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Abstract 

USING ADVANCED METERING INFRASTRUCTURE DATA 

FOR SMART GRID DEVELOPMENT 

 

Franklin L. Quilumba-Gudiño, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Wei-Jen Lee  

Identifying and using Advanced Metering Infrastructure (AMI) data to improve 

customer experience, utility operations, and advanced power management is one of the 

most important challenges in the smart grid development. Smart meters, capable of 

capturing frequent interval customer consumption (and possibly other parameters) using 

communication networks, are vital components of smart grid technology.  Thus, smart 

meters expand the available range of data and functionality. Making the most of 

information from smart meters and smart grids increasingly requires dealing with Big 

Data. Big Data is a game changer, enabling utilities to transform the ways they interact 

with and serve their customers.  

Today, many utilities are deploying smart meters as a vital step moving towards 

smart grids. Going from one meter reading per month to one meter reading at a sub-

hourly rate (one minute, fifteen minutes, or thirty minutes) immediately poses a great 

technical challenge that can be overwhelming if not properly managed. AMI is becoming 

the standard in today’s utility industry, making it possible to transform the performance of 

the grid and dramatically improve customer experience, utility operations, and advanced 

power management. To attain the maximum benefits from AMI, it is of utmost importance 

that utilities perform large-scale data analysis and transform them into information. 
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Consequently, this dissertation addresses the efforts involved in turning smart 

meter raw data into actionable information. Algorithms are developed to utilize data 

collected from AMI system for three main purposes: 

1. To develop accurate customer daily load profiling for load estimation and 

network demand reconciliation to improve the efficiency and security of the 

utility grid. 

2. To enhance the performance of load forecasting which impacts operating 

practices and planning decisions to build, lease, or sell generation and 

transmission assets and the decisions to purchase or sell power at wholesale 

level. 

3. To investigate a nonintrusive load monitoring method for discerning individual 

appliances from a residential customer.  
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Chapter 1  

Introduction 

1.1 Background 

1.1.1 Smart Grid Initiative 

In the recent years, significant progress has been achieved for advanced 

metering, specially supported by funding opportunities under the American Recovery and 

Reinvestment Act (ARRA). ARRA has placed a significant amount of funding in the hands 

of DOE, resulting in the Smart Grid Investment Grant (SGIG) program and the Smart Grid 

Demonstration (SGD) program (“Smart Grid Programs”) [1]. The American Recovery and 

Reinvestment Act of 2009 is commonly referred to as “the Stimulus,” and has three 

immediate goals: 

 Create and save jobs 

 Spur economic activity and invest in long-term growth by providing $288 

billion in tax cuts and benefits; $224 billion to increase funding for entitlement 

programs; and $275 billion in contract, grant, and loan awards. 

 Foster unprecedented levels of accountability and transparency in Recovery 

spending. 

1.1.2 Smart Grid Programs 

In accordance with ARRA main goals, to stimulate the economy and to create 

and save jobs [2], DOE launched these programs with orientation towards maximizing the 

public benefit, with particular interest in [1]: 

1. Job Creation and Marketplace Innovation; 

2. Peak Demand and Electricity Consumption; 

3. Operational Efficiency; 

4. Grid Reliability and Resilience; 
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5. Distributed Energy Resources and Renewable Energy; and 

6. Carbon Dioxide Emissions. 

1.1.3 Recovery Act - Smart Grid Investment Grant Program 

The purpose of the Smart Grid Investment Grant Program (SGIG) is to 

accelerate the modernization of the nation’s electric transmission and distribution 

systems and promote investments in smart grid technologies, tools, and techniques 

which increase flexibility, functionality, interoperability, cyber-security, situational 

awareness, and operational efficiency [3]. The purpose of this intended funding 

opportunity announcement is to stimulate the rapid deployment and integration of 

advanced digital technology that is needed to modernize the nation’s electric delivery 

network for enhanced operational intelligence and connectivity. Applications are being 

sought that apply "smart" technology to: appliances and electrical equipment; electricity 

distribution and transmission systems; and homes, offices, and industrial facilities. 

1.1.4 Advanced Metering Infrastructure Projects 

Project applications in this topic area will be aimed at the installation of smart 

meters that can facilitate two-way communication between consumers and utilities.  

Smart meters are able to measure, store, send, and receive real time digital information 

concerning electricity use, costs, and prices that can be used to implement a range of 

customer service initiatives including dynamic pricing, demand response, load 

management, billing, remote connect/disconnect, outage detection and management, 

tamper detection, and other programs [4]. 

There are several awardees of this funding opportunity in different states with a 

total of $3.4 billion in investment to match a total public-private investment worth over $8 

billion [5]. 
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Under this program, Consolidated Edison Company of New York, Inc. has 

deployed a wide range of grid-related technologies, including automation, monitoring, and 

two-way communications to make the electric grid function more efficiently and enable 

the integration of renewable resources and energy efficient technologies.  It will also 

benefit customers in New Jersey [5]. 

1.1.5 Advanced Metering Infrastructure 

Advanced Metering Infrastructure (AMI) is an emerging technology evolving from 

Automated Meter Reading (AMR). Today, many utilities are deploying smart meters as a 

first step towards smart grids enabling the company and consumers to gather and utilize 

metered data in a more intelligent and cost effective manner. 

The core role of revenue meters has always been to measure energy 

consumption in kilowatt hours (kWh) for billing purposes. Smart meters are no exception, 

but even more, smart meters vastly expand the available range of data and advanced 

functionality [6] to meet the evolving Smart Grid needs. 

Electricity metering systems are varied in technology and design. Basically [7], 

smart meters collect data locally and transmit via a Local Area Network (LAN) to a data 

collector. This transmission can occur recurrently in 15-minute or hourly increments, or 

infrequently on a daily basis according to needs. The collector retrieves the data and may 

or may not carry out any processing of the data. Data is then transmitted via a Wide Area 

Network (WAN) to the utility central collection point for processing and use by business 

applications. Since the communications path is two-way, signals or commands can be 

sent directly to the meters. A basic architecture of Smart Meter System operations is 

shown in Figure 1-1. 
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Figure 1-1 Advanced Metering Infrastructure Basic Architecture 

Advanced Meters: Meters that measure and record usage data at hourly intervals 

or more frequently, and provide usage data to both consumers and energy companies at 

least once daily. Data are used for billing and other purposes. Advanced meters include 

basic hourly interval meters, meters with one-way communication, and real time meters 

with built-in two-way communication capable of recording and transmitting instantaneous 

data [8]. 

Some of the benefits of the deployment of AMI at the consumer and service 

provider level can be explained as follows [9]: 

 Since smart meters communicate consumption data to both the user and the 

service provider, the consumers can be more aware of their energy usage 

with in-home displays. Going further, electric pricing information supplied by 

the service provider enables load control devices like smart thermostats to 

modulate electric demand based on pre-established consumer price 

preferences. More advanced customers deploy distributed energy resources 

(DER) based on these economic signals. Consumer portals process the AMI 
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data in ways that enable more intelligent energy consumption decisions, 

even providing interactive services like prepayment. 

 On the other hand, the service provider (utility) can employ existing, 

enhanced or new back office systems that collect and analyze AMI data to 

help optimize operations, economics, and consumer service. For example, 

AMI provides immediate feedback on consumer outages and power quality, 

enabling the service provider to rapidly address grid deficiencies, and AMI’s 

bidirectional communications infrastructure also supports grid automation at 

the station and circuit level. The vast amount of new data flowing from AMI 

allows improved management of utility assets as well as better planning of 

asset maintenance, additions, and replacements. The resulting more efficient 

and reliable grid is one of AMI’s many benefits. 

1.2 Motivation 

The world is increasingly information-driven, and since smart meter deployments 

significantly increase data quantity and availability, data analytics becomes an essential 

piece of every electric utility company.  The era of Big Data is here, but Big Data does not 

create value until it is transformed into useful information and is put into the context of 

solving important business challenges [10, 11]. To do so, it requires access to 

voluminous and varied data set, as well as strong analytics capabilities that include both 

software tools and the requisite skills to use them [12]. 

There are a number of challenges resulting from the greatly increased type, 

variability, volume, and timing of logging AMI data [13]. Data from multiple sources are 

not only generated in high volume, but they are also delivered at a high rate, outgrowing 

the ability for many traditional systems to store and analyze the data. As a result, much of 

the data is collected, but not analyzed [12]. 
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Therefore, the motivation comes from this necessity of using the smart meter 

data to realize the benefits of the advanced metering infrastructure for smart grid 

development that gives utilities the ability to better manage their power grid and enables 

consumers to better control their consumption, among other benefits. 

1.3 Contribution 

Large amounts of available data inspire new ways to transform processes, 

organizations, entire industries, and even society itself. AMI is becoming the standard in 

today’s utility industry, making it possible to transform the performance of the grid and 

dramatically improve customer experience, utility operations and advanced power 

management. To attain the maximum benefits from AMI, it is of utmost importance that 

utilities perform large-scale data analysis and transform them into information. 

