
A NEW FEATURE DESCRIPTOR FOR LIDAR STRIP MATCHING

by

MYTHREYA JAYENDRA LAKSHMAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2014

ii

Copyright © by Mythreya Jayendra Lakshman 2014

All Rights Reserved

iii

Acknowledgements

I would like to acknowledge Professor Venkat Devarajan for his kind support

throughout my doctoral studies. He groomed me not only as a scientist, but also as an

individual and a professional in a continual manner during my eventful and exciting

studies. I would also like to thank Professor Farhad Kamangar for helping me greatly in

my dissertation work by adding multiple dimensions with his constant help and

availability. I would also like to thank my doctoral committee members, Dr. Jonathan

Bredow, Dr. Michael Manry, Dr. Samir Iqbal and Dr. Vassilis Athitsos who gave me

valuable inputs in the form of coursework or discussions during my studies and helped

me in achieving my goals for my dissertation.

I would like to thank the Department of Electrical Engineering at UT Arlington for

firstly admitting me into their competitive doctoral program. The faculty and staff were

very friendly and they made my stay here a pleasure filled experience. Working at Virtual

Environment Laboratory was the best part of each day and my group members helped

me with enlightening discussions on computer vision and other scientific topics. I would

like to thank the National Resources Conservation Service (NRCS) a part of the United

States Department of Agriculture (USDA) for giving me the funding and opportunity to

work on the LiDAR data matching project. They conducting frequent meetings and

acknowledged that we were on the right track at various crucial junctures which helped

the direction of research constantly.

Finally, I would like to conclude with a big word of thanks for the encouragement

and great deal of patience shown by my wife and my parents during the entire period of

my studies. Without their support I wouldn’t have been in a position to write these words.

April 11
th
, 2014

iv

Abstract

A NEW FEATURE DESCRIPTOR FOR LIDAR IMAGE MATCHING

Mythreya Jayendra Lakshman, PhD

The University of Texas at Arlington, 2014

Supervising Professor: Venkat Devarajan

Light Detection and Ranging (LiDAR) data has been getting a lot of attention

these days because of its applicability in various fields - city planning, disaster response

& precaution, soil conservation, infrastructure or forestry. Raw LiDAR data is not directly

usable in the above-mentioned applications. Therefore, an important aspect of the aerial

LIDAR system is to process raw LiDAR data accurately. The processed data is then

made available to us in the form of point clouds or digital elevation maps (DEM’s) or

digital surface maps (DSM’s). Each swath of raw data represents a single flight path over

a region of interest. Multiple swaths or rectangular strips must be adjusted with respect

to each other so that calibration errors and random errors that occur during the

acquisition process are corrected.

Raw LiDAR data is available in point clouds of overlapping rectangular strips with

10%-30% overlap between the strips. Traditionally, LiDAR point clouds are matched and

strip-adjusted (registered with respect to each other) using techniques based on iterative

closest point (ICP) method or modifications of the same, which as the name suggests,

runs over multiple iterations. The goal of the research presented in this dissertation is to

introduce a novel and alternative method for point matching on LiDAR data based on

finding point-to-point correspondences on interpolated LiDAR strips.

v

Publically or commercially viable LiDAR data is obtained by rescanning an

irregular grid by interpolating the data onto a regular raster grid. This representation is

known as 2.5D representation. The novel algorithm presented in this dissertation

combines the power of LiDAR elevation data with a keypoint detector and descriptor - all

obtained on the 2.5D LiDAR data. The keypoint detector finds interesting keypoints in the

LiDAR strip by using standard keypoint detection techniques such as the scale-space

blob-detection and corner detection techniques. Elevation statistics obtained from

subdivisions of the neighborhood patch surrounding a keypoint are defined as the

keypoint descriptor used in the approach presented in this dissertation. The elements of

such descriptors are referred to as features. Once all the keypoints and descriptors are

obtained for two overlapping patches, correspondences are found using the nearest

neighbors of each point in the feature space. These matches can be used to find the

homography that is used to transform one swath onto another. Scale Invariant Feature

Transformation (SIFT) is a well-known and understood algorithm that uses a similar

approach.

The novelty of the presented work called the Aerial Range Feature Descriptor

(ARFD) is in the adaptive development of unique signatures of each keypoint obtained by

examining a patch surrounding that keypoint in the elevation and/or LiDAR intensity data.

Such hybrid descriptor development has been made possible only by the availability of

pre-registered intensity and elevation data from modern LIDAR platforms.

vi

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ... xiii

List of Tables ...xiv

Chapter 1 Introduction... 1

1.1 Background ... 1

1.2 Details of LiDAR System .. 3

1.2.1 LiDAR Mission Planning .. 3

1.2.1.1 External Factors ... 3

1.2.1.2 Internal Factors .. 4

1.2.2 LiDAR on Board System ... 5

1.2.3 Post Processing System ... 6

1.3 LiDAR Surface Interpolation ... 7

1.4 LiDAR Strip Adjustment .. 8

1.4.1 Iterative Closest Point (ICP) Algorithm for Strip Adjustment 9

1.4.2 Tasks Involved in Strip Adjustment ... 9

1.5 Image Point Matching ... 10

1.5.1 Area Based Matching Techniques .. 10

1.5.2 Feature Based Matching Techniques.. 11

1.6 Dissertation Problem Statement and Goal ... 13

Chapter 2 Image Matching – Previous Work .. 14

2.1 Background ... 14

2.2 Background on Image Matching Techniques ... 14

2.2.1 Area Based Matching Techniques .. 14

vii

2.2.1.1 Pixel Intensity Based Matching Techniques .. 14

2.2.1.2 Frequency Based Matching Techniques ... 17

2.2.1.3 Mutual Information Based Matching Techniques..................................... 18

2.2.2 Feature Based Matching Techniques.. 18

2.3 Details of Selected Feature Based Image Matching Techniques 19

2.3.1 ICP type approaches: IC-Patch Strip Adjustment ... 19

2.3.1.1 Linear and Aerial Feature Strip Adjustment ... 19

2.3.1.2 IC-Patch Strip Adjustment .. 20

2.3.2 Feature Based Matching ... 21

2.3.2.1 Neighborhood Based Matching Techniques .. 21

2.3.2.2 Intensity Based Matching Techniques ... 22

2.3.2.2.1 Scale-invariant Interest Point Indexing ... 22

2.3.2.2.2 Scale-invariant Feature Transform (SIFT) .. 23

2.3.2.2.3 Speeded Up Robust Features (SURF) ... 24

2.3.2.2.4 Gradient Location and Orientation Histogram (GLOH) 24

2.3.2.2.5 A Summary of Other Feature Descriptor Algorithms 25

2.3.3 Feature Based Matching Techniques in LiDAR .. 26

2.4 Conclusion .. 28

Chapter 3 Elevation Based Feature Descriptor .. 29

3.1 Background ... 29

3.2 Steps in LiDAR Strip Matching When Global Coordinates Are

Available ... 29

3.2.1 Interpolation ... 31

3.2.2 Keypoints ... 33

3.2.2.1 Corner Detector ... 33

viii

3.2.2.2 Scale-space Blob Detection ... 35

3.2.3 Feature descriptor ... 35

3.2.4 Distance Score for Keypoints in Two Images ... 36

3.2.5 Model Estimation (Homography) Using RANSAC .. 37

3.2.6 Quality of Matching .. 40

3.3 Steps in LiDAR Strip Matching When Geographic Information Is

Unavailable ... 41

3.3.1 Distance Score for Keypoints in Two Images – Geographic Data

Unavailable ... 41

3.3.2 Possible Matches – Geographic Data Unavailable ... 41

3.3.2.1 Nearest Neighbor Distance Ratio (NNDR) Based Pruning 43

3.3.3 Homography Calculation Following RANSAC ... 43

3.3.4 Quality of Matching .. 43

3.3.5 Recalculation of Homography after Obtaining True Positives and

False Negatives .. 44

3.4 Feature Descriptors Used in Our Experiments ... 44

3.4.1 The Scale Invariant Feature Transform Algorithm .. 44

3.4.2 The Aerial Range Feature Descriptor (ARFD) .. 47

3.5 Variants of the Feature Descriptors Used in Our Experiments 49

3.5.1 Variants of ARFD Sub-patch Descriptors .. 49

3.5.2 Variants of Experiments Common Both to SIFT and ARFD 51

3.5.2.1 Use of SIFT and ARFD on Standard LiDAR Elevation Data 51

3.5.2.2 Use of SIFT and ARFD on Standard LiDAR Intensity Data 51

3.5.2.3 Modified Versions of SIFT and ARFD .. 51

3.6 Conclusion .. 52

ix

Chapter 4 Details of Implementation of ARFD and Modified SIFT 53

4.1 Implementation Platform ... 53

4.2 LiDAR Dataset .. 53

4.3 Approach to Workflow Validation and Comparison of ARFD and SIFT 54

4.4 Implementation Details ... 54

4.4.1 Obtaining the LiDAR Data in Text Format ... 55

4.4.2 Interpolation of LiDAR Strip Data .. 55

4.4.3 Overlap Detector ... 56

4.4.4 Keypoint Detector .. 58

4.4.4.1 Shi-Tomasi Detector .. 58

4.4.4.2 Scale-space (LoG) Blob Detector .. 59

4.4.5 Feature Descriptor ... 59

4.4.5.1 ARFD ... 59

4.4.5.2 SIFT ... 60

4.4.6 Distance Evaluation ... 60

4.4.6.1 Geographic Distance Evaluation ... 60

4.4.6.2 Feature Distance Score ... 61

4.4.7 Nearest Neighbor Matching and Nearest Neighbor Distance Ratio

(NNDR) Based Outlier Elimination ... 61

4.4.8 RANSAC Based Outlier Elimination .. 61

4.4.9 Performance Metrics ... 61

4.5 Details of Performance Metrics .. 62

4.5.1 True Positives (TP) .. 62

4.5.2 False Positives (FP) .. 62

4.5.3 True Negatives (TN) .. 63

x

4.5.4 False Negatives (FN) .. 63

4.6 Additional Quality Measurement Parameters ... 63

4.6.1 Precision .. 63

4.6.2 True Positive Rate (TPR) .. 64

4.6.3 False Positive Rate (FPR) ... 64

4.6.4 Accuracy .. 64

4.6.5 Mean Square Elevation Error (MSEE) .. 64

4.7 Conclusion .. 65

Chapter 5 Performance of the Feature Descriptors for LiDAR Matching for

Unknown Search Area .. 66

5.1 Background ... 66

5.2 Performance Comparison of SIFT and ARFD Using LiDAR Elevation

Data .. 67

5.2.1 Parameters of the Keypoint Detector .. 67

5.2.1.1 Performance of the SIFT Descriptor for Matching of Elevation

Data .. 67

5.2.1.2 Performance of the ARFD Descriptor for Matching of

Elevation Data .. 67

5.2.1.3 Performance Comparison of the ARFD and SIFT Descriptors

for Matching of Elevation Data ... 68

5.2.2 Performance of Elevation Data When Keypoints Were Obtained

from Shi-Tomasi Corner Points .. 69

5.3 Performance Comparison of SIFT and ARFD Using LiDAR Intensity

Data .. 70

xi

5.3.1 Performance of Intensity Data When Keypoints Were Obtained

from Scale-space Blobs.. 70

5.3.2 Performance of Intensity Data When Keypoints Were Obtained

from Shi-Tomasi Corner Points .. 71

5.4 Performance Comparison Between Elevation and Intensity Based

Approaches ... 72

5.5 Performance of the Adaptive Approaches .. 72

5.5.1 Prior Attempts at Establishing Adaptive Approaches 72

5.5.2 Adaptive Technique for ARFD Based Matching .. 73

5.5.3 Adaptive Technique for SIFT Based Matching .. 75

5.5.4 Comparison Between Adaptive SIFT and Adaptive ARFD 76

5.6 Conclusion .. 77

Chapter 6 Performance of the SIFT and ARFD Algorithms for LiDAR

Matching for Predetermined Search Area... 78

6.1 Background ... 78

6.2 Requirement for LiDAR Strip Adjustment Under Common Coordinate

System .. 79

6.3 Matching with ARFD and SIFT Descriptors With Elevation Data as

Input .. 80

6.3.1 Matching Using Scale-space Blobs ... 80

6.3.2 Matching Using Shi-Tomasi Corner Points ... 81

6.4 Matching With ARFD and SIFT Descriptors With Intensity Data As

Input .. 83

6.4.1 Matching Using Scale-space Blobs ... 83

6.4.2 Matching Using Shi-Tomasi Corner Points ... 83

xii

6.5 Conclusion .. 84

Chapter 7 Conclusion .. 85

Appendix A MATLAB Codes ... 87

References .. 117

Biographical Information ... 123

xiii

List of Illustrations

Figure 1-1 Relationships among coordinate systems for a LIDAR mission 5

Figure 2-1 IC Patch Transformation Illustration .. 20

Figure 2-2 Feature Descriptor for Li and Olson Paper .. 26

Figure 3-1 LiDAR Image Matching Block Diagram – Geographic information available .. 30

Figure 3-2 Adaptation of inverse distance weighting .. 32

Figure 3-3 LiDAR Image Matching Block Diagram – Geographic information unavailable

 .. 42

Figure 3-4 SIFT Pyramid Formation [20] .. 45

Figure 3-5 SIFT Descriptor [20] .. 47

Figure 3-6 Sampling the keypoints ... 48

Figure 3-7 Extracting Sub-patch Information .. 49

Figure 4-1 Patch extraction from individual strips ... 54

Figure 4-2 Strip Overlap Configurations Horizontal Overlap .. 57

Figure 4-3 Strip Overlap Configurations Vertical Overlap ... 57

Figure 6-1 Two matching strips on which elevation based matching was performed 82

Figure 6-2 Alignment of the strips shown in Figure 6-2Figure 6-1 82

xiv

List of Tables

Table 5-1 Performance comparison of SIFT and ARFD for elevation data with Scale-

Space blob keypoints .. 68

Table 5-2 Performance comparison of ARFD on elevation data using Scale-Space blob

vs. Shi-Tomasi corner keypoints ... 70

Table 5-3 Performance comparison of SIFT and ARFD for intensity data with Scale-

Space blob keypoints .. 71

Table 5-4 Performance comparison of ARFD on intensity data using Scale-Space blob

vs. Shi-Tomasi corner keypoints ... 71

Table 5-5 Performance comparison – elevation and intensity based approaches 72

Table 5-6 Performance comparison of the ARFD adaptive algorithm versus intensity and

elevation based approaches for the scale-space blob detector. 74

Table 5-7 Performance comparison of the adaptive algorithm versus intensity and

elevation based approaches for the Shi-Tomasi detector .. 75

Table 5-8 Performance comparison of the SIFT adaptive algorithm versus intensity and

elevation based approaches for the scale-space blob detector. 76

Table 5-9 Performance comparison between adaptive versions of SIFT and ARFD

descriptors ... 76

1

Chapter 1

Introduction

1.1 Background

LIght Detection And Ranging (LiDAR) is a technique that is used to obtain depth

information for objects by shining a light pulse at them. Aerial LiDAR is collected from

airplanes and it is used to obtain elevations of points on the ground. These LiDAR

datasets are collected on rectangular strips from aircraft equipped with a scanning laser

emitter-receiver unit, Differential Global Positioning System (DGPS) and an Inertial

Measurement Unit (IMU). The laser pulses that are fired from a mounted laser unit return

after reflecting off the target area on earth. The time taken to return back to a sensor is

measured and converted into a distance of the point on ground from the airplane. The X,

Y & Z coordinates of the point on earth are obtained by further processing. In some

cases, the LiDAR intensity I is obtained from the amplitude of the returned light pulse.

LiDAR elevations (Z data) are quite accurate with a tolerance of 10 to 20 centimeters for

current systems [1]. Common LiDAR systems work in the near-infrared band in the

electromagnetic spectrum and are limited by their inability to penetrate water.

Despite using laser for firing light pulses to the ground, there is some divergence

in the beam of light, causing a significant footprint to form on the ground. The area of the

LiDAR footprint is given by [2]:

������ = ℎcos�
���� �

where,

 � – divergence of the laser beam

ℎ – height of the plane from the ground

�����		– instantaneous scan angle

2

The footprint of LiDAR varies according to applications; there are small-footprint

LiDAR systems with footprints of 10-30 centimeters. Typically occurring footprint

diameters and footprint spacing are less than 0.5 meters and 1.5 meters respectively.

This entire footprint is returned to the scanning sensor, which processes the data and

assigns the average value in the footprint as the elevation (and intensity if applicable) of

the point in question. It is important that the footprint diameter is considerably lesser than

the footprint spacing for the purpose of accuracy of point measurements.

The rectangular strip of data, also called the swath has a width dependent on the

maximum scan angle and the height of the airplane sensor from the ground. It is given by

[2]:

�� = 2ℎ tan
2

where,

ℎ – height of the plane from the ground

�	– scan angle

With these equations taken into account, LiDAR data is collected by aircrafts and

processed for further use by providing with the coordinates X, Y & Z, and intensity I.

These coordinates and intensities can be used for further processing in the manner that

the end application requires. Detailed explanations of the LiDAR data collecting system

are provided in Section 1.2.

Another fact to note about LiDAR is that the laser pulses that are shot to a spot

on the ground can have multiple returns depending on nature of the spot. For instance, a

tree can have multiple returns because a portion of the light pulse is reflected back from

the top of the tree, while some of the light passes through the tree’s leaves or branches

3

and reflects from a part of the tree or bare earth under the tree. Therefore, care must be

taken to consider the correct return based on the end application.

1.2 Details of LiDAR System

The LiDAR data collection process can be broadly classified into three major

subdivisions, viz.: the LiDAR mission planning, the onboard system and post-processing.

1.2.1 LiDAR Mission Planning

LiDAR mission planning is dictated by external and internal factors. The external

factors are the environmental factors while the internal factors are the equipment and

calibration methodologies.

1.2.1.1 External Factors

The LiDAR mission planning refers to the set of steps taken before the aircraft is

flown over the target area for data collection. Successful collection of LiDAR data

depends on a lot of parameters mainly related to weather and atmospheric conditions. It

is necessary that there is no cloud cover or fog on the day of the LiDAR mission. The

light beams are unable to overcome these conditions to give successful measurements

for intensity and elevation data. Therefore the mission must be planned days ahead of

the actual flight date. Constant monitoring of weather must be done to make sure that

there is no bad weather at the time of LiDAR data collection. Examples of bad weather

patterns that can affect the LIDAR collection mission are cloud cover, rain,

thunderstorms, mist, fog or smog.

LiDAR data can be collected either in the night or in the daytime without much

loss of information. This is because of the fact that LiDAR is an active sensing technique

4

which doesn’t require any aid from sunlight. This is an advantage in urban areas where

the clutter in the scene due to traffic goes down at night resulting in higher accuracy of

DEM’s.

LiDAR missions need to take into account the type of terrain the aircraft would be

flying over in order to plan flight paths correctly. In heavily forested areas, the system

might consider the last returns to accurately ascertain digital terrain models (DTMs).

However, for the purposes of the matching algorithm presented in this dissertation, it is

necessary that the first returns are obtained from the reflected light pulses. Another factor

to be considered is the weather in the past few weeks; this is not only crucial in predicting

the weather on the flight mission date, but also informative in how much moisture is

contained on an otherwise dry land. It is preferable to avoid wet-ground for the reason

that near-infrared lasers do not penetrate water [3].

1.2.1.2 Internal Factors

There are various internal factors influencing data collection of LiDAR. The

scanning rate required for good point cloud density must be carefully considered during

the mission planning stage. The laser pulses are repeated typically up to 200 kHz and the

scanning of the field of view (FOV) is performed at a rate of about 100 Hz. Depending on

the amount of variation on the target area, correct values for these rates are chosen in

order to achieve proper sampling of ground points.

Proper calibration of the devices used, viz. the IMU, DGPS and the Laser and

scanning unit, – all of these need to be accomplished before the LiDAR mission.

5

1.2.2 LiDAR on Board System

The on board system, as mentioned in Section 1.2.1.2, contains the IMU, the

DGPS and the laser scanning system. The DGPS system measures the current

coordinates of the aircraft at all times and finds the coordinates in the reference world

coordinate system in which the point cloud data is to be obtained. The IMU measures the

roll, pitch and the yaw of the aircraft which is crucial in post-processing to accurately

obtain the point cloud data. Tilts in any direction have to be accounted for when the time

is measured and it is converted accordingly to the X, Y & Z coordinates of the point target

on the ground. The IMU and DGPS are closely related in measuring of the point cloud

data. The laser scanning system mainly has the laser unit and a mirror to reflect the

beam to the point on the ground. The relationships among the coordinate systems within

a LIDAR system are shown in Figure 1-1 [4].

Figure 1-1 Relationships among coordinate systems for a LIDAR mission

6

1.2.3 Post Processing System

The point on the ground is evaluated by the post-processing system. The data

from the DGPS is required by the post-processing system at the timestamp when the

scanner picks up the returned beam. The roll, pitch, yaw parameters are supplied by the

IMU and with proper calibration, the exact coordinates of the target point on the ground

are evaluated using the following equation [4]:

��� = ��� + !"#,%��&',()**+,�� + !"#,%��&',()** -.,-/,-0 1,2 3 00−67
where,

• ��� 	is the position of the point on the ground

• ���	is the vector between the origins of the ground and the IMU

coordinate system

• +,�� 	is the offset between the laser unit and the IMU coordinate system

• 6�	is the laser range vector whose magnitude is the distance from the

laser firing point to the footprint

• !"#,%��&',()** 	is the rotation matrix relating the ground and IMU coordinate

systems

• -.,-/,-0	is the rotation matrix relating the IMU and laser unit

• 1,2	is the rotation matrix relating the laser unit and the laser beam

coordinate system.

• α, β are the mirror scan angles.

Post processing is performed offline to obtain the ground points using the above

equation. There are multiple chances for the above setup to falter. Firstly, the calibration

has to be up to date to have the correct parameters for the laser scanning unit and the

7

offsets and rotations. The IMU needs to have been calibrated properly to supply the

correct roll, pitch and yaw parameters. The above set of steps constitutes quality

assurance. However, during flight mission, random errors can occur in properly calibrated

systems too. Therefore, once the points have been obtained, quality control must be

performed in order to ascertain the accuracy of the data in hand. There is a likelihood that

the system might need to be recalibrated based on the quality control steps. The

relevance of the work in this dissertation related to quality control lies in providing a

method for LiDAR strip matching, enabling quality control by fitting a projective

transformation to the points in a query LiDAR strip to a reference strip or control points on

the ground.

1.3 LiDAR Surface Interpolation

Interpolation is required in order to perform quality control of LiDAR data using

strip adjustment. The reason for using interpolated data is that the probability that one

point on one strip has a point-to-point correspondence in another strip is very low

because of the differences in the scan directions and the inherent resolutions of the

swath data. In order to find point-to-point correspondence for strip adjustment,

interpolation must be performed to find the exact correspondence in the reference strip

for each point in the query strip.

