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Abstract 

ESTABLISHING THE METHOD OF DUAL-TENSOR FOR TRACT BASED ANALYSIS 

(DTTA) AND INVESTIGATING HUMAN BRAIN DEVELOPMENTAL CONNECTOME 

WITH DIFFUSION MRI 

Virendra Mishra, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Hao Huang 

Diffusion MRI (dMRI) has the unique ability of studying white matter fiber 

structure in the human brain in-vivo. The trajectory of the white matter fibers inside the 

brain can be mapped using the tractography techniques and their structural integrity can 

be assessed with the help of various metrics such as fractional anisotropy (FA) derived 

from diffusion tensor imaging (DTI). But with typical dMRI in clinical applications, almost 

half of human brain white matter (WM) voxels has crossing-fiber regions (CFR) where 

WM microstructural integrity is significantly underestimated with single tensor FA. A 

technique adapted to WM tract analysis and correcting the anisotropy bias at the CFR for 

dMRI acquired within 5 minutes in clinical research needs to be developed and was the 

goal of Aim 1. Other than FA, various other DTI derived metrics such as radial (RD), axial 

(AxD) and mean diffusivity (MD) have been used to noninvasively assess the 

microstructural development of human brain WM. At birth, most of the major WM tracts 

are apparent but in a relatively disorganized pattern. Brain maturation is a process of 

establishing organized pattern of these major WM tracts. However, the change in the 

spatial-temporal linkage pattern of major WM tracts during development remains unclear 

and evaluating the linkage pattern of major WM tracts during development was the goal 

of Aim 2. Moreover, the linkage pattern observed at birth is a result of complicated 
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molecular and biochemical processes which take place during perinatal brain 

development and reshape the later brain structural network for sophisticated functional 

and cognitive requirements. However, structural topological configuration of human brain 

during this specific development period is not well understood and was the goal of Aim 3.  

To evaluate Aim 1, novel dual tensor tract analysis (DTTA) was developed that 

includes dual tensor fitting with Gaussian mixture model and tract analysis. Digital 

phantom was designed and dMRI with multiple b values was acquired to evaluate the 

accuracy of estimated tract-specific anisotropy at CFR after DTTA correction. The results 

from phantom study showed high accuracy of the corrected anisotropy with DTTA. The 

results from normal human dMRI used in clinical research indicated effective 

identification of CFR and correction of tract-specific anisotropy. Corrected anisotropy with 

DTTA is highly consistent to the single fiber FA within the same tract. The results suggest 

great potential of DTTA in estimating accurate tract-specific anisotropy at CFR and 

conducting tract analysis in clinical research. 

   To evaluate Aim 2, diffusion magnetic resonance image (dMRI) data of 26 

neonates and 28 children around puberty was acquired. 10 major WM tracts, 

representing four major tract groups involved in distinctive brain functions, were traced 

with DTI tractography for all 54 subjects. With the 10 by 10 correlation matrices 

constructed with Spearman’s pairwise inter-tract correlations and based on tract-level 

measurements of FA, RD, AxD and MD of both age groups, we assessed if the inter-tract 

correlations become stronger from birth to puberty. In addition, hierarchical clustering 

was performed based on the pairwise correlations of WM tracts to reveal the clustering 

pattern for each age group and evaluate the pattern shift from birth to puberty. Stronger 

and enhanced microstructural inter-tract correlations were found during development 

from birth to puberty. The linkage patterns of two age groups differ due to brain 
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development. These changes of microstructural correlations from birth to puberty suggest 

inhomogeneous but organized myelination processes which cause the reshuffled inter-

tract correlation pattern and make homologous tracts tightly clustered. It opens a new 

window to study WM tract development and can be potentially used to investigate 

atypical brain development due to neurological or psychiatric disorders. 

To evaluate Aim 3, dMRI of 15 in-vivo human brains in the age range of 31 

gestational weeks (wg) to 41wg were acquired to characterize structural brain network 

during perinatal brain development. dMRI tractography was used to construct structural 

brain networks and the underlying topological properties were quantified by graph-theory 

approaches. Small-world attributes were found to be evident throughout the perinatal 

brain development. Our results reveal a perinatal brain “connectome” that shows 

monotonically increasing network derived metrics and stronger networks with 

development, which is likely to be the outcome of both strengthening of major white-

matter tracts and pruning of small fibers.  
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Chapter 1 

Introduction 

1.1. Normal White Matter of the Brain 

The human brain is a highly complex structure consisting of gray and white 

matter tissue weighing about 1400 grams in the adult (Blinkov and Glezer, 1968; Filley, 

2011). Gray matter, also known as the cerebral cortex, is roughly 3-mm thick external 

surface of the brain consisting of billions of neuronal cell bodies and several subcortical 

structures (Blinkov and Glezer, 1968). It is speculated that out of the 100 billion neurons 

in the brain, vast majority of the neurons are classified as interneurons and serve to link 

gray matter regions with each other (Filley, 2011; Nolte, 1999). Cerebral cortex has been 

considered of significant importance because of its relationship to memory (Filley, 2011; 

Filley et al., 1988), intelligence (Garde et al., 2005; van Dijk et al., 2008), executive 

functions (Reed et al., 2004; Swanberg et al., 2004; Tullberg et al., 2004; Wen et al., 

2004), language (Filley, 2011) and self (Cummings, 2004; Rafii and Aisen, 2009). 

 White matter tissue occupies roughly 50% of the entire brain parenchyma and is 

composed mainly of lipids and hence freshly cut white matter tissue appears to be white. 

It consists of densely packed fiber collections classified into projection, commissural, 

limbic and association fiber tracts (Catani, 2011; Filley, 2011; Nolte, 1999). Commissural, 

association and limbic fibers are predominantly associated with conveying information 

from one region of the brain to other while projection fibers conveys afferent sensory 

input to the brain or efferent motor output to the limbs (Catani, 2011; Filley, 2011). Most 

of the white matter fiber tracts remain confined as inter or intra-hemispheric connecting 

tracts.  

The microstructure of the white matter contains myelinated axons, glial cells and 

nourishing blood vessels (Filley, 2011; Nolte, 1999). The fiber tracts are composed of 
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these myelinated axons of neurons that serve as the connecting highway of the brain that 

either conveys the information from one region of the brain to other or conveys the 

information to a part of the body to perform an ordered function (Fields, 2008; Filley, 

2011; Filley and Kleinschmidt-DeMasters, 2001). Myelin is produced from 

oligodendrocytes and encircles axons with a concentric insulin sheath made up of 70% 

lipid and 30% proteins (Baumann and Pham-Dinh, 2001; Evans and Finean, 1965). 

Myelinated axons can conduct action potential 100 times faster than those without myelin 

due to saltatory conduction between myelinated axonal segments (Filley, 2011; Filley and 

Kleinschmidt-DeMasters, 2001; Huxley and Stampfli, 1949). 

 

1.2. Importance of Studying Brain White Matter 

Since 50% of the whole brain volume is occupied by white matter and they are 

responsible for transferring the information from one brain region to another or/and 

transferring the information from the brain regions to periphery to perform a certain 

function; studying the brain white matter needs no justification from a neuroscientific 

perspective. White matter is peculiarly important as its neuroanatomy is highly variable 

across the lifespan of an individual (Fields, 2008; Filley, 2001; Marner et al., 2003; 

Wozniak and Lim, 2006). Similar to gray matter, white matter also has developmental 

process right from the birth till the end of life (Huppi, 2011). Neuronal formation to convey 

information across the brain gray matter regions occurs early but myelination, a key 

aspect of how fast the signal gets transmitted, is developed later and continues well into 

postnatal life (Benes et al., 1994). White matter volume continues to increase until mid-

age and undergoes a slow process of volume reduction in old age (Salat et al., 1999; 

Tang et al., 1997). Hence it can be observed that these developmental changes in white 

matter directly affect the human behavior and may even influence certain emotional and 
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cognitive functions of an individual at various stages of life (Huang et al., 2011; Huang et 

al., 2012b). 

It also becomes important to study brain white matter because of its implications 

in certain brain disorders such as traumatic brain injury (Alexander, 1995; Filley, 2001), 

neoplasms (eg:  focal white matter tumors, diffusely infiltrative gliomas etc.), vascular 

diseases (eg:  Leukoaraiosis, Migraine), metabolic disorders (eg: hypoxia, high altitude 

cerebral edema), demyelinative diseases (eg: Multiple Sclerosis, Schilder’s disease) and 

a multitude of other disorders that are still under active research (Filley, 2001; Filley, 

2011).  

 

1.3. Role of Magnetic Resonance Imaging (MRI) in Studying White Matter 

Given the significance of studying brain white matter in normal brain function, 

various techniques have been used to analyze the structure of the white matter. A few of 

the notable techniques include confocal laser scanning microscopy, myelin staining, tract 

tracing and polarized light imaging (Axer, 2011). Although all of these techniques have 

significant advantages in terms of resolution and studying interested area of white matter 

in a lot of details, it is very time consuming and needs a highly skilled and trained 

laboratory members to complete the task (Axer, 2011).  

Magnetic Resonance Imaging (MRI) developed in past few decades has been 

robust, fast, reproducible and can be tailored according to the objective of the study. The 

most important advantage of using MRI to study white matter is its application to living 

human beings. MRI has been used to study white matter development and its role in 

brain functions throughout the lifespan of an individual (Dosenbach et al., 2010; Filley, 

2001; Huppi, 2011; Lebel et al., 2008; Li et al., 2012). It has also been used to study the 

efficacy of a drug treatment to a diseased neuropathological case (Bakshi et al., 2005). 
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T1 weighted and T2 weighted MRI has been used extensively to study white matter brain 

pathologies (Filley, 2001; Tofts, 2003) and to study human brain development (Huppi, 

2011; Wozniak and Lim, 2006). MRI offers excellent soft tissue contrast along with no 

radiation damage to the living being unlike CT or X-rays. It is because of this excellent 

ability of MRI to image a human being without irradiating, in-vivo extends its importance 

to image a baby in-utero (Studholme, 2011).  

 

1.4. Basics of Diffusion MRI (dMRI) 

Diffusion MRI (dMRI) exploits the inherent diffusion of water inside the brain as a 

contrast to generate the MR signal. Diffusion is a process which is governed by thermally 

driven random Brownian motion of any molecule (Callaghan, 2011). It is by virtue of this 

process that certain matter inside the brain is transferred from one region to another. 

Every molecule by itself has an intrinsic and characteristic diffusion coefficient, also 

known as a diffusion constant, abbreviated as D (Le Bihan, 2011; Mori, 2007). This 

diffusion constant depends upon the molecular weight, viscosity and temperature of the 

surroundings in which the molecule resides (Beaulieu, 2002).  

This diffusion coefficient was first investigated by Fick in 1855 (Fick, 1855) where 

he found analogies of heat transfer phenomenon to diffusion in fluids. He proposed, 

which is known as, Fick’s first law of diffusion stated as: If F is the transfer rate of a 

specific diffusing substance through a unit area of each section in a measured sample, C 

is the concentration of the diffusing substance and x is the coordinate in space normal to 

the section, then  

C
J D

X

∂
= −

∂
                          [1.1]  
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The proportionality term, D, is the diffusion coefficient. The negative sign implies 

that the diffusive flow is in the direction opposite to that of the increasing concentration. 

The SI units of D is m2/s, but it is also common to associate D with units of cm2/s or 

mm2/s (Bernstein et al., 2004; Tofts, 2003; Stampfli, 2007). Equation [1.1] gives the 

relationship between the flux of the particles and the particle concentration gradient. 

Einstein’s equation gives the relationship of finding a self-diffusing particle in 3D in a 

certain position at a certain time which is: 

2 6R Dt< >=                                                   [1.2] 

where 2R< >  represents mean squared displacement in time t (Callaghan, 2011). In this 

case D represents the so called self-diffusion coefficient (Le Bihan, 2011; Mori, 2007). 

Equation [1.2] is obtained under the assumption of isotropic diffusion implying that the 

diffusing molecules have equal probability of diffusing in any direction without a 

preference and the diffusing particles perform a random walk of equal length in a 

constant time (Callaghan, 2011; Mori, 2007; Tofts, 2003).  

In biological tissue, however, boundaries and obstacles represent barriers for 

diffusing molecules and hence affect the diffusion process (Filley, 2011; Nolte, 1999). In 

general, diffusion process is preferred along the boundary and restricted perpendicular to 

them (Le Bihan, 2011; Mori, 2007). Hence self-diffusing water molecule now has a 

preferred orientation in the presence of an obstacle resulting in an anisotropic diffusion. 

Hence in the case of anisotropic diffusion, the diffusion coefficient D is no longer a scalar 

and has a direction associated with it. In a 3D space, D can be represented as a 3x3 

second order, symmetric tensor called as a diffusion tensor (Le Bihan, 2011; Mori, 2007). 

Almost any MR imaging sequence can be designed to be sensitive to these self-

diffusing water molecules by application of magnetic field gradients. The signal which is 

then obtained with the help of these sensitizing additional magnetic field gradients are 
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called as “diffusion weighted” MRI (dMRI) (Le Bihan, 2011; Mori, 2007). dMRI images are 

created with the help of pulsed magnetic field gradient introduced by Stejskal and Tanner 

(Stejskal and Tanner, 1956). The purpose of these gradient pulses is to magnetically 

label the spins carried by the self-diffusing water molecule. These labeled spins can now 

be considered as endogenous tracers that can be monitored in similar fashion as 

classical diffusion tracing techniques. However the measured signal is only sensitive, 

parallel to the direction of applied gradient and hence only represents the component of 

entire diffusion phenomenon.  

 

Figure 1.1: Thick arrow indicates the strength of the magnetic field (B0). Small arrows 
indicate the phase of the individual protons. Individual protons are represented by 

different circles in red, green and blue colors. Phase accumulated due to the application 
of gradient pulses is indicated by different arrows relative to each other from the starting 

point (Mori, 2007).   
 

Figure 1.1 represents a diagrammatic approach to the measured diffusion 

weighted MR signal. In Figure 1.1, 3 different spins are represented by 3 different colors 
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as red, green and blue. In the absence of “dephasing” gradients (during time interval t1), 

all the 3 spins are in phase with each other and aligned to the main magnetic field 

strength, B0 and the signal read by MR receiver is maximum. With the application of 

dephasing gradients (during time interval t2), different spins experience different magnetic 

field and hence have different phases relative to each other. During this time interval, the 

signal received at the MR receiver is less; as the out-of-phase spins now add 

destructively to produce MR signal. When the dephasing gradient is off (during the time 

interval t3), all the 3 spins experience the same magnetic field B0 but due to losing the 

phase because of the previously applied dephasing gradient; the signal received at the 

MR receiver is still less than that obtained during the time interval t1. When the 

“rephasing” gradients are applied with same strength but opposite polarity as the 

dephasing gradients (during the time interval t4), all the 3 spins experience different 

magnetic field with equal but opposite intensity as during t2, and go back in-phase to give 

a signal that has similar intensity as during time interval t1 at MR receiver. But if during 

the time interval of t2 and t4 the spins have diffused, the signal received at the MR 

receiver is less as compared to that at time interval t1 as the number of spins from t1 to t4 

are less as they have moved away from their initial locations giving rise to a “diffusion 

weighted” MR signal.  

The amount of signal (S) received at the receiver because of application of 

gradient pulses relative to the signal in the absence of gradient pulses (S0) can be given 

as f(G,∆,δ,γ,D) where G represents the magnitude of the applied gradient pulses, ∆ and 

δ represents the separation and duration of the gradient pulses, γ represents the 

gyromagnetic ratio of water which is 42.58 MHz/Tesla and D represents the self-diffusion 

coefficient of water molecule (Callaghan, 2011; Le Bihan, 2011; Mori, 2007). The 
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probability of finding a spin at a location x2 during the time interval ∆ from its original 

location x1 at time t0 in one dimension, is Gaussian distributed and is given by: 

P(x, ∆) = 

2

41

4

x

De
Dπ

−
∆

∆
                                                                                              [1.3] 

where, x = x2-x1 (Callaghan, 2011; Mori, 2007). The total signal measured by the MR 

receiver is the product of signal phase along x and the net population of spins in the 

measured voxel, given by 

S = ( , ) ( , )
x

P x t x tΘ∑  where ( , )x tΘ  represents the phase accumulated by the spins 

inside the voxel during time interval, t.          [1.4] 

Equation [1.4] can be solved for measured signal, S, as: 

S = ( , ) ( , )
x

P x t x t dxΘ∫ = 

2

( )41

4

x
i G t txDt

x

e e dx
Dt

γ

π

−

∫                                                      [1.5] 

The total measured signal S, due to the application of the gradient pulse of duration δ, 

strength G and separation ∆ can be solved from equation 1.5 giving: 

S = S0 
2 2 2 ( )

3
G D

e
δ

δ−ϒ ∆−
            [1.6] 

Substituting 
δ

δϒ ∆ −
2 2 2

( )3G D  as “b”, equation [1.6] can be rewritten as: 

S = S0 
bDe−               [1.7] 

Hence from equation [1.7], one can non-invasively obtain the self-diffusion 

coefficient of water molecules inside the voxel with the application of “b” (Le Bihan, 2011; 

Mori, 2007). This b-value is governed by the gyromagnetic ratio of the water molecule, 

strength of the applied gradient, G, duration of the applied gradient, δ, and separation 

between the dephasing and the rephasing gradients, ∆. In theory, any MR imaging 

sequence can be designed to give a diffusion weighted image but practically, single shot 
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spin echo echo-planar imaging (SS-SE EPI) sequences are employed due to its 

insensitivity to motion, fast and relatively higher signal to noise ratio (Bernstein et al., 

2004). A typical diffusion weighted MR sequence is shown in Figure 1.2. Unlike Figure 

1.1, there is an 180o radiofrequency (RF) pulse applied between the application of 

dephasing and rephasing gradients. Due to the presence of this 180o RF pulse, the 

dephasing and the rephasing gradients now have the same polarity unlike Figure 1.1.  

However SS-SE EPI sequences suffer from low spatial resolution and susceptibility 

artifacts due to increased sensitivity at the vicinity of the air-filled structures to magnetic 

field inhomogeneities  (Bernstein et al., 2004). 

 

Figure 1.2: A typical spin echo diffusion sequence. Gradient pulses are represented by 
the hatched rectangles. The amount of diffusion weighting is governed by the gradient 
strength (G), the time (∆) between the two gradient pulses and gradient duration (δ) 

(Stampfli, 2007). 
 

The diffusion coefficient, D, measured from equation [1.7] is called as apparent 

diffusion coefficient (ADC) (Le Bihan, 2011; Mori, 2007). The measured diffusion 

coefficient is apparent since it is not the true intrinsic diffusion of the water molecule but 

rather depends on the interactions of the diffusing water molecules with the cellular 
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structures over a given diffusion time. As can be observed from equation [1.7], choice of 

b-value is a significant factor to accurately measure the ADC value. In a noise-free 

measurement, choice of b-value is has no influence in the estimation of ADC value but in 

practice, the measured dMRI signals are influenced by noise and choice of b-value 

becomes important. If the b-value is chosen to be very low, the precision of ADC 

estimation is low and if the chosen b-value is chosen to be very high, the acquired signal 

drops below the noise level resulting in underestimation of ADC value.  The signal 

attenuation is a product of the applied b-value and the expected ADC and hence 

theoretically, there exists an optimum b-value for the expected ADC value. It has been 

shown that the optimal choice of b-value is in the range of ADCxb≈0.85 (Jones et al., 

1999a). As the brain white matter ADC has a wide range of 0.35 to 1.3x10-3 mm2/s, there 

is no one single b-value for all white matter tissue types. A tradeoff value of b=1000 

s/mm2 is widely used in clinical practice used in DTI studies of the human brain 

(Bernstein et al., 2004; Jones et al., 1999a). 

 

1.5. From dMRI to Diffusion Tensor Imaging (DTI) 

As mentioned previously, water molecules diffusing inside the brain have 

restricted diffusion due to the cellular microstructure of the tissue. Apart from the cellular 

microstructure of the tissue, there are various other compartments such as the 

extracellular space, intracellular space, presence of glial cells, neuronal cells and many 

other particles. All of these sources of hindrance affect the mobility of water diffusion and 

hence changes the diffusion properties. Earlier hypothesis suggested that the presence 

of myelin structures encasing the axons build a natural hindrance for the water molecules 

due to their limited permeability to water and hence diffusivity is restricted perpendicular 

to axons (Beaulieu, 2002). There is no such obstacle present along the length of the 
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axons. However it was shown that water diffusion was significantly anisotropic even in 

the normal, intact and non-myelinated olfactory nerve of the garfish (Beaulieu and Allen, 

1994). dMRI studies in early brain development shows that anisotropy increases with 

increasing myelination of the axons (Dubois et al., 2008; Gao et al., 2009a; Huppi and 

Dubois, 2006; Lebel et al., 2008). Recently, it has been shown that anisotropy values are 

also influenced by axon diameters (Alexander et al., 2010; Assaf and Basser, 2005; 

Assaf et al., 2004), degree of myelination (Song et al., 2002) and fiber packing density 

(Schwartz et al., 2005). Hence the current literature suggests that the anisotropy obtained 

from dMRI within a neuronal tissue is mainly caused by high fiber density and axonal 

membranes which represent strong barriers for the water molecule to diffuse 

perpendicular to the main axis of the axons and the presence of myelin sheats around 

the axons. 

