614 m 3.614 m
q2 1.500 m 0.500 m 0.500 m
q3 0.000 rad 0.000 rad 0.000 rad

Speeds

q̇1 8.000 m/s 8.000 m/s -5.504 m/s
q̇2 0.000 m/s -4.430 m/s 4.893 m/s
q̇3 0.000 rad/s 0.000 rad/s -9.786 rad/s

Velocities

vt1 8.000 m/s 8.000 m/s -10.397 m/s
vn1 0.000 m/s -4.430 m/s 4.893 m/s
vt2 0.000 m/s -4.430 m/s 0.000 m/s
vn2 8.000 m/s 8.000 m/s -5.504 m/s

The result of this case was obtained using the developed analytical framework.

First, the impulse at the end of the compression phase was determined by (4.9) and

used to find Wnc after the last shift in the plot, and the net work done on the system

Wnf with the global ECOR in (4.11). The evolution of the velocities were determined

by accounting for the change in slip-state of point 1 and 2 throughout the impact

event. The result of these processes is shown in Fig. 6.3. A plot of the normal work

throughout the impact event is shown in Fig. 6.3a. There are two shifts in the normal

work curve are a result of evaluating the stick-slip transition, which occur at the

points where vt2 = 0 and vt1 = 0.

The importance of knowing where the tangential velocities come to rest was

noted in Sec. 5.0.1 because the stick-slip transition occurs at these instances, which

dictate changes in the normal work and evolution of velocities throughout an impact

event. The effects of a change in friction direction are illustrated in the evolution of

velocities, seen in Fig. 6.3b. Both tangential velocities reach the stick-slip transition
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Figure 6.3. (a) Normal work done and (b) evolution of velocities throughout the
impact event for the planar ball example.

during this single impact event. The tangential velocity at the wall comes to rest

first at |ps2| and is determined to remain in stick. The no-slip condition for this

impact point is derived and plotted in Fig. 6.3b to check if the slip-state will change

throughout the remainder of the impact event. The tangential velocity of the ground

impact point comes to rest next in the impact event at |ps1|. This impact point is

determined to slip-reverse, such that the friction direction changes which is consistent

with the negative angular velocity of the ball after the simultaneous collision. The

plot in Fig. 6.3b illustrates a significant shift in the direction of the velocities before

they reach their terminal value. The normal work curve in Fig. 6.3a also shows a

similar shift before it ascends to its terminal impulse.

The end condition for the normal impulse |pnf | is evaluated with the knowledge

of Wnf , which marks the end of the impact event. The post-impact velocities at the

impact end serve as the initial conditions for restarting the simulation to model the

system after impact.
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6.2 Example 2: Planar Rocking Block
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Figure 6.4. (a) Planar model of a planar rocking block example and (b) velocities
and forces at the impact points.

The rocking block example has interested many researchers because of the dif-

ficulties which arise in the model [74, 1, 75, 76]. The two main issues encountered are

the switch between rocking constraints at the bottom corners of the block and the

indeterminate system equations encountered when points 1 and 2 are simultaneously

in contact with the ground.

The planar rocking block model, as shown in Fig. 6.4a has three DOFs and its

center of mass at point G. The block’s position is indicated by translational general-

ized coordinates q1 and q2, and its orientation by q3. The block has width b and height

h, where b/h >
√
2 (flat block [1, 76]) in the two cases studied here. It is further

assumed in this simulation that the contact of the block’s bottom surface with the

ground occurs at only two points, labeled as 1 and 2 in Fig. 6.4.

The switch in rocking constraints between the corners of the block at points

1 and 2 is addressed using a discrete approach. Contact constraints are enforced

when either point 1 or 2 is in contact with the ground during a rocking motion. This
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Figure 6.5. (a) Normal work done and (b) evolution of velocities throughout the first
impact event for the frictionless rocking block example.

means that the point in contact is not permitted to penetrate the ground using normal

kinematic constraints but can slide or stick tangent to the ground. Additionally, there

is a short instance when both points 1 and 2 are simultaneously in contact with the

ground. This introduces an indeterminacy in the equations of motion with respect to

the impact forces, as introduced in Ch. 1. A constraint among the contact points is

implemented to resolve the indeterminacy using the proposed method.

6.2.1 Case 1: Frictionless Rocking Block

The benchmark case considered is a frictionless rocking block example with

model conditions identical to the experimental study in [1]. The block has a mass

m = 2.5 kg, width b = 0.1087 m and height h = 0.0645 m. Note here that for the

frictionless case (µ1 = µ2 = 0), the tangential forces, ft1 and ft2, shown in Fig. 6.4b

vanish. The simulation starts with point 1 in contact while the block rocks and point

2 impacts the ground; θ1 = θ2 = 0◦ in [1] is used which corresponds to a flat plane,

or ground surface as it is modeled here.
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Figure 6.6. (a) Normal work done and (b) evolution of velocities throughout the
second impact event for the frictionless rocking block example.

The result of the simulation is depicted in Fig. 6.7a and obtained using the

proposed method. A plot of the system energy is included in Fig. 6.7b to show

energy consistency for the simulation performed. The collision of point 2 with the

ground results in the simultaneous contact of points 1 and 2. This triggers two impact

events which are representative of the entire collision of the block with the ground.

At the end of the first impact event, the post-impact velocity of point 2 is negative

which indicates that it is still moving toward the ground surface. This situation is

interpreted as a second impact event involving only point 2. In addition, after the first

impact event, point 1 has a positive velocity which is interpreted as having reached

its post-impact state. Thus, before restarting the simulation, the second impact event

is resolved to find the post-impact velocities of point 2.

The analysis of the first impact event is illustrated in Fig. 6.5. Particularly

Fig. 6.5a shows the normal work plot where e∗ = −0.803 is used, which is still in its

compression phase when the first impact event is ended by the start of the second

impact event. Note again e∗ < 0 means that in a simultaneous, multiple point
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Figure 6.7. (a) Simulation of the frictionless rocking block example and (b) energy
consistency for the simulation.

Table 6.2. Comparison of theoretical and experimental results for a frictionless rocking
block with m = 2.5 kg, b = 0.1087 m, h = 0.0645 m and θ1 = θ2 = 0◦ in [1].

v+1 /v
−
2 v+2 /v

−
2 ECORs1

Experimental Yilmaz, et al. [1] -0.100 -0.600 e1 = 0.43, e2 = 0.64

Theoretical Rodriguez-Bowling -0.100 -0.600 e∗ = -0.803, 0.654

collision, subsequent impact events may begin while the initial impact event has not

completed its characteristic compression phase, as illustrated in Fig. 4.3. Figure 6.5b

depicts the evolution of velocities throughout the first impact event. This figure

shows how the normal, vn1, and tangential, vt1, velocity of point 1 reach their final, or

terminal value at the end of the first impact event. Meanwhile, the normal velocity of

point 2 is negative which indicates that it is still impacting the ground and initiates

a second impact event.

1The ECORs (e1, e2) used in [1] are local for each impact point; in this work, two impact events

are detected for this case so two global ECORs are used here in the order specified.
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Analysis of the second impact event is shown in Fig. 6.6 and only involves the

velocities of point 2, vn2 and vt2. It begins with the velocity of point 2 at the end of

the first impact event. In the second impact event, e∗ = 0.654 is used which yields

the evolution of velocities of point 2 shown in Fig. 6.6b.

The results of this benchmark case are comparable to the motion obtained from

the experimental result reported in Figure 8 of [1]; Table 6.2 shows this comparison.

The proposed work uses global ECORs to define the energy dissipated in an impact

event. These were selected, such that e∗ = −0.803, 0.654 were used for the first and

second impact events, respectively. The work in [1] uses local ECORs for each of the

impact points and experimentally determined them to be e1 = 0.43, e2 = 0.64 for

points 1 and 2, respectively. As a result, the solution to the post-impact velocities

obtained from this work identically matches the experimental result obtained in [1],

shown in Table 6.2. Figure 6.7a shows a close up view of the post-impact state of the

block leaving the ground surface after the simultaneous collision. The post-impact

velocities in Table 6.2 for points 1, v+1 , and 2, v+2 , are normalized with respect to the

pre-impact velocity of point 2, v−2 , to directly compare the two results. In this way,

the use of global ECORs in the proposed approach is able to produce accurate results

that can match experimental data for a frictionless model.

6.2.2 Case 2: Frictional Rocking Block

A rocking block with friction is explored here to observe the effects of considering

friction at the impact points. The same model parameters and initial conditions, as

in Sec. 6.2.1, are used in this simulation aside from friction at the impact points,

where initially µ1 = µ2 = 0.35. The coefficients of friction do not have to be the same

but it makes sense for this example because the points impact the same surface.
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Figure 6.8. (a) Normal work done and (b) evolution of velocities throughout the first
impact event for the frictional rocking block example.

Table 6.3. Comparison of a frictional rocking block to theoretical and experimental
results of a frictionless case.

v+1 /v
−
2 v+2 /v

−
2 ECORs2

Experimental Yilmaz, et al. [1] -0.100 -0.600 e1 = 0.43, e2 = 0.64

Theoretical Rodriguez-Bowling
no friction -0.100 -0.600 e∗ = -0.803, 0.654
with friction -0.100 -0.600 e∗ = -0.883, 0.662

The results of the simulation are depicted in Fig. 6.10a and a plot of the system

energy is included in Fig. 6.10b to show energy consistency for the simulation per-

formed. Similar to the frictionless case, the collision of point 2 with the ground results

in two impact events which are representative of the entire collision of the block with

the ground. The first impact event is the only indeterminate one in the simulation,

which involves the simultaneous impact of points 1 and 2. The post-impact velocity

of point 2 at the end of the first impact event is negative which indicates that it is still

2The ECORs (e1, e2) used in [1] are local for each impact point; in this work, two impact events

are detected for this case so two global ECORs are used here in the order specified.
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Figure 6.9. (a) Normal work done and (b) evolution of velocities throughout the
second impact event for the frictional rocking block example.

moving toward the ground surface. This situation is interpreted as a second impact

event involving only point 2, a determinate collision. Furthermore, point 1 has a

positive velocity after the first impact event, which is interpreted as having reached

its post-impact state, as in the frictionless case. This second impact event is resolved

before restarting the simulation.

The result obtained for this case is identical to the frictionless case analyzed in

Sec. 6.2.1 and [1]. The only difference is the global ECORs are e∗ = −0.883, 0.662 for

the first and second impact events, respectively. The first impact event, illustrated in

Fig. 6.8, shows a plot of the normal work and evolution of velocities. The inclusion

of friction for this case does not cause the tangential velocities to come to rest at

the stick-slip transition; this is almost the case at the end of the first impact event.