Another outcome of interpolation is the use of 2.5D techniques where the entire

elevation data is set into a raster grid and point-to-point correspondences can then be

obtained quite easily for the points in the raster grid for both point clouds.

Some of the LiDAR interpolation techniques that exist in literature are:

1. Inverse Distance Weighted (IDW) [5] interpolation estimates the unknown pixel

values as a weighted average of the points that lie close to it. The weights

8

attached to each point are inversely proportional to the distance from the pixel

center and they are normalized so that all the weights add up to unity. This is the

algorithm that was considered for the purposes of LiDAR swath matching in this

dissertation because of the simplicity of the underlying idea and ease of coding.

2. Natural Neighbor Interpolation [6] is a technique that uses area-based weighting

to determine the unknown elevations.

3. Spline Interpolation [7] fits mathematical functions of piecewise polynomials of

varying degrees to interpolate missing information.

4. Kriging [8] calculates unknown values from the weighted average of sample

values where the weights are based both on the distance and the correlation

among the samples.

1.4 LiDAR Strip Adjustment

LiDAR strip adjustment is a technique used for LiDAR data quality control

purposes. The idea behind strip adjustment is to match a cloud of points in 3D -

+89:�%, ;�% , <�%=, > = 0,1, … , AB	and	C{9:E%, ;E% , <E%=, F = 0,1, … , A}. These points belong in an

irregular sampling of the ground. It is difficult to set up the laser scanner so that a regular

sampling grid is obtained during actual flight. Also, as mentioned earlier, obtaining point-

to-point correspondences in two overlapping swaths of differing scanning directions is

nearly impossible. The task involved in strip adjustment therefore is finding a

transformation T that minimizes the distance between the two point clouds. This is

described by the following equation [9]:

min	J ‖+ − L(C)‖

The transformation matrix that is required is given by the form shown below:

9

3:%;%<%7 = 3O� OP O�OQ OR OSOT OU OP�				
OVOWOPP7 X

:Y;Y<Y1 Z
where,

:% ,	;%,	<%- are the coordinates of the transformed points

:Y ,	;Y,	<Y- are the coordinates of the points to be transformed

O� − OPP – are the transformation parameters

1.4.1 Iterative Closest Point (ICP) Algorithm for Strip Adjustment

The ICP algorithm [10] aims to find the transformation matrix between by

resolving it into two rigid body transformations, a rotation, R, and a translation, T [3]:

[>A(\,J)]‖+� − (C� + L)‖��

The closest point in model P for each point in model Q is computed by ICP and

at each step the model Q is updated by transforming using the current R and T values.

This is continued until the relative changes in R and T are lesser than a threshold when

compared to the previous iteration. At the termination point, the final R and T are found

which is used to transform one point cloud dataset to another.

1.4.2 Tasks Involved in Strip Adjustment

 Summarized below are the steps involved in most traditional strip adjustment

techniques for LiDAR data:

• Within the strip overlap area sub-regions are selected in both strips for

the saliency of the points present in them. Only one of the returns is

chosen for the adjustment (either the first or the last).

10

• Strip discrepancies are evaluated based on the type of matching that is

done: point-to-point, TIN-to-TIN (Triangulated Irregular Network),

surface-to-surface or line-to-line.

• Transformation from one point cloud to another is first evaluated and

later applied to the query image with respect to the reference image or

control points.

1.5 Image Point Matching

It is therefore possible to match LiDAR data with feature detector-descriptor

pairs. This enables either complete matching or at least an initial match for further point

correction by ICP techniques. In this dissertation, techniques similar to image point

matching are used for matching LiDAR swath data.

The image matching problem has been addressed from various directions in

literature. Some of the common types of image matching are area based approaches and

feature based approaches.

1.5.1 Area Based Matching Techniques

In the simplest form of these techniques, normalized cross correlations are

performed between a template and a query image and a peak score is sought. The time

complexity for this technique is pretty high. It is equal to ^(A(A&_(_&)	where A(is the

number of rows in the query image, A& is the number of columns in the query image,

_(is the number of rows in the template image, and _& 	is the number of columns in the

template image. In other words, the template image is searched for in all the possible

sub-patches of the size of the template in the query image.

11

This technique, as defined in the preceding paragraph doesn’t deal with

transformations like rotation, scaling or perspective change. In order to address these

transformations, the scaling factor of the template image must be varied and likely

matches must be searched for across all of those scales. The same rule applies for

rotation and perspective distortions. This technique doesn’t even deal with illumination

changes as it has been described so far and it requires normalization to function in

uncontrolled environments.

Another drawback arises if the template and query images of comparable sizes

are required to be matched. It would then be necessary that multiple sub-windows are

found to be matched between the images based on a keypoint detection technique which

picks out saliencies in the images. One or many of these keypoints have to be matched

with each other.

While these are typically used in aligning different exposures of the same scene

more finely, the drawbacks of area-based techniques encourage the use of feature based

matching for LiDAR applications.

1.5.2 Feature Based Matching Techniques

Feature based matching techniques reduce the time taken for image matching

and registration. The crux of these techniques is that certain landmarks that seem salient

enough are chosen in both the images. Nearest neighbors are found for each keypoint in

a reference image to each keypoint in the image that it is being matched with in order to

transform and align the two images.

Feature based methods are intended to reduce the cost of matching images. To

that end, interesting features are found by these methods which are repeatable in

multiple views of the same image. Depending on the image transformations between the

12

two images, different types of features can be used for matching purposes. For instance,

in the case of stereo matching for narrow baseline cameras, it can be assumed that lines

do not undergo much transformation and linear features could be matched as a result of

this assumption. In the case of applications like panorama stitching of images, it is quite

possible that the viewpoints have changed appreciably between multiple views of the

scene causing lines to skew to the extent of dissimilarity. In such cases, using invariants

like corner points or blobs (affine-invariant in some cases) is a better idea to find matches

across views.

Matching a few points selected from each image to another set in another image

is not much different from the strip adjustment task usually undertaken in LiDAR. This is

often performed in image matching for rigid transforms or when there is little or no

occlusion in the image sets and both the images share a considerable portion of points or

features. However, in tasks like matching elevation point clouds could be hindered by the

lack of direct point-to-point correspondences and hence, a direct feature-to-feature

correspondence is desired.

To obtain point-to-point or in general, feature-to-feature correspondences, there

must be a unique signature for each interest feature in every image. These unique

signatures are also called feature descriptors. It is within this context that the scope of the

research presented in this dissertation lies and these techniques are discussed in detail

in the following chapters.

13

1.6 Dissertation Problem Statement and Goal

In the algorithm presented in this dissertation called the Aerial Range Feature

Descriptor (ARFD), the aim is to match overlapping LiDAR strips by feature detection and

matching techniques. Firstly, the LiDAR data is interpolated and set on a raster grid,

keypoints are detected in the resulting data using known techniques and the ARFD

feature descriptor is created which is used to match detected keypoints in the overlapping

image by a nearest neighbor matching algorithm.

Techniques that match the LiDAR data with its standalone elevation and

standalone intensity data are developed. Following this, an adaptive technique is

developed that chooses the descriptor from every keypoint’s elevation or intensity

information based on how much more ‘interesting’ one of these modalities are with

respect to the other. The novelty of the algorithm lies in the fact that both the LiDAR

intensity and elevation data are used in an adaptive fashion in creating a feature

descriptor. The dissertation also modifies the Scale Invariant Feature Transform [11]

algorithm by performing the adaptive descriptor choice. The performance of multiple

versions of ARFD are compared with the multiple modified versions of the SIFT and

comprehensive results are presented.

Two cases are considered: a) where matching is performed with a common

coordinate system for the two LiDAR strips being unavailable (like matching two images

with unknown camera locations), and b) where the matching is performed with a known

common coordinate system

The performance of the multiple versions of ARFD is compared to the multiple

versions of the Scale Invariant Feature Transform (SIFT) algorithm and detailed results

are presented for both cases of matching.

14

Chapter 2

Image Matching – Previous Work

2.1 Background

Image matching is the general task of matching two possibly overlapping images

of the same or of different imaging modalities. Given the close alignment between the

problems of image matching and LiDAR data quality control, it is important that the

existing image matching techniques that could aid the end goal of matching LiDAR data

are introduced. Image matching, as mentioned in Section 1.5 can be performed using

area-based methods and feature based methods. While area based approaches are

applicable to some problems where a template needs to be found in a query image, the

speed-up offered by feature based techniques in matching and finding correspondences

[11-15] in overlapping images makes it more suitable in LiDAR strip matching.

2.2 Background on Image Matching Techniques

2.2.1 Area Based Matching Techniques

 The emphasis in area based techniques is to find a high similarity between the

template image and the query image. Therefore, the feature detection and feature

description stages are merged into one [16]. Because of this reason, salient points or

features are not recognized in area based methods and no pruning of the search space

in the query image to find matches between the two images.

2.2.1.1 Pixel Intensity Based Matching Techniques

Intensity based matching techniques have been used for matching and

registration of images. A similarity score like the normalized cross-correlation maximum

15

indicates the presence of the template window in the query image. The normalized cross-

correlation score is given by:

`(>, F) = 	∑ ∑ (C(> + b, F + c) − Cd)(L(� + b,� + c) − Ld)efgheeighe (2� + 1)jYj�

where,

• C(i,	j)	is the normalized cross-correlation score at position (i,	j) of the

query image.

• Q		is the query image that is to be match the template image T		with.

• 2W+1	is the size of the template window selected. 	
• Cd 	and	Ld	are the means of the selected window of the query and template

images respectively.	
• σq 	and	σt	are the standard deviations of the selected window of the query

and template images respectively.	
The match for the template in the query image is obtained where the C(i,	 j)	

function peaks. Some of the challenges with using these techniques are listed below:

1. In the case of matching two images of similar size, an appropriate template

significantly smaller than either image must be selected in one of the two images.

2. Invariance of the matching approach to changes in any one of the following:

scale, rotation or perspective changes in the images, is not automatic. Therefore

adaptation must be made in order to account for these changes – the template

window must be changed for multiple scales, 360 degree rotations or tilts based

on the expected transformation between the images. In case of a complex

transform that involves multiple rigid body transformations, all of the changing

parameters must be accounted for. This is a high cost operation and it doesn’t

even deal with non-rigid transformations of images.

16

3. Where there is a great degree of self-similarity between parts of images, the

cross-correlation score peaks in multiple locations in the query image. It makes it

hard to find a unique transformation between the images.

4. When the objects in the scene are occluded choice of a wrong template window

is possible. Also, the sub-window of a template with the query image doesn’t

guarantee that the rest of the overlap area will match.

Despite these drawbacks, the simplicity of the underlying concept prompted use

in situations where time taken to match is not of utmost importance. Normalized cross-

correlation was used with adaption to scale and rotation since the 1970s.

Anuta [17] tackled the problem of multi-image registration with cross-correlation.

The paper also tackled multi-temporal registration of aerial images where the images

undergo changes in time. They investigated multi-image registration with the use of Fast-

Fourier Transforms (FFT) for registration of the images and concluded that the algorithm

performed better in terms of computation time.

Barnea and Silverman [18] developed a method of registration for translated

images that speeded up the normalized cross-correlation by introducing the Sequential

Similarity Detection Algorithm (SSDA). Their algorithm took into account the fact that it is

wasteful to evaluate a similarity measure or a normalized cross correlation score for all

windows, especially for mismatching windows. In order to counter this problem, they took

both the windows and evaluate a L1-norm difference score for random orderings of the

pixels within the window. They continued this evaluation until the difference score

exceeded a threshold. For dissimilar windows this algorithm terminated quickly, and for

similar windows the algorithm might not terminate till all the pixels in the window are

evaluated. The number of pixel required for termination of the algorithm was noted as the

matching score. If the threshold was chosen properly, the algorithm picked out the best

17

match in the query image. The authors claimed that in typical matching cases, it was not

unusual to see speedups of 50 times the speed for normalized cross correlation. They

also suggested a coarse-to-fine matching algorithm by initially sampling uniformly one in

every m points. For windows with good similarity measures, the algorithm could be fine-

tuned by reducing the sampling distance progressively until only one maximum score is

obtained. Of course, they made the assumption that there exists only one match for the

template in the query image.

Pratt [19] was able to register two translated images not only by applying the

normalized cross correlation, but also by taking into account the statistical properties of

each of the windows that were being correlated. The paper recommended increasing the

dimensions of the correlation match function in order to account for rotations and other

image transformations. It also addressed the problem of high computation for gross mis-

registrations and suggested improvements for Sequential Similarity Detection Algorithms

(SSDA) [18].

2.2.1.2 Frequency Based Matching Techniques

Frequency based matching techniques aim to match the images in the frequency

domain [17]. The concept used here is the Fourier Shift Theorem [20, 21]. Fourier

matching is highly resilient to frequency noise and changes in image illumination. The

correlation function is given by:

r(O)r(s)∗|r(O)r(s)∗| = v�w�(ixyzf!y)
where, t,	q		are the template and query images and x0,	y0	are the shifts.

18

Application of the inverse Fourier transform yields the translation parameters for

registering the two images.

This approach was extended further to account for rotation and translation

parameters by De Castro and Morandi [22]. They were able to extract the three

parameters - two for translation, and one for rotation – to register two images.

2.2.1.3 Mutual Information Based Matching Techniques

It is often the case in medical images and remote sensing images that

registration has to be performed on multimodal images [20]. It is difficult to register a pair

of images of different imaging modalities; even different lighting conditions (day vs. night).

In such cases, the statistical properties of the images must be leveraged to find a match

and eventually register the images. Mutual information between two datasets/images Q	
and	T is given by:

[}(C, L) = 	~(L) − 	~(L|C) = 	~(L) + 	~(C) − ~(L, C)
Where ~� = −��(log P(X))	is the entropy of a random variable, X. This method is

not applicable to our feature based matching objective.

2.2.2 Feature Based Matching Techniques

Feature based matching techniques, unlike area based methods, find interest

points or features in both the query and the template images and tries to match them

based on geometric proximity or proximity in the feature space with an appropriate

distance measure [23-25]. Features can range from being very simple to extremely

complex; even drawing from characteristics of human vision [11, 15]. Other features can

be as simple as points, blobs, line segments, curves or basic shapes.

19

Feature based matching finds use in the areas of wide baseline stereo matching

[26-29], Simultaneous Localization and Mapping (SLAM) [30-33], 3D reconstruction [14,

34, 35], image mosaicking [36-38], texture recognition/matching [39-41], image retrieval

[42-44], object classification [45-47], object recognition [48-51], face recognition [52-55]

just to name a few.

Feature based matching techniques came to the forefront in the 1980s with the

advent of the Canny edge detection algorithm [56] and the Harris-Stephens corner

detection algorithm [57], which helped automatic selection of keypoints in both images.

Thereafter, matching point clouds of data was made possible by matching these

keypoints - which were not restricted only to the above two algorithms – by using iterative

techniques to register 3D point clouds or 3D shapes [10, 58]. These same techniques are

similar to the ones used to match LiDAR data by strip adjustment with the difference that

LiDAR point clouds are denser.

Later, feature-based techniques were developed that used these points and

assigned unique signatures or descriptors to them. Having these unique signatures for

the keypoints greatly improved matching by obtaining direct point-to-point

correspondences. [11, 14]

2.3 Details of Selected Feature Based Image Matching Techniques

2.3.1 ICP type approaches: IC-Patch Strip Adjustment

2.3.1.1 Linear and Aerial Feature Strip Adjustment

Habib et al. [4] introduced the IC-Patch strip adjustment technique. They also

presented a method of matching and quality control of LiDAR data by using linear and

aerial features for strip adjustment and finding the transformation between two sets of

point clouds. For strip adjustment, they assumed that for registration of aerial features, it

20

is enough that the features are represented by their centroid together with its surface

normal. Linear features were represented using their end points. The linear features were

obtained by selecting corresponding areas in the overlapping strips after segmentation.

The transformation parameters are estimated from these roughly corresponding

features. The parameters of the transformation are obtained by making slight

modifications to the ICP algorithm – instead of minimizing regular distances between

point clouds, they minimized the normal distances between corresponding features in the

two point sets which they obtained by segmentation. They suggested a weight restriction

system based on variance-covariance properties of elevation data to compensate for the

fact that the correspondences are only approximate. Applying the restriction ensured that

the geometric distances between the matching planar features were minimum.

2.3.1.2 IC-Patch Strip Adjustment

Figure 2-1 IC Patch Transformation Illustration

21

Figure 2-1 illustrates the IC-Patch transformation function. In essence, a TIN is

matched with a group of points instead of matching points to points, or aerial and linear

features to corresponding features. These TIN’s may or may not exactly represent the

physical structure of the ground, but for every point in the matching dataset, a rough

correspondence is approximated within the TINs. A modification of the ICP algorithm is

applied to the tins and patches to perform strip-adjustment.

2.3.2 Feature Based Matching

There are many feature based matching techniques in image processing, some

of the algorithms use point cloud based matching, while some use feature descriptors.

Zitova and Flusser [16] reviewed existing methods of image registration of multimodal

images and images acquired from various viewpoints. The methods included area-based

techniques – correlation based, Fourier methods and mutual information; and feature

based techniques – methods involving spatial relations, descriptors, relaxation and

pyramids & wavelets. It also provided surveys of the transform model estimation for linear

and non-linear cases. L.G. Brown [59] contains a detailed survey of image registration

techniques. In the following subsections and in Section 2.3.3, some techniques relevant

to the work in this dissertation will be presented.

2.3.2.1 Neighborhood Based Matching Techniques

Point based matching techniques is best suited for matching points clouds with

each other. The descriptors are based on the neighboring points of each one of the

detected keypoints (features).

22

Johnson and Hebert [51] used this technique to match objects of varying poses.

A feature point, p	is defined by the orientations and distances of the neighborhood points

x, to the surface normal n to the plane P. For any nearby point, o, the spin-map is the

relationship between itself and the feature point, x.	
�)(:) → (�, �) = 	 ��‖: − �‖� − (A. (: − �))�, (A. (: − �)�

where, α and β	 are the horizontal and vertical distances of the point, x to the

based point, p. The spin-image is defined as the collection of such 2D points applied to

all the surface points about a feature point. Since this is relative to the plane, P	 	and the

normal, n, the spin-image is invariant to object pose. Since this dissertation focuses on

raster imagery, this technique, though useful for matching point clouds, is not closely

aligned to the line of work pursued in this dissertation.

2.3.2.2 Intensity Based Matching Techniques

Intensity based feature descriptors are among the most common areas of

research in image matching. There have been numerous algorithms developed in this

regard and the most relevant ones to this dissertation are explained briefly.

2.3.2.2.1 Scale-invariant Interest Point Indexing

Mikolajczyk and Schmid [60] introduced a new scale invariant keypoint detection

technique by adapting interest points to changes in scale [61]. The interest points they

detected were local extrema over scale of normalized derivatives [62]. They selected

points where the Laplacian attained maximum over scales (Harris-Laplacian). Their local

feature descriptors were Gaussian derivatives computed at the characteristic scale and

they achieved invariance to rotation by steering the derivatives in the direction of the

23

gradient at the interest point [63]. This technique is extremely useful to image matching

due to the fact that the descriptor can be scale-adapted and hence offer a more robust

matching technique. The Laplacian blob detector is a keypoint detector in our algorithm.

2.3.2.2.2 Scale-invariant Feature Transform (SIFT)

The SIFT algorithm [11] is one of the seminal pieces of work in the field of image

matching using feature descriptors. A brief stepwise explanation of the algorithm is

provided here:

1. A pyramid of images is first created for multiple octaves, starting with 2 times the

initial size of the image and shrinking by a factor of 2 each time.

2. Various blurring levels are applied to the octaves and subsequently a Difference

of Gaussian image is obtained for each pair of scales.

3. 3D non-maxima suppression is performed on the DoG images and the strong

points are selected from the surviving points that exceed a threshold.

4. The dominant orientation is obtained for the keypoint by observing the histogram

of local gradients about the keypoint.

5. Finally, the feature descriptor is obtained by finding 8-bin histograms of local

gradients in 16 sub-patches each having 16 pixels. The 16 8-bin histograms are

concatenated after subtracting the dominant orientation to form the rotation and

scale invariant descriptor.

Considering the relevance of this algorithm to the scope of work in this

dissertation a deeper explanation is provided in Chapter 3.

24

2.3.2.2.3 Speeded Up Robust Features (SURF)

 Bay, Tuytelaars and Van Gool [14] introduced Speeded Up Robust Features

(SURF), an image matching technique based on integral images given by the summation

of all the pixel values from the origin [point (1,1)] up to (:, ;) for any point +(:, ;). They

based the interest point detector on Hessian of a patch in the neighborhood on which

they performed 3D non-maxima suppression. Box filters of varying sizes (a kernel used to

extract a portion of an image) were applied to the same integral image in order to obtain

responses at various scales for 3D non-maxima suppression. They were able to obtain

the orientation of the keypoints firstly by applying Haar wavelets at the scale of the

keypoint along with a Gaussian weighting window. The 2D Haar wavelet responses were

then summed up with a sliding window of angle	�/3 and the highest response gave the

orientation.

The descriptor was created as follows: a square region about the interest point of

size 20s was then split up into 4 × 4 patches of size 5� × 5� each. The Haar wavelet

response about the x	and y directions were calculated for each patch (�:, �;) in which

5 × 5 points were sampled from the 5� × 5� patch. A four dimensional vector was created

for each patch which is the sum of dx, the sum of dy, the absolute sum of dx, and the

absolute sum of dy. Therefore, the total dimensionality of this was	16 × 4	 = 	64.

2.3.2.2.4 Gradient Location and Orientation Histogram (GLOH)

Gradient Location and Orientation Histogram (GLOH) [64], an extension of the

SIFT descriptor was designed to increase SIFT’s robustness and distinctiveness. The

SIFT-like descriptor was computed for a log-polar location grid with three bins in radial

direction with the radius set to 6, 11, and 15 and 8 in angular direction, which resulted in

25

17 location bins. The gradient orientations were quantized in 16 bins giving a 272-bin

histogram. The size of this descriptor was reduced by PCA to 128 with the covariance

matrix estimated on 47,000 image patches collected from various images. The authors

compared the performance of GLOH to SIFT, PCA-SIFT and other previously-introduced

techniques. They generated �v����	c�. 1 − ��v�>�>�A graphs to compare performances,

where �v����	 = 	 #&)((&�	¡"�&' �#&)((�%)�¢ �& � and	1 − ��v�>�>�A	 = 	 #£"*� 	¡"�&' �#£"*� 	¡"�&' �z#&)((&�	¡"�&' �.	Their

inference was that SIFT and GLOH predominantly performed better than other

descriptors detector for various matching techniques, viewpoint changes, scale-changes,

blur, JPEG compression and illumination changes. GLOH has an interesting binning

strategy, which could be explored in the future.

2.3.2.2.5 A Summary of Other Feature Descriptor Algorithms

Apart from the aforementioned descriptors, there still exist many descriptors in

literature. It is difficult to cover all of them in detail. In this subsection, an attempt is made

to capture some of the popular feature descriptors.