This phenomenon of anisotropic diffusion is captured in the 3x3 second order, 

symmetric tensor known as diffusion tensor (Le Bihan, 2011; Mori, 2007). This tensor is 

represented as: 

D = 

 
 
 
 
 

xx xy xz

yx yy yz

zx zy zz

D D D

D D D

D D D

            [1.8] 

The tensor in equation [1.8] can be represented as a diffusion ellipsoid where Dxx, Dyy 

and Dzz represents diffusion along X, Y and Z directions whereas the off-diagonal 

elements represents diffusion along i, j direction with i, j = X, Y and Z directions. Since 

the tensor is symmetric, there are 6 independent elements which have to be determined 

in order to estimate the tensor. Equation [1.6] can be rewritten as: 

S = S0 
−

ur urT
bg Dge where 

ur
g is a normalized vector in the direction of the diffusion sensitizing 

gradient and |g| is its corresponding strength (Le Bihan, 2011; Mori, 2007).                [1.9]                                            
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Using the symmetric property of the diffusion tensor, equation [1.9] can be rewritten as: 

− = + + + + +
0

ln( ) 2 2 2xx xx yy yy zz zz xy xy xz xz yz yz

S
b D b D b D b D b D b D

S
                  [1.10]  

Hence by acquiring at least 6 diffusion weighted images with non-collinear diffusion 

directions and one unweighted reference image (b0 image), the 6 tensor elements can be 

calculated by solving the linear equation: 

S = bD             [1.11] 

Where S is the signal attenuation vector, S = 

− 
 − 
 −
 
− 
 − 
 − 

1 1

2 2

3 3

4 4

5 5

6 6

ln( / )

ln( / )

ln( / )

ln( / )

ln( / )

ln( / )

S G

S G

S G

S G

S G

S G

                                [1.12] 

with Si=Si/S0, Gi is the strength of the different gradients; b is the b-matrix,              [1.13] 

b = 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

( / ),( / ),( / ),( / ),(2 / ),(2 / ),(2 / )

( / ),( / ),( / ),( / ),(2 / ),(2 / ),(2 / )

( / ),( / ),( / ),( / ),(2 / ),(2 / ),(2 / )

( /

xx yy xx zz xy xz yz

xx yy xx zz xy xz yz
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b G b G b G b G b G b G b G

b G b G b G b G b G b G b G

b


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
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



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and D is the vector containing the diffusion elements: 

DT=   , , , , ,xx yy zz xy xz yzD D D D D D          [1.14] 

As shown in Figure1.3 (A), the diffusion tensor can be depicted as a diffusion 

ellipsoid (bottom panel). The eigenvalues and the eigenvectors of the tensor can be 

determined by singular value decomposition (SVD) algorithm. The eigenvector 



 

 

corresponding to the largest eigenvalue points in the direction of the most pronounced 

diffusion direction. As mentioned previously, diffusion in the brain white matter is 

predominantly in the direction parallel to the underlying axonal fiber tracts and hence, DTI 

can be used to study course of directions of axons and the architecture of the brain white 

matter (Jones et al., 1999b)

 

Figure 1.3: (A) In the absence of ordered barriers to free motion of water molecule, 
diffusion tensor can be represented as a sphere (top panel). The barriers to motion are 

represented by cylinders and water protons are represented by small circles. In the 
presence of ordered barriers, diffusion tensor can be represented by a 3D ellipsoid 

(bottom panel) (Mori, 2007)
along the diagonals of the tensor matrix; (b) represents the anisotropic tensor that does 
not have any cross-terms in the diagonal (perfectly aligned to the coordinate space); (c) 

represents the anisotropic tensor that has some
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corresponding to the largest eigenvalue points in the direction of the most pronounced 

diffusion direction. As mentioned previously, diffusion in the brain white matter is 

inantly in the direction parallel to the underlying axonal fiber tracts and hence, DTI 

can be used to study course of directions of axons and the architecture of the brain white 

(Jones et al., 1999b). 

the absence of ordered barriers to free motion of water molecule, 
diffusion tensor can be represented as a sphere (top panel). The barriers to motion are 

represented by cylinders and water protons are represented by small circles. In the 
d barriers, diffusion tensor can be represented by a 3D ellipsoid 

(Mori, 2007). (B). (a) represents the isotropic tensor with equal elements 
along the diagonals of the tensor matrix; (b) represents the anisotropic tensor that does 

terms in the diagonal (perfectly aligned to the coordinate space); (c) 
represents the anisotropic tensor that has some angulation to the coordinate space

corresponding to the largest eigenvalue points in the direction of the most pronounced 

diffusion direction. As mentioned previously, diffusion in the brain white matter is 

inantly in the direction parallel to the underlying axonal fiber tracts and hence, DTI 

can be used to study course of directions of axons and the architecture of the brain white 

 

the absence of ordered barriers to free motion of water molecule, 
diffusion tensor can be represented as a sphere (top panel). The barriers to motion are 

represented by cylinders and water protons are represented by small circles. In the 
d barriers, diffusion tensor can be represented by a 3D ellipsoid 

. (B). (a) represents the isotropic tensor with equal elements 
along the diagonals of the tensor matrix; (b) represents the anisotropic tensor that does 

terms in the diagonal (perfectly aligned to the coordinate space); (c) 
angulation to the coordinate space. 



 

 

1.6. Image C

As can be seen that diffusion tensor, 

challenge to extract and visualize different information embedded inside the tensor data. 

Different grey scale images can be extracted from the diffusio

Figure 1.4. These images are extracted from DTI i

specific interests are the parameters which are objective and insensitive to the choice of 

orientation of the tissue structure within the laboratory frame and of the image scan 

plane, i.e., which are invariant to rotation 

Figure 1.4: FA (a), AxD (b), RD (c) and MD (d) maps shown for a healthy adult. Yellow 
arrow in (a) represents the region of high FA; Violet arrow in (b) represents the region of 

high AxD; Orange arrow in (c) rep
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1.6. Image Contrasts Derived from DTI 

As can be seen that diffusion tensor, D, has a lot of dimensions and it becomes a 

challenge to extract and visualize different information embedded inside the tensor data. 

Different grey scale images can be extracted from the diffusion tensor data as shown in 

4. These images are extracted from DTI images of a healthy individual. Of 

specific interests are the parameters which are objective and insensitive to the choice of 

orientation of the tissue structure within the laboratory frame and of the image scan 

plane, i.e., which are invariant to rotation and translation.  

 

: FA (a), AxD (b), RD (c) and MD (d) maps shown for a healthy adult. Yellow 
arrow in (a) represents the region of high FA; Violet arrow in (b) represents the region of 

high AxD; Orange arrow in (c) represents the region of high RD 

dimensions and it becomes a 

challenge to extract and visualize different information embedded inside the tensor data. 

n tensor data as shown in 

mages of a healthy individual. Of 

specific interests are the parameters which are objective and insensitive to the choice of 

orientation of the tissue structure within the laboratory frame and of the image scan 

: FA (a), AxD (b), RD (c) and MD (d) maps shown for a healthy adult. Yellow 
arrow in (a) represents the region of high FA; Violet arrow in (b) represents the region of 
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One of the first derived quantities is called as mean diffusivity (MD), also denoted 

as <D>.  

<D> = 
+ +

3
xx yy zzD D D

 = 
( )

3
Trace D

        [1.15] 

MD represents a “scale factor” indicating the elongation of the diffusion ellipsoid 

in 3D space. Within the cerebro-spinal fluid, diffusivity of the water molecules is isotropic 

and hence <D> is around 3x10-3 mm2/s (Pasternak et al., 2009) whereas in the white 

matter, <D> is around 0.7x10-3 mm2/s (Jones et al., 1999a).  

Apart from MD, several other anisotropy indices which are dimensionless, 

rotationally invariant, independent of the orientation of the tensor and describe how much 

anisotropy is present in the voxel of measurement have been proposed (Basser et al., 

1994a, b). One of the most widely used anisotropy indices is the fractional anisotropy 

(FA) index. It is defined as  

2 2 2 2 2 2
1 2 1 3 2 3 1 2 3( ) ( ) ( ) / 2( )FA λ λ λ λ λ λ λ λ λ= − + − + − + +        [1.16] 

For a completely isotropic diffusion; FA will take the value of 0 and for a 

completely anisotropic diffusion; FA will take the value of 1. Other commonly used DTI 

derived contrasts are axial diffusivity (AxD) and the radial diffusivity (RD). AxD is the 

primary eigenvalue of the tensor, λ1  and it is thought to describe the axonal integrity of 

the white matter structure. RD is the mean of the other 2 eigenvalues of the tensor, 

λ λ+2 3

2
and is shown to be sensitive to the myelination of the white matter tissue 

bundle.  

As can be seen from Figure 1.4(a), FA map helps to extract the strength of the 

underlying anisotropy of the white matter bundles. The brighter the voxel or higher the FA 

is, the higher is the anisotropic whereas dark regions or voxels with lower FA represents 



 

 

region of isotropic diffusion.

arrow. Thus as can be seen in 

gray matter is either dark or light gray in color whereas white matter is bright in color. 

Although region of low FA can be seen as the region of low anisotropy, 

other processes that might cause a drop in FA. 

by the red arrow FA, in the region of the corona radiata where the fibers from cortico

spinal tract intersect the commissural fibers of the corpus callosum

individual fibers is averaged and true individual anisotro

drawback of DTI will be discussed in further chapters and potential solution will be 

proposed.  Also, as can be seen from 

arranged in the organized fashion

Figure 1.4(c) is higher in the region where the diffusivity in the direction perpendicular to 

the axons is high (pointed by the orange arrow)

those white matter tracts that have weak 

Figure 1.5: (a) Region of fictitious low FA pointed out by the red arrow due to the crossing 
of the corona radiate with the corpus callosum. (b) Colormap obtained by scaling the 

primary eigenvector by FA at the indi
left-right direction, green represents the fibers running in anterior

blue represents the fibers running in foot
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region of isotropic diffusion. One such region with high FA value is pointed by the yellow 

Thus as can be seen in Figure 1.4(a), ventricles are represented as dark regions, 

gray matter is either dark or light gray in color whereas white matter is bright in color. 

Although region of low FA can be seen as the region of low anisotropy, there are several 

other processes that might cause a drop in FA. As can be seen in Figure 1.5(a)

in the region of the corona radiata where the fibers from cortico

spinal tract intersect the commissural fibers of the corpus callosum, is low. The FA of 

individual fibers is averaged and true individual anisotropy of these fibers is missing. This 

drawback of DTI will be discussed in further chapters and potential solution will be 

proposed.  Also, as can be seen from Figure 1.4(b), AxD is higher where axons are 

arranged in the organized fashion (pointed by the purple arrow) while RD, as shown in 

4(c) is higher in the region where the diffusivity in the direction perpendicular to 

(pointed by the orange arrow). Such regions can also be thought of as 

those white matter tracts that have weak myelination.  

 

(a) Region of fictitious low FA pointed out by the red arrow due to the crossing 
of the corona radiate with the corpus callosum. (b) Colormap obtained by scaling the 

primary eigenvector by FA at the individual voxels. Red represents the fibers running in 
right direction, green represents the fibers running in anterior-posterior direction and 

blue represents the fibers running in foot-head direction 

One such region with high FA value is pointed by the yellow 

rk regions, 

gray matter is either dark or light gray in color whereas white matter is bright in color. 

there are several 

(a) pointed 

in the region of the corona radiata where the fibers from cortico-

is low. The FA of 

py of these fibers is missing. This 

drawback of DTI will be discussed in further chapters and potential solution will be 

4(b), AxD is higher where axons are 

while RD, as shown in 

4(c) is higher in the region where the diffusivity in the direction perpendicular to 

. Such regions can also be thought of as 

(a) Region of fictitious low FA pointed out by the red arrow due to the crossing 
of the corona radiate with the corpus callosum. (b) Colormap obtained by scaling the 

vidual voxels. Red represents the fibers running in 
posterior direction and 
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Figure 1.5(b) represents the color map obtained from a DTI image of a healthy 

individual. As mentioned previously, diffusion is sensitive to the application of the gradient 

directions and hence the orientation of the axons within the voxel can be visualized in-

vivo. The brightness of the color map is obtained by scaling the primary eigenvector or 

the direction of the fastest diffusion, by the FA maps. Each color represents a direction. 

Red represents the fibers that run right-left direction; green represents the fibers that run 

in anterior-posterior direction and blue represents the fibers that run from top-bottom. The 

combination of RGB colors represents the intermediate directions.  

 

1.7. In-vivo Dissection of White Matter Fiber Bundles from 3D Fiber Tractography 

One of the main strengths of DTI is to visualize the orientation of the white matter 

fiber bundles in-vivo and it has been one of the active research areas of DTI. Fiber 

tracking opens the window to map axonal white matter fiber bundles within the brain 

white matter. This mapping is obtained by using the information encoded in the primary 

eigenvector representing the direction of fastest diffusion and strength of the anisotropy 

obtained from FA map. Figure 1.6(a) shows the graphical representation of the most 

commonly used fiber tracking algorithm known as Fiber Assignment by Continuous 

Tracking (FACT), also referred to as deterministic tracking (Mori, 2007; Mori et al., 1999). 

As shown in Figure 1.6, in order to trace a fiber; a continuous trajectory is traced step by 

step in the direction of the primary eigenvector within each voxel. A step size smaller than 

the size of the voxel is normally used and the propagation direction is interpolated based 

on the information of the primary eigenvectors of the adjacent voxels. In Figure 1.6(a), 

tracking was initiated within the light gray voxel resulting in the black pathway 

representing a reconstructed fiber. For instance, cingulum bundle traced using FACT is 

shown overlaid on a color map for a representative healthy subject in Figure 1.6(b). 



 

 

Hence, we can potentially explore the connectivity network of the human brain using DTI 

techniques. 

Figure 1.6: (a) Illustration of FACT or deterministic tracking technique. The tracking seed 
point was selected in the center of the gray voxel and the using the direction of the 

fastest diffusion or primary eigenvector, shown as arrows, the fiber shown in black color 
was delineated. (b) Cingulum bundle shown in yellow color overlaid on the color map of a 

healthy subject using the principle of FACT.
 

Although FACT is widely used in the clinical research to visualize the white 

matter fibers in-vivo, it can only resolve fibers with no crossing. The primary eigenvector 

information in regions where the fiber kis

tracking obtained from FACT is biased. To resolve this issue

been proposed; such as probabilistic tracking, fast marching techniques, tracking based 

on spherical harmonic decomposit

to be an active research area. 
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Hence, we can potentially explore the connectivity network of the human brain using DTI 

: (a) Illustration of FACT or deterministic tracking technique. The tracking seed 
selected in the center of the gray voxel and the using the direction of the 

fastest diffusion or primary eigenvector, shown as arrows, the fiber shown in black color 
was delineated. (b) Cingulum bundle shown in yellow color overlaid on the color map of a 

ealthy subject using the principle of FACT. 

Although FACT is widely used in the clinical research to visualize the white 

, it can only resolve fibers with no crossing. The primary eigenvector 

information in regions where the fiber kiss, cross or diverge is biased and hence the fiber 

tracking obtained from FACT is biased. To resolve this issue, several techniques have 

such as probabilistic tracking, fast marching techniques, tracking based 

on spherical harmonic decomposition of diffusion data (Tournier, 2011) and it continues 

to be an active research area.  

Hence, we can potentially explore the connectivity network of the human brain using DTI 

 

: (a) Illustration of FACT or deterministic tracking technique. The tracking seed 
selected in the center of the gray voxel and the using the direction of the 

fastest diffusion or primary eigenvector, shown as arrows, the fiber shown in black color 
was delineated. (b) Cingulum bundle shown in yellow color overlaid on the color map of a 

Although FACT is widely used in the clinical research to visualize the white 

, it can only resolve fibers with no crossing. The primary eigenvector 

s, cross or diverge is biased and hence the fiber 

several techniques have 

such as probabilistic tracking, fast marching techniques, tracking based 

and it continues 
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1.8. Clinical Applications of DTI 

Ever since the introduction of dMRI in clinical research it has been used 

extensively to investigate and treat several neurological disorders. DTI and dMRI images 

have become a routine for clinical assessment of acute stroke. Fast diagnosis is essential 

for stroke detection since necrosis of brain tissue can be stopped if perfusion to the 

damaged region can be restored quickly. As compared to normal T1 and T2 weighted MR 

images, contrasts such as MD provide improved contrast information (Baird et al., 1997; 

Baird and Warach, 1998; Schwamm et al., 1998; Wu et al., 2001).  

Due to DTI’s sensitivity to myelin, DTI has also been used to study multiple 

sclerosis (MS) extensively. FA and ADC maps have been shown to be different in MS 

patients as compared to normal controls (Filippi et al., 2001; Rovaris et al., 2002; Tievsky 

et al., 1999). DTI has been used extensively to study normal human brain development 

(Gao et al., 2009a; Huppi, 2011; Lebel et al., 2008), schizophrenia (Filley, 2011), 

Alzheimer disease (Choi et al., 2005; Jeon et al., 2012) and various other 

neuropathological diseases (Filley, 2001; Filley, 2011). Due to its inherent ability to build 

structural connectivity network of the human brain, DTI has recently been used to build 

human brain connectome to study brain disorders such as autism (Dennis et al., 2011) 

and normal human brain development (Hagmann et al., 2010) using graph theoretical 

approaches. Recently, fiber tracking information obtained from DTI has been used to 

provide information of the influence of the tumor on the adjacent white matter during 

surgical planning (Goebell et al., 2006; Helton et al., 2006; Witwer et al., 2002). 
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1.9. Objectives of this Research Work 

1.9.1. Establish the Method of Dual-Tensor for Tract based Analysis (DTTA).  

As mentioned in the above paragraphs, a most widely used DTI-derived metric 

quantifying white matter microstructure is FA, ranging from 0 to 1. FA with the current 

clinical scanning parameters severely underestimates the true microstructural properties 

at the regions of crossing-fibers (Ciccarelli et al., 2008; Horsfield and Jones, 2002; 

Tournier, 2011). While crossing-fiber voxels are estimated to take around 90% of entire 

brain white matter voxels (Jeurissen et al., 2012; Tournier, 2011), most models beyond 

single tensor (Alexander et al., 2010; Anderson, 2005; Assaf and Basser, 2005; Assaf et 

al., 2004; Dell'acqua et al., 2013; Douaud et al., 2011; Ennis and Kindlmann, 2006; 

Hosey et al., 2005; Jbabdi et al., 2010; Ozarslan et al., 2005; Peled et al., 2006; 

Sotiropoulos et al., 2008; Tournier et al., 2004; Tuch, 2004; Wedeen et al., 2005) were 

proposed to delineate tractography of the crossed fibers. Relatively fewer efforts have 

been made to restore the multi-FA values at the voxels of crossing-fibers. Voxelwise 

analysis of FA has been used extensively to investigate brain development or study brain 

pathologies (Ciccarelli et al., 2008; Eluvathingal et al., 2007; Horsfield and Jones, 2002; 

Huang et al., 2006). However, the white matter tracts connecting different brain regions 

have functional and clinical significance. In order to perform a tract-based analysis in 

clinical research, the tract of interest will be segmented through tractography and the FA 

values at the tract level and along the tract will be calculated to evaluate pathology or 

brain development. The aim is to establish a method capable of restoring FA at the 

regions of crossing-fibers for each tract with routinely used clinical diffusion imaging 

parameters.  
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1.9.2. Quantitatively Characterize the Microstructural Relationships of Human Brain 

White Matter Tracts during Development.  

Various metrics such as FA, AxD, RD and MD derived from DTI are thought to 

reflect the microstructural integrity of white matter fibers across adults. They have also 

been used to study brain development and shown to correlate with aging, cognitive and 

behavioral performance (Beaulieu et al., 2005; Bonekamp et al., 2007; Goodlett et al., 

2009; Hermoye et al., 2006; Klingberg et al., 2000; Lebel et al., 2008; Niogi et al., 2008; 

Salat et al., 2005; Snook et al., 2005). With DTI-derived metrics, it has been shown that 

asymmetry of the homologous tracts exist in the developing brain. However, these 

studies have primarily focused on assessing the group mean differences rather than 

correlation of the tracts itself (Gao et al., 2009a; Giorgio et al., 2010; Gong et al., 2005; Li 

et al., 2009; Powell et al., 2006; Rodrigo et al., 2007; Westlye et al., 2010; Wilde et al., 

2009). Whether the white matter tract development is homogeneous for the homologous 

tracts or non-homogeneous is also unclear. The aim is to investigate the microstructural 

relationships of white matter tracts during early years of brain development. The 

hypothesis is that the microstructural relationships of human brain white matter tracts 

exists at early stages of brain development and the pattern of correlation as well as the 

strength of the correlation change significantly to support later functional activities of 

human brain. 