Thus, the slope of the velocities never changes and the impact points maintain a slip-

state of forward sliding throughout the impact event. The plot of the normal work in

Fig. 6.8a shows that the first impact event terminated in its compression phase due to

the start of the second impact event. As in the frictionless case, Fig. 6.8b shows how
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Figure 6.10. Simulation of the frictional rocking block example and (b) energy con-
sistency for the simulation.

the normal, vn1, and tangential, vt1, velocity of point 1 reach their terminal value

at the end of the first impact event. Meanwhile, the normal velocity of point 2 is

negative which indicates that it is still impacting the ground and initiates a second

impact event. The analysis of the second impact event is shown in Fig. 6.9 and only

involves point 2. Figure 6.9a shows the characteristic parabolic shape of the normal

work where a compression and restitution phase are clearly defined. Figure 6.9b

shows how the velocities of point 2, vn2 and vt2 reach their terminal value.

The results from this case are summarized in Table 6.3, and also includes the

results presented in Table 6.2 for the frictionless case examined in Sec. 6.2.1. Fig-

ure 6.10a also shows a close up view of the post-impact state of the block leaving the

ground surface after the simultaneous collision. The post-impact velocities of points

1, v+1 , and 2 v+2 , are normalized with respect to the pre-impact velocity of point 2,

v−2 . The solution to the post-impact velocities of points 1 and 2 are also identical

to the result obtained for the frictionless case. The only difference when friction
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is considered is the effect on the global ECORs applied in the proposed framework.

Friction is dissipative by nature and it is observed that this leads to an increase in the

ECORs used to obtain the same post-impact result. Notice that slightly greater global

ECORs are used in the first and second impact events for the frictional case than in

the frictionless case. This example further demonstrates how this work is applied to

match experimental work, while accounting for any friction in the model. Although

not observed in the analysis of the rocking block cases, the following analysis of the

planar ball example will show how the stick-slip transition is treated and affects the

solution to the post-impact state.

6.3 Example 3: Three-Ball Newton’s Cradle
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(a) (b)

Figure 6.11. (a) Planar model of a three-ball Newton’s Cradle and (b) forces at the
impact points for each ball.

Consider the Newton’s cradle in Fig. 6.11a with three balls of equal radius R

labeled A, B, and C with massmA, mB, andmC . The balls hang from massless strings

of length L which are separated by a distance λ. Note that there are eight unknown

impact forces, f1 through f8 in Fig. 6.11b, but only three rotational generalized
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coordinates, q1, q2, and q3. The consideration of frictional impact introduces the

tangential forces, f2, f4, f6, and f8 which are not considered in other works that

assume frictionless impacts [77, 78, 79, 2].

6.3.1 Case 1: Uniform, Unit Mass and e∗ = 1

The first case considered for the three-ball system in Fig. 6.11a examines balls

with equal, unit mass mA = mB = mC = 1 kg and e∗ = 1, which specifies no

energy loss. The motion obtained from simulating this case is shown in Fig. 6.12a.

This figure only shows the results of the first collision, which triggers a single impact

event. This impact event is indeterminate with respect to the impact forces.

START

PRE-
IMPACT

POST-
IMPACT

PRE-IMPACT
POST-IMPACT

Pre-impact Post-impact

Velocities (m/s) (m/s)

Ball A v1 1.304 0.000
v2 -0.217 0.000

Ball B v3 0.000 0.000
v4 0.000 0.000
v5 0.000 0.000
v6 0.000 0.000

Ball C v7 0.000 1.304
v8 0.000 0.217

Generalized
speeds (rad/s) (rad/s)

Ball A q̇1 4.347 0.000
Ball B q̇2 0.000 0.000
Ball C q̇3 0.000 4.347

(a) (b)

Figure 6.12. (a) Simulation of the three-ball Newton’s Cradle with e∗ = 1 and (b)
table of velocities and generalized speeds.
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Ball A is released from rest, swings down, and impacts Balls B and C which

are at rest and in contact. Ball A has pre-impact velocity v−1 = 1.304 m/s. The

momentum of Ball A is completely transferred to Ball C, while Balls A and B are at

rest and in contact after the collision; the data for this case is given in Fig. 6.12b. A

similar result is obtained when Ball C swings back to impact Balls A and B.

First, the impulse at the end of the compression phase was determined using

(4.9); for this case |pnc| = 0.659 N-s as shown in Fig. 6.13. Using this, one can find

Wnc and the net work done Wnf using the ECOR in (4.11). Lastly, the final impulse

at the end of the impact event results in |pnf | = 1.318 N-s, which is used to find the

post-impact velocities with (5.6). The results of this process are shown in Fig. 6.13.
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Figure 6.13. (a) Normal work done and (b) evolution of velocities throughout the
impact event for the three-ball Newton’s Cradle with e∗ = 1.

A plot of the normal work at the system level is shown in Fig. 6.13a by the line

labeled Wn. The other three lines show the work done on the individual balls, Wn,A,

Wn,B , and Wn,C , which are summed to obtain Wn as in (4.7). Since e∗ = 1 no energy
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is dissipated, which is shown in Fig. 6.13a by Wn ascending back to zero at the end

of the restitution phase. Notice that the individual plots of Wn,A, Wn,B , and Wn,C

do not show clear compression and restitution phases, making it difficult to apply

the ECOR to each ball. Thus, the plot shows that the ECOR in this work can only

function as a global parameter to model the energy dissipated at the system level. It

will not consider differences in material properties between the balls; i.e. one ball is

less elastic, or softer, than another. This is the result of negligible local compliance

at the impact points.

The evolution of the velocities during the first impact, shown in Fig. 6.13b, are

determined. These calculations show the complete transfer of momentum from Ball

A to Ball C. The compressive work done initiates the transfer of momentum as the

normal velocity of Ball A, v1 decreases and Ball C, v7 increases, as seen in Fig. 6.13b.

The point at which these two velocities are equal marks the compression phase end.

The velocities of Ball B, v3−6 remain constant and zero. The tangential velocity of

Ball A, v2 goes to zero, while that of Ball C, v8 goes to the initial value of v2.
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Figure 6.14. (a) Generalized speeds for the three-ball Newton’s Cradle and (b) energy
consistency throughout the simulation with e∗ = 1.
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The predicted motion shown here is consistent with the results in [80, 77] for

a three-ball system with uniform, unit mass and e∗ = 1. The expected motion for

this case, which is noted in [80, 77] is that Balls A and B are very close to zero

q̇+1 = q̇+2 = 0, while Ball C moves to the right with the pre-impact velocity of Ball A

q̇+3 = q̇−1 . Subsequent collisions are not shown in Fig. 6.12a. A plot of the generalized

speeds throughout the simulation are shown in Fig. 6.14, for completeness, as well as

the energy of the system to verify energetic consistency.

6.3.2 Case 2: Uniform Mass and e∗ = 0.85

The next case considered for the three-ball Newton’s cradle examines balls with

mA = mB = mC = 0.166 kg, e∗ = 0.85, and v−1 = 1.0 m/s. These are the same

conditions for one of the cases studied in [79, 2]. Figure 6.15a depicts the motion

obtained from simulating this case and only shows the results of the first collision

after Ball A is released from rest. Here, there is a dissipation of energy in the result

since e∗ = 0.85. The data for this case is presented in Fig. 6.15b.

The collision of Ball A with Balls B and C triggers two impact events, a phenom-

ena that was not observed in Case 1. The first impact event is the only indeterminate

one in the simulation. It involves all three balls simultaneously and most of the mo-

mentum is transferred to Ball C. However, the post-impact velocities predicted by the

proposed analysis indicate that Ball A is moving to the right at a faster rate than Ball

B. This situation is interpreted as a second impact event involving Balls A and B, a

determinate collision. In addition, Ball B is moving to the right at a slower rate than

Ball C, which is interpreted as Ball C separating from the other two. Thus, before

restarting the simulation, this second impact event is resolved also using e∗ = 0.85 to

find the post-impact velocities of Balls A and B. The analysis of the second impact

event reveals that neither Ball A or B is at rest after the first two impact events, see
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START

PRE-
IMPACT

POST-
IMPACT

PRE-IMPACT
POST-IMPACT

Pre-impact Post-impact

Velocities (m/s) (m/s)

Ball A v1 1.000 0.006
v2 -0.167 -0.001

Ball B v3 0.000 0.069
v4 0.000 0.012
v5 0.000 0.069
v6 0.000 -0.012

Ball C v7 0.000 0.925
v8 0.000 0.154

Generalized
speeds (rad/s) (rad/s)

Ball A q̇1 3.333 0.019
Ball B q̇2 0.000 0.232
Ball C q̇3 0.000 3.083

(a) (b)

Figure 6.15. (a) Simulation of the three-ball Newton’s Cradle with e∗ = 0.85 and (b)
table of velocities and generalized speeds..

Fig. 6.15a. Balls A and B retain some momentum, but most of it is transferred to

Ball C.

The analysis of the first impact event is illustrated in Fig. 6.16. Particularly

Fig. 6.16a shows the energy loss represented by e∗ = 0.85 because the curve does not

ascend back to zero as occurred in Fig. 6.13a of Case 1. This yields a lower terminal

impulse, |pnf | for this case, which results in non-zero post-impact velocities for Balls

A and B, even though the speed of Ball B is very small, as shown in Fig. 6.16b.

This plot depicts the evolution of velocities throughout the first impact event. In

Fig. 6.16b, v7 and v8 correspond to the terminal normal and tangential velocities of

Ball C, respectively. Ball A has residual momentum after the first impact, in which

v1 > v3,5, meaning that Ball A is still impacting Ball B. Hence, a second impact event

is triggered.
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Figure 6.16. (a) Normal work done and (b) evolution of velocities throughout the
first impact event for the three-ball Newton’s Cradle with e∗ = 0.85.

Analysis of the second impact event is shown in Fig. 6.17. It begins with the

post-impact velocities of Balls A and B obtained from the analysis of the first impact

event, in which Ball C has begun to separate from the other two. Thus, the analysis

of the normal work in Fig. 6.17a only includes Balls A and B. Once again e∗ = 0.85 is

used, but it is possible to use another value for e∗ in this subsequent collision. Some

energy is lost in the second impact event which yields the evolution of the velocities

of Balls A and B shown in Fig. 6.17b, represented by v1−2 and v3−6, respectively.

The propagation of momentum observed in the solution to the post-impact ve-

locities here is comparable to the motion obtained from experimental and theoretical

results reported in [2, 79] for a three-ball chain. Specifically, it is comparable to the

theoretical results in [79] which reproduces the experimental data in [2] for a ball

type of DDD (Table 2, [2]), where D corresponds to a ball with mass m = 0.166 kg

and e = 0.85 (Table 1, [2]) with v−1 = 1.0 m/s. Table 6.4 shows a comparison of

theoretical and experimental results from each work. It should be noted that there

is a difference in the model description in this work, where q̇i’s are angular general-
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Figure 6.17. (a) Normal work done and (b) evolution of velocities throughout the
second impact event for the three-ball Newton’s Cradle with e∗ = 0.85.

ized speeds unlike the translational generalized speeds in [79, 2]. Thus, the motions

included in Table 6.4 are the Cartesian velocities of the mass center of each ball; see

table footnote 3.