In data analysis, an analyst starts by preparing and preprocessing data used in 

the analytics tools. This task often receives little attention, and it is treated as a minor 

topic in the research literature and data-mining process [14]. In real world applications, 

the situation is reversed. Since limited efforts are focused on addressing load or 

customer power consumption data handling, the first contribution is to address AMI data 

preprocessing needed to turn raw data into actionable information. 

Once the problems of AMI data have been carefully understood and solved 

during the data preprocessing stage, it is time to move forward. 

Traditionally, utilities have collected and analyzed interval data for a statistical 

sample of customers of a particular type usually on a rate class basis [15]. Nowadays, 

with the deployment of smart meters, the availability of interval data is being extended to 

all customers. 

In this sense, traditional statistical processes with sample statistics for estimation 

of class load profiles should be expanded. Therefore, the next contribution is to ease the 
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calculation of class load profiles by adding up across the interval data for customers in 

the class. Moreover, load profiles calculation is further enhanced by applying a well-

established data mining technique, clustering, to identify patterns in load consumption. 

Then, it is proposed that using clustering approaches applied to the load profiling 

problem will be an appealing idea for load forecasting because grouping load profiles 

based on consumption behavior similarities will reduce the variability of load which will be 

predicted over time, and therefore, the forecasting error. 

Finally, an application of smart meter data for Non-Intrusive Load Monitoring 

(NILM) is proposed. A viable solution for a realistic development of NILM based on the 

AMI data is investigated considering polynomial load models as well. 

1.4 Dissertation Outline 

Before embarking on the task of advanced data analysis process, one must have 

a clear understanding of what kind of data the smart meters offer to generate valuable 

information. Real-world data are highly susceptible to noise, missing values, and 

inconsistency that must be resolved to be able to get the most out of the smart meter 

data. This is presented in Chapter 2. 

Chapter 3 is dedicated to the development of load profiles. Model variables and 

algorithms are introduced for calculating load profiles based on stratification customer 

information, and also based on customers’ behavior similarities. 

Chapter 4 brings together the load profile clustering development to the load 

forecasting problem. This chapter presents how load forecasting at the system level can 

be further enhanced by applying a well-established data mining technique, clustering, to 

identify load consumption patterns with household level data from smart meters. 
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Inspired by non-intrusive load monitoring, in Chapter 5, a viable solution of using 

AMI data for Major Appliances Identification considering polynomial load models is 

investigated. 

Finally, conclusions and idea of future works are presented in Chapter 6 
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Chapter 2  

AMI Data Preprocessing 

Large amount of data inspire new ways to transform processes, organizations, 

industries, and even society. Today, many utilities are deploying smart meters as the first 

step towards smart grids. Going from one meter reading per month to one meter reading 

every 15 minutes, or even every 1 minute immediately presents a great technical 

challenge that can be overwhelming if not properly managed. The process of identifying 

the pieces of AMI Data that contain value and determining how best to extract those 

pieces is critical. It may not be glamorous or exciting, but iteratively preprocessing AMI 

data, examining what it looks like, and adjusting the preprocess in order to better target 

the data that are needed is immensely important. Data preprocessing is a critical step to 

turn raw data into actionable information. Without completing this step, it will not be 

possible to proceed to the analysis phase. 

Technical literature (many researchers) does not give the real importance to this 

matter because only the back-end is presented and the front-end is minimized due to 

assumptions that the data are ready to be used. Only a limited number of authors share 

their experiences on dealing with smart meter data, and the reason might be because 

smart meter data is probably beyond the reach of researchers outside the utility 

company, or only very limited data is being made available to consumers and 

researchers. 

Real-world data are highly susceptible to noise, missing values, and 

inconsistency. Raw data that do not appear to show any of these problems should 

immediately arouse suspicion. Data quality is possibly the single most important factor to 

influence the quality of the results from any analysis. Despite the fact that data quality is a 



10 

subjective concept, data have quality if they satisfy the requirements of their intended use 

[16, 17]. 

2.1 Data Preparation 

There are a number of challenges resulting from the greatly increased type, 

variability, volume, and timing of logging AMI data [13]. Data from multiple sources are 

not only generated in high volume, but are also delivered at a high rate, outgrowing the 

ability for many traditional systems to store and analyze the data. As a result, much of the 

data is collected, but not analyzed [12]. Moreover, because smart meters must transmit 

the near-real time data they gather to a central collection point, a lot of utilities struggle 

with the limited capacity of their communication networks. Understanding AMI data 

behavior and assessing AMI data quality are the beginning steps for AMI data analysis. 

2.1.1 Familiarizing with AMI Data 

Before embarking on the task of advanced data analysis process, one must have 

a clear understanding of what kind of data the smart meters offer and must be able to 

interpret the data. Without taking a closer look at attributes and data values, it will be 

difficult to generate valuable information even if the data are accurate, timely, consistent, 

and complete [18]. The core role of revenue meters has always been to measure energy 

consumption in kilowatt hours (kWh) for billing purposes, and smart meters are no 

exception. However, smart meters vastly expand the available range of data and 

advanced functionality [6] to meet the evolving Smart Grid needs. 

2.1.1.1 Initial error checking 

An obvious yet important first step in familiarizing with smart meter data is that 

one must be able to read the data even before beginning with any data check or any 

further steps in formal analysis [19].  
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In this step, one can easily identify that a set of ~1,500 smart meters can occupy 

up to ~2.5GB in disk as a common text format (.TXT) file for a single day. 

2.1.1.2 Visualization 

One of the simplest ways to gain insight on the data at hand would be 

visualization. It helps the analyst to become familiar with the data set. An appealing 

option is to plot the data over time: e.g. a day, a whole week, a whole month (Figure 2-1); 

or skim through the data set in its primary tabular form: on this way, one can distinguish 

attributes, data type (e.g. string, numeric), file delimiter, data resolution. Of course, only a 

very limited amount of data can be meaningfully presented and digested, but it may be 

enough to identify and establish a preliminary observation on the behavior of the raw 

data. 

 

Figure 2-1 Channel 1 (kWh consumption), Time Interval: 1 minute, AMI-Data March 2012 

2.1.1.3 Smart meter data format 

In general, smart meter data are in the form of time series and are arranged in 

such a way that they come in the form of tuples. Starting from February 2012 until 

October 2013, three distinct smart meter data formats from a utility have been identified 
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due to system upgrades, as shown in Table 2-1. It should be pointed out that efforts have 

been made to establish a consistent format throughout the files starting from October 

2012 and onwards. 
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Table 2-1 Smart Meter Data Format 

Month Available Attributes in Tuple Form 

Feb-12 <Meter Number,Device_Mfg_Model,Channel,UOM,Raw Value,BlockEndValue,EndTime,Value,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

Mar-12 <Meter Number,Device_Mfg_Model,Channel,UOM,Raw Value,BlockEndValue,EndTime,Value,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

Apr-12 <Meter Number,Device_Mfg_Model,Channel,UOM,Raw Value,BlockEndValue,EndTime,Value,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

May-12 <MeterName,EndTime,Channel,RawValue,Value,UOM,BlockEndValue,Device_Mfg_Model> 

Jun-12 <MeterName,EndTime,Channel,RawValue,Value,UOM,BlockEndValue,Device_Mfg_Model,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

Jul-12 <MeterName,EndTime,Channel,RawValue,Value,UOM,BlockEndValue,Device_Mfg_Model,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

Aug-12 <MeterName,EndTime,Channel,RawValue,Value,UOM,BlockEndValue,Device_Mfg_Model,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

Sep-12 <MeterName,EndTime,Channel,RawValue,Value,UOM,BlockEndValue,Device_Mfg_Model,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

Oct-12 <MeterName,EndTime,Channel,RawValue,Value,UOM,BlockEndValue,Device_Mfg_Model,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 

   … … 

Oct-13 <MeterName,EndTime,Channel,RawValue,Value,UOM,BlockEndValue,Device_Mfg_Model,Revised_Value,CT_Ratio_value,Applied_CT_Ratio> 
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Each of the distinct files is composed for the attributes shown in Table 2-2 

Table 2-2 Attributes That Represent a Smart Meter Data 

Attribute Definition 
Meter Number or Meter Name Meter identification number 
Channel Measured quantity 
Value Actual measurement 
End Time Time stamp 
UOM Unit of measurement 
Device_Mfg_Model Device manufacturing model 
CT_Ratio_value Current transformer ratio 

 

A typical single phase revenue meter for residential metering installations may 

store quantities or channels as shown in Table 2-3. 

Table 2-3 Available Information From a Smart Meter 

Channel 
# Measurement Operation 

1 Total kWh Sum 
2 Total kVArh  Sum 
3 Total Apparent kVAh  Sum 
4 Current Phase A Store 
5 Current Phase B Store 
6 Current Phase C Store 
7 Voltage Line A to Neutral Store 
8 Voltage Line B to Neutral Store 
9 Voltage Line C to Neutral Store 
10 Current Phase A Max 
11 Current Phase B Max 
12 Current Phase C Max 
13 Voltage Line A to Neutral Min 
14 Voltage Line B to Neutral Min 
15 Voltage Line C to Neutral Min 
16 kWh Phase A Sum 
17 kWh Phase B Sum 
18 kWh Phase C Sum 
19 kVArh Phase A Sum 
20 kVArh Phase B Sum 
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2.1.2 Smart Meter Data Resolution and Grouping 

After becoming familiar with the AMI data at hand, and since data resolution or 

logging time is a concern, smart meters that record samples every 15 minutes and every 

1 minute have been identified. Therefore, three very distinct smart meter files that depend 

on the recording time interval and the number of channels can be established: 

Group 1.  Min15Ch2 – Recordings every 15 minutes, 2 Channels, 

Group 2.  Min1Ch2 – Recordings every 1 minute, 2 Channels, 

Group 3.  Min1Ch20 – Recordings every 1 minute, 20 Channels. 