Histogram of Oriented Gradients (HOG) descriptor [65] is a technique that is

used extensively in detection of humans with pose variations. It used a descriptor based

on gradient orientations much like SIFT and a Support Vector Machine (SVM) classifier to

find if the subject is human or not. This idea can be extended to classes other than

humans too.

The Maximally Stable Extremal Regions (MSER) algorithm [27] applied

thresholds from minimum intensity to maximum intensity to an image. The intensity

values corresponding to the local minima of the rate of change of the area function were

selected as the final threshold which when applied to the image produced the so-called

maximally stable extremal regions.

26

There are feature descriptors that are invariant to affine and perspective

(projective) transformations. The Affine-SIFT (ASIFT) [66] algorithm simulated all

possible viewing angles by sweeping the two camera axis orientation parameters namely

the latitude and the longitude. For each view of the image, the SIFT descriptors were

calculated. This is similar to the way rigid-body transformations are dealt with in area

based techniques. Mikolajczyk and Schmid [67] introduced the Harris-Affine detector and

compared it to other affine-invariant detectors in detail.

2.3.3 Feature Based Matching Techniques in LiDAR

Li and Olson [68] introduced a general-purpose feature detector based on image

processing techniques. It employed Kanade-Tomasi (Shi-Tomasi) corner detector [69]

and detected keypoints. The angle descriptor contained four angles, the first three were

the angles formed by the extracted corner and the three point sets that are d, 2d and 3d

meters away from the extracted corner, and the fourth descriptor element was the

heading of the corner; i.e., the dominant orientation of the corner. The three point sets

were generated by finding the intersection of circles of radii d, 2d and 3d meters. Joining

actual LiDAR points then formed the line segments. Figure 2-2 shows an illustration of

the formation of the descriptor.

Figure 2-2 Feature Descriptor for Li and Olson Paper

27

Their descriptor had very good positive detection rates and lower false detection

rates. They were also able to show that their descriptor had lower differences in

Euclidean distances of features for correspondences and higher differences in the case

of non-correspondences. They showed that their algorithm performed better than SIFT in

relation to the aforementioned metrics.

Moment grid was a descriptor introduced by Zolt and Bosse [70]. The key point

detector was the same as SIFT, while the descriptor was formed by evaluating eight

descriptor elements that were computed from the weighted moments of oriented

points	(:� , ;� ,
�) for a total of 13 grids with the detected key point in the center. Thus the

total size of the descriptor was 13	 × 8 = 104. The aforementioned grids were of size

2 × 2	and 3 × 3	covering the same 9_ × 9_	region.

From each of the grids, the 8-dimensional histogram that was obtained contained

the following weighted moments:

¦§§
§§§
§§§̈

�[��:̅;d2ªPP �ª�� + ª��⁄ª�� − ª�� �ª�� + ª��⁄�ª�� + ª��AxdddA!ddd ¬­­
­­­
­­­
®

where,

[%Y =]¯�:�%;�%�

:̅ = [P� [��⁄ ;d = [P� [��⁄ ª�� = [�� [��⁄ − :̅�	

28

ªPP = [PP [��⁄ − :̅;d ª�� = [�� [��⁄ − ;d� Axddd =]¯� cos
� [��⁄�

A!ddd =]¯� sin
� [��⁄� 	
Once point to point correspondences were established, a transformation was

obtained that registered the two datasets/strips and corrected errors in an incorrect

dataset. They concluded that their feature descriptor outperformed other feature

descriptors which included a modification of SIFT when it came finding a correspondence

from a point’s k-nearest neighbors. They also had a better Receiver Operating

Characteristics (ROC) [71] response than the other descriptors.

While the aforementioned techniques introduced feature descriptors for terrestrial

LiDAR matching, this dissertation focuses its attention on Aerial LiDAR matching.

Although these techniques have advantages in matching, our approach, which creates a

feature descriptor based on the statistics of the keypoints and intended for use primarily

in aerial LiDAR doesn’t benefit much from these techniques.

2.4 Conclusion

It should be noted that while many point cloud matching techniques exist that

register overlapping LiDAR data, there are few techniques that employ a descriptor. To

our knowledge there isn’t any technique that uses the perfectly co-registered intensity

data to match points. The aim of this dissertation is to detect keypoints in the overlapping

LiDAR strips by using a combination of well-known detector schemes on both the

intensity and elevation data. A new feature descriptor is presented in this dissertation;

one that consists of data from the elevation and intensity information, thus leveraging as

much information as possible from the LiDAR data.

29

Chapter 3

Elevation Based Feature Descriptor

3.1 Background

Using a feature descriptor to match data requires much preprocessing. It

includes steps to resample data and detect keypoints. In this dissertation, our objective is

to work with co-registered intensity and elevation from a LIDAR platform. Since the raw

LiDAR data is a cloud of irregularly spaced points, a key and somewhat complicated first

step is the re-scanning of the swath data to create a regularly spaced raster grid. This is

followed by the actual matching algorithms.

 Sections 3.2 and 3.3 contain the description of our two main matching

algorithms: one that considers known relative 3D coordinates of points for matching and

another that assumes that such information is not available and treats the data

essentially as two images. The two algorithms have potential applications in the LiDAR

and non-LiDAR domains for which each of these approaches could be valid.

3.2 Steps in LiDAR Strip Matching When Global Coordinates Are Available

In the case that geographic information about the chosen keypoints is available,

it is possible to match the overlapping datasets quite efficiently by conducting a search

for a keypoint’s matching keypoint in the overlapping image only in the vicinity of its

geographic neighborhood. The explanation for this technique and the block diagram is

provided in the subsections that follow. The explanation that follows after Figure 3-1 is a

technical overview while Chapter 4 contains the implementation details.

3
0

Figure 3-1 LiDAR Image Matching Block Diagram – Geographic information available

31

The block diagram in Figure 3-1 implements the LiDAR data matching algorithm

as explained in the following steps:

1. The two strips of LiDAR data are interpolated separately and the data set to a

raster grid (2.5D data).

2. The overlap regions from the perspective of both the LiDAR datasets are

calculated so that keypoint are searched for only in the region of overlap.

3. Following the interpolation, the keypoints are detected in both the strips using the

overlap region information.

4. The feature descriptors are calculated for each keypoint obtained.

5. For each keypoint in the first image, likely matches are searched for in its

geographic vicinity and pruning is done with the feature distance for each likely

correspondence.

6. Likely matching pairs are obtained and outliers eliminated using RANSAC.

7. The homography/projective transformation between the overlapping swaths is

found and quality of matches is evaluated based on true and false positive and

negative matches.

3.2.1 Interpolation

The LiDAR data is typically acquired on an irregularly sampled. Therefore, LiDAR

data on parallel and overlapping flight paths do not contain the same points with a very

high probability (close to unity). In order to match the strips, it is necessary to interpolate

this data; the matches occur only in interpolated regions. Therefore, the irregularly

sampled data needs to be organized on a raster grid thereby making the data ‘regular’.

The importance of a good interpolation technique is crucial in obtaining good keypoint

matching.

32

The interpolation method employed in our algorithms is the inverse distance

weighting (IDW) interpolation algorithm [5]. When interpolation is performed with a

distance weighting scheme, many of matrix entries are empty because of the irregular

sampling grid. In order to tackle this, the interpolation algorithm was implemented using

the following steps:

1. The intensity and elevation data are initialized and the centers of the matrix

points are identified.

2. Each point in the LiDAR dataset is assigned to the location it occupies and the 8

neighboring locations. (Shown in Figure 3-2 below)

Figure 3-2 Adaptation of inverse distance weighting

3. Once each point has been assigned to its locations, the empty locations are

identified for further processing.

4. For each one of these empty locations, data is “lent” from their 8-neighborhood.

5. The lending/borrowing process is repeated thrice to account for empty locations

due to setting irregularly sampled LiDAR data to a regular grid. The reason why a

maximum of 3 iterations is performed to avoid over smoothing. At the same time

the need to interpolate points that were missed due to irregular sampling is

present.

33

6. Once all the locations have been assigned some points, the elevation and

intensity level at each location is calculated using the following formula:

�x,! = ∑ °¢°�±gP∑ P¢°�±gP 		�A�	}x,! = ∑ �°¢°�±gP∑ P¢°�±gP

where, �x,!	and	}:,; are the elevation and intensity at location	(:, ;).
v±	and >±	are the elevation and intensity of the individual data points that have

been assigned to the location.

It should be noted that steps 1, 2 and 6 belong to the standard inverse distance

weighting interpolation method. The algorithm was modified in our experiments so as to

not have many “zero” entries for intensity and elevation. The proposed technique fills up

empty entries by borrowing points from the neighborhood.

3.2.2 Keypoints

Keypoints are detected using two major types of algorithms. One is the corner

detector and another is detectors based on scale-space blobs.

3.2.2.1 Corner Detector

Corner detector algorithms aim to find features in an image (LiDAR data in the

case of this dissertation) that have a good amount of variation of the gradient in more

directions than just one. A flat feature has very little or no variation in all directions, an

edge has variation along one direction (perpendicular to the edge), while a corner has

variation in more than just one direction. Corner features are desired for the fact that they

have a great deal of robustness to viewpoint changes.

34

The corner score, E for each point of an image is evaluated by shifting a local

window centered at the point by a small margin and the score is approximated after a

Taylor series expansion by	³b c´[µbc¶. Here b and c	are the shifts [and is the moment

matrix. The moment matrix is given by:

[=]¯(:, ;) · }x� }x}!}x}! }!� ¸x,!

where, ¯(:, ;) is a windowing function and the expression in the brackets are the

products of the gradients, }x and }! .
Whether a point is a corner or not can be easily evaluated by finding the

eigenvalues of the M function. If both the eigenvalues are small, it is likely to be a flat

surface; if only one of the eigenvalues is large, then it is likely to be an edge in the

direction of the larger of the eigenvalues; finally, for a corner, both the eigenvalues are

large indicating variations in two perpendicular directions.

The Harris corner score is given by = 	¹P¹� − º(¹P + ¹�) which can be

evaluated by	 = det([) − º ∗ O���v([), where	º, is an experimentally evaluated

constant fixed at values between 0.04 and 0.15.

The Shi-Tomasi or the Kanade-Tomasi corner detector computes the minimum of

the two eigenvalues and decides if a point is worthy of being a corner. This function is

given by	 = 	min	(¹P, ¹�).
There are many other ways of detecting corners in an image; however, this

dissertation uses the Shi-Tomasi detector instead of the Harris corner detector because

the “cornerness” criterion according to the Shi-Tomasi detector is not as stringent as the

latter.

35

3.2.2.2 Scale-space Blob Detection

Lindeberg [62] showed that Gaussian blurring of an image provides a scale-

space for the image. The Laplacian of the image provides excellent keypoints that are

invariant to viewing conditions. It is possible to obtain an approximation of the Laplacian

by performing the difference of Gaussian (DoG) [72] operation.

Scale-space blob detection is a technique to find blobs in an image at their

characteristic scale. A blob is an artifact in an image which has fairly smooth intensity

values and has high contrast with respect to its surroundings. Mikolajczyk and C. Schmid

[60] introduced a technique to find the characteristic scale at which a blob attains the

maxima for the Laplacian of Gaussian (LoG) operator. By attaching the characteristic

scale, it is possible to identify the proper sampling scale to attach to a feature descriptor

in the next steps.

The DoG [11], is very similar to the LoG operator apart from the fact that DoG

creates pyramids of Gaussian blurred images at each image scale and subtracts one

from its neighbor to create the DoG image as opposed to the LoG which applies the

Laplacian filter to the images; then non-maxima suppression is applied in 3 dimensions to

obtain the strong keypoints.

3.2.3 Feature descriptor

A feature descriptor is a unique signature of the keypoint detected. Often, in area

based matching methods, the feature detection and description steps are merged into

one; in certain feature based methods, salient points are extracted out of images and

points clouds are matched with each other eliminating the feature description step.

However, a feature descriptor is created so that it is easy to identify similarity between

keypoints of two different images so that point-to-point correspondences can be obtained.

36

In our experiments, we have used both the SIFT and a new descriptor we have

introduced, viz. ARFD, the detailed explanations for which are present in Section 3.4. Our

implementation of the SIFT algorithm is a modified implementation of the original SIFT

algorithm. The original SIFT algorithm matches keypoints in two images that have

overlapping content. In our implementation of the SIFT algorithm, we consider the

geographic distances for two keypoints to match, and only then we match the feature

descriptors to find a nearest neighbor both in terms of physical proximity and in terms of

proximity in feature space.

3.2.4 Distance Score for Keypoints in Two Images

For each keypoint detected in the first image, the neighborhood coordinates are

calculated from the bounding box information for the entire strip. Using this information it

is possible to look for keypoints in the overlapping image in the exact same neighborhood

in a neighborhood with a radius of 0.5 pixels. Although the original LiDAR data might not

have contained exact point-to-point correspondences, the rasterized version of the same

is likely to contain pseudo-correspondences [4]. Following this, the pseudo-

correspondences are pruned using the feature descriptor to find the best possible match

for each keypoint. This process is continued and all possible matches are accumulated

as positives.

The features are to be matched in the feature descriptor space following the

neighborhood based pruning. This follows that the physical distance on the ground is not

taken into consideration any longer. The Euclidean distance for any two keypoints from

the two strips is given by the equation:

37

¼�,E = ½](:�,± − ;E,±)��
±gP

where,

:�,± and ;E,± are the entries of the ¾�' the dimension of the keypoint �� detected in

the first strip and ¿E detected in the second strip.

¼�,E 	is the Euclidean distance between the two keypoints.

A	is the number of dimensions of the feature descriptor.

3.2.5 Model Estimation (Homography) Using RANSAC

The homography/projective transformation is the transform matrix which when

applied one strip transforms it to be stitched with the corresponding overlapping strip. In

the case of the data used in this dissertation, the homography transformation is obtained

by first taking the putative matches and then applying the RANdom SAmple Consensus

(RANSAC) [73] algorithm to it. The RANSAC algorithm is a very useful tool in outlier

elimination in any type of model fitting to data. For the case of the workflow presented in

this dissertation, the following steps are undertaken to eliminate false matches:

Goal:

To fit data into a model into a dataset �	that contains multiple outliers.

Algorithm:

1. A random choice of �	points in the set of points in the data �	is made.

2. Obtain the model for fitting the data from the s points.

3. The model/transform is applied to all the data and the number of points that fall

within a threshold O	is accepted as inliers to the transform.

38

4. This procedure is repeated À	times and the points from the model that has the

maximum acceptable number of points are chosen for further consideration.

5. Absolute least squares algorithm is applied to all the inliers and the robust fitting

to the points is obtained by eliminating the outliers.

It should be noted that the choice of O	and À determines the accuracy of the

model that is obtained finally.

3.2.6.1 Homography

The homography between two view images of a scene is the transformation

matrix required to align one dataset with the other perfectly. In order to obtain the

homography, one requires solving for 8 unknown parameters. Having 4 point-to-point

correspondences is enough to create the homography model between two views. In the

case of LiDAR strip matching, more than 4 point-to-point correspondences are obtained

to begin with. After applying RANSAC, there are still more than 4 point-to-point

correspondences in most cases.

After the RANSAC step, the inliers must be used to obtain final homography

matrix for the transformation of the strips with respect to each other. The homography

between two keypoints is given by:

¹ 3:Á;Á1 7 = 3ℎPP ℎP� ℎPVℎ�P ℎ�� ℎ�VℎVP ℎV� ℎVV7 ·
:;1¸

¹�Á = ~�

39

Where X’	 is the coordinates of the point in the transformed view and X	 is the

coordinates of the point in the original view. The	H matrix is the transformation required to

go from view X		to view X’.
The above set of equations holds good for one set of point to point

correspondence. The homography equation seemingly has 9 parameters. But the

parameter ℎVV	determines the scale of the transformation and making the whole matrix

normalized so that ℎVV = 1 fixes the scale parameter. Therefore, there are just 8

parameters that must be obtained, which concurs with the necessity of having atleast 4

point-to-point correspondences.

However, in most cases of image matching, more than 4 correspondences are

likely to be obtained. Therefore, after RANSAC, the least squares equation must be

solved to find the best homography transform to fit the inliers. Below is a detailed

explanation of solving for the least squares criteria for multiple point correspondences:

For the ith point correspondence, the homography relation is given by:

¹ 3:�Á;�Á1 7 = 3ℎPP ℎP� ℎPVℎ�P ℎ�� ℎ�VℎVP ℎV� ℎVV7 ·
:�;�1 ¸

¹��Á = ~��
Taking a cross product of the above term with ��Á	gives a final result of 0. This

can be expressed as: ��Á × ~�� = 0

3:�Á;�Á1 7 × 3
ℎPP ℎP� ℎPVℎ�P ℎ�� ℎ�VℎVP ℎV� ℎVV7 �� = 3:�Á;�Á1 7 × Å

ℎPJ��ℎ�J��ℎVJ��Æ
The cross product in the above equation can be rewritten as:

40

Å ;�ÁℎVJ�� − ℎ�J��ℎPJ�� − :�ÁℎVJ��:�Áℎ�J�� − ;�ÁℎPJ��Æ = 0

This can further be rewritten as:

Å 0J −��J ;�Á��J��J 0J −:�Á��J−;�Á��J :�Á��J 0J Æ 3ℎPℎ�ℎV7 = 0

Therefore, there are 3 equations with 9 unknown parameters in the ~	matrix. Of

these 3 equations, there are only two linearly independent equations. Thus, two

equations out of three can be picked for each point-to-point correspondence and

homography can be solved for. The equation for solving the ;�Á��J	matrix parameters

using the least squares criteria is given below:

¦§
§§̈
0J �P	J −;PÁ�PJ�PJ 0J −:�Á��J…				 …				 …				0J ��	J −;�Á��J��J 0J −:�Á ��J ¬­

­­
® 3ℎPℎ�ℎV7 = 0	��	�ℎ = 0

The above least squares equation can be solved by finding the ℎ	matrix that

minimizes	‖�ℎ‖�.

3.2.6 Quality of Matching

Since we use the geographic distances of points along with the feature distance,

we only consider points that are matches, all other pairs of keypoints between images are

considered as mismatches. Therefore, the performance metric here is number of point-

correspondences that were obtained for overlapping images.

41

3.3 Steps in LiDAR Strip Matching When Geographic Information Is Unavailable

In the case of LiDAR strip matching algorithm when geographic information is

unavailable, the workflow has to be modified slightly to perform the matching tasks.

Figure 3-3 contains the LiDAR image matching process for such a case. Also following

the block diagram is an explanation of the blocks that are not part of the case covered in

Section 3.2. These are the steps that are different from Section 3.2:

1. Following creation of the feature descriptors for each of the keypoints in either

image, the feature distance scores are obtained for pairs of keypoints from both

images.

2. Likely matches are obtained using a nearest neighbor distance ratio and outliers

eliminated using RANSAC.

3. The homography/projective transformation between the overlapping swaths is

found and quality of matches is evaluated based on true and false positive and

negative matches.

Each of these steps is explained in greater detail in the following subsections.

3.3.1 Distance Score for Keypoints in Two Images – Geographic Data Unavailable

In this case, the feature distance is only calculated using the formula already

demonstrated in Section 3.2.4. Here, the geographic proximity is not considered.

3.3.2 Possible Matches – Geographic Data Unavailable

Possible matches for each one of the points in the first strip are found with

respect to each of the points in the second strip. These matches are found by examining

the smallest distance score between the chosen point in the first strip and all the

keypoints in the second strip. It is described by the following equation: F∗ = minÇ ¼�E

4
2

Figure 3-3 LiDAR Image Matching Block Diagram – Geographic information unavailable

43

where, > is the keypoint in the first strip and F is any keypoint in the second strip. The

minimum distance ¼ is obtained for	F∗, the matching keypoint in the second strip.

3.3.2.1 Nearest Neighbor Distance Ratio (NNDR) Based Pruning

The NNDR is the ratio of the distance between the best match to the second best

match. This eliminates the possibility of occluded keypoints in either strip matching with another

keypoint in its corresponding strip. Despite the fact that the nearest Euclidean distance method

should be able to pick out the best match; this is not necessarily true in the case that the

keypoint in the first strip has no matching keypoints in the second strip. Therefore it is

necessary to be sure about the match obtained by the nearest Euclidean distance. Therefore,

the NNDR method is applied to eliminate false matches in the case of partial or significant

occlusions between two datasets.

3.3.3 Homography Calculation Following RANSAC

RANSAC is applied to the positive matches from the previous step. Following this, the

inliers and outliers to the model are obtained and also a homography is obtained.

3.3.4 Quality of Matching

In order to measure the performance of the elevation based descriptor and to compare

it with SIFT; the natural choice considering how ubiquitous it is in the field of image matching

and object recognition. The metrics that were important in this measurement were the true

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). They are

discussed in further detail in Chapter 4.

44

3.3.5 Recalculation of Homography after Obtaining True Positives and False Negatives

In the algorithm presented in this dissertation, the homography is estimated in a slightly

different manner from the traditional homography estimation. After having obtained the TP and

FN matches; homography estimation is run again for the TP and FN to find the exact

homography with absolute certainty. Following this it is possible to estimate the mean square

elevation error that gives a measure of how much alignment error exists between the two

swaths of data after re-estimating the homography.

Therefore, the importance of the algorithm by itself (without recalculating homography)

lies in the hope that it is able to generate a lot of top quality matches to begin with which helps

in converging to an accurate homography to begin with. The more number of TP are with

respect to the FP, the more accurate are the measures: TP, FP, TN and FN. The more accurate

the TP and FP are, the more accurate is the final homography that is sought for the final

realignment.

After having aligned the two images in the right manner, the mean square elevation

error is calculated by finding the mean square error for the overlapping pixels that are both non-

zero (zero indicates lack of a LiDAR scanning point or the presence of a water body).

3.4 Feature Descriptors Used in Our Experiments

3.4.1 The Scale Invariant Feature Transform Algorithm

The SIFT algorithm revolutionized invariant point matching. This algorithm is not only

invariant to scale as the name suggests. It is also invariant to rotation, illumination (with slight

limitations in dark lighting) and it is robust to a degree of viewpoint change. Because the SIFT

algorithm was one of the first comprehensive techniques/workflows for matching images

invariant to various transformations, it is considered most important in this regard. It has been

adapted in multiple instances: PCA-SIFT, Affine-SIFT, GLOH and SURF, which either treat

SIFT as a starting point or as an inspiration for their respective algorithms.

45

Given below is a detailed explanation of the SIFT algorithm in steps:

1. A pyramid of images is first created for multiple octaves, starting with 2 times the initial

size of the image and shrinking by a factor of 2 each time. Typically 4 such octaves are

created for the purposes of covering multiple scaling variations between images that

are being matched.

2. Various blurring levels are applied to the octaves and subsequently a Difference of

Gaussian (DoG) image is obtained by subtracting two neighboring images in the same

octave. The DoG is an approximation of the Laplacian of Gaussian (LoG) which is

useful in picking out scale-space blobs. This technique is used as one of the keypoint

detector steps in this dissertation. The illustrations for points 1 and 2 are given in Figure

3-4.