Table 6.4. Comparison of theoretical and experimental results of the three-ball New-
ton’s Cradle with m = 0.166 kg and e = 0.85 (Table 2, [2]).

q̇+1 q̇+2 q̇+3 Σ mi(q̇
+

i )
2 ECORs3

(m/s) (m/s) (m/s) (N −m) [ - ]

Experimental [2] 0.036 0.106 0.857 0.124 e1 = e2 = 0.85

Theoretical [79] 0.031 0.109 0.860 0.125 e1 = e2 = 0.85
0.006 0.069 0.925 0.143 e∗ = 0.85, 0.85
0.021 0.124 0.855 0.124 e∗ = 0.711, 0.711
0.036 0.106 0.857 0.124 e∗ = 0.715, 0.488

3The ECORs (e1, e2) used in [2, 79] are local for each impact point; in this work, two impact

events are detected for this case so two global ECORs are used here in the order specified.
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The result obtained from this work, which uses a global ECOR e∗ = 0.85 for

the two impact events do not exactly match the results presented in the works of

[2, 79], where local ECORs e1 = e2 = 0.85 are used for each impact point. The

post-impact velocities obtained for q̇+1 and q̇+2 are much slower than the other works,

whereas the solution for q̇+3 is relatively close. Still, some quality of the solution from

this work is concluded since the resulting motions are consistent with q̇+1 < q̇+2 < q̇+3 .

A comparison of Σ mi(q̇
+

i )
2 is also used to quantify the consistency of the motions.

This parameter shows that using e∗ = 0.85 for the two impact events results in an

error of 14-15% compared to the other cases listed in Table 6.4.
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Figure 6.18. (a) Generalized speeds for the three-ball Newton’s Cradle and (b) energy
consistency throughout the simulation with e∗ = 0.85.

The consistency of the motion obtained in this work in comparison to [2, 79]

could be improved if different global ECORs are used. Therefore, the two global

ECORs were lowered to e∗ = 0.711 to match Σ mi(q̇
+

i )
2, which also improved the

solution of the post-impact velocities of each ball. Specifically, the result for q̇+1

and q̇+3 is much improved. Since it is possible to use a different value for e∗ in
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the subsequent impact event, the global ECORs were modified to be e∗ = 0.715

and e∗ = 0.488 for the first and second impact events, respectively. This produced a

solution to the post-impact velocities that identically matches the experimental result

obtained in [2]. In this way, the use of global ECORs in the proposed approach is

able to produce accurate results to model elasticity without using any springs. A plot

of the generalized speeds and system energy throughout the simulation is depicted in

Fig. 6.18.

Table 6.5. Model and simulation parameters for the three-ball Newton’s Cradle cases.

Parameter4 Value Unit

Model L 0.30 m
R 0.05 m
λ 0.10 m

Three ball

Case 1 mA −mC 1.00 kg
v−1 1.304 m/s

µ1, µ2 0.0 -
Case 2 mA −mC 0.166 kg

v−1 1.00 m/s
µ1, µ2 0.0 -

4L is the length that each ball hangs (measured to mass center), R is the radius of each ball, and

λ is the horizontal distance between each ball’s mass center. In this work, λ=2R (no separation) and

all balls at rest are in contact. The terms mi are the mass of each ball i, v−
1

is the initial velocity

of Ball A when it collides the chain of balls initially at rest, and µi are the coefficient of friction

between ball i and i+ 1.
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6.4 Summary

The treatment of three planar example problems were analyzed using the devel-

oped analytical framework from Chapter 6. The planar ball analysis was a benchmark

example first considered to develop the novel rigid body constraint technique. The

changes in slip-state for each impact point was apparent from the analysis of this

example – impact point 2 remained in stick while point 1 slip-reversed. The regions

for the no-slip condition verified these results. The analysis of the frictionless and

frictional rocking block examples provided a way to define a range of values for the

ECOR and capture of multiple impact events for a single collision. The results of

these cases were compared and identically matched to experimental data found in the

literature. The three-ball Newton’s Cradle was the final planar example analyzed. It

was observed that the ECOR in the present framework was interpreted to function

as a global energy dissipation parameter. The results of a uniform series of balls were

also validated using experimental data.
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Chapter 7

Three-Dimensional Impact: Numerical Framework

This section is focused on treating three-dimensional (3D) multibody systems

experiencing indeterminate contact and impact with friction. The framework for

two-dimensional impact problems was developed to obtain analytical solutions. The

transition of this analytical framework to treat three-dimensional impact problems is

not so easy. Complications arise when friction is modeled due to the non-linearities

associated with sliding friction on the slip plane of the impact point. This further leads

to five, first-order nonlinear ordinary, differential equations in the case of single point

impact [3, 4, 5, 6, 7, 8]. For a limited set of impact configurations (i.e. collinear/central

impact), an analytical solution is possible.
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Figure 7.1. (a) Slip plane of an impact point coming to rest and (b) evolution of
normal and sliding velocities throughout an impact event.
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Consider for example the 3D impact of a sphere with a half-space (or ground

plane). The problem that arises in 3D impact problems with friction is determining

the slip direction θ of the impact after it comes to rest, shown in Fig. 7.1a. Note that

the slip direction is formed by the velocity components vt1 and vt2 on the slip plane of

the sliding point with sliding velocity s. Stronge showed that for collinear or central

collision of bodies that are axisymmetric about the common normal direction, the

direction of slip θ does not vary [3]. The sliding velocity also remains constant and

found as: s = −µ(1 + 5/2)|pn| which produces the plot shown in Fig. 7.1b.
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Figure 7.2. Hodograph of an impact point throughout an impact event.

Figure 7.2 shows a hodograph of the impact analysis for this example. Hodographs

are a plot of the slip trajectory for an impact point on the slip plane. This plot pro-

vides a way to visualize the regions for different slip processes as a result of the stick-

slip transition. Battle showed that for a point that comes to rest and slip-reverses,

(i) the slip direction is constant (also known as an isoclinic), (ii) impact configuration

and coefficient of friction dependent, and (iii) it is unique (relative acceleration of the

impact point is positive) [81].
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So, what does this mean? Impact problems similar to the sphere example

(i.e. collinear impact) can be solved analytically but this is not the general case.

The slip direction is not always constant and is nonlinear. In addition, the coupled,

nonlinear differential equations which are encountered in 3D problems cannot be

solved analytically. Several attempts were made in this research to circumvent the

issue, such as, changing the generalized coordinates of the model. This task lead to

no new developments. The alternative was to develop a numerical framework, while

preserving the remaining key elements of the analytical framework developed for two-

dimensional impact problems. These included addressing the indeterminacy using

rigid body constraints, equations of motion in the impulse domain using Coulomb

friction, analysis of the stick-slip transition and energy dissipation using Stronge’s

energetic coefficient of restitution (ECOR).
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Figure 7.3. Three-dimensional model of a rocking block example with three corner
impact points.

Consider, by way of example, the three-dimensional model of a rocking block

with three impact points (A, B, and C), shown in Fig. 7.3. This example is considered
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as an equivalent foot-ground interaction to gain a better understanding due to friction

effects during a stepping motion. Three impact points are considered, by way of

example and not limitation, to introduce the indeterminacy that this research is

interested in addressing. Additional impact points may be considered as necessary

to represent the bottom surface of the block. The numerical framework discussed

in next section is developed for multiple point impact but can also be applied for

single point impact problems. The equations of motion will first be rewritten and

expressed as a function of an independent normal impulse parameter in differential

form. Then, the derivation of the rigid body constraints among the impact points will

be developed, including the consideration of the stick-slip transition. This is followed

by presenting the generalized treatment of multiple point impact problems based on

an interpretation of Stronge’s hypothesis.

7.1 Equations of Motion

Examination of the impulsive forces requires a consideration of the impact forces

in the equations of motion, which are also derived using Kane’s method [70]. A definite

integration over a very short time interval ǫ for the impact event,

∫ t+ǫ

t

(M(q) q̈ + b(q, q̇) + g(q)) dt =

∫ t+ǫ

t

JT (q) F dt (7.1)

yields,

ϑ = ϑ(0) + JM−1JT

︸ ︷︷ ︸
β

p = β[pt,A pn,A pt,B pn,B pt,C pn,C ]
T (7.2)

where M is the mass matrix, while b and g are vectors of Coriolis terms and gravity.

The pre– and post-impact velocities are included in ϑ(0) and ϑ, respectively, β de-

scribes the configuration and inertia properties of the system, where J is the impact

Jacobian matrix that defines the configuration of the impact points. The Coriolis and
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gravity vectors are omitted after the integration because the impact event is assumed

to occur over an infinitesimally small duration ǫ in which the configuration remains

constant. Note also that pt,i = [pt1,i | pt2,i]T since slip is now two-dimensional for 3D

impact. The differential form of (7.2) is,

dϑ = β[dpt,A dpn,A dpt,B dpn,B dpt,C dpn,C]
T (7.3)

Coulomb friction is used to relate the change in the magnitude of the normal impulse

to the change in tangential impulse during sliding by using a coefficient of friction µi,

such that ||dpt,i|| = µi |dpn,i|. The relation written for point A gives,

dpt,A =




dpt1,A

dpt2,A


 =




−µA cosφA

−µA sinφA


 |dpn,A| (7.4)

where,

cosφA =
vt1,A√

vt1,A2 + vt2,A2
sinφA =

vt2,A√
vt1,A2 + vt2,A2

(7.5)

Similar expressions can be obtained for points B and C but are not presented here in

the interest of space and unnecessary repetition. The analysis up to this point has

been carried out in Cartesian coordinates, see [25, 5]. Given the issues associated

with friction and the sliding direction φi on the slip plane, a cylindrical coordinate

formulation is more appropriate moving forward. The transformations for the velocity

components of point A yield,

ϑA =




vt1,A

vt2,A

vn,A




=




sA cosφA

sA sinφA

vn,A




(7.6)
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where sA =
√
vt1,A2 + vt2,A2 and tan−1(φA) = (vt2,A/vt1,A). Before implementing

these relations into (7.3), a differentiation of (7.6) is needed, which gives,

dϑA =




dvt1,A

dvt2,A

dvn,A




=




cosφA −sA sinφA 0

sinφA sA cosφA 0

0 0 1







dsA

dφA

dvn,A




= PA




dsA

dφA

dvn,A




(7.7)

Similar expressions to (7.7) can be obtained for points B and C with corresponding

terms on the right-hand side. Collecting coefficients into a matrix A = diag[PA, PB, PC],

in which A ∈ R9X9 and solving for the sliding velocity, sliding direction and normal

velocity of each impact point using (7.3) yields,



dsA

dφA

dvn,A

dsB

dφB

dvn,B

dsC

dφC

dvn,C




=

[
A

]−1

β




−µAcA 0 0

−µAsA 0 0

1 0 0

0 −µBcB 0

0 −µBsB 0

0 1 0

0 0 −µCcC

0 0 −µCsC

0 0 1







|dpn,A|

|dpn,B|

|dpn,C|




(7.8)

The matrix A is invertible as long as the sliding velocity of impact point A, B and

C are non-zero; in other words sA = sB = sC 6= 0. Otherwise, a singularity arises

and matrix A is no longer invertible. Also, note that this scenario represents the

point during a collision in which an impact point comes to rest at the stick-slip

transition. To overcome this singularity, an event-based approach is used, similar to

the contact detection scheme [39], to detect when any of the impact points reach the

stick-slip transition. The numerical integration is halted and the stick-slip transition
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is evaluated to determine if the impact point will slip-reverse or stick. The numerical

integration is then restarted using the updated slip-state of the impact point until the

impact event ends or another point comes to rest. Further details about the stick-slip

transition are provided in Sec. 7.3.

