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Abstract

PHENOMENOLOGICAL STUDIES OF DARK MATTER

Miguel Alejandro Gomez Ramirez, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Christopher Jackson

It is common knowledge that eighty percent of the matter in our Universe consists of a

mysterious substance called “dark matter” (DM) which has only been detected through its gravita-

tional interactions. The “Standard Model” (SM) of particle physics, despite its extremely impressive

successes, does not have a good candidate particle to fit the DM requirements. If DM is made up

of a particle which interacts weakly and it has a mass on the same scale as other SM particles, it

should be detectable.

In this work, two different phenomenological studies of DM are performed. The first pos-

sibility is a weakly-interacting particle being detected when a high density of particles and enough

energy is present. These conditions are met by objects called “active galactic nuclei” (AGN). AGN

are the extremely violent central regions of very large galaxies, and in these regions highly-energetic

“jets” of particles are accelerated. It was thought that the possibility the jet particles interact with

the surrounding DM producing photons with very distinctive characteristics. A comparison of pre-

dicted values with current data is made and it is shown that the prospects for detecting DM in this

way are promising in the near future.

In the second approach instead of working with complicated fully developed models, only

the minimal content needed to account for DM is added to the SM. The strength of these “simplified”

models is that they encompass the interactions and parameter spaces of well-motivated models such

as supersymmetry. A simplified model of fermionic DM candidate which couples exclusively to

the right handed top quark via a color-charged scalar is considered (motivated by EW symmetry

breaking). It is shown that this model can account for the totality of DM and the chances of

detection in the near future are very good.
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Chapter 1

Background

1.1 The Standard Model

The theory known as the Standard Model (SM) of particle physics is considered by many

to be one of the major achievements of the scientific community during the 20th century. The story

starts after the quantum revolution during the first quarter of the century when theorists attempted

to formulate a relativistic version of quantum mechanics. However, this proved difficult due to

the unexpected and mind boggling features that the solutions exhibited. These problems forced

the researchers to move from a single particle interpretation to a many particle interpretation and

finally to a field theory interpretation. The first successful quantum field theory (QFT), quantum

electrodynamics (QED), is a gauge theory with gauge group U(1)EM and served as a prototype for

the explanation of other subatomic phenomena. These included the theory of the strong nuclear force

(quantum chromodynamics - QCD for short) based on the SU (3) gauge group and the unified theory

of electroweak (EW) interactions based on the, semi-simple, SU (2)L × U (1)Y gauge group. The

final ingredient is the Higgs mechanism with a corresponding field (the Higgs field). In Appendix A

a summary/review of these ideas is covered.

1.1.1 SM Particle Content

All the fields included into the SM can be classified in different ways (spin, families,

hadronic/non-hadronic...) each classification emphasizing one aspect over others. Roughly speaking

there are matter particles and force carriers, the matter particles can be accommodated in “families”

or generations. Each generation contains two quarks and two leptons with the pattern repeating

itself three times. One popular picture of this representation is shown in Figure 1.1a.

A more interesting way to depict the field content of the SM including the chiral components

of the fermions is shown in Figure 1.1b. Note that only one generation is included because the

fermions in the other generations have the same quantum numbers but differ in their mass. This

second diagram shows a more explicit and “faithful” representation of the SM content and points

to a larger number of fields (counting chirality) than usual counts. The vertical axis is the electric

charge, the two inclined axes are the hypercharge and the weak isospin and due to the amount of

1



particles that are electrically neutral the center of the plot is crowded. At the origin you will find

the photon γ the Z boson and the eight gluons. On the horizontal line (zero electric charge) the

Higgs boson and the neutrino-antineutrino pair.

(a) SM content arrange by generation.1

(b) SM content arrange by charge.2

Figure 1.1: Particle content of the SM.

The final count of particle/field content of the SM can be found on Table 1.1. Note that at

the very least there are 61 different particles.

Table 1.1: Number of particles/fields with and without including the projection over chiral states.

Field Type/Gen. Gen. Anti Color Total Chirality Total
Quark 2 2 Pair 3 36 2 72
Lepton 2 2 Pair None 12 2 24
Gluon 1 1 Own 8 8 8

W 1 1 Pair None 2 2
Z 1 1 Own None 1 1

Photon 1 1 Own None 1 1
Higgs 1 1 Own None 1 1

Total 61 109

2Figure by MissMJ/CC BY 3 (URL: http://en.wikipedia.org/wiki/File:Standard_Model.svg). From now on
the symbol “CC By 3” should be understood as the link to the creative commons license http://creativecommons.

org/licenses/by-sa/3.0/deed.en.
2Figure by Cjean42/CC BY 3 (URL: http://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_

Particles.svg).
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1.1.2 SM Lagrangian

The SM is a theory including two (independent) quantum gauge groups: one simple SU(3)c

for strong interactions (QCD) and one semi-simple SU(2)L × U(1)Y for electroweak (EW) interac-

tions. The lagrangian density is3

LSM = Lgauge + LQCD+EW + Lhiggs + LY ukawa (1.1)

where the gauge part includes all the gauge fields:

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν with

Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν

W a
µν = ∂µW

a
ν − ∂νW a

µ − g εabcW b
µW

c
ν

Bµν = ∂µBν − ∂νBµ,

(1.2)

with Gaµ representing the gluonic fields, W a
µ representing the weak (unphysical) fields and Bµ repre-

sents the hypercharge field. The interaction term, LQCD+EW , includes the full covariant derivative

with coupling constants and (for simplicity) including a number indicating the nature of the particle

cψ (0 for leptons and 1 for quarks):

LQCD+EW =
∑

j∈{L,R}

∑
ψ

ψ̄jγ
µ

(
i∂µ −

g

2
Iψj~τ · ~Wµ −

g′

2
Yψj Bµ −

gs
2
cψλ

aGaµ

)
ψj . (1.3)

Here it is important to note that the QCD part has universal coupling for all quarks (in-

dependent of flavor) while the weak and hypercharge numbers depend on the flavor of the particle.

The Higgs part of the lagrangian, Lhiggs, includes the interaction of the weak fields with the Higgs

field and the Higgs potential which is constructed to give mass to three out of the four EW gauge

fields:

Lhiggs =

∣∣∣∣∣
(
∂µ −

i g

2
~τ · ~Wµ +

i g′

2
Bµ

)
φ

∣∣∣∣∣
2

− λ

4

(
φ†φ− v2

)2
(1.4)

3No ghost fields included although their are necessary for non-abelian gauge theories but are unobservable (hence
the name).

3



with φ =
(
1/
√

2
) (
φ+, φ0

)T
representing a complex field where the index gives the electric charge

and both components of the doublet have hypercharge 1. Finally the Yukawa term of the lagrangian,

LY ukawa, contains the interactions between the fermionic fields and the Higgs field:

LY ukawa = −
3∑

m,n=0

(
Γumnq̄

0
mLφ̃ u

0
nR + Γdmnq̄

0
mLφd

0
nR + Γemn

¯̀0
mnφ e

0
nR

)
+ h.c.. (1.5)

Once the Higgs field acquires a non-zero V.E.V., these interactions give rise to the fermion

masses. Note that this interaction is different from the others in the sense that the interaction is

non-universal in character (hierarchy in Yukawa couplings) and spans several orders of magnitude.

1.1.3 SM Interactions

Knowing the field content and the lagrangian of the SM it is possible to study the interactions

described by it and calculate observables. One technique is the perturbative treatment of the theory

deriving Feynman rules for all the interactions up to a certain level of precision (perturbation order

when applicable). As the name indicates there is a relation between diagrams (pictorial represen-

tations) and mathematical expressions4. The corresponding Feynman rules for the SM interactions

without including the Higgs terms are depicted in Figure 1.2.

The last four vertices are very important because they demonstrate the non-abelian nature

of the interactions (self-interaction is something that QED does not have), i.e., the carriers of the

force are charged under the group of the interaction. The non-abelian nature of the interactions

is responsible for numerous features of the theory, in particular SUC (3) shows asymptotic freedom

(the strength of the interaction diminishes with energy) and confinement (no free colored particles

are observed).

However not all the features observed are related to the gauge group, some peculiarities of

the weak interaction not associated with the nature of the group but experimentally observed are:

1. The interaction is chiral, i.e., it couples differently to right-handed particles and left-handed

particles. In particular the W± only couples to the left-handed part of the fermionic fields,

while the Z couples to both projections but with different strengths.

2. Unlike strong and E&M interactions, weak interactions have a different basis for coupling other

than the mass eigenstate basis. This was fixed including the CKM matrix.

4Note that this correspondence allowed to do calculations very fast due to its algorithmic nature.
5Figure by MissMJ/CC BY 3 (URL: http://en.wikipedia.org/wiki/File:Standard_Model_Feynman_Diagram_

Vertices.png).
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Figure 1.2: Allowed vertices of the standard model for interactions mediated by spin 1 bosons.5

3. Again, unlike strong and E&M interactions C, P and CP symmetries are not conserved by

weak interactions.

4. The bosons are massive requiring a new mechanism for symmetry breaking. This is the main

reason the Higgs mechanism and then the Higgs field was introduced in the SM.

1.1.3.1 Higgs Interactions

The Higgs mechanism and Higgs boson were introduced to give mass to the weak vector

bosons forcing a unification between the weak and electromagnetic interactions. As a by product

the masses of the fermions were produced by the same mechanism and fixed a different problem (the

fermions cannot have mass due to chirality). The set of Feynman diagrams for the theory are shown

in Figure 1.3. The coupling between the Higgs boson and the other particles is proportional to the

5



mass of the other particle, and in the SM the neutrinos are massless therefore there is no coupling

for them. However there is evidence that the neutrinos are not massless, but very light compared

to the other fermions, and it is possible to include a term for them but due to the unknown nature

of the neutrinos (Dirac or Majorana?) that term is considered beyond the SM physics.

(a) Higgs fermion pair interac-
tion.

(b) Higgs Z0 pair interaction. (c) Higgs W pair interaction.

(d) Higgs pair Z0 pair interac-
tion.

(e) Higgs pair W pair interac-
tion.

(f) Higgs quartic self-
interaction.

(g) Higgs cubic self-interaction.

Figure 1.3: Allowed Higgs interactions in the SM.

1.1.4 Shortcomings of the Standard Model

The SM has a lot of desirable characteristics such as:

1. All phenomena that can be calculated within the SM fit experimental evidence.

2. Renormalizability. All the interactions in the SM, with the inclusion of the Higgs mechanism,

can be renormalized, i.e., there is a procedure to remove infinities with a finite number of

parameters order by order.

6



3. EW unification. The electromagnetic and weak interactions are interrelated among themselves

and there exist relations that restrict some of the free parameters contained in the EW sector.

However two coupling constants remain after unification reflecting the structure of the group

(semi-simple instead of simple).

4. Higgs mechanism. This clever trick allows particles to have mass and the theory still is renor-

malizable. After almost 50 years of waiting a Higgs boson was detected at CERN laboratory

(Aad et al. 2012b; Chatrchyan et al. 2012).

However its great success the SM has some less desirable characteristics (some of theoretical

origin and some from experimental origin)

1. It does not include the gravitational interaction at all. By construction the gravitational

interaction was never included into the model due to its feebleness compared to the other

interactions at the energy scale studied. The main problem is that nobody has found a way

to quantize gravity for all possible scenarios.

2. It does not have a viable DM candidate. Although there are some particles in the SM that

interact very little they lack all the required characteristics to fit the astrophysical and cosmo-

logical observations. In this work I will focus on this point.

3. Strong CP problem. This problem is related to the possibility of a term in the lagrangian of

the form:

LCPQCD = −nfg
2
sθ

32π2
F aµν F̃

aµν (1.6)

which violates CP symmetry without violating any other dynamical symmetry. However, the

lack of empirical evidence of its existence has no theoretical explanation (θ = 0 but at the end

it is a free parameter) (Feng 2010).

4. Hierarchy problem. The hierarchy problem is present when the quantum corrections to some

calculated parameters are such that their expected value differ vastly from the empirically

observed one (it is unnatural). In the SM case the Higgs mass is not protected by any symmetry

and the expected mass is mH ∝ Λ2 where Λ is a energy scale that determines the cutoff

of the perturbative regime. This is problematic because the cutoff is assumed to be very

high Λ = MGUT ∼ 1016 GeV or Λ = MPl ∼ 1019 GeV and mh ≈ 125 GeV which implies a

cancellation of the leading 30 digits! (Feng 2010)
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5. Neutrino oscillations. This observation implies masses for the neutrinos and the SM was built

assuming massless and even knowing that it is possible to include a mass term for them it is

not clear their nature or how their mass is generated (Feng 2010).

6. Why three generations (without a discernible pattern between the masses of the particles)?

There is no reason for the extra-generations of fermions other than they have been observed.

7. Are 19 free parameters too many? This point is mainly an aesthetic one, we do not know how

many parameters a theory should have, but it seems that more than a few are too many.

1.2 The Dark Matter Problem

Astronomical observations have forced the scientific community to introduce a new kind of

matter that does not interact electromagnetically and for obvious reasons it is called dark matter.

The oldest evidence of its existence goes back to 1930s when Fritz Zwicky studied the Coma galaxy

cluster and found that the rotation curves implied much more mass than observed. How did he figure

it out? Using the virial theorem! Equating the mean kinetic energy to the gravitational energy it

is possible to build the expected rotation curve and compare it to the observed rotation curve (a

schematic plot showing generic cases for both curves is shown in Figure 1.4a) (Feng 2010; Arrenberg

et al. 2013).

(a) Rotation curves that show the existence of
dark matter. Curve A is the calculated based
on luminous mass and curve B is the observed
one, note that the amount of mass does not
decrease with distance as expected from new-
tonian gravitation and the observed luminos-
ity of the galaxies. Figure by PhilHibbs/CC
BY 3 (URL http://en.wikipedia.org/wiki/

File:GalacticRotation2.svg).

(b) Astrophysical evidence of DM: the Bul-
let cluster. The bluish part of the image
is matter that does not interact and the
reddish part is regular matter (false color
image). This picture changed the mind
of almost everyone about MOND. Source:
NASA/Chandra X-ray Observatory (URL:
http://cxc.harvard.edu/symposium_2005/

proceedings/files/markevitch_maxim.pdf).

Figure 1.4: Evidence for the existence of DM in the Universe.
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For a while this information was ignored, but in 1970s it was considered again and this time

the experimental evidence was considered of the highest quality (Vera Rubin was the astronomer

doing this work). And finally evidence start coming from other observational sources: gravitational

lensing, cosmic microwave background (CMB), Big-Bang Nucleosynthesis (BBN) and hot Big-Bang

(hBB) relics: gravitational lensing in particular excluded to great extent another competing alter-

native, MOdified Newtonian Dynamics (MOND), for explaining the non-keplerian nature of the

rotation curves in galaxies as shown in Figure 1.4b; studying the power spectrum of the Cosmic

Microwave Background (CMB), in particular the ratio of the amplitude of the first peak to the am-

plitude of the second peak, allows to estimate the composition of the universe (less than 5% is SM

matter - see Figure 1.5); finally the study of the evolution of the universe and of the relics in hBB

allows to exclude some options that would generate scenarios not observed (Feng 2010; Schumann

2013; Arrenberg et al. 2013).

Figure 1.5: Content of the Universe today. Source: ESA/Planck Collaboration.6

Some alternatives that were studied (and excluded) through the time included:

• Neutrinos, if massless they still carry energy but were considered not good candidates. On

the other hand, if they have a small mass (small compared to other particles in the SM - but

still relativistic) they were considered an excellent candidate for DM. From solar observations

and atmospheric observations the difference of the squares of pair of masses was obtained

and therefore it was implied that at least one of them have mass (Mohapatra et al. 2007).

Assume that the squared mass difference is m2
i − m2

j = a this implies that max (mi,mj) =√
a+ min (mi,mj)

2
(Funchal et al. 2013) taking the maximum observed difference it is possible

6URL: http://www.ucl.ac.uk/star/research/cosmology/science/images/figures/planck_cosmic_pie.
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to infer that one of the neutrinos has mass at least
√
a. The observed values are

∣∣m2
1 −m2

2

∣∣ =

0.000079 eV2 and
∣∣m2

3 −m2
2

∣∣ = 0027 eV2 which gives one neutrino of at least 0.04 eV. An

upper limit for the mass can be determined from tritium decay and accelerator experiments

and are meff
νe < 2 eV, meff

νµ < 190 keV and meff
ντ < 18.2 MeV7. However, the smallness of

the differences implies same order of magnitude mass and generally the minimum value of the

upper limit is assumed for al flavors. It turns out that this last assumption allows the neutrinos

to be in equilibrium with the thermal bath at the early stages of the BB and then implies a

neutrino density given by:

Ωνh
2 ≈

3∑
i=1

gimi

90 eV
(1.7)

where gi is the statistical factor associated with the type of particle g = 1 for Majorana

neutrinos and g = 2 for Dirac neutrinos. The density for relativistic particles at the time of

structure in the Universe gives an upper bound Ωνh
2 < 0.0076 or

∑3
i=1 gimi < 0.7 eV8, in

conclusion neutrinos are a form of DM but cannot be the main component of DM.

• MAssive Compact Halo Objects (MACHOs) are non-luminous objects which inhabited the

halos of the galaxies, and are assumed to be brown dwarf stars and black holes9 (Griest 1993).

A brown dwarf is a failed to form star, i.e., a cloud of gas that collapses under gravity but the

mass is not large enough to create conditions to initiate a nuclear fusion reaction at its core but

can give back a small amount of heat and light back to the Universe. A black hole forms due

to the precisely opposite reason, the cloud was so heavy that the collapse is total (a singularity

is form at its center), no pressure from nuclear reactions nor degeneracy can support and stop

the collapse and not even light (short for any kind of electromagnetic radiation) can escape10.

The brown dwarves produced disappointing results when after observation and calculation

showed that they were at most 6% of the mass of the halos (again not the main component of

DM). Finally primordial black holes (those created during the BB) have not been observed to

masses as low as a few percent the mass of the Moon (Griest et al. 2013).

At this time it is considered a certainty that dark matter exist and cannot be explained

by any of the known physics. So, what could DM be? From a “theoretical” point of view DM

candidates should fulfill some criteria:

7From J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg/lbl.gov).
8Including analysis of Planck data Ωνh2 ≈

∑3
i=1 (mi/90 eV ) < 0.23/90 ≈ 0.003 < 0.1199 (Ade et al. 2013).

9Not really but for simplification I am grouping them together.
10Although some radiation might be produce close to the surface in what is known as Hawking radiation.
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i Does it match the appropriate relic density11?

ii Is it cold?

iii Is it neutral?

iv Is it consistent with Big-Bang Nucleosynthesis (BBN)?

v Does it leave stellar evolution unchanged?

vi Is it compatible with constraints of self-interactions?

vii Is it compatible with direct DM searches?

viii Is it compatible with gamma-ray constraints?

ix Is it compatible with other astrophysical bounds?

x Can be probed experimentally?

Several comments are in order, first a relic density discrepancy may be avoided if DM

particles are not a thermal relic, e.g., axions; second the convenience model forces to have a cold

DM candidate although some warm-cold mixture is possible but cold being dominant; third point is

mandatory otherwise it would be absurd to call it dark matter; the new interactions cannot affect

the BBN because this is one of the triumphs of the Big-Bang theory; the next point again constrains

the interactions that are possible due to astrophysical observations; the sixth point again constrains

the possible interactions but in this case with itself; points seven to nine are related to empirical

evidence; and the last point is only a guidance for a good theoretical candidate (it must be possible

to look for it, at least in principle).

Some possibilities for the identity of DM that are being studied carefully at present time (a

summary of the alternatives reviewed here is given in Table 1.2):

1. Sterile neutrinos. Due to the evidence of at least two massive neutrinos and the nature of

the mass term in the lagrangian for all other particles in the SM it is only natural to assume

the same term for the neutrino mass (Dirac mass), this implies the existence of right-handed

neutrinos but then it is possible to have a Majorana mass term too. These right-handed

neutrinos are singlets for all the SM interactions, i.e., they are sterile12 (Feng 2010; Funchal

et al. 2013).

11Maybe a misleading name it refers to the current abundance (usually normalized density - Ωi/Ωcrit) of one of the
components that were initially present at the early stages of the Universe.

12Note however that the mass eigenstates are not exactly the same as the weak/flavor eigenstates, when the diago-
nalization is carried out some eigenstates are going to be mainly left-handed and some are mainly right-handed these
are the ones really identify as active and sterile.
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One problem with sterile neutrinos is that their relic density requires very specific

behavior of the mass and mixing angle (both of them small) (Gelmini and Gondolo 2010) which

is not necessarily what it is expected from a theoretical point of view, e.g., see-saw mechanism,

however this is more an aesthetics problem at this point than a real one. Note too, that

although they are unstable their mean lifetime is consistent with the age of the Universe. The

real problem comes from their mass, these particles are semi-relativistic, i.e., they can be warm

DM (WDM) but not cold DM (CDM) and the evidence points to CDM as main component

(from structure formation in the universe).

2. Axions. Axions were postulated as a solution to the strong CP problem, a new pseudo-scalar

field is introduced and the interaction lagrangian is:

La = − g3
s

32π2

a

fa
εµνρσGαµνG

α
ρσ (1.8)

where fa is a new mass scale (Feng 2010). It turns out that the parameter space for this term

gets reduced to the light mass and very weakly interacting region. This type of particle is not

produced in thermal equilibrium and therefore there are no restrictions on its mass/coupling

from the relic density13, instead another production mechanism is necessary to come into play

generating cold (non-relativistic) axions. However the lifetime of the particle is long enough

compared to the age of the Universe and this impose an upper limit of ma < 3meV from

supernova SN1987a, red giants and accelerator searches.

3. Weakly Interacting Massive Particles (WIMPs). One of the most attractive features of WIMPs

is that, when in chemical equilibrium in the early Universe, they give the correct relic abun-

dance for CDM. Additionally their interactions make them detectable (a very desirable feature

indeed). Even better, some theoretical extensions of the SM to solve other problems contain

particles like this in the list of new fields (SUSY and KK). After freeze out (see Appendix D

on page 84) and given that there is no more changes of entropy the present relic density is

Ωh2 ≈ 3× 10−27cm3s−1

〈σannβ〉
(1.9)

which for weak cross sections gives the correct order of magnitude of DM density. At first

sight this expression is independent of the mass of the WIMP, but this is misleading because

13Axions can be produced thermally but they suffer the same problems as neutrinos.
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the mass dependence is enclosed by the cross section term (roughly Ωh2 ∼ m2
χ/g

4
X). Lo and

behold for weak scale masses and couplings this gives a close number to the observed one,

this has been dubbed the “WIMP miracle” (Feng 2010; Profumo 2013; Gelmini and Gondolo

2010).

In this work the focus will be on this kind of particle, studying “simplified models”,

given all their attractive features and its links to the more theoretically motivated extensions

of the SM. Specially attractive is the possibility of multiple methods of search and detection

that can be put to work in the near future or are operational at present time. These simplified

models have a rich phenomenology to study and are generic enough to cover several alternatives

without implementing the full complexity of more complete models (SUSY, KK...).

4. Exotic DM14. Some people have developed new ideas like superWIMPs, hidden DM, WIM-

Pzillas, WIMPless models, WIMPonium models, dynamical DM (Gelmini and Gondolo 2010;

Feng 2010) which attracted some attention but were consider too outrageous by some or were

in conflict with some of the observations available at the moment.