Figure 3-4 SIFT Pyramid Formation [20]

3. 3D non-maxima suppression is performed by considering the 8-neighborhood in the

current scale and the two neighboring scales. The strong points are selected from the

surviving points that exceeded a threshold from the 3D non-maxima suppression step.

There exists an alternative implementation that includes an additional step of accurately

finding the location of a keypoint by a Taylor expansion of the 3D scale-space. Finally,

some of these points are eliminated on the basis of an intensity threshold. The end

46

result of this step is that a set of good keypoints are generated mostly in an automated

fashion.

4. The dominant orientation(s) of each keypoint is (are) obtained by observing the

histogram of local gradients about the keypoint. In order to obtain the keypoint

orientations, the neighborhood about the keypoint is first extracted (16 × 16 patch).

Then, the gradient magnitudes and orientations are obtained for the keypoint locations

by resampling the image based on the scale obtained for the keypoint. Finally, the

orientations are set into a 36-bin histogram and peaks within these are considered as

keypoint orientations. The peaks are obtained by examining the bin belonging to the

peak and the two neighboring bins for the peaks and by fitting a parabola to the three

bin values to find the actual peak orientation. This step mitigates the effect of binning

the 360 degrees into just 36 bins.

5. Finally, a feature descriptor (shown in Figure 3-5) is obtained by finding 8-bin

histograms of local gradients in 16 sub-patches each having 16 pixels. The gradient

magnitude of the patch is weighted by a Gaussian function with a standard deviation j

equal to one half the width of the descriptor window. Following this, an 8-bin histogram

is created from the gradient orientations by using the weighted magnitudes as a further

weighting function. These 8-bin sub-patch histograms are concatenated after

subtracting the dominant orientation to form the rotation and scale invariant descriptor.

The result is the final SIFT descriptor which is invariant to scaling, rotation, illumination

and robust to a degree of viewpoint change.

The SIFT algorithm went in to much details to capture the uniqueness of a given key

point in generating a corresponding descriptor for it primarily for optical image data. However, it

could be argued that the SIFT algorithm can be applied to any raster data. This possibility has

allowed us to keep some aspects of the overall structure of SIFT such as the scale-space blob

47

based detector yet, entirely change the descriptor design. This flexibility has also allowed us to

incorporate and even integrate multiple image modalities – specifically, the integration of

registered intensity and elevation from a modern LiDAR sensor. Additional subtler changes in

details of implementation have resulted in nuanced but significant alteration to the original

algorithm and improvements in the performance of the corresponding matching algorithm. We

will restate this point later with greater clarity when we describe our results in Chapter 5 and

Chapter 6.

Figure 3-5 SIFT Descriptor [20]

3.4.2 The Aerial Range Feature Descriptor (ARFD)

The ARFD evaluates the statistics elevation data in the neighborhood of the detected

key point location. These statistics are the mean, variance, median and the range of data. Since

there are no actual point-to-point correspondences in the original LiDAR data, the statistics of

the sub-patches are slightly different even for matching keypoints. Despite this, due to the

robustness of the matching algorithm, the slight differences don’t offset the performance of the

algorithm in selecting strong correspondences. Compressing the sub-patch data into a 4

dimensional descriptor reduces the exactness required for match and also achieves speed-up

48

compared to direct patch data. It is an adaptation of the well-understood technique employed in

SIFT [11], GLOH [71] and PCA-SIFT [74].

Elevations of points on earth are invariant to changes in viewing conditions or

viewpoints. A strong feature descriptor must use the elevation values or a compressed version

of the same in the neighborhood of the keypoint. Therefore, elevation points on a 16×16 grid

about the key point are extracted and the sub-patches are used to create local signatures based

on invariant statistics of elevation data.

The following are the steps applied to evaluate the invariant descriptor:

Figure 3-6 Sampling the keypoints

1. For every key point location detected by the detector algorithm, in the corresponding

elevation data, a 16×16 patch about the key point location is extracted based on the

scaling factor as shown in Figure 3-6. This patch is subdivided into 16 sub-patches of

size 4×4 each. These are extracted starting at the top left, going all the way to the

bottom right. The process is shown in Figure 3-7.

2. A 4 dimensional (4D) descriptor is created using the 16 samples in each of the sub-

patches. The descriptor of choice from the above three types is chosen to be created

from the sub-patch information. The details of the variants are presented in Section

3.5.1 titled Variants of Sub-patch Descriptors.

49

Figure 3-7 Extracting Sub-patch Information

3. The data from the 16 sub-patches are concatenated together to form the 64

dimensional descriptor. This is the unique signature of each keypoint that can be used

next in the matching stage.

Given the probabilistic nature of the problem, the best patch size and the number of

dimensions needed in each patch, have been experimentally determined. Since the process is

highly non-linear, a combination of local statistics and adaptive parameters is desired (number

of samples per patch & number of patches) for achieving the goals.

3.5 Variants of the Feature Descriptors Used in Our Experiments

3.5.1 Variants of ARFD Sub-patch Descriptors

In order to create the feature descriptor, a few types of descriptors were considered.

The feature descriptor must be designed in a fashion that allows for robustness to irregular

sampling differences between the two flight swath datasets, at the same time it must be efficient

in ignoring false matches that are slightly similar to each other but in reality are mismatches.

Therefore, the following types of descriptors were considered for use in the ARFD:

1. Histogram of sub-patch data: The histogram of the sub-patch puts into 4-bin the

values read from the 16 samples. This is very useful as a descriptor in the context

of SIFT wherein the gradient orientations (after correcting for keypoint orientations)

are used as a descriptor invariant to rotations and illumination changes, however in

50

the context of elevations or simply LiDAR illuminations it may lead to misleading

values descriptor elements. This can be shown with an example for a scaled-down

version of the descriptor. Consider a 2-bin descriptor built out of 4 sub-patch

elements. If the 4 sub-patch entries are {0, 15, 15, 2000}, they form the same

histogram as {199,199,199,401}. This is potentially harmful for matching identical

keypoints. Therefore, after some experiments, we decided not to use this feature

descriptor.

2. Lower order statistics of sub-patch elements: A consideration was made for using

lower order statistics like the mean, variance, median and range of data (difference

between maximum entry and minimum entry) as the statistics. This method

addresses the problem faced by using just a histogram to create feature

description. The mean, median and range are robust to changes in sampling while

the variance is a good description of the sub-patch statistics. The lower order

statistics, although they capture some information about a sub-patch, don’t contain

enough depth to form a unique enough descriptor of a sub-patch. Although it

worked satisfactorily for the set of images we used in our experiments, we decided

not to use this in the standard form of our algorithm.

3. A mix of lower order and higher order statistics: A mix of the lower order statistics,

the mean and variance and higher order statistics the skewness and kurtosis were

considered for an alternate descriptor. The mean is quite robust to sampling

variations and the variance, as mentioned in the previous descriptor type, is a good

descriptor for the amount of variation in the data. The skewness and kurtosis

capture the skew and the variation of variation or the “peakedness” in the sub-patch

distribution. This was used as the feature descriptor in all our experiments and it

performed very well because of the multiple levels of moments it contains.

51

3.5.2 Variants of Experiments Common Both to SIFT and ARFD

The SIFT and the ARFD descriptor based matching algorithms were implemented by

varying them in order to maximize their utility. The variations included choice of keypoint

detectors as mentioned earlier. The following subsections contain details about these variant

that were implemented in the work related to this dissertation.

3.5.2.1 Use of SIFT and ARFD on Standard LiDAR Elevation Data

The SIFT and ARFD algorithms were implemented by using the elevation data (the Z-

values) from the LiDAR points. In these implementations, the keypoints and their descriptors

that were generated were based on the LiDAR elevation data. Having done the aforementioned

step, a comparison with LiDAR intensity was made possible

3.5.2.2 Use of SIFT and ARFD on Standard LiDAR Intensity Data

The SIFT and ARFD algorithms were implemented by using the intensity data (the I-

values) from the LiDAR points. In these implementations, the keypoints and their descriptors

that were generated were based on the LiDAR intensity data. The idea behind considering the

intensity data despite the fact that it is possible that it can be rendered inaccurate by specular

reflections is that it is possible to get some strong keypoints from the visual information present

in the data. Elevations do supply some interesting points, but it is likely that variations in

intensity values are more common in nature than variations in elevation values. . Therefore, to

test this theory, some experiments were performed on these lines and the results presented in

Chapter 5 and Chapter 6.

3.5.2.3 Modified Versions of SIFT and ARFD

In this case, the emphasis was to choose as many keypoints as possible from a

combination of the elevation and intensity data. Following this, the standards SIFT or ARFD

52

descriptors were created for every keypoint strictly on the basis of whether the elevation or the

intensity had a better kurtosis measure. The kurtosis is the normalized version of the fourth

central moment of a distribution and the measure finds the variation of variation. Therefore, if a

portion of land on which the analysis were being performed had a lot of variation in intensity

whereas its elevation remains constant, in such a case the intensity data is chosen to create the

descriptor. In the other case, the elevation data is chosen to create the feature descriptor. This

allowed the algorithm to describe each keypoint in the most unique way possible and hence the

matching was stronger.

3.6 Conclusion

In this chapter, the ARFD algorithm was presented for matching of raw LiDAR data

strips with one another. The workflow included conversion of raw LiDAR data into a rasterized

matrix form followed by keypoint extraction, feature descriptor creation and the matching

paradigm. In order to evaluate the quality of the algorithm, the inliers and outliers in both the

possible matches and the mismatches discarded by the algorithm was analyzed. In Chapter 4,

the details of the implementation are presented for each of the blocks and the algorithms that

the ARFD method is being compared with.

53

Chapter 4

Details of Implementation of ARFD and Modified SIFT

4.1 Implementation Platform

The algorithms were implemented on MATLAB 2013a mainly with the aid of the Image

Processing Toolbox. The computer on which the algorithm was implemented had an Intel i7

processor with 12 GB RAM and a Windows 7 64-bit operating system.

4.2 LiDAR Dataset

The dataset used for the experiment was obtained from the National Resource

Conservation Service (NRCS), a part of the US Department of Agriculture. The LiDAR data was

obtained from Saginaw Bay, Michigan. A set of 9 flight swaths was made available in raw flight

strip data. Since each flight swath covered a large geographic area, small sub-patches of

rectangular shapes were extracted from each of the overlapping patches. This data was

extracted using commercial GIS software from ESRI inc. and GeoCue Corporation and it was

converted into an ASCII file of the X, Y, Z and I data. The swaths were in the east-

west directions and there were 8 overlapping areas in the 9 swaths. Seven such verticals with a

total of 56 patches were obtained. Certain patches were mostly flat with no trees or discernible

height differences. This, coupled with the fact that these patches were smooth even in the

intensity data did not allow us to obtain matches for those patches using the algorithm proposed

in this paper or the SIFT algorithm. Therefore, not all the patches were well suited for obtaining

keypoints or for image matching. However, in Chapter 5 and Chapter 6, we have presented

results for all possible overlapping patches, including the ones that were predominantly flat.

Figure 4-1 shows the strip extraction process in detail. Each vertical has 9 overlapping

strips and therefore 8 pairs of overlapping strips in the ideal case (some swaths were smaller

than the others thereby offering lesser number of strips). From each of these strips, the

54

bounding box that corresponds to the range of the verticals was applied to the LiDAR data and

points extracted from them for further processing.

Figure 4-1 Patch extraction from individual strips

4.3 Approach to Workflow Validation and Comparison of ARFD and SIFT

The data for each individual patch was interpolated and the matching was performed on

sets of two overlapping patches. As mentioned before, each set used two keypoint detection

schemes. The two detectors were also combined as a third option in a set of experiments.

Thereafter, both the ARFD and SIFT were applied to the datasets to compare the performance

of the descriptors. SIFT was used for comparison because: 1) SIFT is presently considered the

benchmark feature descriptor, 2) the scale-space blob detector used in ARFD is based on

detecting maximums of LoG, which is similar to the DoG filter used in SIFT.

4.4 Implementation Details

This subsection contains the implementation details of the ARFD and the modified SIFT

algorithm. The entire algorithm is discussed block by block in detail barring the actual code. In

order to talk about the implementation, it is necessary to take another look at the block diagram

of the algorithm.

55

The feature matching algorithms are shown in Figure 3-1 and Figure 3-3. Firstly, the

raw LiDAR strip data is simultaneously fed into the interpolation block and the overlap detector

blocks. Following this, the keypoints are detected in both the strips and the ARFD is calculated

for each one of those keypoints. For each one of the keypoints detected in the first strip, the

distance score for all the keypoints in the second strip is obtained. These distances are used to

find the first and the second nearest neighbors. Then, the NNDR method is applied to eliminate

possible false matches arising from self-similarity within the images. The final homography

matrix is obtained for the points by applying the RANSAC algorithm. Following this step, the

quality parameters are obtained for further comparison with SIFT. The implementation details of

each of the steps in the block diagrams are provided here in the following subsections:

4.4.1 Obtaining the LiDAR Data in Text Format

The raw LiDAR strip data is available in a ‘.LAS’ format. All the strips from the Saginaw

Bay, MI data were loaded onto the ArcGIS platform with the LP360 extension. The loaded data

was available for a very wide strip of ground. The polygon cutting tool was used to extract

patches out of each LiDAR strip for a reasonable aspect ratio of the raster grid. Once the

polygons were overlaid on each individual strip, the ‘.LAS’ data was converted into ASCII format

and the result were written onto a ‘.txt’ file with only the X, Y, Z & I data. This raw LiDAR data in

the text format was supplied to both the Interpolation block as well as the overlap detector

block.

4.4.2 Interpolation of LiDAR Strip Data

The interpolation of the LiDAR strip data immediately follows the extraction step from

the .LAS format to the .txt format. In order to interpolate the data, the bounding box of the X and

Y fields are calculated. Once this is done, the extent of the raster grid is calculated as follows:

the floor value of the leftmost entry is used to find the coordinates of the leftmost matrix entries,

56

the ceiling value of the rightmost is used to find the rightmost pixel entries and a similar

procedure is used for the top and bottom matrix entries. Once the above operations are done,

the points in the LiDAR sequence are assigned to the nearest matrix coordinate centers along

with the inverse of the distance.

As mentioned before in the algorithm. The empty locations are assigned values by

“borrowing” from its neighbors and this is repeated for three iterations to take care of bad

sampling. This process is not repeated more than thrice because water bodies have no return

values and repeating this process till each entry of the matrix fills up with non-zero values

incorporates errors in datasets that contain water bodies.

Once all the points have been assigned to the relevant matrix location centers along

with the distances, a weighted average is applied to each of the matrix positions based on the

inverse distance to the actual LiDAR point location. Therefore, the interpolated intensity and

elevation data is obtained by the slight modification to the IDW algorithm.

4.4.3 Overlap Detector

The overlap detector is essentially one block that takes in the extent information from

both the LiDAR strip data and converts them into finding the region in strip 1 which has an

overlap with strip 2 and vice versa. The various configurations in which the strips can overlap

are shown in Figure 4-2:

The configurations in Figure 4-2 have an overlap region in the horizontal (east-west)

direction and in Figure 4-3 have an overlap in the vertical (north-south) direction. To find the

overlap boundaries for each of the strips involves, the exact area of the overlap region in the

coordinate system of the other strip must be considered.

57

Figure 4-2 Strip Overlap Configurations Horizontal Overlap

Figure 4-3 Strip Overlap Configurations Vertical Overlap

1. Left Boundary: In configurations 1 and 4 shown in Figure 4-2, the left boundary of strip

2 is outside the left boundary of strip 1. In configurations 2 and 3, the left boundary of

strip 1 is outside of the left boundary of strip 2. For Figure 4-3, the left boundary of

overlap in strip 1 is simply the left boundary of strip 2 and in the case of strip 2 it is the

58

left boundary of strip 2 itself. In the general case, the left boundary is calculated as the

maximum values of the left boundaries of both strips in their respective coordinate

system.

2. Right Boundary: The right boundaries are calculated similar to the left boundaries

except that the minimum right boundaries of both strip 1 and strip 2 are taken as the

right boundaries for the strips.

3. Top Boundary: The top boundary is calculated as the maximum value of both the

strips’ top boundaries in their respective matrix locations.

4. Bottom Boundary: The bottom boundary is similarly the minimum value of both the

strips’ bottom boundaries in their respective coordinate systems.

Since the strips considered for the experiments conducted were aligned either in the

east-west or north-south directions, the possible overlaps in diagonal directions were not

considered. In a general case, the calculation of the exact overlapping region is harder than the

configurations considered above.

4.4.4 Keypoint Detector

The keypoint detectors considered in this dissertation were the Shi-Tomasi corner

detector and the Scale-Space (LoG) blob detector. These were implemented as follows.

4.4.4.1 Shi-Tomasi Detector

The Shi-Tomasi detector was implemented using a modification of the Harris corner

detector. The Harris corner detector used a mask to first calculate LiDAR elevation data’s

derivatives in the X and Y directions, }x and }!	respectively. The masks used are shown below:

�: = 	 3−1 0 1−1 0 1−1 0 17	and	�; = 	 3 1 1 10 0 0−1 −1 −17

59

After finding derivatives }x	and	};, a Gaussian filter was applied to these derivatives

based on the blurring standard deviation, σ. Then, for every matrix location in the resulting

gradient function, the eigenvalues of the local neighborhood were obtained and the criterion to

qualify as a corner was determined by the Shi-Tomasi function which requires the minimum of

the two eigenvalues to be over a threshold. Since the Shi-Tomasi detector’s implementation is

not scale adaptive, a scaling factor was chosen as 4 after experimentation to be passed on to

the descriptor stage.

4.4.4.2 Scale-space (LoG) Blob Detector

The scale-space blob detector was implemented by applying the LoG filter to the LiDAR

intensity data at various filter scaling factors. One thing to consider was the fact that in a LoG

detector, the higher the standard deviation of the blurring filter, the weaker the response.

Therefore, each filter kernel was magnified by the square of the standard deviation to normalize

the responses at any level. The collection of the responses of the intensity data to the filters

formed the scale space. Once the scale-space was obtained, 2D and 3D non-maximum

suppression was carried out to find the locations of the blobs at various levels. The level at

which the blob was detected was the scaling level of that particular keypoint detected. This

procedure is approximated very well by the SIFT keypoint detector. In order to visualize the

blobs, a further scaling factor of 1.5 was applied to the circle display routine.

4.4.5 Feature Descriptor

4.4.5.1 ARFD

The ARFD descriptor was implemented by taking into account the scale passed on from

the keypoint detection stage. Based on the scale, a sampling grid was created in the

neighborhood of each keypoint detected. A	16 × 16	grid was sampled about the keypoint to

create the final descriptor. Since the LiDAR elevation data was discreet and set on a regular

60

sampling grid, based on the scaling factor, it is required to interpolate the data points if the

sampling locations are non-integer. The MATLAB function ‘qinterp2’ was used to sample it as

mentioned. The final descriptor was created by recoding the statistics for each 4 × 4	sub-patch

about the detected keypoint and concatenating them in row-order.

4.4.5.2 SIFT

The SIFT descriptor used in this dissertation was downloaded from Professor Svetlana

Lazebnik’s webpage [75]. This was the implementation for the stand-alone descriptor without

the pre-processing steps of scale-space creation, keypoint detection or orientation assignment.

The reason for skipping these steps is because the workflow in this dissertation already

generates keypoints before the descriptors are created and the LiDAR elevation and image data

is “upright” meaning the orientations are the same allowing for an easier implementation of

feature descriptors.

4.4.6 Distance Evaluation

4.4.6.1 Geographic Distance Evaluation

The matching algorithm which has access to geographic information (world coordinate

reference) can be used to find the approximate geographic location of every pixel in every

image. All that is required for this step is the bounding box information for the strip being

processed so that the offsets can be used to calculate the geographic location based on the

reference system. Matching is performed by checking for a geographic proximity of 0.5 pixels or

lesser to choose a set of points as pseudo-correspondences.

61

4.4.6.2 Feature Distance Score

The Euclidean distance scores for pairs of keypoints in both the LiDAR strips were

calculated in the space of the feature descriptor into a [× À matrix where [was the number

of keypoints in the first strip and À was the number of keypoints in the second strip.

	
4.4.7 Nearest Neighbor Matching and Nearest Neighbor Distance Ratio (NNDR) Based Outlier

Elimination

The distance scores matrix was used to find the nearest neighbor for each keypoint in

the first LiDAR strip within all the points in the second strip. The outliers were eliminated by

using a NNDR value of 1.5.

4.4.8 RANSAC Based Outlier Elimination

RANSAC was applied to this function using the off-the-shelf implementation of Peter

Kovesi [76]. The implementation took all the correspondences available after the initial outlier

elimination step performed by the NNDR criterion and used randomized sets of 4 points to

create a projective transformation. Once the transformation was created, the number of inliers

was counted and this process was repeated until the projective model (homography) with the

maximum number of inliers was obtained. Finally, with the points that fit this projective model, a

final homography matrix was obtained using the least squares technique.

4.4.9 Performance Metrics

The performance metrics were obtained as mentioned earlier. After the inliers were

obtained from RANSAC, the homography matrix was applied to both the negative samples and

positive sample. Negative samples being the points that were classified as mismatches and

positives the ones that were classified as true matches. Following this step, the false positives

were found by applying a pixel distance to the transformed positive points and rejected a

62

positive as a false positive if it was beyond 2 pixels away from its correspondence. As for the

negative matches, the same homography was applied and the pixel distance checker was used

to see if a negative was a true negative. If a negative was less than 1 pixel away from its

correspondence, it was taken to be a false negative.

From the parameters: TP, FP, TN and FN. The precision, accuracy, TPR and FPR were

obtained too.

4.5 Details of Performance Metrics

As discussed before in Chapter 3, the performance metrics that were introduced were

the true positives, false positives, true negatives and false negatives. Given below is a detailed

explanation of how these metrics were obtained from the experimental dataset.

4.5.1 True Positives (TP)

These are the points picked out by the matching scheme that are real

correspondences. The feature descriptors were obtained for each of the points on both strips.

From a reference strip, a nearest neighbor was obtained in the matching strip. After the

matches were eliminated based on a nearest neighbor distance ratio, a set of putative matches

(correspondences) were obtained. These putative matches were pruned by the RANSAC

algorithm to obtain the homography transformation required to transform the matching strip to

the reference strip for registration. The points that transformed to fit the homography were

designated as the true positive matches.

4.5.2 False Positives (FP)

These are the points picked out by the matching scheme, which are in reality

mismatches. They are called type I errors in the field of statistics. The putative matches are

63

picked out by the matching algorithm based on the feature descriptor. The matches which did

not fit the homography calculated in the above step were the false positives.

4.5.3 True Negatives (TN)

The points that are eliminated by the matching scheme which are actual mismatches

are the true negatives. The true negatives were found by fitting the homography transformation

to all the negative points. The points that don't fit the transformation were labeled true

negatives.

4.5.4 False Negatives (FN)

These are the correspondences that were missed by the matching scheme but were, in

reality matches. These correspondences were obtained by fitting a homography to all the

negatives and obtaining the points that fit the homography.