7.2 Rigid Body Constraints

In Sec. 3.2, the application of the velocity constraints at the force level were de-

rived using the dual properties of the impact Jacobian. Here, the constraints are found

in differential form to be consistent with the remainder of the numerical framework.

Consider for example two of the impact points (A and B) on the three-dimensional

rocking block shown in Fig. 7.3. The rigid body constraint becomes,

(vA − vB) ·
PGA −PGB

|PGA −PGB|
= 0 (7.9)

yields,

(vt1,A − vt1,B)

x︷ ︸︸ ︷
(−c5c6) + (vt2,A − vt2,B)

y︷ ︸︸ ︷
(−s6c4 − s4s5c6)

+ (vn,A − vn,B) (−s4s6 + s5c4c6)︸ ︷︷ ︸
z

= 0 (7.10)

Using the velocity-force projection method developed in Sec. 3.3, then (7.10) is equiv-

alently expressed in differential form as,

(dpt1,A − dpt1,B)x + (dpt2,A − dpt2,B)y + (dpn,A − dpn,B)z = 0 (7.11)

The constraint CAB between the differential impulses for points A and B results as,

|dpn,A| =

(
µBcosφB x+ µBsinφB y + z

µAcosφA x+ µAsinφA y + z

)

︸ ︷︷ ︸
CAB

|dpn,B| (7.12)
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which provides a general form of the constraint between two arbitrarily configured

impact points. Similarly, to obtain a rigid body constraint between points B and C,

the same method is applied,

(vB − vC) ·
PGB −PGC

|PGB −PGC |
= 0 (7.13)

yields,

(vt1,B − vt1,C)

x︷ ︸︸ ︷
(−s6c5) + (vt2,B − v ,C)

y︷ ︸︸ ︷
(c4c6 − s4s5s6)

+ (vn,B − v ,C) (s4c6 + s5s6c4)︸ ︷︷ ︸
z

= 0 (7.14)

equivalently,

(dpt1,B − dpt1,C)x + (dpt2,B − dp ,C)y + (dpn,B − dp ,C)z = 0 (7.15)

The subscript is included to here to add further generality to the derivation of the

constraint in (7.15). For instance, point C may impact a ground surface parallel to

impact points A and B, or a wall surface perpendicular to the ground surface. In

either case, the corresponding constraints among the differential impulses for points

B and C are,

GROUND:

|dpn,C| =

(
µBcosφB x+ µBsinφB y + z

µCcosφC x+ µCsinφC y + z

)

︸ ︷︷ ︸
CCB

|dpn,B| (7.16)

WALL:

|dpn,C| =

(
µBcosφB x+ µBsinφB y + z

µCcosφC x+ y + µCsinφC z

)

︸ ︷︷ ︸
CCB

|dpn,B| (7.17)

The constraints derived from (7.12) and (7.16), or (7.17), are implemented in (7.8)

in order to express the differential equations of motion as a function of a single,

independent normal impulse parameter |dpn,C|, without any loss of generality.
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7.3 Evaluating the Stick-Slip Transition

When a point comes to rest at the stick-slip transition, there are two possible

outcomes for three-dimensional impact [3, 4]: slip-reversal (S-R) and sticking (S).

Consider, by way of example, that impact point A comes to rest and using (7.3),

yields,



dvt1,A

dvt2,A


 =




0

0


 =




b1,1−9

b2,1−9







dpt1,A

dpt2,A
...




(7.18)

where bi,1−9 are row vectors of the matrix β. In addition, the Coulomb friction

relation for point A is removed since the slip-state at the stick-slip transition needs

to be determined. Solving for the tangential impulses yields,




dpt1,A

dpt2,A




︸ ︷︷ ︸
dpt,A

=




b11 b12

b21 b22




−1 


−b1,3−9

−b2,3−9







1

−µBcosφB

−µBsinφB

1

−µCcosφC

−µCsinφC

1







CAB

CCB

1

CCB

1



|dpn,C| (7.19)

The no-slip condition from (2.3) is used to determine if an impact point will stick or

slip-reverse.

||dpt|| ≤ µA |dpn| −→ ||dpt,A||
|dpn,C|

=

√
dpT

t,Adpt,A

|dpn,C|
= µ̄A ≤ µA (7.20)

where µ̄A is the critical coefficient of friction for stick for point A. For the impact

point to remain in stick, µA ≥ µ̄A which imposes a lower bound on µA. If this

condition is not met, then the impact point slip-reverses. It is also important to note

that the calculation for this critical coefficient for stick is solely dependent on the
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configuration and inertia properties of the system. Whereas, during initial sliding the

sliding direction φi is unpredictable due to the nonlinearities of friction, this is not

the case if an impact point slip-reverses. For a point that slip-reverses, the impact

point slides in a constant, unique direction [81, 3, 4, 25] and determined by,

φ̂A = tan−1

(
b11b23 − b12b13
b22b13 − b23b12

)
(7.21)

by way of example for point A. The sliding direction after the stick-slip transition is a

function of the configuration and inertia properties of the system [81, 3, 4, 25], which

is similar to the determinate of the critical coefficient of friction. Otherwise, if stick

prevails, then µ̄A is used instead of µA in the analysis.

7.4 Energy Dissipation

Next, the implementation of the work-energy theorem is discussed. The calcu-

lation of the work is given as the change in kinetic energy between the initial and

final states of the impact as,

T2 = T1 + W1−2 = T1 + U1 − U2 + (W1−2)d (7.22)

where Ti and Ui are the kinetic and potential energy at state i, and (W1−2)d is the

non-conservative, or dissipative, work done on the system between states 1 and 2.

In this work, the potential energy terms U1 and U2 are neglected due to the hard

impact assumptions, or negligible deformation, from the strict adherence to rigid

body modeling.

W1−2 = W = T2 − T1 =
1

2
q̇T (t+ ǫ)M q̇(t+ ǫ)− 1

2
q̇T (t)M q̇(t) (7.23)

Consider the normal work done during a collision to be the integration of the

dot product between the normal force and displacement as,

Wn =

∫
fn,A dxn,A +

∫
fn,B dxn,B +

∫
fn,C dxn,C
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=

∫
|dpn,A|

dxn,A

dt︸ ︷︷ ︸
vn,A

+

∫
|dpn,B|

dxn,B

dt︸ ︷︷ ︸
vn,B

+

∫
|dpn,C|

dxn,C

dt︸ ︷︷ ︸
vn,C

=

∫ (
vn,A

(
CAB

CCB

)
+ vn,B

(
1

CCB

)
+ vn,C

)
|dpn,C| (7.24)

where the rigid body constraints are implemented and the normal work is determined

as a function of a single, independent normal impulse parameter. And written in

differential form,

dWn

|dpn,C|
= vn,A

(
CAB

CCB

)
+ vn,B

(
1

CCB

)
+ vn,C (7.25)

Notice that (7.25) is differentiated with respect to |dpn,C|, similar to the form in

(4.9). By equating (7.25) to zero yields the normal impulse |pnc| at the end of the

compression phase for the system, which is a function of the normal velocities of the

impact points and the constraint equations derived. Also, |pnc| and subsequently Wnc

may change if the end of the impact event is not reached if an impact point comes to

rest at the stick-slip transition. In the event that multiple shifts occur in the normal

work plot, then the normal work curve for the latter shift is used with the ECOR to

determine the net normal work Wnf for the impact event.

The set of first order, nonlinear ODE’s in (7.8), the rigid body constraints in

(7.12) and (7.16) or (7.17), and the normal work in (7.25) are formulated into a state

function x as,

dx

|dpn,C|
= f(|pn,C|, {sA,B,C, φA,B,C, vn,A,B,C,Wn}) , x(0) (7.26)

where x(0) is a vector of the initial conditions for the variables that appear in (7.26).

To solve the system of equations in (7.26), Matlab’s ode45 integrator is used, which

is sufficient for the nonstiff equations that are encountered in (7.26).
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Stronge’s energetic coefficient of restitution (ECOR) is applied to determine the

net normal work for an impact event as,

Wnf = (1− e2∗)Wnc (7.27)

where e∗ ∈ [−1, 1] is a global ECOR which accounts for the energy dissipated by

the system in an impact event. In this work, e∗ < 0 means that in a simultaneous,

multiple point collision subsequent impact events may begin while an initial impact

event has not completed its compression phase. The value of e∗ is usually not known

in a predictive sense, unless a good understanding of the material properties and

physical behavior of the system is accounted for, as in [63, 64], which is not the goal

in this work. Alternately, e∗ functions more as a parameter to estimate the energy

dissipated and its value in the present framework can be selected to correlate with

experimental studies of an equivalent system.

7.5 Summary

This chapter presents an extension of the methods used for the analytical frame-

work to develop a numerical framework for treating 3D multiple point impact prob-

lems with friction. The complications that arise due to friction were presented, which

make analytical solutions very difficult unless the impact configuration is collinear.

The derivation of rigid body constraints are developed in differential form for an ar-

bitrary configuration of impact points. The method for deriving these constraints has

not changed and stands as the novel approach developed in this research for treating

indeterminate contact and impact. Additional impact points may be considered due

to the generalized nature of the approach. An event-based scheme is implemented to

address the discontinuity that is encountered at the stick-slip transition for 3D impact
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problems. This method offers an alternative technique to address this discontinuity

that is inherent in the modeling of 3D impact problems.
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Chapter 8

Simulation Results: Three-Dimensional Examples

In this section, simulation results for a sphere impact a corner formed by two

wall planes perpendicular to a ground plane and a three-dimensional rocking block ex-

ample are presented. These examples are analyzed to demonstrate that the developed

numerical framework produces an approximation to physically consistent behaviors.

In the following simulations, the static µs and dynamic µd coefficient of friction are

0.6 and 0.35 for all impacting surfaces. The stick-slip transition is a major charac-

teristic behavior of multibody systems with contact and impact. The effects of this

transition region will be apparent in the results obtained from the cases analyzed.

8.1 Example 4: Sphere Impacting a Corner

N1

N2
G

PNG = q1 N1 + q2 N2 + q3 N3  

N

vG

D

C

B

N3q6

q5

q4

W
A

L
L

GROUND

R

Figure 8.1. Three dimensional model of a sphere impacting a corner (repeated).
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The three-dimensional model of the sphere introduced in Sec. 3.2, is shown

in Fig. 8.1. The sphere has three impact points denoted by B, C, and D. This

system has six degrees-of-freedom (DOF) defined by six generalized coordinates -

three translation q1, q2, q3 and three orientation q4, q5, q6 coordinates. The sphere

has mass, m = 1 kg and radius R = 0.50 m.