 

1.9.3. Exploring the Perinatal Brain Network with Diffusion MRI and Graph Theory 

Studies have shown in DTI images of perinatal brains that different white matter 

tracts exhibit different developmental pattern. Graph theoretical approach has been 

widely used to quantitatively characterize the dynamics of the brain networks (Bullmore 

and Sporns, 2009; Gong et al., 2009; He et al., 2007; He and Evans, 2010). The aim is to 
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build a structural brain connectome for developing brains between 31wg and 40wg with 

the graph theoretical approach that will give us insight into the connectivity changes 

during early brain development. The information of network nodes is obtained from 

consistent parcellation of the segmented brain cortex from DTI images and the edge 

information is obtained from the traced white matter tracts also from DTI images. The 

hypothesis is that significant changes of brain configurations occur during perinatal brain 

development. Measuring and comparing various network metrics at the early preterm can 

improve our understanding about early human brain development. 
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Chapter 2 

Dual Tensor Tract Analysis (DTTA): Towards Application to Routine Clinical Diffusion 

MRI 

2.1. Introduction 

To accommodate the complex “wiring” in the human brain with volume of around 

1.2 liters, significant amount of white matter (WM) fibers need to cross with each other. 

Diffusion magnetic resonance imaging (dMRI) in routine clinical research is usually 

acquired within limited time of less than 5 minutes and with relatively low b value such as 

1000s/mm2. The voxel size of these datasets is usually from 2x2x2mm3 to 3x3x3mm3 and 

hence large proportion of WM voxels has crossing fibers. It is believed that almost half of 

brain voxels contain crossing fibers (Tournier, 2011). Fractional anisotropy (FA) (Basser 

et al., 1994b) derived from the single tensor model and ranging from 0 to 1, has been 

widely used to quantify the WM microstructural changes associated with many 

neurological or psychiatric disorders. However, WM microstructural integrity at the 

crossing-fiber regions (CFR) has been significantly underestimated (Jbabdi et al., 2010; 

Tuch et al., 2005; Wheeler-Kingshott and Cercignani, 2009) with single tensor (ST) FA. 

In the past few years, a number of techniques have been developed through 

innovation of imaging and modeling to address the crossing-fiber problem. The notable 

imaging techniques include Q-ball imaging (Tuch, 2004), diffusion spectrum imaging 

(Wedeen et al., 2005) and multi-b diffusion imaging (Alexander et al., 2010). The 

representative modeling techniques beyond single tensor include multi-tensor (Hosey et 

al., 2005; Peled et al., 2006; Sotiropoulos et al., 2008), diffusion kurtosis (Jensen et al., 

2005) and high order tensor (Liu et al., 2004; Minati et al., 2007; Minati et al., 2008). 

Many of these models require high b value and high angular resolution diffusion imaging 

(HARDI) for data acquisition. Moreover, a significant proportion of technologies have 
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been developed specifically to improve tractography (Alexander, 2005; Anderson, 2005; 

Behrens et al., 2007; Hosey et al., 2005; Lazar and Alexander, 2005; Tournier et al., 

2004; Tuch, 2004; Wedeen et al., 2005) with no tract specific metric measurement. 

Relatively fewer studies have focused on improving metrics from dMRI. To name a few, 

they include generalized fractional anisotropy (GFA) (Fritzsche et al., 2010; Tuch, 2004; 

Zhan et al., 2010), generalized anisotropy (GA) (Ozarslan et al., 2005), mode of 

anisotropy (Douaud et al., 2011; Ennis and Kindlmann, 2006) and fractions (Hosey et al., 

2008; Jbabdi et al., 2010). However, so far there is no widely accepted alternative scalar 

measure that can replace ST FA and which is not sensitive to crossing-fibers.  

Moreover, it was shown (Pasternak et al., 2009) that free water or the isotropic 

contribution can severely underestimate the FA estimated in the dMRI voxels. Hence it 

becomes imperative to estimate the isotropic contribution in the dMRI voxels and report 

FA that is not affected by free water contamination. However, all the techniques focused 

on providing an alternative scalar measurement to FA at CFR do not correct for free 

water or the isotropic contribution in the CFR. . 

Recently technologies of tract analyses including tract statistics (Colby et al., 

2012; Goodlett et al., 2009; Yushkevich et al., 2008; Zhu et al., 2011), tract morphometry 

(O'Donnell et al., 2009; Zhang et al., 2010) and tract metric analysis as in our previous 

studies (Delgado-Ayala et al., 2012; Huang et al., 2012a; Huang et al., 2011; Huang et 

al., 2012b) have become important due to great clinical significance of the tracts. 

However, most of the techniques beyond ST FA in the literature (Alexander, 2005; 

Anderson, 2005; Behrens et al., 2007; Ennis and Kindlmann, 2006; Fritzsche et al., 2010; 

Ozarslan et al., 2005; Tuch et al., 2005; Zhan et al., 2010) were developed for the 

voxelwise analysis. Although few of them were designed for tract analysis, there was no 

delineation of multi-anisotropy values for the crossed fiber tracts in a single voxel. In 
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addition, most of these studies either improving tractography (Alexander, 2005; 

Anderson, 2005; Behrens et al., 2007; Hosey et al., 2005; Tournier et al., 2004; Tuch, 

2004; Wedeen et al., 2005) or proposing new metrics (Douaud et al., 2011; Ennis and 

Kindlmann, 2006; Fritzsche et al., 2010; Hosey et al., 2008; Jbabdi et al., 2010; Ozarslan 

et al., 2005; Tuch, 2004; Zhan et al., 2010) were performed at the cost of high b value, 

high angular resolution and long scan time that are not suitable for clinical research. Due 

to extensive applications of FA in neurological and psychiatric studies such as phenotype 

characterization, drug testing and therapy monitoring; biased conclusions from the 

underestimated ST FA in tract analysis can have significantly negative impacts on these 

studies. Hence it is critical to develop methods which can correct the underestimated FA 

in these clinical studies and are designed for tract analysis. 

In this study, a clinically applicable, partial volume and free water contamination 

corrected dual tensor model for tract analysis of dMRI is proposed. The proposed novel 

Dual Tensor-based Tract Analysis (DTTA) is capable of estimating unbiased dual 

anisotropy in a single voxel at crossing-fiber regions (CFR) and is adapted for tract 

analysis. DTTA is tested with the data from dMRI in clinical research obtained from 3T 

Philips and 3T GE scanners with 30 and 25 diffusion encoding gradient directions. Dual 

tensor Gaussian mixture model was used in DTTA. With input of dMRI, DTTA fully 

characterizes the two tensors at CFR which carry more information than just multiple 

primary eigenvectors for tractography and detaches the crossed fibers for tract analysis. 

A digital phantom was designed and human dMRI with multiple b values were acquired to 

evaluate the accuracy of estimated anisotropy at CFR after DTTA correction. FA 

measurements from dual tensors at a single voxel were estimated and implemented in 

DTTA for tract analysis. In addition, the estimation of dual tensor anisotropy has been 

optimized under the framework of clinical dMRI with low b value and acquired within 5 
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minutes. The results from digital phantom study showed high accuracy of the corrected 

DTTA anisotropy. The results from normal human dMRI study indicated effective 

correction of underestimated anisotropy at CFR.  

 

2.2. Materials and Methods 

2.2.1. Overview of DTTA 

The DTTA technique includes two major components namely Gaussian mixture 

dual-tensor model with Levenberg-Marquardt (LM) fitting and tract analysis. Figure 2.1 

schematically illustrates this method. The WM microstructure is significantly 

underestimated at the CFR with the single tensor FA (Figure 2.1a). After identification of 

the voxels of CFR in Figure 2.1a, dual-tensor fitting was conducted as shown in Figure 

2.1b. The crossed tracts were then detached in Figure 2.1c with one of the two DTTA 

anisotropy values assigned to each tract based on the alignment of the primary 

eigenvector of the tensors in the crossing-fiber voxel to the primary eigenvectors of the 

tensor in the surrounding voxels. In Figure 2.1c, the DTTA anisotropy profiles of the two 

crossed tracts were obtained and they were usually more uniform than the ST FA profile 

of the same tract. 

 



 

 

Figure 2.1: Diagram of tract analysis. Low FA value (0.3) at the red voxels from single 
tensors in (a) can be corrected by multi
is associated with a unique blue or green tract. For tract analysis, the crossed fibers (red 
voxels in (a) and (b)) in a single data volume can be detached into multiple tracts (blue 

and green tract in (c)) in multiple volumes, each of which contains only
profile can be obtained (c). Different colors of ellipsoids indicate diffusion tensors of two 

unique tracts. The corrected multi
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Diagram of tract analysis. Low FA value (0.3) at the red voxels from single 
tensors in (a) can be corrected by multi-FA values from multi-tensor in (b), each of which
is associated with a unique blue or green tract. For tract analysis, the crossed fibers (red 
voxels in (a) and (b)) in a single data volume can be detached into multiple tracts (blue 

and green tract in (c)) in multiple volumes, each of which contains only one tract (c). Tract 
profile can be obtained (c). Different colors of ellipsoids indicate diffusion tensors of two 

unique tracts. The corrected multi-FA values (0.6 and 0.7) at the end voxels in (a) and (b) 
belong to two different tracts. 

odeling and Test with the Digital Phantom 

Signal Model and Fitting of the Model 

A simplified Gaussian mixture signal model (Alexander et al., 2010; Hosey et al., 

was used for the CFR voxels as follows,  

iso
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are the volume fractions of the first fiber bundle and isotropic 

compartment, b is the applied b value, S0 is the signal with no diffusion weighting

the diffusion coefficient of the isotropic component in the voxel, iG  is the ith gradient 

as the direction of the acquisition, 
1D  and 

2D  are the two tensors 

representing the first and second fiber bundles. As can be seen, this is a Gaussian signal 

mixture model where the signal measured in the voxel is a combination of two fiber 

bundles and an isotropic component. The exchange of the protons within the voxel 

 

Diagram of tract analysis. Low FA value (0.3) at the red voxels from single 
tensor in (b), each of which 

is associated with a unique blue or green tract. For tract analysis, the crossed fibers (red 
voxels in (a) and (b)) in a single data volume can be detached into multiple tracts (blue 

one tract (c). Tract 
profile can be obtained (c). Different colors of ellipsoids indicate diffusion tensors of two 

FA values (0.6 and 0.7) at the end voxels in (a) and (b) 

(Alexander et al., 2010; Hosey et al., 

S = S (f e f e f f e )i i i iG D G G D G
       [1]  

are the volume fractions of the first fiber bundle and isotropic 

is the signal with no diffusion weighting, Diso is 

gradient 

representing the first and second fiber bundles. As can be seen, this is a Gaussian signal 

mixture model where the signal measured in the voxel is a combination of two fiber 

ns within the voxel 
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between the two fibers is assumed to be in the slow exchange regime that might be 

expected for spatially distinct tissues. 
1D  and 

2D  are formulated from their eigenvalues 

E1=diag[λ11, λ21, λ31], E2=diag[λ12, λ22, λ32 ] and rotations R1, R2 by i
T
i i iD = R E R . 

Rotation around x, y and z axes is given by 
1 2 3 4x(α ) y(α ) z(α ±α )iR = R R R , i=1,2 for 

1D  and 
2D  

respectively, where αk, k=1,2,3, represent the orientation of the plane in which the 

principal eigenvectors of the two tensors reside and 2α4 is the angle between the two 

primary eigenvectors of 
1D  and 

2D . We hypothesized that fiso is a linear function of mean 

apparent diffusion coefficient (mADC) with the details described below and fiso in the 

voxel was estimated apriori from mADC. The diffusivity of the isotropic component, Diso, in 

the voxel was assumed constant at 3x10-3 mm2/s (Pasternak et al., 2009). By assuming 

the same axial diffusivity for the two tensors and same radial diffusivity for each individual 

tensor (Caan et al., 2010), the 12 independent variables in equation [1] were reduced to 8 

independent variables, namely λ1i (i=1,2), λ21 (equal to λ31), λ22 (equal to λ32), α1, α2, α3, α4, 

f1. In-house software incorporating LM estimation algorithm was used for fitting these 8 

independent variables. In order to test the goodness-of-fit and measure the similarity 

between the fitted dual tensors and the measured diffusion profile, we set a fitting error 

metric ( )( )0
/ /dirN f

i i i diri
S S S N

=
−∑ , where Ndir was the total number of gradient 

directions, Si was the measured signal of ith gradient direction of dMRI, and Sf
i was 

computed from the fitted dual tensor model. LM fitting was iterated until fitting error metric 

less than 0.05 was achieved for high quality of global fitting convergence. If this metric is 

greater than 0.05 after 100 times of iterations of LM estimation, the voxel is considered 

as a non-CFR voxel. If the error from DTTA is less than that from ST model, then a 

further quantitative step was performed to check for over-fitting of the model. This was 
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done using the Akaike Information Criteria (AIC) (Akaike, 1992) described in detail below. 

If the voxel fail the AIC test, then that voxel was marked as non-CFR voxel. Of note, the 

non-CFR voxel marked due to high fitting error or over fitting of the model can have more 

than 2 fiber crossings. Since the assumed DTTA signal model explicitly models only the 

voxels that have 2 fiber crossings, all such voxels with more than 2 fiber crossings will 

retain the FA estimated from ST model. 

2.2.2.2. Identification of the CFR:  

The planar index Cp, given by Cp = 2(λ2-λ3)/(λ1+λ2+λ3), calculated from the 

eigenvalues of the single tensor was used to identify CFR voxels. All the voxels where 

Cp>0.2 were marked as CFR voxels (Peled et al., 2006; Sotiropoulos et al., 2008). 

2.2.2.3. Evaluating the Model Fit 

The result of the nonlinear fitting was quantitatively evaluated to check for over-

fitting of the tensors with two techniques. This was firstly done with the help of previously 

mentioned goodness-of-fit technique and secondly, using the AIC. Briefly, AIC compares 

the sum of squares obtained using the DTTA fitting to the sum of squares obtained using 

the ST fit and this is further compared against the loss of degrees of freedom due to the 

more complicated DTTA model. AIC is computed using the equation [2] where N is the 

number of data points which is equal to the number of diffusion encoding gradients, K is 

the number of parameters fit by the regression plus one (7 in case of ST model and 9 in 

case of DTTA model) and SS is the sum of the square of the vertical distances of the 

points from the curve. 

.ln( ) 2= +
SS

AIC N K
N

               [2] 

In order to compare the two models, equation [3] is used that compares the 

change in AIC value.  
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          .ln( ) 2.( )∆ = + −DTTA
DTTA ST

ST

SS
AIC N K K

SS
           [3] 

If ∆AIC is negative, then DTTA model was chosen for the CFR voxel otherwise 

ST model was retained for the CFR voxel. 

2.2.2.4. Estimation of fiso in the CFR 

fiso was estimated as a linear function of mADC obtained from routine clinical 

dMRI with only low b value. The following linear equation was used to characterize the 

relationship of fiso and mADC: fiso =c1*mADC+c2, where c1 and c2 are two fixed scalar 

coefficients. Two-shell (b=1000s/mm2 and b=2500s/mm2) dMRI data (acquisition 

procedure described in details below) of 5 normal subjects were used for calculating c1 

and c2. Specifically, for each WM voxel, fiso was estimated from nonlinear LM fitting of 

Gaussian mixture model using the two-shell dMRI data. .mADC was measured with low b 

(1000s/mm2) dMRI data. Then the linear fitting was conducted for voxels in whole brain 

WM and c1 and c2 were estimated which were assumed to be constants for all WM 

voxels across the subjects. fiso was estimated in all the non-CFR voxels by the technique 

described in (Pasternak et al., 2009). 

2.2.2.5. Calculation of FA1, FA2 and Weighted DTTA Anisotropy at the CFR and ST FA 

at the Single-Fiber Region 

After multi-tensor fitting, FAi (i=1, 2) (Pierpaoli and Basser, 1996) of each tensor 

was calculated using the equation  

2 2 2 2 2 2
1 2 1 3 2 3 1 2 3( ) ( ) ( ) / 2( )i i i i i i i i iFAi λ λ λ λ λ λ λ λ λ= − + − + − + +                [4]  

Weighted DTTA anisotropy was calculated by the following equation, (f1*FA1+(1-

fiso-f1)*FA2)/(1-fiso). It represents the weighted anisotropy of the fitted two tensors in a 

single voxel. The average weighted DTTA from different subjects was obtained by using 

nonlinear registration function (FNIRT) from FSL (www.fmrib.ox.ac.uk/fsl). Equation [4] 
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was also used for ST FA calculation at the single-fiber region and λ1, λ2 and λ3 were 

eigenvalues of the single tensor obtained from linear least square fitting. 

2.2.2.6. Test with the Digital Phantom  

To test the feasibility of obtaining accurate dual FA values from dual tensor fitting 

with diffusion signals acquired in a clinical research framework, i.e. relatively low b value 

(1000s/mm2) and reasonable signal-to-noise ratio (SNR), a digital phantom was 

generated with equation [1]. The four variables used for the phantom design and their 

detailed values were as follows: 2α4=10, 20,• • •90, f1=0.1, 0.2,• • •0.9, FA1=0.2,• • •0.9; 

FA2=0.2, • • •0.9, where FA1 and FA2 were the fractional anisotropy of the two tensors. 

To match in vivo human data, Jones 30 gradient scheme (44) with 30 diffusion encoding 

gradient directions was used to generate 30 dMRI volumes and one non-diffusion 

weighted, b0 image. b-value was 1000 sec/mm2. To understand the influence of noise on 

the proposed model, Rician noise was added to the simulated signal generated from 

equation [1] by adding Gaussian noise with different standard deviation to both real and 

imaginary part of the simulated signal in k-space (45). The resultant SNR varied from 10 

to 70. 

 

2.2.3. dMRI of In-vivo Human Brain  

2.2.3.1. Normal Subjects 

17 healthy young adults (age: 24.4±3.3), free of current and past medical or 

neurological disorders, were recruited at Advanced Imaging Research Center of the 

University of Texas Southwestern Medical Center. All human subjects gave informed 

written consents approved by the Institutional Review Board. 
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2.2.3.2. Data Acquisition 

A 3T Philips Achieva MR system was used to acquire dMRI data. A single-shot 

echo-planar imaging (EPI) sequence with SENSE parallel imaging scheme (SENSitivity 

Encoding, reduction factor =2.5) was used. dMRI of all human subjects were acquired 

with the following parameters, b value = 1000 s/mm2, imaging matrix=112×112 zero filled 

to 256×256, field of view=224×224mm (nominal resolution of 2mm), slice thickness 

=2mm without gap, slice number=65, axial acquisition parallel to the anterior-posterior 

commissure line (AC-PC). For comparison, dMRI of a higher b value were also acquired 

at b=2500 s/mm2 from 7 out of the 17 healthy controls with same delta values, δ=17.4ms 

and ∆=39.9ms, as those used for b=1000 s/mm2. Different diffusion gradient strengths, 

G=36mT/m and G=57mT/m were used for b=1000 and 2500 s/mm2 respectively. To 

ensure enough SNR, two repetitions were used for dMRI with b-value of 2500 s/mm2. 

TR=9.5s and TE=80ms were used for all dMRI with different b values. Jones 30 gradient 

scheme (Jones et al., 1999a) with 30 diffusion encoding gradient directions was used to 

generate 30 dMRI volumes and one non-diffusion weighted, b0 image. A 3T GE Signa 

MR system was also used to acquire dMRI data of 10 healthy subjects to compare the 

results across the scanners. A single-shot echo-planar imaging (EPI) sequence with 

GRAPPA parallel imaging scheme (GRAPPA acceleration factor = 3) was used. dMRI 

were acquired with the following parameters: b value = 1000 s/mm2, imaging 

matrix=96×96 zero filled to 256×256, field of view=240×240mm (nominal resolution of 

2.5mm), slice thickness =2.5mm without gap, slice number=60, axial acquisition parallel 

to the anterior-posterior commissure line (AC-PC). 25 diffusion encoding gradient 

directions was used to generate 25 dMRI volumes and one non-diffusion weighted, b0 

image. Other imaging parameters on 3T GE was TR = 16.5s, TE = 84.4ms, diffusion 
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gradient strengths of G=36mT/m and same delta values, δ=17.4ms and ∆=39.9ms as 3T 

Philips Achieva MR system.  