5. None of the above. This option covers two possibilities, first DM particles only interact gravi-

tationally in which case it is not going to be possible to characterize it, or second it behaves like

something nobody has imagined yet. One case is hopeless and the other requires to measure

and detect DM (non-gravitationally) to finally start disentangling this puzzle.

Table 1.2: Summary of viable DM candidates. HP stands for hierarchy problem, NPFN stands for
new physics flavor problem. Adapted from (Feng 2010).

WIMPs SuperWIMPs Hidden DM Sterile ν Axions

Motivation HP HP
HP

ν mass Strong CP
NPFP

Naturally
Yes Yes Possible NA NA

Correct Ω
Production

Freeze Out Decay Various Various Various
Mechanism
Mass Range GeV − TeV GeV − TeV GeV − TeV keV µeV −meV

1.2.1 DM Search and Detection

The main processes for DM detection are:

• DM annihilation (DM +DM → SM + SM).

14This is not a usual category for DM candidates but it serves to group lots of models with not that much in
common and some of them just to remind us the unknown nature of the DM puzzle.
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• DM elastic scattering (DM + SM → DM + SM).

• DM creation (SM + SM → DM +DM).

Where SM (DM) denote SM (DM) particles. There is an additional process, DM decay

which is possible if the particles have a long lifetime compared to the age of the Universe (they have

not decayed all by now) (Profumo 2013), however this last process is usually ignored and only the

other three are considered. Each process is the basis for a different kind of search, therefore there

are three different strategies or approaches for the search of DM particles, one for each process and

they are going to be described later. Note that in each case there are three main components of the

interaction rate: the number density of DM particles, the number density of SM particles and the

cross section flux (cross section times speed) or in equation form:

Γ =

∫
ρi1
mi1

ρi2
mi2

dV × σβ ×NSM,fNDM,f (1.10)

where {i1, i2} stand for DM or SM in the initial state and Nj,f stands for the flux of particles of

type j per event (Profumo 2013).

Figure 1.6: Alternatives for DM detection. Source: Snowmass CF1 Summary (Cushman et al. 2013).

As stated earlier each process is associated with a different method of detection and some

of its results are going to be found in what follows (see Figure 1.6).

1. Direct detection. In general, DM is expected to be distributed more or less uniformly around

the Earth and it should be possible to detect the interaction (nucleus recoil in target material)

between DM and SM particles. The targets are composed of huge amounts of material, usually
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a liquid detector like Xe (an example of the energy spectra for some typical values of the

parameters are shown in Figure 1.7 for different detector materials - note that the selected

materials can be highly purified; tend to be inert, three out of four are chemically inert; and the

more radiopure the better)15, surrounded by scintillators or Cherenkov detectors (Cushman

et al. 2013). In the case of Weakly Interacting Massive Particles (WIMPs) the expected flux is

105 (100 GeV/mχ) cm−2s−1 (Taoso et al. 2008). Note that for small mass DM this method is

less favorable than collider searches (due to the recoil), but for masses in the TeV range they

are better suited for the purpose (because in colliders the energy is not enough to produce this

heavy particles).

Figure 1.7: Predicted integral spectra for WIMP elastic scattering for Xe, Ge, Ar and Ne assuming
perfect energy resolution. Source: Snowmass CF1 Summary (Cushman et al. 2013).

So far only the DAMA/LIBRA and COGENT collaborations have claimed DM detec-

tion while studying the annual modulation of event rate (see Figure 1.8b). This modulation

is due to the motion of the sun around the galactic center (GC) and the motion around the

sun creating small differences in the velocity with respect to the halo depending on the time

of the year as shown in Figure 1.8a (Bernabei 2004; Cushman et al. 2013). Unfortunately no

other experiment has been able to confirm this observation and it is even in conflict with more

recent results from more sensitive experiments like XENON100 and LUX as shown in figure

1.9.

2. Collider production. The idea is to produce a pair of DM particles during the collision of two

SM particles, e.g., at LHC two protons colliding head-on may produce a pair particle/anti-

particle of DM depending on the underlying particle physics model for the new interaction. The

15Note that for low mass WIMP (in the range 1 − 10 GeV) other materials are being considered, e.g., He4.
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(a) Variation of the relative velocity with respect
to the halo due to motion of the Solar system
around the GC and to Earth’s motion around

the Sun.

(b) Variation of the relative velocity with respect
to the halo due to motion of the Solar system and

to Earth’s motion around the Sun.

Figure 1.8: DAMA/LIBRA experimental motivation and results. Source: (Bernabei 2004).

(a) Result for 225 days for XENON100. In-
compatible with previous signal reports. Source:

(Aprile et al. 2012).

(b) LUX results and comparison with other
experiments (inset, blue line represents LUX).

Source: (Akerib et al. 2013b).

Figure 1.9: Recent results for direct detection of DM by XENON100 and LUX.

DM particles being stable escape undetected, i.e., as missing energy/momentum16. Difficulties

in detecting DM at the LHC include the feebleness of the interaction, i.e., the signal might

get lost in the background (might get misidentify as neutrinos for example); or the energy

required to produce the pair is too high, i.e., the DM is too heavy to be produced with current

accelerators17.

It is important to note that independent of the details, in terms of complementarity

colliders provide a control environment for the study of the nature of DM particles, and

generally most of the WIMPs masses considered are accessible at those facilities but have

16Remember that “backgrounds are typically smaller for larger values of missing momentum, collider searches
tend to be most effective for low-mass dark matter particles, which are more easily produced with high momentum”
(Arrenberg et al. 2013), i.e., collider searches have an advantage over other alternatives when DM particles are not
that heavy.

17Or maybe DM is hadrophobic and it is leptophilic which implies that a lepton collider is better suited to detect
it.
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problems distinguishing missing signals from particles produced with a relatively small lifetime

(of the order of ns) from particles with much longer lifetime (of the order of Gy).

To date there has not been any strong signal of DM presence at LHC, but note that

most of the analysis are based on some realization of a theoretical model (SUSY, KK...) and

the results are given in terms of this models and their parameters (see Figure 1.10).

(a) Exclusion of parameter space for SUSY.
Source: ATLAS public results.

(b) Values for some parameters in SUSY
model. Source: ATLAS public results.

Figure 1.10: Results from ATLAS collaboration as of August 2013.18

3. Indirect detection. Finally,19 the annihilation of DM into SM particles result in spectral fea-

tures that can be very different from the spectra generated by astrophysical sources. These

observations are astronomical, i.e., require telescopes and detectors for all spectrum of elec-

tromagnetic radiation, detectors for high energy charged particles and high energy neutral

particles (neutrinos) coming from outer space (Profumo 2013). In general, electromagnetic ra-

diation is considered the best because it travels in - more or less - straight trajectories pointing

to the point of origin facilitating the analysis of the background and alternative explanations.

And among the charged particles and the neutral particles there is no clear winner. On one

hand, charged particles are easier to detect and if they are antiparticles the general consensus

is that they are a signal from DM annihilation (if a large flux is detected). On the other

hand, neutral particles can travel longer distances without appreciable deviation from the ini-

tial direction and can point to the original source but are much more difficult to detect and

the expected flux is lower. There are several instruments Earth bound and orbiting the Earth

taking data at the writing of this work (AMS, electrons, positrons, anti-nuclei, ISS; Fermi,

19URL: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
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photons, electrons, satellite; HESS, photons, electrons, Namibia; IceCube, neutrinos, Antarc-

tica; MAGIC, photons, electrons, positrons, La Palma, Spain; PAMELA, electrons, positrons,

satellite; and VERITAS, photons, electrons, positrons, Arizona, USA) (Buckley et al. 2013).

It is usually assumed that it is possible to constrain the mass of the particle with stronger

bounds in indirect detection than in direct detection experiments.

The methods for looking for DM can be grouped as follows

(a) Charged Cosmic Ray/Antimatter Experiments. There are several indications of excess of

positrons over electrons by different collaborations.

• Hints by HEAT and AMS-1 of increase in the positron ratio.

• PAMELA found an increase in the ratio of positrons to total number of particles

N+/ (N+ +N−) from 10 GeV to 100 GeV.

• Confirmation and extension of range up to 200 GeV by Fermi collaboration.

• Confirmation with smaller errors by AMS-2 collaboration (see figure 1.11a).

• No similar increase in other channels, e.g., antiprotons signal.

At present time there is no known astrophysical process that can explain these

observations making the DM option more plausible (than before). In order to explain

these observations some properties of DM particles can be deduced including: a mass of

a few TeV, leptophilic (to explain the absence of signal in the antiproton channel) with

cross section flux of about 10−23cm3/s (see Figure 1.11b).

(b) Gamma-ray Experiments. There is more than one way to produce photons from DM

annihilation.

• Prompt gamma-rays from bremsstrahlung of charged particles and fragmentation of

hadrons on the final stages of the cascade producing a peak in the continuum close the

DM mass; from bremsstrahlung from internal particles on the annihilation process

(subdominant); and annihilation into a pair of photons or photon and a vector bosons

(through loops) producing a line spectrum or a forest of line spectrum. In all cases

the point of origin of the photons follows closely the DM distribution.

• Inverse Compton scattering (ICS) gamma-rays from electrons and positrons cre-

ated in the DM annihilation onto CMB photons. A wider distribution than prompt

gamma-rays and difficult to pinpoint the source.
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(a) Positron fraction as measure by differ-
ent experiments. AMS@ confirms the pre-
vious observations due to PAMELA and
Fermi shows same trend. Source: (Corti

2014).

(b) Plausible explanation with DM for sig-
nals of antimatter from outer space, the
pink shaded area corresponds to a DM par-
ticle of 3 TeV (note the sharp cutoff at DM

particle’s mass). Source: (Cirelli 2012).

Figure 1.11: Hints of signals of DM from outer space.

• Synchrotron emission while on magnetic fields present along the trajectory of the

charged particles created in the annihilation process. The best places to look at are

those in which the magnetic field is large.

In general the idea is to identify places in the Universe in which one of the

conditions is fulfilled and it is easy to detect the signal. Obviously the best targets have a

high density of DM (higher than average) and/or the astrophysical background is low. In

general there is a consensus about no signal detected so far (although some claims have

been made but not confirmed or simply proven wrong, see Figure 1.12). Note, also, that

the empirical evidence from gamma-rays contradicts the evidence from antimatter.

Figure 1.12: Cross section bounds for a specific DM density and specific particle physics model from
Fermi LAT. Source: Ackerman et al. (Ackermann et al. 2013).
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(c) Neutrino Experiments. Neutrinos travel through almost any material with little deflection

making them better to locate their source, however due to the same reason they are very

difficult to detect. Most neutrino detectors are underground and use the Earth to screen

other signal coming from cosmic rays (the signal should come from below to be used).

Again the targets include the GC and the galactic halo; satellite galaxies and clusters

of galaxies; but there is another possibility much closer to us, the Sun. The signal from

the Sun is a very energetic neutrino that no astrophysical nor stellar process is known to

produce. Some limits for cross section can be seen in Figure 1.13.

Figure 1.13: Cross section bounds for DM annihilation from the GC (left) and the galactic halo
(right) found by IceCube. Source: Cirelli (Cirelli 2012)

Note, however, that although DM annihilation is the most common process studied in

indirect detection efforts, it is by no means unique. There is another process that can occur in

outer space, in particular the scattering of DM and SM particles close to the GCs where the

concentration of both types of particles is extremely large and the energy of the SM particles

is large too. This Active Galactic Nuclei (AGN), can give a very distinctive signal and it is

worth to study it.

It is important to note too that the discovery of DM particles and its characterization is going to

come from a mixture of all kinds of detection (complementarity) because at this time it is believe

that a signal in one of the modes but not the others is not conclusive enough. This reason supports

our effort to model and study all modes at the same time to get a more complete and accepted

picture.
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Chapter 2

Gamma-ray Signals from AGN

Not knowing for sure that DM has been detected forces us to explore all the possibilities,

i.e., looking in different parts of the Universe and/or considering more exotic scenarios. In this

chapter, the former option will be considered: searching for signals of dark matter in regions of the

Universe that have yet to be explored. In the next chapter, a new model of dark matter will be

explored and its possible signals at the type of experiments discussed in the last part of the chapter.

In this chapter, the possibility of the detection of high-energy gamma-rays originating in

the interaction of DM and SM particles around some AGN is explored. This scenario is favorable

because the DM density close the the core of the AGN could be very high compared to the average

DM density making more likely the interaction of DM particles. Additionally when high-energy

particles are flowing out of the jets the whole picture improves more. The basic idea is that collisions

of jet particles with DM particles creates a heavy, charged particle (not included in the content of

the SM) that quickly decays back to the original particles, although, an additional photon can be

emitted from the initial, final or intermediate state charged particles. One of the consequences is

the appearance of a sharp cutoff (of the order of the difference in mass between the KK particles)

that is not common in astrophysical processes, but by no means impossible.

The question to be answered in this chapter is whether or not the spectra from these gamma-

rays is discernible from astrophysical gamma-rays. In what follows, a computation of the complete

WIMP-induced gamma ray flux for an AGN (including the AGN jet-WIMP scattering along with

the contributions from annihilations) is done. In previous studies the focus was the gamma ray

spectrum coming from the scattering between AGN jets and WIMPs, in this work one step more is

taken and the complete spectrum is constructed. This chapter is based on the paper “WIMP-induced

Gamma-ray Spectrum of Active Galactic Nuclei” (Gómez et al. 2013).
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2.1 The Model

To investigate the possibility of detecting DM around AGN, a particular model must be

chosen, and the chiral square, which belongs to the Universal Extra-Dimensions (UED) family1, was

selected. The “chiral square” derives its name from the geometrical form obtained in the manifold

generated by the two new dimensions, i.e., they form a square. The other condition imposed is the

identification of adjacent sides (folding the square along the main diagonal) creating the quantization

rule that allows to calculate the mass of the Kaluza-Klein (KK) modes m2
j,k = m2

0 + π2(j2+k2)/L2

with m0 the mass of the corresponding SM particle (Dobrescu and Ponton 2004; Burdman et al.

2006a,b; Dobrescu et al. 2007b).

The model contains an additional discrete symmetry implying the existence of an excited

mode that cannot decay (at tree level) and serves as DM particle. The DM candidate is assumed to

be a color singlet and, for obvious reasons, electrically neutral, i.e., the colored and charged particles

are heavier than the DM candidate. All this gives us that the DM particle is the scalar partner of

the hypercharge boson B
(1,0)
H (ignoring any possible mixing with the weak W s partners) and the

interaction is U (1) with coupling g1 and the relevant charge is hypercharge. The model contains

a long list of interactions, but the one that is relevant for this work is between a SM electrically

charged particle, the KK excited associated particle and the WIMP:

∆L = g1

[
ψ̄E (YLPL + YRPR)ψe + ψ̄e (YLPR + YRPL)ψE

]
BH (2.1)

where Yi is the hypercharge of the i chiral part of the SM field, ψe is the SM particle and ψE is

the KK excited state. From this lagrangian and the relic abundance constraint it is possible to find

some limits on the mass of the excited hypercharge boson: 190 GeV ≤MB ≤ 215 GeV2.

2.2 Gamma-rays from the Scattering between DM Particles and Particles on AGN Jets

The components for the calculation of the gamma-ray flux are the number of particles in

the jet and its energy, the number of particles of DM available for scattering and the cross section

1Extra dimensions means that additional space-like dimensions are added to the regular four dimensional space-
time, universal means that the fields have access to all the dimensions as opposed to ADD models where SM particles
have access to the initial four-dimensional space. The extra dimensions are assumed to be compactified with radii
much larger then lPl but smaller than currently explored distances. Roughly the inverse of the radius gives the mass
scale for the KK excitations MKK ∼ 1/R. Note that the starting point for each “tower” of KK excitations corresponds
to a SM particle.

2Note that those limits are valid only if the WIMP is a thermal relic and the DM particle is unique and there is
no more complex dark matter sector with several quasi-stable particles contributing to the thermal relic density.
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for the process (which measures the probability of interaction). The differential cross section is a

function of the energy of incoming particles and the energy of the photon3 (but we are assuming

that the DM particle is heavier than the scattered SM particle, an electron in this case, therefore its

kinetic energy is negligible and its total energy is given by its mass). Additionally from astrophysical

models it is known that the flux of electrons in the jet depends on their energy too which implies

that the differential photon flux is going to be related to an integral of those quantities with respect

to the energy of the electron

dΦγ
dEγ

=

∫
δDM ×

(
1

d2
AGN

dΦAGNe

dEe

)
×
(

1

MB

d2σe+BH→γ+e+BH

dΩdEγ

∣∣∣∣∣
θ=θ0

)
dEe (2.2)

where the first factor of the integrand is related to the density of the DM that is in the vicinity of

the core of the galaxy where the interaction is more probable, the second factor is related to the

number of electrons being expelled in the jets and the last factor gives the probability of interaction

(or how often the particles interact). A closer look at each of these factors follows, because it is

possible to learn the limitations of this approach checking all the assumptions and approximations

that were made.

2.2.1 DM Density Profile

The first factor of the integrand in Equation 2.2 is related to, but not exactly equal to, the

density of DM around the AGN, which prompts the question why is not the density of DM around

the AGN? And the answer is because what really matters is how the particles in the jet see the DM

density and because the jets are highly collimated there is a preferred direction, that of the direction

of the jet. Note that we are assuming a spherically symmetric distribution of DM around the AGN

therefore the number of DM particles that the particles in the jet find are given by the integral of

the density along the path of the particles in the jet (radial direction):

δDM =

∫ r0

rmin

ρDM (r) dr (2.3)

in principle the integral could go from a very small radius (rmin or the base of the jet) at which the

jet originates to infinity, however the jet becomes incohesive at some point and the DM density is

3Not enough delta functions to integrate out this degree of freedom easily and at the end it is what is observed.
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small and the integral can be approximated with this cut4. Note that this integration is equivalent

to find an average surface density that the particles in the jet find on their path and therefore is

related to the number of DM particles with which the SM particles can collide (Gorchtein et al.

2010).

As mentioned previously the assumption is that the DM density is higher closer to the core.

However, due to the feebleness of the interaction, if a detectable signal is desired a slightly more

peaked profile than usual (standard profiles for DM in galaxies are Einasto, Navarro-Frenk-White -

NWF -, and adiabatic) is necessary. On the other hand, the activity of the nucleus of the galaxy

modifies the DM somehow. For these reasons the chosen profile to work with is due to Gondolo

and Silk (GS) (Gondolo and Silk 1999), who worked out the new profile close to an active core (and

this is the standard for AGN)5 (which we assume to be long lived enough to detect signals from

them now) in which the central part is more spiky than density profiles used for regular galaxies

(Einasto, NFW, and adiabatic). Two parts define the GS profile: the core contribution (related to

the interaction between the DM and the black hole) and a spike contribution:

ρ (r) =
ρ′ (r) ρcore
ρ′ (r) + ρcore

(2.4)

where ρcore ≈ MDM/〈σβ〉0tBH with tBH the time since the formation of the BH, and 〈σβ〉 the thermally

averaged cross section flux for the DM annihilation process; i.e., the longer the time of interaction the

larger the volume or the smaller the density. The spike contribution is a slightly more complicated:

ρ′ (r) = ρ0

(
Rsp
r0

)−γ (
1− 4RS

r

)3(
Rsp
r

)γsp
(2.5)

with γsp the slope of the central spike, Rsp the radius defining the spike and RS the Schwarzschild

radius of the black hole. But these are observables, the relation between the observed quantities and

the GS parameters is:

γsp =
9− 2γ

4− γ , Rsp = αγ r0

(
MBH

ρ0 r3
0

)1/(3−γ)

and αγ ∝ γ4/9. (2.6)

4Note that previous studies have shown that the value for the upper limit is way less important than the selection
of the lower limit, this reflects the suppress nature of the DM density profile around the AGN.

5For the case of Centaurus A the distance is so large that it is very difficult if not impossible to achieve resolutions of
distances less than 100-1000 Mpc (Gorchtein et al. 2010; Huang et al. 2012) making “direct” inferences for the density
profile useless and theoretical approximations and extrapolations are necessary making this model more attractive.
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Note that for a non-rotating black hole the radius of the last stable orbit is rlast = 4RS (this

is the radius of minimum distance to the black hole for any particle that interacts gravitationally)

or ρDM (r < rlast) = 0 which sets a natural lower limit for the integral in Equation 2.3, rmin = 4RS .

The constant ρ0 is fixed through the saturation of the inequality

∫ 105 RS

4RS

4πr2ρDM (r) dr ≤ ∆MBH (2.7)

which states that the uncertainty on the mass of the black hole has to be larger than the mass of

DM around the black hole.

For definiteness we will use Centaurus A AGN as example of this type of calculation (and

because some observational data is available for it). The parameters for Centaurus A AGN are

shown on Table 2.1 (Abdo et al. 2010). The results for different combinations of the time of

Table 2.1: Values for GS parameters for Centaurus A AGN.

MBH [ M� ] Black Hole mass (5.5± 3.0)× 107

RS [pc] Schwarzschild radius 5× 10−6

tBH [yr] Age of Black Hole 108 − 1010

αγ 0.1
r0 [pc] (upper limit of integration) 15× 103

dAGN [pc] 3.7× 106

θ0 68◦

existence of the black hole and the DM annihilation cross section are shown in Figure 2.1 on the next

page. The annihilation cross section is in the range of the “magic” number for the “WIMP miracle”

to work. As stated before the upper limit of integration does not matter as much as the lower limit

of integration (look at Figure 2.1b the curves start almost horizontal but at some point start varying

really fast), note too the rapid decay of the DM density for relatively small radius (Figure 2.1a

on the following page). Also note that the shorter the time and the smaller the cross section the

greater the number of particles in the spike, therefore the annihilation cross section is affecting the

computations in two ways: if it is small then there are more particles available to interact, but they

interact with less probability. On the other hand, if the cross section is large, the density is lower

making less particles available for interaction but they interact more strongly (the problem is that

the relation is non-linear and is non-trivial to find the best scenario possible) but contrary to other
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indirect search methods in this case the lower the cross section the better the chances of a signal

according to Profumo et al. (Gorchtein et al. 2010).
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Figure 2.1: DM density profile and los integral.

2.2.2 The AGN Jet

A priori it is possible to name several factors affecting the dynamics of the jet such as

geometry, energy distribution, composition of the jet, but it turns out that the most important

effect is due to the energy distribution (once the composition has been identified) and the exact

geometry can be neglected (Gorchtein et al. 2010; Huang et al. 2012). The standard approach is to

utilize the so-called blob geometry in which particles move isotropically and assume that the gamma

factor with respect to the black hole is not too large (ΓB ∼ 3)6. A broken power law for the energy

distribution is obtained from Fermi LAT observations (Abdo et al. 2010):

dΦAGNe

dγ′
(γ′) =

1

2
keγ′ − s1

[
1 +

(
γ′

γ′br

)(s2−s1)
]−1

γ′min ≤ γ′ ≤ γ′max (2.8)

with s1 = 1.8, s2 = 3.5, γ′br = 4 × 105, γ′min = 8 × 102, γ′max = 108, and γ′ = E′/me. The constant

ke is found saturating the Eddington limit for the black hole mass Le:

Le = me

∫ 1

−1

∫ γmax

γmin

γ

ΓB (1− βBµ)

dΦAGNe (γΓB (1− βBµ))

dγ
dγdµ (2.9)

6In this reference frame the angle of the jet is smaller than the multiplicative inverse of the gamma factor (θ < 1/ΓB).
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where the primed quantities are in the “bulk” reference frame and unprimed quantities refer to the

black hole. The polar angle dependence is included in the µ(= cos θ) variable.