An arbitrary initial position and translational velocity was used for the ball

simulation with no initial angular velocity. The simulation of the sphere is depicted

in Fig. 8.2a, as it impacts a corner formed by the ground and two wall planes, and

ends when a second impact is captured with the ground. This corner impact event is

an indeterminate collision involving points B, C, and D. An e∗ = 0.50 and µB = µC =

µD = 0.35 is used. After impacting the corner, the position of the impact points B,

C, and D change which demonstrate the sphere’s post-impact angular velocity as a

result of impact. A plot of the system energy is shown in Fig. 8.3 to show energy

consistency throughout the simulation.

GROUND

W
A

L
L

Simulation end

Simulation start

Impact

GROUND

W
A

L
L

Pre-Impact

Post-Impact

*Impact

Simulation start

Simulation end

(a) (b)

Figure 8.2. (a) Simulation results of the 3D sphere example impacting a corner and
(b) trajectory of sphere’s mass center.
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Figure 8.3. Energy consistency of the 3D sphere example impacting a corner.

The trajectory of the sphere’s mass center throughout the simulation is shown

in Fig. 8.2b. After impact, the sphere follows a lower trajectory which suggests that

the system lost energy from the impact. This is supported by the energy plot in

Fig. 8.3, which is further used to determine that no energy gains were encountered

throughout the simulation.

The result of this three-dimensional case was obtained using the developed

numerical framework. First, the impulse at the end of the compression phase was

determined by (4.9) and used to find Wnc, and the net work done on the system

Wnf with the global ECOR in (4.11). The evolution of the sliding velocities, sliding

directions, and normal velocities were determined by the numerical integration of

the system equations in (7.26) throughout the impact event, and shown in Fig. 8.4b.

A plot of the normal work throughout the impact event is shown in Fig. 8.4a. In

this particular simulation, none of the sliding velocities come to rest at the stick-slip

transition, which result in no shifts in the normal work plot.

The end condition for the normal impulse |pnf | is evaluated with the knowledge

of Wnf , which marks the end of the impact event. The post-impact velocities at the
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Figure 8.4. (a) Normal work done and (b) evolution of sliding velocities, sliding
directions, and normal velocities throughout the impact event for the 3D sphere
example.

impact end serve as the initial conditions for restarting the simulation to model the

system after impact.

8.2 Example 5: Three-Dimensional Rocking Block

A three-dimensional model of a rocking block example, shown in Fig. 8.5, is

analyzed here for the purposes of investigating an equivalent foot-ground contact

interaction. The block model identifies three impact points, denoted by A, B, and C,

which are located at the corner points of the block and its center of mass at point G.

The system has six DOFs described by six generalized coordinates - three translation

q1, q2, q3 and three orientation q4, q5, q6 coordinates. The block has length l, width

b, and height h with mass m = 2.5 kg.

Three separate cases are simulated with ground impact: 1) three corner impact

points, 2) four corner impact points, and 3) three centered impact points. In all

three cases, the simulation is started with points A and B in contact with the ground
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Figure 8.5. Three-dimensional model of a rocking block example with three corner
impact points (repeated).

surface. The block is allowed to rock about these points initially in contact before

impacting with point C (Cases 1 and 3 ) and points C and D (Case 2 ). It is assumed

in the simulations that follow, that the contact and impact of the block’s bottom

surface with the ground occurs only at the points identified in Fig. 8.5. A static and

dynamic coefficient of friction of 0.6 and 0.35 are used, with e∗ = 0.50 for all three

cases.

As in the planar case, contact constraints are enforced when points A and B

are in contact with the ground, and the block rocks about these points. This means

that the points in contact are not permitted to penetrate the ground using normal

kinematic constraints but can slide or stick along the ground surface, or slip plane.

Additionally, there is a short instance when all three points are simultaneously in

contact with the ground. This introduces an indeterminacy in the equations of motion

with respect to the impact forces, as introduced in Ch. 1. The constraint relationships

developed in Sec. 7.2 are implemented to resolve the indeterminacy with the developed

numerical framework.
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8.2.1 Case 1: Three Corner Impact Points
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Figure 8.6. (a) Simulation of the 3D rocking block example with three corner impact
points and (b) energy consistency for the simulation.

The results of the simulation are depicted in Fig. 8.6a. The block results in a

post-impact angular velocity about a fictitious line from point A and C, with a slight

rebound from the ground surface. A plot of the system energy is included in Fig. 8.6b

to show energy consistency for the simulation performed. The collision of point C

with the ground results in two impact events which are representative of the entire

collision of the block with the ground. The first impact event is the only indeterminate

one in the simulation, which involves the simultaneous impact of points A, B, and C.

The post-impact velocity of point C at the end of the first impact event is negative

which indicates that it is still moving toward the ground surface. This situation is

interpreted as a second impact event involving only point C, a determinate collision.

Furthermore, points A and B have a positive velocity after the first impact event,
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which are interpreted as having reached their post-impact state. The second impact

event is resolved before restarting the simulation.
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Figure 8.7. (a) Normal work done and (b) evolution of sliding velocities, sliding
directions, and normal velocities throughout the first impact event for the 3D rocking
block example with three corner impact points.

The result for this case is obtained by using global ECORs e∗ = 0.50, 0.50 for

the first and second impact events, respectively. The first impact event, illustrated in

Fig. 8.7, shows a plot of the normal work and evolution of sliding velocities, sliding

directions, and normal velocities. The inclusion of friction for this case does not cause

the tangential velocities to come to rest at the stick-slip transition; this is almost the

case at the end of the first impact event. Thus, the slope of the velocities never

changes and the impact points maintain a slip-state of forward sliding throughout

the impact event. The plot of the normal work in Fig. 8.7a shows its characteristic

shape for the first impact event. Figure 8.7b shows how the states of points A and B

reach their terminal value at the end of the first impact event. Meanwhile, the normal

velocity of point C is negative which indicates that it is still impacting the ground

88



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Start of impact End of impact

W
n

 (
N

−
m

)

COMPRESSION RESTITUTION

Wnc

Wnf

(N-s)| pnC |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(N-s)

Start of impact End of impact

*sC

*

*

φ
C

vnC

s i
 ,
 v

n
i 

(m
/s

) 
&

 φ
i 

(r
ad

)

| pnC |(a) (b)

Figure 8.8. (a) Normal work done and (b) evolution of sliding velocities, sliding
directions, and normal velocities throughout the second impact event for the 3D
rocking block example with three corner impact points.

and initiates a second impact event. The analysis of the second impact event is shown

in Fig. 8.8 and only involves point C. Figure 8.8a once again shows the characteristic

parabolic shape of the normal work where a compression and restitution phase are

clearly defined. Figure 8.8b shows how the state of point C reaches its terminal value.

The results from the analysis of a three-dimensional block with three corner

impact points produced some insightful conclusions. The location of the impact

points produced an effect on the post-impact behavior of the system. This can be

obvious if one considers the balance of forces acting on a body, or system as a result

of impact. Points A and C are balanced about the mass center but point B is not.

This fact is consistent from the simulation, which resulted in a post-impact angular

velocity of the block about a fictitious line from point A and C. The following case

makes a first alternative to address the results from this case.
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Figure 8.9. Three-dimensional model of a rocking block example with four corner
impact points.

8.2.2 Case 2: Four Corner Impact Points

In the simulation presented here, an identical three-dimensional rocking block is

considered, as in Case 1, aside from the number of impact points. Figure 8.9 depicts

the block with four corner impact points denoted by A, B, C, and D. The consideration

of an additional impact point means that an additional constraint is derived to account

for this change but is straightforward using the developed framework. The goal is

to determine if the number of impact points considered will affect the post-impact

behavior of the system.

The results of the simulation are depicted in Fig. 8.10a. The block initially

rocks about points A and B, and after impacting at points C and D, the block slightly

rebounds in a forward direction. A plot of the system energy is included in Fig. 8.10b

to show energy consistency for the simulation performed. The collision of points C

and D with the ground results in two impact events which are representative of the

entire collision of the block. The first impact event is the only indeterminate one in

the simulation, which involves the simultaneous impact of points A, B, C, and D.
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Figure 8.10. (a) Simulation of the 3D rocking block example with four corner impact
points and (b) energy consistency for the simulation.

The post-impact velocity of points C and D at the end of the first impact event are

negative which indicate that they are still moving toward the ground surface. This

situation is interpreted as a second impact event involving only points C and D, a

determinate collision. Furthermore, points A and B have a positive velocity after the

first impact event, which are interpreted as having reached their post-impact state.

The second impact event is resolved before restarting the simulation.

The result for this case is obtained by using global ECORs e∗ = 0.50, 0.50 for

the first and second impact events, respectively. The first impact event, illustrated in

Fig. 8.11, shows a plot of the normal work and evolution of sliding velocities, sliding

directions, and normal velocities. The inclusion of friction for this case does cause the

tangential velocities to come to rest together at the stick-slip transition in the first

impact event. An evaluation of the stick-slip transition results in slip-reversal, such

that all three sliding velocities continue sliding in a constant direction. The plot of

the normal work in Fig. 8.11a shows its characteristic shape for the first impact event.

Figure 8.11b shows how the states of points A and B reach their terminal value at
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Figure 8.11. (a) Normal work done and (b) evolution of sliding velocities, sliding
directions, and normal velocities throughout the first impact event for the 3D rocking
block example with four corner impact points.

the end of the first impact event. Meanwhile, the normal velocity of points C and D

are negative which indicate that they are still impacting the ground and initiates a

second impact event. The analysis of the second impact event is shown in Fig. 8.12

and only involves points C and D. Figure 8.12a once again shows the characteristic

parabolic shape of the normal work where a compression and restitution phase are

clearly defined. Figure 8.12b shows how the state of points C and D reach their

terminal value.

The results from this analysis produced a different result in comparison to

Case 1. Once again, points A and C are balanced but unlike in Case 1, point B is

balanced by point D. This fact is directly apparent from the result of the simulation,

which is more consistent with what would be expected. Restated again: the block

initially rocks about points A and B, and after impacting at points C and D, the

block rebounds in a forward direction. The last case makes a second alternative to

address the result from Case 1.
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Figure 8.12. (a) Normal work done and (b) evolution of sliding velocities, sliding
directions, and normal velocities throughout the second impact event for the 3D
rocking block example with four corner impact points.

8.2.3 Case 3: Three Centered Impact Points

In the simulation presented here, an identical three-dimensional rocking block

is considered, as in Case 1, aside from the location of the impact points. Figure 8.9

depicts top views of the block and the location of the three impact points considered

in Case 1 and Case 3. The goal is to determine if the location of the impact points

considered will also affect the post-impact behavior of the system, similar to Case 2.

It is important to note that points A, B, and C in this case enclose the mass center,

as depicted in Fig. 8.9b.