 

2.2.4. Tract Analysis  

2.2.4.1. Tractography 

Probabilistic tractography (Behrens et al., 2007) was conducted on left inferior 

fronto occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), cortico-spinal tract 

(CST), uncinate fasciculus (UNC) and superior longitudinal fasciculus (SLF) which are 

known to have CFR along their paths. The ROI for tracing these tracts were drawn by 

following the literature (Wakana et al., 2007). These ROI were then fed into probtrackx 

module of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). Only those voxels that had a 

value greater than 1% of the waytotal were retained and binarized. The binary masks 

from the traced left CST, IFO, UNC, ILF and SLF were used for comparisons of the tract 

specific DTTA anisotropy (FA1 or FA2) and ST FA.  

2.2.4.2. Tract-Specific Anisotropy 

Selection of FA1 or FA2 in the voxels at the CFR was determined by the 

orientations of the primary eigenvectors of the two tensors. Specifically, the FAi (i=1, 2) of 

the individual tensor whose primary eigenvector aligned best to those of the surrounding 

voxels was selected. The alignment of the eigenvectors was quantified by the dot product 

of the two eigenvectors. The best alignment of an eigenvector resulted in the maximum 

summation of the dot products of this eigenvector and surrounding eigenvectors. The 

underlying hypothesis is that the fiber orientations in a tract are continuous and well 

aligned. This procedure resulted in one tract-specific FA for the specific tract in each 

crossing-fiber voxel.   
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2.2.4.3. Tract Analysis 

Each voxel in left UNC, IFO, ILF and SLF was categorized as single-fiber voxel 

or crossing-fiber voxel by the approach described above. DTTA anisotropy at the CFR 

which is specific to a certain tract and ST FA at the single-fiber voxel was calculated. The 

procedure was repeated for 17 low-b dMRI data of healthy young volunteers. For each 

tract, the tract voxels of all subjects were evenly sampled, resulting in a group of single-

fiber FA values, crossing-fiber FA values before DTTA correction and crossing-fiber FA 

values after DTTA correction.  

2.2.4.4. Along-the-Tract Analysis 

The traced left CST was used as a binary mask for the following calculation. 

Mean and standard deviation of the following metrics at certain axial planes along the 

inferior-superior axis of left CST were calculated. Before DTTA correction, ST FA, 

generalized FA (GFA) (Fritzsche et al., 2010; Tuch, 2004; Zhan et al., 2010) and 

generalized anisotropy (GA) (Ozarslan et al., 2005) were calculated along the CST from 

low b (b=1000s/mm2) dMRI data of 17 healthy subjects acquired from Philips MR system. 

Same procedure was repeated for dMRI data of 10 healthy subjects acquired from GE 

MR System. DTTA was then applied to the same dMRI data to obtain the DTTA-

corrected tract profile. Furthermore, to test the benefit of multi-shell dMRI with regards to 

the anisotropy correction, we applied DTTA to obtain the corrected anisotropy along the 

left CST from the multi-shell (b=1000 and 2500s/mm2) dMRI of 7 out of 17 healthy 

subjects. The profiles of all these metrics along the left CST were plotted. In addition, 

mean and standard deviation of these metrics at all left CST voxels were calculated to 

compare the consistency of these metric values inside the same tract. 
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2.3. Results 

2.3.1. Digital Phantom Test and fiso Estimation 

Figure 2.2a shows that bias for estimating two anisotropy values is less than 5% 

for almost all cases with SNR greater than 35 (pointed by green arrow) and separation 

angle greater than 30 degrees. Under the similar condition, the fitting errors of volume 

fractions f1 are less than 5% for almost all cases in Figure 2.2b. The known ground truth 

in Figure 2.2a and Figure 2.2b is represented by the dashed line. The fitting algorithm 

was tested to be robust with error less than 5% for almost all cases in the range of FAi 

(i=1 or 2) from 0.2 to 0.9 and volume fractions from 0.2 to 0.9 in the simulated voxel. For 

simplification, the results of several selected combinations of two tensors are shown in 

Figure 2.2.  

The regression plots of fiso estimated from two shell dMRI data and mADC of 

voxels of whole brain WM of 5 subjects are shown in Figure 2.3. The linear correlation is 

statistically significant (p<0.0001) for all three plots. For fiso estimation with routine clinical 

dMRI, the ones from whole brain WM were used. 
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Figure 2.2: (a) Estimation of FA1 and FA2 of two crossing fiber components at different 
SNR and separation angles (40, 50 and 80 degrees). Left, middle and right panels 

represent different combinations of ground truth FA1 and FA2. (b) Estimation of f1 at 
different SNR and separation angles (40, 50 and 80 degrees) with two typical 

combinations of FA1 and FA2 in the upper and lower panels. Dashed lines are true FA 
values (a) and true f1 (b). Green arrows indicate the SNR above which the fitting 

becomes accurate and stable. 
 

 

 



 

 

Figure 2.3: Linear regression between f
mADC is shown for whole brain white matter (WM) voxels. The dots represent

evenly sampled points from whole brain WM voxels from 
the black line represents the linearly fitted line

 

2.3.2 Comparison of the Primary 

Using ST Model, DTTA Model and

Figure 2.4 shows the FA map from a coronal slice of a typical healthy subject 

with CFR region shown by the white rectangular box. The primary eigenvector at CFR 

obtained from ST model and the two primary eigenvector obtained from ball and sti

model (BSM) implemented in the FDT module of FSL and DTTA model are shown in the 

upper panel. The diffusion profile in the CFR obtained from ST model, BSM model and 

DTTA model overlaid on the FA map is shown in the lower panel. As shown in the upper 

panel, the primary eigenvector obtained from ST model fails to find the primary 

eigenvector of the crossed fibers. However, both BSM and DTTA model can estimate the 
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primary eigenvector of the crossing fibers in the CFR with almost similar orientations. 

Moreover DTTA model can estimate the diffusion profile of the crossing fibers as shown 

in the two rightmost lower panels which cannot be estimated either by ST model or BSM 

model. Hence it is clear from Fig

eigenvectors and the diffusion profile at CFR

Figure 2.4: Coronal slice of a healthy subject is shown in the leftmost panel with the CFR 
highlighted by the white rectangular box. Eigenvectors obtained from ST model, FDT 

model of FSL and DTTA model are shown in the top panel and the diffusion profiles of 
the fiber tracts in the CFR obtained from ST model, FDT model and DTTA model are 

 

2.3.3. Weighted DTTA Anisotropy 

The upper panels in Fig

acquired from 17 subjects with 

the averaged weighted DTTA anisotropy

the CFR with the same dMRI datasets
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primary eigenvector of the crossing fibers in the CFR with almost similar orientations. 

er DTTA model can estimate the diffusion profile of the crossing fibers as shown 

in the two rightmost lower panels which cannot be estimated either by ST model or BSM 

model. Hence it is clear from Figure 2.4 that DTTA model can estimate both the primary 

genvectors and the diffusion profile at CFR. 

: Coronal slice of a healthy subject is shown in the leftmost panel with the CFR 
highlighted by the white rectangular box. Eigenvectors obtained from ST model, FDT 

SL and DTTA model are shown in the top panel and the diffusion profiles of 
the fiber tracts in the CFR obtained from ST model, FDT model and DTTA model are 

shown in the bottom panel. 

nisotropy Compared to Single Tensor FA  

in Figure 2.5 show the averaged single tensor FA maps 

17 subjects with dMRI of b value 1000 s/mm2 , and the lower panels show 

the averaged weighted DTTA anisotropy after applying DTTA technique to the voxels of 

the CFR with the same dMRI datasets. As indicated by the red arrows in upper panels of 

primary eigenvector of the crossing fibers in the CFR with almost similar orientations. 

er DTTA model can estimate the diffusion profile of the crossing fibers as shown 

in the two rightmost lower panels which cannot be estimated either by ST model or BSM 

4 that DTTA model can estimate both the primary 

 

: Coronal slice of a healthy subject is shown in the leftmost panel with the CFR 
highlighted by the white rectangular box. Eigenvectors obtained from ST model, FDT 

SL and DTTA model are shown in the top panel and the diffusion profiles of 
the fiber tracts in the CFR obtained from ST model, FDT model and DTTA model are 

show the averaged single tensor FA maps 

the lower panels show 

after applying DTTA technique to the voxels of 

in upper panels of 
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Figure 2.5, the ST FA values were significantly lower at the CFR compared to 

surrounding regions, potentially conveying biased information on white matter 

microstructural integrity. The weighted DTTA anisotropy at a crossing-fiber voxel is not 

specific to a tract, but reflects the corrected microstructural integrity of that voxel. It is 

clear from Figure 2.5 that underestimated anisotropy values were restored with weighted 

DTTA anisotropy values at the CFR and they appear more homogeneous to the 

anisotropy values of surrounding single fiber regions.  

 

 

Figure 2.5: Single tensor FA (upper panels) and weighted anisotropy from DTTA (lower 
panels) averaged from low b DWI from 10 subjects. The red arrows point to some typical 
regions with apparently lower single tensor FA due to fiber crossing. Compared to single 

tensor FA, weighted anisotropy from DTTA provides unbiased measure of WM integrity at 
the CFR in the entire brain. 
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2.3.4. Tract Analysis of DTTA 

2.3.4.1. Tract Based Analysis 

The two columns below each tract in the lower panel of Figure 2.6 show the FA 

values at the evenly sampled voxels for 17 subjects before (pink “+”) and after (red circle) 

applying the DTTA technique to crossing-fiber voxels. The unbiased single-fiber FA 

values (blue dots) from the same tracts were put in both columns as references. As can 

be seen in the lower panel of Figure 2.6, single tensor FA values at the CFR (pink “+”) 

cluster are severely underestimated and fall below the single tensor FA values in the 

single-fiber voxels (blue dots). In contrast, anisotropy values after DTTA correction at the 

CFR (red circle) overlap with FA values at the single-fiber voxels (blue dots). It indicates 

that the application of DTTA well restores the FA at the CFR, resulting in a group of 

consistent FA values at both CFR voxels and single-fiber voxels in the same tract. 



 

41 
     

 

Figure 2.6: Upper panels show traced IFO, ILF, SLF and UNC overlaid on a 
representative sagittal ST FA image, respectively. Below each tract, crossing-fiber 

anisotropy values before (pink “+”) and after (red circles) DTTA corrections for sampled 
voxels at the CFR are shown in left and right columns, respectively. The identical blue 

dots representing unbiased single-fiber FA values from the same tracts were put in both 
columns as references. 

 
2.3.4.2. Along-the-tract Analysis 

Comparisons among DTTA anisotropies, ST FA, GFA and GA along the CST 

from data of 17 subjects acquired from Philips scanner are shown in Figure 2.7. The 

traced CST is shown in red color at the top of Figure 2.7. At corona radiate part of CST, 

fiber crossings of CST and corpus callosum take place. The ST FA values at that location 

are smaller, shown as a dip in the CST profile (blue line) and pointed by the orange arrow 

in Figure 2.7a and Figure 2.7b. DTTA anisotropies (red line in Figure 2.7a and red bar in 

Figure 2.7c), GFA (gray line in Figure 2.7a and gray bar in Figure 2.7c) and GA (black 

line in Figure 2.7a and black bar in Figure 2.7c) show more homogeneous CST profile, 
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compared to ST FA (blue line in Figure 2.7a and blue bar in Figure 2.7c). Among all 

metrics, DTTA performs best in terms of tract profile homogeneity with smallest standard 

deviation to mean ratio (Figure 2.7c) based on all anisotropy values along the CST. Also 

shown in Figure 2.7c, the mean of GA along the CST is quite similar to that of DTTA 

along the CST, while the standard deviation of GFA along the CST is similar to that of 

DTTA anisotropy along the CST. 

 DTTA anisotropy profile (orange color) and ST FA profile (light blue 

color) obtained along the CST from 10 healthy subjects scanned on GE scanner is also 

shown in Figure 2.7a. Orange bar and light blue bar in Figure 2.7c shows the mean and 

standard deviation along CST for DTTA anisotropy and ST FA from the subjects scanned 

on GE scanner. As seen in Figure 2.7a, both ST FA profile and the DTTA anisotropy 

profile obtained from Philips scanner with 30 diffusion encoding gradient directions is 

similar to the DTTA anisotropy profile obtained from GE scanner with 25 diffusion 

encoding gradient directions. The means and standard deviations of ST FA and 

anisotropy obtained from DTTA along the CST across the scanners are also similar as 

shown in Figure 2.7c.  

 In addition, the DTTA anisotropy profile and ST FA profile with single 

shell (b=1000s/mm2) and multi-shell (b=1000 and 2500 s/mm2) dMRI are shown in Figure 

2.7b. Their means and standard deviations are shown in Figure 2.7d. The DTTA 

anisotropy profiles along the CST with single shell and multi-shell dMRI appear similar in 

Figure 2.7b while the ST FA profile along the CST is significantly lower with multi-shell 

dMRI compared to that of single shell dMRI (Figure 2.7b and Figure 2.7d).  



 

 

Figure 2.7: Metric profiles from DTTA, ST FA, GFA and GA along the CST. (a): Metric 
profiles from DTTA and ST FA from single shell 
shell dMRI (b): Mean and standard deviation of the anisotropy metrics along the CST in 
(c) and (d) correspond to panels (a) and (b), respectively. CST separated into segments 
of midbrain, internal capsule and corona ra

shown at the top panels for anatomical guidance.

In this study, we presented a DTTA technique which can effectively correct the 

underestimated FA values at the CFR that is not contaminated by fre

and conduct unbiased metric measurements for tract analysis

clinical research. DTTA has low requirement on dMRI data acquisition, specifically 

relatively low b value and small number of diffusion orientations, and

short computation time. The motivation of this study is to help improve measurement 

accuracy for radiologists, psychiatrists, neurologists and other clinicians who have 
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Metric profiles from DTTA, ST FA, GFA and GA along the CST. (a): Metric 
profiles from DTTA and ST FA from single shell dMRI from both the scanners and multi
shell dMRI (b): Mean and standard deviation of the anisotropy metrics along the CST in 
(c) and (d) correspond to panels (a) and (b), respectively. CST separated into segments 
of midbrain, internal capsule and corona radiate and overlaid on sagittal FA images is 

shown at the top panels for anatomical guidance. 
 

2.4. Discussion 

In this study, we presented a DTTA technique which can effectively correct the 

underestimated FA values at the CFR that is not contaminated by free water contribution 

unbiased metric measurements for tract analysis with dMRI acquired in 

clinical research. DTTA has low requirement on dMRI data acquisition, specifically 

relatively low b value and small number of diffusion orientations, and demands relatively 

short computation time. The motivation of this study is to help improve measurement 

accuracy for radiologists, psychiatrists, neurologists and other clinicians who have 

 

Metric profiles from DTTA, ST FA, GFA and GA along the CST. (a): Metric 
and multi-

shell dMRI (b): Mean and standard deviation of the anisotropy metrics along the CST in 
(c) and (d) correspond to panels (a) and (b), respectively. CST separated into segments 

diate and overlaid on sagittal FA images is 

In this study, we presented a DTTA technique which can effectively correct the 

e water contribution 

with dMRI acquired in 

clinical research. DTTA has low requirement on dMRI data acquisition, specifically 

demands relatively 

short computation time. The motivation of this study is to help improve measurement 

accuracy for radiologists, psychiatrists, neurologists and other clinicians who have 
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become major users of dMRI in their routine clinical research. For them, there is a strong 

need to improve anisotropy measurements for tract analysis without altering their dMRI 

sequences. Our study intends to show feasibility of increasing accuracy of measuring 

anisotropy by adopting Gaussian mixture model and fusing this model into tract analysis. 

Gaussian mixture model is not one of the most recent dMRI models, but is the one that 

has low requirement of b value and numbers of diffusion orientations. It is noteworthy that 

there are other state-of-the-art dMRI models to differentiate intracellular and extracellular 

dMRI signals such as the composite hindered and restricted water diffusion (CHARMED) 

model (Assaf and Basser, 2005; Assaf et al., 2004) and neurite orientation dispersion and 

density imaging of the human brain (NODDI) (Zhang et al., 2012) which are beyond the 

scope of this study. Different from previous evaluation investigation (Ramirez-

Manzanares et al., 2011) conducted with low b value; the goal of this study is not to 

evaluate performance of more sophisticated method such as Q-ball imaging (Tuch, 2004) 

in a clinical dMRI setting. The goal of the study is to test the improvement of accuracy of 

anisotropy measurement with DTTA. The digital phantom study and tests with clinical 

dMRI jointly suggest that the DTTA technique is robust for estimating unbiased 

anisotropy values at the CFR and can potentially increase sensitivity and accuracy in 

detecting WM microstructural abnormality when applied to clinical research. The digital 

phantom study indicated relatively high accuracy of multi-tensor fitting in a wide range of 

SNR and combinations of individual tensor FA values, fractions of each tensor and 

angles between the two tensors (Figure 2.2). The consistency of the anisotropy at the 

CFR after DTTA correction to the FA value at the single-fiber regions shown in Figure 2.6 

and Figure 2.7 and more homogeneous weighted FA map shown in Figure 2.5 

demonstrate the effectiveness of DTTA.  
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DTTA is unique in that it estimates two anisotropy values corresponding to 

crossed dual-fibers at the voxels of the CFR. Multi-FA values within a single voxel are 

difficult for voxelwise analysis. However, multi-FA values enable the tract analysis, as 

illustrated in Figure 2.1. It is important to note that the binary volumes of the crossing 

tracts will overlap with each other at the voxels of the CFR, if they are compressed into 

one volume. Two tracts need to be detached at the voxels of the CFR. With tract 

analysis, each of the multi-FA values at the voxels of the CFR all over the entire brain is 

associated with a specific detached tract (Figure 2.1). Fiber orientations of the 

surrounding voxels will be used to determine which tract is associated with one of the two 

DTTA anisotropy values. To the best of our knowledge, our method is one of the first 

developed methods to estimate dual-FA values at the voxel of the CFR for tract analysis. 

DTTA is capable of yielding less biased microstructural information and integrated into 

the tract statistics (Colby et al., 2012; Goodlett et al., 2009; Yushkevich et al., 2008; Zhu 

et al., 2011), tract morphometry (O'Donnell et al., 2009; Zhang et al., 2010) and tract 

metric analysis (Delgado-Ayala et al., 2012; Huang et al., 2012a; Huang et al., 2011; 

Huang et al., 2012b) developed recently. It should be noted that the novel weighted FA 

map shown in Figure 2.5 helps to conduct the whole brain voxelwise comparison of 

unbiased WM microstructural integrity as two anisotropy values can be integrated into 

one for each CFR voxel. 

The most prominent feature of DTTA probably is that it can be practically applied 

to analyze the dMRI dataset acquired in routine clinical research. DTTA is easy to 

implement and postprocessing of DTTA is computationally efficient. The whole DTTA 

package will be made available in a public website. Most clinical dMRI takes less than 5 

minutes. And typical parameters are: b value = 1000s/mm2, angular gradient resolution = 

25 to 60. The number of gradient directions to fully characterize the crossing fibers can 
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be estimated from SH, N=1/2*(lmax+1)(lmax+2), where lmax is the maximum SH order. For 

crossing of two fibers or two tensors, the lmax is 4 which results in N=15. Practically more 

than 15 gradient directions are needed to improve the conditioning of the two tensor 

fitting. It was shown in Figure 2.7c that the estimation of FA along the tract is similar 

across the scanners and yielded similar profile (Figure 2.7a) along the CST for 

acquisition with 30 or 25 diffusion encoding gradient directions. If fiso is a variable in LM 

fitting, multi-shell dMRI is required (Caan et al., 2010). By calculating fiso a priori before 

LM fitting, we have simplified the three-compartment Gaussian mixture model in equation 

[1] into the two-compartment model without sacrificing validity of the three-compartment 

model used in DTTA. Furthermore, a recent study (Hahn et al., 2013) has shown that two 

tensors can be reliably fit with two-compartment model and single shell dMRI. Calculating 

fiso a priori has been achieved by using relationship between fiso and mADC to estimate 

fiso from mADC with routine clinic dMRI acquired with a single b value. To construct this 

relationship between fiso and mADC, fiso was estimated by nonlinear fitting from two-shell 

dMRI data.  The relationship between fiso and mADC is statistically significant for voxels 

in whole brain WM (Figure 2.3). In this way, fiso can still reflect the varying diffusion 

properties of the local tissues.  