The final form for the factor for the jet particles is

1

d2
AGN

dΦAGNe

dEe
=

1

d2
AGNme

∫ 1

µ0

1

ΓB (1− βBµ)

dΦAGNe (γΓB (1− βBµ))

dγ
dµ (2.10)

and µ0 indicates how narrow (collimated) the jet is. A typical value for a highly collimated jet is

µ0 = 0.9 and we will use that as our lower limit of integration (this cone includes close to 80% of

the particles according to Profumo et al. (Gorchtein et al. 2010)).

2.2.3 The Cross Section

The differential cross section for the scattering BH + e− → BH + e− + γ has six different

Feynman diagrams (three for s channel and three for u channel processes) as shown in Figure 2.2

where the virtual particle exchanged is the first KK excited state of the electron E(1,0) (E for

simplicity).
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BH(p3)

e−(p4)S1
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e−(p2)
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BH(p3)
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Figure 2.2: Feynman diagrams for the scattering of DM and SM particles (BH +e− → BH +e−+γ)
through the exchange of an excited state of the electron (E). There are no diagrams for a t channel
because there is no more ways to “rotate” the diagram with the existing vertices in the theory, only

s and u channel contributions.
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It is obvious that the matrix element can be written asM =
∑
iM

µ
i εµ,5 where εµ,5 = εµ (p5)

is the polarization four-vector for the photon with four-momentum p5 = pν5
7. The amplitudes for

the s-channel diagrams are given by:

Mµ
S1

=
eg2

1

Σ34t25
ū4 (YLPR + YRPL)

(
/p3

+ /p4
+ME

)
(YLPL + YRPR)

(
/p2
− /p5

)
γµu2

Mµ
S2

=
eg2

1

Σ12s45
ū4γ

µ
(
/p4

+ /p5

)
(YLPR + YRPL)

(
/p1

+ /p2
+ME

)
(YLPL + YRPR)u2

Mµ
S3

=
eg2

1

Σ12Σ34
ū4 (YLPR + YRPL)

(
/p3

+ /p4
+ME

)
γµ
(
/p1

+ /p2
+ME

)
(YLPL + YRPR)u2

(2.11)

where the denominators have been adjusted to behave correctly in case of resonance Σij = sij −

M2
E − i

√
sij ΓE with Lorentz invariants defined as sij = (pi + pj)

2
and tij = (pi − pj)2

. The decay

width for E is independent of the energy and to leading order is given by:

ΓE =
g2

1

32π

(
Y 2
L + Y 2

R

) (M2
E −M2

B

)2
M3
E

. (2.12)

The u-channel amplitudes are not resonant in the region of interest and are given by:

Mµ
U1

=
eg2

1

t14t25
ū4 (YLPR + YRPL)

(
/p4
− /p1

+ME

)
(YLPL + YRPR)

(
/p2
− /p5

)
γµu2

Mµ
U2

=
eg2

1

t23t45
ū4γ

µ
(
/p4

+ /p5

)
(YLPR + YRPL)

(
/p2
− /p3

+ME

)
(YLPL + YRPR)u2

Mµ
U3

=
eg2

1

t14t23
ū4 (YLPR + YRPL)

(
/p4
− /p1

+ME

)
γµ
(
/p2
− /p3

+ME

)
(YLPL + YRPR)u2.

(2.13)

The unpolarized differential cross section for BH (p1) + e (p2)→ BH (p3) + e (p4) + γ (p5) is

given by:

dσ = (2π)
4
δ4 (p1 + p2 − p3 − p4 − p5)

1

4E1E2

d3p3

(2π)
3

2E3

d3p4

(2π)
3

2E4

d3p5

(2π)
3

2E5

∑〈
|M|2

〉
(2.14)

and using the four dimensional Dirac delta function to integrate four degrees of freedom (~p3 with

δ3 (~p1 + ~p2 − ~p3 − ~p4 − ~p5), and E4 with δ (E1 + E2 − E3 (p1, p2, p4, p5)− E4 − E5)), the differential

cross section is:

d2σ

dE5dΩ5
=

1

(2π)
5

E5

32E1E2

∫
E4

E3

1

|1 + J |
∑〈

|M|2
〉
dΩ4 (2.15)

7From now on all variables that depend on the four-momentum pi are going to be labeled by the subscript i of the
four-momentum.
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where quantities with indices 3 and 4 are functions of the remaining variables and J is to the change of

integration variable between |~p3| and E3. To simplify the calculations we choose the reference frame

in which the DM particle is at rest, the initial linear momentum of the SM particle coincides with

the positive z axis and the the azimuthal angle for the photon is zero (φ5 = 0). The four-momenta

in this reference frame are:

pµ1 =

MB

~0

 pµ2 = E2



1

0

0

1


pµ3 =

E3

~p3

 pµ4 = E4



1

sin θ4 cosφ4

sin θ4 sinφ4

cos θ4


pµ5 = E5



1

sin θ5

0

cos θ5


(2.16)

where the mass of the electron has been ignored and due to the integrations (four-momentum

conservation) the following relations are true:

~p3 = ~p1 + ~p2 − ~p4 − ~p5

E3 =
√
M2
B + E2

2 + E2
4 + E2

5 − 2E2E4c4 − 2E2E5c4 + 2E4E5 (s5s4 cosφ4 + c5c4)

E4 =
MB (E2 − E5)− E2E5 (1− c5)

MB + E2 (1− c4)− E5 (1− s5s4 cosφ4 − c5c4)

J =
1

E3
[E4 − E2c4 + E5 (s5s4c4 + c5c4)] with

ci = cos θi and si = sin θi.

(2.17)

For Centaurus A the observation angle is θ5 = θ0 = 68◦ and for Eγ = 10 GeV, MB =

200 GeV and ME = 215 GeV the differential cross section is shown in 2.3. There are two peaks

each related to the different modes of resonance due to the propagators Σ12 and Σ34, one of them

varies so slowly with Eγ that it can be taken to occur always at the same energy E∗e ≈ ME −MB ,

the second one varies much faster with Eγ and appears as a mobile peak on this graph moving to

the right as the energy of the photon Eγ increases. We observed that the first resonance is (almost

always) dominant, i.e., it is higher by a factor of 10 or more.

29



10 1005020 20030 30015 15070

10-10

10-9

10-8

10-7

10-6

10-5

Ee HGeVL

â
2

Σ

â
E

Γ
â

W
Γ

HG
e
V

-
3

L

Differential Cross-Section

EΓ=5 GeV

MB=200 GeV

ME=215 GeV

10 1005020 20030 30015 15070

10-10

10-9

10-8

10-7

10-6

10-5

Ee HGeVL

â
2

Σ

â
E

Γ
â

W
Γ

HG
e
V

-
3

L

Differential Cross-Section

EΓ=10 GeV

MB=200 GeV

ME=215 GeV

Figure 2.3: The differential cross section for BH + e− → BH + e−+γ for photon energy E5 = 5 GeV
(left) and E5 = 10 GeV (right) as a function of the incoming electron energy. The resonance located
near 15 GeV is due to pieces of the amplitude-squared which get contributions from diagrams S2 and
S3 (which depend on the propagator term Σ12), while the second resonance located near 22−23 GeV
(left) or 27 GeV (right) originates from diagrams S1 and S3 (which depend on the propagator term

Σ34).

2.2.4 Gamma-ray Flux form DM Particles Scattered by SM Particles

Putting all of the pieces together it is possible to compute the gamma-ray flux from Centau-

rus A AGN jet particles scattering of DM particles in the halo close to the core. Note that usually

what is reported is the spectral energy distribution (νSν) which is related to the flux as:

νSν = E2
γ ×

dΦγ
dEγ

. (2.18)

The spectral energy distribution is shown in Figure 2.4 for both 5 and 6 dimensions8. In

both cases it is observed a rise and then a very sharp cutoff follow by a monotonic decline. The

shape is different from the characteristic power law followed by most known astrophysical processes.

The cutoff corresponds to a value close to the difference of the two KK particles, i.e., the first peak

of the cross section; the slow decline afterwards is due to the second peak and the fact that it keeps

moving with the energy available for the photon (with the energy of the initial electron), a fixed the

second peak would produce a two hump figure instead of the single hump observed. It is important

to note that the inclusion of the finite resolution of the detector is going to soften this feature.

A final remark on computational efficiency is necessary, although a full calculation for one set

of values of the parameters was done, the time consumed was too long. Therefore, after checking for

consistency and accuracy, the implementation of the collinear approximation suggested in (Gorchtein

et al. 2010) was made and it improved by several orders of magnitude the time at a small cost in

8The 5 dimensional case was published before and it was used as a sanity check for the approximations made to
the 6 dimensional case.
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Figure 2.4: The spectral energy distribution νSν as function of the photon energy Eγ from the
interaction of WIMPs with the AGN jets of Centaurus A. Note that 5D case refers to a comparison
to the model studied in (Gorchtein et al. 2010) and 6D case corresponds to the model studied in

this work.

accuracy (several values of the parameters were checked and for the final calculation of the study

which includes a fit to data a faster algorithm was required). In the collinear approximation, one

assumes that the difference between the two particles is small, that the final photon aligns with the

final electron and that the main contribution comes from the resonances (mainly pure s-channel

diagrams or mixtures of them). A complete account of the calculation can be found in Appendix B

on page 76.

2.3 Gamma-rays from DM Annihilation

The calculation of the gamma-ray flux from DM annihilation depends quadratically on the

density of DM (two DM particles have to get close together to interact). Therefore the flux is given

by: (
dΦ

dEγ

)
ann.

=
1

8πM2
Bd

2
AGN

∫ r0

rmin

4πr2ρ2
DM (r) dr

∑
f

〈σβ〉f
dNf

γ

dEγ
→

(
dΦ

dEγ

)
ann.

=
〈σβ〉tot

8πM2
Bd

2
AGN

∫ r0

rmin

4πr2ρ2
DM (r) dr

dNγ
dEγ

(2.19)

where the summation is over all final states with at least one photon and dNfγ/dEγ is the normalized

photon spectrum per annihilation.

The total gamma-ray from annihilation spectrum has two components:

1. Continuum. It is expected that pairs of LKPs annihilate predominantly into pairs of elec-

troweak bosons WW and ZZ, SM Higgs bosons HH and (if heavy enough) top quark pairs
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tt̄. To compute the continuum gamma-ray spectrum from these annihilations we use the mi-

crOMEGAs code (Belanger et al. 2011) for the chiral square model. With a Higgs mass around

MH = 125 GeV and a DM particle slightly heavier than the top, but inside the allowed range

derived from the density relic constraint, of MB = 200 GeV, we found the annihilation frac-

tions are roughly 48% BH +BH →W +W , 28% BH +BH → H+H, 22% BH +BH → Z+Z

and 2% BH +BH → t+ t̄ and the total flux cross section is 〈σβ〉 = 2.40× 10−26 cm3/s.
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Figure 2.5: Gamma ray spectra from continuum WIMP annihilations.

The differential photon spectrum dN/dx as function of the energy of the photon

x = Eγ/MB is shown in Figure 2.5a. As was pointed out by Bertone et al. (Bertone et al.

2009), in contrast to other models, the continuum spectrum from the chiral square model

sharply decreases well before the value of the WIMP mass MB . They explained that there

are many annihilation modes that do not produce a photon (“photon unfriendly” modes),

consisting of massive particles which are unlikely to radiate high-energy photons (the signal

that we are looking for). The majority of the produced photons come from radiation (or after

hadronization, decays of π0’s) from the even softer decay products of the particles produced

in the primary annihilation (therefore being less energetic).

The density dependence is quadratic and Figure 2.5b shows the results for two dif-

ferent model of the DM density. The three orders of magnitude of difference are due to the

“shallowness” of the Gnedin-Primack (GP) profile compared to the GS model, if the density

effect was important in the scattering case in the annihilation is much more important and
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the smaller number of particles to interact in the GP model shows it. Finally combining and

comparing the contribution to the spectrum from the scattering (spectrum from jet-halo in-

teractions) and the continuum it is clear that the scattering is dominant and the continuum is

at best a tenth of the total as can be seen in Figure 2.6.
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Figure 2.6: Total spectral energy distribution for the process e + B with one or two final photons
(leading order and one loop) including continuum emission from dark matter annihilation (but not

line emission).

2. Line Emission. In the chiral square model the DM particle is a scalar; therefore, any anni-

hilation with two final particles (BH + BH → γ + X), one of them being a photon, implies

that the other particle has to be a vector particle; this gives us three possible choices for X: a

photon, a neutral weak boson Z or the first vectorial KK excitation of the hypercharge boson

B(1,1). In Bertone et al. (Bertone et al. 2009) it was shown that it is possible to get several

and well separated lines (even after including the effect of detector resolution) from a specific

source like the center of the Milky Way.

Figure 2.7: Example Feynman diagrams for the process BH + BH → γ + V . ξ
(`)
s,d are the gauge

eigenstates for the (1,0) excitations of the SM leptons (`).
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The contribution to the line spectra come from loop diagrams like the ones shown in

Figure 2.7 on the previous page. The amplitude for each diagram can be written as:

M = εµ∗A (pA) εν∗B (pB)Mµν (p1, p2, pA, pB) (2.20)

where number subscripts are for initial states and letter subscripts for final states (A for the

photon and B for the second vector state), ε’s are the polarization four-vectors of the final

vector particles. The tensor Mµν has two free indices and it should be expanded in terms of

the metric tensor and combinations of the momenta four-vectors available:

Mµν = Agµν +
∑
i,j

Bijp
µ
i p
ν
j . (2.21)

However it was shown in (Bertone et al. 2009) that the dominant contribution comes

from the metric tensor term (only if the DM is massive enough such as it can be treated

non-relativistically, i.e., p1 = p2 ≈ (MB , 0, 0, 0)T ). The results for γ + γ, γ + Z and γ +B(1,1)

cross sections as a function of MB for the KK masses ME = 1.2MB and MB(1,1) = 1.6MB are

shown in Figure 2.8.

Figure 2.8: The flux cross sections for BH + BH → γγ, γZ and γB(1,1) as a function of the DM
particle mass. Source: Bertone et al. (Bertone et al. 2009).
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In each case the spectra will depend on the width of the decaying particle (no width for

a photon, i.e., a delta function at the mass of the DM particle MB), and it can be parametrize

by (Bertone et al. 2009):

dNV
γ

dE
=

4MBMV ΓV
f1f2

f1 =

[
tan−1

(
MV

MB

)
+ tan−1

(
4M2

B −M2
V

MV ΓV

)]

f2 =
[(

4M2
B − 4MBEγ −M2

V

)2
+ Γ2

VM
2
V

]
.

(2.22)

2.4 Results

So far we have included the DM related gamma-ray flux, but there exist a background

due to astrophysical processes. The model for this astrophysical background follows a power law

dΦbkg/dEγ = AbE
δb
γ where the photon energy is measured in GeV. Assuming that the photons do

not interact with anything from the source to the detector and assuming that the detector will smear

the measurement with a gaussian kernel, the total differential flux is:

dΦtot
dEγ

= G0

(
E′γ , Eγ

)(dΦbgk

dE′γ
+
dΦcont.

dE′γ
+
dΦline

dE′γ
+ λAGN

dΦAGN

dE′γ

)
with

G0

(
E′γ , Eγ

)
=

1√
2π σexp

e−(E′γ−Eγ)
2
/2σ2exp

(2.23)

where σexp is the experimental resolution, i.e., σexp = 0.1E′γ for the Fermi LAT detector. Note that

the contribution from the AGN is scaled with λAGN, which will be allowed to vary in the range

0.5 − 1, and is meant as a parametrization of the uncertainty in the AGN contribution (allowing

more freedom to fit the experimental data).

A bayesian algorithm was used to fit the data and the details are in Appendix C on page 81.

Note that the fit has some restrictions; remember that there is relic abundance “measurement”

(ΩDMh
2 = 0.11± 0.01)9 that constrains the possible values for the different parameters to allow the

model to be viable. One possibility is that our DM candidate is the only component of the DM and

then we saturate the limit. On the other hand, if the DM sector is more complex and our candidate

is only a fraction of the total DM then the constraint is loose (there is some slack due to the other

9This uncertainty is theoretical in nature and much larger than the empirical one (0.0027).

35



Wh2 Saturated

Centaurus-A
Fermi Data

Total HSmearedL
Total HUnsmearedL

AGN Jet

Power Law

Continuum

Lines

0.5 1.0 5.0 10.0 50.0 100.0
10-14

10-13

10-12

10-11

10-10

EΓ HGeVL

Ν
S Ν

Her
g

cm
-

2
s-

1 L

(a) Saturated photon spectrum.

Wh2 Unsaturated

Centaurus-A
Fermi Data

Total HSmearedL
Total HUnsmearedL

AGN Jet

Power Law

Continuum

Lines

0.5 1.0 5.0 10.0 50.0 100.0
10-14

10-13

10-12

10-11

10-10

EΓ HGeVL

Ν
S Ν

Her
g

cm
-

2
s-

1 L

(b) Unsaturated photon spectrum.

Figure 2.9: The unsaturated relic abundance case yields an energy cutoff that fits the Centaurus-A
data slightly better than the saturated case. While the continuum and lines are generally suppressed
below the astrophysical background, the B(1,1)γ line can appear above the continuum, offering

possible detection in our own galaxy.

components). Additionally there are restrictions that come from direct searches, e.g., XENON100.

To include these restrictions the following rescaling was used:

σmeas.
SI = σSI

ΩBHh
2

Ωmeas.h2
, σβmeas.

γ X = σβγ X

(
ΩBHh

2

Ωmeas.h2

)2

. (2.24)

The results are shown in Figure 2.9. First note that the power law gave similar results in both

cases and the coefficients found for the saturated case are Ab = 6.1+1.0
−0.8×10−12 and δb = −3.06±0.14

(this is on the high side for the exponent for an astrophysical process); also note that the unsaturated

case fits better the cutoff but both of the fits are consistent with the experimental uncertainty; and

finally note that the signal from annihilation is very small but one of the lines (the one corresponding

to B(1,1) + γ final state) can be detected under some circumstances.

But, why to explore a unsaturated case? It turned out that the parameters (masses) in

our model are in conflict with the data unless it was adjusted as can be seen in Figure 2.10 on

the following page. The problem with a more compact spectrum of particles (less difference in the

masses) is that more coannihilations will occur decreasing the current density of the DM particle

(Figure 2.10d). Unfortunately the drop (which is occurring at the difference of masses in our model)

only fits the data if it is not the only DM in the Universe. However it is a considerable component
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of it (around 50%) and that is an improvement over past experiences10. A rough estimate from

Figure 2.10a and Figure 2.10b gives the combination MB = 180 GeV and ME = 210 GeV, but this

contradicts the evidence from Fermi LAT with a difference close to 15 GeV.

(a) Posterior distributions for the saturated
case as function of DM mass and relic den-
sity. The preferred mass is centered around
MB = 180 GeV slightly lower than the se-

lected mass.

(b) Posterior distributions for the saturated
case as function of difference of mass and
relic density. The preferred mass difference
is centered around ME − MB = 30 GeV

doubling the selected value.

(c) Posterior distributions for the saturated
case as function of DM mass and relic den-
sity. The preferred mass is centered around
MB = 240 GeV higher than the selected

mass.

(d) Posterior distributions for the saturated
case as function of difference of mass and
relic density. The preferred mass difference
is centered aroundME−MB = 17 GeV very

close to the selected value.

Figure 2.10: Posterior distributions for unsaturated (bottom) and saturated case (top).

Finally, in Figure 2.11 on page 39, we present associated dark matter observables. In

Fig. 2.11 (top), we see the spin-independent scattering cross section for the two relic abundance

10It is possible to have a more complex model in which non-standard cosmological conditions are met.

37



cases. In the case of a saturated relic abundance, the expected cross sections are quite close to

the Xenon100 limit (Aprile et al. 2012). This indicates some amount of tension within the model.

However, the unsaturated case is naturally within a factor of 3-4 of the current bound. Either

case is within reach of future direct detection experiments such as LUX (Akerib et al. 2013a) and

Xenon-1Ton (Aprile 2012) with a cross section no lower than O(5× 10−10 pb).

In Figure 2.11 on the next page (bottom), we show the location and predicted cross section

into the γ-ray lines γ+γ, Z+γ and B(1,1) +γ and the present 4 year Fermi line search limit (Albert

2012). The B(1,1) + γ is sizable and is well positioned for Fermi line searches within our own galaxy

in the near future. We find the B(1,1) + γ should have a line location of 50 − 100 GeV and cross

section at the O
(
10−28 cm2/s

)
level. The γ+γ and Z+γ lines are of similar strength. Furthermore,

given the energy resolution of γ-ray experiments, they will likely be smeared together as one line at

this energy. Therefore, they are combined in the contour plot as one line.

2.5 Discussion

Since the best fit in the model correspond to a mass splitting of O(15 GeV), the relic density

of BH is lower than measured by WMAP and Planck due to coannihilation with the up-scattered

state, E. Therefore, a second DM candidate is needed to explain the remaining DM of the Universe;

one possibility is the axion (see page 11).

A small mass splitting between the DM candidate and the compressed spectrum associated

with the first level excitation, the outlook for searches at the LHC for discovering this scenario are

gloomy. The main difficulty being that the cuts are going to get rid of the soft decay products.

Note that the null searches for new heavy states in models such as SUSY have not precluded this

scenario and a mass scale of O(200 GeV) is within reach of a future ILC at 250 or 500 GeV. There,

the cleaner background and more precise control over initial state energy may allow a discovery.

It is worth noting that in the presence of brane kinetic terms, the masses in extra dimension

models are allowed to vary more freely. In this case, while the strength of coannihilation between

BH and the compressed spectrum will be weakened, we can say that coannihilation between BH

and E will take place to some level due to the AGN jet data requiring a 10− 20 GeV mass splitting.

However, the searches at the LHC may uncover the decay of, say, Q(1,0) → BH + q with a sufficient

mass splitting.

We expect that the Fermi LAT should be able to discover the B(1,1) + γ line and future

direct detection experiments such as LUX (Akerib et al. 2013a) and Xenon-1Ton (Aprile 2012) are
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(a) Posterior distribution in spin indepen-
dent cross section and DM mass plane for

unsaturated relic density.

(b) Posterior distribution in spin indepen-
dent cross section and DM mass plane for

saturated relic density.

(c) Posterior distribution in cross section
flux of lines and energy of the photon plane

for unsaturated relic density.

(d) Posterior distribution in cross section
flux of lines and energy of the photon plane

for saturated relic density.