The results of the simulation are depicted in Fig. 8.14a. The block initially rocks

about points A and B, and after impacting at point C, the block slightly rebounds

in a forward direction; this result is similar to the result from Case 2. A plot of the

system energy is included in Fig. 8.14b to show energy consistency for the simulation

performed. The collision of point C with the ground results in two impact events

which are representative of the entire collision of the block. The first impact event is
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Figure 8.13. Configuration of the (a) three corner impact points used for Case 1 and
(b) three centered impact points used for Case 3 .

the only indeterminate one in the simulation, which involves the simultaneous impact

of points A, B, and C. The post-impact velocity of point C at the end of the first

impact event is negative which indicates that it is still moving toward the ground

surface. This situation is interpreted as a second impact event involving only point

C, a determinate collision. Furthermore, points A and B have a positive velocity after

the first impact event, which are interpreted as having reached their post-impact state.

The second impact event is resolved before restarting the simulation.

The result for this case is obtained by using global ECORs e∗ = 0.50, 0.50 for

the first and second impact events, respectively. The first impact event, illustrated in

Fig. 8.15, shows a plot of the normal work and evolution of sliding velocities, sliding

directions, and normal velocities. The inclusion of friction for this case does cause the

tangential velocities to come to rest together at the stick-slip transition in the first

impact event. Similar to the analysis from Case 2, the slip-states of the impact points
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Figure 8.14. (a) Simulation of the 3D rocking block example with three centered
impact points and (b) energy consistency for the simulation.

result in slip-reversal, such that they continue sliding in a constant direction. The

plot of the normal work in Fig. 8.15a shows its characteristic shape for the first impact

event. Figure 8.15b shows how the states of points A and B reach their terminal value

at the end of the first impact event. Meanwhile, the normal velocity of point C is

negative which indicates that it is still impacting the ground and initiates a second

impact event. The analysis of the second impact event is shown in Fig. 8.16 and only

involves point C. Figure 8.16a once again shows the characteristic parabolic shape

of the normal work where a compression and restitution phase are clearly defined.

Figure 8.16b shows how the state of point C reaches its terminal value.

The results from this analysis were very similar to that of Case 2, in which four

impact points were considered. Thus, the simulation was also consistent with what

would be expected for a block initially rocking about points A and B. The difference

here is that as long as the location of the impact points is strategically selected in a

stable configuration, then a reduced number of impact points can be used to achieve
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Figure 8.15. (a) Normal work done and (b) evolution of sliding velocities, sliding
directions, and normal velocities throughout the first impact event for the 3D rocking
block example with three centered impact points.

a physically consistent result. Three impact points represent the minimal number of

points to define a surface and also reduces the number of constraints that need to be

applied in the analysis. It is further concluded that the developed numerical frame-

work performs well in the simulations conducted and can be extended to applications

with multi-DOF robots that involve an equivalent foot-ground interaction.

8.3 Summary

This chapter performed a further study on two 3D example problems to test

the numerical framework developed. The unique approach to treat indeterminate

contact and impact, and modeling energy dissipation worked very well like it did for

the planar problems. The total number and configuration of the impact points were

varied to gain some insight about the effects in behavior of a 3D rocking block prob-

lem with friction, as an equivalent foot-ground interaction. The case in which only

three points were considered demonstrated the ability to achieve physically consis-
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Figure 8.16. (a) Normal work done and (b) evolution of sliding velocities, sliding
directions, and normal velocities throughout the second impact event for the 3D
rocking block example with three centered impact points.

tent behavior by observation. The analysis of the 3D multiple point impact problems

here demonstrates the effectiveness of the novel method developed in this research

for addressing indeterminate contact and impact.
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Appendix A

Constraint Projection Proof
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Figure A.1. Complementary subspaces.

In this appendix, an attempt is made to demonstrate the uniqueness of the

solutions obtained in this work. The velocity constraints, which are consistent with

rigid body assumptions, are derived as force constraints that are physically mean-

ingful. As a result, these constraints lie in complementary subspaces, as in Fig. A.1

and are proven to show that multiple solutions do not exist. Beginning with the dual

property of the Jacobian,

ϑ = J q̇ Γ = JT F (A.1)

and using the principle of virtual work yields,

F · δx = Γ · δq −→ F · ϑ = Γ · q̇ (A.2)

where the δ operator corresponds to the virtual displacement. By applying the trans-

pose to (A.2), it can be written as,

FT
ϑ = ΓT q̇ (A.3)

Replacing the full vector of velocities ϑ on the right-hand side of (A.3) by the equiv-

alent constraint matrix-reduced velocity vector representation, gives,

FT (Q ϑ
∗) = FT Q (Q+

ϑ) = FT Q (Q+J q̇) = ΓT q̇ (A.4)
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Using the existence of the left-inverse for the constraint matrix Q and its established

relationship with the velocities in ϑ, then it can be shown that,

FT Q Q+J = ΓT JT (Q+)T

F∗

︷ ︸︸ ︷
QT F = Γ (A.5)

where F∗ contains the constrained set of forces as a result of applying the constraint

term Q. An equivalent relationship for the dual property of the Jacobian can be

obtained from the result in (A.5) as,

ϑ
∗ = Q+J q̇ Γ = JT (Q+)T F∗ (A.6)

Thus, the constraint derivation between the ϑ-space and F-space is summarized as

follows. The velocity constraints are represented as,

ϑ = Q ϑ
∗ (A.7)

and yield,

ϑ = J q̇ = Q ϑ
∗ → ϑ

∗ = Q+J q̇ (A.8)

using (A.1) and the result obtained by (A.5). The corresponding force constraint

becomes,

F = (Q+)T F∗ QT F = F∗ (A.9)

where Q+ is the left-inverse of Q (and QT that of (Q+)T ). It is important to note

that the matrix (Q+)
T

QT does not equal the identity matrix. In other words,

F =
(
Q+

)T
QT

︸ ︷︷ ︸
6=I

F (A.10)

This matrix projects F on the right-hand-side of (A.10) into the space orthogonal to

the velocity constraint, which must equal the original F. Technically, any vector of

forces in the null space of (Q+)
T

QT can be added to the right-hand side and still
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satisfy (A.10), see Fig. A.1. However, the development of this solution was based

on the existence of left-inverses which only find a single solution. In addition, it

is expected that adding constraints to a problem would select a particular single

solution and not involve the problem of multiple solutions. To further demonstrate

the uniqueness of the solutions obtained, a look at null space projections is considered.
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Figure A.2. Constraint projections in (a) velocity space and (b) force space.

Let,

ϑ = Q Q+

︸ ︷︷ ︸
6=I

ϑ = Q Q+

︸ ︷︷ ︸
P1

ϑ (A.11)

where P1 is a projection of ϑ onto the column space of Q, as shown in Fig. A.2,

ϑ = P1 ϑ︸︷︷︸
column space

+ (I − P1) ϑ︸ ︷︷ ︸
left−nullspace

(A.12)

A similar projection is obtained by considering the forces and the projection of the

constraints from the velocities,

F =
(
Q+

)T
QT

︸ ︷︷ ︸
P2 = PT

1

F (A.13)

where P2 is a projection of F onto the column space of (Q+)T , such that,

0 = F − (Q+)TQT F = (I − (Q+)TQT ) F = ā (I − (Q+)TQT ) F (A.14)
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where ā can be any vector or scalar term, yet the solution is preserved. Therefore,

this presents a significant conclusion about the velocity and force constraints derived.

The existence of a left-inverse for the constraint matrix Q shows that a solution also

exists and is unique, which provides verification of the novel approached developed

in this research.
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Appendix B

Constraint and Slip-State Derivations
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This appendix is included here to show how the constraints for some of the

planar examples is derived to consider the various slip-states of an impact point.

Consider for example two impact points, 1 and 2, located on a rigid body. Using

classical rigid body dynamics [62], the difference between the velocities of these two

impact points is found as,

v1 − v2 = ω × (PG1 − PG2) (B.1)

where ω is the angular velocity of the body and PGi is the position vector of impact

point i with respect to the body’s mass center. If the dot product of the unit direction

between impact points 1 and 2 is applied to each side of (B.1), such that the right-

hand side is zero, then the rigid body assumption defines that,

(v1 − v2) · (PG1 − PG2)

|(PG1 − PG2)|
= 0 (B.2)

Additional rigid body constraints can be formulated using this method with the con-

sideration of more impact points. The benefit is clear from the simple nature of (B.2)

and permits the definition of a kinematic relationship among a collection of impact

points on a rigid body.

B.1 Rocking Block

Evaluating the terms involved in the constraint for the planar rocking block yields,

( (vt1 − vt2) N1 + (vn1 − vn2) N2 ) · (−N1) = vt1 − vt2 = 0 (B.3)

The velocity constraint obtained in (B.3) is used to constrain one of the tangential

velocities. Consider an example where vt1 is constrained. This is accomplished by

solving for this velocity term and substituting the expression into (B.5) which gives,
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ϑ =




vt1

vn1

vt2

vn2




=




vt2

vn1

vt2

vn2




=




0 1 0

1 0 0

0 1 0

0 0 1







vn1

vt2

vn2




= Q ϑ
∗ (B.4)

where Q is a matrix of full rank containing the velocity constraint and ϑ
∗ contains

the constrained velocity space. The dual property of the impact Jacobian defines a

relationship between velocities and forces, which is derived based on the principle of

virtual work and conservation of energy theory [82],

ϑ =




vt1

vn1

vt2

vn2




= J q̇ , Γ = JT F = JT




ft1

fn1

ft2

fn2




(B.5)

such that,

Γ = JT F = JT (Q+)T F∗ (B.6)

The relationship in (B.6) yields,

F =
(
Q+

)T
F∗ or QT F = F∗ (B.7)

where Q+ is the left-inverse of Q. It is incorrect to assume that the constrained

force space F∗ will involve the same terms as in the constrained velocity space ϑ
∗.

Therefore, consider the second expression in (B.7) where F∗ is solved as,

F∗ = QT F =




0 1 0 0

1 0 1 0

0 0 0 1







ft1

fn1

ft2

fn2




=




fn1

ft1 + ft2

fn2




(B.8)
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such that,




ft1

fn1

ft2

fn2




= F = (Q+)T F∗ =




0 0.5 0

1 0 0

0 0.5 0

0 0 1







fn1

ft1 + ft2

fn2




=




0.5 (ft1 + ft2)

fn1

0.5 (ft1 + ft2)

fn2




(B.9)

The first and third relations yield the same force constraint,

ft1 − ft2 = 0 (B.10)

Applying a definite integration of (B.10), the constraint is expressed in terms of

impulses as,

pt1 − pt2 = 0 (B.11)

Note that for a frictionless case (µi = 0) the tangential forces vanish, which eliminates

the indeterminacy in the system equations of motion.