4.6 Additional Quality Measurement Parameters

From the above data, a few more measurement parameters can be obtained to

illustrate the strength or weakness of an algorithm. The parameters that were obtained for each

run of the algorithm were as follows:

4.6.1 Precision

This is the fraction of the putative matches, which are the relevant matches.

��v�>�>�A = L+L+ + r+

An ideal matching algorithm has	��v�>�>�A = 1.

64

4.6.2 True Positive Rate (TPR)

The TPR, which is also known as sensitivity or recall is the ratio of the number of true

positives to the total number of actual correspondences.

L+ = L+L+ + rÀ

An ideal matching algorithm has L+ = 1.

4.6.3 False Positive Rate (FPR)

The FPR is the ratio of the number of false positives matches to the total number of

actual non-correspondences.

r+ = r+r+ + LÀ

An ideal matching algorithm has r+ = 1.

4.6.4 Accuracy

This is the proportion of true results reported by the algorithm, be it positive or negative.

It is given by the equation:

���b���; = L+ + LÀL+ + r+ + LÀ + rÀ

An ideal algorithm has ���b���; = 1. The accuracy is a rough measure of how good the

algorithm performs in eliminating false positives and negatives.

4.6.5 Mean Square Elevation Error (MSEE)

The mean square error for the elevation is calculated by applying the homography

transformation to the second rasterized data and calculating the difference in the values of

elevation in the pixels that undergo an overlap. In the case of pixels in either dataset not having

a valid value (for instance, a zero value due to lack of LiDAR returns), the mean square error

didn’t take those pixels into account for the final calculation of MSEE. Elevation was chosen

65

instead of intensity for MSEE calculation because the intensity data, as mentioned before,

contains much spurious information such as specular reflection either on land or in water.

It can be said further that because of the nature of the error in the intensity data, some

of the intensity maps show drastic changes within the overlapping areas. Also, the error is of a

non-linear and non-deterministic nature. Taking all of this into account, it can be postulated that

applying standard feature descriptor techniques to the intensity data alone for matching can

lead to significant false matches.

4.7 Conclusion

In this chapter, detailed explanation has been provided about the implementation

details of the algorithm. Appendix A contains the MATLAB code for each of the blocks

mentioned in the implementation details. In Chapter 5 and Chapter 6, discussions of results

obtained from the implementations of the techniques are presented for the following cases: a)

one that assumes that a common coordinate system is not present b) and one that assumes

that there is a common coordinate system.

66

Chapter 5

Performance of the Feature Descriptors for LiDAR Matching for Unknown Search Area

5.1 Background

In this chapter, the results presented are for the case where we do not take into account

the geographic positions of the keypoints for matching. By this we mean that when a keypoint is

picked in one image, we do not assume to know even the rough location (X, Y or Latitude and

Longitude) of that keypoint in the second image. This is the general situation in many cases,

when the intensity and the elevation data are known, but the x and y locations of the matching

points are unknown ahead of time. For instance, the x and y locations are unknown when a

digital elevation map is created from the overlapping intensity data. In a well run LIDAR mission,

generally the two sets of (X, Y) are fairly close. However, even in this case, calibration errors

could preclude the assumption that the two sets of (X, Y) are identical. Therefore we believe

that the results presented in this chapter are relevant to many applications in real life.

The experiments were conducted for three different scenarios

1. the elevation data alone was used for a descriptor for each keypoint

2. the intensity data alone was used for a descriptor for each keypoint and

3. an adaptive version of the algorithms, which used the kurtosis of a patch to determine

which dataset to choose, between the elevation and intensity data for a descriptor for

each keypoint.

All of these experiments were conducted for 42 overlapping strip pairs using the Shi-

Tomasi detector and the scale-space blob detector as keypoint detection techniques.

Two different feature-matching algorithms were used:

1) The SIFT and

2) The ARFD

67

5.2 Performance Comparison of SIFT and ARFD Using LiDAR Elevation Data

5.2.1 Parameters of the Keypoint Detector

In this set of experiments the SIFT and ARFD algorithms were implemented using

keypoints from scale-space blobs. In the scale-space blob detector, the minimum and maximum

standard deviations j	for the scale pyramids were set between 0.01 and 30 and there were 20

levels between the ranges specified. The threshold for accepting a keypoint was set to 0.5 in

order to detect blobs in all possible sizes since aerial data could possibly have blobs covering

that entire range and beyond.

5.2.1.1 Performance of the SIFT Descriptor for Matching of Elevation Data

The SIFT with elevation data alone with a scale-space blob detector had the following

performance: it had an average precision,	 JÈJÈzÉÈ = 0.4930, an average TPR,
JÈJÈzÉÊ = 0.4637, an

average FPR,	 ÉÈÉÈzJÊ = 0.0571 and an accuracy,
JÈzJÊJÈzÉÈzJÊzÉÊ = 0.8901. After having obtained

these metrics, the homography was recalculated for the datasets from the TP and FN matches.

The Mean Square Error (MSE) was calculated for the resampled and overlaid data. The

elevation MSE was found to be 0.0848 and the intensity MSE was found to be 0.1664. The

SIFT algorithm took an average time of 36.0915 seconds to match.

5.2.1.2 Performance of the ARFD Descriptor for Matching of Elevation Data

The ARFD descriptor when used with elevation data alone with a scale-space blob

detector had the following performance: it had an average precision,	 JÈJÈzÉÈ = 0.8139, an

average TPR,
JÈJÈzÉÊ = 0.4162, an average FPR,	 ÉÈÉÈzJÊ = 0.0238 and an accuracy,

JÈzJÊJÈzÉÈzJÊzÉÊ = 0.8887. After having obtained these metrics, the homography was recalculated

for the datasets from the TP and FN matches. The Mean Square Error (MSE) was calculated for

the resampled and overlaid data; the elevation MSE was found to be 0.0663 and the intensity

68

MSE was found to be 0.1032. The ARFD algorithm took an average time of 35.9232 seconds to

match.

5.2.1.3 Performance Comparison of the ARFD and SIFT Descriptors for Matching of Elevation

Data

Table 5-1provides a comparison between the SIFT and the ARFD algorithms for

matching data using the scale-space blob detector. It can be seen from the table that the rate of

False Positives (FP) in the ARFD is much lower on average in comparison with the SIFT

algorithm. This therefore increases the precision of the ARFD descriptor by 65% and lowers the

FPR by 58% over the SIFT descriptor. The TPR is lower by 10% in ARFD over SIFT and the

accuracy is lower by just 0.1%. The slightly worse performance of ARFD in the aforementioned

is more than offset by the much better performance of ARFD over SIFT in precision and FPR

and by the excellent performance in the MSE for both the intensity and elevation data

alignment.

Table 5-1 Performance comparison of SIFT and ARFD for elevation data with Scale-Space blob

keypoints

Average
Performance
Metrics

SIFT Descriptor ARFD Descriptor
Percentage

improvement of
ARFD over SIFT

Precision 0.4930 0.8139 +65
TPR 0.4637 0.4162 -10
Accuracy 0.8901 0.8887 -0.1
MSE Elevation 0.0848 0.0663 +22
MSE Intensity 0.1664 0.1032 +38

69

5.2.2 Performance of Elevation Data When Keypoints Were Obtained from Shi-Tomasi Corner

Points

For these experiments we used the Shi-Tomasi detector with parameters set as follows:

the blurring standard deviation	j = 1, the threshold for detection Oℎ = 1 and the radius of

detection for the non-maximal suppression as 2.

When the keypoints were obtained from the Shi-Tomasi corner detector, the SIFT

algorithm didn’t perform well because SIFT traditionally uses a scale-space technique to detect

blobs. Hence a comparison with SIFT is not being made here. However, the ARFD performed

well when used with this technique. The performance of the ARFD detector is as follows: it had

an average precision,	 JÈJÈzÉÈ = 0.7388, an average TPR,	 JÈJÈzÉÊ = 0.5036, an average

FPR,	 ÉÈÉÈzJÊ = 0.0335 and an accuracy,
JÈzJÊJÈzÉÈzJÊzÉÊ = 0.8997. After having obtained these

metrics, the homography was recalculated for the datasets from the TP and FN matches. The

Mean Square Error (MSE) was calculated for the resampled and overlaid data; the elevation

MSE was found to be 0.0883 and the intensity MSE was found to be 0.1351. The ARFD

algorithm took an average time of 8.9151 seconds to match.

The Shi-Tomasi based ARFD matching algorithm is quite fast with comparable

performance in terms of matching and alignment. Table 5-2 has the performance comparison

between the versions of the ARFD algorithms using the scale-space blobs and the Shi-Tomasi

corner detectors on elevation data.

We can see that the precision for the Shi-Tomasi is lower and the MSE Elevation and

MSE Intensity are significantly higher. Although the TPR for the Shi-Tomasi based version is

higher by 20% (because of lower number of False Negatives) and the accuracy is higher by a

mere 1%, the worse performance in the other metrics indicates that the scale-space blob

detector based approach works better for ARFD matching and alignment.

70

Table 5-2 Performance comparison of ARFD on elevation data using Scale-Space blob vs. Shi-

Tomasi corner keypoints

Average
Performance
Metrics

ARFD with Shi-
Tomasi Corner

Detector

ARFD with Scale-
Space Blob

Detector

Percentage
improvement –

Scale-Space over
Shi-Tomasi

Precision 0.7388 0.8139 +9
TPR 0.5036 0.4162 -20
Accuracy 0.8997 0.8887 -1
MSE Elevation 0.0883 0.0663 +12
MSE Intensity 0.1351 0.1032 +31

5.3 Performance Comparison of SIFT and ARFD Using LiDAR Intensity Data

For the SIFT and ARFD algorithms based on intensity data alone, the experiments were

performed using both keypoint detection techniques and the results presented in the same

manner as the elevation-only case.

5.3.1 Performance of Intensity Data When Keypoints Were Obtained from Scale-space Blobs

In these experiments the parameters that were set were the same as the elevation

case, but the threshold for accepting a keypoint was set at a higher level of 5 for accepting a

blob. The reason for this choice is the fact that for the dataset we used, the intensity was more

varying overall and the higher threshold was useful in culling the number of keypoints chosen

from each image.

Table 5-3 compares the performance of the SIFT and ARFD descriptors for matching

using the intensity information. It can be seen that the precision is improved by using the ARFD

algorithm. However, the TPR reduced by a fair bit. The increase in MSE for elevation shows

that the alignment quality by using the SIFT algorithm is better than the ARFD algorithm.

71

Table 5-3 Performance comparison of SIFT and ARFD for intensity data with Scale-Space blob

keypoints

Average
Performance
Metrics

SIFT Descriptor ARFD Descriptor
Percentage

improvement of
ARFD over SIFT

Precision 0.2179 0.3896 +79
TPR 0.5001 0.4057 -19
Accuracy 0.9548 0.9746 +2
MSE Elevation 0.1007 0.1160 -15
MSE Intensity 0.2361 0.1662 +30

5.3.2 Performance of Intensity Data When Keypoints Were Obtained from Shi-Tomasi Corner

Points

In this set of experiments, we used the intensity data to obtain corner points and we

used the ARFD algorithm to match the strips of data. Again, SIFT algorithm wasn’t used here

because of the mismatch of the detector type used with SIFT.

Table 5-4 shows the comparison of the performance between the ARFD used with the

scale-space blob detector and the Shi-Tomasi corner detector as the keypoint selection

methodology.

Table 5-4 Performance comparison of ARFD on intensity data using Scale-Space blob vs. Shi-

Tomasi corner keypoints

Average
Performance
Metrics

ARFD with Shi-
Tomasi Corner

Detector

ARFD with Scale-
Space Blob

Detector

Percentage
improvement –

Scale-Space over
Shi-Tomasi

Precision 0.3245 0.3896 +17
TPR 0.3945 0.4057 +3
Accuracy 0.9751 0.9746 -0.05
MSE Elevation 0.1138 0.1160 -2
MSE Intensity 0.2964 0.1662 +78

72

It can be seen from Table 5-4 that the precision and TPR decrease and the accuracies

is very comparable. The MSE for the elevation data is comparable while the MSE for intensity

data has increased significantly.

5.4 Performance Comparison Between Elevation and Intensity Based Approaches

Table 5-5 compares the performance of ARFD for elevation based data against the

performance of ARFD for intensity based data for the scale-space blob detector.

Table 5-5 Performance comparison – elevation and intensity based approaches

Average
Performance
Metrics

ARFD Intensity-
based Descriptor

ARFD Elevation-
based Descriptor

Percentage
improvement of
elevation over

intensity
Precision 0.3896 0.8139 +109
TPR 0.4057 0.4162 +2
Accuracy 0.9746 0.8887 -9
MSE Elevation 0.1160 0.0663 +43
MSE Intensity 0.1662 0.1032 +37.91

While Table 5-5 compares different versions of only the ARFD algorithms, a similar

comparison can be made for the SIFT descriptor too. It can generally be inferred from the table

that the elevation based descriptor performs better than the intensity based approach. This is

likely due to the fact that the LiDAR intensity data is more susceptible to different types of noise.

5.5 Performance of the Adaptive Approaches

5.5.1 Prior Attempts at Establishing Adaptive Approaches

We attempted to establish an adaptive approach at solving the matching problem. In

our attempts, we tried the following techniques listed in chronological order of our attempts:

1. Concatenating the elevation and intensity descriptors in order to form a 128

dimensional descriptor.

73

2. Concatenating the element wise sum and element wise product of the 64 dimensional

elevation and intensity descriptors to form a 128 dimensional descriptor.

3. Concatenating the normalized versions of the elevation and intensity data with an

additional tuning factor to enhance or decrease the magnitude of either of the

descriptors.

4. Choosing keypoints from both the elevation and intensity data from the overlapping

images and culling these keypoints to obtain only those that are keypoints both in

intensity and elevation data.

While these techniques were able to match some keypoints in the two overlapping

images, the level of success that one would expect from a quality algorithm was missing.

Finally, the technique that worked significantly better than elevation-only data was one

that considered the kurtosis of the elevation and intensity to choose a more informative

descriptor. The details of our experiments are provided in Sections 5.5.2, 5.5.3 and 5.5.4.

5.5.2 Adaptive Technique for ARFD Based Matching

In this set of experiments, the descriptor was selected for each keypoint using an

adaptive fashion by choosing to use the elevation or intensity data based on a higher kurtosis

value of either of the modalities. What this enabled was a choice of the more “interesting” or

informative neighborhood to describe a keypoint in a more unique manner. For instance, a flat

piece of land that has a prominent street intersection would have a flat elevation response but a

very unique intensity response. Similarly, for a complex shaped building, which otherwise

blends in with the background from an intensity point of view, the elevation information is more

likely to be prominent, interesting or informative. In the first case an intensity based descriptor

would be chosen and in the second case an elevation based descriptor would be chosen. Our

postulate was that the right choice of feature descriptors could lead to better matching than a

non-adaptive descriptor based matching technique.

74

Table 5-6 shows the performance of the adaptive ARFD compared to the elevation

based and intensity based ARFD approaches.

Table 5-6 Performance comparison of the ARFD adaptive algorithm versus intensity and

elevation based approaches for the scale-space blob detector.

Average
Performance

Metrics

ARFD
Intensity-

based
Descriptor

ARFD
Elevation-

based
Descriptor

ARFD –
adaptive
algorithm

Percentage
improvement
of Adaptive

over
intensity
based

Percentage
improvement
of Adaptive

over
elevation

based
Precision 0.3896 0.8139 0.8978 +130 +10

TPR 0.4057 0.4162 0.5285 +30 +27
Accuracy 0.9746 0.8887 0.9021 -7 +1.5

MSE
Elevation

0.1160 0.0663 0.0914 +21.2 -38

MSE
Intensity

0.1662 0.1032 0.1270 +24 -23

From Table 5-6 it can be seen that the performance of the Adaptive ARFD algorithm is

significantly better the elevation-only case with respect to the measures precision and TPR.

While the increase in accuracy is not that significant, it can be argued that the overwhelming

number of True Negatives (mismatches truly classified as non-correspondences) can saturate

the values of accuracies. When a comparison of the adaptive ARFD is made with the intensity

based approach the improvements in precision and TPR are also very significant. It was also

inferred that the precision, accuracy and TPR of the adaptive ARFD approach were better than

that of the elevation-only approach.

75

Table 5-7 Performance comparison of the adaptive algorithm versus intensity and elevation

based approaches for the Shi-Tomasi detector

Average
Performance
Metrics

ARFD
Intensity-

based
Descriptor

ARFD
Elevation-

based
Descriptor

ARFD –
adaptive
algorithm

Precision 0.3245 0.7388 0.6681
TPR 0.3945 0.5036 0.4958
Accuracy 0.9751 0.8997 0.9140
MSE Elevation 0.1138 0.0883 0.0734
MSE Intensity 0.2964 0.1351 0.1476

From Table 5-7, it can be seen even without a percentage based comparison that the

adaptive algorithm doesn’t offer a better performance than the elevation based algorithm. This

is perhaps because the corner points detected are not the best keypoints for extracting an

“interesting” descriptor for matching. Therefore, the conclusion that can be drawn from this is

that space blob detectors may be the best keypoint extracting methodologies for matching

LiDAR data.

5.5.3 Adaptive Technique for SIFT Based Matching

It occurred to us that we could also create an adaptive version of SIFT much like we did

for ARFD. Thus SIFT was modified to use an elevation based or an intensity based descriptor

for each keypoint. A comparison similar to that described in Section 5.5.1 was performed for a

new adaptive SIFT which too considers the kurtosis of the nearby neighborhood for the

selection of the appropriate descriptor. The results obtained from this experiment are presented

in Table 5-8. The adaptive SIFT did improve over the original SIFT descriptor in terms of

precision values but its TPR didn’t improve at all. The reason that we postulate for the mediocre

performance in TPR is that SIFT considers the gradients of the data (elevation or intensity) in

creating its descriptor. The kurtosis may offer information about how interesting a patch is either

in its elevation or intensity data. However, this doesn’t necessarily translate directly into

76

interesting gradient information and hence the change in performance is likely very little

compared to the stand alone elevation based matching.

Table 5-8 Performance comparison of the SIFT adaptive algorithm versus intensity and

elevation based approaches for the scale-space blob detector.

Average
Performance

Metrics

SIFT
Intensity-

based
Descriptor

SIFT
Elevation-

based
Descriptor

SIFT –
adaptive
algorithm

Percentage
change of
Adaptive

over intensity
based

matching

Percentage
change of
Adaptive

over intensity
based

matching
Precision 0.2179 0.4930 0.5360 +145.98 +9

TPR 0.5001 0.4637 0.4600 -8 -0.8
Accuracy 0.9548 0.8901 0.9174 -4 +3

MSE
Elevation

0.1007 0.0848 0.0578 +43 +32

MSE Intensity 0.2361 0.1664 0.1010 +57 +39.30

5.5.4 Comparison Between Adaptive SIFT and Adaptive ARFD

A comparison between the adaptive SIFT and the adaptive ARFD algorithms is

performed and the results shown in Table 5-9. We can see that the improvement in precision

and TPR for adaptive ARFD is very high. Percentage numbers for these two criteria are

generally valid since range of precision and TPR is 0 -1. However, the MSE in both elevation

and intensity data has worsened in terms of percentages. These are not as significant because

the actual MSE numbers for all cases are quite small.

Table 5-9 Performance comparison between adaptive versions of SIFT and ARFD descriptors

Average
Performance
Metrics

SIFT –
adaptive
algorithm

ARFD –
adaptive
algorithm

Percentage
improvement
of ARFD over
SIFT

Precision 0.5360 0.8978 67.5
TPR 0.4600 0.5285 15
Accuracy 0.9174 0.9021 -1
MSE Elevation 0.0578 0.0914 -58
MSE Intensity 0.1010 0.1270 -257

77

5.6 Conclusion

We performed several experiments using the overlapping strip pairs for matching. In

these experiments, we did not consider the fact that the data was obtained based on a common

coordinate system.

It must be noted that, given the non-linear nature of all of these algorithms, the

performance is clearly sensitive to the nature of the actual data – the variations in the intensity

and elevations in specific geographic locations. It must be mentioned that the 49 strips that we

used had only sparing amount of rugged elevation.

From the experiments that we conducted, it can generally be concluded that scale-

space blobs are best suited for extracting the most interesting features for LiDAR data

matching. Also, the elevation based data is more reliable for obtaining a good matching

between the strips. Furthermore, we introduced an adaptive technique to choose the feature

descriptor for a keypoint based on whether the elevation or intensity data in the neighborhood of

a keypoint is more “interesting”. We noted that this approach performed better than even the

elevation only based approach.

Finally, comparisons of the ARFD descriptor with the SIFT descriptor were made in

great detail and we can conclude that the ARFD algorithm performs significantly better in

comparison with the SIFT descriptor for LiDAR matching under the condition that the

geographic proximity of keypoints were not considered for selecting correspondences.

78

Chapter 6

Performance of the SIFT and ARFD Algorithms for LiDAR Matching for Predetermined Search

Area

6.1 Background

In this chapter, the results presented are for the case where we know the approximate

geographic locations of the keypoints. In other words, for every keypoint in the first image, we

know the rough location (X, Y or Latitude and Longitude) of a possible keypoint match in its

overlapping second image. This is true for LIDAR acquired from an aerial platform, when the

intensity and the elevation data are known, but the precise x and y locations of the matching

points are unknown ahead of time. The differences in the X, Y locations for the same ground

locations but visible in the overlapping areas of two strips are caused by calibration errors.

The matching strategy described in this chapter is as follow: matching is performed by

seeking a correspondence for every keypoint in the first image within a permissible radius

surrounding its exact location, unlike the more general situation where a matching point can be

sought anywhere in the overlapping area.. In case of gross calibration errors, a relaxed radius

allows us to find an exact match while in the case of nearly perfect LiDAR data; a stricter

threshold reduces the computational time to match.

In our experiments, we used LiDAR data acquired from a system that is reasonably well

calibrated. We were able to determine this by matching and visual examination of many

overlapping strip pairs. Therefore, we used a search radius of only 0.5 pixels, which translated

for the given scale of this particular data set, to a radius of 0.5 meters in terms of physical

distance on the ground.

The experiments were conducted for two different scenarios:

1. the elevation data alone was used for a descriptor for each keypoint

2. and the intensity data alone was used for a descriptor for each keypoint.

79

All of these experiments were conducted for 47 overlapping strip pairs using the Shi-

Tomasi detector and the scale-space blob detector as keypoint detection techniques.

Two different feature-matching algorithms were used:

1. The SIFT and

2. The ARFD

6.2 Requirement for LiDAR Strip Adjustment Under Common Coordinate System

LiDAR data, although acquired from calibrated systems, cannot be taken as flawless

before being made available for further processing in its end applications. There is a

requirement for Quality Control before it can be made publically available. In quality control

procedures, “the relative and absolute accuracies” of the LiDAR strip data are verified [4]. Habib

et al. [4] introduced the possible errors that can occur in LiDAR systems and broke it down into

two categories:

1. Random errors

2. and systematic errors.

Random errors were classified as position noise – creating an equivalent noise in final

point cloud, orientation noise – creating noise in the horizontal scanning direction and range

noise – creating noise in the vertical scanning direction.