Figure 2.11: The dashed (dotted) contour contains the 1σ (95%) C.L. regions, respectively. Either
scenario is easily probed by the LUX and Xenon 1T experiments.

well positioned to probe the entire scattering cross section, assuming the BH relic abundance is not

suppressed too much. The Fermi LAT and HESS measurements on Centaurus-A should also provide

additional statistical power to confirm or refute this scenario directly.
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Chapter 3

Top Portal DM

In the preceding chapter, the possibility of detection of “standard” DM by looking in dif-

ferent parts of the Universe was explored. In this chapter slightly more “exotic” model of DM is

studied. For starters this model is more basic than the one used before and is classified as a “sim-

plified model” in the sense that only the minimum content is introduced and it does not pretend to

explain other phenomena than DM itself (Beltran et al. 2009; Fan et al. 2010; Fitzpatrick et al. 2013;

Beltran et al. 2010; Goodman et al. 2011; Bai et al. 2010; Goodman et al. 2010). An advantage of

this approach is that the simplified model can be mapped to more complex models like SUSY, UED,

etc (the new particles and interactions may have some resemblance or even be identical to particles

and interactions in those models). The term exotic requires some explanation though, for a long

time the research was focus on the more complex models because there were other compelling rea-

sons to believe they were an improvement, but due to their complexity some additional restrictions

were imposed in the new particles and interactions added and these restrictions were associated to

the model per se not on the nature of DM. Therefore with the new approach you remove those

additional constraints but pay the price to look for a less ambitious goal: instead of explaining some

fundamental problems you are trying to characterize DM and nothing else. This chapter is based

on the paper “Dark Matter on Top” (Gomez et al. 2014).

These simplified models modify the lagrangian with a new interaction term between the

DM particle and some SM particle(s), in addition to kinetic and mass terms for the new particles,

of the form:

∆L ∼ 1

Λn
OSMODM (3.1)

where OSM and ODM are operators constructed from SM and DM fields respectively and Λ is a

cutoff scale for the effective theory. Because the DM particle has to be stable or quasi-stable for

periods of time comparable to the age of the Universe a new discrete symmetry is introduced to
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avoid the decay of it. Thus the DM operator contains an even number of DM fields and the simplest

among all of them is:

∆L ∼ 1

Λn
|DM |2 |SM |2 . (3.2)

A nice feature of models of this form is that they result in complimentary probes of the

available parameter space from direct detection and collider experiments because the same operator

is responsible for the signals at these experiments (Goodman et al. 2011; Bai et al. 2010; Goodman

et al. 2010; Birkedal et al. 2004; Feng et al. 2006; Cao et al. 2011; Cheung et al. 2012; Dreiner et al.

2013). However, there is a small problem with this kind of interaction, in that collider searches

impose bounds for higher-dimensional operator probing the Λ scale, i.e., the high energy scale is

important for the lower energy phenomenology. This is what the new approach was trying to avoid.

But if you consider renormalizable interactions only the story is different, e.g., particles with weak-

scale, renormalizable couplings to the SM and weak-scale masses do not present this problem.

If only one new particle is added, the DM particle (a singlet under SM interactions), then

there is only one such renormalizable interaction: a quartic coupling between Higgs and DM scalar

fields (Silveira and Zee 1985; McDonald 1994; Burgess et al. 2001; Patt and Wilczek 2006; Barger

et al. 2008b). On the other hand, the inclusion of more than one particle opens to possibility of

more interactions, the simplest being a cubic interaction:

∆L = gDMSM S̃M DM (3.3)

where the new particle (S̃M) has the same charges under SM interactions as the associated SM

particle to preserve gauge invariance (local charge/current conservation). The DM particle is lighter

than the new particle and again a new discrete symmetry is needed to allow a stable DM particle,

i.e., DM and S̃M are odd under the new symmetry.

Recently, interactions of the form of Equation (3) where the SM field is a quark have been

the focus of several studies (Chang et al. 2014a; Bai and Berger 2013; DiFranzo et al. 2013). The

interest on these models, for the first generation or massless quarks, is due to the possibility of getting

testable signals in current and near future experiments at colliders and direct detection facilities.

The “top portal” model in which DM couples exclusively (or, at least, most strongly) to the

top quark will be studied. The main reason to consider this model is the possibility of a relation

between the dynamics of DM and the ElectroWeak Symmetry Breaking (EWSB) given that all the
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involved masses are clustered around hundreds of GeV. If that is the case it is natural to expect to

have a coupling between them (the most massive states of the SM and the new particles).

3.1 The Model

DM is assumed to be made up entirely of a fermion χ and nothing else. This fermion couples

to the right-handed top quark and is a singlet under SM gauge groups. To preserve gauge invariance

a new particle with the same quantum numbers as the right-handed top quark is introduced φa.

The new particle is a scalar colored state, i.e., it interacts strongly with other SM particles. The full

lagrangian is:

L = LSM + iχ/∂χ−mχχ̄χ+ (Dµφ)
∗

(Dµφ)−m2
φ |φ|2 + (gDMφ

∗χ̄tR + h.c.) 1 (3.4)

where the covariant derivative is:

Dµ = ∂µ − igsGaµT a − iQteAµ + ie
sin θW
cos θW

QtZµ (3.5)

with Qt the electric charge of the top quark in terms of the positron charge e, θW is the weak angle

and T a are the generators of the color group. This SM “partner” can couple to gluons, photons and

Z bosons, but not to W bosons (no weak charge, i.e., weak isospin is zero for this particle as for a

right-handed fermion in the SM). From now on I will call this model the Top Portal Dark Matter

(TPDM).

There are three free parameters in the model (mχ, mφ and gDM ) but some restrictions are

necessary to retain the desirable properties of the model:

• Perturbative regime, i.e., gDM <
√

4π ≈ 3.54, i.e., the interaction can be intrinsically strong

but not super-strong (αDM < 1).

• DM particle is stable, therefore mχ < mφ, i.e., there is no decay mode for the DM particle.

• SM partner is unstable, therefore the length of the chain decay after the first decay φ→ χ+ t̄∗

is not large (otherwise the decay is highly suppressed), i.e., the difference in masses of the two

new particles can be small but not too small (the smaller the difference the less phase space

to decay). The decay chains in increasing order of suppression are (stopping when the final

states can be on-mass shell):

1Remember that tR = PRt = (1+γ5)t/2 is simply the projection of the field into the (chiral) right-handed field.
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– Large mass difference (mφ −mχ > mt), φ→ χ+ t̄.

– Moderately large mass difference (mφ −mχ > mW +mb), φ→ χ+ t̄∗ → χ+W− + b̄.

– Small mass difference (mφ−mχ > mb+mc+ms), φ→ χ+t̄∗ → χ+W ∗−+b̄→ χ+b̄+c̄+s.

– Small and negligible mass difference (mφ −mχ > ml), φ→ χ+W ∗− → χ+ l− + ν̄l.

The decay width of the top partner is:

Γ (φ→ χ+ t̄∗) =
g2
DM

16π

m2
φ −m2

χ −m2
t∗

m3
φ

√
m4
φ − 2m2

φ

(
m2
χ +m2

t∗
)

+
(
m2
χ −m2

t∗
)2

(3.6)

where mt∗ is the mass of the final state(s) accompanying the DM particle (including the

possibility of creating an on-mass shell top quark).

(a) The leading-order diagram would be
highly-suppressed due to the smallness of

the top quark PDF.

(b) The first non-vanishing contribution
would come from loop-level diagrams, also

highly-suppressed.

Figure 3.1: Feynman diagrams which would contribute to direct detection of TPDM.

Note that there are no restrictions coming from direct detection due to the negligible Parton

Distribution Function (PDF) of the top quark in the nucleons (proton and neutron). It is clear that

the only way the DM particle can interact with the nucleon is through the interchange of a top

partner with a top inside the nucleon (Figure 3.1a) or through a loop with a gluon inside the

nucleon (Figure 3.1b). Therefore the absence of signal only indicates that the required interaction

for direct detection is highly suppressed specially for the masses considered in this work.
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3.2 Relic Density

The DM particle is assumed to be in equilibrium with the thermal bath at the early stages

of the Universe, i.e., it is a thermal relic. The Boltzmann “equation” for the DM particle can be

cast in the general form (annihilation process only):

dYχ
dx

= −λ 〈σβ〉
x2

(
Y 2
χ − CYχ − Y eq.χ Y eq.χ̄

)
dYχ̄
dx

= −λ 〈σβ〉
x2

(
Y 2
χ̄ + CYχ̄ − Y eq.χ Y eq.χ̄

) (3.7)

where C = Yχ − Yχ̄ is the constant asymmetry between particles and antiparticles and all other

quantities except λ are functions of x = mχ/T (Iminniyaz et al. 2011). Only the symmetric case

is considered here (C = 0), therefore the two equations coalesce to only one differential equation

(Yχ = Yχ̄). Note that time and temperature are related and the evolution from small to large values

of t are mapped to the evolution from large to small values of T .

The traditional approach to solve the Boltzmann equation is called the freeze-out approxi-

mation in which the relic density follows the equilibrium value closely up to the freeze-out point in

which the density “freezes-out” (hence the name) and departs from its equilibrium value and starts

approaching its limiting value (Iminniyaz et al. 2011; Gondolo and Gelmini 1991; Profumo 2013).

A second approximation is made when the DM is not relativistic (β . 0.3) which simplifies the flux

cross section (up to second order in β):

σβ ≈ 1

2

3g4
DM

√
1− r

32πm2
χ (1− r +R)

2

[
1 +

(
2r2 − 10r + 11

)
R2

24 (1− r) (1− r +R)
2 β

2

+
2
(
2r2 − 2r − 9

)
(1− r)R+

(
2r2 + 6r − 5

)
(1− r)2

24 (1− r) (1− r +R)
2 β2

] (3.8)

where r = (mt/mχ)
2
< 1 and R = (mφ/mχ)

2
> 1. Note the additional factor of one half, shown

explicitly, for non-identical particles (Gondolo and Gelmini 1991). This result is typically expressed

in terms of the “wave” coefficients σβ ≈ a+ bβ2 with a the “s-wave” coefficient and b the “p-wave”

coefficient. In our model, for most of the parameter space, the coefficient of the s-wave is dominant

(see Figure 3.2a on page 45) and can be ignored in most cases.
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(a) Ratio of the p-wave coefficient to the s-wave
coefficient as function of mφ and mχ for mt ≈
175 GeV. Only when the mass of the DM particle
is almost degenerate with mass of the top quark

the p-wave coefficient starts to be relevant.

(b) Freeze-out temperatures as function of R =
(mφ/mχ)2 for several values of the coupling con-
stant and mt ≈ 175 GeV. Note that the values
are greater than the minimum safe value for the

approximation to be valid.

Taking the thermal average is trivial now and the result is well known 〈σβ〉 ≈ a + 6b/x.

The next step is to find the temperature of freeze-out xF , for this the non-linear equation has to be

solved:

δ (δ + 2)
sm
Hm

Y eq.χ (x)
〈σβ〉
x

= x− 3

2
with

Y eq.χ (x) =
45g

25/2π7/2g∗
x

3/2e−x and

sm
Hm

=
2π2g∗

45 m3
χ

π
Mred.
Pl

√
g∗
90m

2
χ

=
23/2π

√
g∗M

red.
P l mχ√

45

(3.9)

where g∗ is the number of degrees of freedom for that temperature, g is the number of degrees of

freedom associated with the field (4 for a Dirac’s fermion), Mred.
P l = MPl/

√
8π is the reduced Planck

mass and δ is a constant choose to obtain a closer solution to the full solution, usually in the range

1 − 2 (Gondolo and Gelmini 1991) the results should be close to xF ≈ 25 (see 3.2b on page 45).

Finally, the relic density can be approximated by:

ΩDMh
2 ≈ 1.07× 109/GeV

MPl
√
g∗

xF
a+ 3b/xF

(3.10)

where ΩDM is the normalized DM density and h is the Hubble parameter. In principle this is a

prediction of the model but it is possible to invert the roles and try to deduce the value of the

parameters given that Equation (3.10) is correct and the value on the left hand-side is the observed

one, i.e., fixing the value of the coupling constant finding the values of the masses such as the

calculated relic density is equal to the observed relic density.
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Although very popular, this approach has some known problems. First the non-relativistic

approximation induces an error of a few percent (∼ 5%) for the slightly relativistic DM particles and

the actual measurement is more precise than that. The effect of coannihilations has been completely

neglect which usually is not that bad but it is known that as soon as new channel come into effect in

the cross section the approximation in a series power becomes useless due to the divergence of the

derivative at that point. This second point is particularly problematic when the masses are almost

degenerate and other processes can affect the calculation more. Some examples of coannihilation

processes include φ+φ† → g+ g, χ+φ† → t+ g, φ+φ† → γg and χ+φ† → b+W+ (see the second

and third Feynman diagrams of Figure 3.2).

(c) DM annihilation χ+ χ̄→ t+
t̄.

(d) Coannihilation channel with
DM χ+ φ→ t+ g.

(e) Coannihilation channel with-
out DM φ+ φ→ g + g.

Figure 3.2: Feynman diagrams which contribute to dark matter freeze-out.

To avoid the complications mentioned in the last paragraph some solutions have been created

by the community and we choose to work with micrOMEGAs (Belanger et al. 2014b) which includes

all these effects. As noted before, the results do not differ significantly below the threshold for the

coannihilation processes but once they enter the picture the result varies considerably. The results

for the fit to the measured value of the relic density from WMAP (Bennett et al. 2013) and Planck

(Ade et al. 2013) are shown in Figure 3.3 on the following page. In the plot, we show contours in the

mφ−mχ plane for various couplings gDM which satisfy the relic density constraint. The importance

of co-annihilation effects is evident in the long tails of the contours as the masses approach the

degenerate limit.

This concludes our “cosmological” tour with TPDM. In the following sections the analysis

for collider searches (LHC) and indirect detection will be covered but including only values of the

parameters (gDM , mχ and mφ) that give the correct relic density.
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Figure 3.3: The WIMP and scalar partner masses (for various couplings) which result in the correct
relic density of DM as measured by WMAP (Bennett et al. 2013) and Planck (Ade et al. 2013).

3.3 Collider Searches: LHC Prospects

The production of TPDM at LHC occurs through the production of the colored scalar

mediators (φ) as shown in Figure 3.4. The behavior of these particles is completely analogous

to scalar quarks in SUSY models. Note that our simplified model does not include a chargino

component and that makes a difference compared to SUSY analysis and no mapping is possible.

Model independent analysis are available, but with restricted mχ and limited luminosity (Aad et al.

2012a).

Figure 3.4: Feynman diagrams that contribute to the production of TPDM at the LHC.

The analysis for signals at LHC is based on the simulation of the process:

p+ p→ φ+ φ† → (t+ χ̄) + (t̄+ χ)→ b+ b̄+ `± + j + j + /ET (3.11)
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using Madgraph52 (Alwall et al. 2011). The only tree-level decay is to a DM particle and a top

quark3 (φ → χ̄ + t), using the narrow width approximation the cross section for the final state

t+ χ̄+ t̄+ χ depends on the production of the colored scalar particle. Therefore, the cross section

is determined by mφ and gDM and corresponds to the first case on the list on page 42.

While the background processes that affect the signal are:

p+ p→ t̄+ t,

p+ p→W± + j

(3.12)

where the first process is the dominant one.

We assume efficiencies of b jet tagging of 70% for pT > 30 GeV and ηb < 2.4 consistent

with the multivariate tagging suggested for the LHC luminosity upgrade (Collaboration 2014). The

mistagging rate for the charm quarks is given by:

εc→b = 10% for pT (c) > 50GeV (3.13)

while the mistagging rate for a light quark is:

εu,d,s,g→b = 2% for pT (j) > 250GeV (3.14)

εu,d,s,g→b = 0.67% for pT (j) < 100GeV. (3.15)

Over the missing range a linear interpolation of fake rates is done (Baer et al. 2007). Includ-

ing pileup can worsen the result up to 20% (Collaboration 2014). Finally the detector resolution

smearing is modeled by:

δE

E
=

a√
E
⊕ b (3.16)

with a = 50% and b = 3% for jets and a = 10% and b = 0.7% for photons.

A cut-based analysis and a multi-variate analysis (MVA) which relies on relevant kinematic

variables are studied. For either case, we require the following tags:

ntag
b = 2, ntag

j = 2, ntag
` = 1. (3.17)

2The missing energy is due to two DM particles and one neutrino.
3Only three vertices are possible for the colored scalar particle: a decay, an annihilation and scattering by a gluon.
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For the cut-based analysis, we apply cuts on ∆Rab =
√

(ϕa − ϕb)2 + (ηa − ηb)2, the sepa-

ration of two objects in the η − ϕ plane. The cuts we apply are:

∆Rjj,bb̄,bj > 0.4, ∆Rj`,b` > 0.2,

pT (j) > 25 GeV, |ηj | < 2.4,

pT (e, µ) > 25, 20 GeV, |ηe,µ| < 2.5.

As pointed out in Footnote 2 on page 48 the missing energy should be considerable and

a cut of /ET > 100 GeV removes most of the background altering the signal very little. We then

require that one tagged b-jet and two additional jets reconstruct the hadronically decaying top:

|Mbjj −mt| < 20 GeV (3.18)

and note the other b-tag and charged lepton originate from the other, leptonically decaying top quark.

The transverse cluster mass MT

(
b`, /ET

)
is a suitable variable for this side of the decay (Barger et al.

1988):

MT (a, b) = (|pT (a)|+ |pT (b)|)2 − (pT (a) + pT (b))2 (3.19)

where the observable cluster is a = b`. This variable generically has an upper bound which is related

to the mass of the parent particle, MT (a, b) ≤ Mab. Since the typical /ET distribution from a SM

t-quark decay is bounded by mt, we find the signal can be isolated if it has an appreciable cross

section above MT (b`, /ET ) > 200 GeV.

Another strong discriminator is the azimuthal angle between ` and /ET . In the tt̄ SM

background, the leptonically decaying W -boson does not often decay near rest as it is boosted from

the top quark decay. Therefore, the ` and ν` directions are correlated and close together. This is

contrasted with the signal topology in which the ` is paired with the ν` from the W -decay as in the

tt̄ background, but the additional χχ̄ system disrupts this correlation. Therefore, we expect to see

a separation among the signal and background in this ∆ϕ`, /ET observable.
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Figure 3.5: Signal and background for typical values of the variables after cuts were applied.

Furthermore, in addition to the /ET , MT and ∆ϕ`, /ET cuts, we observe that each φ is

produced back-to-back. Therefore, the total transverse momentum carried off in either side of

the φ decay should be balanced4

pT (φh) = −pT (φ`), (3.20)

where we denote φh and φ` as the φ which decays through a hadronically and leptonically decaying

top quark, respectively. Therefore, one can relate the /ET from both sides of the decay

/E
`
T =

1

2
(/E

obs
T + pT (th)− pT (b`)),

/E
h
T =

1

2
(/E

obs
T − pT (th) + pT (b`)),

where /E
`
T and /E

h
T denote the missing energy from the leptonic and hadronic sides of the φ decays,

and /E
obs
T is the observed missing energy. The MT variable applied to both sides of the event offers

additional discrimination power. Specifically, the difference between the leptonic and hadronically

decaying side, MT (φh)−MT (φ`), shows a modest separation in the signal and background, enough

to provide an additional check of the signal.

4Assuming the transverse CM frame is in the lab frame. A boost to the CM frame can be made if ISR kicks the
CM frame in the transverse direction.

50



In practice, for the cut-based analysis, an optimization of the statistical significance over the

observables MT (b`, /ET ) and ∆ϕ`, /ET , is done. Define the level of statistical significance, S, according

to (Bartsch and Quast 2005):

S = 2
(√

S +B −
√
B
)
, (3.21)

where S and B are the number of signal in background events surviving cuts.

An extension the analysis to include multiple variables simultaneously is possible.This allows

blend cuts together rather than perform a hard cut on a kinematic distribution sequentially. A dis-

criminant based on a set of observables, which include: O =
{
/ET ,MT (b`, /ET ),∆ϕ`/ET ,MT (φh),MT (φ`)

}
,

is done.

D =
S(O)

S(O) +A B(O)
(3.22)

with S(O) and B(O) are the normalized differential cross sections in the observable space O. These

differential cross sections are estimated via event generation. The discriminator is evaluated for an

event sample, yielding a value close to 1 for signal-like events and close to 0 for background-like

events. For the particular choice of A = NB/NS , the discriminant gives the probability of an event

being signal (Barlow 1987). A cut may be placed on the value of D, thereby selecting a relatively

high signal event sample. Such a multivariate discriminator can offer similar sensitivity that the

matrix-element, or neural network methods allow (Abazov et al. 2008).

In practice, a simplified version of the discriminant, in which correlations are ignored, is

easier to conduct. This allows a more efficient estimation of the discriminator, defined as

D =
S {Oi}

S {Oi}+B {Oi}
(3.23)

where {Oi} is the combinatorial subset of observables, O that go into the multivariate discriminant.

In the MVA results that follow, further optimization may be done by including the correlations

between observables, but we adopt this uncorrelated approach for simplicity. To maximize the

significance, S, the cut on the discriminator is varied, Dcut, and this minimizes the choice of A in

Equation (3.22).
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3.4 Indirect Detection from Annihilation into Gamma Rays

The last possibility is to detect TPDM indirectly through the detection of high-energy

radiation from outer space. In this case there are several annihilation processes that have photons in

the final state, any electrically charged particle can radiate photons and rapidly moving particles tend

to radiate some of their energy away (when the radiating particles are in the final state the process

is call f inal state radiation - FSR for short). Additionally sometimes the intermediate products will

hadronize into neutral pions that will decay later (mostly) into two photons. These two processes

produce a “boring”, featureless continuum. But there are other possibilities in which the annihilation

produces a photon and an additional particle (χ + χ̄ → γ + X) through a loop (the possibilities

being another photon, a neutral vector boson or a Higgs boson). The non-relativist nature of the DM

particles allows to have a very narrow peak, a line on top of the continuum spectrum. At first sight

it seems that these processes should be highly suppressed but if the coupling is relatively large and

the masses of the particles in the loop are almost degenerate with the DM mass some enhancements

happen and the line can be dominant. As usual this kind of signal is assumed to be unlikely from

known astrophysical processes, i.e., it is a “smoking gun” for DM.

3.4.1 Gamma-ray Continuum from DM Annihilation

We use micrOMEGAs (Belanger et al. 2014b) to compute the continuum for DM pair

annihilation. When the two new particles’ masses are non-degenerate the only possibility is to

create a pair of top quarks (most likely off-mass shell). It turns out that the spectrum can be

split according to the source of the photons. For small energy of the photon (Eγ/mχ � 1) the main

contribution comes from the decay of a neutral pion, for larger values of the energy then main source

is FSR and it can be approximated by (Bringmann et al. 2008):

dN

dx
≈ αEMQ

2
t

π

[
1 + (1− x)

2

x

]
log

(
s (1− x)

m2
t

)
(3.24)

where x = Eγ/mχ and s ≈ 4m2
χ. The results are shown in Figure 3.6 on the next page for almost

degenerate masses between the top and DM particle (∆m = Eγmax ≈ 17 GeV). The two regimes

are clearly distinguishable and the transition occurs around xtrans. = 0.4. The contribution from π0

decay gives a “soft” spectrum due to the small phase space available (small mass difference). The

second contribution coming from FSR is in general highly suppressed due to the small ratio of the

masses and it has a sharp cutoff at the mass of the DM particle.
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Figure 3.6: Continuum photon spectrum for a particular point in the allowed parameter space.