As local minimum could occur in multi-variable LM regression, extra step was 

conducted to avoid the local minimum. With no gold standard, it is difficult to validate the 

estimated anisotropy at the CFR after DTTA correction. The validation was conducted 

with the assumption of homogeneous microstructural properties within the tract. For 

example, homogeneity of the T2 values, but not single tensor FA values, within the tract 

has been observed previously (Wakana et al., 2007).  
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2.5. Limitations of this Study and Future Directions 

There are several limitations of DTTA technique. Firstly it should be noted that at 

the resolution at which the data is acquired, estimated FA is only a macroscopic view of 

the microscopic diffusion occurring at the cellular level which the current dMRI techniques 

cannot resolve. With complexity of the human brain WM, the Gaussian mixture model 

used in DTTA was improved compared to the single tensor model, yet it is still a rather 

rough and simplified characterization of the underlying WM fiber architecture. Several of 

the DTTA limitations are hence associated with this relatively simplified Gaussian mixture 

model (Equation 1) used in DTTA. First, DTTA was not designed to resolve crossing of 

three or more fiber bundles, although previous studies (Alexander, 2005; Behrens et al., 

2007) suggest that crossings of two fiber bundles happen most among all fiber crossings 

in brain voxels. The phantom study showed that DTTA failed to accurately estimate 

anisotropies of the two crossed fiber bundles when the separation angle between them is 

less than 30 degrees. In addition, the fiber bundles that are diverging, kissing, bending or 

fanning could not be resolved with DTTA either. In order to reduce number of 

independent variables for better LM regression, assumptions such as equal largest 

eigenvalues for the two tensors may not best fit the underlying WM fiber architecture. The 

assumptions on the equal largest eigenvalues has been used before (Caan et al., 2010; 

Sotiropoulos et al., 2008) and prevented the DTTA technique from being used for 

estimating other important metrics such as axial or radial diffusvities at the CFR 

(Wheeler-Kingshott and Cercignani, 2009). In addition, assuming fixed coefficients in the 

constructed relationship of fiso and mADC, i.e. fiso =c1*mADC+c2, could lead to at most an 

approximated estimate of fiso. Nevertheless, it is a more appropriate estimation of fiso that 

reflects local tissue diffusion properties compared to the fixed value used previously 

(Hosey et al., 2005). Figure 2.3 shows that fiso of most WM voxels clusters between 0.1 
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and 0.3. With the advent of advanced imaging technique, dMRI with high angular 

resolution and high b can be acquired with shorter scan time and eventually applied to 

the clinical research in the future. Accordingly, DTTA will evolve by incorporating multi-

shell dMRI acquisition and more sophisticated signal mixture model by removing the 

limitations such as equal largest eigenvalues. 

 

2.6. Conclusion 

In conclusion, a DTTA technique tailored for the dMRI data acquired in routine 

clinical research and adapted to tract analysis has been presented and tested to be 

effective for improving accuracy of the anisotropy in tract analysis. Digital phantom 

analysis indicated high accuracy of estimating the multiple anisotropy values at the CFR. 

The underestimated FA at the CFR of the four major associate WM tracts was effectively 

corrected and consistent to the single-fiber FA of the same tracts. DTTA renders equally 

well or more homogeneous anisotropy profile along the tract of CST, compared to GFA or 

GA.  
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Chapter 3 

Differences of Inter-Tract Correlations between Neonates and Children around Puberty: 

A study based on Microstructural Measurements with DTI 

3.1 Introduction 

The human brain is complicated yet well organized. The major cerebral white 

matter (WM) tracts connecting different brain regions are involved in different brain 

functions. These major cerebral WM tracts are often categorized into different tract 

groups based on their distinct functions. There are roughly four tract groups, namely 

limbic, projection, callosal and association tract groups (Huang et al., 2012a; Huang et 

al., 2012b; Wakana et al., 2004) for cerebral WM tracts. The WM tracts within a tract 

group perform similar functions. For example, limbic tracts underlie the connectivity in the 

limbic system and association tracts connect between cerebral cortical areas. The pair of 

tracts in both cerebral hemispheres belongs to the same tract group and is considered as 

homologous tracts. At birth, most of major WM tracts are well formed (Huang et al., 2006; 

Oishi et al., 2011), except the arcuate fasciculus which is a part of the superior 

longitudinal fasciculus (SLF) and related to language function.   

The water molecules all over the human brain tend to diffuse more freely along 

the WM fiber bundle, instead of perpendicular to it. This diffusion property can be 

measured noninvasively with diffusion MRI (dMRI), a modality of MRI. The widely used 

diffusion tensor imaging (DTI) (Basser et al., 1994a, b) characterizes the water diffusion 

properties in the brain voxels with a tensor model. Fractional anisotropy (FA) (Beaulieu, 

2002; Pierpaoli and Basser, 1996) and mean diffusivity (MD), derived from DTI, have 

been widely used to quantify the microstructural properties of the WM voxels. Other than 

FA or MD, the other two DTI-derived metrics, radial diffusivity (RD) and axial diffusivity 

(AxD), convey unique information related to myelination and axonal integrity, respectively 
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(Song et al., 2002). The four DTI-derived metrics, FA, RD, AxD and MD, characterize 

different aspects of diffusion tensor and are highly sensitive to WM microstructural 

changes.  

Compared to voxel-based morphometry (VBM), recent tract analyses (Colby et 

al., 2012; Goodlett et al., 2009; O'Donnell et al., 2009; Yushkevich et al., 2008; Zhang et 

al., 2010) including ours (Delgado-Ayala et al., 2012; Huang et al., 2012a; Huang et al., 

2011; Huang et al., 2012b) have become important due to great functional and clinical 

significance of the tracts. These WM tracts can be noninvasively traced with tractography 

based on diffusion MRI (dMRI) (Basser et al., 2000; Behrens et al., 2007; Catani et al., 

2002; Conturo et al., 1999; Jones et al., 1999b; Lazar et al., 2003; Mori et al., 1999; 

Parker et al., 2002; Stieltjes et al., 2001) and the heterogeneous WM tracts can be 

noninvasively segmented with the traced fibers. With these segmented WM tracts as 

binary masks for the maps of DTI-derived metrics, the microstructural properties of the 

WM tracts can be quantified. 

Dramatic microstructural changes take place during normal human brain 

development from birth to puberty, which are two landmark time points in early brain 

development. Birth marks the beginning time point of postnatal brain development. 

Puberty marks the end of the child development and beginning of adolescence. The four 

DTI derived metrics, FA, RD, AxD and MD, have been incorporated in numerous studies 

investigating WM microstructural changes for infants, children and adolescents during 

development. The human brain development process is usually characterized with 

significant increases in FA (Barnea-Goraly et al., 2005; Dubois et al., 2008; Eluvathingal 

et al., 2007; Gao et al., 2009a; Giorgio et al., 2010; Lebel et al., 2008; Schmithorst and 

Yuan, 2010; Snook et al., 2005; Tamnes et al., 2010; Westlye et al., 2010) and significant 

decreases in MD, AxD and RD (Dubois et al., 2008; Eluvathingal et al., 2007; Gao et al., 
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2009a; Giorgio et al., 2010; Lebel et al., 2008; Schmithorst and Yuan, 2010; Snook et al., 

2005; Tamnes et al., 2010; Westlye et al., 2010). On the other hand, it was shown with 

DTI-derived metrics of a cohort of adults that specific WM tracts involved in similar 

functions vary in a similar pattern with each other across different individuals (Li et al., 

2012; Wahl et al., 2010), while hemispheric asymmetries of DTI-derived metrics in 

homologous pairs of WM tracts (Bonekamp et al., 2007; Wilde et al., 2009) have been 

reported. However, from perspective of brain development, whether or not the significant 

inter-tract correlations exist at birth and around puberty is still unclear. Furthermore, it 

remains elusive if these inter-tract correlations will be strengthened and how the 

correlation patterns change from birth to puberty.  

During the development from birth to puberty, the human brain is likely to change 

from a more randomized state to a more balanced and organized state. In this study, we 

hypothesized that inter-tract correlations become stronger and the correlation patterns 

are reshuffled from birth to puberty. Specifically, the reshuffling process will cause more 

homologous tracts to form tight relationship. DTI data were acquired from 26 normal 

neonates and 28 normal children around puberty. The following 10 major WM tracts 

covering limbic, association, commissural and projection tract groups were selected for 

tract-level measurements of DTI metrics of each subject: left and right corticospinal tract 

(CST_L and CST_R), left and right inferior fronto-occipital fasciculus (IFO_L and IFO_R), 

left and right cingulate part of cingulum tract (CGC_L and CGC_R), left and right 

hippocampal part of cingulum tract (CGH_L and CGH_R), forceps major (FMajor) and 

forceps minor (FMinor). The tract level comparisons of all four DTI-derived metrics were 

conducted between the two age groups. Spearman’s pairwise inter-tract correlations 

were performed. We tested if significant correlations of homologous WM tracts exist in 

neonates and children around puberty. After obtaining four 10 by 10 inter-tract correlation 
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matrices corresponding to four DTI-derived metrics, FA, RD, AxD and MD, for each age 

group, we tested these correlation matrices against the identity matrix or a matrix with 

equal non-diagonal entries. We then assessed if the inter-tract correlations become 

statistically stronger from birth to puberty. In addition, hierarchical clustering was 

performed with the pairwise correlations based on FA, RD, AxD and MD measurements 

for each age group to reveal the pattern of clustering in either age group and reveal the 

pattern shift from birth to puberty.  

 

3.2. Materials and Methods 

3.2.1. Subjects and Data Acquisition 

26 normal neonates (14 males; age: 37 to 43 gestational weeks with mean and 

standard deviation 40.1±2.0 gestational weeks) and 28 normal children around puberty 

(15 males; age: 9.5 to 15 years with mean and standard deviation 12.0±2.3 years), free 

of current and past neurological or psychiatric disorders, were recruited at Children’s 

Medical Center (CMC) at Dallas and Advanced Imaging Research Center (AIRC) of the 

University of Texas Southwestern Medical Center (UTSW), respectively. The parents of 

all the subjects gave written informed consents approved by Institutional Review Board of 

UTSW. 

Two 3T Philips Achieva MR systems at CMC and AIRC were used to acquire 

dMRI of neonate and child group, respectively. dMRI data were acquired using a single 

shot echo planar imaging (EPI) with SENSE parallel imaging scheme (SENsitivity 

Encoding, reduction factor = 2.3). dMRI parameters for neonates were: FOV = 

200/200/100 mm, in-plane imaging matrix = 100 x 100, axial slice thickness = 2mm. dMRI 

parameters for children around puberty were: FOV = 224/224/143 mm, in-plane imaging 

matrix = 112 x 112, axial slice thickness = 2.2mm. The common parameters for dMRI 
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acquisition of both neonate and child group were: b-value = 1000 s/mm2, TE = 97ms, TR 

= 7.6s, 30 independent diffusion-weighted directions (Jones et al., 1999) and 2 

repetitions to increase signal-to-noise ratio (SNR).  

 

3.2.2. DTI Preprocessing 

dMRI acquired from all the subjects was processed offline using DTIStudio 

mristudio.org; (Jiang et al., 2006). dMRI images for each subject were corrected for 

motion and eddy current by registering all the diffusion weighted images to the b0 image 

using a 12-parameter (affine) linear image registration with automated image registration 

(AIR) algorithm (Woods et al., 1998). After the registration, six independent elements of 

the 3×3 diffusion tensor (Basser et al., 1994a, b) were determined by multivariate least-

square fitting of diffusion weighted images. The tensor was diagonalized to obtain three 

eigenvalues ( 31−λ ) and eigenvectors ( 31−ν ). FA, MD, AxD and RD, derived from DTI, 

were obtained for all the subjects with the following equations of eigenvalues: 
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3.2.3. Tract-level Measurements of DTI Metrics 

The following 10 major white matter tracts were selected for tract-level 

measurements of DTI metrics, left and right corticospinal tract (CST_L and CST_R), left 
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and right inferior fronto-occipital fasciculus (IFO_L and IFO_R), left and right cingulate 

part of cingulum tract (CGC_L and CGC_R), left and right hippocampal part of cingulum 

tract (CGH_L and CGH_R), forceps major (FMajor) and forceps minor (FMinor). These 

tracts could be reproducibly traced with DTI of all neonates and children and cover all 

four major tract groups, namely projection, limbic, commissural and association tract 

group. Other major white matter tracts such as SLF could not be traced reproducibly with 

our cohort of neonate DTI dataset. Following the literature (Wakana et al., 2007), the 

tractography protocol described in details below was used to trace all these tracts. 

DTIstudio (mristudio.org) was used to conduct the tractography. The binary masks of the 

individually traced tracts were used to compute the tract-level FA, RD, AxD and MD. The 

test-retest reliability was quantified by coefficient of variation (CV) and κ values of 

variability shown in Table 3.1, after tracing the tracts below 3 times with the data from 3 

subjects randomly selected from each group. All CV values are less than 2% (Table 3.1a) 

and κ values are greater than 95% (Table 3.1b) for both neonate an child group, 

indicating almost perfect test-retest reliability and almost perfect agreement of 

measurements among different tests in both neonate and child group. 

 

 

 

 

 

 



 

 
     

55

Table 3.1: (a) Mean coefficients of variation (% CV) of FA, RD, AxD and MD measurements for neonates and children around 
puberty. 3 subjects in each group were randomly selected to compute CV. Each tract was traced 3 times for data from each 
subject. (b) Mean Kappa (κ) for neonates and children around puberty. 3 subjects in each group were randomly selected to 

compute κ. Each tract was traced 3 times for data from each subject. 
(a) 

 FA RD  AxD  MD 

 Neonates Children 
around 
puberty 

Neonates Children 
around 
puberty 

Neonates Children 
around 
puberty 

Neonates Children 
around 
puberty 

CST_L 
(%) 

0.2 0.2 0.1 0.1 0.06 0.2 0.05 0.05 

CST_R 
(%) 

0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

CGH_L 
(%) 

0 0.1 0 0.03 0 0.06 0 0.03 

CGH_R 
(%) 

0.02 0.1 0.001 0.02 0.02 0.08 0.008 0.05 

CGC_L 
(%) 

0 0.07 0 0.05 0 0.05 0 0.03 

CGC_R 
(%) 

0 0.06 0 0.1 0 0.06 0 0.08 

IFO_L 
(%) 

0.01 0.03 0.002 0.03 0.001 0.03 0.001 0.01 

IFO_R 
(%) 

0 0.07 0 0.06 0 0.04 0 0.04 

FMinor 
(%) 

0.2 0.05 0.2 0.02 0.2 0.04 0.2 0.01 

FMajor 
(%) 

0.3 0.03 0.03 0.01 0.1 0.02 0.05 0.01 

Average 
(%) 

0.09 0.08 0.04 0.06 0.05 0.07 0.04 0.04 
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Table 3.1 -- Continued 
(b) 

 Mean Kappa (κ) 

 Neonates Children around 
puberty 

CST_L 0.986 0.962 

CST_R 0.97 0.979 

CGH_L 0.99 0.987 

CGH_R 0.989 0.987 

CGC_L 0.99 0.984 

CGC_R 0.989 0.979 

IFO_L 0.995 0.986 

IFO_R 0.996 0.982 

FMinor 0.956 0.997 

FMajor 0.975 0.998 

Average 0.984 0.984 
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CST-L and CST-R: For the first ROI, the entire cerebral peduncle of the desired 

hemisphere was delineated at the level of the decussation of the superior cerebellar 

peduncle using an axial slice. “OR” operation was used to select all the CST fibers in this 

hemisphere that reach the primary motor cortex. The second ROI was then drawn at the 

most ventral axial slice that identifies the cleavage of the central sulcus. “AND” operation 

is performed at this axial slice to select all the CST fibers in this hemisphere. The fibers 

running through to the opposite hemisphere were removed using the “NOT” operation. 

CGC-L and CGC-R: For the first ROI, a coronal plane was selected at the middle 

of the splenium of the corpus callosum (CC) using the mid-sagittal plane and the region 

containing the entire cingulum in the desired hemisphere is selected. All the fibers in this 

coronal plane passing through the cingulum were selected using the “OR” operation. The 

second ROI was drawn by selecting a coronal plane in the middle of the genu of the CC 

and all the CGC fibers were selected using the “AND” operation. 

CGH-L and CGH-R: For the first ROI, a coronal plane in the middle of the 

splenium of the CC was selected using the mid-sagittal plane and the cingulum below the 

CC of the desired hemisphere was delineated. All the fibers in this coronal plane passing 

through the cingulum were selected using the “OR” operation. The second ROI was 

drawn at a coronal slice anterior to the pons using the mid-sagittal plane and the fibers 

passing through the cingulum in this hemisphere were selected using the “AND” 

operation. 

IFO-L and IFO-R: For the first ROI, a coronal slice at the middle point between 

the posterior edge of the cingulum and the posterior edge of the parieto-occipital sulcus 

was selected and the entire occipital lobe of the desired hemisphere was delineated. All 

the fibers in this hemisphere were selected using the “OR” operation. The second ROI 

was drawn at the anterior edge of the CC using a coronal slice and all the fibers in this 
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hemisphere were selected using the “AND” operation. The fibers running through to the 

thalamus were removed by using the “NOT” operation. 

FMajor: For the first ROI, a coronal plane including only the left occipital lobe was 

selected at the most posterior edge of the parieto-occipital sulcus. The “OR” operation in 

this coronal plane delineated all the fibers of FMajor. The second ROI was drawn in the 

same coronal plane on the right hemisphere using the “AND” operation such that all the 

fibers in the right occipital lobe was selected. 

FMinor: For the first ROI, a coronal plane at the middle point between the 

anterior tip of the frontal lobe and the anterior edge of the genu of the CC was selected 

using the mid-sagittal plane. The “OR” operation was used to select all the fibers in the 

entire left hemisphere. The second ROI was drawn in the same coronal plane on the right 

hemisphere and all the fibers in the right hemisphere were selected using the “AND” 

operation. 

 

3.2.4. Inter-tract Correlation Analysis 

Shapiro-Wilk normality test was performed with DTI-derived metrics of all the 10 

white matter tracts of 26 neonate brains and 28 child brains. Distributions of DTI-derived 

metrics for most of the tracts in the neonate group did not show significant difference 

(p>0.05) from normality. However, distributions of DTI-derived metrics of most of the 

tracts in the child group differed significantly (p<0.05) from normality. Hence, following 

the method in the literature (Wahl et al., 2010), non-parametric Spearman’s rank 

correlation coefficient ρ was used to measure all correlations. Subsequently, a correlation 

matrix was constructed for each of the 4 DTI-derived metrics using pairwise correlation 

values between any two tracts. Symmetric correlation matrices were obtained with a 

value of unity along the diagonal of the correlation matrix. The diagonal element 
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represents perfect correlation of the DTI-derived parameter of the tract with itself and the 

off-diagonal element represents the correlation of the DTI derived parameter of one tract 

with that of another tract. There were 10*(10-1)/2 = 45 nontrivial independent correlation 

values in each correlation matrix.  

 

3.2.5. Statistical Analysis 

Two independent tests of correlation matrices were performed to evaluate if the 

correlation matrices were significantly different from identity and homogeneous matrix 

(Rencher, 2002; Wahl et al., 2010). The null hypothesis to test for identity was the 

correlation matrix is an identity matrix,
0
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. The size of the correlation matrix 

was 10 x 10 as we were testing for pairwise correlations of 10 independent tracts. To test 

the correlation matrices for homogeneity, the null hypothesis was that the correlation 

matrix was homogeneous and that the non-diagonal elements of the matrix were equal, 

i.e: 
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. This null hypothesized homogeneous correlation matrix was 

derived by following the procedure outlined in the literature (Rencher, 2002; Wahl et al., 

2010). Bonferroni correction was conducted for both test of correlation matrix against 

identify matrix and test of correlation matrix against matrix with equal non-diagonal 

elements. Once the DTI-derived correlation matrices were found to be significantly 

different from identity and homogeneity within each group, correlation matrices of each 

DTI-derived metric were compared between the two age groups. Spearman’s rank 

correlation coefficients were converted to z values by using Fisher’s r-to-z-transform 

(Fisher, 1915). Note that r in Fisher’s r-to-z-transform is the spearman’s rank correlation 
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coefficient ρ in this study. Z-statistics was then performed to identify the pair of tracts that 

showed significant change in correlation strength from birth to puberty. 

 

3.2.6. Hierarchical Clustering Analysis 

Hierarchical clustering methods were used to characterize the patterns of inter-

tract correlation in each matrix among the groups. We used 1-ρ, where ρ is the 

Spearman’s rank correlation coefficient, as a measure of distance or dissimilarity 

between the white matter tracts for the purpose of clustering. Hierarchical clustering was 

performed using hclust function in R version 2.15.2. Depending on the correlation 

coefficient, different white matter tracts were successively grouped into larger groups and 

the results were visualized as a dendrogram. White matter tracts that had stronger 

correlation among themselves were fused together and were linked together. To 

characterize the uncertainty of the linkage among white matter tracts and reduce the 

standard error in the percentage of confidence level for each cluster, a multi-scale 

bootstrap with 1000 repetitions of the analysis was performed using pvclust function in R 

(Suzuki and Shimodaira, 2006). The multi-scale bootstrap analysis yields an 

approximately unbiased p-value of each linkage in hierarchical clustering and has been 

applied in various other studies (Shimodaira, 2002, 2004; Wahl et al., 2010). The 

threshold for determining statistical significance for the grouping of tracts was set at an 

unbiased p-value of 0.05 or 95% confidence interval.  