2.2 Smart Meter Data Cleaning 

As mentioned earlier, real-world data are highly susceptible to noise, missing 

values, and inconsistency. Data quality is possibly the single most important factor to 

influence the quality of the results from any analysis. This section discusses the 

encountered issues and the processes to resolve inconsistencies, deal with missing 

values, smooth noisy data, and identify or remove outliers. 

2.2.1 Inconsistencies 

When data processing centers make changes as a result of introducing 

improvements over time, downstream users may not be aware of these changes for a 

short interval of time. Some of these changes are obvious, but sometimes the changes 

are minor and difficult to ascertain [17]. The following are typical examples that were 

encountered: 

 Changes in units of measurement. Meters present a wide flexibility on how 

they report their data. As shown in Figure 2-2, a meter was set to report in 

Wh initially and switched to kWh around 10 AM. A correction needs to be 

made to all affected meters. 
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Figure 2-2 Changes in UOM Reporting in kWh Instead of Wh.  If No Correction Was 

Made, It Would Be Mistakenly Thought That No Consumption Occurred. 

 Swapping attributes for an entire data set.  This can be noticed in Table 2-1 

where the data provided at each column of the entire data set are effectively 

the same with the exception that, in some cases, CT ratio fields are not 

provided. A comparison of the relevant columns for this study is shown in 

Table 2-4, where Labels indicate the same data, and the Column indexes are 

matched, swapped (partially matched), or non-existent (partially matched). 

Partially matched means that a match occurs but not at all times. 
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Table 2-4 Comparison of Relevant Attributes Available on the Entire Data Set 

Cases Feb. 2012 - Apr. 2012 May 2012 Jun. 2012 and Onwards 
Label Col. Label Col. Label Col. 

Matched 
Meter Number 1 Meter Name 1 Meter Name 1 

Channel 3 Channel 3 Channel 3 

Swapped 
(Partially 
Matched) 

Value 8 Value 5 Value 5 

End Time 7 End Time 2 End Time 2 

UOM 4 UOM 6 UOM 6 

Device_Mfg_Model 2 Device_Mfg_Model 8 Device_Mfg_Model 8 
Non-

existent 
(Partially 
Matched) 

CT_Ratio_value 10 CT_Ratio_value NA CT_Ratio_value 10 

 

 Swapping rows for an entire data set. Generally, smart meter data sets 

contain their rows arranged by channel variables in ascending order, but data 

in May 2012 present row swapping. It was commonly found that rows were 

sorted in descending order in most of the smart meter files, for example in 

Table 2-5. However, some files have their rows swapped randomly, as 

shown in Table 2-6. 

Table 2-5 Swapped Rows: Descending Order – Time Interval 15 Minutes, 2 Channels 

MeterName   EndTime   Channel   RawValue   Value   UOM   BlockEndValue   Device_Mfg_Model  

XXXXXX , 2012-05-31 00:00:00 , 2 , 2 , .0061000000 , kVARh , 1077.0000000000 , I210+C  

XXXXXX , 2012-05-31 00:00:00 , 1 , 31 , .0930000000 , kWh , 6957.0000000000 , I210+C  

XXXXXX , 2012-05-31 00:15:00 , 2 , 0 , .0000000000 , kVARh , 1077.0000000000 , I210+C  

XXXXXX , 2012-05-31 00:15:00 , 1 , 22 , .0660000000 , kWh , 6957.0000000000 , I210+C  

XXXXXX , 2012-05-31 00:30:00 , 2 , 0 , .0000000000 , kVARh , 1077.0000000000 , I210+C  

XXXXXX , 2012-05-31 00:30:00 , 1 , 12 , .0360000000 , kWh , 6958.0000000000 , I210+C  

…   …   …   …   …   …   …   … 
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Table 2-6 Swapped Rows: Random Order – Time Interval 1 Minute, 20 Channels 

MeterName   EndTime   Channel   RawValue   Value   UOM   BlockEndValue   Device_Mfg_Model  

XXXXXX , 2012-05-19 00:00:00 , 20 , 0 , .0000000000 , kVARhB-N ,   , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 19 , 0 , .0000000000 , kVARhA-N , .0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 18 , 1 , .0030000000 , kWhC-N , 380.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 17 , 0 , .0000000000 , kWhB-N ,   , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 16 , 1 , .0030000000 , kWhA-N , 169.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 15 , 1197 , 119.7000000000 , VrmsC-N , 117.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 14 , 0 , .0000000000 , VrmsB-N ,   , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 13 , 1201 , 120.1000000000 , VrmsA-N , 116.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 12 , 24 , 2.4000000000 , IRMSC-N , 16.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 11 , 0 , .0000000000 , IRMSB-N ,   , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 10 , 13 , 1.3000000000 , IRMSA-N , 2.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 9 , 1208 , 120.8000000000 , VrmsC-N , 121.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 8 , 0 , .0000000000 , VrmsB-N ,   , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 7 , 1209 , 120.9000000000 , VrmsA-N , 121.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 6 , 24 , 2.4000000000 , IRMSC-N , 2.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 5 , 0 , .0000000000 , IRMSB-N ,   , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 4 , 13 , 1.3000000000 , IRMSA-N , 1.0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 3 , 3 , .0090000000 , kVAh , .0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 2 , 0 , .0000000000 , kVARh , .0000000000 , kV2c  

XXXXXX , 2012-05-19 00:00:00 , 1 , 1 , .0030000000 , kWh , 549.0000000000 , kV2c  

…   …   …   …   …   …   …   … 

XXXXXX , 2012-05-19 16:43:00 , 12 , 23 , 2.3000000000 , IRMSC-N , 16.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:43:00 , 11 , 0 , .0000000000 , IRMSB-N ,   , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 1 , 1 , .0030000000 , kWh , 554.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 3 , 2 , .0060000000 , kVAh , .0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 2 , 0 , .0000000000 , kVARh , .0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 7 , 1204 , 120.4000000000 , VrmsA-N , 121.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 6 , 23 , 2.3000000000 , IRMSC-N , 2.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 5 , 0 , .0000000000 , IRMSB-N ,   , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 4 , 13 , 1.3000000000 , IRMSA-N , 1.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 20 , 0 , .0000000000 , kVARhB-N ,   , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 19 , 0 , .0000000000 , kVARhA-N , .0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 18 , 1 , .0030000000 , kWhC-N , 384.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 17 , 0 , .0000000000 , kWhB-N ,   , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 16 , 1 , .0030000000 , kWhA-N , 170.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 15 , 1198 , 119.8000000000 , VrmsC-N , 117.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 14 , 0 , .0000000000 , VrmsB-N ,   , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 13 , 1203 , 120.3000000000 , VrmsA-N , 116.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 12 , 24 , 2.4000000000 , IRMSC-N , 16.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 11 , 0 , .0000000000 , IRMSB-N ,   , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 10 , 13 , 1.3000000000 , IRMSA-N , 2.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 9 , 1199 , 119.9000000000 , VrmsC-N , 120.0000000000 , kV2c  

XXXXXX , 2012-05-19 16:44:00 , 8 , 0 , .0000000000 , VrmsB-N ,   , kV2c  

…   …   …   …   …   …   …   … 
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 Getting more or less attributes. As mentioned earlier, utility personnel has the 

option to turn on or off the data channels from smart meter. This provides 

flexibility in information gathering but greatly increases the complexity of data 

conversion process. 

 Changes in format. In some situations an attribute or a variable is expressed 

in a different way. For example, the attribute “Meter Number” is sometimes 

labeled as “MeterName” (Table 2-4), which represents the same data 

attribute. Another example can be seen in Table 2-7 regarding the Time 

Stamp. 

Table 2-7 Changes in Format for Timestamp Data 

Timestamp Format Characteristics 
‘[m]m/[d]d/yyyy [H]H:MM:SS XX’ 
Examples: 
2/8/2012 10:39:00 PM 
3/11/2012 9:45:00 AM 
4/3/2012 8:02:00 PM 
11/11/2012 2:24:00 AM 

Values in brackets are optional 
12-hour clock format 
XX could be either AM or PM 
Date separator is ‘/’ 
Time separator is ‘:’ 
Date-Time separator is ‘ ’ 

‘yyyy-mm-dd HH:MM:SS’ 
Examples: 
2012-05-09 00:03:00 
2012-06-04 13:44:00 
2012-07-10 16:15:00 
2012-08-12 08:09:00 
2012-09-17 20:03:00 

24-hour clock format 
Date separator is ‘-’ 
Time separator is ‘:’ 
Date-Time separator is ‘ ’ 

 

As solutions to inconsistency problems, in addition to propagate and cycle 

notifications whenever a change is made anywhere in the system to ensure that every 

entity which uses that data element is informed [17], a comprehensive software design 

should take these situations into consideration. 
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2.2.2 Missing Data 

Incomplete data are commonplace properties of large real-world databases and 

data warehouses, and it can occur for a number of reasons. Some attribute values are 

not recorded because they are considered irrelevant [16]. The data collection instruments 

used may be faulty. Similarly, errors in data transmission, if either the receiving end or 

the sending end have problems [16, 17].  In addition, the entering of day light saving can 

also cause missing data. 