3.4.2 Gamma-ray Lines from DM annihilation

Each diagram in Figure 3.7 has its own peculiarities but a general form for the thermally

averaged cross section flux is given by:

〈σXγβ〉therm. =
1

a

1

32πm2
χ

[
1−

(
mX

2mχ

)2
]〈∑

spin

∣∣MXγ
∣∣2〉 (3.25)

where X ∈ {γ, Z, h}, mX is the rest mass of the associated particle and a is the statistical factor

due to final state degeneracy (a = 1 different final states and a = 2 for same final sates).

(a) Pair annihilation into two
photons through a loop.

(b) A photon and a neutral vec-
tor boson in final state.

(c) A photon and a Higgs boson
in final state.

Figure 3.7: Representative Feynman diagrams which contribute to the processes χ + χ̄ → γ + γ,
χ+ χ̄→ γ + Z and χ+ χ̄→ γ + h respectively.

In what follows a procedure to find the matrix element is explained for each diagram (as

matter of fact it is the same procedure in all cases but the factorization and kinematical constraints

vary from one to another).
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3.4.2.1 Annihilation into Di-photon Final State

The annihilation of TPDM into a pair of gamma rays proceeds through loops of top quarks

and φ particles as depicted in Figure 3.7a on the previous page. The amplitude for the process

χ(p1) + χ̄(p2) → γ(pA) + γ(pB) with A attached to vertex µ and B attached to vertex ν can be

written as:

Mγγ = εµ∗(pA)εν∗(pB)Mγγ
µν (3.26)

where the epsilons are the polarization four-vectors for the two final-state photons. The sub-

amplitude Mµν can be expanded as a linear combination of tensor structures made up of the

metric tensor as well as the external momenta. In the center of momentum (CoM) the linear mo-

mentum vectors add up to zero and since the DM particles are assumed to be non-relativistic, it is

possible to assign the null vector to the spatial part of the four-momenta (p1 ' p2 ≡ p = (mχ,~0)T )

which reduces the number of possible tensor structures to take into account. Additionally, the four-

momentum and polarization four-vector are orthogonal for photons (i.e., ε(q) · q = 0) reducing more

the number of terms to include in the amplitude:

Mγγ
µν = αDMαEMQ

2
tNc v̄(p)Aγγµν u(p) with

Aγγµν =
(
C1 + C2γ5 + C3/pA + C4/pAγ5

)
gµν + γµγν

(
C5 + C6γ5 + C7/pA + C8/pAγ5

)
.

(3.27)

Using the Passarino-Veltman algorithm the coefficients are functions of scalar integrals

only (Passarino and Veltman 1979). However, for the case of equal momentum the approach breaks

down and a tweak is in order. There are some alternatives available but, for familiarity and practi-

cality, the algebraic reduction scheme used in (Bertone et al. 2009) was chosen as working approach.

3.4.2.2 Annihilation into a Photon and Z Final State

In the case of χ(p1) + χ̄(p2) → γ(pA) + Z(pZ) which is depicted in Figure 3.7b on the

preceding page, again the amplitude can be written as:

MγZ = εµ∗(pA)εν∗(pZ)MγZ
µν (3.28)
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where

MγZ
µν =

αDMαEMQt
4swcw

Nc v̄(p)AγZµν u(p) (3.29)

with the usual assignments for the trigonometric functions of the weak angle (sW = sin θW , etc). In

this case the tensorial sub-amplitude is more complex due to the longitudinal degrees of freedom for

the neutral vector boson. The full expression is:

AγZµν = CγZ1 gµν + CγZ2 γ5gµν + CγZ3 6 pAgµν + CγZ4 6 pAγ5gµν + CγZ5 γµγν + CγZ6 γµγνγ5

+CγZ7 γµγν 6 pA + CγZ8 γµγν 6 pAγ5 + CγZ9 γµpν + CγZ10 γµγ5pν + CγZ11 γµpA,ν + CγZ12 γµγ5pA,ν

+CγZ13 γµ 6 pApν + CγZ14 γµ 6 pAγ5pν + CγZ15 γµ 6 pApA,ν + CγZ16 γµ 6 pAγ5pA,ν .

(3.30)

3.4.2.3 Annihilation into a Photon and h Final State

The last possibility is a photon with a SM Higgs in the final state. As was explored before

in Higgs in space there is a chance of enhancement, thus excluding the featureless continuum, due

to the Higgs being radiated from a top quark line.

The amplitude for the process in Figure 3.7c on page 53 is given by:

Mhγ = εµ∗ (pA)Mhγ
µ (3.31)

with the sub-amplitude Mhγ
µ give by:

Mhγ
µ = αDM

√
4παEMQt

( mt

v.e.v.

)
Ncv̄ (p) γµA

hγu (p) . (3.32)

The quantity Ahγ can be expanded in terms of external momenta. Making the same assump-

tions as before (non-relativistic WIMPs, orthogonality between four-momentum and polarization

four-vector for a photon) this quantity simplifies to:

Ahγ = Chγ1 + Chγ2 γ5 + Chγ3 /pA + Chγ4 /pAγ5. (3.33)
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3.4.3 The Gamma-ray Spectrum from WIMP Annihilation

Finally, putting all together and computing the total gamma-ray flux originating from the

center of the Milky Way; the differential flux of gamma rays arising from DM annihilation observed

in a direction making an angle ψ with the direction of the GC is given by:

d2Φγ
dΩdEγ

(ψ,Eγ) =
r�ρ

2
�

4πm2
χ

dNγ
dEγ

∫
l.o.s.

(
ρ (r (s, ψ))

ρ�

)2
ds

r�
(3.34)

with the same definitions in Equation (2.19) on page 31 for the photon flux. Note that, in the case

of γ + Z and γ + h, the photon spectrum will deviate from a monochromatic emission due to the

decay widths ΓX from Equation (2.22) on page 35. To model the finite resolution of the detector a

gaussian kernel is used as in Equation (2.23) on page 35:

G (E,E0) =
1√

2π σexp
e−

(E−E0)2/2σ2exp (3.35)

with the experimental uncertainty defined by σexp = E0ξ/2.3 where ξ is the relative energy resolution

of the detector.

In Figure 3.8a on the next page, a typical gamma-ray spectra for the TPDM model assuming

an energy resolution of 10% and using several different DM density profiles (Navarro et al. 1996;

Graham et al. 2006; Edsjo et al. 2004; Prada et al. 2004; Gnedin et al. 2004; Bertone and Merritt

2005) is shown. Note that due to detector’s resolution effects, the three lines get smeared into

one large bump. However, the prominence of the bump over the background is quite impressive

and not typical of any other model. The main effect responsible for this is the suppression of the

continuum as discussed before. A better resolution is required to be able to see two different lines

(see Figure 3.8b on the following page).

Finally, a comparison between the predictions from the TPDM and the limits on the DM γγ

annihilation cross section extracted from the Fermi LAT data (Ackermann et al. 2013) was made.

First, sum the cross sections for γγ, γZ and γh, for several different couplings, and then use the

results from the relic abundance fit to determine the χ and φ masses (see Figure 3.9 on the next

page). Since the gamma rays are assumed to be originating from a χ+ χ annihilation, the photon’s

energy is approximately equal to the DM particle mass. It is clear that the Fermi LAT is beginning

to probe the large coupling, small mass region of the TPDM model. Over the next several years,
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Figure 3.8: Gamma-ray line flux from GC for typical and improved resolution.
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points (Ackermann et al. 2013).

the limits should increase by an order of magnitude or so and allow for further examination of the

TPDM model parameter space.
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Chapter 4

Concluding Remarks

It has been known for a long time that some kind of matter that does not interact electro-

magnetically exists and it is very abundant in the Universe. This new kind of matter was dubbed

“dark matter” (DM) for obvious reasons but initially not many people followed this direction and de-

cided to ignore it. However, after some other experimentalists with better instruments and methods,

and almost forty years of difference, showed that the initial lead was correct, other people started

to pay attention to it.

At first the explanations were given in terms of known particles (some of them undetected at

the time). In the standard model there was a particularly attractive particle to associate with DM,

the neutrino. It was known the neutrino was neutral, that it interacted weakly and gravitationally

only and it was thought to be massless. For some time it was the leading candidate but after some

advancements in the theoretical calculations (convenience model or ΛCDM) and the cosmological

observational methods (standard Hot Big-Bang and structure formation) it started to look less

promising. The main problem is that a particle that is massless or that carries little mass has to be

a “hot” particle (moves fast), and the formation of the structures, according to simulations, required

the new particle to be “cold” (that moves very slowly or its kinetic energy is small compared to its

mass).

After the disenchantment with the neutrino other options started to look promising, in

particular two related with more general theories developed to cure some of the “shortcomings” of

the Standard Model (SM). The first option was associated to the solution of the CP-problem in the

strong interaction sector. The new field was thought to be some sort of scalar that was not a thermal

relic and therefore could be very light or very heavy, i.e., there were no real restrictions on the mass

coming from thermodynamics at the early stages of the Universe. The second alternative to extend

the SM is called supersymmetry (SUSY) and associates to each SM particle a superpartner with

spinSUSY = spinSM − 1/2. The new particles have the same set of interactions as the SM particles,

therefore there are plenty of options to choose a particle that is neutral and it interacts weakly (note

that due to SUSY not being an exact symmetry all the particles are assumed to be massive).
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The SUSY approach is a specific case where a model of new physics predicts a WIMP

(weakly-interacting massive particle). WIMPs are new particles that are very massive. In this

case the idea is that the new particle is very massive (more massive than anything in the second

generation of the SM) and interacts weakly (SM weak interaction) or through a weak-like interaction

but without the restrictions imposed by the SM and SUSY.

After decades of effort none of these alternatives have been confirmed experimentally. Re-

member that there are three ways to detect DM: directly, DM material scatters off SM particles in

a detector (usually some inert element in liquid form at low temperatures and then detecting the

radiation produced by the SM particle recoiling); indirectly, looking at the sky for signals (mainly

from annihilation of DM particles) that are not easily attributable to known processes in astrophysics

(larger than expected flux of anti-particles, very high-energy photons with sharp drops and/or spec-

tral lines at values that point to interactions with new particles, neutrinos scattered off or produced

by DM with very high-energy - excess over the expected value from astrophysics calculations); and

finally there are collider searches in which DM is created when SM particles collide and annihilate

producing detectable signals but with large missing energy/transverse momentum (one problem here

is that without knowing the mass of the new particle and the strength of the interaction it is difficult

to decide in which particular region should the research be centered and full scans of the parameter

space are required).

Although some experimental collaborations have claimed a new signal and provided the

explanation in terms of DM (e.g., direct detection: DAMA, COGENT; indirect detection: AMS-2,

Fermi Telescope), the most recent and accurate experiments show no evidence of these signals or

signals consistent with the properties of DM derived from those other experiments (XENON, LUX).

On the collider front, the most celebrated observation has been the detection of a Higgs boson at

the LHC but the searches had been going on for very wide range of models and the parameter space

reduction for SUSY and extra-dimensions is starting to make people to move to more exotic models

(due to the lack of a DM signal)).

In this work some alternatives were studied, following the trend to look for the location of

new astronomical sources of signals from DM or to move to more exotic models. In this approach,

once the model has been chosen and an interaction was determined to be a good candidate for

generating a promising signal, the initial state particles are determined. Afterwards the possible

places where these particles co-exist are determined from theoretical/observational studies. But one
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way to improve the chances of detection is to augment the number of particles available, i.e., looking

for places where the density of DM and SM particles is higher than average. Additionally if the

particles involved in the interaction are very energetic the probability of confusing this signal with

regular signals diminishes. One such place in the Universe is the core (nucleus) of a galaxy (AGN)

in which the activity is larger than expected. In this work, the signal from this type of interaction

was computed and compared to experimental data. The predictions exhibit a sharp cutoff in the

flux of gamma-rays, the position of which depends on the difference in mass between the two new

particles. While comparing with the data a reasonable fit was obtained.

Additionally this model has a DM candidate that is a thermal relic therefore the calculation

of the density as of today for the given model is required. This imposes a restriction to the model

and there are some tensions between the best fit variables and the “preferred” value of the variables.

In particular the difference in masses points to a case in which DM has more than one component

and the candidate from the model is not the main component (more than 70%) but close to slightly

less than half of the total DM. Finally, in the near future some of the direct detection experiments

can constrain or discard the model given that the cross-section is about one order of magnitude

smaller than the last published limit for the cross section by an experimental collaboration.

The second model studied was more exotic and included two new particles. A fermionic

DM candidate and a new heavier scalar colored (but weak singlet)“mediator” both couple to the

right-handed top quark (the singlet part of the top quark) in a (postulated) new interaction ( If this

sound familiar is because it is very similar to SUSY searches but unlike SUSY there are no more

particles in the model and there is a new coupling constant). This choice is not capricious but based

on the possibility of an enhancement of the signal due to near degeneracy between DM candidate

and the top quark additionally the small difference among the masses points to some relation to

the EW symmetry breaking. But a price has to be paid, in this case the direct detection signal is

suppressed due to the null top parton distribution function inside a nucleon, i.e., if an interaction

occurs it must be higher order (suppressed) interaction.

This leaves two alternatives: indirect detection and collider searches, both of them were

studied in this work. The first step was to apply the relic density restriction, this reduces the number

of degrees of freedom from three to two. Then for reasonable choices of the parameters a simulation

of the production process in a proton collider was ran and some cuts were found for optimizing the

signal above the background (unfortunately there are no general formulas for all possible values of
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the parameters). Clearly the most important characteristic is the missing energy/momentum and

the first cut /ET > 100 GeV eliminates a good portion of the background signal. Because it is possible

to b-tag the events, variables related to the hadronic and leptonic decay are useful to improve the

signal. For the hadronic side |Mbjj −mt| < 20 GeV a b-tag part and two additional jets are required

while for the leptonic side MT

(
b`, /ET

)
> 200 GeV. Finally the azimuthal separation (∆ϕ) can be

useful if the right conditions hold, i.e., if the width decay is small enough Γφ ∼ 3 GeV.

Another alternative was implemented too, a multi-variate analysis based on the kinemat-

ical variables for the process. A discriminant D, which is function of the set of observables O ={
/ET ,MT (b`, /ET ),

∆ϕ/ET ,MT (φh),MT (φ`)
}

is optimized and there is no need to impose hard cuts in the variables

sequentially. However, for simplicity the analysis was done based on subsets of O and ignoring the

correlation among the variables. The final contour plot in the plane mφ −mχ was constructed (the

contour are not smooth due to the vast amount of points needed).

For the indirect detection part the flux of high-energy gamma-rays and lines from DM

annihilation was computed. It was shown that the signal could be detected with current equipment

but that if an increase of about one of order of magnitude is achieved the signal becomes clearer

and two out of three lines can be resolved. This kind of signal is very difficult to explain with

astrophysical processes only giving a good signal of the nature of DM.

A final comment about the “new searches” is in order. Although it is possible to choose

any model in this work the decision was made based in the likelihood of the model being correct

and the possibility to detect a signal over a relatively short period of time in the future (∼ 5 years).

This two points are of incredible relevance to phenomenological studies due to the fact that they go

hand-in-hand with experiments. If both conditions are violated, the studies may be interesting but

not too relevant for the detection of DM.
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Appendix A

Quantum Field Theory
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In this appendix, an outline of quantum field theory or QFT is given. QFTs are the basic

framework with which high-energy theorists construct their theories. Usually two principles are

introduced as the basis of QFT but in general additional ideas are required to constrain the theory

to an acceptable level of applicability. Following Duncan (Duncan 2012) three principles are sufficient

for the purpose:

• Quantum Mechanics (QM): of special importance is the superposition principle (linearity of

amplitudes) and unitarity.

• Special Relativity: invariance under homogeneous Lorentz transformations.

• Clustering: the results of local events are independent of events far away.

Note that the last requirement is related to causality and unitarity but is not the same.

A.1 Quantum Mechanics

The distinctive characteristic of QM is its randomness contained in the uncertainty principle.

Any theory that does not contain the uncertainty principle is considered a classical theory. There

are two main approaches to QM: one based on operators and the Heisenberg’s equation (canonical

formalism) and another one based on a variational principle (path integral formalism). The former

is the oldest and most studied out of the two (initially it was thought that all physical systems might

be solved perturbatively) and the later one is more “modern” and allows to study non-perturbative

situations (Zee 2010).

A.1.1 Canonical Formalism

Depending how the time evolution is assigned to the states, the operators or both, there

are different ways to express quantities in QM (called pictures). The approach used in advanced

QM is called interaction picture in which the dynamics (as given by the hamiltonian) is split in a

analytically solvable part and a “small” perturbation. The time dependence due to the solvable part

is assigned to the operators and the time evolution of the states is contained in the perturbation.

Define HS = H0,S + H1,S
1 where the S means Schoedinger’s picture, the relationship between

Schroedinger’s picture and the interaction picture is given by (Duncan 2012):

|ψI (t)〉 = eiH0,St|ψS (t)〉

AI (t) = eiH0,StAS (t) e−iH0,St.

(A.1)

1Note that this splitting is not unique but can be done in a way that facilitates the calculations.
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Applying the operator equation to the hamiltonian gives:

H0,I (t) = eiH0,StH0,Se
−iH0,St = H0,S

H1,I (t) = eiH0,StH1,S (t) e−iH0,St

(A.2)

where it was assumed that the solvable part of the hamiltonian is time independent and the per-

turbation has become time dependent in the interaction picture. The solution of the Heisenberg’s

equation for the time evolution operator is

U (t, t0) = eiH0te−iH(t−t0)e−iH0t0 (A.3)

and the evolution of the state is given by:

|α; t〉I = U (t, t0) |α; t0〉I . (A.4)

Evidently the operator U depends on both parts of the hamiltonian, but remember that

only the solution to H0 is known therefore to find the full operator an implicit solution or iterative

approximation is required:

U (t, t0) =

∞∑
n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 · · ·
∫ tn−1

t0

dtn

n∏
j=1

HI (tj)

U (t, t0) =

∞∑
n=0

(−i)n
n!

∫ t

t0

· · ·
∫ t

t0

dt1 · · · dtnT

 n∏
j=1

HI (tj)

 (A.5)

where T is the time ordering operator which arranges the operators in order of occurrence. Finally

a symmetry would preserve the inner product of two states (in any picture):

|〈Ψ|Φ〉|2 = |〈Ψ|U†U |Φ〉|2 = |〈Ψ′|Φ′〉|2. (A.6)

Inner products lead to probabilities and expectation values to observables.
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A.1.2 Path Integral Formalism

In the second approach a “sum over all possibilities” is used to make the calculations2.

Defining the kernel for a single particle:

KE (qf , tf ; qi, ti) = 〈qf |e−H(tf−ti)|qi〉 (A.7)

subdividing the interval T = tf − ti into N subintervals tn = ti + nτ with τ = T/N the kernel

becomes:

KE (qf , tf ; qi, ti) =

∫ N−1∏
n=1

dqn〈qf |e−Hτ |qN−1〉〈qN−1|e−Hτ |qN−2〉 · · · 〈q2|e−Hτ |q1〉〈q1|e−Hτ |qi〉.

(A.8)

The calculation for the free particle or the simple harmonic oscillator SHO points to the

functional integral of the exponential of the action (in euclidean space) exp (SE) which generalizes

to:

K (qf , tf ; qi, ti) =

∫
DpDqei

∫ tf
ti

Ldt =

∫
DpDqei

∫ tf
ti

(p(t)q̇(t)−H(p(t),q(t)))dt (A.9)

which is the amplitude for a transition from state qi at time ti to state qf at time tf (Zee 2010).

Note that in general it is not possible to find a closed form for the integral.

A.1.3 Special Relativity

The equivalence principle (the laws of physics are invariant -same form- for all inertial

observers) and the constancy of the speed of light are enough to find the transformation between

reference frames moving at constant speed with respect to each other. These transformations are

called Lorentz transformations and are linear homogeneous change of coordinates that preserve the

interval (∆s)
2

= (∆s′)
2
:

xµ′ = Λµνx
ν ⇐⇒ xµ = (Λµν )

−1
xν′ (A.10)

2The path integral formal is was developed by Richard Feynman and initially was received with suspicion by other
physicists and made mathematicians to grind their teeth.
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where the elements of the matrix Λ and its inverse are related by reversing the sign of the speed

(Srednicki 2007). For instance assuming that the motion is in the z−axis:

Λ =



γ 0 0 −γβ

0 1 0 0

0 0 1 0

−γβ 0 0 γ


→ Λ−1 =



γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ


. (A.11)

Equation A.10 defines a contravariant vector in spacetime and similar, but not exactly the

same, transformations for other objects (covariant vectors, second rank tensors...). This transfor-

mation rule applies to four-momentum (momentum for short from now on) too with the temporal

component being the energy (Thompson 2013):

pµ =

E
~p

 (A.12)

‘ and satisfies the on-mass shell relation:

E2 = |~p|2 +m2 (A.13)

that finally gives the invariant interval for momentum pµpµ = m2.

Note that the results of the previous subsection are not Lorentz invariant and therefore

different observers will postulate different laws of nature, the next subsection will address this

problem.

A.2 Relativistic Quantum Mechanics

Going back to wave functions the first try to generalize Schroedinger’s equation is the Klein-

Gordon equation: (
∂2 +m2

)
ϕ = 0 (A.14)

which looks very promising until the energy is calculated and two options appear, one positive and

one negative (first problem); the second problem is that the possibility of negative probabilities. For

this two reasons and the fact that it does not include spin effects it was discarded (Srednicki 2007;

Griffiths 1987; Thompson 2013).
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The next attempt was a fully relativistic electron equation the Dirac equation:

(iγµ∂µ −m)ψ =
(
i/∂ −m

)
ψ = 0 (A.15)

where ψ is a four dimensional object called spinor that allows for spin-1/2 particles, but the negative

energy appears again. After a while Dirac interpreted the unwanted solutions as an antiparticle (a

new particle with the same mass but opposite additive quantum number, e.g., electric charge) and

almost everything fitted again, the number of components was exactly as needed, the probability

interpretation was more or less restore. However some problems remained, the number of particles

was not conserved and the zero point energy kept diverging. The no conservation of number of

particles points clearly to a field interpretation of the theory and not longer for a single particle

one (Duncan 2012; Zee 2010).

A.2.1 QFT (finally)

Putting all together and starting with, in analogy with classical field theory, the lagrangian

for a free spin-0 field is:

L0 =
1

2

(
∂µϕ∂

µϕ−m2ϕ2
)

(A.16)

which gives the path integral with a source J :

Z0 [J ] = 〈0|0〉J =

∫
Dϕei

∫
d4x[ 1

2 (∂µϕ∂µϕ−m2ϕ2)+Jϕ] =

∫
Dϕei

∫
d4xe[−

1
2ϕ(∂2+m2)ϕ+Jϕ]. (A.17)

The inverse of a differential operator and its Green’s function are related by
(
∂2 +m2

)
∆ (x− y) =

−δ4 (x− y) which allows to evaluate the gaussian integral:

Z0 [J ] = Z [0] e−(i/2)
∫
d4x d4 y J(x)∆(x−y)J(y) = Z [0] eiW [J]. (A.18)

The Green’s function for the Klein-Gordon equation is (including the iε prescription to avoid

the pole) is:

∆ (x− y) =

∫
d4k

(2π)
4

eik(x−y)

k2 −m2 + iε
(A.19)

and is going to be of great importance afterwards because it represents the propagation of a particle

from x to y (or vice-versa depending on the sign of the time component of the four-vectors). Including
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an interaction term in the lagrangian L = L0 +L1 +Jϕ the path integral is (and working in analogy

with basic gaussian integrals):

Z1 [J ] =

∫
Dϕei

∫
d4x(L0+L1+Jϕ) = ei

∫
d4xL1( 1

i
δ

δJ(x) )
∫
Dϕei

∫
d4x(L0+Jϕ) ∝ ei

∫
d4xL1( 1

i
δ

δJ(x) )Z0 [J ] .