B.1.1 Initial Sliding, Slip-Resumption and Slip-Reversal

Incorporating Coulomb friction gives,

−sgn(vt1)µ1 |pn1| + sgn(vt2)µ2 |pn2| = 0 (B.12)

such that,

|pn2| =

(
sgn(vt1)µ1

sgn(vt2)µ2

)
|pn1| = Cblock |pn1| (B.13)

B.1.2 Sticking

Consider for example that vt2 is in stick and incorporating Coulomb friction for

vt1 gives,

−sgn(vt1)µ1 |pn1| − pt2 = 0 (B.14)
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and substituting the expression for pt2 given by the velocity constraint among the

impulse terms in the case of stick yields,

−sgn(vt1)µ1 |pn1| −
[(

sgn(vt1)µ1a31 − a32
a33

)
|pn1| −

(
a34
a33

)
|pn2|

]
= 0 (B.15)

such that,

|pn2| =

(
sgn(vt1)µ1(a31 + a33)− a32

a34

)
|pn1| = Cblock |pn1| (B.16)

B.2 Planar Ball

Evaluating the terms involved in the constraint for the planar ball shown in Fig. 6.1b

yields,

( (vt1 − vn2) N1 + (vn1 − vt2) N2 ) ·
(
− 1√

2
N1 − 1√

2
N2

)

= −vt1 − vn1 + vt2 + vn2 = 0 (B.17)

The velocity constraint obtained in (B.17) is used to constrain one of the tangential

velocities. Consider an example where vt1 is constrained. This is accomplished by

solving for this velocity term in (B.17) which gives,

ϑ =




vt1

vn1

vt2

vn2




=




−vn1 + vt2 + vn2

vn1

vt2

vn2




=




−1 1 1

1 0 0

0 1 0

0 0 1







vn1

vt2

vn2




= Q ϑ
∗

(B.18)

where Q is a matrix of full rank containing the velocity constraint and ϑ
∗ contains

the constrained velocity space. Applying the dual property of the impact Jacobian

and solving for the constrained force space, yields,
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F∗ = QT F =




−1 1 0 0

1 0 1 0

1 0 0 1







ft1

fn1

ft2

fn2




=




−ft1 + fn1

ft1 + ft2

ft1 + fn2




(B.19)

Using this result in the first relation in (B.7) gives,




ft1

fn1

ft2

fn2




= F = (Q+)T F∗ =




−0.25 0.25 0.25

0.75 0.25 0.25

0.25 0.75 −0.25

0.25 −0.25 0.75







−ft1 + fn1

ft1 + ft2

ft1 + fn2




=




0.75ft1 − 0.25fn1 + 0.25ft2 + 0.25fn2

−0.25ft1 + 0.75fn1 + 0.25ft2 + 0.25fn2

0.25ft1 + 0.25fn1 + 0.75ft2 − 0.25fn2

0.25ft1 + 0.25fn1 − 0.25ft2 + 0.75fn2




(B.20)

such that every relation in (B.20) yields the same force constraint:

ft1 + fn1 − ft2 − fn2 = 0 (B.21)

Applying a definite integration of (B.21), the constraint is expressed in terms of

impulses as,

pt1 + pn1 − pt2 − pn2 = 0 (B.22)

Note again that for a frictionless case (µi = 0) the tangential forces vanish, which

eliminates the indeterminacy in the system equations of motion.
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B.2.1 Initial Sliding, Slip-Resumption and Slip-Reversal

Applying the magnitude on the normal impulse terms in (B.22) and incorpo-

rating Coulomb friction gives,

−sgn(vt1)µ1 |pn1| + |pn1| + sgn(vt2)µ2 |pn2| − |pn2| = 0 (B.23)

such that,

|pn2| =

(
1− sgn(vt1)µ1

1− sgn(vt2)µ2

)
|pn1| = Cball |pn1| (B.24)

B.2.2 Sticking

Consider for example that vt2 is in stick, while vt1 remains sliding and applying

the magnitude on the normal impulse terms in (B.22) gives,

−sgn(vt1)µ1 |pn1| + |pn1| − pt2 − |pn2| = 0 (B.25)

and substituting the expression for pt2 given by the velocity constraint among the

impulse terms in the case of stick yields,

−sgn(vt1)µ1 |pn1| + |pn1| −
[(

sgn(vt1)µ1a31 − a32
a33

)
|pn1| −

(
a34
a33

)
|pn2|

]
− |pn2| = 0

(B.26)

such that,

|pn2| =

(−sgn(vt1)µ1(a31 + a33) + a32 + a33
a33 − a34

)
|pn1| = Cball |pn1| (B.27)

B.3 Three-Ball Newton’s Cradle

Evaluating the terms involved in the constraint for the three-ball Newton’s Cradle

shown in Fig. 6.11b yields,

( (v4 − v6) N1 + (v3 − v5) N2 ) · (−N2) = v5 − v3 = 0 (B.28)
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The velocity constraint obtained in (B.28) is used to constrain one of the tangential

velocities. Consider an example where vt1 is constrained. This is accomplished by

solving for this velocity term in (B.28) which gives,

ϑ =




v1

v2

v3

v4

v5

v6

v7

v8




=




v1

v2

v3

v4

v3

v6

v7

v8




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







v1

v2

v3

v4

v6

v7

v8




= Q v∗ (B.29)

where Q is a matrix of full rank containing the velocity constraint and ϑ
∗ contains

the constrained velocity space. Applying the dual property of the impact Jacobian

and solving for the constrained force space, yields,

F∗ = QT F =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1







f1

f2

f3

f4

f5

f6

f7

f8




=




f1

f2

f3 + f5

f4

f6

f7

f8




(B.30)
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Using this result in the first relation in (B.28) gives,




f1

f2

f3

f4

f5

f6

f7

f8




= F = (Q+)T F∗ =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0.5 0 0 0 0

0 0 0 1 0 0 0

0 0 0.5 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







f1

f2

f3 + f5

f4

f6

f7

f8




= [f1 | f2 | 0.5(f3 + f5) | f4 | 0.5(f3 + f5) | f6 | f7 | f8]T (B.31)

such that every relation in (B.31) yields the same force constraint:

f3 − f5 = 0 (B.32)

Applying a definite integration of (B.32), the constraint is expressed in terms of

impulses as,

p3 − p5 = 0 (B.33)

Due to the physical nature of this example, the effects of the stick-slip transition do

not arise. Therefore, a consideration of the different slip-states of an impact are not

developed for this example.
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Appendix C

Equations of Motion: Kane’s Method
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Kane’s method is an approach developed by Thomas Kane for deriving the

equations of motion that describe a multibody system. This approach offers the

advantages of both the Newton-Euler and Lagrange methods, while eliminating their

respective disadvantages. For example, external and constraint forces between bodies

do not need to be considered since generalized forces are used instead. In addition, the

method of vector products is used and eliminates the need for performing extensive

differentiation, which result from energy functions,

The derivation of the equations of motion using Kane’s method is presented

next, adapted from [70], using the principle of virtual work. Consider a multibody

system of n interconnected rigid bodies with 3n degrees-of-freedom (DOF) each sub-

ject to external and constraint forces. The configuration of the system can be de-

scribed using generalized coordinates as qr, where r = 1, 2, . . . 3n. Therefore, the

virtual work becomes,

δW = Σn
i=1 Fi · δri (C.1)

where Fi is the resultant force acting on the ith particle and ri is the position vector

of the particle with respect to the inertial reference frame. This resultant force is

composed of the external, constraint, and inertia forces, acting on the system. Each

can be transformed into an equivalent force F and torque H, which passes through

the mass center of body k, such that,

Fk + Fc
k + F∗

k = 0 (C.2)

where k = 1, 2 . . . n. Equation (C.2) is obtained using d’Alembert’s principle, also

known as the Lagrange-d’Alembert principle, which states that the sum of the forces

acting on a system of mass particles (i.e. on body k) is zero.
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Applying (C.1) to a multibody system and only considering the work due to

the forces in (C.2) yields,

δW = (Fk + Fc
k + F∗

k) · δrk = 0 (C.3)

where Fc
k ·δrk = 0 since the constraint forces typically do not do any work. Therefore,

δW = (Fk + F∗
k) · δrk = (Fk + F∗

k) · ∂rk
∂qr

δqr = 0 (C.4)

Before finding the partial derivative of the position vector, it is written in a different

form as rk = rk(qr, t), such that its time-derivative gives,

ṙk =
∂rk
∂qr

dqr
dt

+
∂rk
∂t

=
∂rk
∂qr

q̇r +
∂rk
∂t

(C.5)

and its partial derivative with respect to q̇r yields,

∂ṙk
∂q̇r

=
∂vk

∂ur

=
∂rk
∂qr

(C.6)

Using (C.4) and (C.6), it is appropriate to write an equation for the forces as,

Fk ·
∂vk

∂q̇r︸ ︷︷ ︸
fr

+ F∗
k ·

∂vk

∂q̇r︸ ︷︷ ︸
f∗

r

= 0 (C.7)

where fr and f ∗
r are the generalized active and inertia forces, respectively. Similarly

for the moments,

Tk ·
∂ωk

∂q̇r︸ ︷︷ ︸
Hr

+ −(αk · Î + ωk × Î ·ωk) ·
∂ωk

∂q̇r︸ ︷︷ ︸
H∗

r

= 0 (C.8)

where Hr and H∗
r are the generalized active and inertia moments, respectively. By

summing the external and inertia parts in (C.7) and (C.8), the equations of motion

by using Kane’s method become,

Fr + F ∗
r = 0 (C.9)
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where,

r = 1, . . ., n (n is the number of degrees-of-freedom)

Fr : generalized active (applied) forces

: quantities formed by taking dot products of partial

velocities (angular) and active forces (torques)

F ∗
r : generalized inertia forces

: quantities formed by taking dot products of the

partial velocities and inertia forces/torques

And, for completeness, the general form of (C.9) used in this research for the multi-

body systems considered:

M(q)q̈ + b(q, q̇) + g(q)︸ ︷︷ ︸
−F ∗

r

= Γ(q) = GT
τ + JT (q)F︸ ︷︷ ︸

Fr

(C.10)

where,

M(q) : is the mass/inertia matrix

q̈, q̇,q : generalized acceleration, velocity and position

b(q, q̇) : Coriolis vector

g(q) : gravity vector

Γ(q) : generalized active forces (Fr)

G : generalized torque matrix

τ : actuator joint torques

J(q) : Jacobian matrix

F : impact/contact forces vector
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Appendix D

Additional Example: Five-Ball Newton’s Cradle
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A frictionless, five-ball Newton’s cradle is considered as shown in Fig. D.1a

using the developed approach. This system has five rotational DOFs q1-q5, with five

balls labeled A, B, C, D, E and equal radius R. The balls hang from massless strings

of length L and each string is separated by a distance λ, where λ = 2R, consistent

with balls at rest are in contact. Similar to the three-ball cases, Ball A is released

from rest at an arbitrary height and impacts Ball B with initial velocity q̇−1 . Balls

B-E are initially at rest, q̇−2 = q̇−3 = q̇−4 = q̇−5 = 0, and in contact. The forces at

impact are shown in Fig. D.1b.

q1 q4q2 q3
q5

N

L

A

B C D E

N2

N1

λ λ λ λ

R

RRRR

Figure D.1. Planar model of a five-ball Newton’s Cradle.