The systematic errors are a result of biases present in the LiDAR system components

and measurements. Habib et al. focused on the fact that some of these errors can cause

discrepancies in points in overlapping strips too. They even showed the differences between

bias contaminated and true coordinates in overlapping strips which are typically collected by

flying the collecting airplane in opposite directions. They provided the effect of each of the

following biases in the LiDAR system:

1. Lever-arm offset bias

2. bore-sighting pitch bias

80

3. bore-sighting roll bias

4. bore-sighting yaw bias

5. range bias

6. and mirror angle scan bias.

They even concluded that three translation parameters and a rotation angle were

sufficient to model the discrepancies in two parallel strips of data. They provided mathematical

analysis for such a model in [77]. Therefore, we are attempting to match the LiDAR data even

under a common coordinate system for Quality Control purposes of the LiDAR mission without

blindly assuming that the LiDAR data collecting vendor did their calibration tasks perfectly that

too in regular intervals of time to follow proper Quality Assurance practices.

6.3 Matching with ARFD and SIFT Descriptors With Elevation Data as Input

6.3.1 Matching Using Scale-space Blobs

In these experiments, the scale space blobs were used to obtain keypoints from both

the SIFT and the ARFD descriptors using only their elevation data. The parameters for the

scale-space blob detector were set as 20 levels in between 0.01 for the minimum scale and 30

for the maximum scale. The detection threshold was set as 0.5 for the elevation data because

of the more regular nature of the elevation information in the experimental dataset.

Between the SIFT and ARFD descriptors, the matching was similar because of the

constraint applied to both algorithms that the match must be sought within a radius of 0.5

meters about the keypoint in the first image. From visual inspection, the alignment was very

good for most of the patches. One such case is shown in Figure 6-1 and Figure 6-2. It was also

noteworthy that the ARFD, despite having the same alignment quality in terms of MSE and

visual inspection, was able to pick up on an average 10% more matches that the SIFT

algorithm. For ARFD algorithm, the number of matches was either equal to or more than that of

the SIFT algorithm.

81

6.3.2 Matching Using Shi-Tomasi Corner Points

In this case, we applied the Shi-Tomasi algorithm to pick out corner points from each of

the matching images. When we performed this, we set the parameters for the Shi-Tomasi

corner detector as follows:

1. the blurring standard deviation	j = 1,

2. the threshold for detection Oℎ = 1 and

3. the radius of detection for the non-maximal suppression = 2.

Even in these cases, the performance of the SIFT and ARFD algorithms were

comparable in terms of alignment MSE values and by visual inspection. The improvement in the

number of matches in the ARFD algorithm was 2.75%. Thus the performances of the algorithms

with this descriptor are very comparable.

A comparison between the keypoint detection techniques is not entirely possible

because of the identical homography transforms obtained from both the approaches and the

fact that the geographic proximity condition ruled out any wildly negative matches at the

beginning stages.

82

Figure 6-1 Two matching strips on which elevation based matching was performed

Figure 6-2 Alignment of the strips shown in Figure 6-2Figure 6-1

83

6.4 Matching With ARFD and SIFT Descriptors With Intensity Data As Input

6.4.1 Matching Using Scale-space Blobs

In these experiments, the scale space blobs were used to obtain keypoints from both

the SIFT and the ARFD descriptors using only their elevation data. The parameters for the

scale-space blob detector were:

1. 20 levels in between 0.01 for the minimum scale and 30 for the maximum scale.

2. The detection threshold was set as 5 for the intensity data, higher than the elevation

data for reasons explained in Section 6.3.1.

Here too, the alignment MSE and visual inspection suggested identical homography

matrices for both the SIFT and ARFD descriptor algorithms. However, the ARFD was able to

pick up on an average 8.5% more matches than the SIFT algorithm. However, there were

instances in which the SIFT algorithm performed significantly better than the ARFD algorithm

possibly because SIFT might is better suited for intensity images.

6.4.2 Matching Using Shi-Tomasi Corner Points

We applied the Shi-Tomasi algorithm to pick out corner points from each of the

matching images. The parameters for the Shi-Tomasi corner detector as follows:

1. the blurring standard deviation	j = 3,

2. the threshold for detection Oℎ = 1 and

3. the radius of detection for the non-maximal suppression as 2.

 The reason for the increase in the blurring standard deviation is that the intensity

information has more contrast and hence there are more potential corner points and there is a

necessity to cull the number of points used.

Even in these cases, the performance of the SIFT and ARFD algorithms were identical

in all respects: MSE, number of matching points and by visual inspection.

84

6.5 Conclusion

In this chapter, we performed experiments with several methodologies on matching

LiDAR data. This set of experiments were performed taking into account our knowledge of the

geographic proximity of points

It was evident from our experiments that in a well calibrated LiDAR set up, the

performance of the ARFD and SIFT algorithms are identical and can be used interchangeably

with the desired effect. Despite that we found that in terms of number of matching points, the

ARFD does marginally better than SIFT on most occasions. We can conclude that the elevation

data is better represented by their statistics as in the ARFD algorithm than their gradients as in

the SIFT algorithm. However, for intensity data based descriptors, the performance of ARFD

and SIFT algorithms were almost exactly the same.

85

Chapter 7

Conclusion

In this dissertation we have introduced a technique to match co-registered LiDAR

elevation and intensity data using a feature descriptor called the Aerial Range Feature

Descriptor (ARFD). We investigated matching LiDAR data using standalone elevation and

intensity responses. Within the task of matching LiDAR data, we considered two cases: a) when

a reference coordinate system for both the LiDAR strips is available, b) and when a reference

coordinate system is unavailable. For the latter task, we also presented an adaptive technique

that chooses either of the data modalities to create the most informative feature descriptor. We

used the Scale Invariant Feature Transform (SIFT) algorithm to perform the same matching

tasks and came to the conclusion that the ARFD technique is more suited for matching LiDAR

data strips. Among the keypoint detection techniques used for matching these LiDAR images,

we used the scale-space blob detector and the Shi-Tomasi corner detector.

We came to an overall conclusion that for the case when a reference coordinate system

is known beforehand, either the SIFT or ARFD techniques can be used with the same effect.

The keypoint detection techniques were identical in their performance too. When the reference

coordinate system is unknown, the best approach was to use the scale-space blob detector with

an adaptive ARFD algorithm to choose better feature descriptors among intensity or elevation in

order to obtain a better quality of matches.

In the future, techniques can be introduced that create feature descriptors from point

clouds of data. Although they are in the same family of descriptors as the spin-images [14],

these techniques must take into account the highly irregular sampling of LiDAR into account

and adapt their working to this limitation. Also, binning techniques that are similar to the

Gradient Location and Orientation Histogram (GLOH) [71] could be applied to the feature

descriptor.

86

More important than these is the necessity to introduce techniques that use affine-

invariant blobs [67] and create affine-invariant neighborhoods to sample points and hence

create affine invariant feature descriptors. This could extend the uses of the ARFD to terrestrial

LiDAR or ranging data, which mainly uses ICP to perform tasks like 3D from motion or

structure-from-motion.

It would also be an interesting study to add various types of noises to the intensity and

the elevation values of the raw LIDAR data to simulate noise and calibration errors and

investigate how each of the algorithms cope with it. Another experiment worth trying is to apply

changes to the data that offset the X or Y values to see how errors in horizontal values affect

the matching.

Another issue that we recognized towards the end of our work is how to quantify the

diversity of terrain captured by the 42 strips of LiDAR data used in our experiment. We simply

picked a large sample of terrain data in consultation with NRCS engineers, hoping that the

quantitative numbers obtained for the matching techniques from such a choice was reliable. It

would be useful to get statistical measures to define the general elevation variations in the

terrain as one of the independent variables.

87

Appendix A

MATLAB Codes

88

I. Interpolation of a LiDAR strip

Main script:

%% CLEARING WORKSPACE
clear all
close all
warning off all
clc

[int1, ele1, bb1] = readtextinterpolate('C:\Users\veladmin\Google

Drive\Mythreya VA Extraction\Set2\patch1.txt');
[int2, ele2, bb2] = readtextinterpolate('C:\Users\veladmin\Google

Drive\Mythreya VA Extraction\Set2\patch2.txt');
[int3, ele3, bb3] = readtextinterpolate('C:\Users\veladmin\Google

Drive\Mythreya VA Extraction\Set2\patch3.txt');
save set2mountain
figure
subplot(221); imshow(int1,[]);
subplot(222); imshow(int2,[]);
subplot(223); imshow(int3,[]);

%%%

Function 1: readtextinterpolate.m

Input: path to location of file.

Outputs: interpolated intensity, elevation images and bounding box of points.

function [int, ele, bounding_box] = readtextinterpolate(path)

 dlm = ',';
 numl = numel(textread(path,'%1c%*[^\n]')); %read 1st char of each

line
 range = [0 0 numl-1 3];
 points = dlmread(path,dlm,range); %delimited read into a vector

 %% CREATING THE INTENSITY AND ELEVATION PLOTS
 [int, ele, bounding_box] = interpolate_LiDAR_trilinear(points);

end

%%%

Function 2: interpolate_LiDAR_trilinear.m

Input: points obtained from the path supplied to readtextinterpolate function.

Outputs: interpolated intensity, elevation images and bounding box of points.

89

function [int, ele, bounding_box] =

interpolate_LiDAR_trilinear(points)

 %% SETTING UP OF PIXEL BOUNDARIES
 min_points = min(points);
 max_points = max(points);
 left = floor(min_points(1));
 right = ceil(max_points(1));
 up = floor(min_points(2));
 down = ceil(max_points(2));
 range_x = right-left;
 range_y = down-up;
 del = range_x/round(range_x);
 x_array = del/2:del:range_x;
 y_array = del/2:del:range_y;
 pel_x = length(x_array);
 pel_y = length(y_array);
 int = zeros(pel_y,pel_x);
 ele = int;
 relevant_points = cell(pel_x,pel_y);
 bounding_box = [min_points(1) min_points(2) max_points(1)

max_points(2)];

 %% DO LOOP ON THE POINTS ONLY TO EXTRACT PIXELS THAT ARE RELEVANT

TO THE POINTS
 for index = 1:size(points,1)
 i = ceil((points(index,1)-left+eps)/del);
 j = ceil((points(index,2)-up+eps)/del);
 block_x = max(i-1,1):min(pel_x,i+1);
 block_y = max(j-1,1):min(pel_y,j+1);
 [valid_x, valid_y] = meshgrid(block_x,block_y);
 for pts_1 = 1:size(valid_x,1)
 for pts_2 = 1:size(valid_x,2)
 temp_arr =

[relevant_points{valid_x(pts_1,pts_2),valid_y(pts_1,pts_2)} 0];
 temp_arr(end) = index;

relevant_points{valid_x(pts_1,pts_2),valid_y(pts_1,pts_2)} = temp_arr;
 end
 end
 end

 %% ITERATIVE ASSIGNMENT TO EMPTY CELLS
 ct = 3;
 while(ct)
 empty_cells = cellfun('isempty',relevant_points);
 [e_r, e_c] = find(empty_cells == 1);
 ct = ct-1;

 temp_cells = cell(1,length(e_r));
 for ind=1:length(e_r)
 block = relevant_points(max(e_r(ind)-

1,1):min(pel_x,e_r(ind)+1),max(e_c(ind)-1,1):min(pel_y,e_c(ind)+1));

90

 block(cellfun(@isempty,block)) = {0};
 tp = unique(cell2mat((block(:))'));
 tp(1) = [];
 temp_cells{1,ind} = tp;
 end
 % UPDATING THE POINTS LIST
 for ind=1:length(e_r)
 relevant_points{e_r(ind),e_c(ind)} = temp_cells{1,ind};
 end
 end

 %% INTERPOLATIONG USING INVERSE DISTANCE MEASURE
 for i=1:pel_x
 for j=1:pel_y
 sum_i = 0;
 sum_e = 0;
 dr = 0;
 current_points = relevant_points{i,j};
 loc_x = min_points(1)+del/2+(i-1)*del;
 loc_y = min_points(2)+del/2+(j-1)*del;
 for ind=1:length(current_points)
 if current_points(ind) ~= 0
 dr_temp = sqrt((points(current_points(ind),1)-

loc_x)^2+(points(current_points(ind),2)-loc_y)^2);
 sum_i =

sum_i+points(current_points(ind),4)/dr_temp;
 sum_e =

sum_e+points(current_points(ind),3)/dr_temp;
 dr = dr + 1/dr_temp;
 end
 end
 int(j,i) = sum_i/dr;
 ele(j,i) = sum_e/dr;
 end
 end
 int = flipud(int);
 ele = flipud(ele);

end

91

II. Main script for matching two overlapping LiDAR strips

Code#1: Matching under unknown geographic proximity

Note: This code contains matching with scale-space blobs on intensity data for the ARFD

descriptor. Modifications to this code are made to use the Shi-Tomasi detector or the SIFT

descriptor or even elevation images to generate the keypoints in the place of intensity images.

%% CLEARING WORKSPACE
clear all
close all
warning off all
clc
tstart = tic;

%% PARSING DATA AND RESHAPING THE MATRIX (done offline)
%% LOADING THE PARSED DATA
load vertical1
intensity1 = int19;
intensity2 = int20;
elevation1 = ele19;
elevation2 = ele20;
bb1 = bb19;
bb2 = bb20;
clear int16 int17 int18 int19 int20 int21 int22 int23 int24
clear ele16 ele17 ele18 ele19 ele20 ele21 ele22 ele23 ele24
clear bb16 bb17 bb18 bb19 bb20 bb21 bb22 bb23 bb24

%% FINDING BOUNDING PIXELS
bounds1 = boundPixels(bb1,bb2,1);
bounds2 = boundPixels(bb1,bb2,0);

%% SIFT IMAGE PYRAMIDS AND KEYPOINT SELECTION, WITH ORIENTATION AND

SCALE
s=1;
[rowse1,colse1,scalese1,responsee1] =

keypoint_scales(intensity1,1,bounds1,20,30,0.01,5);
[rowse2,colse2,scalese2,responsee2] =

keypoint_scales(intensity2,0,bounds2,20,30,0.01,5);
scalese1 = s*scalese1; scalese2 = s*scalese2;

%% ELIMINATING POINTS IN THE BORDERS
[rowse1,colse1,scalese1,responsee1] =

prunefeatures(rowse1,colse1,scalese1,responsee1,intensity1);
[rowse2,colse2,scalese2,responsee2] =

prunefeatures(rowse2,colse2,scalese2,responsee2,intensity2);

%% ARFD

92

Descriptorse1 =

descriptor_std(elevation1,intensity1,rowse1,colse1,scalese1);
Descriptorse2 =

descriptor_std(elevation2,intensity2,rowse2,colse2,scalese2);

%% ELEMINATION OF KEYPOINTS AT THE CORNERS
vec = sum(Descriptorse1,2);
eliminate = find(isnan(vec));
Descriptorse1(eliminate,:) = []; rowse1(eliminate) = [];

colse1(eliminate) = []; responsee1(eliminate) = [];

scalese1(eliminate) = [];
vec = sum(Descriptorse2,2);
eliminate = find(isnan(vec));
Descriptorse2(eliminate,:) = []; rowse2(eliminate) = [];

colse2(eliminate) = []; responsee2(eliminate) = [];

scalese2(eliminate) = [];
clear vec eliminate

%% MATCHING
len1 = size(Descriptorse1,1);
len2 = size(Descriptorse2,1);
Distances = zeros(len1,len2);
diste = Distances;
for i=1:len1
 for j=1:len2
 diste(i,j) = sqrt(sum((Descriptorse1(i,:) -

Descriptorse2(j,:)).^2));
 end
end
%% FORWARD MATCH: MINIMUM FOR QUERY
positives_e = [];
negatives_e = [];
for i=1:size(Descriptorse1,1);
 vector = diste(i,:);
 minimum = min(vector);
 candidates = find(vector == minimum);
 vector(candidates(1)) = [];
 if min(vector)>=1.5*minimum
 for j=1:length(candidates)
 positives_e = [positives_e;[i candidates(j)]];
 end
 else
 for j=1:length(candidates)
 negatives_e = [negatives_e;[i candidates(j)]];
 end
 end
end

%% RANSAC AND OUTLIER ESTIMATION
x1 = zeros(size(positives_e,1),2);
x2 = x1;
for i=1:size(positives_e,1)

93

 x1(i,:) = [colse1(positives_e(i,1)) rowse1(positives_e(i,1))];
 x2(i,:) = [colse2(positives_e(i,2)) rowse2(positives_e(i,2))];
end
maxi = 0; TP_list = []; FP_list = []; Homography_matrix = [];

for i=1:100
 [H1, inliers] = ransacfithomography(x1',x2',0.001);
 outliers = setdiff(1:size(positives_e,1),inliers);
 if length(inliers) > maxi
 maxi = length(inliers);
 TP_list = inliers;
 FP_list = outliers;
 Homography_matrix = H1;
 end
end
H1 = Homography_matrix;
H1 = H1'/H1(3,3)
TP = length(TP_list);
FP = length(FP_list);
%% TRUE AND FALSE NEGATIVES
[TN_list, FN_list] =

find_tnfn_eleonly(negatives_e,rowse1,rowse2,colse1,colse2,H1);
TN = length(TN_list);
FN = length(FN_list);
%% RECALCULATE HOMOGRAPHY - make use of TP and FN points
x1 = zeros(TP+FN,2);
x2 = x1;
for i=1:TP
 x1(i,:) = [colse1(positives_e(TP_list(i),1))

rowse1(positives_e(TP_list(i),1))];
 x2(i,:) = [colse2(positives_e(TP_list(i),2))

rowse2(positives_e(TP_list(i),2))];
end
for i=1:FN
 x1(i+TP,:) = [colse1(negatives_e(FN_list(i),1))

rowse1(negatives_e(FN_list(i),1))];
 x2(i+TP,:) = [colse2(negatives_e(FN_list(i),2))

rowse2(negatives_e(FN_list(i),2))];
end
maxi = 0; Homography_matrix = [];
[H2, inliers] = ransacfithomography(x1',x2',0.0001);
outliers = setdiff(1:(length(TP_list)+length(FN_list)),inliers);
H2 = H2'/H2(3,3)

[TP FP TN FN]
x1(:,3) = 1; x2(:,3) = 1;

%% FIND THE RESAMPLED IMAGE
i_offset = max(-round(H2(3,2)),0);
j_offset = max(-round(H2(3,1)),0);
error = 0;
count = 0;

94

T = maketform('projective',H2);
transformedI = imtransform(intensity2,T);
transformedI(isnan(transformedI))=0;
I_stitched = intensity1;
I_stitched(isnan(I_stitched))=0;
for i=1:size(transformedI,1)
 for j=1:size(transformedI,2)
 if(i+i_offset <= size(intensity1,1) && j+j_offset <=

size(intensity1,2))
 if(intensity1(i+i_offset,j+j_offset) ~= 0 &&

transformedI(i,j) ~= 0)
 error = error+abs(I_stitched(i+i_offset,j+j_offset) -

transformedI(i,j))^2;
 count = count+1;
 end
 end
 if transformedI(i,j)
 I_stitched(i+i_offset,j+j_offset) = transformedI(i,j);
 else
 continue
 end
 end
end
figure
imshow(I_stitched,[]);

%% FIND THE MSE AND PSNR
MSE = sqrt(error)/count
PSNR = 10*log10(255^2/MSE)
toc(tstart)
%% STITCHING THE IMAGES AND DISPLAYING MATCHES ONLY FROM THE LIST
output_image = intensity1;
output_image(size(intensity1,1)+1+10:size(intensity1,1)+size(intensity

2,1)+10,1:size(intensity2,2)) = intensity2(:,:);
% ctt = 0;
figure
imshow(output_image,[])
hold on
% TRUE POSITIVES
for i=1:TP
 p1 = [rowse1(positives_e(TP_list(i),1))

colse1(positives_e(TP_list(i),1))];
 p2 = [rowse2(positives_e(TP_list(i),2))+10+size(intensity1,1)

colse2(positives_e(TP_list(i),2))];
 plot([p1(2),p2(2)],[p1(1),p2(1)],'Color','g','LineWidth',1);
end

% FALSE POSITIVES
output_image = intensity1;
output_image(size(intensity1,1)+1+10:size(intensity1,1)+size(intensity

2,1)+10,1:size(intensity2,2)) = intensity2(:,:);
% ctt = 0;

95

figure
imshow(output_image,[])
hold on
for i=1:FP
 p1 = [rowse1(positives_e(FP_list(i),1))

colse1(positives_e(FP_list(i),1))];
 p2 = [rowse2(positives_e(FP_list(i),2))+10+size(intensity1,1)

colse2(positives_e(FP_list(i),2))];
 plot([p1(2),p2(2)],[p1(1),p2(1)],'Color','r','LineWidth',1);
end

output_image = intensity1;
output_image(size(intensity1,1)+1+10:size(intensity1,1)+size(intensity

2,1)+10,1:size(intensity2,2)) = intensity2(:,:);
% ctt = 0;
figure
imshow(output_image,[])
hold on

% TRUE NEGATIVES
for i=1:TN
 p1 = [rowse1(negatives_e(TN_list(i),1))

colse1(negatives_e(TN_list(i),1))];
 p2 = [rowse2(negatives_e(TN_list(i),2))+10+size(intensity1,1)

colse2(negatives_e(TN_list(i),2))];
 plot([p1(2),p2(2)],[p1(1),p2(1)],'Color','b','LineWidth',1);
end

% FALSE NEGATIVES
output_image = intensity1;
output_image(size(intensity1,1)+1+10:size(intensity1,1)+size(intensity

2,1)+10,1:size(intensity2,2)) = intensity2(:,:);
% ctt = 0;
figure
imshow(output_image,[])
hold on
for i=1:FN
 p1 = [rowse1(negatives_e(FN_list(i),1))

colse1(negatives_e(FN_list(i),1))];
 p2 = [rowse2(negatives_e(FN_list(i),2))+10+size(intensity1,1)

colse2(negatives_e(FN_list(i),2))];
 plot([p1(2),p2(2)],[p1(1),p2(1)],'Color','y','LineWidth',1);
end

96

Code#2: Matching under known geographic proximity

%% CLEARING WORKSPACE
clear all
close all
warning off all
clc

%% PARSING DATA AND RESHAPING THE MATRIX (done offline)
%% LOADING THE PARSED DATA
load vertical1
intensity1 = int16;
intensity2 = int17;
elevation1 = ele16;
elevation2 = ele17;
bb1 = bb16;
bb2 = bb17;
clear int16 int17 int18 int19 int20 int21 int22 int23 int24
clear ele16 ele17 ele18 ele19 ele20 ele21 ele22 ele23 ele24
clear bb16 bb17 bb18 bb19 bb20 bb21 bb22 bb23 bb24

%% FINDING BOUNDING PIXELS
tstart = tic;
bounds1 = boundPixelsNew(bb1,bb2);
bounds2 = boundPixelsNew(bb2,bb1);