(A.20)

The missing constant of proportionality is used to enforced Z1 [0] = 1. Expanding the

exponentials:

Z1 [J ] ∝
∞∑
V=0

1

V !

(
i

∫
d4xL1

(
1

i

δ

δJ (x)

))V ∞∑
P=0

1

P !

(
− i

2

∫
d4x d4y J (x) ∆ (x− y) J (y)

)P
→

Z1 [J ] ∝
∞∑
V=0

1

V !

(
i

∫
d4xL1

(
1

i

δ

δJ (x)

))V ∞∑
P=0

1

P !
(iW [J ])

P

(A.21)

here lies the foundation for Feynman diagrams (after applying the functional derivatives) the num-

bers V and P stand for number of vertices and number of propagators in the diagram (additionally

there exist a relationship between these numbers and the number of external legs but this depends

on the interaction lagrangian L1) (Zee 2010; Srednicki 2007).

Working on the full propagator (denoted by bold font):

1

i
∆ (x1 − x2) = 〈0|Tϕ (x1)ϕ (x2) |0〉 (A.22)

to get the two ϕ’s factors two functional derivatives are necessary, denoting the functional derivatives

by iδj = δ/δ (xj):

〈0|Tϕ (x1)ϕ (x2) |0〉 = δ1δ2Z0 [J ]
∣∣
J=0

= δ1δ2 (iW [J ])
∣∣
J=0
− δ1 (iW [J ])

∣∣
J=0

δ2 (iW [J ])
∣∣
J=0
→

〈0|Tϕ (x1)ϕ (x2) |0〉 = δ1δ2 (iW [J ])
∣∣
J=0

(A.23)

the second term in the second equality can be drop because only connected diagrams contribute to

the sum:

〈0|Tϕ (x1)ϕ (x2) |0〉 → 〈0|Tϕ (x1)ϕ (x2) |0〉C . (A.24)
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Without interactions particles cannot do anything but move freely, the next step is to

introduce an interaction term one of the simplest is ϕ4. With this interaction the lowest order term

is:

1, 2→ 3, 4 ∝
(
− iλ

4!

)∫
d4w

∫
Dϕe(i/2)

∫
d4[(∂ϕ)2−m2ϕ2]ϕ (x1)ϕ (x2)ϕ (x3)ϕ (x4)ϕ (w)

4
=

−iλ
∫
d4w∆ (x1 − w) ∆ (x2 − w) ∆ (x3 − w) ∆ (x4 − w)

(A.25)

two particles start at x1 and x2 converge to w scatter with strength −iλ and then propagate to x3

and x4. Going to momentum space which is easier to associated with observations:

1, 2→ 3, 4 ∝ −iλ (2π)
4
δ(4) (k1 + k2 − k3 − k4)

4∏
j=1

1

k2
j −m2 + iε

(A.26)

where the product of propagators indicate the external particles and will be dropped because it is

common to all processes with of the type 2→ 2 particles (amputate the legs) and the Dirac’s delta

function assures the conservation of momentum and can be dropped too (with the corresponding

(2π)
4
). What is left is known as scattering amplitude (to leading order) (Zee 2010):

iM = −iλ→M = −λ. (A.27)

Because almost we know about the subatomic world comes from scattering experiments and

it is tedious to repeat with procedure every time it is useful to define a shortcut, called Feynman

rules, for the calculation of the scattering amplitude3.

A.2.2 Feynman Rules

The Feynman rules for scalar ϕ4 field theory in momentum space are:

1. Label each external line with a momentum p and each internal line with a momentum q.

2. For each vertex include a factor of −iλ and (2π)
4
δ4 (pin − pout) where in and out make refer-

ence to the specific vertex.

3. For each internal line include a propagator i/
(
q2 −m2 + iε

)
and for each external line a factor

of 1.

3Note that some changes will be required for different kind of particles in more general theories but the principles
applied are the same.
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4. Integrate each internal momentum with measure d4q/ (2π)
4
. This is equivalent to summation

over intermediate states in basic perturbation theory.

5. Include a symmetry factor associated with the diagram.

6. Drop the last factor of conservation of momentum (2π)
4
δ4 (
∑
pin −

∑
pout) where in and out

make reference to initial and final particles.

A.3 Gauge Theories

When the lagrangian has a symmetry (a transformation is applied and the new lagrangian

is the “same” as the initial one) a family of parameters can be associated with the transformation.

When the parametrization is independent of space-time variables the symmetry is global, and when

the parametrization is a function of the space-time variables the symmetry is local. The latter case

is the interesting one because it is possible to show that the interactions in QFT are related to

this type of symmetries (Duncan 2012; Zee 2010; Guidry 1991; Thompson 2013). The prototypical

interaction is quantum electrodynamics (QED), which was discovered first and studied extensively,

and it serves as an example of the procedure known as “gauging the symmetry” in the following

subsection.

A.3.1 Quantum Electrodynamics

The lagrangian for a free electron is given by:

L0 = ψ̄
(
i/∂ −m

)
ψ (A.28)

and is invariant under the (global) transformation ψ → eiθψ as can be checked by substitution.

When the phase depends on the coordinates θ = θ(x) a new term appears, due to the derivative,

and the only way to make the lagrangian invariant again is to substitute the derivative by the

“covariant” derivative:

∂µ → ∂µ + iqAµ = Dµ (A.29)

generating the new lagrangian:

L = ψ̄
(
i/∂ − q /A−m

)
ψ (A.30)
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note the interaction term in the new lagrangian L = L0 + Lint. This new lagrangian is invariant

under the simultaneous transformations:

ψ → eiθ(x)ψ and Aµ → Aµ −
1

q
∂µθ(x). (A.31)

The procedure can be summarized in two considerations:

1. Imposing a local phase invariance on the fermion field demands the introduction of a new

massless vector field Aµ.

2. The local phase invariance has dynamical content, i.e., it specifies the nature of the interaction

between the fermion field and the vector field.

The same procedure followed in the last section can be used to derive the Feynman rules for

QED. However, it is possible to read the rules from the interaction term in the lagrangian (Griffiths

1987; Thompson 2013):

1. Label each external line with a momentum p and each internal line with a momentum q.

2. For each vertex include a factor of −igeγµ with ge =
√

4πα, and a factor of (2π)
4
δ4 (pin − pout)

where in and out make reference to the specific vertex.4

3. For each internal fermionic line include a propagator i(/q+m)/(q2−m2) and for each internal

massless vector line include the propagator −igµν/q2. For an incoming (outgoing) external

fermionic particle associate the spinor u (ū), for an incoming (outgoing) external fermionic

antiparticle associate the spinor v̄ (v) and for an incoming (outgoing) external vector boson

associate the polarization four-vector εµ (εµ∗).

4. Integrate each internal momentum with measure d4q/ (2π)
4
. This is equivalent to summation

over intermediate states in basic perturbation theory.

5. Include a symmetry factor associated with the diagram.

6. Drop the last factor of conservation of momentum (2π)
4
δ4 (
∑
pin −

∑
pout) where in and out

make reference to initial and final particles.

A.4 The Standard Model

The SM includes one simple group SU(3)c and one semi-simple group SU(2)L × U(1)Y ,

each part represents a different interaction (Guidry 1991; Burgess and Moore 2006). The former is

for quantum chromodynamics and the latter is for electroweak theory. After some struggle with the

4Note that α in here represents the fine structure constant.
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renormalization of QED, gauge theories started to look more promising and they were applied to

the other known phenomena: weak and strong nuclear forces. Both of them were very different from

QED and their properties required more general groups and concepts. In the following subsections

an overview of those properties and concepts is done.

A.4.1 Quantum Chromodynamics

By the mid-fifties a plethora of hadrons were known and in 1961 Gell-Man and Ne’eman

developed the eightfold way to accommodate them in groups of similar properties and masses. Then

in 1963 Gell-Mann and Zweig proposed the existence of quarks, a new type of particle of which

hadrons are composed. From experimental data it was known that quarks should have an additional

quantum number to avoid the violation of the exclusion principle.

Figure A.1: QCD particle content. The triangular arrangement comes from color (optics )theory.5

Some differences between QED and QCD exist. First QCD is non-abelian, while QED is

abelian. This means that gluons (the mediator of the interaction) can couple to other gluons in

cubic and quartic vertices. Second the strength of the interaction decreases with energy in QCD

and increases for QED. To accommodate these observations and other empirically known facts the

require group is SU(3)c and the content needed is shown in Figure A.1.
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The corresponding lagrangian is:

LQCD = ψ̄γµ
(
i∂µ −

gs
2
λaGaµ

)
ψ − 1

4
GaµνG

aµν with

Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν

(A.32)

where the masses of the quarks are not included because they belong to the Higgs part of the

lagrangian. The terms proportional to derivatives of the field ∂µG
a
ν generate terms proportional to

the four-momentum.

Only the second Feynman rule should be modified to include the new vertices:

• quark-quark-gluon. The factor is (−igs/2)λaγµ.

• gluon-cubic. The factor is −gsfabc
[
gµν (q1 − q2)λ + gνλ (q2 − q3)µ + gµλ (q3 − q1)ν

]
.

• gluon-quartic. The factor is:

−igs
[
fabef cde (gµλgνρ − gµρgλν) + fadef cbe (gµνgλρ − gµλgνρ) + facefdbe (gµρgλν − gµνgλρ)

]
.

Note that for low energy the perturbative approach is invalid and another one is required.

The new approach is lattice gauge theory in which a lattice in space-time is created to include

the hadron in question and calculations are made with a technique called Wilson loops which are

plaquettes on the lattice (Zee 2010; Duncan 2012; Guidry 1991).

A.4.2 Electroweak Theory

The EW theory is the unification of electromagnetic and weak interactions. First two groups

are assumed to exist SU(2)L (three bosons Wµ
i ) and U(1)Y (one boson Bµ). The lagrangian is given

by:

LEW =
∑

j∈{L,R}

ψ̄jγ
µ

(
i∂µ −

g

2
Iψj~τ · ~Wµ −

g′

2
Yψj Bµ

)
ψj−

1

4
W a
µνW

aµν−1

4
BµνB

µν+Lhiggs+LY ukawa

(A.33)

where the Higgs part gives masses to the vector bosons and the Yukawa part includes the masses of

the fermions. And the definition of the tensors in terms of the fields are (Guidry 1991):

W a
µν = ∂µW

a
ν − ∂νW a

µ − g εabcW b
µW

c
ν

Bµν = ∂µBν − ∂νBµ.
(A.34)

5Figure by Cjean42/CC BY 3 (URL: http://en.wikipedia.org/wiki/File:QCD.svg)
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To obtain massive vectors instead of massless bosons like with the simple gauging of the

theory a new mechanism was needed and one of the first persons to publish about it was Peter Higgs,

hence the Higgs mechanism.

A.4.2.1 The Higgs Mechanism

The introduction of the Higgs mechanism allows three vector bosons to become massive

while the fourth remains massless (the photon, of course). The Higgs lagrangian including the

simplest potential that can give mass to the vector bosons is:

Lhiggs =

∣∣∣∣∣
(
∂µ −

i g

2
~τ · ~Wµ +

i g′

2
Bµ

)
φ

∣∣∣∣∣
2

− λ

4

(
φ†φ− v2

)2
. (A.35)

When the electrically neutral component of the doublet acquires a non-zero vacuum expec-

tation value (making the second term on the left hand-side to vanish) the symmetry breaks and

a mass term appears. Diagonalization of the states produces the observed spectrum (Thompson

2013): 

W+
µ

W−µ

Zµ

Aµ


=



1 0 0 0

0 1 0 0

0 0 cos θW − sin θW

0 0 sin θW cos θW





W 1
µ

W 2
µ

W 3
µ

Bµ


(A.36)

which shows that the photon and the neutral vector boson Z are linear combinations of the hy-

percharge and the weak neutral vector boson W 3. The masses are mW = gv/2, mA = 0 and

mZ = (v/2)
√
g2 + g′2.

The Yukawa term gives masses to the fermions through the couplings to the Higgs:

LY ukawa = −
3∑

m,n=0

(
Γumnq̄

0
mLφ̃ u

0
nR + Γdmnq̄

0
mLφd

0
nR + Γemn

¯̀0
mnφ e

0
nR

)
+ h.c.. (A.37)

these numbers are not known a priori and are determined experimentally.
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Appendix B

Gamma-ray Signals from AGN, Calculations
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B.1 Scattering between DM and SM Particles with Radiation in Final State

As is evident from Figure 2.3 on page 30 and Figure B.1, the dominant contributions to

the cross section and, thus, the gamma-ray flux come from the s-channel Feynman diagrams due

to resonances when the intermediate E goes on-shell. Thus, it appears a safe assumption would be

to neglect the u-channel diagrams shown in Figure 2.2 on page 27 since there is no chance for the

intermediate E in these diagrams to go on-shell.
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Figure B.1: Relative contribution to the differential cross-section from a representative sample of
the combination of Feynman diagrams. Even when mixed with one of the resonant channels the

u-channel contribution is negligible.

Besides the resonant-enhancement from the E going on-shell, there is another source of

enhancement in the process considered here: a logarithmic enhancement when the photon is collinear

with the final-state electron (note that, since the angle of observation does not line up with the jet

axis, there is no possibility of the photon being collinear with the initial-state electron). Below, we

outline the calculation assuming that the resonant and collinear regime makes up the most important

contribution to the cross section. This calculation and this appendix follow closely Appendix B of

(Gorchtein et al. 2010) (by design) and provides an important check on our calculation using the

full set of Feynman diagrams and the exact kinematics of the process.
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The pieces of the amplitude-squared that have the collinear log enhancement are:

1

2

∑
λ,spins

|M2|2 =
1

2
e2g4

1(Y 2
L + Y 2

R)2 E2E5

t45 |D1|2
[
1 +

(Y 2
L − Y 2

R)2

(Y 2
L + Y 2

R)2
cos θ

]
,

1

2

∑
λ,spins

2
∣∣MS2

M∗S3

∣∣ = −e2g4
1(Y 2

L + Y 2
R)2< (D2)E2E4(E4 + E5)

t45 |D1|2 |D2|2
×
[
1 +

(Y 2
L − Y 2

R)2

(Y 2
L + Y 2

R)2
cos θ

]
,

1

2

∑
λ,spins

2
∣∣MS1M∗S2

∣∣ = −2e2g4
1(Y 2

L + Y 2
R)2< (D1)< (D2)E2

2E4(E4 + E5)

t25t45 |D1|2 |D2|2

×
[
1− 4(Y 2

L − Y 2
R)2

(Y 2
L + Y 2

R)2
cos θ − (Y 2

L − Y 2
R)2

(Y 2
L + Y 2

R)2
cos2 θ

]
,

(B.1)

where D1 = E2 − δ + i Γ/2 and D2 = E2 − E5 − δ + i Γ/2 while the pieces of the amplitude-squared

that do not have collinear log enhancements are:

1

2

∑
λ,spins

|M1|2 = −e2g4
1(Y 4

L + Y 4
R)

E4E5

t25 |D2|2

1

2

∑
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|M3|2 = −1

4
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1(Y 2
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R)2 E2E4

|D1|2 |D2|2

1

2

∑
λ,spins

2
∣∣MS1

M∗S3

∣∣ = e2g4
1(Y 2

L + Y 2
R)2E2E4< (D1) (E5 − E2)

t25t45 |D1|2 |D2|2
[
1 +

(Y 2
L − Y 2

R)2

(Y 2
L + Y 2

R)2
cos θ

]
.

(B.2)

We group the pieces of the amplitude-squared that contain the collinear logarithm (|〈M〉|2log)

and those that do not (|M|2no log) as:

|M|2log =
1

2

[
|MS2 |2 + 2Re|MS2M∗S3

|+ 2Re|MS1M∗S2
|
]
, (B.3)

|M|2no log =
1

2

[
|MS1 |2 + |MS3 |2 + 2Re|MS1M∗S3

|
]
, (B.4)

and compute the cross section as:

d2σ

dE5dΩ5
=

1

(2π)5

1

32M2
BE2

[
|M|2logt45

∫
dΩ4

E5E4

t45
+ 4π|M|2no log

]
=

π

(2π)5

1

32M2
BE2

[
|M|2logt45 ln

(
4E2

4

m2
e

)
+ 4|M|2no log

]
.
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B.2 Gamma-ray Lines from DM Annihilation

In the calculation of the loop amplitudes, the following algorithm was used. First, we

reduce all dot products of the form k · p (where k is the loop momentum and p is a generic external

momentum) against the corresponding factors from propagators in the denominator. The resulting

three-point functions can be safely computed using the standard Passarino-Veltman (PV) technique

(Passarino and Veltman 1979). The remaining terms in the amplitudes take the form of four-point

scalar (D0) and rank-two tensor (Dµν) functions:

D0;µν(p1, p2, p3;m1,m2,m3,m4) =∫
dnk

iπ2

{1; kµkν}
[k2 −m2

1][(k + p1)2 −m2
2][(k + p1 + p2)2 −m2

3][(k + p1 + p2 + p3)2 −m2
4]
, (B.5)

where pi are external momenta and mi are the masses of the particles circling the loops. Note that

we have neglected rank-one tensor integrals (Dµ) since we are only interested in extracting the gµν

pieces of the amplitude.

Following the PV scheme, the rank-two tensor integral can be rewritten as a linear expansion

in tensor structures which are built from the external momenta and the metric tensor:

Dµν = D21p1,µp2,ν +D22p2,µp2,ν + · · ·+D27gµν , . (B.6)

The coefficients of this expansion (Dij) can then be reduced to scalar integrals (Passarino

and Veltman 1979). However, in cases where two of the external momenta become identical, as for

the case of WIMP annihilation, this approach breaks down. In these cases, the expressions for the

Dij coefficients in terms of scalar integrals depend inversely on the Gram Determinant (GD) built

from the external momenta (i.e., GD = det(pi · pj)). In certain kinematical regions (e.g., where two

of the momenta become degenerate and GD ' 0), the PV scheme gives rise to spurious divergences.

In calculations for collider processes (where the momenta are integrated over an entire phase space),

this situation arises only at special points near the boundaries of phase space. Special techniques

involving interpolating from these unsafe regions of phase space to safe regions have been developed

to deal with these spurious divergences in calculations for collider processes.

These techniques do not apply to our situation (where the two incoming momenta are fixed

and identical) and we are forced to approach this problem using the following method. For our
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calculation, we have chosen to implement the technique developed in Ref. (Stuart 1988). In this

algebraic reduction scheme, the original PV scheme is extended to deal with situations where the

GD exactly vanishes. Higher-point tensor (and scalar) integrals are expressed in terms of lower-point

quantities which can be safely evaluated utilizing the usual numerical techniques. For example, the

expressions for the four-point scalar integral (D0) and the tensor coefficient (D27) can be expressed

as:

D0 = α123C0(123) + α124C0(124)

+ α134C0(134) + α234C0(234) , (B.7)

and:

D27 = α123C24(123) + α124C24(124)

+ α134C24(134) + α234C24(234) , (B.8)

where C0(ijk) and C24(ijk) are the three-point scalar integral and PV tensor coefficient, respectively

(the (ijk) denotes various propagator factors in the original four-point denominator). The αijk

coefficients can be obtained by solving the matrix equation:



1 1 1 1

0 p2
1 (p2

1 − p2
2 + p2

5)/2 (p2
1 + p2

4 − p2
6)/2

0 (−p2
1 − p2

2 + p2
5)/2 (−p2

1 + p2
2 + p2

5)/2 (−p2
1 − p2

3 + p2
5 + p2

6)/2

−m2
1 p2

1 −m2
2 p2

5 −m2
3 p2

4 −m2
4





α234

α134

α124

α123


=



0

0

0

1


,(B.9)

where p1, . . . , p4 are the external momenta, p5 = p1 + p2, p6 = p2 + p3 and the mi are loop particle

masses.

This approach allows us to construct quite compact expressions for the one-loop ampli-

tudes for the processes of interest in terms of kinematical factors and scalar integrals of the form

B0(p2;m2
1,m

2
2) and C0(p2

1, p
2
2, p

2
5;m2

1,m
2
2,m

2
3).
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Appendix C

Bayesian fit using Markov Chain Monte Carlo
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In this work a Markov Chain Monte Carlo (MCMC) was used to fit the available data.

The MCMC approach is based on Bayesian methods to scan over specified input parameters given

constraints on an output set. Using Bayes’ theorem, the posterior probability density function (PDF)

of the model parameters, θ, given the data, d, and model, M , is given by:

p(θ|d,M) =
π(θ|M)p(d|θ,M)

p(d|M)
, (C.1)

where π(θ|M) is the prior on the model parameters, the p(d|θ,M) term is the likelihood and the

term p(d|M) term is called the evidence, but is often ignored as the PDFs are properly normalized

to unity.

The advantage of a MCMC approach is that in the limit of large chain length the distribution

of points (under appropriate circumstances), θi, approaches the posterior distribution of the modeling

parameters given the constraining data. In addition, the set formed by a function of the points in

the chain, f(θi), corresponds to the posterior distribution of that function of the parameters given

the data.

The Goodman-Weare (GW) algorithm (Goodman and Weare 2010) was used, which has

been shown to be very efficient and fast. A collection of initially random points referred to as

“walkers” at time t, {θi(t)}, are placed in parameter space. A given walker’s next trial position,

θi(t)
′, is based chosen along a line connecting it to another randomly chosen walker, θj , with the

trial:

θi(t)→ θ′i = θj + Z (θi(t)− θj) , (C.2)

where Z is a random variable with the distribution

g(z) ∝ 1√
z

(C.3)

in the interval [1/a, a] and vanishes elsewhere. The trial point is accepted if

q ≡ zN−1Lt+1

Lt
> r, (C.4)

where r is a uniform random variate and Li = e−
∑
j χ

2
i,j/2 = e

−
∑
j(yi,j−di)

2/2σj is the likelihood function.

This selection ensures detailed balance within the algorithm, which is necessary for the algorithm
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to be statistically relevant. The parameter a sets the scale of jumps. The value a = 2 is often used

as it yields a very efficient exploration of the parameter space.

A “burn-in” period is allowed to prevent correlation of the walker’s initial random state to

the set of walkers used for the posterior distribution. The autocorrelation time is given by:

Ci(T ) =
1

n− T
n−T∑
t=1

(θi(t)− θ̄i)(θi(t+ T )− θ̄i) (C.5)

for each input parameter and it is verify that the burn-in length is at least 5 times the auto-correlation

scale.