The simplest solution for this problem is the reduction of the data set by 

eliminating all samples with missing values. This is possible when large data sets are 

available [14]. Fill-in methods such as replacing a missing attribute value by a measure of 

central tendency for the attribute (e.g. mean or median) or assigning the most probable 

value to the missing attribute could be considered [20]. Figure 2-3 shows the missing 

data due to the beginning of the daylight saving time (DST). 

According to the experiences in dealing with smart meter data, two distinct types 

of missing data were found: missing interval data and missing channel data. Missing 

interval data could be associated with transmission problems or day light saving while 

missing channel data occurs because no data have been stored in that channel. These 

cases have to be treated differently when processing the data. 

2.2.3 Duplicate Data 

Communication interruption and resend requests may create duplicate data. 

Generally, data cleaning can be performed to detect and remove redundancies in the 

data [16]. By solving row data inconsistencies, duplicate data can be handled. The other 

possibility of data duplication is the end of day light saving. They have to be identified and 

treated as valid data. Figure 2-4 shows duplicate data due to the ending of day light 

saving.  
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Figure 2-3 “Missing Data” Due to Daylight Saving Time in the United States That Began 

at 2:00 AM on Sunday, March 11, 2012 

2.2.4 Outlier Detection 

Alternatively, data cleaning tasks include outlier detection. Samples that are 

significantly different or inconsistent with the remaining set of data are called outliers. 

Outlier detection and clustering analysis are two highly related tasks [16], where a cluster 

of small sizes can be considered as clustered outliers [21]. 
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Figure 2-4 “Duplicate Data” Due to Daylight Saving Time in the United States That Ended 

at 2:00 AM on Sunday, November 4, 2012 

2.3 Data Preprocessing Software Design Criteria 

Data reading and preprocessing software is designed to be robust enough to 

deal with and solve the issues that have been introduced. Some are fixable while others 

are not, but the ultimate goal is to prepare the data for analysis. 

First of all, the raw files should be in the known format as it has been presented 

in Table 2-1. These are large files containing all the meters at a particular day, so to be 

able to manage these data, each line of a large file is read, and a new file is created 

every time a new smart meter is found. After this step is performed, a single file per 

meter, per day at each month is obtained, as shown in Figure 2-5. 
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Figure 2-5 A Single Text File Obtained From the AMI System Can Contain Up to 33 

Million Lines of Data. This File Corresponds To 1-Day Worth of Data on August 1, 2012, 

and It Has Up to 2373 Smart Meters. Each Smart Meter is Then Allocated in a Single File 

per Meter, Per Day to Be More Manageable. One May Notice That Each Month a Great 

Amount of Data Is Collected Under This New Era of Smart Meters. 

In addition, a Raw Count is collected which indicates the number of data lines 

that each meter has at a particular day, this helps in identifying whether the large files 

contain reasonable data. Then, a data validation step is performed where not only 

inconsistencies and missing/duplicate values are taken care of but also each smart meter 

file is converted into a binary file containing its data for the whole month to make it 

convenient for handling. Moreover, the data file format is standardized, making it possible 
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to have smart meter files with the same meaning, attributes, and fields; but with a 

different number of channels and time interval, as shown in Table 2-8. 

Table 2-8 Standard Format for the Smart Meter Data Files 

Attribute Definition 
Meter Number Unique smart meter identification number 
Date Date with the following format ‘YYYYMMDD’ 
Data A matrix of NoOfPointsPerDay-by-NoOfChannels 

 The NoOfPointsPerDay will be 96 for a 
resolution of 15 minutes, or 1440 for a 
resolution of 1 minute. 

 The NoOfChannels will be 2 or 20. 
 

Finally, each smart meter file is organized in a group: Min15Ch2, Min1Ch2, and 

Min1Ch20. In addition, a Detailed Count is kept for each smart meter at each day of the 

month per channel to be utilized by utility personnel, and Detailed Indicators explain the 

problems the raw data has for each smart meter at each day the whole month per 

Channel. As examples of this, summary counts for Channel 1 at each group of smart 

meters are provided in Table 2-9, Table 2-10, and Table 2-11. 

Table 2-9 Summary Count from February 2012 to October 2013 – Min15Ch2-Channel 1 

Year 2012 

Month Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Total No. of Meters 593 593 599 598 598 595 597 597 596 596 593 

No. of Days 29 31 30 31 30 31 31 30 31 30 31 

No. of Meters with  
< 4 days missing 592 593 597 596 595 595 584 594 594 593 588 

Percentage 99.83 100.00 99.67 99.67 99.50 100.00 97.82 99.50 99.66 99.50 99.16 

Year 2013 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct  
Total No. of Meters 588 589 582 582 597 596 593 588 586 587  

No. of Days 31 28 31 30 31 30 31 31 30 31  
No. of Meters with  

< 4 days missing 584 577 580 581 580 591 585 583 585 585  

Percentage 99.32 97.96 99.66 99.83 97.15 99.16 98.65 99.15 99.83 99.66   
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Table 2-10 Summary Count from February 2012 to October 2013 – Min1Ch2-Channel 1 

Year 2012 

Month Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Total No. of Meters 250 256 265 266 261 258 258 258 261 263 264 

No. of Days 29 31 30 31 30 31 31 30 31 30 31 

No. of Meters with  
< 4 days missing 237 250 256 261 255 258 244 258 258 259 262 

Percentage 94.80 97.66 96.60 98.12 97.70 100.00 94.57 100.00 98.85 98.48 99.24 

Year 2013 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct  
Total No. of Meters 262 245 241 241 269 269 265 257 263 262  

No. of Days 31 28 31 30 31 30 31 31 30 31  
No. of Meters with  

< 4 days missing 239 232 241 240 239 257 256 254 255 256  

Percentage 91.22 94.69 100.00 99.59 88.85 95.54 96.60 98.83 96.96 97.71   

 

Table 2-11 Summary Count from February 2012 to October 2013 – Min1Ch20-Channel 1 

Year 2012 

Month Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Total No. of Meters 699 1244 1192 1472 1577 1525 1518 1529 1519 1582 1589 

No. of Days 29 31 30 31 30 31 31 30 31 30 31 

No. of Meters with  
< 4 days missing 492 665 1136 1074 1335 1412 665 1153 1315 1128 1447 

Percentage 70.39 53.46 95.30 72.96 84.65 92.59 43.81 75.41 86.57 71.30 91.06 

Year 2013 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct  
Total No. of Meters 1564 1574 1580 1589 1590 1612 1598 1587 1589 1575  

No. of Days 31 28 31 30 31 30 31 31 30 31  
No. of Meters with  

< 4 days missing 1375 1482 1425 1499 1399 1334 1222 1245 1099 1159  

Percentage 87.92 94.16 90.19 94.34 87.99 82.75 76.47 78.45 69.16 73.59   

 

It should be pointed out that the Detailed Count is analyzed by channel. 

Depending on the application, one or more channels are revised to determine valid smart 

meter files for subsequent use if desired. 
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Chapter 3  

AMI Data for Load Profiling 

Load profile estimation has been identified as one of the most desirable 

applications after AMI implementation since the load shapes, as well as the daily peak 

load, are vital factors in scheduling, operation, and control of the utility grid. In the long 

term, demand forecasting is useful to plan and purchase power supply by utilities, 

schedule equipment maintenance, and provide an early warning to consumers of 

potential load curtailment or advanced pricing information. In the short term, it is essential 

to know with as much accuracy as possible what the total and local system demand will 

be in the next minutes, hours, and days so that generators with different costs and 

constraints can be scheduled to optimize total system efficiency. 

Hourly load profiles have been in use for a long time. Typically, electric service 

companies estimate the load of consumers on a class-by-class basis, using smooth, 24-

hour peak day load curves. Customers are linked to one of the predefined classes, and 

the load of each customer is then estimated with customer class-specific hourly load 

profiles. Each household within the same class will have identical normalized daily load 

curve, although each will be different because each home has different appliances and is 

occupied by people with different schedules and usage preferences. Typically, only active 

power is considered for calculating Load Profiles, and there is no distinction for three or 

single phase consumption. Load curves have been on a 15, 30, 60, and 120 minute 

basis. 

Based upon the following two criteria, this dissertation presents two approaches 

to develop load profiles for residential customers:  

 The customer stratification information 

 The customers’ behavior similarities  
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3.1 Model Variables 

The groups of variables that appear in these models are: 

Data Meters Variables 

 Recording Time Interval 

o 15-minutes smart meter data 

o 1-minute smart meter data 

 Service Class and Stratification 

Calendar Variables 

 Day of the week 

 Holiday 

 Weekday and weekend 

 Season of the year 

Each of these groups of variables is discussed separately in the following 

sections. 