D.0.1 Case 1: Uniform, Unit Masses and e∗ = 1

This case examines balls with equal, unit mass mA = mB = mC = mD = mE =

1 kg, e∗ = 1, and v−1 = 1.0 m/s. The same method for treating the indeterminacy

for the three ball system is applied here using additional constraints. The motion

obtained from simulating this case is shown in Fig. D.2a. As in the previous cases,

this figure only shows the first collision, which triggers a single impact event that is
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indeterminate with respect to the impact forces. Ball A swings down and collides with

Balls B-E, which are at rest and in contact. The momentum is completely transferred

to Ball E and Balls A-D remain at rest and in contact after the collision. The data

for this case is given in Fig. D.2b.

START

PRE-
IMPACT

POST-
IMPACT

PRE-IMPACT
POST-IMPACTN2

N1

Figure D.2. Simulation of the five-ball Newton’s Cradle with e∗ = 1.

Plots of the normal work done and evolution of component velocities are shown

in Fig. D.3. The normal work plot ascends back to zero which corresponds to Wnf = 0

since e∗ = 1. The transfer of momentum from Ball A to E occurs, depicted by the

normal component velocities of Balls A, v1 and E, v15 in Fig. D.3b. The resulting

motion for this case is compared to the theoretical result presented in Table 4 of

[79]. For the purpose of comparison, v−1 = 1.0 m/s where α = 1 and γ = 1 in [79],

which corresponds to uniform, unit masses m = 1 kg and rigid balls, respectively.

A comparison of the theoretical results in this work and [79] is presented in Table

D.1. The post-impact motions show that the two are quite different. The result in
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Figure D.3. (a) Normal work done and (b) evolution of velocities throughout the
impact event for the five-ball Newton’s Cradle with e∗ = 1.

[79] predicts a motion in which Balls A, B and C reverse direction and Balls D and

E move to the right, where most of the momentum is transferred to Ball E. This is

in large contrast to the result in this work, which predicts that all the momentum is

transferred to Ball E and Balls A-D remain at rest after impact.

Table D.1. Comparison of theoretical results for the five-ball Newton’s Cradle with
e∗ = 1, α = 1 and γ = 1 [79].

q̇+1 q̇+2 q̇+3 q̇+4 q̇+5 ECOR
Theoretical (m/s) (m/s) (m/s) (m/s) (m/s) [ - ]

Mono-stiffness model [79] -0.1322 -0.0754 -0.0311 0.2958 0.9429 e∗ = 1

Rodriguez-Bowling 0.00 0.00 0.00 0.00 1.00 e∗ = 1

However, the solutions are compared using Σ mi(q̇
+

i )
2 and Σ mi(q̇

−
i )

2 param-

eters, which quantify the consistency of the motions and are found to match. The

significance of the results for this case demonstrate the application of the proposed
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framework to a five-ball system. The post-impact motion obtained here is similar to

the three-ball case, which is expected since e∗ = 1, but is not comparable to the result

in [79]. A plot of the generalized speeds and energy of the system to verify energetic

consistency for the simulation is presented in Fig. D.4.
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Figure D.4. (a) Generalized speeds for the five-ball Newton’s Cradle and (b) energy
consistency throughout the simulation with e∗ = 1.

D.0.2 Case 2: Uniform, Unit Masses and e∗ = 0.8

The next case considered for the five-ball Newton’s cradle examines balls with

equal, unit mass mA = mB = mC = mD = mE = 1 kg, e∗ = 0.8, and v−1 = 1.304 m/s.

The motion obtained from simulating this case is depicted in Fig. D.5a. This plot

shows the first collision of Ball A with Balls B-E. In this case some energy is dissipated

because e∗ = 0.8; the data for this case is given in Fig D.5b.

The collision of Ball A with Balls B-E triggers four impact events, similar to the

phenomena for a three-ball Newton’s Cradle with e∗ = 0.85. The first impact event

involves all five balls simultaneously and most of the momentum is transferred to Ball
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Figure D.5. Simulation of the five-ball Newton’s Cradle with e∗ = 0.8.

E. Once again, the post-impact velocities of the system after the first impact show

that Ball A is moving faster to the right than Balls B, C and D while Ball E begins

to separate from these balls. This results in a second impact event that only involves

Balls A-D, which is indeterminate. The treatment of this second impact event reveals

that most of the momentum is transferred to Ball D.

The post-impact velocities of the system indicate that Ball A is still moving to

the right at a faster rate than Balls B and C, while Ball D has begun to separate

from these balls. This results in a third impact event which only involves Balls A-C,

an indeterminate impact event. The same phenomena is observed hereafter in which

a fourth impact event is triggered, a determinate impact event. Again, these multiple

impact events stem directly from the analysis with the given model parameters and

initial conditions; there was no a priori knowledge or manipulation of the model or

initial conditions to cause this phenomena.

Analysis of the first impact event is shown in Fig. D.6. The energy loss with

e∗ = 0.8 is illustrated in Fig. D.6a because the normal work curve does not ascend

back to zero. The evolution of the component velocities, shown in Fig. D.6b, depicts
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Figure D.6. (a) Normal work done and (b) evolution of velocities throughout the first
impact event for the five-ball Newton’s Cradle with e∗ = 0.8 .

how the terminal component velocities of Ball E, v15−16 are reached. This plot also

shows the post-impact velocities of Balls A-D, which serve as the initial conditions for

the second impact event; v1 > v3 = v7 = v11 indicating a subsequent impact event.

The analysis of the second impact event is illustrated in Fig. D.7. This impact

begins with the post-impact velocities of Balls A-D from the previous impact, in which

Ball E has begun to separate from the other balls. The normal work in Fig. D.7a,

where e∗ = 0.8 is used again, shows the energy loss as occurred in the first impact

event. The evolution of the component velocities in Fig. D.7b demonstrates how the

component velocities of Ball D, v11−14 reach their terminal value. This plot also shows

the post-impact velocities of Balls A-C; v1 > v3 = v7 indicating a subsequent impact.

Treatment of the third and fourth impact events are depicted in Figs. D.8 and

D.9. In each impact event, the analysis in Figs. D.8a and D.9a illustrate the energy

loss where e∗ = 0.8 are used. The terminal component velocities of Ball C, v7−10 are

shown in Fig. D.8b and Balls A, v1−2 and B, v3−6 are shown in Fig. D.9b.
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Figure D.7. (a) Normal work done and (b) evolution of velocities throughout the
second impact event for the five-ball Newton’s Cradle with e∗ = 0.8 .

The propagation of momentum in the resulting motion is obtained here. The

post-impact generalized speeds in this case follow q̇+1 < q̇+2 < q̇+3 < q̇+4 < q̇+5 . The

main differences in these two cases are the mass of the balls, ECOR used and the

number of impact events captured. It can be concluded that the mass of each ball

and the energy dissipated in the simultaneous collision are the contributing factors in

the number of impact events that occur. To the best of their knowledge, the authors

could not find a similar example to this case for comparison of the results. A plot

of the generalized speeds and energy of the system to verify energetic consistency for

the simulation is presented in Fig. D.10.

D.0.3 Case 3: Non-Uniform Masses and e∗ < 1

As a final study, a non-uniform series of balls with e∗ < 1 is considered for the

five-ball Newton’s cradle. The first collision of Ball A with Balls B-E, triggers four

impact events as occurred in Case 2. The first three impact events are indeterminate,

while the fourth impact event is determinate. A plot of the motion, as well as analysis
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Figure D.8. (a) Normal work done and (b) evolution of velocities throughout the
third impact event for the five-ball Newton’s Cradle with e∗ = 0.8 .

plots of the normal work and evolution of velocities are not presented here since a

similar analysis was given in Case 2. Rather, conclusions are made from a comparison

of the motion obtained here and the experimental results in [2], which are given in

Table D.2. In particular, a comparison of this case is made to the result presented in

Fig. 12 of [2]. This case has a pre-impact velocity of v−1 = 1.0 m/s for a sequence of

balls that follow ABACA, where m = 0.045 kg for a ball type A, and m = 0.053 kg

for ball types B and C, see [2]. The post-impact velocity predictions shown in Fig.

12, [2] were approximated to within ±0.025 m/s from the data given.

In Table 1 of [2], the authors present experimentally determined, local ECORs

for a pair of balls with different masses. Three local ECORs are used in [2] for the

sequence of balls, ABACA, studied in this case. As it was discussed in Sec. 6.3.1, it

is difficult to apply the ECOR at each impact point because the ECOR in this work

can only function as a global parameter to model the energy dissipated at the system

level. This is due to the negligible local compliance considered at the impact points.

As a result, e∗ for this case was adjusted in the proposed approach to obtain a motion
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Figure D.9. (a) Normal work done and (b) evolution of velocities throughout the
fourth impact event for the five-ball Newton’s Cradle with e∗ = 0.8 .

Table D.2. Comparison of theoretical and experimental results of the non-uniform
five-ball Newton’s Cradle with e∗ < 1 for a sequence of balls ABACA, [2].

q̇+1 q̇+2 q̇+3 q̇+4 q̇+5 ECORs
(m/s) (m/s) (m/s) (m/s) (m/s) [ - ]

Experimental ICR [2] 0.150 0.190 0.200 0.250 0.340 e1,2 = 0.53

e3,4 = 0.31
Theoretical Rodriguez- 0.046 0.048 0.113 0.221 0.525 e∗ = 0.4

Bowling

which was closest to [2]. It was determined that e∗ = 0.4 for all four impact events

produced adequate results. The two solutions in Table 3 do not exactly match but

exhibit a similar post-impact motion. The post-impact velocities q̇+1 and q̇+2 are much

slower compared to [2], whereas q̇+3 and q̇+4 are relatively close, and q̇+5 is predicted

to be faster than in [2]. The solutions are somewhat in agreement by comparing the

Σ mi(q̇
+

i )
2 value for consistency of the motion. Plots of the generalized speeds and

energy of the system to verify energetic consistency are included in Fig. D.11.
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Figure D.10. (a) Generalized speeds for the five-ball Newton’s Cradle and (b) energy
consistency throughout the simulation with e∗ = 0.8.
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Figure D.11. (a) Generalized speeds for the non-uniform, five-ball Newton’s Cradle
and (b) energy consistency throughout the simulation .

126



Table D.3. Model and simulation parameters for the five-ball Newton’s Cradle cases.

Parameter Value Unit

Model L 0.30 m
R 0.05 m
λ 0.10 m

Five ball

Case 1 mA −mE 1.00 kg
v−1 1.00 m/s

µ1, µ2, µ3, µ4 0.0 -
Case 2 mA −mE 1.00 kg

v−1 1.304 m/s
µ1, µ2, µ3, µ4 0.0 -

Case 3 mA, mC , mE 0.045 kg
mB, mD 0.053 kg

v−1 1.00 m/s
µ1, µ2, µ3, µ4 0.0 -

Simulation step size 0.001 s
abserr 1.0e-12 -
relerr 1.0e-11 -
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leurs parties, et la roideur des cordages,” Piéce qui a reporté le Prix double de
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