82



Appendix D

Relic Density
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One of the most important constraints on DM (assuming it is a thermal relic) is the relic

density. As shown in Chapter 3 on page 40 this restriction allows to decrease the number of degrees

of freedom by one for all models. But what constitutes a thermal relic? Basically, a species that was

in thermal equilibrium before freezing out and leaving a relic density. And the temperature at which

freeze-out occurs usually is low making the particles non-relativistic. However, the experimental

error is so small (< 1%) that even for mildly relativistic particles (β ∼ 0.3) the traditional approach

introduces “large” errors (∼ 5%). In this appendix the algorithm for the calculation of the relic

density is explained (Gondolo and Gelmini 1991).

D.1 The Boltzmann Equation

Define f = f (~x, ~p, t), then the Boltzmann Equation is given by:

L̂ [f ] = Ĉ [f ] (D.1)

with the Liouville operator given by (Gondolo and Gelmini 1991; Profumo 2013):

L̂NR =
d

dt
+
d~x

dt
∇x +

d~v

dt
∇v or

L̂cov = pµ
∂

∂xµ
− Γµαβp

αpβ
∂

∂pµ
,

(D.2)

but for a homogeneous and isotropic cosmology (Robertson-Walker metric) f cannot depend on ~x

or p̂, i.e., f depends on |~p| or E and t. With these simplifications the Liouville operator simplifies

to:

L̂ [f ] = E
∂f

∂t
−H |~p|

2

E

∂f

∂E
(D.3)

with H = ȧ/a the Hubble parameter.

The particle number density is the integral over all momenta and summed over all spins:

n =

∫
f(E, t)

g d3~p

(2π)3
(D.4)
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applying this procedure to the Boltzmann equation for the process 1 + 2 → 3 + 4, and particle 1

only, gives:
dn1

dt
+ 3Hn1 = −〈σβMøl〉therm. (n1n2 − neq.1 neq.2 ) where

〈σβMøl〉therm. =

∫
σβMøldn

eq.
1 dneq.2∫

dneq.1 dneq.2

(D.5)

from now on the subscript therm. indicating that it is a thermal average will be dropped. A

completely analogous equation exist for particle 2 switching n1 and n2. When the initial particles

are a particle-antiparticle pair the relevant quantity is n = n1 + n2 but when the chemical potential

is negligible n = 2n1 and the resulting Boltzmann equation is:

dn

dt
+ 3Hn = −〈σβMøl〉

(
n2 − n2

eq.

)
(D.6)

and additional factor of one half is included for non-identical particles (Gondolo and Gelmini 1991).

Remembering that the total entropy per co-moving volume is a constant (sa3 = const.) the

replacement Y = n/s simplifies the equation to (Gondolo and Gelmini 1991; Profumo 2013; Kolb

and M. 1994):

dY

dt
= −s 〈σβMøl〉

(
Y 2 − Y 2

eq.

)
(D.7)

which can be transform to a function of the photon temperature x = mχ/T :

dY

dx
=

1

3H

ds

dx
〈σβMøl〉

(
Y 2 − Y 2

eq.

)
. (D.8)

Replacing the temperature dependence of the Hubble parameter and the entropy in the

equation gives:

dY

dx
= −

√
πg∗
45G

mχ

x2
〈σβMøl〉

(
Y 2 − Y 2

eq.

)
. (D.9)

Once the thermal average is found the differential equation can be solved.

D.1.1 Thermal Average

Assuming that the equilibrium distribution as function of the temperature T is Maxwell-

Boltzmann in the co-moving frame:

〈σβMøl〉 =

∫
σβMøle

−E1/Te−E2/Td3~p1d
3~p2∫

e−E1/Te−E1/Td3~p1d3~p2
(D.10)
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changing integration variables to E+ = E1+E2, E− = E1−E2 and s = 2mχ+2E1E2−2 |~p1| |~p2| cos θ

gives (Gondolo and Gelmini 1991; Profumo 2013; Drees et al. 2009):

〈σβMøl〉 =
1

8m4
χT (K2 (mχ/T))

2

∫ ∞
4m2

χ

σ(s− 4m2
χ)
√
sK1 (

√
s/T) ds (D.11)

where Ki are modified Bessel functions of order i. Clearly the thermal average is a function of the

temperature T and it is necessary to compute this integral for each value of T that is used in the

numerical solution of D.9 (a very time consuming procedure). For this reason the non-relativistic

approximation is very popular and then a program like micrOMEGAs (Belanger et al. 2014a) is

used to compute the fully relativistic solution.
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Figure D.1: Yield as function of temperature x = mχ/T .
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In the non-relativistic approximation the quantity σβMøl is expanded in a series of the speed.

And given that the definition of the Møller factor is βMøl =

√
|~v1 − ~v2|2 − |~v1 × ~v2|2 which has its

simplest form in the “lab” reference frame (one of the particles is at rest) and the average is equal

for the co-moving reference frame and the “lab” reference frame, the approximation is made in the

“lab” frame. Due to this equality the approximation σβlab ≈ a + bβ2
lab is used for calculating the

thermal average (Drees et al. 2009; Gondolo and Gelmini 1991; Profumo 2013):

〈σβlab〉 ≈ a+
6bT

mχ
= a+

6b

x
(D.12)

and then this function of temperature is plugged into Boltzmann differential equation1.

The only problem is that the equation is stiff and requires some care to solve. First the

freeze-out temperature is found by assuming that the solution behaves like in equilibrium before

the critical temperature x < xF and then the equilibrium function can be neglected completely and

finally both solutions are connected together. The solution for fixed value of the masses and different

couplings constants is shown in Figure D.1a on the previous page while the solution for fixed coupling

different masses of the mediator is shown in Figure D.1b on the preceding page. To finally get the

relic abundance using Equation (3.10) on page 45 as shown in Figure D.2 on the preceding page.

Note that the main difference between this plot and the one generate from micrOMEGAs (Belanger

et al. 2014a) is in the long tails close to degenerate masses due to coannihilation processes that come

into play when the temperature is close to the mass of the mediator particle mφ/T ≈ 1 which is

important only when mφ ≈ mχ.

1There are three exceptions in which the approximation fails: coannihilation, annihilation into heavier but almost
degenerate (in mass) particles and near a pole of the cross-section (Griest and Seckel 1991).
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Appendix E

DM Chiral Top Portal: Loop Corrections
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In this appendix the calculation of the correction to the top quark mass (Yukawa coupling)

at one loop for the TPDM is shown. The lagrangian for the model is

L = LSM + iχ̄/∂χ−mχχ̄χ+ (Dµϕ)
†

(Dµϕ)−m2
ϕϕ
∗ϕ+ gDMϕ

∗χ̄PRt+ gDMϕt̄PLχ (E.1)

where the covariant derivative is Dµ = ∂µ − igsGaµT a − iQteAµ with Qt = 2/3 is the electric charge

of the top quark in units of e.

Figure E.1: t→ ϕ∗χ→ t.

The matrix element for the subprocess shown in Figure E.1 (the modification to the top

quark propagator due to the new particles and interactions) is

iM =
g2
DM

(2π)
4

∫ ū2PL

(
/q1

+mχ

)
PRu1d

4q1(
q2
1 −m2

χ

) [
(q1 − p)2 −m2

ϕ

] =
g2
DM

(2π)
4 ū2

∫
/q1
d4q1(

q2
1 −m2

χ

) [
(q1 − p)2 −m2

ϕ

]PRu1 →

iM = ū2I
(
/p
)
PRu1

(E.2)

where the integral I can be re-expressed as a double integral

I
(
/p
)

= g2
DM

∫ 1

0

∫
N
(
/q, x, /p

)
(q2 +D)

2

d4q

(2π)
4 dx (E.3)
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where q = q1−(1− x) p, N
(
/q, x, /p

)
= /q+(1− x) /p and D = x (1− x) p2−xm2

χ−(1− x)m2
ϕ. Trans-

forming to a full euclidean space and doing a analytical continuation for the number of dimensions

d = 4− ε

I
(
/p
)

= −g2
DM

∫ 1

0

Γ (ε/2)

(4π)
2−ε/2

(1− x) /p

Dε/2
dx (E.4)

in the limit of small ε

I
(
/p
)
≈ −g

2
DM

16π2

∫ 1

0

(
2

ε
− γE

)(
1 +

ε

2
ln

(
4πµ̃

D

))
(1− x) /pdx→

I
(
/p
)
≈ −g

2
DM/p

16π2

[
1

ε
−
∫ 1

0

(1− x) ln

(
D

µ

)
dx

]

= A
(
p2
)
/p+B

(
p2
)
m2
t

(E.5)

which means that there is no correction to the mass but there is a correction to the wave function. It

is reassuring that the model does not disturb the mass of the top quark given that the measurement

of the width is very precise.

90



Appendix F

Light DM
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By the end of the first decade of the 21st century some efforts were made to understand

the nature of DM dropping one of the assumptions made in most DM models, the collisionless DM

assumption. Some calculations point to some tension between the existing models and their con-

sequences for structure formation against the (statistical) analysis of observed structure formation.

The general idea was to include more general interactions into the simulations that come from inter-

acting DM (Tulin et al. 2013c,b; McDermott et al. 2012; Tulin et al. 2013a). Data from cosmic relic

were in tension with some announced hints of DM detection and the proposal of a new force acting

in the dark sector only (Arkani-Hamed et al. 2009). The model included a heavy DM candidate

that is a thermal relic and a new intermediary particle very light (in the sub- GeV range). This last

property, a “long” range interaction, allows the existence of the phenomenon known as Sommerfeld

enhancement. The effect can be detected through astronomical observations (indirect detection)

given an additional reason to study this type of interaction.

The structure of the study was to identify potential interactions more singular than Coulomb/Yukawa’s

potential near the origin and that had a non-trivial angular dependence but semi-analytically

tractable such as the inclusion in the simulations was not a killer. Because the potential is highly

singular near the origin a cutoff was introduced in the model and then a study of the “renormaliz-

ability” was made. By summer of 2012 this approach was not longer attractive and the study was

stopped. In the following sections the steps made are shown up to the stopping point.

F.1 Singular Potentials

The fully relativistic interaction is taken into account, i.e., the matrix element is calculated,

then the non-relativistic limit is taken and it is identify as the Fourier transform of the potential

(Beane et al. 2001). The conventions and approximations for the calculations are stated in the first

subsection of this section.

F.1.1 Preliminaries

For definiteness a basis for the gamma matrices is chosen and the limits at low speed are

made.
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F.1.1.1 Gamma matrices

The gamma matrices can be represented in different basis (each useful for a specific calcula-

tion). However the most important thing is to be consistent and use always the same representation,

in this case the Dirac representation:

γ0 =

0 I

I 0

 , γj =

 0 σj

−σj 0

 and γ5 =

−I 0

0 I

 . (F.1)

F.1.2 Spinors

In the non-relativistic limit the spinors simplified to:

u (p, s) =

√pµσµξs√
pµσ̄µξ

s

 ≈ √mχ

ξs
ξs

 (F.2)

where ξs is a two dimensional array depending on the spin of the particle and orthogonal among

each other for different values of spin ξs1†ξs2 = δs2s1 .

F.1.2.1 Gamma matrices and spinors

The following combinations of gamma matrices and spinors will appear more than once in

the next section, therefore making the calculations here will save some time afterwards.

1. Two spinors and a gamma matrix.

ūlγ
µun = u†l γ

0γµun =


u†lun = 2mχξ

†
l ξn = 2mχδ

sl
sn if µ = 0,

mχ

(
ξ†l ξ†l

)−σj 0

0 σj


ξn
ξn

 = 0 if µ ∈ {1, 2, 3}.
(F.3)

2. Two spinors and a contracted gamma matrix with the transferred momentum.

ūl/q un ≈ −mχ

(
ξ†l ξ†l

)
γ0

 0 −~σ · ~q

~σ · ~q 0

ξn
ξn

 = 0. (F.4)

Note that this is the same as the former case with the energy component set to 0.
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3. Two spinors, one gamma matrix and one gamma-five matrix.

ūlγ
µγ5un ≈ mχ

(
ξ†l ξ†l

)
γµ

−ξn
ξn

 =


0 if µ = 0,

2mχξ
†
l ξnσj = 2mχδ

sl
snσj if µ ∈ {1, 2, 3}.

(F.5)

4. Two spinors, one contracted gamma matrix with the transferred momentum and a gamma-five

matrix.

ūl/q γ5un ≈ mχ

(
ξ†l ξ†l

)0 I

I 0

 0 −~σ · ~q

~σ · ~q 0

−I 0

0 I

ξn
ξn



= −mχ

(
ξ†l ξ†l

)~σ · ~q 0

0 ~σ · ~q

ξn
ξn

→
ūl/q γ5un ≈ −2mχδ

sl
sn~σ · ~q → ūl/q γ5un ≈ −2mχδ

sl
sn~sn · ~q.

(F.6)

F.1.3 Potentials

In which follows the non-relativistic limit potential for different interactions is found. The

master equation for this section is (Beane et al. 2001):

V (~r) =
1

(2π)
3

∫
V (~q) ei ~q·~rd3~q and 〈pfinal|i T |pinitial〉 = −i V (~q) (2π) δ

(
E~pfinal − E~pinitial

)
.

(F.7)

F.1.3.1 Scalar DM and Massive Vector Mediator

The interaction lagrangian is Lint ∝ φBµ∂µφ. The model t−channel interaction is shown

in Figure F.1 and because in the non-relativistic case the particles can always be identified making

this diagram the relevant one.

Conservation of four-momenta and momentum transfer are given by:

pµ1 + pµ2 = pµ3 + pµ4 → qµ = pµ3 − pµ1 = pµ2 − pµ4 (F.8)

with these definitions the matrix element for the process is:

iM = i g2qµ
gµν − qµqν

m2
V

q2 −m2
V

(−qν) = −i g2
q2 − q4

m2
V

q2 −m2
V

= i
g2q2

m2
V

≈ −ig
2 |~q|2
m2
V

(F.9)
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Figure F.1: φφ→ V → φφ.

The potential in momentum space is:

V (~q) =
g2 |~q|2
m2
V

. (F.10)

Evidently the potential is highly divergent at the origin (second derivative of a delta func-

tion), i.e. it is a contact interaction, but no angular dependence.

F.1.3.2 Spinor DM and Massive Vector and Axial Vector Mediator

The interaction lagrangian is Lint ∝ χ̄ γµ
(
a+ bγ5

)
Bµχ. The model t−channel interaction

is shown in Figure F.2 and because in the non-relativistic case the particles can always be identified

and only this diagram is necessary.

Figure F.2: χχ→ V → χχ.

Conservation of four-momenta and momentum transfer are given by:

pµ1 + pµ2 = pµ3 + pµ4 → qµ = pµ3 − pµ1 = pµ2 − pµ4 (F.11)
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and the matrix of vector and axial coefficients is:

A = a+ b γ5 =

a− b 0

0 a+ b

 (F.12)

with these definitions the matrix element for the process is:

iM = i
g2

q2 −m2
V

(
ū4γ

µAu2 ū3γµAu1 −
ū4/q Au2 ū3/qAu1

m2
V

)
→

iM≈ i 4m2
χg

2

|~q|2 +m2
V

[
b2(~σ1 · ~q)(~σ2 · ~q)

m2
V

− a2 + b2 (~σ1 · ~σ2)

]
δs3s1 δ

s4
s2 .

(F.13)

The potential in momentum space is1:

V (~q) = − g2

|~q|2 +m2
V

[
b2(~s1 · ~q)(~s2 · ~q)

m2
V

− a2 + b2 (~s1 · ~s2)

]
δs3s1 δ

s4
s2 (F.14)

which implies that the potential in coordinate space is:

V (~r) = − 1

(2π)
3

∫
g2

|~q|2 +m2
V

[
b2(~s1 · ~q)(~s2 · ~q)

m2
V

− a2 + b2 (~s1 · ~s2)

]
ei~q·~rd3~q δs3s1 δ

s4
s2 →

V (~r) = −
[
b2(−i~s1 · ~∇)(−i~s2 · ~∇)

m2
V

− a2 + b2 (~s1 · ~s2)

]
1

(2π)
3

∫
g2

|~q|2 +m2
V

ei ~q·~rd3~q δs3s1 δ
s4
s2 .

(F.15)

Remembering that Fourier transforms form pairs and that the Fourier transform of the

Yukawa potential is:

F (~q) =

∫
e−mr

4πr
e−i ~q·~rd3~r =

1

2

∫ ∞
0

r e−mr
∫ π

0

e−i q r cos θ sin θdθ dr =

∫ ∞
0

r e−mr
[

sin (q r)

q r

]
dr →

V (~q) =
1

q

{
−e
−mr [q cos (q r) +m sin (q r)]

q2 +m2

} ∣∣∣∣∞
0

=
1

q

q

q2 +m2
=

1

q2 +m2

(F.16)

then the potential in coordinate space is (ignoring the Kronecker’s deltas for spin variables from now

on):

V (~r) = − g
2

4π

[
−b2(~s1 · ~∇)(~s2 · ~∇)

m2
V

− a2 + b2 (~s1 · ~s2)

]
e−mV r

r
→

V (~r) = − g
2

4π

(−b2s1js2k∂j∂k
m2
V

− a2 + b2s1js2j

)
e−mV r

r
.

(F.17)

1Note that the interaction conserves spin on each vertex.
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The derivatives of the Yukawa function can be reduced to tensor form:

∂j∂k
e−mr

r
= −∂j

(
me−mrxj

r2
+
e−mrxj
r3

)
=
m2e−mrxjxk

r3
+

3me−mrxjxk
r4

+
3me−mrxjxk

r5

−
me−mrδkj

r2
−
e−mrδkj
r3

=

[(
m2 +

3m

r
+

3

r2

)
xjxk
r2
−
(
m

r
+

1

r2

)
δkj

]
e−mr

r
→

∂j∂k
e−mr

r
=

[(
m2 +

3m

r
+

3

r2

)
xjxk
r2
−
(
m2 +

3m

r
+

3

r2

)
δkj
3

+
m2δkj

3

]
e−mr

r
→

∂j∂k
e−mr

r
=
m2

3

{[
1 +

3

mr
+

3

(mr)
2

](
3xjxk
r2

− δkj
)

+ δkj

}
e−mr

r

(F.18)

substituting back in Equation F.17:

V (~r) =

[[
−b2

3

{[
1 +

3

mV r
+

3

(mV r)
2

]
[3 (~s1 · r̂) (~s2 · r̂)− (~s1 · ~s2)] + (~s1 · ~s2)

}
− a2 + b2 (~s1 · ~s2)

]]

×
(
− g

2

4π

e−mV r

r

)
→ V (~r) = VC (~r)

[
a2 − 2b2 (~s1 · ~s2)

3

]
+ VT (~r)

b2

3
[3 (~s1 · r̂) (~s1 · r̂)− (~s1 · ~s2)]

(F.19)

where

VC (~r) = VC (r) = α
e−mV r

r
and VT (~r) = VT (r) = α

[
1 +

3

mV r
+

3

(mV r)
2

]
e−mV r

r
(F.20)

F.1.3.3 Spinor DM and Massive Scalar and Pseudoscalar Mediator

The interaction lagrangian is Lint ∝ χ̄ γµ
(
a+ bγ5

)
χ∂µφ. The model t−channel interaction

is shown in Figure F.3 and only one diagram is necessary.

Figure F.3: χχ→ φ→ χχ.
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Conservation of four-momenta and momentum transfer are given by:

pµ1 + pµ2 = pµ3 + pµ4 → qµ = pµ3 − pµ1 = pµ2 − pµ4 (F.21)

and the matrix of vector and axial coefficients is:

A = a+ b γ5 =

a− b 0

0 a+ b

 (F.22)

with these definitions the matrix element for the process is:

iM = i g2ū3/q Au1
1

q2 −m2
φ

ū4/q Au2 = −i 4b2m2
χg

2

|~q|2 +m2
φ

(~σ1 · ~r) (~σ2 · ~r) δs3s1 δs4s2 (F.23)

The potential in momentum space is2:

V (~q) =
b2g2

|~q|2 +m2
φ

(~σ1 · ~r) (~σ2 · ~r) δs3s1 δs4s2 , (F.24)

the potential in coordinate space is then:

V (~r) = −
b2g2m2

φ

12π

{[
1 +

3

mφr
+

3

(mφr)
2

]
[3 (~s1 · r̂) (~s2 · r̂)− (~s1 · ~s2)] + (~s1 · ~s2)

}
e−mφr

r
→

V (~r) = −VC (~r)
b2m2

φ

3
(~s1 · ~s2)− VT (~r)

b2m2
φ

3
[3 (~s1 · r̂) (~s1 · r̂)− (~s1 · ~s2)]

(F.25)

with the functions VC (~r) and VT (~r) given by Equation F.20 (and replacing mV by mφ). note that

the scalar interaction can be dropped because in the non-relativistic limit it does not affect the

potential.

F.1.3.4 Spin One Massive Boson DM and Scalar Mediator

The interaction lagrangian is Lint ∝ gµνBµBνφ. The model t−channel interaction is shown

in Figure F.4 and only one diagram is necessary.

2Again the interaction conserves spin on each vertex.
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Figure F.4: χχ→ φ→ χχ.

Conservation of four-momenta and momentum transfer are given by:

pµ1 + pµ2 = pµ3 + pµ4 → qµ = pµ3 − pµ1 = pµ2 − pµ4 (F.26)

with these definitions the matrix element for the process is:

iM = −i g2ε†3,νg
µνε1,µ

1

q2 −m2
φ

ε†4,τg
ρτ ε2,ρ (F.27)

At this point it was decided that the best alternative should contain a chiral interaction to

get a spin-dependent potential and the analysis of other options was interrupted. The key points

to remember are that the matrix element should have terms proportional to linear momentum and

spin in such a way that derivatives of the Yukawa potential appear and the potential depends on

the spin similar to nuclear force potentials.

F.2 “Renormalization”

A cutoff of the potential is introduced but the long distance physics should be independent of

this choice. The following analysis shows how this can be done for potentials with one discontinuity

and how the matching conditions are imposed (Beane et al. 2001).

F.2.1 Preliminaries

The singular potentials we are interested in this work diverge worse than r−2 near the origin,

therefore is necessary to apply some sort of modification at small distances:

V (r) =
1

2mr0

[
−λSθ (rc − r)− λL

f (r/r0)

(r/r0)
n θ (r − rc)

]
(F.28)
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where f (x) is a regular function near the origin, normalized to 1 at the origin and rc = R× r0.3 An

example of the renormalized potential is shown in Figure F.5. The Schroedinger equation becomes4:

d2u (x)

dx2
+ η2u (x) =


−λSu (x) if x < R

−λL f(x)
xn u (x) if x ≥ R

(F.29)

with u (r) = R (r) /r, x = r/r0 and η =
√

2mr0E. The solution near the origin is:

u (x) = A cos
(√

η2 + λS x+ δS

)
(F.30)

but δS = −π/2 then u (x) = A sin
(√

η2 + λS x
)

.

0.01 0.1 1 10
r

-50

-40

-30

-20

-10

0

VHrL

Figure F.5: Potential well for renormalization of singular potential.

Unfortunately there is no analytical solution for the general form given in Equation F.29

for x > R.

F.2.1.1 Solution Near the Discontinuity (η = 0)

If η = 0 and f (x) = 1 the equation can be solved analytically. Usually there are two options

to simplify a differential equation:

1. change of independent variable.

2. change of dependent variable.