3.1.1 Data Meters Variables 

The profile data that are used as the dependent variable in the profile models are 

developed from meter readings for individual customers from the Utility AMI system. 

There are essentially three very distinct groups of meters based on their data logging 

capabilities. One group of the utility data sets provided individual data at the 15-minute 

level. Although, the remaining data sets were at the 1-minute level, the load profiles were 

developed at 15-minute basis as required by the utility personnel. Along with the data 

sets, information on the Service Class and Stratification Groups for the underlying 

customers was provided.  

The Utility tariff establishes the Service Classes definitions. Service Class 1 is 

considered for the present study, and it corresponds to Residential Customers. Stratum 
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Category represents a subgroup within a service class.  It is a measure of the size of a 

customer as defined by a particular billing quantity. Table 3-1 relates the stratum variable 

to the studied Service Class 1. 

Table 3-1 Service Class 1 and its Stratum Billing Variable 

Service 
Class Service Class Description Stratum Billing 

Variable 

SC 1 Residential (excluding Religious and Water 
Heating) Annual kWh 

 

There are six stratum groups within service class 1 – residential. Table 3-2 

shows the annual kWh ranges for the stratification variables. Group A includes those 

customers with no usage; these may be unoccupied apartments. Group F has no upper 

limit; these may be quite large. 

Table 3-2 Service Class 1 and its Stratum Billing Variable 

# Class Group Stratification Criteria Low (kWh) High (kWh) 
RESID A Total Annual kWh 0 1948 
RESID B Total Annual kWh 1949 2897 
RESID C Total Annual kWh 2898 3897 
RESID D Total Annual kWh 3898 5239 
RESID E Total Annual kWh 5240 7741 
RESID F Total Annual kWh 7742 9999999999 

 

Therefore, to characterize the residential customer load curves, Service Class 

and Stratum Group should be known a priori for all the meters that are subject to analysis 

for developing the load profiles based on stratification information, but not when the load 

profiles are developed based on behavior similarities, where the customers groups are 

inferred from the data. 
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3.1.2 Calendar Variables 

The main calendar variables include the day of the week, indicators of season, 

and holiday schedules. 

3.1.2.1 Day of the week variables 

The variables used in the models are shown in Table 3-3. 

Table 3-3 Day of the Week Variables 

Day of the week index Days 
1 Sundays 
2 Mondays 
3 Tuesdays 
4 Wednesdays 
5 Thursdays 
6 Fridays 
7 Saturdays 

 

These variables are used when the load profiles are to be developed for a Day 

Type. The following provides a discussion of the importance of these variables: 

 Saturday and Sunday. Residential loads tend to be slightly higher than 

on weekdays, reflecting the fact that most people are home from work 

and school. 

 Monday. Monday loads tend to be slightly different from days in the 

middle of the week. People coming from a short break during weekend 

tend to show a different behavior, and starting again their activities at 

work or school. 

 Tuesday, Wednesday, and Thursday. These days in the middle of the 

week tend to be highly similar in residential loads. 

 Friday. Friday loads tend to be slightly different from days in the middle 

of the week. Residential loads extend into later hours. 
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3.1.2.2 Holiday variables 

Specific dates are introduced for each individual holiday. Weekday holidays have 

higher residential loads than typical weekdays. The exact effect on the loads depends on 

the holiday. The following is a list (Table 3-4) of all specific holidays that are included in 

the Utility Schedule. The date has been expressed as an integer number to facilitate its 

processing. 

Table 3-4 Holiday Day-Type Schedule 2012 - 2013 

Holiday Date Integer Date 
New Year’s Day 2-Jan-12 20120102 
Presidents' Day 20-Feb-12 20120220 
Memorial Day 28-May-12 20120528 
Independence Day 4-Jul-12 20120704 
Labor Day 3-Sep-12 20120903 
Thanksgiving Day 22-Nov-12 20121122 
Christmas Day 25-Dec-12 20121225 
New Year's Day 1-Jan-13 20130101 
Presidents' Day 18-Feb-13 20130218 
Memorial Day 27-May-13 20130527 
Independence Day 4-Jul-13 20130704 
Labor Day 2-Sep-13 20130902 
Thanksgiving Day 28-Nov-13 20131128 
Christmas Day 25-Dec-13 20131225 

 

3.1.2.3 Weekday and weekend variables 

In addition to Day of the Week variables, to give flexibility to the Utility Company 

when creating load profiles, Weekday and Weekend Variables are specified to create the 

load profiles for weekdays and weekends only without days of the week distinction. 

Weekend and holiday electrical demand are presumed to exhibit behaviors 

different from the demand behavior of typical weekdays. A “Weekday” corresponds to 
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any weekday that is not a major holiday. Likewise, “Weekend” is defined to be the 

complement of the Weekday variable.  

3.1.2.4 Season of the year variables 

Residential and commercial loads typically exhibit strong seasonal variation 

arising from operation of heating, ventilation, and air conditioning loads. It then follows 

that four season variables are defined that are applicable to the specific Utility Company 

under study. 

 Summer for summer months:  June, July, August, and September 

 Fall for fall months: October 

 Winter for winter months: November, December, January, and February 

 Spring for spring months: March, April, and May 

3.2 Load Profile Development Based on Stratification Customer Information 

The objective of this part is to develop valid and useable load profiles. Because 

smart meter is at an endpoint, it can be aggregated in different ways to serve load profile 

purposes. This has a significant implication because the load profile development follows 

a straightforward, structural approach based on Service Class and Stratification 

information.  Service Class represents a group of customer types with similar load 

characteristics, and Stratum Category represents a subgroup within a service class. 

Therefore, the smart meters are grouped by stratum categories, and the time 

period can be defined by the user ranging from a day, a month, or a season. For 

instance, a day could be determined to be at system peak demand, a month could be any 

of the available months, and a season could be summer. 

As required for load profile development, curves are defined at 15-minute 

intervals, resulting in a 96-point daily curve. In general, for load profiling only Channel 1 is 

needed, which corresponds to total kWh. Most of the smart meters show their channel 1 
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with not many problems as data integrity is concerned, containing full data most of the 

time. 

When more than one day (month or season) is considered, a meter should be 

present at all time. Then, the first step is to average load consumption at each individual 

meter for the whole time period. Two cases are considered: 

1. Load profile considering only Stratification Data without Day Type 

distinction except Weekday, Weekend, or Holiday if specified. 

2. Load Profile considering only Stratification Data at each Day Type of the 

Week: Holidays, Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, 

Saturdays and Sundays. 

Once individual load consumption at the meter level is determined, the next step 

is to proceed with a load profile for consumers that belong to a stratum category. The 

load profile is characterized by the mean and standard deviation curves. Due to the large 

amount of load profile cases that can be obtained from the current data, presenting 

exhaustive results would not be convenient. 

As an example of the construction of load profiles based on the stratification 

information, load profiles for summer corresponding to the months of June, July, August, 

and September of 2012 are calculated. The smart meters belong to the group of 

Min15Ch2. There are 541 smart meters in total, where 100 meters belong to Stratum A, 

131 meters to Stratum B, 205 meters to Stratum C, 83 meters to Stratum D, 22 meters to 

Stratum E, and no meters belong to Stratum F. Figure 3-1 to Figure 3-10 show the Load 

Profiles for Weekdays and Weekends during Summer 2012. 
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Figure 3-1 Weekdays Load Profile – Mean ± Std. Dev. for Stratum A 

 

Figure 3-2 Weekends Load Profile – Mean ± Std. Dev. for Stratum A 
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Figure 3-3 Weekdays Load Profile – Mean ± Std. Dev. for Stratum B 

 

Figure 3-4 Weekends Load Profile – Mean ± Std. Dev. for Stratum B 
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Figure 3-5 Weekdays Load Profile – Mean ± Std. Dev. for Stratum C 

 

Figure 3-6 Weekends Load Profile – Mean ± Std. Dev. for Stratum C 
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Figure 3-7 Weekdays Load Profile – Mean ± Std. Dev. for Stratum D 

 

Figure 3-8 Weekends Load Profile – Mean ± Std. Dev. for Stratum D 
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Figure 3-9 Weekdays Load Profile – Mean ± Std. Dev. for Stratum E 

 

Figure 3-10 Weekends Load Profile – Mean ± Std. Dev. for Stratum E 
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To provide examples of Load Profiles for Day Type considering stratification 

information, only Stratum C is plotted for the sake of clarity from Figure 3-11 to Figure 

3-18. Nevertheless, load profiles can be calculated for all stratum categories. 

 

Figure 3-11 Holidays Load Profile – Mean ± Std. Dev. for Stratum C 
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Figure 3-12 Mondays Load Profile – Mean ± Std. Dev. for Stratum C 

 

Figure 3-13 Tuesdays Load Profile – Mean ± Std. Dev. for Stratum C 
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Figure 3-14 Wednesdays Load Profile – Mean ± Std. Dev. for Stratum C 

 

Figure 3-15 Thursdays Load Profile – Mean ± Std. Dev. for Stratum C 
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Figure 3-16 Fridays Load Profile – Mean ± Std. Dev. for Stratum C 

 

Figure 3-17 Saturdays Load Profile – Mean ± Std. Dev. for Stratum C 
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Figure 3-18 Sundays Load Profile – Mean ± Std. Dev. for Stratum C 
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First of all, data clustering will be introduced, and then the application of 

clustering to obtain the load profiles will be presented. 