 

3.3. Results 

3.3.1. Changes of White Matter Microstructure from Neonates to Children around Puberty 

Figure 3.1 shows the three-dimensional (3D) visualization of the traced 10 major 

white matter tracts for a typical neonate and a typical child around puberty. These 10 
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major tracts, namely CST_L, CST_R, IFO_L, IFO_R, CGC_L, CGC_R, CGH_L, CGH_R, 

FMajor and FMinor, cover projection, limbic, association and commissural tract groups 

involved in distinct brain functions. The microstructural changes from neonates to 

children at puberty and measured with FA, MD, AxD and RD are shown in Figure 3.2. For 

all 10 major white matter tracts, FA values are higher in the child group than those of the 

neonate group while MD, AxD and RD values of the child group are less. FA of CST_L 

and CST_R of both age groups are highest among all tracts, followed by FMajor and 

FMinor. RD of CST_L and CST_R of both age groups are lowest among all tracts, 

indicating better myelination of CST compared to all other tracts. MD and AxD of FMajor 

and FMinor are highest among all tracts for child group. The values of these DTI-derived 

metrics of all tracts for the two age groups are shown in Table 3.2.  

 

Figure 3.1: 3-D visualization of the traced WM tracts overlaid on mid-sagittal slice of the 
FA image of a typical neonate (a) and a typical child around puberty (b). Different colors 

represent different tracts traced for both subjects. CGC_L/R, CGH_L/R, CST_L/R, 
FMajor/FMinor and IFO_L/R are painted by red, orange, green, blue and yellow color, 

respectively. 
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Table 3.2: Mean tract-level FA, RD, AxD and MD measurements and their standard deviations for neonates and children around 
puberty. 

 FA RD (10-3mm2/s) AxD (10-3mm2/s) MD (10-3mm2/s) 

 Neonates Children 
around 
puberty 

Neonates Children 
around 
puberty 

Neonates Children 
around 
puberty 

Neonates Children 
around 
puberty 

         

CST left 0.33±0.022 0.514±0.026 0.935±0.069 0.515±0.08 1.577±0.081 1.235±0.121 1.149±0.07 0.755±0.092 

CST 
right 

0.327±0.024 0.505±0.018 0.935±0.076 0.518±0.057 1.573±0.101 1.238±0.102 1.148±0.082 0.758±0.07 

CGH 
left 

0.234±0.02 0.37±0.032 1.087±0.079 0.631±0.077 1.562±0.099 1.142±0.117 1.245±0.084 0.802±0.088 

CGH 
right 

0.241±0.018 0.37±0.026 1.063±0.082 0.619±0.073 1.549±0.102 1.119±0.108 1.225±0.087 0.786±0.083 

CGC 
left 

0.254±0.022 0.423±0.021 1.098±0.072 0.57±0.047 1.622±0.099 1.139±0.077 1.273±0.078 0.759±0.055 

CGC 
right 

0.237±0.022 0.404±0.025 1.112±0.074 0.574±0.06 1.6±0.099 1.103±0.098 1.274±0.079 0.75±0.071 

IFO left 0.258±0.022 0.454±0.025 1.141±0.082 0.567±0.05 1.686±0.092 1.209±0.069 1.322±0.084 0.781±0.054 

IFO 
right 

0.264±0.02 0.436±0.02 1.145±0.093 0.582±0.05 1.709±0.112 1.197±0.08 1.333±0.098 0.787±0.058 

FMinor 0.292±0.023 0.481±0.02 1.15±0.088 0.546±0.032 1.823±0.119 1.257±0.066 1.374±0.095 0.783±0.04 

FMajor 0.31±0.019 0.483±0.024 1.121±0.105 0.548±0.055 1.825±0.162 1.297±0.098 1.355±0.122 0.798±0.066 



 

3.3.2. Enhanced Inter-tract 

Figure 3.3 shows the 

(Figure 3.3c) and MD (Figure

non-homologous tracts, CGC_L vs CGC_R, CST_L vs CST_R, FMajor vs FMinor and 

CST-R vs CGC-R. The 2 homologou

the three tract groups. Significant correlations (p<0.05) can be observed for these 4 pairs 

of tracts in both age groups. 

 

Figure 3.2: Mean and standard deviation of tract
measurements for 26 neonates and
Error bars indicate standard deviations across all the subjects at the same age group.
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 Correlation from Neonates to Children around Puberty

3 shows the scatterplot of the FA (Figure 3.3a), RD (Figure 3.3

Figure 3.3d) values for 2 pairs of homologous tracts and 2 pairs of 

homologous tracts, CGC_L vs CGC_R, CST_L vs CST_R, FMajor vs FMinor and 

R. The 2 homologous tracts and FMajor/FMinor  represent tract pairs of 

the three tract groups. Significant correlations (p<0.05) can be observed for these 4 pairs 

of tracts in both age groups.  

: Mean and standard deviation of tract-level FA (a), RD (b), AxD (c) and MD 
neonates and 28 children around puberty for all the 10 WM tracts. 

Error bars indicate standard deviations across all the subjects at the same age group.
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and MD (d) 
puberty for all the 10 WM tracts. 

Error bars indicate standard deviations across all the subjects at the same age group. 



 

Figure 3.3: Scatterplots of FA (a), RD (b), AxD (c) and MD (d) values from 2 homologous 
and 2 non-homologous tracts. The 2 homologous pairs and FMajor/FMinor represent 
tract pairs of three tract groups for both age groups. Top panel shows the inter
scatter plots for the neonates and bottom panel shows those for the children around 

puberty. Each dot in all the plots represents the data from an individual subject in that 
group. ρ is the Spearman’s rank correlation coefficient of the tract pair while p

shows the statistical confidence of the inter
 

Significant differences (p < 0.05, Bonferroni

all inter-tract correlation matrices of both groups against identity matrix or matrix with 

equal non-diagonal entries. The inter

group and the differences of these correlation matrices for FA, RD, AxD and MD are 

shown in Figures. 3.4a, 3.4b, 

correlations can be observed in the child group compared to those in the neonate group 

for all DTI-derived metrics, represented by the warmer colors in correlation matrices of 
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rplots of FA (a), RD (b), AxD (c) and MD (d) values from 2 homologous 
homologous tracts. The 2 homologous pairs and FMajor/FMinor represent 

tract pairs of three tract groups for both age groups. Top panel shows the inter
he neonates and bottom panel shows those for the children around 

puberty. Each dot in all the plots represents the data from an individual subject in that 
 is the Spearman’s rank correlation coefficient of the tract pair while p

tistical confidence of the inter-tract correlation strength.

Significant differences (p < 0.05, Bonferroni-corrected) were observed for tests of 

tract correlation matrices of both groups against identity matrix or matrix with 

entries. The inter-tract correlation matrices of neonate and child 

group and the differences of these correlation matrices for FA, RD, AxD and MD are 

4b, 3.4c and 3.4d, respectively. General stronger inter

e observed in the child group compared to those in the neonate group 

derived metrics, represented by the warmer colors in correlation matrices of 
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tract correlation strength. 
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tract correlation matrices of both groups against identity matrix or matrix with 

tract correlation matrices of neonate and child 

group and the differences of these correlation matrices for FA, RD, AxD and MD are 

4d, respectively. General stronger inter-tract 

e observed in the child group compared to those in the neonate group 
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child group. The statistics with z-scores (right panel of Figure3. 4) show that 64.4% 

(29/45), 84.4% (38/45), 73.3% (33/45) and 73.3% (33/45) of independent entries in the 

correlation matrix of child group are significantly higher than the corresponding entries of 

neonate group for FA, RD, AxD and MD, respectively. The correlation matrix from RD 

shows highest percentage changes (84.4%) among correlation matrices from all DTI-

derived metrics, indicating more widespread enhanced inter-tract correlations with RD 

measurements. Note that the denominator 45 above indicates the number of all 

independent entries in the correlation matrix. The absolute values of correlation 

coefficients for AxD and MD, represented by the warmer colors in Figure 3.4c and Figure 

3.4d, are higher in both neonate and child group than those for FA (Figure 3.4a) or RD 

(Figure 3.4b). Much smaller percentages of independent entries of the correlation 

matrices are associated with the situation where correlation coefficients are significantly 

higher in the neonates than the children. Specifically, these percentages are 8.9% (4/45, 

namely CGC_R vs FMinor, CGC_R vs FMajor, CGH_L vs IFO_L and IFO_L vs IFO_R), 

6.7% (3/45, namely CGC_R vs FMinor, CGC_R vs FMajor and IFO_L vs FMajor), 4.4% 

(2/45, namely CGC_R vs FMinor and CGC_R vs FMajor) and 4.4% (2/45, namely 

CGC_R vs IFO_R and CGC_R vs FMajor) for FA, RD, AxD and MD, respectively. The 

inter-tract correlation coefficient values based on FA, RD, AxD and MD measurements 

for both age groups are shown in Table 3.3a, Table 3.3b, Table 3.3c and Table 3.3d 

respectively. 



 

66 
 

 

Figure 3.4: Heat maps of the inter-tract correlation matrices obtained from tract-level FA 
(a), RD (b), AxD (c) and MD (d) measurements of both age groups. The left and middle 

panels show the inter-tract correlation matrices for neonates and children around puberty, 
respectively. The right panel shows the z-scores of the changes in correlation strength 
between the two age groups. In the z-score plots, the entries with significant (p<0.05) 

changes in inter-tract correlation strengths are shown in red color while entries with non-
significant (p>0.05) change in inter-tract correlation strengths are shown in green color. 

Color bar encoding the correlation strengths in the left and middle columns is also shown. 
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Table 3.3: (a) Spearman’s inter-tract correlation coefficient (ρ) matrix based on FA measurements (b) Spearman’s inter-tract 
correlation coefficient (ρ) matrix based on RD measurements (c) Spearman’s inter-tract correlation coefficient (ρ) matrix based on 

AxD measurements. (d) Spearman’s inter-tract correlation coefficient (ρ) matrix based on MD measurements. 
(a) 

Neonates 
 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          
CST_R 0.457 1         
CGH_L 0.318 0.181 1        
CGH_R 0.05 0.186 0.372 1       
CGC_L 0.088 0.314 0.294 0.136 1      
CGC_R 0.252 0.267 0.144 -0.074 0.705 1     
IFO_L 0.44 0.29 0.556 0.454 0.47 0.3 1    
IFO_R 0.19 0.143 0.463 0.388 0.358 0.167 0.752 1   
FMinor 0.278 0.331 0 0 0.352 0.587 0.196 0.036 1  
FMajor 0.324 0.093 0.182 0.026 0.378 0.498 0.383 0.086 0.512 1 

Children around puberty 
 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          
CST_R 0.762 1         
CGH_L 0.267 0.244 1        
CGH_R 0.256 0.045 0.347 1       
CGC_L 0.301 0.363 0.390 0.241 1      
CGC_R 0.143 0.311 0.369 0.385 0.595 1     
IFO_L 0.655 0.395 0.344 0.467 0.419 0.351 1    
IFO_R 0.331 0.033 0.457 0.465 0.469 0.494 0.631 1   
FMinor 0.006 0.055 0.152 0.041 0.46 0.39 0.086 0.274 1  
FMajor 0.414 0.397 0.466 0.221 0.595 0.365 0.335 0.427 0.608 1 
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Table 3.3 -- Continued 
(b)  

Neonates 

 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          

CST_R 0.643 1         

CGH_L 0.508 0.432 1        

CGH_R 0.406 0.495 0.558 1       

CGC_L 0.631 0.748 0.454 0.628 1      

CGC_R 0.724 0.608 0.452 0.508 0.831 1     

IFO_L 0.682 0.595 0.323 0.668 0.690 0.796 1    

IFO_R 0.748 0.693 0.469 0.680 0.764 0.824 0.909 1   

FMinor 0.595 0.551 0.357 0.486 0.738 0.802 0.716 0.79 1  

FMajor 0.619 0.726 0.368 0.666 0.744 0.795 0.878 0.818 0.616 1 

Children around puberty 

 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          

CST_R 0.807 1         

CGH_L 0.743 0.639 1        

CGH_R 0.692 0.737 0.771 1       

CGC_L 0.815 0.861 0.72 0.694 1      

CGC_R 0.76 0.764 0.745 0.762 0.891 1     

IFO_L 0.828 0.738 0.78 0.712 0.894 0.837 1    

IFO_R 0.784 0.707 0.697 0.723 0.846 0.799 0.906 1   

FMinor 0.65 0.639 0.654 0.584 0.806 0.719 0.851 0.826 1  

FMajor 0.669 0.712 0.668 0.588 0.823 0.678 0.795 0.787 0.87 1 
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Table 3.3 -- Continued 
(c) 

Neonates 

 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          

CST_R 0.713 1         

CGH_L 0.38 0.259 1        

CGH_R 0.68 0.541 0.43 1       

CGC_L 0.835 0.711 0.33 0.673 1      

CGC_R 0.825 0.653 0.287 0.681 0.887 1     

IFO_L 0.691 0.535 0.166 0.752 0.748 0.832 1    

IFO_R 0.708 0.503 0.282 0.691 0.813 0.813 0.860 1   

FMinor 0.712 0.639 0.32 0.656 0.828 0.828 0.848 0.854 1  

FMajor 0.786 0.646 0.077 0.686 0.798 0.868 0.915 0.792 0.777 1 

Children around puberty 

 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          

CST_R 0.896 1         

CGH_L 0.748 0.779 1        

CGH_R 0.802 0.85 0.814 1       

CGC_L 0.836 0.817 0.72 0.813 1      

CGC_R 0.782 0.736 0.706 0.772 0.915 1     

IFO_L 0.709 0.757 0.745 0.750 0.703 0.778 1    

IFO_R 0.725 0.764 0.712 0.77 0.808 0.815 0.898 1   

FMinor 0.791 0.798 0.765 0.83 0.857 0.764 0.675 0.733 1  

FMajor 0.833 0.869 0.782 0.688 0.769 0.706 0.749 0.704 0.756 1 
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Table 3.3 -- Continued  
(d) 

Neonates 

 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          

CST_R 0.68 1         

CGH_L 0.454 0.459 1        

CGH_R 0.533 0.56 0.549 1       

CGC_L 0.794 0.779 0.439 0.675 1      

CGC_R 0.76 0.683 0.469 0.569 0.88 1     

IFO_L 0.727 0.612 0.301 0.692 0.787 0.826 1    

IFO_R 0.807 0.705 0.485 0.712 0.846 0.869 0.897 1   

FMinor 0.648 0.628 0.378 0.56 0.861 0.849 0.765 0.848 1  

FMajor 0.701 0.735 0.306 0.642 0.819 0.864 0.867 0.83 0.712 1 

Children around puberty 

 CST_L CST_R CGH_L CGH_R CGC_L CGC_R IFO_L IFO_R FMinor FMajor 

CST_L 1          

CST_R 0.904 1         

CGH_L 0.768 0.791 1        

CGH_R 0.764 0.832 0.836 1       

CGC_L 0.814 0.889 0.775 0.758 1      

CGC_R 0.776 0.781 0.756 0.79 0.912 1     

IFO_L 0.777 0.827 0.819 0.727 0.881 0.805 1    

IFO_R 0.788 0.83 0.725 0.736 0.853 0.81 0.868 1   

FMinor 0.812 0.856 0.799 0.732 0.886 0.808 0.897 0.878 1  

FMajor 0.783 0.866 0.77 0.672 0.832 0.71 0.886 0.796 0.87 1 
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3.3.3. Reshuffled Inter-tract Correlation Patterns from Neonates to Children around 

Puberty 

The inter-tract correlations based on each of DTI-derived metrics are reshuffled 

from neonates to children at puberty. These reshuffled inter-tract correlation patterns can 

be appreciated from dendrograms based on FA, RD, AxD and MD measurements in 

Figure 3.5a, 3.5b, 3.5c and 3.5d, respectively. In general, the pairing of homologous 

tracts is more prominent for child group compared to that of the neonate group based on 

measurements of all DTI-derived metrics. The reshuffling leading to a more organized 

pairing among WM tracts is most prominent with the dendrograms based on tract-level 

RD measurements (Figure 3.5b). For inter-tract correlation based on FA measurement 

(Figure 3.5a), the tract pairs of CST_L/R becomes clear in the dendrogram of child group, 

while this pair is not as apparent in neonate group. The IFO_L/R pair is prominent for 

dendrograms of both neonate and child group based on FA measurements (Figure 3.5a). 

For dendrograms based on RD measurements (Figure 3.5b), it is clear that all 

homologous tracts and FMajor/FMinor get paired for child group while the correlation 

patterns are more random for neonate group. For dendrograms based on AxD (Figure 

3.5c) or MD (Figure 3.5d) measurements, stronger and more clusters of the homologous 

tracts can be observed. The clustering pattern obtained from MD (Figure 3.5d) is similar 

to that obtained from RD (Figure 3.5b). However, the homologous tracts of child group 

are not well paired in MD-based dendrogram (Figure 3.5d), compared to those in RD-

based dendrogram (Figure 3.5b). 



 

Figure 3.5: Dendrograms depicting the hierarchical clustering pattern obtained from tract
level FA (a), RD (b), AxD (c) and MD (d) measurements for both age groups. The left and 

right panels show the clustering pattern for neonates and children around puberty, 
respectively. The ranks of the clustering are shown in bold. The confidence intervals for 

the clustering (the percentage values) are shown in italics.
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Dendrograms depicting the hierarchical clustering pattern obtained from tract
level FA (a), RD (b), AxD (c) and MD (d) measurements for both age groups. The left and 

how the clustering pattern for neonates and children around puberty, 
respectively. The ranks of the clustering are shown in bold. The confidence intervals for 

the clustering (the percentage values) are shown in italics. 

Dendrograms depicting the hierarchical clustering pattern obtained from tract-
level FA (a), RD (b), AxD (c) and MD (d) measurements for both age groups. The left and 

how the clustering pattern for neonates and children around puberty, 
respectively. The ranks of the clustering are shown in bold. The confidence intervals for 
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Figure 3.6: Dendrograms depicting the hierarchical clustering pattern obtained from tract-
level FA (a), RD (b), AxD (c) and MD (d) measurements for two subgroups of children 

around puberty. Dendrograms on the left column are for the subgroup of children younger 
than 12-year-old (9.5 to 12 year); those on the right column are for the subgroup of 

children older than 12-year-old (12 to 15 year). 
 

3.4. Discussion 

In this study, dynamics of inter-tract correlations from birth to onset of 

adolescence was investigated with DTI-based tract-level microstructural measurements 

from 10 major WM tracts, CST_L, CST_R, IFO_L, IFO_R, CGC_L, CGC_R, CGH_L, 

CGH_R, FMajor and FMinor. Higher WM tract integrity, reflected by higher FA, lower MD, 

AxD and RD, were found for the corresponding tracts from neonates to children around 

puberty. It is clear that even at birth; nearly all major WM tracts demonstrate similar 

morphology as those in children around puberty. Significant correlations of homologous 
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tracts are shown for both neonate and child groups. The comparisons of the inter-tract 

correlation matrices between the neonate and child group indicated that stronger inter-

tract correlations are established during development. Using data-driven hierarchical 

clustering algorithm with no a priori information, we were able to reveal that the linkage 

patterns of the major tracts differ between the two age groups. Specifically, homologous 

tracts involved in similar brain functions tend to cluster together for children around 

puberty especially with tract-level RD measurements. Such clustering patterns of 

homologous tracts become more prominent from birth to puberty. These changes of inter-

tract correlations between neonates and children around puberty suggest 

inhomogeneous but organized axonal development which causes the reshuffled inter-

tract correlation pattern while keeping homologous tracts tightly correlated. To the best of 

our knowledge, this is the first study investigating dynamics of inter-tract correlations with 

DTI-based microstructural measurements during early human brain development.  

 

3.4.1. Heterogeneous WM Growth 

The WM development is heterogeneous among different tract groups, but more 

homogeneous among homologous tracts. The heterogeneity among different tract groups 

includes heterogeneous tract-level measurements of DTI-derived metrics at each time 

point and heterogeneous changes of these DTI-based tract-level measurements from 

birth to puberty. The general FA increase and general MD, AxD and RD decrease for all 

WM tracts in early brain development shown in Figure 2 are consistent with the previous 

findings (Barnea-Goraly et al., 2005; Dubois et al., 2008; Eluvathingal et al., 2007; Gao et 

al., 2009b; Giorgio et al., 2010; Lebel et al., 2008; Schmithorst and Yuan, 2010; Snook et 

al., 2005; Tamnes et al., 2010; Westlye et al., 2010). The heterogeneity among different 

tract groups is most prominent with FA measurements for children around puberty 
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(Figure 3.2). From Figure 3.2a, it is clear that FA of CST-L/R (project tract group) is 

highest in children around puberty, followed by FMajor/FMinor (commissural tract group), 

IFO-L/R (association tract group) and CGC/H_L/R (limbic tract group). This order of tract 

group FA measurements is preserved back at birth, but the differences of FA among the 

tract groups are smaller (Figure 3.2a) for neonatal brains. The heterogeneous changes of 

tract-level DTI metrics in Figure 3.2 may cause the reshuffling of inter-tract correlation 

patterns. Quite similar FA values (Figure 3.2a) as well as MD, AxD and RD values 

(Figure 3.2b-3.2d) of the homologous tracts can be found for both age groups.  