%% SIFT IMAGE PYRAMIDS AND KEYPOINT SELECTION, WITH ORIENTATION AND

SCALE
s=1;
[rows1,columns1,scales1,response1] =

keypoint_scales(elevation1,1,bounds1,20,30,0.01,5);
[rows2,columns2,scales2,response2] =

keypoint_scales(elevation2,0,bounds2,20,30,0.01,5);
scales1 = s*scales1; scales2 = s*scales2;

%% RUNNING CODE
[rows1,columns1,scales1,response1] =

prunefeatures(rows1,columns1,scales1,response1,intensity1);
[rows2,columns2,scales2,response2] =

prunefeatures(rows2,columns2,scales2,response2,intensity2);

%% OBTAIN DESCRIPTORS
Descriptors1 =

descriptor_std(elevation1,intensity1,rows1,columns1,s*ones(length(colu

mns1)));
Descriptors2 =

descriptor_std(elevation2,intensity2,rows2,columns2,s*ones(length(colu

mns2)));

% MATCHING
distTh = 2;
positives = [];

97

negatives = [];
for i=1:length(rows1)
 Descriptor_currenti = Descriptors1(i,:);
 feature_distance = inf;
 match = -1;
 for j=1:length(rows2)
 % INITIAL WORLD POSITIONS
 iwp1 = [bb1(4),bb1(1)];
 iwp2 = [bb2(4),bb2(1)];
 % POSITIONS AFTER OFFSET
 off1 = iwp1+[-rows1(i) columns1(i)];
 off2 = iwp2+[-rows2(j) columns2(j)];
 % DIFFERENCES
 geographic_distance = abs(off2-off1);
 list = [];
 if norm(geographic_distance) < distTh
 Descriptor_currentj = Descriptors2(j,:);
 current_feature_distance = sqrt(sum((Descriptor_currentj -

Descriptor_currenti).^2));
 if current_feature_distance < feature_distance
 feature_distance = current_feature_distance;
 match = j;
 end
 list = [list j];
 end
 end
 if ~isempty(list)
 list
 end
 if match~=-1
 positives = [positives; [i match]];
 else
 continue
 end
end

%% RANSAC
x1 = zeros(size(positives,1),2);
x2 = x1;
for i=1:size(positives,1)
 x1(i,:) = [columns1(positives(i,1)) rows1(positives(i,1))];
 x2(i,:) = [columns2(positives(i,2)) rows2(positives(i,2))];
end
[H1, inliers] = ransacfithomography(x1',x2',0.1);
outliers = setdiff(1:size(positives,1),inliers);
TP_list = inliers;
FP_list = outliers;
H1 = H1'/H1(3,3)
TP = length(TP_list);
FP = length(FP_list);
telapsed = toc(tstart)
%% STITCHING IMAGES
[I_stitched,MSE_i] = stitching(H1,intensity1,intensity2);

98

[E_stitched,MSE_e] = stitching(H1,elevation1,elevation2);

%% POSITIVE MATCHES
output_image = intensity1;
output_image(size(intensity1,1)+1:size(intensity1,1)+size(intensity2,1

),1:size(intensity2,2)) = intensity2(:,:);
figure
imshow(output_image,[])
hold on
% POSITIVES
for i=1:size(positives,1)
 p1 = [rows1(positives(i,1)) columns1(positives(i,1))];
 p2 = [rows2(positives(i,2))+size(intensity1,1)

columns2(positives(i,2))];
 plot([p1(2),p2(2)],[p1(1),p2(1)],'Color','g','LineWidth',1);
end

%% STITCHED IMAGES
figure
imshow(I_stitched,[]);
% figure
% imshow(E_stitched,[]);

%% DATA
% load SIFT_geo_SS_int
% load ARFD_geo_SS_int
% ARFD_geo_SS_int = [ARFD_geo_SS_int;[TP MSE_e MSE_i telapsed]];
% save ARFD_geo_SS_int ARFD_geo_SS_int
% clear
% load SIFT_geo_SS_int
% load ARFD_geo_SS_int

%%%

Function 1: boundPixels.m

Inputs: bounding boxes for upper and lower images, flag to tell if images is upper or lower.

Outputs: overlapping area for that image in pixel coordinates.

function bounds = boundPixels(bb1,bb2,tblr)

 if tblr == 1
 l = max(bb1(1),bb2(1));
 r = min(bb1(3),bb2(3));
 t = bb2(4);
 b = bb1(2);
 pix_l = floor(l) - floor(bb1(1))-1;
 pix_r = floor(r) - floor(bb1(1))-1;
 pix_t = abs(floor(t) - floor(bb1(4))-1);
 pix_b = abs(floor(b) - floor(bb1(4))-1);
 bounds = [pix_l pix_r pix_t pix_b];

99

 elseif tblr == 0
 l = max(bb1(1),bb2(1));
 r = min(bb1(3),bb2(3));
 t = bb2(4);
 b = bb1(2);
 pix_l = floor(l) - floor(bb2(1))-1;
 pix_r = floor(r) - floor(bb2(1))-1;
 pix_t = abs(floor(t) - floor(bb2(4))-1);
 pix_b = abs(floor(b) - floor(bb2(4))-1);
 bounds = [pix_l pix_r pix_t pix_b];
 end

end

%%%

Function 2: keypoint_scales.m

Inputs: input image and input parameters for running the scale-space blob detector.

Outputs: row, column, key scale and detector response for each detected keypoint.

function [row, column, key_scale, response] =

keypoint_scales(image,top,bounds,levels,sigma0,sigma_min,th)

 %% READING DATA
 if length(size(image))>2
 I = double(rgb2gray(image));
 else
 I = double(image);
 end
 r = size(I,1);
 c = size(I,2);

 %% INITIALIZATIONS
 scale_space = zeros(r,c,levels);
 maxima_levels = scale_space;

 %% CREATING THE SCALE SPACE AND FILTERING THE IMAGES
 for i=1:levels
 sigma = sigma0-(sigma0-sigma_min)*(i-1)/(levels-1);
 kern_size = max(1,floor(6*sigma));
 kern = fspecial('log', kern_size, sigma);
 norm_kern = sigma.^2 * kern;
 filtered_image = (imfilter(I, norm_kern, 'replicate')).^2;
 scale_space(:,:,i) = imresize(filtered_image,[r

c],'bilinear');
 end

 %% NON-MAXIMA SUPRESSION
 %% a) 2D NON-MAXIMA SUPRESSION

100

 locations = [];
 for i=1:levels
 size_filt = ceil(sigma0 - (sigma0-sigma_min)*(i-1)/(levels-

1));
 maximas =

ordfilt2(scale_space(:,:,i),size_filt^2,ones(size_filt));
 maxima_levels(:,:,i) = (scale_space(:,:,i) == maximas) &

(scale_space(:,:,i)> th);
 [rows,columns] = find(maxima_levels(:,:,i));
 locations = [locations, {[rows,columns]}];
 end

 %% b) 3D NON-MAXIMA SUPRESSION
 op_points = [];
 for i=2:levels-1
 current_points = locations{i};
 sigma = sigma0 - (sigma0-sigma_min)*(i-1)/(levels-1);
 filter_size = floor(sigma);
 for j=1:size(current_points,1)
 x = current_points(j,1);
 y = current_points(j,2);
 data = scale_space(x,y,i);

 if (x <= filter_size || x >= r - filter_size)
 continue;
 end
 if (y <= filter_size || y >= c - filter_size)
 continue;
 end
 block = scale_space(x-filter_size:x+filter_size,y-

filter_size:y+filter_size,1:levels);
 maxx = max(max(max(block)));

 if (data==maxx)
 if top && x >= bounds(3) && y>=bounds(1) &&

y<=bounds(2)
 op_points = [op_points; [x y 1.5*sigma data]];
 elseif ~top && x <= bounds(4) && y>=bounds(1) &&

y<=bounds(2)
 op_points = [op_points; [x y 1.5*sigma data]];
 end
 end
 end
 end

show_all_circles(uint8(image),op_points(:,2),op_points(:,1),op_points(

:,3));
 row = op_points(:,1);
 column = op_points(:,2);
 key_scale = op_points(:,3);
 response = op_points(:,4);

101

end

%%%

Function 3: corner.m [76]

Note: This is a modified version of the code written by Peter Kovesi for the Harris corner

detector. This code finds the Shi-Tomasi corner points instead.

Inputs: input image and input parameters for the corner detector.

Output: corner detector response, row and column for each keypoint.

function [cim, r, c] = corner(im, sigma, thresh, radius, disp, method,

top, bounds)

 error(nargchk(2,8,nargin));

 dx = [-1 0 1; -1 0 1; -1 0 1]; % Derivative masks
 dy = dx';

 Ix = conv2(im, dx, 'same'); % Image derivatives
 Iy = conv2(im, dy, 'same');

 % Generate Gaussian filter of size 6*sigma (+/- 3sigma) and of
 % minimum size 1x1.
 g = fspecial('gaussian',max(1,fix(6*sigma)), sigma);

 Ix2 = conv2(Ix.^2, g, 'same'); % Smoothed squared image

derivatives
 Iy2 = conv2(Iy.^2, g, 'same');
 Ixy = conv2(Ix.*Iy, g, 'same');

 if method == 0
 cim = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps); % Harris corner

measure
 elseif method == 1
 T = Ix2 + Iy2;
 D = Ix2.*Iy2 - Ixy.^2;
 lambda1 = (T - sqrt(T.^2-4*D))/2;
 lambda2 = (T + sqrt(T.^2-4*D))/2;
 cim = min(lambda1,lambda2);
 end
 % Alternate Harris corner measure used by some. Suggested that
 % k=0.04 - I find this a bit arbitrary and unsatisfactory.
% cim = (Ix2.*Iy2 - Ixy.^2) - k*(Ix2 + Iy2).^2;

% if nargin > 2 % We should perform nonmaximal suppression and

threshold

102

 % Extract local maxima by performing a grey scale morphological
 % dilation and then finding points in the corner strength image

that
 % match the dilated image and are also greater than the threshold.
 sze = 2*radius+1; % Size of mask.
 mx = ordfilt2(cim,sze^2,ones(sze)); % Grey-scale dilate.
 cim = (cim==mx)&(cim>thresh); % Find maxima.

 [r,c] = find(cim); % Find row,col coords.

 if top
 delete = find(r<bounds(3));
 r(delete) = [];
 c(delete) = [];
 delete = find(c<bounds(1));
 r(delete) = [];
 c(delete) = [];
 delete = find(c>bounds(2));
 r(delete) = [];
 c(delete) = [];
 else
 delete = find(r>bounds(4));
 r(delete) = [];
 c(delete) = [];
 delete = find(c<bounds(1));
 r(delete) = [];
 c(delete) = [];
 delete = find(c>bounds(2));
 r(delete) = [];
 c(delete) = [];
 end

 if disp % overlay corners on original image
 figure, imagesc(im), axis image, colormap(gray), hold on
 plot(c,r,'ys'), title('corners detected');
 end

end

%%%

Function 4: prunefeatures.m

Inputs: obtained locations and parameters for all keypoints and input image.

Outputs: keypoint locations and parameters for keypoints retained.

function [rows,cols,scales,response] =

prunefeatures(rows,cols,scales,response,image)

103

 rt=[]; ct=[]; scalest = [];
 scales = 0.5*scales;
 for i=1:length(rows)
 if rows(i)<=16*scales(i) || cols(i)<=16*scales(i) ||

rows(i)>size(image,1)-16*scales(i) || cols(i)>size(image,2)-

16*scales(i)
 continue;
 else
 rt = [rt rows(i)];
 ct = [ct cols(i)];
 scalest = [scalest scales(i)];
 end
 end
 rows = rt'; cols = ct'; scales = scalest';

end

%%%

Function 5: find_sift.m [75]

Inputs: input image, locations of keypoints and enlargement factor.

Outputs: SIFT feature descriptors.

function sift_arr = find_sift(I, circles, enlarge_factor)

if ndims(I) == 3
 I = im2double(rgb2gray(I));
else
 I = im2double(I);
end

% fprintf('Running find_sift\n');

% parameters (default SIFT size)
num_angles = 8;
num_bins = 4;
num_samples = num_bins * num_bins;
alpha = 9; % smoothing for orientation histogram

if nargin < 3
 enlarge_factor = 1.5;
end

angle_step = 2 * pi / num_angles;
angles = 0:angle_step:2*pi;
angles(num_angles+1) = []; % bin centers

[hgt wid] = size(I);

104

num_pts = size(circles,1);

sift_arr = zeros(num_pts, num_samples * num_angles);

% edge image
sigma_edge = 1;

[G_X,G_Y]=gen_dgauss(sigma_edge);
I_X = filter2(G_X, I, 'same'); % vertical edges
I_Y = filter2(G_Y, I, 'same'); % horizontal edges
I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude
I_theta = atan2(I_Y,I_X);
I_theta(isnan(I_theta)) = 0; % necessary????

% make default grid of samples (centered at zero, width 2)
interval = 2/num_bins:2/num_bins:2;
interval = interval - (1/num_bins + 1);
[grid_x grid_y] = meshgrid(interval, interval);
grid_x = reshape(grid_x, [1 num_samples]);
grid_y = reshape(grid_y, [1 num_samples]);

% make orientation images
I_orientation = zeros(hgt, wid, num_angles);
% for each histogram angle
for a=1:num_angles
 % compute each orientation channel
 tmp = cos(I_theta - angles(a)).^alpha;
 tmp = tmp .* (tmp > 0);

 % weight by magnitude
 I_orientation(:,:,a) = tmp .* I_mag;
end

% for all circles
for i=1:num_pts
 cx = circles(i,1);
 cy = circles(i,2);
 r = circles(i,3) * enlarge_factor;

 % find coordinates of sample points (bin centers)
 grid_x_t = grid_x * r + cx;
 grid_y_t = grid_y * r + cy;
 grid_res = grid_y_t(2) - grid_y_t(1);

 % find window of pixels that contributes to this descriptor
 x_lo = floor(max(cx - r - grid_res/2, 1));
 x_hi = ceil(min(cx + r + grid_res/2, wid));
 y_lo = floor(max(cy - r - grid_res/2, 1));
 y_hi = ceil(min(cy + r + grid_res/2, hgt));

105

 % find coordinates of pixels
 [grid_px, grid_py] = meshgrid(x_lo:x_hi,y_lo:y_hi);
 num_pix = numel(grid_px);
 grid_px = reshape(grid_px, [num_pix 1]);
 grid_py = reshape(grid_py, [num_pix 1]);

 % find (horiz, vert) distance between each pixel and each grid

sample
 dist_px = abs(repmat(grid_px, [1 num_samples]) - repmat(grid_x_t,

[num_pix 1]));
 dist_py = abs(repmat(grid_py, [1 num_samples]) - repmat(grid_y_t,

[num_pix 1]));

 % find weight of contribution of each pixel to each bin
 weights_x = dist_px/grid_res;
 weights_x = (1 - weights_x) .* (weights_x <= 1);
 weights_y = dist_py/grid_res;
 weights_y = (1 - weights_y) .* (weights_y <= 1);
 weights = weights_x .* weights_y;

 % make sift descriptor
 curr_sift = zeros(num_angles, num_samples);
 for a = 1:num_angles
 tmp = reshape(I_orientation(y_lo:y_hi,x_lo:x_hi,a),[num_pix

1]);
 tmp = repmat(tmp, [1 num_samples]);
 curr_sift(a,:) = sum(tmp .* weights);
 end
 sift_arr(i,:) = reshape(curr_sift, [1 num_samples * num_angles]);

end

%%
%% normalize the SIFT descriptors more or less as described in Lowe

(2004)
%%
tmp = sqrt(sum(sift_arr.^2, 2));
normalize_ind = find(tmp > 1);

sift_arr_norm = sift_arr(normalize_ind,:);
sift_arr_norm = sift_arr_norm ./ repmat(tmp(normalize_ind,:), [1

size(sift_arr,2)]);

% suppress large gradients
sift_arr_norm(find(sift_arr_norm > 0.2)) = 0.2;

% finally, renormalize to unit length
tmp = sqrt(sum(sift_arr_norm.^2, 2));
sift_arr_norm = sift_arr_norm ./ repmat(tmp, [1 size(sift_arr,2)]);

sift_arr(normalize_ind,:) = sift_arr_norm;

106

function [GX,GY]=gen_dgauss(sigma)

f_wid = 4 * floor(sigma);
G = normpdf(-f_wid:f_wid,0,sigma);
G = G' * G;
[GX,GY] = gradient(G);

GX = GX * 2 ./ sum(sum(abs(GX)));
GY = GY * 2 ./ sum(sum(abs(GY)));

%%%

Function 6: descriptor_std.m

Inputs: input image, locations of keypoints and enlargement factor.

Outputs: ARFD feature descriptors and flag to tell whether its corresponding descriptor was

elevation or intensity based.

function varargout =

descriptor_std(elevation,intensity,rows,columns,scales)

 [AA,BB] = meshgrid(1:size(elevation,2),1:size(elevation,1));
 scales = scales/3;
 output = zeros(length(rows),64);
 eleorint = zeros(1,length(rows));
 for i=1:length(rows)
 desc1 = zeros(1,64);
 desc2 = zeros(1,64);
 u = scales(i)*((1:16) - 8.5);
 v = scales(i)*((1:16) - 8.5);
 [pX, pY] = meshgrid(u,v);
 off = [pX(:)';pY(:)'];
 pts(1,:) = off(1,:)+rows(i);
 pts(2,:) = off(2,:)+columns(i);
 siz = 16;
 block = elevation(rows(i)-siz:rows(i)+siz, columns(i)-

siz:columns(i)+siz);
 measure1 = kurtosis(block(:));
 block = intensity(rows(i)-siz:rows(i)+siz, columns(i)-

siz:columns(i)+siz);
 measure2 = kurtosis(block(:));
 for j=1:4
 for k=1:4
 p = (((j-1)*4+1:(j-1)*4+4)-8.5)*scales(i);
 q = (((k-1)*4+1:(k-1)*4+4)-8.5)*scales(i);
 [X, Y] = meshgrid(p,q);
 offsets = [X(:)';Y(:)'];
 new_points(1,:) = offsets(1,:)+rows(i);

107

 new_points(2,:) = offsets(2,:)+columns(i);
 if measure1>measure2
 temp1 =

qinterp2(AA,BB,elevation,new_points(2,:),new_points(1,:));
 temp1 = [mean(temp1) var(temp1) (max(temp1)-

min(temp1)) median(temp1)];
 index = (j-1)*16+(k-1)*4;
 desc1(index+1:index+4) = temp1;
 eleorint(i) = 1;
 else
 temp1 =

qinterp2(AA,BB,intensity,new_points(2,:),new_points(1,:));
 temp1 = [mean(temp1) var(temp1) (max(temp1)-

min(temp1)) median(temp1)];
 index = (j-1)*16+(k-1)*4;
 desc1(index+1:index+4) = temp1;
 eleorint(i) = 0;
 end
 p = (((j-1)*4+1:(j-1)*4+4)-8.5)*scales(i);
 q = (((k-1)*4+1:(k-1)*4+4)-8.5)*scales(i);
 [X, Y] = meshgrid(p,q);
 offsets = [X(:)';Y(:)'];
 new_points(1,:) = offsets(1,:)+rows(i);
 new_points(2,:) = offsets(2,:)+columns(i);
 temp1 =

qinterp2(AA,BB,intensity,new_points(2,:),new_points(1,:));
 temp1 = [mean(temp1) skewness(temp1) median(temp1)

kurtosis(temp1)];
 index = (j-1)*16+(k-1)*4;
 desc2(index+1:index+4) = temp1;
 end
 end
 output(i,:) = desc1(:);
 end
 varargout{1} = output;
 varargout{2} = eleorint;

end

%%%

Function 7: ransacfithomography.m [76]

Inputs: locations of correspondences and tolerance factor for fitting.

Outputs: homography and list of inliers.

function [H, inliers] = ransacfithomography(x1, x2, t)

 if ~all(size(x1)==size(x2))
 error('Data sets x1 and x2 must have the same dimension');
 end

108

 [rows,npts] = size(x1);
 if rows~=2 & rows~=3
 error('x1 and x2 must have 2 or 3 rows');
 end

 if npts < 4
 error('Must have at least 4 points to fit homography');
 end

 if rows == 2 % Pad data with homogeneous scale factor of 1
 x1 = [x1; ones(1,npts)];
 x2 = [x2; ones(1,npts)];
 end

 % Normalise each set of points so that the origin is at centroid

and
 % mean distance from origin is sqrt(2). normalise2dpts also

ensures the
 % scale parameter is 1. Note that 'homography2d' will also call
 % 'normalise2dpts' but the code in 'ransac' that calls the

distance
 % function will not - so it is best that we normalise beforehand.
 [x1, T1] = normalise2dpts(x1);
 [x2, T2] = normalise2dpts(x2);

 s = 4; % Minimum No of points needed to fit a homography.

 fittingfn = @homography2d;
 distfn = @homogdist2d;
 degenfn = @isdegenerate;
 % x1 and x2 are 'stacked' to create a 6xN array for ransac
 [H, inliers] = ransac([x1; x2], fittingfn, distfn, degenfn, s, t);

 % Now do a final least squares fit on the data points considered

to
 % be inliers.
 H = homography2d(x1(:,inliers), x2(:,inliers));

 % Denormalise
 H = T2\H*T1;

%---

-
% Function to evaluate the symmetric transfer error of a homography

with
% respect to a set of matched points as needed by RANSAC.

function [inliers, H] = homogdist2d(H, x, t);

 x1 = x(1:3,:); % Extract x1 and x2 from x

109

 x2 = x(4:6,:);

 % Calculate, in both directions, the transfered points
 Hx1 = H*x1;
 invHx2 = H\x2;

 % Normalise so that the homogeneous scale parameter for all

coordinates
 % is 1.

 x1 = hnormalise(x1);
 x2 = hnormalise(x2);
 Hx1 = hnormalise(Hx1);
 invHx2 = hnormalise(invHx2);

 d2 = sum((x1-invHx2).^2) + sum((x2-Hx1).^2);
 inliers = find(abs(d2) < t);
 outliers = find(abs(d2) > t);

%---

-
% Function to determine if a set of 4 pairs of matched points give

rise
% to a degeneracy in the calculation of a homography as needed by

RANSAC.
% This involves testing whether any 3 of the 4 points in each set is
% colinear.

function r = isdegenerate(x)

 x1 = x(1:3,:); % Extract x1 and x2 from x
 x2 = x(4:6,:);

 r = ...
 iscolinear(x1(:,1),x1(:,2),x1(:,3)) | ...
 iscolinear(x1(:,1),x1(:,2),x1(:,4)) | ...
 iscolinear(x1(:,1),x1(:,3),x1(:,4)) | ...
 iscolinear(x1(:,2),x1(:,3),x1(:,4)) | ...
 iscolinear(x2(:,1),x2(:,2),x2(:,3)) | ...
 iscolinear(x2(:,1),x2(:,2),x2(:,4)) | ...
 iscolinear(x2(:,1),x2(:,3),x2(:,4)) | ...
 iscolinear(x2(:,2),x2(:,3),x2(:,4));

%%%

Function 8: ransac.m [76]

Inputs: functions and parameters to obtain a fit.