3.3.1 Introduction to Data Clustering 

Data clustering1 is concerned with exploring data sets to assess whether or not 

they can be summarized meaningfully in terms of a relatively small number of groups or 

clusters [24]. The goal of clustering is to discover the natural grouping(s) of a set of 

patterns, points, objects, or individuals. Given a representation of n objects, the goal is to 

find K groups based on a measure of similarity such that the similarities between objects 

in the same group are high while the similarities between objects in different groups are 

low [25].An ideal cluster can be defined as a set of points that is compact and isolated. 

Generally, clustering problems can be divided into two categories (Figure 3-19) 

[26]: hard clustering (or crisp clustering) and fuzzy clustering (or soft clustering). In hard 

clustering, a data point belongs to only one cluster; while in fuzzy clustering, a data point 

may belong to two or more clusters with some probabilities. A fuzzy clustering can be 

converted to a hard clustering by assigning each pattern to the cluster with the largest 

measure of membership [27]. Conventional clustering algorithms can be divided into two 

categories: hierarchical and partitional. Hierarchical clustering algorithms recursively find 

nested clusters either in agglomerative mode (starting with each data point in its own 

cluster and merging the most similar pair of clusters successively to form a cluster 

hierarchy) or in divisive (top-down) mode (starting with all the data points in one cluster 

and recursively dividing each cluster into smaller clusters). Compared to hierarchical 

clustering algorithms, partitional clustering algorithms find all the clusters simultaneously 

as a partition of the data and do not impose a hierarchical structure [25]. 

                                                 
1 Data clustering (or just clustering), also called cluster analysis, segmentation analysis, 
taxonomy analysis, or unsupervised classification 
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Figure 3-19 Diagram of Clustering Algorithms 

3.3.2 Clustering Definition 

Mathematically, a data set2 with 𝑚 objects, each of which is described by 𝑛 

attributes3, is denoted by 𝐷 = {𝒙1,𝒙2, … ,𝒙𝑖 , … ,𝒙𝑚}, where 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛), with each 

scalar measure 𝑥𝑖𝑗 denoting the 𝑗𝑡ℎ component or attribute of 𝒙𝑖. This data set to be 

clustered is viewed as an 𝑚 × 𝑛 pattern matrix. Each row in the matrix denotes an object 

while each column represents a feature [23, 27]. 

3.3.2.1 Proximity measures 

Clustering algorithms are defined over sets of entities at which a proximity 

measure has been or can be defined. Proximity is the generalization of both dissimilarity 

and similarity [23]. Dissimilarities or distance functions are typically non-negative real 

numbers: the closer entities are to each other the smaller the dissimilarities are, 

                                                 
2 ‘Data set’ or ‘pattern set’ 
3 Attribute, feature, dimension or variable 
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decreasing to zero to express the identity case. In contrast, similarities can be negative 

and they are increased to express closer ties between entities [28]. 

Given the data set 𝐷, each object of which is described by a d-dimensional 

feature vector, the distance matrix for 𝐷 is defined as [26], 

𝑀𝑑𝑖𝑠𝑡(𝐷) = �

0 𝑑12 … 𝑑1𝑚
𝑑21 0 … 𝑑2𝑚
⋮ ⋮ ⋱ ⋮

𝑑𝑚1 𝑑𝑚2 … 0

�  (3.1) 

where 𝑑𝑖𝑗 = 𝑑�𝒙𝑖 ,𝒙𝑗� with respect to some distance function 𝑑(∙,∙). 

The similarity matrix for D is defined as [57], 

𝑀𝑠𝑖𝑚(𝐷) = �

1 𝑠12 … 𝑠1𝑚
𝑠21 1 … 𝑠2𝑚
⋮ ⋮ ⋱ ⋮
𝑠𝑚1 𝑠𝑚2 … 1

�  (3.2) 

where 𝑠𝑖𝑗 = 𝑠�𝒙𝑖 ,𝒙𝑗� with respect to some similarity function 𝑑(∙,∙). 

3.3.2.1.1 Proximity measures for continuous variables 

It is most common to calculate the dissimilarity between patterns using distance 

measure defined on the features space. A distance measure such as those shown in 

Table 3-5 is chosen to evaluate the dissimilarity between any two clusters centroids, or 

feature vectors. 

Consider two data points 𝒙𝑖 = (𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑛) and 𝒙𝑗 = �𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑛�, for 

example. The Euclidean distance is calculated as 

𝑑�𝒙𝑖 ,𝒙𝑗� = �∑ �𝑥𝑖𝑘 − 𝑥𝑗𝑘�
2𝑛

𝑘=1 �
1
2    (3.3) 
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Table 3-5 Dissimilarity Measures for Computing Distances 

Distance 
measure 

 
Equation 

 
Euclidean 

𝑑𝑒𝑢𝑐�𝒙𝑖 ,𝒙𝑗� = ���𝑥𝑖𝑘 − 𝑥𝑗𝑘�
2

𝑛

𝑘=1

�

1
2

= ��𝒙𝑖 − 𝒙𝑗��𝒙𝑖 − 𝒙𝑗�
𝑇�
1
2 

Squared Euc. 
𝑑𝑠𝑒𝑢𝑐�𝒙𝑖 ,𝒙𝑗� = ��𝑥𝑖𝑘 − 𝑥𝑗𝑘�

2
𝑛

𝑘=1

= �𝒙𝑖 − 𝒙𝑗��𝒙𝑖 − 𝒙𝑗�
𝑇
 

Manhattan or 
City block 𝑑𝑚𝑎𝑛�𝒙𝑖 ,𝒙𝑗� = ��𝑥𝑖𝑘 − 𝑥𝑗𝑘�

𝑛

𝑘=1

 

Minkowski 

𝑑𝑚𝑖𝑛𝑘�𝒙𝑖 ,𝒙𝑗� = ���𝑥𝑖𝑘 − 𝑥𝑗𝑘�
𝑝

𝑛

𝑘=1

�

1
𝑝

, 𝑝 ≥ 1 

Mahalanobis 
𝑑𝑚𝑎ℎ�𝒙𝑖 ,𝒙𝑗� = ��𝒙𝑖 − 𝒙𝑗�Σ−1�𝒙𝑖 − 𝒙𝑗�

𝑇�
1
2 

Canberra 
𝑑𝑐𝑎𝑛�𝒙𝑖 ,𝒙𝑗� = �

�𝑥𝑖𝑘 − 𝑥𝑗𝑘�
|𝑥𝑖𝑘| + �𝑥𝑗𝑘�

𝑛

𝑘=1

 

Chebychev 𝑑𝑐ℎ𝑒�𝒙𝑖 ,𝒙𝑗� = max
1≤𝑘≤𝑛

�𝑥𝑖𝑘 − 𝑥𝑗𝑘� 
Cosine 

𝑑𝑐𝑜𝑠�𝒙𝑖 ,𝒙𝑗� = 1 −
∑ 𝑥𝑖𝑘𝑥𝑗𝑘𝑛
𝑘=1

�∑ 𝑥𝑖𝑘2𝑛
𝑘=1 ∑ 𝑥𝑗𝑘2𝑛

𝑘=1 �
1
2
 

n: number of attributes; 𝑥𝑖𝑘: attribute k of feature vector 𝒙𝑖 in cluster-1; 𝑥𝑗𝑘: attribute k of 
feature vector 𝒙𝑗 in cluster-2; T: transpose of matrix; Σ: covariance matrix; p: order of 
Minkowski distance. 

 

3.3.2.2 Clustering algorithms 

Despite the fact that there are a large number of clustering algorithms, there is no 

correct answer on which one is the best, as it highly depends on the nature of the dataset 

and what constitutes meaningful clusters in an application [25]. 

3.3.2.2.1 Hierarchical clustering 

In hierarchical clustering, the data are not partitioned into a particular cluster in a 

single step. Instead, a series of partitions takes place, which may run from a single 

cluster containing all objects to k clusters with each containing a single object. 

Hierarchical clustering is subdivided into agglomerative methods, which proceed by a 
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series of successive fusions of the n individuals into groups, and divisive methods, which 

separate the n individuals successively into finer groupings [24, 29].  Once divisions or 

fusions are made, the data-points assigned to a cluster cannot move to another cluster. 

Agglomerative techniques are more commonly used. 

Hierarchical Agglomerative Clustering Algorithm [27] 

1. Compute the proximity matrix containing the distance between each pair of 

patterns. Treat each pattern as a cluster. 

2. Find the most similar pair of clusters using the proximity matrix. Merge these 

two clusters into one cluster. Update the proximity matrix to reflect this merge 

operation. 

3. If all patterns are in one cluster, stop. Otherwise, go to step 2. 

Based on the way the proximity matrix is updated in step 2, a variety of 

agglomerative algorithms can be designed. There are four common options [30]: 

Single linkage. The distance between two clusters is the distance between the 

two closest data points in these clusters (each point taken from a different cluster). 