 

3.4.2 Strengthened and Reshuffled Inter-tract Correlation during Development 

At birth, significant correlations can be observed based on microstructural 

measurements of homologous tracts, as shown in upper panels of Figs. 3.3a-3.3d. From 

Figure 3.4, the general inter-tract correlations from birth to puberty are clearly stronger for 

all four DTI-derived microstructural measurements. With FA measurement as an 

example, each entry of correlation matrix in Figure 3.4a can be expanded to the 

correlation scatterplots such as those shown in panels of Figure 3.3a. Our results also 

indicated that significantly increased inter-tract correlations are more widespread with 

correlation coefficients based on RD measurements. For both age groups, correlation 

coefficients are highest based on AxD measurements (Figure 3.4c) and lowest based on 

FA measurements (FA). This pattern is especially clear for children around puberty. The 

overall higher inter-tract correlation coefficients based on AxD measurements suggest 

that axonal integrity is coherent among the WM tracts within an individual child’s brain but 

varies among different children. To help understand this finding, we could assume a 

situation when each of the children around puberty has identical AxD for all 10 major WM 

tracts and the AxD values vary among these children. Under such situation, all inter-tract 
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correlation coefficients based on AxD would be the perfect value 1. The relatively low 

inter-tract correlation coefficients based on FA measurements may be caused by 

heterogeneity of FA values among the WM tracts within each individual subject’s brain. 

Larger variability of FA values among WM tracts can also be observed in Figure 3.2a. 

From Figure 3.5a, the FA-based dendrograms show that several homologous 

tracts are clustered together even for neonates. The left and right IFO are clustered with 

rank 1 for dendrograms based on tract-level FA of neonatal brains. IFO is thought to play 

a role in integrating the information from auditory and visual cortices to the prefrontal 

cortex (Martino et al., 2010). Resting-state fMRI studies have shown consistent pattern of 

activation in auditory and visual networks in neonates (Doria et al., 2010; Fransson et al., 

2007). It is noteworthy that in the resting-state fMRI studies, the connectivity was also 

identified through correlation of brain-oxygen-level-dependent (BOLD) signal fluctuations 

in the homologous brain regions. The strong correlations of BOLD signal time courses in 

visual and auditory networks between left and right hemisphere in neonatal brains may 

be related to tight cluster of IFO-L and IFO-R involved in these brain functions. Both 

neonatal and child dendrograms based on FA measurements (Figure 3.5a) have two 

more separate clusters of projection tracts (CST) and limbic tracts (CGC). All these 

clusters can also be found in adult brains (Wahl et al., 2010). Figure 3.5b demonstrates 

one of the most compelling findings with dendrograms based on RD measurements. 

Although two pairs of homologous WM tracts are clustered together with rank 1 

(IFO_L/R) and rank 3 (CGC_L/R), the other two pairs of homologous tracts and 

FMajor/FMinor are spread all over the dendrogram for neonatal brains (Figure3.5b). It is 

striking that all 4 pairs of homologous tracts and FMajor/FMinor are tightly clustered 

together for children around puberty (Figure 3.5b). RD is closely related to myelination of 

WM tracts (Song et al., 2002). We should be careful to associate the RD values with 
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myelination due to crossing-fiber and pathological situations (Wheeler-Kingshott and 

Cercignani, 2009). Nevertheless, during normal brain development with no implication of 

pathology and with the assumption that tract-level RD measurement for major WM tracts 

is much less affected by crossing fiber compared to voxelwise RD measurement, tract-

level RD is still considered as an important index reflecting the degree of myelination 

(Eluvathingal et al., 2007; Gao et al., 2009a; Snook et al., 2005; Tamnes et al., 2010; 

Westlye et al., 2010). The results in Figure 3.5b suggest that organized myelination from 

birth to puberty plays an important role to reshuffle the inter-tract correlations and result 

in clustered homologous tracts and clustered functionally similar tracts. The dendrogram 

patterns based on AxD and MD measurements are different than those based on FA or 

RD measurements. Unlike RD-based dendrogram (Figure 3.5b), neither of the 

dendrograms based on AxD or MD measurements for children around puberty shows 

well organized clusters of all 4 pairs of homologous tracts and FMajor/FMinor (Figure 

3.5c and 3.5d). Previous studies (Gao et al., 2009a; Neil et al., 2002; Snook et al., 2005) 

have found that the measurements of RD decrease dramatically with relatively little 

changes in AxD of the major white matter tracts during brain development. Our results 

demonstrated in Figure 3.2 also indicate smaller and more homogeneous changes of 

AxD from birth to puberty compared to those of RD. These AxD change features may 

explain why relatively disorganized AxD-based dendrograms remain for children around 

puberty. From equation (3.1), MD is the linear combination of AxD and RD. The relatively 

disorganized dendrograms based on MD measurement for child group could also be 

originated from smaller and more homogeneous changes of AxD measurements during 

development. Nevertheless, with the brain development, there are still trends for 

homologous and functionally similar tracts to cluster together in dendrograms based on 

AxD and MD in Figure 3.5c and Figure 3.5d.  
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3.4.3. Possible Mechanisms of the Inter-tract Correlation Changes from Birth to Onset of 

Adolescence 

This study on dynamics of inter-tract correlations from birth to onset of 

adolescence provides unique insight on the well-organized cerebral WM development. 

The development of human cerebral WM tracts is characterized with enhanced 

myelination and axonal integrity. From the results in this study, inhomogeneous RD 

decreases among the tracts take place during development. More (84.4% of all 

independent correlation coefficients) inter-tract correlations become stronger with RD 

measurements, compared to those with any other DTI metric measurements. In addition, 

the dendrograms based on RD (Figure 3.5b) demonstrate that all 4 pairs of homologous 

tracts and FMajor/FMinor are tightly clustered at puberty while only 2 pairs of 

homologous tracts are clustered at birth. The cerebral WM at birth is likely to be in a 

relatively random and disorganized status. Due to close relationship of RD with the 

myelination of WM tract, these results suggest that inhomogeneous enhancement of 

myelination rather than strengthening of axonal integrity plays a key role in reshaping the 

WM configuration during development. Both genes and experiences could also play a 

role to adjust WM microstructures so that the homologous WM tracts reach to a coherent 

status to meet the needs of certain brain functions by the time of onset of adolescence. 

Although it is not known by what mechanism inhomogeneous myelination is modulated 

during WM maturation, our results suggest that the myelination process is precisely 

controlled so that all 4 pairs of homologous tracts and FMajor/FMinor are clustered 

together around puberty (Figure 3.5b).  
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3.5. Limitations of this Study and Future Directions 

There are several issues which may affect the results in this study. Five pairs of 

major WM tracts were chosen for this study due to the fact that only these five pairs of 

major WM tracts could be reproducibly traced with neonate DTI. The numbers of 

participated subjects, 26 for neonates and 28 for children, just exceeds 25 which is 

needed for correlation analysis of five pairs of WM tracts. Higher sample numbers could 

increase the confidence level in analysis of hierarchical clustering. Corrections for 

multiple comparisons were only performed on testing the correlation matrices against 

identity matrix and matrix with equal non-diagonal elements. No correction was 

performed on the hierarchical clustering results due to lack of any known methods to 

perform such a correction on dendrograms. The accuracy of measuring tract-level DTI-

derived metrics plays a key role in inter-tract correlations. This accuracy is affected by 

three major factors. They are the crossing-fiber factor, SNR of the data and partial 

volume effects. Both the tractography and the DTI-derived measurements are biased at 

crossing-fiber regions (Wheeler-Kingshott and Cercignani, 2009). With single tensor 

model and tractography method of fiber assignment by continuous tracking (FACT) (Mori 

et al., 1999), it is apparent that the tracing method adopted in this study cannot resolve 

the crossing-fiber issue, resulting in imperfect binary mask of the traced tracts for tract-

level measurements of DTI metrics. Nevertheless, the tracing protocol (Wakana et al., 

2007) based on FACT tractography captures the core of the major WM tracts and is still 

widely used in the field. We conducted two repetitions of diffusion MRI and the SNR is 

sufficient for data acquisition with 3T magnet. With diffusion imaging resolution 

2x2x2mm3 for neonates and 2x2x2.2mm3 for children around puberty, the partial volume 

effects are inevitable. However, it seems the effects of imperfect WM fiber tracing offsets 

the partial volume effects for obtaining accurate tract-level DTI metrics, in that the tracing 
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algorithm adopted in this study cannot trace the small branches of the fibers where the 

problem of partial volume effects is most prominent. Ranks of the DTI measurements, 

instead of measured metrics themselves, were used for correlation pattern analysis. 

Despite possibly different levels of biases of the DTI metric measurements caused by 

partial volume effects due to different head sizes between neonates and children, the 

similar shifts of measurements in the same age group could have minimum effects on the 

rank of metric measurements and therefore minimum effects on the Spearman’s rank 

correlation patterns. Although same types of scanners were used in this study, 

systematic differences of the scanners may affect the DTI analysis results. To make sure 

that the effects of systematic differences caused by two different scanners are minimal, a 

healthy young subject (“in vivo human phantom”) was scanned in both scanners used in 

this study and with the same DTI sequence. The quantitative comparisons were also 

conducted. Quantitative DTI measurement differences caused by scanner difference 

were tested to be within the range of variability of scanning the same subject twice with 

one scanner (Saxena et al., 2012). With the same type of scanners used in this study and 

rigorous quality control of both scanners, the effects of scanner differences on the 

presented results in this study are thus negligible. The group of children around puberty 

included both pre-puberty and post-puberty subjects. The age difference between the two 

groups, newborns and children around puberty, is much larger than the age difference 

within the group of around puberty. Therefore, we hypothesized that the intra-group WM 

developmental heterogeneity for the children group exists, but is not big enough to affect 

the inter-group results presented in this study. This has been tested and proved by Figure 

3.6. In Figure 3.6, we separated the children around puberty into two subgroups, pre-

puberty (9.5 to 12 year) and post-puberty (12 to 15 year). With reduced sample number 

for each subgroup, we could conduct the correlation analysis for 6 tracts (3 pairs of 
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homologous tracts). It is shown in Figure 3.6 that homologous tracts are still clustered 

together in both subgroups, like the cluster patterns shown in the right column of Figure 

3.5. Moreover, the linkage patterns are very similar between the two subgroups, with 

slight dendrogram rank change.  

The tracts obtained using the FACT technique used in this study is biased due to 

its inability to track through the crossing fiber regions as mentioned above. Hence the 

tracts obtained in this study do not faithfully represent the exact tract connections 

between different regions of the brain and could possibly influence the hierarchical 

tractography classification obtained. Since the fiber tracking approach depends heavily 

on the myelination and the organization of the white matter fibers which are yet not fully 

developed in neonatal subjects in this study, there is a possibility that the hierarchical 

tractography classification is biased. However it was shown that the hierarchical 

classification obtained using the tract-tracing approach (Wahl et al., 2010) and 

independent component analysis (ICA) approach (Li et al., 2012) was similar for an older 

group of healthy subjects and hence this study should be repeated by ICA technique with 

more subjects in each group to replicate the findings that might remove the discrepancies 

obtained in the known tract connections between different brain regions and the 

hierarchical tractography classification due to the tract-tracing approach. 

In the future, several improvements can be made to address the issues affecting 

accuracy of measuring tract-level DTI metrics. The tracking methods (Behrens et al., 

2007; Tournier et al., 2004) which are capable of resolving the crossing-fiber issue can 

be adopted. Although there is no general consensus on which parameters can replace 

these four DTI-derived metrics and better characterize the WM microstructure, there have 

been a few metrics such as general fractional anisotropy (GFA) (Fritzsche et al., 2010; 

Tuch, 2004; Zhan et al., 2010), generalized anisotropy (GA) (Ozarslan et al., 2005), 
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mode of anisotropy (Douaud et al., 2011; Ennis and Kindlmann, 2006) and fractions 

(Hosey et al., 2008; Jbabdi et al., 2010) which are less sensitive to crossing-fiber 

problem. In addition, tract-based spatial statistics (TBSS) from FSL 

(http://www.fmrib.ox.ac.uk/fsl) (Smith et al., 2006) can be used to alleviate the partial 

volume effects, as shown in the study of FA correlations in adults (Li et al., 2012). 

 

3.6. Conclusion 

In conclusion, inter-tract correlation changes during development from birth to 

onset of adolescence were investigated with tract-level FA, RD, AxD and MD 

measurements. Stronger and enhanced microstructural inter-tract correlations were 

found during development. The linkage patterns of the major tracts also differ with the 

dendrograms of two age groups due to brain development. These changes of 

microstructural correlations from birth to puberty suggest inhomogeneous but organized 

myelination processes which cause the reshuffled inter-tract correlation pattern and make 

homologous tracts tightly clustered. Especially RD-based dendrograms reveal that all 4 

pairs of homologous tracts and FMajor/FMinor investigated in this study are tightly 

clustered for children around puberty while only 2 out of these 5 pairs of tracts are 

clustered at birth, indicating important role of myelination to reshape the WM 

configuration. It opens a new window to study white matter tract development and can be 

potentially used to investigate atypical brain development due to neurological or 

psychiatric disorders. 
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Chapter 4 

Exploring the Perinatal Brain Network with Diffusion MRI and Graph Theory 

4.1. Introduction 

The human brain is a highly structured organ but its origin is just a simple tube 

(Huang and Vasung, 2013; Nolte, 1999). How does this simple tube advances to become 

the most complex yet highly structured organ of the body is still elusive? Considering the 

significance of delineating the structural changes to understand the very complicated 

process of human fetal brain development, it is not striking that neuroanatomists have 

been studying this process since last two centuries. The very earliest report about the 

structure of the human brain came in 1816 from embryological dissection of postnatal 

human brains (Tiedemann, 1816) which was followed by several other noted 

neuroanatomists (Chi et al., 1977; Poliakov, 1949). Histology, by far, has been the most 

widely used and a dominant modality to study the early neural structure of developing 

human brain (Rakic, 1988; Sidman and Rakic, 1982; Volpe, 2001). Comprehensive 

atlases based on histological slides became available a few years ago (Bayer and 

Altman, 2005; O'Rahilly and Muller, 2006).  

Although unmatched information about the human fetal brain could be obtained 

from histological sections; it requires highly trained people to conduct these studies, it is 

time consuming and could be subjective (Axer, 2011). As mentioned in the previous 

chapters, DTI has the capability to non-invasively image the neural structures of 

developing human brain. The water molecules diffusing inside the brain has a tendency 

to diffuse in a direction parallel to the axons rather than perpendicular to it (Beaulieu, 

2002; Le Bihan, 2011; Mori, 2007). The microstructural and morphological changes of 

white matter axons connecting different cortical areas of the developmental brains has 

been studied in great details by estimating DTI derived metrics such as FA, AxD and RD 
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of white matter fiber bundles(Dubois et al., 2008; Eluvathingal et al., 2007; Gao et al., 

2009a; Giorgio et al., 2010; Huang and Vasung, 2013; Huang et al., 2009; Huang et al., 

2006; Huppi, 2011; Huppi and Dubois, 2006; Huppi et al., 1998; Kostovic and Jovanov-

Milosevic, 2006; Lebel et al., 2008; Mukherjee et al., 2002; Snook et al., 2005). Using the 

direction of the fastest diffusion of the water molecules, one can assess the structural 

connectivity consisting of heterogeneous white matter fiber bundles connecting different 

brain regions (Dennis et al., 2011; Hagmann et al., 2010). This structural connectivity 

underlies the formation and evolution of the human brain network during development. 

The structural connectivity could be thought of as a network or “wiring” of the human 

brains which is responsible for normal cognitive and executive functions. Deviation from 

normal network development has been found to be associated with developmental 

cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar 

disorder and language impairment (Bullmore and Sporns, 2009; Power et al., 2010). 

The application of graph theory to study human brain network has advanced our 

understanding of the structural and functional brain networks (Bullmore and Sporns, 

2009; He et al., 2007; He and Evans, 2010; van den Heuvel et al., 2009; van den Heuvel 

and Sporns, 2011). The development of functional brain networks has been studied using 

functional MRI (f-MRI) (Dosenbach et al., 2010; Fair et al., 2008; Fair et al., 2007; Power 

et al., 2010; Supekar et al., 2009) and recently, dMRI has been used to study structural 

brain connectivity (Dennis et al., 2011; Gong et al., 2009; Hagmann et al., 2010). 

Characterizing normal perinatal brain network development will not only expand our 

understanding of formation of functionally significant brain circuits, but also shed light on 

our understanding of the abnormal network development associated with child health. 

The axonal connectivity during early brain development undergoes dramatic structural 

changes causing significant variations of brain network properties (Huang et al., 2009; 
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Huang et al., 2006; Judas, 2011; Kostovic and Jovanov-Milosevic, 2006; Takahashi et al., 

2012; Vasung et al., 2010; Vasung et al., 2011). The advantage of dMRI to probe 

structural brain connectivity using DTI based tractography, makes it an ideal choice to 

study perinatal structural brain development.  However, with the difficulty of acquiring 

high quality DTI data of perinatal brains, brain network development has not been 

characterized in the literature. Studying perinatal brain network development in the 

continuous age range of 31wg to 40wg will improve our understanding whether there is a 

monotonic change of the network configuration or it follows some pattern of brain 

development.  

In this study, we explored the development of human brain structural networks 

with high resolution DTI data of 15 in vivo neonatal brains from 31wg to 40wg. The brain 

was parcellated into 58 cortical regions or nodes using JHU neonatal template (Oishi et 

al., 2011) and structural connectivity between these nodes were quantified with 

deterministic fiber tracking (Mori et al., 1999). Topological changes during perinatal brain 

development were characterized with graph theoretical analysis (Bullmore and Sporns, 

2009). Various graph theoretical network metrics such as network strength, global and 

local efficiency, modularity and small-worldness were quantified and compared for the 

developing brains. 

 

4.2. Materials and Methods 

4.2.1. Primer on Graph Theory 

Graph theory is a branch of mathematics developed in the 18th century and is 

credited to Euler’s original publication in which he used a graphical representation to 

show that it was impossible to traverse each city of Koningsberg’s seven bridges exactly 

once and return to the starting point (Euler, 1736). A graph in the context of graph theory 
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is defined as a set of nodes or vertices that are linked together by connections or edges. 

The connections of the graph can be weighted or unweighted and can be directed or 

undirected. Graph theoretical methods have since been applied to many real-world 

systems to provide an abstract representation of the system’s elements and their 

interactions (Watts and Strogatz, 1998). Many of the efficient real-world systems have 

been shown to share common network properties although the systems themselves were 

inherently diverse such as the neural network of the Caenorhabditis elegans worm, the 

power grid of the western United States and the social network of the Screen Actors 

Guild (Watts and Strogatz, 1998). These networks were described as having small-world 

network phenomenon. Recently, such small-world architectures have also been shown in 

several empirical studies of human structural and functional brain networks (Bullmore and 

Sporns, 2009; Hagmann et al., 2010; He et al., 2007; He and Evans, 2010). Several  

other topological properties derived from graph theoretical approaches such as global, 

local and cost efficiency, strength, and modularity have also been measured in relation to 

human brain networks (Bullmore and Sporns, 2009; Hagmann et al., 2010; He et al., 

2007; He and Evans, 2010). Structural and functional brain networks can be explored 

using graph theory with the following 4 steps, shown graphically in Figure 4.1 (Bullmore 

and Sporns, 2009): 

I. Defining the nodes: Nodes can be defined as the electrodes used for 

electroencephalography (EEG) or magnetoencephalography (MEG) or 

any combination of voxels from fMRI data for studying functional brain 

networks or as anatomically defined cortical regions from histological, 

MRI or dMRI data for studying structural brain networks. 

II. Defining the edges: Edges can be defined as the cross-correlation 

between the regions of interest in fMRI data or inter-regional correlations 
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between the electrodes used in MEG or EEG studies for functional 

network analysis or number of fibers between two regions of a dMRI data 

for structural connectivity analysis. 

III. Building the connectivity matrix: An adjacency, connectivity or an 

association matrix is generated by compiling all the pairwise association 

between nodes. 

IV. Deriving the network properties: The connectivity matrix of step III is then 

evaluated to derive various topological network measures by comparing 

the matrix to equivalent parameters of a population of random networks. 

Various network properties are described later in the section of network 

properties. 