110

Outputs: current model and set of inliers for the same.

function [M, inliers] = ransac(x, fittingfn, distfn, degenfn, s, t,

feedback, ...
 maxDataTrials, maxTrials)

 % Test number of parameters
 error (nargchk (6, 9, nargin));

 if nargin < 9; maxTrials = 10000; end;
 if nargin < 8; maxDataTrials = 100; end;
 if nargin < 7; feedback = 0; end;

 [rows, npts] = size(x);

 p = 0.999; % Desired probability of choosing at least one

sample
 % free from outliers (probably should be a

parameter)

 bestM = NaN; % Sentinel value allowing detection of solution

failure.
 trialcount = 0;
 bestscore = 0;
 N = 1; % Dummy initialisation for number of trials.

 while N > trialcount

 % Select at random s datapoints to form a trial model, M.
 % In selecting these points we have to check that they are not

in
 % a degenerate configuration.
 degenerate = 1;
 count = 1;
 while degenerate
 % Generate s random indicies in the range 1..npts
 % (If you do not have the statistics toolbox with

randsample(),
 % use the function RANDOMSAMPLE from my webpage)
 if ~exist('randsample', 'file')
 ind = randomsample(npts, s);
 else
 ind = randsample(npts, s);
 end

 % Test that these points are not a degenerate

configuration.
 degenerate = feval(degenfn, x(:,ind));

 if ~degenerate
 % Fit model to this random selection of data points.

111

 % Note that M may represent a set of models that fit

the data in
 % this case M will be a cell array of models
 M = feval(fittingfn, x(:,ind));

 % Depending on your problem it might be that the only

way you
 % can determine whether a data set is degenerate or

not is to
 % try to fit a model and see if it succeeds. If it

fails we
 % reset degenerate to true.
 if isempty(M)
 degenerate = 1;
 end
 end

 % Safeguard against being stuck in this loop forever
 count = count + 1;
 if count > maxDataTrials
 warning('Unable to select a nondegenerate data set');
 break
 end
 end

 % Once we are out here we should have some kind of model...
 % Evaluate distances between points and model returning the

indices
 % of elements in x that are inliers. Additionally, if M is a

cell
 % array of possible models 'distfn' will return the model that

has
 % the most inliers. After this call M will be a non-cell

object
 % representing only one model.
 [inliers, M] = feval(distfn, M, x, t);

 % Find the number of inliers to this model.
 ninliers = length(inliers);

 if ninliers > bestscore % Largest set of inliers so far...
 bestscore = ninliers; % Record data for this model
 bestinliers = inliers;
 bestM = M;

 % Update estimate of N, the number of trials to ensure we

pick,
 % with probability p, a data set with no outliers.
 fracinliers = ninliers/npts;
 pNoOutliers = 1 - fracinliers^s;
 pNoOutliers = max(eps, pNoOutliers); % Avoid division by

-Inf

112

 pNoOutliers = min(1-eps, pNoOutliers);% Avoid division by

0.
 N = log(1-p)/log(pNoOutliers);
 end

 trialcount = trialcount+1;
 if feedback
 fprintf('trial %d out of %d \r',trialcount,

ceil(N));
 end

 % Safeguard against being stuck in this loop forever
 if trialcount > maxTrials
 warning(...
 sprintf('ransac reached the maximum number of %d

trials',...
 maxTrials));
 break
 end
 end

 if feedback, fprintf('\n'); end

 if ~isnan(bestM) % We got a solution
 M = bestM;
 inliers = bestinliers;
 else
 M = [];
 inliers = [];
 error('ransac was unable to find a useful solution');
 end

%%%

Function 9: homography2d.m [76]

Inputs: locations of correspondences.

Outputs: homography.

function H = homography2d(varargin)

 [x1, x2] = checkargs(varargin(:));

 % Attempt to normalise each set of points so that the origin
 % is at centroid and mean distance from origin is sqrt(2).
 [x1, T1] = normalise2dpts(x1);
 [x2, T2] = normalise2dpts(x2);

 % Note that it may have not been possible to normalise
 % the points if one was at infinity so the following does not

113

 % assume that scale parameter w = 1.

 Npts = length(x1);
 A = zeros(3*Npts,9);

 O = [0 0 0];
 for n = 1:Npts
 X = x1(:,n)';
 x = x2(1,n); y = x2(2,n); w = x2(3,n);
 A(3*n-2,:) = [O -w*X y*X];
 A(3*n-1,:) = [w*X O -x*X];
 A(3*n ,:) = [-y*X x*X O];
 end

 [U,D,V] = svd(A,0); % 'Economy' decomposition for speed

 % Extract homography
 H = reshape(V(:,9),3,3)';

 % Denormalise
 H = T2\H*T1;

%---

% Function to check argument values and set defaults

function [x1, x2] = checkargs(arg);

 if length(arg) == 2
 x1 = arg{1};
 x2 = arg{2};
 if ~all(size(x1)==size(x2))
 error('x1 and x2 must have the same size');
 elseif size(x1,1) ~= 3
 error('x1 and x2 must be 3xN');
 end

 elseif length(arg) == 1
 if size(arg{1},1) ~= 6
 error('Single argument x must be 6xN');
 else
 x1 = arg{1}(1:3,:);
 x2 = arg{1}(4:6,:);
 end
 else
 error('Wrong number of arguments supplied');
 end

%%%

114

Function 10: normalise2dpts.m [76]

Inputs: 2D points.

Outputs: Normalized points and transformation.

function [newpts, T] = normalise2dpts(pts)

 if size(pts,1) ~= 3
 error('pts must be 3xN');
 end

 % Find the indices of the points that are not at infinity
 finiteind = find(abs(pts(3,:)) > eps);

 if length(finiteind) ~= size(pts,2)
 warning('Some points are at infinity');
 end

 % For the finite points ensure homogeneous coords have scale of 1
 pts(1,finiteind) = pts(1,finiteind)./pts(3,finiteind);
 pts(2,finiteind) = pts(2,finiteind)./pts(3,finiteind);
 pts(3,finiteind) = 1;

 c = mean(pts(1:2,finiteind)')'; % Centroid of finite

points
 newp(1,finiteind) = pts(1,finiteind)-c(1); % Shift origin to

centroid.
 newp(2,finiteind) = pts(2,finiteind)-c(2);

 dist = sqrt(newp(1,finiteind).^2 + newp(2,finiteind).^2);
 meandist = mean(dist(:)); % Ensure dist is a column vector for

Octave 3.0.1

 scale = sqrt(2)/meandist;

 T = [scale 0 -scale*c(1)
 0 scale -scale*c(2)
 0 0 1];

 newpts = T*pts;

 %%%

Function 11: hnormalise.m [76]

Input: vector to be normalized

Output: normalized output with a norm value of 1.

function nx = hnormalise(x)

115

 [rows,npts] = size(x);
 nx = x;

 % Find the indices of the points that are not at infinity
 finiteind = find(abs(x(rows,:)) > eps);

 if length(finiteind) ~= npts
 warning('Some points are at infinity');
 end

 % Normalise points not at infinity
 for r = 1:rows-1
 nx(r,finiteind) = x(r,finiteind)./x(rows,finiteind);
 end
 nx(rows,finiteind) = 1;

%%%

Function 12: iscolinear.m [76]

Inputs: points and input flag.

Outputs: flag to show if collinear or otherwise.

function r = iscolinear(p1, p2, p3, flag)

 if nargin == 3 % Assume inhomogeneous coords
 flag = 'inhomog';
 end

 if ~all(size(p1)==size(p2)) | ~all(size(p1)==size(p3)) | ...
 ~(length(p1)==2 | length(p1)==3)
 error('points must have the same dimension of 2 or 3');
 end

 % If data is 2D, assume they are 2D inhomogeneous coords. Make

them
 % homogeneous with scale 1.
 if length(p1) == 2
 p1(3) = 1; p2(3) = 1; p3(3) = 1;
 end

 if flag(1) == 'h'
 % Apply test that allows for homogeneous coords with arbitrary
 % scale. p1 X p2 generates a normal vector to plane defined

by
 % origin, p1 and p2. If the dot product of this normal with

p3
 % is zero then p3 also lies in the plane, hence co-linear.
 r = abs(dot(cross(p1, p2),p3)) < eps;

116

 else
 % Assume inhomogeneous coords, or homogeneous coords with equal
 % scale.
 r = norm(cross(p2-p1, p3-p1)) < eps;
 end

%%%

Function 13: find_tnfn_eleonly.m

Inputs: list of negative points & locations in pixel coordinates and the homography

Outputs: Lists of true and false negatives.

function [TN_list, FN_list] =

find_tnfn_eleonly(negatives_e,rowse1,rowse2,colse1,colse2,H)

 x1 = zeros(size(negatives_e,1),2);
 x2 = x1;
 for i=1:size(negatives_e,1)
 x1(i,:) = [colse1(negatives_e(i,1)) rowse1(negatives_e(i,1))];
 x2(i,:) = [colse2(negatives_e(i,2)) rowse2(negatives_e(i,2))];
 end
 x1(:,3) = 1; x2(:,3) = 1;
 x1_tform = x1*H;
 x1_tform(:,1) = x1_tform(:,1)./x1_tform(:,3);
 x1_tform(:,2) = x1_tform(:,2)./x1_tform(:,3);
 x1_tform(:,3) = 1;
 FN = 0;
 TN = 0;
 TN_list = []; FN_list = [];
 for i=1:size(x1_tform,1)
 x_dist = abs(x1_tform(i,1)-x2(i,1));
 y_dist = abs(x1_tform(i,2)-x2(i,2));
 dist = sqrt(x_dist^2+y_dist^2);
 if x_dist<1 && y_dist<1 && dist<sqrt(1.5)
 FN = FN+1;
 FN_list = [FN_list i];
 else
 TN = TN+1;
 TN_list = [TN_list i];
 end
 end

end

117

References

[1] K. Schmid, K. Waters, L. Dingerson, B. Hadley, R. Mataosky, J. Carter and J. Dare.
Lidar 101: An introduction to lidar technology, data, and applications. NOAA Coastal
Services Center 2008.

[2] A. Wehr and U. Lohr. Airborne laser scanning—an introduction and overview. ISPRS
Journal of Photogrammetry and Remote Sensing 54(2), pp. 68-82. 1999.

[3] R. N. Faux, J. M. Buffington, M. G. Whitley, S. H. Lanigan and B. B. Roper, "Chapter
6.—Use of airborne near-infrared LiDAR for determining channel cross-section
characteristics and monitoring aquatic habitat in pacific northwest rivers: A preliminary
analysis," in PNAMP Special Publication: Remote Sensing Applications for Aquatic
Resource Monitoring, J. M. Bayer and J. L. Schei, Eds. 2009, pp. 43.

[4] A. Habib, A. P. Kersting, K. I. Bang and D. Lee. Alternative methodologies for the
internal quality control of parallel LiDAR strips. Geoscience and Remote Sensing, IEEE
Transactions On 48(1), pp. 221-236. 2010.

[5] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data.
Presented at Proceedings of the 1968 23rd ACM National Conference. 1968, .

[6] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams 2009501.

[7] C. F. VanLoan. Introduction to Scientific Computing 1997.

[8] M. A. Oliver and R. Webster. Kriging: A method of interpolation for geographical
information systems. International Journal of Geographical Information System 4(3), pp.
313-332. 1990.

[9] J. Shan and C. K. Toth. Topographic Laser Ranging and Scanning: Principles and
Processing 2008.

[10] P. J. Besl and N. D. McKay. Method for registration of 3-D shapes. Presented at
Robotics-DL Tentative. 1992, .

[11] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), pp. 91-110. 2004.

[12] E. Rublee, V. Rabaud, K. Konolige and G. Bradski. ORB: An efficient alternative to
SIFT or SURF. Presented at Computer Vision (ICCV), 2011 IEEE International
Conference On. 2011, .

118

[13] S. Leutenegger, M. Chli and R. Y. Siegwart. BRISK: Binary robust invariant scalable
keypoints. Presented at Computer Vision (ICCV), 2011 IEEE International Conference
On. 2011, .

[14] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool. Speeded-up robust features (SURF).
Comput. Vision Image Understanding 110(3), pp. 346-359. 2008. . DOI:
http://dx.doi.org/10.1016/j.cviu.2007.09.014.

[15] A. Alahi, R. Ortiz and P. Vandergheynst. Freak: Fast retina keypoint. Presented at
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference On. 2012, .

[16] B. Zitova and J. Flusser. Image registration methods: A survey. Image Vision
Comput. 21(11), pp. 977-1000. 2003.

[17] P. E. Anuta. Spatial registration of multispectral and multitemporal digital imagery
using fast fourier transform techniques. Geoscience Electronics, IEEE Transactions On
8(4), pp. 353-368. 1970.

[18] D. I. Barnea and H. F. Silverman. A class of algorithms for fast digital image
registration. Computers, IEEE Transactions On C-21(2), pp. 179-186. 1972. . DOI:
10.1109/TC.1972.5008923.

[19] W. Pratt. Correlation techniques of image registration. Aerospace and Electronic
Systems, IEEE Transactions On AES-10(3), pp. 353-358. 1974. . DOI:
10.1109/TAES.1974.307828.

[20] B. Zitova and J. Flusser. Image registration methods: A survey. Image Vision
Comput. 21(11), pp. 977-1000. 2003.

[21] R. N. Bracewell and R. Bracewell. The Fourier Transform and its Applications
198631999.

[22] E. De Castro and C. Morandi. Registration of translated and rotated images using
finite fourier transforms. Pattern Analysis and Machine Intelligence, IEEE Transactions
On PAMI-9(5), pp. 700-703. 1987. . DOI: 10.1109/TPAMI.1987.4767966.

[23] M. -. Dubuisson and A. K. Jain. A modified hausdorff distance for object matching.
Presented at Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision & Image
Processing., Proceedings of the 12th IAPR International Conference On. 1994, . DOI:
10.1109/ICPR.1994.576361.

[24] P. C. Mahalanobis. On the generalized distance in statistics. Proceedings of the
National Institute of Sciences (Calcutta) 2pp. 49-55. 1936.

[25] R. Short and K. Fukunaga. The optimal distance measure for nearest neighbor
classification. Information Theory, IEEE Transactions On 27(5), pp. 622-627. 1981.

119

[26] A. Baumberg. Reliable feature matching across widely separated views. Presented
at Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference On.
2000, . DOI: 10.1109/CVPR.2000.855899.

[27] J. Matas, O. Chum, M. Urban and T. Pajdla. Robust wide-baseline stereo from
maximally stable extremal regions. Image Vision Comput. 22(10), pp. 761-767. 2004.

[28] E. Tola, V. Lepetit and P. Fua. DAISY: An efficient dense descriptor applied to wide-
baseline stereo. Pattern Analysis and Machine Intelligence, IEEE Transactions On 32(5),
pp. 815-830. 2010. . DOI: 10.1109/TPAMI.2009.77.

[29] F. Schaffalitzky and A. Zisserman. Viewpoint invariant texture matching and wide
baseline stereo. Presented at Computer Vision, 2001. ICCV 2001. Proceedings. Eighth
IEEE International Conference On. 2001, . DOI: 10.1109/ICCV.2001.937686.

[30] J. Artieda, J. M. Sebastian, P. Campoy, J. F. Correa, I. F. Mondragón, C. Martínez
and M. Olivares. Visual 3-d slam from uavs. Journal of Intelligent and Robotic Systems
55(4-5), pp. 299-321. 2009.

[31] W. Y. Jeong and K. M. Lee. Visual SLAM with line and corner features. Presented at
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference On. 2006, .

[32] P. Jensfelt, D. Kragic, J. Folkesson and M. Bjorkman. A framework for vision based
bearing only 3D SLAM. Presented at Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference On. 2006, .

[33] P. Newman and K. Ho. SLAM-loop closing with visually salient features. Presented
at Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference On. 2005, .

[34] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S.
Hodges, D. Freeman and A. Davison. KinectFusion: Real-time 3D reconstruction and
interaction using a moving depth camera. Presented at Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology. 2011, .

[35] M. Pollefeys, D. Nistér, J. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. Engels,
D. Gallup, S. Kim and P. Merrell. Detailed real-time urban 3d reconstruction from video.
International Journal of Computer Vision 78(2-3), pp. 143-167. 2008.

[36] D. Capel. Image Mosaicing and Super-Resolution 2004.

[37] R. Szeliski. Image alignment and stitching: A tutorial. Foundations and Trends® in
Computer Graphics and Vision 2(1), pp. 1-104. 2006.

[38] P. F. McLauchlan and A. Jaenicke. Image mosaicing using sequential bundle
adjustment. Image Vision Comput. 20(9–10), pp. 751-759. 2002. . DOI:
http://dx.doi.org/10.1016/S0262-8856(02)00064-1.

120

[39] J. Zhang, M. Marszałek, S. Lazebnik and C. Schmid. Local features and kernels for
classification of texture and object categories: A comprehensive study. International
Journal of Computer Vision 73(2), pp. 213-238. 2007.

[40] B. S. Manjunath and W. Ma. Texture features for browsing and retrieval of image
data. Pattern Analysis and Machine Intelligence, IEEE Transactions On 18(8), pp. 837-
842. 1996.

[41] S. Lazebnik, C. Schmid and J. Ponce. A sparse texture representation using local
affine regions. Pattern Analysis and Machine Intelligence, IEEE Transactions On 27(8),
pp. 1265-1278. 2005.

[42] T. Gevers and A. W. Smeulders. Pictoseek: Combining color and shape invariant
features for image retrieval. Image Processing, IEEE Transactions On 9(1), pp. 102-119.
2000.

[43] D. L. Swets and J. J. Weng. Using discriminant eigenfeatures for image retrieval.
Pattern Analysis and Machine Intelligence, IEEE Transactions On 18(8), pp. 831-836.
1996.

[44] A. W. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain. Content-based
image retrieval at the end of the early years. Pattern Analysis and Machine Intelligence,
IEEE Transactions On 22(12), pp. 1349-1380. 2000.

[45] A. Vailaya, M. A. Figueiredo, A. K. Jain and H. Zhang. Image classification for
content-based indexing. Image Processing, IEEE Transactions On 10(1), pp. 117-130.
2001.

[46] E. Nowak, F. Jurie and B. Triggs. "Sampling strategies for bag-of-features image
classification," in Computer Vision–ECCV 2006Anonymous 2006, .

[47] O. Chapelle, P. Haffner and V. N. Vapnik. Support vector machines for histogram-
based image classification. Neural Networks, IEEE Transactions On 10(5), pp. 1055-
1064. 1999.

[48] S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using
shape contexts. Pattern Analysis and Machine Intelligence, IEEE Transactions On 24(4),
pp. 509-522. 2002.

[49] J. Mutch and D. G. Lowe. Multiclass object recognition with sparse, localized
features. Presented at Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference On. 2006, .

[50] D. G. Lowe. Object recognition from local scale-invariant features. Presented at
Computer Vision, 1999. the Proceedings of the Seventh IEEE International Conference
On. 1999, .

121

[51] A. E. Johnson and M. Hebert. Recognizing objects by matching oriented points.
Presented at Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE
Computer Society Conference On. 1997, . DOI: 10.1109/CVPR.1997.609400.

[52] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. Presented at
Computer Vision and Pattern Recognition, 1991. Proceedings CVPR'91., IEEE Computer
Society Conference On. 1991, .

[53] J. W. Tanaka and J. A. Sengco. Features and their configuration in face recognition.
Mem. Cognit. 25(5), pp. 583-592. 1997.

[54] R. Brunelli and T. Poggio. Face recognition: Features versus templates. Pattern
Analysis and Machine Intelligence, IEEE Transactions On 15(10), pp. 1042-1052. 1993. .
DOI: 10.1109/34.254061.

[55] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma. Robust face recognition
via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions
On 31(2), pp. 210-227. 2009.

[56] J. F. Canny. Finding edges and lines in images. Massachusetts Inst.of Tech.Report
11983.

[57] C. Harris and M. Stephens. A combined corner and edge detector. Presented at
Alvey Vision Conference. 1988, .

[58] A. Makadia, A. Patterson and K. Daniilidis. Fully automatic registration of 3D point
clouds. Presented at Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference On. 2006, . DOI: 10.1109/CVPR.2006.122.

[59] L. G. Brown. A survey of image registration techniques. ACM Computing Surveys
(CSUR) 24(4), pp. 325-376. 1992.

[60] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points.
Presented at Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International
Conference On. 2001, .

[61] Y. Dufournaud, C. Schmid and R. Horaud. Matching images with different
resolutions. Presented at Computer Vision and Pattern Recognition, 2000. Proceedings.
IEEE Conference On. 2000, .

[62] T. Lindeberg. Feature detection with automatic scale selection. International Journal
of Computer Vision 30(2), pp. 79-116. 1998.

[63] W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE
Trans. Pattern Anal. Mach. Intell. 13(9), pp. 891-906. 1991.

122

[64] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. Pattern
Analysis and Machine Intelligence, IEEE Transactions On 27(10), pp. 1615-1630. 2005.

[65] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
Presented at Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference On. 2005, .

[66] G. Yu and J. Morel. ASIFT: An algorithm for fully affine invariant comparison.

[67] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors.
International Journal of Computer Vision 60(1), pp. 63-86. 2004.

[68] Y. Li and E. B. Olson. A general purpose feature extractor for light detection and
ranging data. Sensors 10(11), pp. 10356-10375. 2010.

[69] J. Shi and C. Tomasi. Good features to track. Presented at Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society
Conference On. 1994, .

[70] M. Bosse and R. Zlot. Keypoint design and evaluation for place recognition in 2D
lidar maps. Robotics and Autonomous Systems 57(12), pp. 1211-1224. 2009.

[71] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. Pattern
Analysis and Machine Intelligence, IEEE Transactions On 27(10), pp. 1615-1630. 2005. .
DOI: 10.1109/TPAMI.2005.188.

[72] T. Lindeberg. Scale-space theory: A basic tool for analysing structures at different
scales. Presented at Journal of Applied Statistics. 1994, .

[73] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun ACM
24(6), pp. 381-395. 1981.

[74] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local
image descriptors. Presented at Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society Conference On.

[75] S. Lazebnik, "Computer Vision CS543/ECE549 Spring 2013," 2013.

[76] P. D. Kovesi. MATLAB and octave functions for computer vision and image
processing. 2000. Available: http://www.csse.uwa.edu.au/~pk/research/matlabfns/.

[77] A. Habib, K. Bang, A. P. Kersting and D. Lee. Error budget of LiDAR systems and
quality control of the derived data. Photogramm. Eng. Remote Sensing 75(9), pp. 1093-
1108. 2009.

123

Biographical Information

Mythreya Jayendra Lakshman received the B.E. degree in electronics and

communication engineering from SSN College of Engineering (affiliated to the Anna

University in Chennai, India), in 2006; and the M.S. degree in electrical engineering with

a focus on digital circuits and systems from the University of Texas at Dallas in 2008. He

is currently working towards the doctoral degree at the University of Texas at Arlington,

Arlington, TX, with a focus on computer vision and image processing applications.