Complete linkage. The distance between two clusters is the distance between 

the two furthest data points in these clusters. 

Average linkage. Both single linkage and complete linkage are sensitive to 

outliers. Average linkage provides an improvement by defining the distance between two 

clusters as the average of the distances between all pairs of points in the two clusters. 

Ward’s method. At each step of agglomerative clustering, instead of merging the 

two clusters that minimize the pairwise distance between clusters, Ward’s method 

merges the two clusters that minimize the ‘information loss’ for the step. The ‘information 

loss’ is measured by the change in the sum of the squared error of the clusters before 
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and after the merge. In this way, Ward’s method assesses the quality of the merged 

cluster at each step or the agglomerative procedure. 

3.3.2.2.2 Partitional clustering 

Partitional methods are very efficient in applications involving large data sets.  

Partitional techniques usually produce clusters by optimizing a criterion function defined 

either locally (on a subset of the patterns) or globally (defined over all of the patterns) 

[27]. One of the most commonly used optimization-based methods is k-means clustering. 

In this algorithm, the number of clusters k is assumed to be fixed. There is an error 

function in this algorithm. It proceeds, for a given initial k clusters, by allocating the 

remaining data to the nearest clusters and then repeatedly changing the membership of 

the clusters according to the error function until the error function does not change 

significantly or the membership of the clusters no longer changes [26]. 

k-Means Clustering Algorithm 

Let 𝐷 be a data set with n instances, and let 𝐶1,𝐶2, … ,𝐶𝑘 be the k disjoint clusters 

of 𝐷. Then the error function is defined as 

𝐸 = ∑ ∑ 𝑑�𝒙, 𝜇(𝐶𝑖)�𝒙∈𝐶𝑖
𝑘
𝑖=1    (3.4) 

where 𝜇(𝐶𝑖) is the centroid of cluster 𝐶𝑖 ; 𝑑�𝒙, 𝜇(𝐶𝑖)� denotes the distance between 𝒙 and  

𝜇(𝐶𝑖), and it can be one of the many distance measures discussed before, a typical 

choice of which is the Euclidean distance 𝑑𝑒𝑢𝑐(∙,∙) as defined in Table 3-5. 

1. Choose k cluster centers to coincide with k randomly-chosen patterns or k 

randomly defined points inside the hypervolume containing the pattern set. 

2. Assign each pattern to the closest cluster center. 

3. Re-compute the cluster centers using the current cluster memberships. 
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4. If a convergence criterion is not met, go to step 2. Typical convergence criteria 

are: no (or minimal) reassignment of patterns to new cluster centers, or minimal 

decrease in squared error. 

Typically, k-means is run independently for different values of k and the partition 

that appears the most meaningful to the domain expert is selected. Different initializations 

can lead to different final clustering because k-means only converges to local minima. 

One way to overcome the local minima is to run the k-means algorithm, for a given k, with 

multiple different initial partitions and choose the partition with the smallest squared error 

[25]. 

3.3.2.2.3 Fuzzy clustering 

So far hard (or crisp) clustering algorithms require that each data point of the 

data set belong to one and only one cluster.  Fuzzy clustering extends this notion to 

associate each data point in the data set with every cluster using a membership function 

[26]. This gives the flexibility to express that data points can belong to more than one 

cluster [31]. 

Let 𝐷 be a data set with n objects, each of which is described by d attributes, and 

let c be an integer between one and n. Then a fuzzy c-partition is defined by a c × n 

matrix 𝑈 = (𝑢𝑙𝑖) that satisfies 

𝑢𝑙𝑖 ∈ [0, 1],         1 ≤ 𝑙 ≤ 𝑐, 1 ≤ 𝑖 ≤ 𝑛  ,     (3.5) 

∑ 𝑢𝑙𝑖 = 1𝑐
𝑙=1 ,          1 ≤ 𝑖 ≤ 𝑛  ,    (3.6) 

∑ 𝑢𝑙𝑖 > 0𝑛
𝑙=1 ,          1 ≤ 𝑙 ≤ 𝑐  ,   (3.7) 

where 𝑢𝑙𝑖 denotes the degree of membership of the object 𝑖 in the 𝑙th cluster. 

For each fuzzy c-partition, there is a corresponding hard c-partition. Let 𝑢𝑙𝑖  (𝑙 =

1,2, … , 𝑐, 𝑖 = 1,2, … ,𝑛) be the membership of any fuzzy c-partition. Then the 

corresponding hard c-partition of 𝑢𝑙𝑖can be defined as 𝜔𝑙𝑖 as follows [26]: 
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𝜔𝑙𝑖 = �
1, 𝑖𝑓  𝑙 = arg  max1≤𝑗≤𝑐 𝑢𝑗𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�   (3.8) 

3.3.2.2.4 Affinity propagation clustering 

Affinity propagation (AP) takes as input measures of similarity between pairs of 

data points and simultaneously considers all data points as potential exemplars4. Real-

valued messages are exchanged between data points until a high-quality set of 

exemplars and corresponding clusters gradually emerges [32]. Affinity propagation aims 

at maximizing the net similarity, where clusters gradually emerge during the message-

passing procedure [33].  

Affinity propagation algorithm 

Let  s be the similarity matrix with a collection of real-valued similarities between 

data points, where the similarity 𝑠(𝑖, 𝑘) indicates how well the data point with index 𝑘 is 

suited to be the exemplar for data point 𝑖; 𝑟 be the responsibility matrix that reflects the 

accumulated evidence for how well-suited point 𝑘 is to serve as the exemplar for point 𝑖, 

taking into account other potential exemplars for point 𝑖; and a the availability matrix 

which reflects the accumulated evidence for how appropriate it would be for point 𝑖 to 

choose point 𝑘  as exemplar, taking into account the support from other points that point 

𝑘 should be an exemplar [32]. 

These matrices are iteratively updated by the following three equations: 

𝑟(𝑖, 𝑘) ← 𝑠(𝑖, 𝑘) − max𝑘′𝑠.𝑡. 𝑘′≠𝑘{𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)}   (3.9) 

𝑎(𝑖, 𝑘) ← min�0, 𝑟(𝑘, 𝑘) + ∑ max{0, 𝑟(𝑖′, 𝑘)}𝑖′𝑠.𝑡. 𝑖′∉ {𝑖,𝑘} �  (3.10) 

𝑎(𝑘, 𝑘) ← ∑ max{0, 𝑟(𝑖′, 𝑘)}𝑖′𝑠.𝑡. 𝑖′≠𝑘    (3.11) 

For point 𝑖, the value of 𝑘 that maximizes 𝑎(𝑖, 𝑘) + 𝑟(𝑖, 𝑘) either identifies point 𝑖 

as an exemplar if 𝑘 = 𝑖, or identifies the data point that is the exemplar for point 𝑖. The 
                                                 
4 Exemplar is similar as centroids in classical clustering, but these centroids are selected 
from actual data points. 
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message-passing procedure may be terminated after a fixed number of iterations, after 

changes in the messages fall below a threshold, or after the local decisions stay constant 

for some number of iterations. 

3.3.3 Clustering Validity Indices 

Cluster validity refers to formal procedures to provide an analytical assessment 

of the amount and type of structure captured by a partitioning, and should therefore be a 

key tool in the interpretation of clustering results in a quantitative and objective fashion 

[34, 35].   

Two criteria have been proposed for clustering evaluation and selection of an 

optimal clustering scheme [34]: 

1. Compactness: The fitness variance of the patterns in a cluster is an 

indication of the cluster’s cohesion or compactness. Compactness is 

used as a measure of the variation or scattering of the data within a 

cluster. 

2. Separation: The clusters themselves should be widely spaced. 

Separation is used to account for inter-cluster structural information. 

The basic aim of validation indices has been to find the clustering that minimizes 

the compactness and maximizes the separation [31]. 

In general, there are three fundamental criteria to investigate cluster validity: 

external criteria, internal criteria, and relative criteria [25]. An external assessment of 

validity compares the recovered structure to an a priori structure. An internal examination 

of validity tries to determine if the structure is intrinsically appropriate for the data. A 

relative test compares two structures and measures their relative merit [27]. 

Although many different cluster validity measures have been proposed [34, 36, 

37], the most widely used validity indices are introduced that have direct applicability to 
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the load profile development. Herein, only hard clustering algorithms are considered 

avoiding the fact that an object may belong to more than one cluster with different degree 

of belief (fuzzy clustering), and therefore, fuzzy clustering will be converted to a hard 

clustering. 

3.3.3.1 External criteria 

Since external indices are based mainly on prior information of the data, e.g. the 

optimal numbers of clusters, the indices are used for choosing the best clustering method 

for a specific data set. This implies that the results of a clustering algorithm are evaluated 

based on a pre-specified structure, so it will not be considered for the current study. 

3.3.3.2 Internal criteria 

A good clustering algorithm generates clusters with high intra-cluster 

homogeneity (compactness), good inter-cluster separation, and high connectedness 

between neighboring data points [37]. 