3Note that there is no need of continuity on the potential.
4Notice that the angular momentum barrier is dropped in this analysis (l = 0 case).
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In this case the first option proves more useful and the transform operators are:

d

dx
=
dz

dx

d

dz
→ d2

dx2
=
dz

dx

d

dz

(
dz

dx

d

dz

)
=

(
dz

dx

)2
d2

dz2
+
dz

dx

[
d

dz

(
dz

dx

)]
d

dz
(F.31)

the Schroedinger equation becomes then:

d2u (x)

dx2
+
λL
xn
u (x) = 0→

(
dz

dx

)2
d2u (z)

dz2
+
dz

dx

[
d

dz

(
dz

dx

)]
du (z)

dz
+
λL
xn
u (z) = 0 (F.32)

to get rid of the xn term multiply the equation by xn/λL and making the coefficient of the second

order derivative equal to one:

1. Case 1, n > 2:

xn

λL

(
dz

dx

)2

= 1→ z =

√
λLx

b

b
→ x =

(
b z√
λL

)1/b

→ dz

dx
=
√
λL

(
b z√
λL

)(b−1)/b

→

d

dz

(
dz

dx

)
=
√
λL

(
b√
λL

)(b−1)/b(
1− 1

b

)
z(b−1)/b−1

(F.33)

with b = 1− n/2, replacing the terms back in Equation F.32:

d2u (z)

dz2
+

1

λL

(
b z√
λL

)n/b√
λL

(
b z√
λL

)(b−1)/b√
λL

(
b√
λL

)(b−1)/b

×
(

1− 1

b

)
z(b−1)/b−1 du (z)

dz
+ u (z) = 0→

d2u (z)

dz2
+

(
b√
λL

)n/b+2(b−1)/b(
1− 1

b

)
zn/b+2(b−1)/b−1 du (z)

dz
+ u (z) = 0→

d2u (z)

dz2
+

(
1− 1

b

)
1

z

du (z)

dz
+ u (z) = 0

(F.34)

this equation fails to be a Bessel’s equation due to the coefficient of the first order derivative.

At this point a transformation of the second kind will be very useful:

u (z) = zav (z)→ du (z)

dz
= za

dv (z)

dz
+ a za−1v (z)→

d2u (z)

dz2
= za

d2v (z)

dz2
+ 2a za−1 dv (z)

dz
+ a (a− 1) za−2v (z) .

(F.35)
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The new equation is:

z2 d
2v (z)

dz2
+

(
2a+ 1− 1

b

)
z
dv (z)

dz
+

[
z2 + a (a− 1) +

(
1− 1

b

)
a

]
v (z) = 0 (F.36)

choosing a = 1/ (2b) the coefficient of the first order derivative is fixed:

z2 d
2v (z)

dz2
+ z

dv (z)

dz
+

(
z2 − 1

4b2

)
v (z) = 0 (F.37)

and voilà, the Bessel’s equation. The solution is:

u (x) =
√
x

[
AJ1/(2−n)

( √
λL

n/2− 1
x1−n/2

)
+B Y1/(2−n)

( √
λL

n/2− 1
x1−n/2

)]
(F.38)

note that this solution is always valid because Jα (x) and Yα (x) are always independent of

each other (The solution shown in Bedaque’s paper is not valid for n = 3). For x � 1 and

given that n > 2 it is necessary to use asymptotic form of Bessel’s functions:

u (x) ≈ √x
√
n− 2

π
√
λL
xn/2−1

[
A cos

( √
λL

n/2− 1
x1−n/2 − δ

)
+B sin

( √
λL

n/2− 1
x1−n/2 − δ

)]
→

u (x) ≈
√
n− 2

π
√
λL
C ′xn/4 cos

( √
λL

n/2− 1
x1−n/2 − δ + φ′

)
(F.39)

with δ = π [1/4 + 1/ (4− 2n)] = π {1/ (2− n)− n/ [4 (n− 2)]}, φ′ = − tan−1 (B/A) and C2 =

A2 +B2. Imposing continuity of the wave function and its derivative:

A sin (νSR) = CRn/4 cos

(
νL

n/2− 1
R1−n/2 + φ

)

AνS cos (νSR) = C

(
n

4
Rn/4−1 cos

(
νL

n/2− 1
R1−n/2 + φ

)

+νLRn/4−n/2 sin

(
νL

n/2− 1
R1−n/2 + φ

))
(F.40)

with obvious replacements and noting than the new phase depends on n but still constant.

Dividing the first equation by the second equation:

(νSR) cot (νSR) = H cot (H) =
n

4
+ νLR1−n/2 tan

(
νL

n/2− 1
R1−n/2 + φ

)
. (F.41)
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Figure F.6: Value of the coupling constant at short distances as function of the boundary point R
for n = 3.

The discontinuities of the left-hand side are located where H is a multiple integer of

π (with the exception of H = 0 where there is no discontinuity at all). Therefore a series

expansion around those points allows to have an interpolating analytic function for H (R)

there:

mπ + ε = rhs× tan (ε) ≈ rhs× ε→ ε ≈ mπ

rhs− 1

→ H (R) ≈ mπ rhs

rhs− 1
= mπ

(
1− 1

1− rhs

)
→

H (R) ≈ mπ
[

1− 1

1− n/4− νLR1−n/2 tan
(
νLR1−n/2/ (n/2− 1) + φ

)] .
(F.42)

2. Case 2, n = 2:

(
x
dz

dx

)2

= 1→ z = ln (x)→ x = ez → dz

dx
= e−z → d

dz

(
dz

dx

)
= −e−z (F.43)

replacing the terms back in Equation F.32:

e−2z

[
d2u (z)

dz2
− du (z)

dz
+ λLu (z)

]
= 0 (F.44)
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with the usual ansatz u (z) = eaz:

eaz
(
a2 − a+ λL

)
= 0→ a =

1±
√

1− 4λL
2

→ u (x) = A+e
a+z +A−e

a−z →

u (x) =
√
x
[
A+x
√

1/4−λL +A−x
−
√

1/4−λL
] (F.45)

which is valid for any value of λL, however there is a more useful form when λL > 1/4 and

with
√
λL − 1/4:

u (x) = C
√
x cos (νL ln (x) + φ) . (F.46)

The matching conditions are:

A sin (νSR) = C
√
R cos (νL ln (R) + φ) (F.47a)

AνS cos (νSR) =
C√
R

(
cos (νL ln (R)− φ)

2
+ νL sin (νL ln (R) + φ)

)
(F.47b)

and, to eliminate the multiplicative constants, dividing the second equation by the first equa-

tion:

(νSR) cot (νSR) = H cot (H) = νL

(
1

2νL
− tan (νL ln (R) + φ)

)
. (F.48)

The discontinuities of the left-hand side are located where H is a multiple integer of π

(with the exception of H = 0 where there is no discontinuity at all). Therefore an expansion

around those points allows a better comprehension of the behavior of H (R):

H = mπ + ε→ (mπ + ε) cot (ε) = rhs→ (mπ + ε) ≈ rhs× ε→

ε ≈ mπ

rhs− 1
→ H ≈ mπ rhs

rhs− 1
→

H (R) ≈ mπ
[

1/2− νL tan (νL ln (R) + φ)

−1/2− νL tan (νL ln (R) + φ)

]
≈ mπ

[
sin (νL ln (R) + φ− δ)
sin (νL ln (R) + φ+ δ)

] (F.49)

with 2νL tan (δ) = 1.

F.2.1.2 Solution Near the Discontinuity (η 6= 0)

When η 6= 0 the second part of Equation F.29 can be solved analytically for n = 2, other

values of n need a numerical approach.

104



n

n+1

0.01 0.1 1 10
R

1

5

10

15

19

H2HRL

Figure F.7: Value of the coupling constant at short distances as function of the boundary point R
for n = 2.

1. Case 1, the Schroedinger’s equation for n = 2 is:

d2u (x)

dx2
+

(
η2 + λL

1

x2

)
u (x) = 0→ x2 d

2u (x)

dx2
+
(
η2x2 + λL

)
u (x) = 0 (F.50)

which is reminiscent of Bessel’s equation but fails to be one due to two aspects: the coefficient

η of x2 monomial (this can be solved through a scaling transformation y = ηx) and the missing

first order derivative (this can be solved through an appropriate ansatz). Trying the ansatz

u (x) = xav (x):

xa
[
a (a− 1) v (x) + 2ax

dv (x)

dx
+ x2 d

2v (x)

dx2

]
+
(
η2x2 + λL

)
xav (x) = 0 (F.51)

and choosing a = 1/2:

x2 d
2v (x)

dx2
+ x

dv (x)

dx
+

(
η2x2 + λL −

1

4

)
v (x) = 0. (F.52)

Finally applying the scaling transformation:

y2 d
2v (y)

dy2
+ y

dv (y)

dy
+

[
y2 −

(
1

4
− λL

)]
v (y) = 0 (F.53)
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which is Bessel’s equation, then the solution is:

u (x) =
√
x (A+Jν (ηx) +A−J−ν (ηx)) (F.54)

with ν =
√

1/4− λL. The small x behavior is given by:

u (x) ≈ √x
[
A+

1

Γ (1 + ν)

(ηx
2

)ν
+A−

1

Γ (1− ν)

(ηx
2

)−ν]
(F.55)

for ν real only the second term is relevant, but when λL > 1/4 both terms contribute (replacing

ν1 =
√
λL − 1/4):

u (x) ≈ √x
[

A+

Γ (1 + iν1)

(ηx
2

)iν1
+

A−
Γ (1− iν1)

(ηx
2

)−iν1]
(F.56)

but Γ (z̄) = Γ (z) and the linear superposition of complex conjugate complex exponentials can

be replaced by a sinusoidal function with a phase, then:

u (x) ≈ √x
[
A+ exp

(
ln (Γ (1 + iν1)) + iν1 ln

(ηx
2

))
+A− exp

(
ln (Γ (1− iν1))− iν1 ln

(ηx
2

))]
→

u (x) ≈ A√x cos
(
ν1 ln

(ηx
2

)
−= (Γ (1 + iν1)) + φ

)
.

(F.57)

2. Case 2, the Schroedinger’s equation for n > 2 is:

d2u (x)

dx2
+

(
η2 + λL

f (x)

xn

)
u (x) = 0 (F.58)

substituting the ansatz u (x) = a (x) eib(x) back into Equation F.58:

[
d2a (x)

dx2
+ 2i

da (x)

dx

db (x)

dx
+ ia (x)

d2b (x)

dx2
− a (x)

(
db (x)

dx

)2

+

(
η2 + λL

f (x)

xn

)
a (x)

]
eib(x) = 0

(F.59)
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the imaginary part is:

2
da (x)

dx

db (x)

dx
+ a (x)

d2b (x)

dx2
= 0→ d

dx

(
a2 (x)

db (x)

dx

)
= 0→ a2 (x)

db (x)

dx
= C2 (F.60)

and the real part:

1

a (x)

d2a (x)

dx2
−
(
db (x)

dx

)2

+ η2 + λL
f (x)

xn
= 0 (F.61)

neglecting the second order derivative term:

−
(
db (x)

dx

)2

+ η2 + λL
f (x)

xn
≈ 0→ b (x) ≈ ±

∫ x
√
η2 + λL

f (x1)

xn1
dx1 →

a (x) ≈ C

4

√
η2 + λL

f(x)
xn

.

(F.62)

The approximate solution is:

u (x) ≈ 1

4

√
η2 + λL

f(x)
xn

cos

(∫ x

x0

√
η2 + λL

f (x1)

xn1
dx1

)
(F.63)

when η → 0 Equation F.39 is recovered.

Solution for the General Case. Because the solution for η = 0 is known for all cases the general

solution can be written as:

uη (x) = A (x; η)u0 (x) (F.64)

where all dependence on the energy η is contained in the function A (x). Replacing back into the

second part of Equation F.29 with f (x) = 1:

A (x)
d2u0 (x)

dx2
+ 2

dA (x)

dx

du0 (x)

dx
+
d2A (x)

dx2
u0 (x) +

(
η2 +

λL
xn

)
A (x)u0 (x) = 0→

2
dA (x)

dx

du0 (x)

dx
+
d2A (x)

dx2
u0 (x) + η2A (x)u0 (x) = 0→

d2A (x)

dx2
+ 2

d ln (u0 (x))

dx

dA (x)

dx
+ η2A (x) = 0.

(F.65)
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1. When the dominant term is the one containing the first order derivative then the leading term

of the approximate solution is:

dA0 (x)

dx
= 0→ A0 (x) = constant = A0 →

dA1 (x)

dx
= −η

2A0

2

u0 (x)

u′ (x; 0)
→ A1 (x) = −η

2A0

2

∫ x

0

u0 (x1)

u′0 (x1)
dx1 →

A (x) ≈ A0

(
1− η2

2

∫ x

0

u0 (x1)

u′0 (x1)
dx1

) (F.66)

2. The general perturbative solution starts with a series expansion in the perturbative parameter

η2, A (x) =
∑∞
j=0Aj (x) η2j . Replacing back into Equation F.65:

∞∑
j=0

(
d2Aj (x)

dx2
+ 2

d ln (u0 (x))

dx

dAj (x)

dx

)
η2j +

∞∑
j=0

Aj (x) η2j+2 = 0 (F.67)

which should be true for each power of η2:

d2A0 (x)

dx2
+ 2

d ln (u0 (x))

dx

dA0 (x)

dx
= 0 (F.68a)

d2A1 (x)

dx2
+ 2

d ln (u0 (x))

dx

dA1 (x)

dx
+A0 (x) = 0 (F.68b)

d2Aj+1 (x)

dx2
+ 2

d ln (u0 (x))

dx

dAj+1 (x)

dx
+Aj (x) = 0. (F.68c)

The solution to Equation F.68a is:

d
(
v (x)u2

0 (x)
)

dx
= 0→ dA0 (x)

dx
=

c0,1
u2

0 (x)
→ A0 (x) = c0,1

∫ x dx1

u2
0 (x1)

+ c0,2 (F.69)

and introducing this into Equation F.68b:

dv (x)

dx
+ 2

d ln (u0 (x))

dx
v (x) + c0,1

∫ x dx1

u2
0 (x1)

+ c0,2 = 0→

d
(
v (x)u2

0 (x)
)

dx
+

(
c0,1

∫ x dx1

u2
0 (x1)

+ c0,2

)
u2

0 (x) = 0→

A1 (x) = −
∫ x 1

u2
0 (x1)

[∫ x1
(
c0,1

∫ x2 dx3

u2
0 (x3)

+ c0,2

)
u2

0 (x2) dx2 + c1,2

]
dx1.

(F.70)
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F.2.1.3 Perturbative Solution to Schroedinger’s Equation

Perturbation method applied to second part of Equation F.29:

u (x) =

∞∑
j=0

uj (x) η2j →
∞∑
j=0

(
d2uj (x)

dx2
+
λL
xn
uj (x)

)
η2j +

∞∑
j=0

uj (x) η2j+2 = 0→ (F.71)

matching coefficients of power of η:

d2u0 (x)

dx2
+
λL
xn
u0 (x) = 0 (F.72a)

d2uj (x)

dx2
+
λL
xn
uj (x) + uj−1 (x) = 0 j ∈ {1, 2, . . . } (F.72b)

the solution to Equation F.72a was worked out in Section F.2.1.1, the solution to Equation F.72b

for j = 1 can be written as u1 (x) = f (x)u0 (x):

(
d2u0 (x)

dx2
+
λL
xn
u0 (x)

)
f (x) +

d2f (x)

dx2
u0 (x) + 2

df (x)

dx

du0 (x)

dx
+ u0 (x) = 0→

d

dx

(
df (x)

dx
u2

0 (x)

)
+ u2

0 (x) = 0→ f (x) = c2 +

∫ x( c1
u2

0 (x1)
−
∫ x1 u2

0 (x2)

u2
0 (x1)

dx2

)
dx1

(F.73)

which gives the approximate solution up to first order in η2:

u (x) ≈
{

1 + η2

[
c2 +

∫ x( c1
u2

0 (x1)
−
∫ x1 u2

0 (x2)

u2
0 (x1)

dx2

)
dx1

]}
u0 (x) (F.74)

F.3 Sommerfeld Enhancement

The partial wave expansion ψ (~r) =
∑∞
l=0 (2l + 1)Pl (cos θ)u (r) /r reduces Schroedinger’s

equation for a central potential to (Tulin et al. 2013c; Arkani-Hamed et al. 2009):

d2ul (r)

dr2
+

{
2M

[
E −

(
−V0θ (R− r)− g

M2rn
θ (r −R)

)]
− l (l + 1)

r2

}
ul (r) = 0 (F.75)

with ul (0) = 0 and continuity of the wave function and its derivative at r = R.
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F.3.1 Free Particle

Using the ansatz ul (r) = ravl (r) the equation for the free particle becomes:

r2 d
2vl (r)

dr2
+ 2ar

dvl (r)

dr
+
[
k2r2 + a (a− 1)− l (l + 1)

]
vl (r) = 0 (F.76)

choosing a = 1/2 Equation F.76 reduces to Bessel’s equation:

r2 d
2vl (r)

dr2
+ r

dvl (r)

dr
+

{
k2r2 −

[
1

4
+ l (l + 1)

]}
vl (r) = 0→

ul (r) =


√
r (AJαl (kr) +BJ−αl (kr)) l > 0

A sin (kr) +B cos (kr) l = 0

(F.77)

with αl =
√

1/4 + l (l + 1). The boundary condition ul (0) = 0 makes B = 0 in both cases.

F.3.2 Non-zero Potential

The solution inside the potential well has the same form as the free particle’s solution but

replacing k with ω =
√
k2 + 2MV0:

ul (r) =


A
√
rJαl (ωr) l > 0

A sin (ωr) l = 0.

(F.78)

For r > R the equation is:

d2ul (r)

dr2
+

[
k2 +

2g

Mrn
− l (l + 1)

r2

]
ul (r) = 0. (F.79)

unfortunately, this equation cannot be solved analytically and has to be solved numerically. For

l = 0 (or r � {2g/ [l (l + 1)M ]}1/(n−2)
), n 6= 2 and k small the solution can be approximate by:

ul (r) ≈
√
r

[
AJ1/(2−n)

(
1

n/2− 1

√
2g

M
r1−n/2

)
+B Y1/(2−n)

(
1

n/2− 1

√
2g

M
r1−n/2

)]
(F.80)

which in the small x limit behaves like a sinusoidal wave:

ul (r) ≈ Crn/4 sin

(
1

n/2− 1

√
2g

M
r1−n/2 + φ

)
. (F.81)
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F.3.2.1 Continuity and Boundary Conditions for a Three-section Potential

Imposing an asymptotic condition when solving numerically an ODE is not possible unless

a definition of long distance is introduce. One way of doing this is splitting the independent variable

into two regions: asymptotic and non-asymptotic regions. Therefore the solution is:

u0 (r) ≈


AF1 (r) +B F2 (r) for r < R

C G1 (r) +DG2 (r) for R < r < R1

G sin (kr + δ0) for R1 < r

(F.82)

then assume that F1 (0) = 0 and F2 (0) 6= 0. When combined with u0 (0) = 0 implies that B = 0.

The derivative is:

du0 (r)

dr
≈


Af1 (r) for r < R

C g1 (r) +Dg2 (r) for R < r < R1

k G cos (kr + δ0) for R1 < r.

(F.83)

Imposing the continuity at the first interface:

AF1 (R) = C G1 (R) +DG2 (R)

Af1 (R) = C g1 (R) +Dg2 (R)

(F.84)

which reduces to:

D =
F1 (R) g1 (R)− f1 (R)G1 (R)

f1 (R)G2 (R)− F1 (R) g2 (R)
C = h (R) C. (F.85)

Similarly, imposing the continuity at the second interface:

C (G1 (R1) + h (R)G2 (R1)) = G sin (kr + δ0)

C (g1 (R1) + h (R) g2 (R1)) = k G cos (kr + δ0)

(F.86)

solving for C:

C2

G2
=

1

(G1 (R1) + h (R)G2 (R1))
2

+ (g1 (R1) + h (R) g2 (R1))
2
/k2

. (F.87)
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The problem now is to choose an adequate point (R1) to describe the large distance behavior

of the wave function (note that in this case there is no renormalization procedure as there is for the

short distance behavior).

F.4 Collisionless DM

With all the machinery setup a final step was necessary to actually solve the Schroedinger’s

equation for the selected potential. The idea was to follow an algorithm devised by Zurek (Mc-

Dermott et al. 2012; Tulin et al. 2013c,b,a) with the new potential and dropping some of the most

divergent terms. Obviously a reproduction of their results were necessary and are shown in Fig-

ure F.8.

Figure F.8: Contours of (normalized) cross-section in the plane a−b with a = v/2αX and b = αXmχ/mφ.

F.4.1 The Numerical Algorithm

Define χl = r Rl (r), x = αXmXr, a = v/ (2αX) and b = αxmX/mφ, then:

(
d2

dx2
+ a2 − l (l + 1)

x2
± 1

x
e−x/b

)
χl (x) = 0 (F.88)

for given l, a and b:

1. Choose x0 close to the origin and make χ (x0) = 1 and χ′ (x1) = (l + 1) /x0.

112



2. Choose x1 such as a2 � exp (−x1/b) /x1 then solve numerically Eq. F.88 for x0 < x < x1.

3. At x1 match solution to asymptotic solution:

χl ∝ x eiδl (cos (δl) jl (a x)− sin (δl)nl (a x)) (F.89)

solve Eq. F.89 for δl. Repeat procedure until variation is less than a fixed amount.

4. Compute σT , for this include terms in the summation until the variation is less than a fixed

amount.

Note that in Figure F.8 the contours are not well defined in some regions due to numerical

instabilities, i.e., a greater density in the grid and smaller tolerance are required. However the main

features are shown, the large and narrow regions in which the cross-section increases are the points

where Sommerfeld enhancement occur. At this point it was decided that no further work was going

to be done in this project.
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in Physics from Universidad de los Andes, Bogotá, Colombia, in 2006; his M.Sc. in Physics from

University of Texas at Arlington, U.S. in 2011, and his Ph.D degree in Physics from the University of

Texas at Arlington in 2014. He worked as a quantitative analyst at different companies in Colombia

between 2001 and 2009. His current research interest include beyond the Standard Model physics,

i.e., dark matter, and computational and statistical methods in finance.

125


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Background
	The Standard Model
	SM Particle Content
	SM Lagrangian
	SM Interactions
	Shortcomings of the Standard Model

	The Dark Matter Problem
	DM Search and Detection


	Gamma-ray Signals from AGN
	The Model
	Gamma-rays from the Scattering between DM Particles and Particles on AGN Jets
	DM Density Profile
	The AGN Jet
	The Cross Section
	Gamma-ray Flux form DM Particles Scattered by SM Particles

	Gamma-rays from DM Annihilation
	Results
	Discussion

	Top Portal DM
	The Model
	Relic Density
	Collider Searches: LHC Prospects
	Indirect Detection from Annihilation into Gamma Rays
	Gamma-ray Continuum from DM Annihilation
	Gamma-ray Lines from DM annihilation
	The Gamma-ray Spectrum from WIMP Annihilation


	Concluding Remarks
	Quantum Field Theory
	Gamma-ray Signals from AGN, Calculations
	Bayesian fit using Markov Chain Monte Carlo
	Relic Density
	DM Chiral Top Portal: Loop Corrections
	Light DM
	References
	Biographical Statement