 

Figure 4.1: Graphical illustration of the technique to perform graph theoretical analysis. 
Nodes of the analysis are shown by various colors on the anatomical parcellation of the  

brain or the red circles on the functional recording data; the edges for dMRI are shown by 
the fiber tracts or the correlation strength between the different nodes on the functional 

data (Bullmore and Sporns, 2009). 
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4.2.2 dMRI Acquisition for In-vivo Human Brain 

High quality dMRI data was acquired from 15 neonatal brains between 31wg and 

40wg at Children’s Medical Center (CMC) at Dallas using a Philips 3T MR scanner. All 

included neonates were part of cohort for studying normal development and were 

selected after rigorous screening procedures conducted by the neonatologist at CMC. 

Exclusion criteria include mother’s excessive drug or alcohol abuse during pregnancy; 

grade III-IV intraventricular hemorrhage; periventricular leukomalacia; hypoxic-ischemic 

encephalopathy; lung disease or brochopulmonary dysplasia; necrotizing enterocolitis 

that requires intestinal resection or complex feeding/nutritional disorders; defects or 

anomalies of forebrain, brainstem or cerebellum; brain tissue dys- or hypoplasias; 

abnormal meninges; alterations in the pial or ventricular surface; or white matter lesions. 

dMRI data were acquired using a single-shot EPI with SENSE parallel imaging scheme 

(SENSitivity Encoding, reduction factor =2.5). The imaging parameters were: 

resolution=1.5x1.5x1.5 mm3, identical 30 independent diffusion-weighted directions 

(Jones et al., 1999a) uniformly distributed in space, b-value =1000 s/mm2, repetition=2. 

For dMRI, the total acquisition time was 11 minutes. In addition, 15 neonatal subjects in 

the continuous age range between 30wg and 40wg were scanned at CMC. All mothers 

gave informed written consents approved by Institutional Review Board of the CMC. 

 

4.2.3. Network Construction for the Developing Brains 

The workflow of structural network construction including cortical parcellation 

(Figure 4.2a), dMRI tractography (Figure 4.2b) and generation of connectivity matrix 

(Figure 4.2c) of the neonatal brains can be seen in Figure 4.2. A 58x58 symmetric 

weighted cortical network or graph representing the structural connectivity of whole-brain 

was constructed for each subject after node and edge definitions described in details 



 

below. Graph theoretical methods were 

for each group.  

Figure 4.2: Illustration of the pipeline to build the connectome. Nodes were deri
template free parcellation algorithm and are overlaid as different colors on (a); edges 

connecting the nodes were obtained from deterministic fiber tracking as shown in (b) and 
connectivity matrix generated from these edges is shown in (c). 

 

4.2.3.1. Cortical Parcellation for

The procedure for obtaining the nodes has been previously described 

al., 2009; Huang et al., 2013)

transforming the JHU template 

matrix that was obtained by registering the non

of the JHU template using SPM8 (
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raph theoretical methods were then applied to derive various network properties 

: Illustration of the pipeline to build the connectome. Nodes were derived from a 
template free parcellation algorithm and are overlaid as different colors on (a); edges 

connecting the nodes were obtained from deterministic fiber tracking as shown in (b) and 
connectivity matrix generated from these edges is shown in (c).  

arcellation for Network Node Definition 

The procedure for obtaining the nodes has been previously described (Gong et 

al., 2009; Huang et al., 2013). Briefly, the cortical parcellation was obtained by 

transforming the JHU template (Oishi et al., 2011) to native space using a transformation 

matrix that was obtained by registering the non-diffusion weighted b0 image to b0 image 

of the JHU template using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The resulting JHU 

applied to derive various network properties 

ved from a 
template free parcellation algorithm and are overlaid as different colors on (a); edges 

connecting the nodes were obtained from deterministic fiber tracking as shown in (b) and 

(Gong et 

to native space using a transformation 

diffusion weighted b0 image to b0 image 

). The resulting JHU 
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template with 58 parcellated regions or nodes was hence in the native space. Of note, 

discrete labeling values were preserved by the use of nearest-neighbor interpolation 

method.  

4.2.3.2 dMRI Tractography for Network Edge Definition 

With each of the 58 parcellated nodes as seeds, deterministic tracking was 

performed using TrackVis (Wang et al., 2007). A filtering algorithm was applied to retain 

only those fiber tracts that connect two different nodes and a 58x58 weighted connectivity 

matrix was established for each subject.  

The weight of the 58x58 weighted connectivity matrices was obtained by scaling 

the number of fibers connecting any two nodes by the average FA of the fibers 

connecting those two nodes (Liu et al., 2012). Since the resolution was same for each 

subject in the continuous age range cohort, fiber count represents an unbiased 

measurement of connectivity between any two nodes. FA indicates the microstructural 

integrity of the white matter fibers which will strengthen with brain development and 

hence it was used as a scaling factor to better characterize the early brain network.  

 

4.2.4. Network Analysis with Graph Theory 

A brain structural network (graph) G is composed by N nodes and K edges. To 

characterize topological organization of structural networks, the following graph 

measures under different thresholds were calculated: network strength, global efficiency, 

local efficiency, normalized shortest path length, normalized clustering coefficient and 

small-worldness (Rubinov and Sporns, 2010). All network analysis was performed using 

the in-house GRETNA software (Huang et al., 2013).  
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4.2.4.1 Network Strength, Efficiency and Small-worldness 

 For a weighted brain network or graph, we first computed the network strength 

(Equation 4.1) as the average of the strengths across all of the nodes in which the 

strength of a node is the sum of the edge weights (wij) linking to it. Then, we computed 

the weighted clustering coefficient (Equation 4.2), which quantifies the extent of local 

interconnectivity or cliquishness in a network, and the weighted shortest path length 

(Equation 4.3), which quantifies   the ability for information propagation in a network in 

parallel. A network is said to be small-world if it has similar shortest path lengths but 

higher clustering coefficients than degree-matched random networks (Watts and 

Strogatz, 1998). In other words, a small-world network has the normalized clustering 

coefficient, / 1real rand
p pC Cγ = >  and the normalized shortest path length, / 1real rand

p pL Lλ = ≈ . 

These two measurements can also be summarized into a simple quantitative 

measurement, small-worldness, λγσ /=  (Equation 4.4). We also computed the global 

efficiency as the inverse of shortest path length, the local efficiency as a measure of the 

efficiency of local information transfer between neighboring nodes, and the cost efficiency 

as the relative network efficiency normalized by its cost (Equations 5-7, respectively).  

Network strength: For a network (graph) G with N nodes and K edges, we calculated the 

strength of G as:  

                                            [4.1] 

where S(i) is the sum of the edge weights wij linking to node i. The strength of a network 

is the average of the strengths across all of the nodes in the network. 

Small-world properties: Small-world network parameters (clustering coefficient, Cp, and 

shortest path length, Lp) were originally proposed by Watts and Strogatz (Watts and 

Strogatz, 1998). In this study, we investigated the small-world properties of the weighted 

1
( ) ( )p

i G

S G S i
N ∈

= ∑
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brain networks. The clustering coefficient of a node i, C(i), which was defined as the 

likelihood whether the neighborhoods were connected with each other or not, is 

expressed as follows: 

                              [4.2] 

where ki is the degree of node i, and  is the weight, which is scaled by the mean of all 

weights to control each participant’s cost at the same level. The clustering coefficient is 

zero, C(i) = 0, if the nodes are isolated or with just one connection, i.e., ki = 0 or ki = 1. 

The clustering coefficient, Cp, of a network is the average of the clustering coefficient 

over all nodes, which indicates the extent of local interconnectivity or cliquishness in a 

network (Watts and Strogatz, 1998). 

The path length between any pair of nodes (e.g., node i and node j) is defined as 

the sum of the edge lengths along this path. For weighted networks, the length of each 

edge was assigned by computing the reciprocal of the edge weight, 1/wij. The shortest 

path length, Lij, is defined as the length of the path for node i and node j with the shortest 

length. The shortest path length of a network is computed as follows: 

                                            [4.3] 

where N is the number of nodes in the network. The Lp of a network quantifies the ability 

for information propagation in parallel.  

To examine the small-world properties, the clustering coefficient, Cp, and shortest 

path length, Lp, of the brain networks were compared with those of random networks. In 

this study, we generated 100 matched random networks, which had the same number of 

nodes, edges, and degree distribution as the real networks (Maslov and Sneppen, 2002). 

Of note, we retained the weight of each edge during the randomization procedure such 

1/3

,

2
( ) ( )

( 1) ij jk ki
j ki i

C i w w w
k k

=
− ∑
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that the weight distribution of the network was preserved. Furthermore, we computed the 

normalized shortest path length (lambda), , and the normalized clustering 

coefficient (gamma), , where  and  are the mean shortest 

path length and the mean clustering coefficient of 100 matched random networks. Of 

note, the two parameters correct the differences in the edge number and degree 

distribution of the networks across individuals. A real network would be considered small-

world if  and (Watts and Strogatz, 1998). In other words, a small-world 

network has not only the higher local interconnectivity but also the approximately 

equivalent shortest path length compared with the random networks. These two 

measurements can be summarized into a simple quantitative metric, small-worldness, 

                                                         [4.4] 

which is typically greater than 1 for small-world networks. 

Network efficiency: The global efficiency of G measures the global efficiency of the 

parallel information transfer in the network (Latora and Marchiori, 2001), which can be 

computed as: 

                                    [4.5] 

where Lij is the shortest path length between node i and node j in G.  

The local efficiency of G reveals how much the network is fault tolerant, showing 

how efficient the communication is among the first neighbors of the node i when it is 

removed. The local efficiency of a graph is defined as:  

                                        [4.6] 

where Gi denotes the subgraph composed of the nearest neighbors of node i.  

/real rand
p pL Lλ =

/real rand
p pC Cγ = rand

pL rand
pC

1γ > 1λ ≈

/σ γ λ=

1 1
( )

( 1)glob
i j G ij

E G
N N L≠ ∈

=
− ∑

1
( ) ( )loc glob i
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The cost efficiency of G is defined as the global efficiency divided by the cost of 

the network. 

                                   [4.7]
 

The network cost was to measure the expense for building up the connecting elements of 

a graph. Typically, the cost of a connection is proportional to its distance, which is the 

inverse of the edge weight in this study, and therefore the overall cost of a graph is 

derived by taking the sum of distance, i.e. Cost = sum (1/wij). The cost efficiency 

measures the relative network efficiency normalized by its cost (Huang et al., 2013).  

 

4.3. Results 

4.3.1. Cortico-cortical Connections of Perinatal Human Brain Cohorts 

Figure 4.3 shows the cortico-cortical connections for a 31wg, 35wg and 40wg 

brain. Sagittal view (top panel) and axial view (bottom panel) are shown for each subject. 

As can be seen from Figure 4.3, the orientation of the fibers represented by the color 

encoded by the fibers shows a significantly heterogeneous trend with brain development. 

The white matter fibers of 31wg have more green encoded fibers overall visually, and 

with perinatal brain development the fibers become more heterogeneous shown by a 

very heterogeneous color pattern in 35wg and 40wg brains. 

cos ( ) ( ) / ( )t globE G E G Cost G=



 

Figure 4.3: Cortico-cortical fiber connections are shown for a representative subject in a 
31wg, 35wg and 40wg brain. Top row show the sagittal view and bottom row

 

4.3.2. Dynamics of the Connectivity 

Figure 4.4 shows the 

brain. It can be appreciated that connectivity strength increases with brain d

shown by red color in most of the elements of the 40wg connectivity matrix as compared 

to 31wg or 35wg brain. It can also be seen from 

connectivity becomes stronger during perinatal 

appreciated from more red color elements in 40wg brain as compared to the other 

groups. 
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cortical fiber connections are shown for a representative subject in a 
wg, 35wg and 40wg brain. Top row show the sagittal view and bottom row shows the 

axial view.  

onnectivity Matrix during Perinatal Brain Development 

the weighted connectivity matrix of a 31wg, 35wg and 40wg 

brain. It can be appreciated that connectivity strength increases with brain development 

shown by red color in most of the elements of the 40wg connectivity matrix as compared 

wg or 35wg brain. It can also be seen from Figure 4.4, that inter-hemispheric 

ctivity becomes stronger during perinatal brain development which could be 

more red color elements in 40wg brain as compared to the other 

 

cortical fiber connections are shown for a representative subject in a 
shows the 

 

weighted connectivity matrix of a 31wg, 35wg and 40wg 

evelopment 

shown by red color in most of the elements of the 40wg connectivity matrix as compared 

hemispheric 

d be 

more red color elements in 40wg brain as compared to the other 



 

Figure 4.4: Connectivity matrix is shown for 
35wg in the middle panel and 40wg in the rightmos

 

4.3.3. Dynamics of the Network 

Brain Development 

The network strength, efficiency and small

are shown in Figure 4.5. The network strength, global efficiency, local efficiency and cost 

efficiency increase uniformly with age as shown in 

uniformly with age while normalized C

trend with perinatal brain development

with a normalized Cp greater than 1 and normalized L
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onnectivity matrix is shown for 3 timepoints; 31 wg in the leftmost panel, 
35wg in the middle panel and 40wg in the rightmost panel 

etwork Strength, Efficiency and Small-world Properties 

The network strength, efficiency and small-world properties of three age groups 

. The network strength, global efficiency, local efficiency and cost 

efficiency increase uniformly with age as shown in Figure 4.5. Normalized Lp increase

uniformly with age while normalized Cp and small worldness does not show an increasing 

brain development. Small-world organization is evident at all ages 

greater than 1 and normalized Lp close to 1.  

3 timepoints; 31 wg in the leftmost panel, 

roperties during 

world properties of three age groups 

. The network strength, global efficiency, local efficiency and cost 

increase 

an increasing 

is evident at all ages 



 

 
Figure 4.5: Various network properties are shown as scatterplots as a function of 

gestational age in weeks. Each dot represents the result from an individual subject.
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: Various network properties are shown as scatterplots as a function of 
tational age in weeks. Each dot represents the result from an individual subject.

 

 

: Various network properties are shown as scatterplots as a function of 
tational age in weeks. Each dot represents the result from an individual subject. 
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4.4 Discussion 

The early human brain development during continuous age range of 31wg to 

40wg is characterized with dramatic changes of structural connectivity and network 

configuration. Moreover, the brain structural configuration was evolved into a stronger 

and a more efficient organization with human brain development. Our results show a 

monotonic increase in all the network derived metrics except clustering coefficient and 

small-worldness. The increase in the efficiency during perinatal brain development also 

suggests that the stronger network configuration is obtained from a combination of 

microstructural development of WM fiber tracts combined with synaptic pruning of small 

WM fibers. To our knowledge, this study is the first comprehensive network investigation 

during perinatal brain development using graph theoretical approaches.  

The network quantification shows a stronger and more efficient connectivity with 

development. The increase in network strength, global, local and cost efficiency is 

increasing in a monotonic fashion indicating that brain is getting more efficient during 

perinatal brain development (Figure 4.5). Increase in the normalized Lp between 31wg 

and 40wg indicates that during early brain development, communication processes 

between different regions of the brain become more integrated but the insignificant 

change in normalized Cp indicates that the communication is not yet well segregated (He 

and Evans, 2010). However, small-world organization does exist at all the three landmark 

points when compared to 100 matched random networks indicating that brain neither has 

a random nor a very regular lattice structure even as early as 31wg (Watts and Strogatz, 

1998). Recent studies have shown that small-worldness property exists in brain during 

very early stages of life as early as two weeks old (Huang et al., 2013; Yap et al., 2011). 

The dMRI studies have shown that the brain has increased efficiency and strength with 

brain maturation from 2-to 18 year old (Hagmann et al., 2010) and our study show that 
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the dynamics of these network metrics are present even during the perinatal brain 

development. Hence our results suggests that during  brain development, network 

integration increases but segregation is a process that takes place after birth as shown in 

the previous studies (Hagmann et al., 2010; Yap et al., 2011).  

Although there have been no functional connectivity studies done at the chosen 

three landmark points, previous studies on development of functional connections have 

suggested that formation of the human brain network is complemented by important 

structural development (Dosenbach et al., 2010; Fair et al., 2008; Fair et al., 2007; Power 

et al., 2010; Supekar et al., 2009). These developments include myelination of the long 

range WM fibers (Giedd et al., 1999; Paus et al., 1999) and pruning of the short range 

WM fibers (Chugani et al., 1987; Huttenlocher et al., 1982; Takahashi et al., 2012). Brain 

maturation in terms of functional connectivity can be linked to improved structural 

connectivity and has been shown that structural connectivity might itself manifest some 

changes to incorporate later matured functional connectivity (Greicius et al., 2009; Honey 

et al., 2009; van den Heuvel et al., 2009). Unlike functional connectivity, structural 

connectivity evaluated from dMRI relies solely on physical axonal connections. Hence the 

brain regions that communicate via a relay process cannot be studied with structural 

connectivity analysis using dMRI. It is likely that the strengthening of the growing 

structural network is the outcome of both the microstructural enhancement (including 

myelination) of the long range WM fibers and pruning of the short range fibers. The 

analysis of integrated effects of microstructural enhancement of long range fibers and 

pruning of short range fibers in the future may provide further insights on the underlying 

mechanism of growing human brain network. 
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4.5. Limitations of the Study and Future Work 

There are several limitations of this study. Firstly, the tractography technique 

used in our study uses deterministic tracking (Mori et al., 1999) that has known limitations 

at the regions where the fibers cross. This study should be replicated with the most 

advanced probabilistic tractography technique (Behrens et al., 2007) to investigate 

whether the tracking algorithm has any significant role in describing the results. Secondly, 

the choice of edge weight and number of nodes has been continuously debated and 

several studies have proposed different number of nodes and edge weights (Hagmann et 

al., 2010; Zalesky et al., 2010). Evaluating change in network properties with different 

number of nodes and edge weights might also give new insights into perinatal human 

brain development. Furthermore, the effect of long range connections and short range 

connections needs to be investigated in detail to evaluate the effects of each of these 

connections on the brain connectivity.  Evaluating the effect of gyrification or cortical 

folding should be investigated and its effect on shaping the overall brain connectivity 

needs to be evaluated. Furthermore, the results are shown from only 15 subjects and the 

study needs to be replicated with a larger sample size.  

 

4.6. Conclusions  

In conclusion, this study shows that a stronger and efficient network is formed 

during early human brain development. All of the network derived metrics showed a 

monotonic increase with brain development. Small-worldness was evident at all ages and 

was retained during brain development. The network property changes found in this 

study could be underlined by significant growth of major long association white matter 

tracts with increased myelination and concurrent pruning of small fibers during perinatal 

brain development.  
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Chapter 5 

Conclusion and Outlook 

As mentioned in the previous chapters, dMRI and DTI is a tremendous non-

invasive modality to virtually dissect the human brain. Several quantitative metrics can be 

derived by fitting the signal to the known single tensor model and the metrics of the fiber 

tracts of interest can be compared with patient population to either diagnose the problem 

at a very early stage or longitudinally follow up the patient to evaluate drug efficacy.  

However, it was shown in chapter 2 that FA which is by far the most widely used 

metric derived from DTI in clinical research has severe underestimation at the region of 

crossing fibers. Since in a patient population it is the entire tract that is of an interest 

rather than just few voxels, VBM technique is not adequate to make an informed clinical 

decision. Hence a novel algorithm DTTA was proposed and evaluated. This algorithm 

was shown to have the potential to be used in the clinics with routinely used dMRI scans 

and it is capable of resolving FA for two fibers in the voxels where there is fiber crossing. 

This new corrected FA can then be used to evaluate the entire tract of interest.  

Since DTI can is capable of doing in vivo virtual dissection of the brain, it has 

tremendous potential to study the developmental patterns of the human brain. It was 

shown in chapter 3 that most of the fiber tracts responsible for specific function in the 

adult brain undergo significant developmental changes. It was shown that although the 

patterns of development derived from clustering algorithms is significantly different at 

birth than during puberty, remarkably the homologous tracts has similar developmental 

trend. 

In chapter 4, efforts were made to study the perinatal brain development with the 

aid of graph theoretical methods. Although it is known that during perinatal brain 

development, several molecular and cellular processes shape the early dynamics of the 
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structural connectivity; brain network configuration during perinatal brain development is 

still unknown. It was shown using graph theoretical approaches that during perinatal brain 

development there is a monotonic increase in all the network derived measurements. 

However even at very early stages of development, human brain exhibits small-world 

organization. 

 But there are still challenges that need to be met to fully utilize the information 

that can be obtained from dMRI data. Complicated models of tractography to track 

through the crossing white matter fibers inside the brain in-vivo and validating the 

tractography techniques with known human brain connections has not been done yet and 

needs to be done. The diffusion process measured is a macroscopic ensemble of all the 

microscopic diffusion inside the brain regions and hence the measured white matter fiber 

integrity is still biased. There is a continuous demand of higher resolution data at a faster 

speed that will give a complete picture of the structural connectivity of the brain. 

Combining the information from this highly resolved structural connectivity can further 

help to answer the ever-staggering question of a very efficient functional brain network. 
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