3.3.3.2.1 Cophenetic correlation coefficient 

The cophenetic correlation coefficient is used to validate the hierarchy of 

clustering schemes to measure the degree of similarity between the cophenetic matrix 𝑃𝑐 

and the proximity matrix 𝑃. The cophenetic correlation coefficient index is defined as 

𝐶𝑃𝐶𝐶 =
1
𝑀∑ ∑ 𝑑𝑖𝑗𝑐𝑖𝑗−𝜇𝑃𝜇𝐶

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1

��1𝑀∑ ∑ 𝑑𝑖𝑗
2 −𝜇𝑃

2𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 �

   (3.12) 

where 𝑀 = 𝑛(𝑛−1)
2

 and 𝜇𝑃, 𝜇𝐶 are defined as 

𝜇𝑃 = 1
𝑀
∑ ∑ 𝑑𝑖𝑗𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1 ,   (3.13) 

𝜇𝐶 = 1
𝑀
∑ ∑ 𝑐𝑖𝑗𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1 ,    (3.14) 

where 𝑑𝑖𝑗 and 𝑐𝑖𝑗 are the (𝑖, 𝑗) elements of matrices 𝑃 and 𝑃𝑐 respectively. The range of 

CPCC is [−1, 1]; the high value indicates great similarity between 𝑃 and 𝑃𝑐. 
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3.3.3.3 Relative criteria 

Relative criteria concentrate on the comparison of clustering results generated by 

different clustering algorithms or the same algorithm but with different input parameters. 

Herein, the number of clusters k is defined as input parameter. A partition with too many 

clusters complicates the true clustering structure, therefore making it difficult to interpret 

and analyze the results. On the other hand, a partition with too few clusters causes the 

loss of information and misleads the final decision [23]. 

For a clustering algorithm that requires the input of 𝑘 from users, a sequence of 

clustering structures can be obtained by running the algorithm several times from the 

possible minimum 𝑘𝑚𝑖𝑛 to the maximum 𝑘𝑚𝑎𝑥. In this case, to choose the best clustering 

scheme, the following procedure is performed [26]: 

for 𝑘 = 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 do 

      for 𝑖 = 1 to 𝑟 do 

            Run the clustering algorithm using parameters which are  

            different from in the previous running; 

  Compute the value 𝑞𝑖 of the validity index; 

end for 

Choose the best validity index in {𝑞1, … , 𝑞𝑟}; 

end for 

3.3.3.3.1 Davies-Bouldin index 

The Davies-Bouldin (DB) index is a validity index that does not depend on the 

number of clusters and the clustering algorithms. To define the DB index, the dispersion 

measure and the cluster similarity measure need to be defined.  The dispersion measure 

𝑆 of a cluster 𝐶 is defined in such a way that the following properties are satisfied: 

1. 𝑆 ≥ 0; 
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2. 𝑆 = 0 if and only if 𝑥 = 𝑦  ∀𝑥,𝑦 ∈ 𝐶. 

For instance, 

𝑆𝑖 = � 1
|𝐶𝑖|

∑ 𝑑𝑃(𝑥, 𝑐𝑖)𝑥∈𝐶𝑖 �
1
𝑝 ,      𝑝 > 0,   (3.15) 

where |𝐶𝑖| is the number of data points in cluster 𝐶𝑖, 𝑐𝑖 is the center (or representative 

data point) of cluster 𝐶𝑖, and 𝑑(𝑥, 𝑐𝑖) is the distance between 𝑥 and 𝑐𝑖. 

The cluster similarity measure 𝑅𝑖𝑗 between clusters 𝐶𝑖 and 𝐶𝑗 is defined based on 

the dispersion measures of clusters 𝐶𝑖 and 𝐶𝑗 and satisfies the following conditions: 

 𝑅𝑖𝑗 ≥ 0; 
 𝑅𝑖𝑗 = 𝑅𝑗𝑖; 
 𝑅𝑖𝑗 = 0 if and only if 𝑆𝑖 = 𝑆𝑗; 
 if 𝑆𝑗 = 𝑆𝑘  and 𝐷𝑖𝑗 < 𝐷𝑖𝑘 , then 𝑅𝑖𝑗 > 𝑅𝑖𝑘; 
 if 𝑆𝑗 > 𝑆𝑘 and 𝐷𝑖𝑗 = 𝐷𝑖𝑘, then 𝑅𝑖𝑗 > 𝑅𝑖𝑘; 

 

Here 𝑆𝑖 , 𝑆𝑗 , 𝑆𝑘 are the dispersion measures of clusters 𝐶𝑖 , 𝐶𝑗, 𝐶𝑘, respectively, 

and 𝐷𝑖𝑗 is the distance (dissimilarity measure) between the two clusters 𝐶𝑖 and 𝐶𝑗, which 

can be defined as the distance between the centroids of the two clusters, 

𝐷𝑖𝑗 = �∑ �𝒗𝑖𝑙 − 𝒗𝑗𝑙�𝑑
𝑙=1 �

1
𝑡   (3.16) 

where 𝒗𝑖, 𝒗𝑗 are the centroids of clusters 𝐶𝑖 and 𝐶𝑗, respectively, and 𝑡 > 1. 

A very simple choice for 𝐶𝑖 and 𝑅𝑖𝑗 is 

𝑅𝑖𝑗 =
𝑆𝑖+𝑆𝑗
𝐷𝑖𝑗

    (3.17) 

Then the DB index is defined as 

𝑉𝐷𝐵 = 1
𝑘
∑ 𝑅𝑖𝑘
𝑖=1 ,    (3.18) 

where 𝑘 is the number of clusters and 𝑅𝑖 is defined as 

𝑅𝑖 = max𝑗≠𝑖 𝑅𝑖𝑗      (3.19) 

The smallest 𝑉𝐷𝐵(𝑟) indicates a valid optimal partition. 
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3.3.3.3.2 Dunn’s index 

The Dunn family of indices was designed to find compact and well-separated 

(CWS) clusters. The Dunn index is defined as 

𝑉𝐷 = min1≤𝑖≤𝑘 �min𝑖+1≤𝑗≤𝑘 �
𝐷�𝐶𝑖,𝐶𝑗�

max1≤𝑙≤𝑘 𝑑𝑖𝑎𝑚(𝐶𝑙)
�� (3.20) 

where 𝑘 is the number of clusters, 𝐷�𝐶𝑖 ,𝐶𝑗� is the distance between clusters 𝐶𝑖 and 𝐶𝑗, 

and 𝑑𝑖𝑎𝑚(𝐶𝑙) is the diameter of the cluster 𝐶𝑙. Here, 𝐷�𝐶𝑖 ,𝐶𝑗� and 𝑑𝑖𝑎𝑚(𝐶𝑙) can be 

defined as 

𝐷�𝐶𝑖,𝐶𝑗� = min𝑥∈𝐶𝑖,𝑦∈𝐶𝑗 𝑑(𝑥,𝑦)   (3.21) 

𝑑𝑖𝑎𝑚(𝐶𝑙) = max𝑥,𝑦∈𝐶𝑙 𝑑(𝑥,𝑦)   (3.22) 

From the definition of the Dunn index, a high value of the index indicates the 

existence of CWS clusters. 

3.3.4 Load Profile Development by Means of Clustering Analysis 

Clustering has a long and rich history, so different clustering algorithms have 

been developed over time. However, none of the clustering is superior to the other, but 

some are similar to the other. Consequently, since the structure of the data are not 

known a priori, it is up to the analyst to try competing and diverse approaches to 

determine a suitable algorithm for the clustering at hand [25].  This task has been 

undertaken following a thorough review and discussion. Therefore, from the clustering 

algorithm point of view, k-means is used because of its robustness to provide a specific 

number of clusters with high similarities between objects in the same group, and low 

similarities between objects in different groups. 

The load profiles developed herein correspond to a set of the total number of 

meters available during the study period for residential customers. The load profiles will 

follow similar criteria as in Section 3.2 to obtain the results: 
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1. Load profile without Day Type distinction but weekday, weekend, or 

holiday if specified. 

2. Load Profile at each Day Type of the week: Holidays, Mondays, 

Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, and Sundays. 

In addition, the load profiles based on clustering can be obtained at each 

stratification level, if specified. 

Similarly as before, as an example of the construction of load profiles based on 

the customers’ behavior similarities, load profiles for summer corresponding to the 

months of June, July, August, and September of 2012 are calculated. The smart meters 

belong to the group of Min15Ch2. There are 541 smart meters in total, and they were 

clustered considering K = 5 to have resemblance to the load profiles developed in 

Section 3.2. The following was the result: 191 meters belong to Group 1, 164 meters to 

Group 2, 114 meters to Group 3, 57 meters to Group 4, and 15 meters to Group 5. Figure 

3-20 to Figure 3-29 show the Load Profiles for Weekdays and Weekends during Summer 

2012 for all 5 groups. 
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Figure 3-20 Weekdays Load Profile – Mean ± Std. Dev. for Group 1 

 

Figure 3-21 Weekends Load Profile – Mean ± Std. Dev. for Group 1 
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Figure 3-22 Weekdays Load Profile – Mean ± Std. Dev. for Group 2 

 

Figure 3-23 Weekends Load Profile – Mean ± Std. Dev. for Group 2 
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Figure 3-24 Weekdays Load Profile – Mean ± Std. Dev. for Group 3 

 

Figure 3-25 Weekends Load Profile – Mean ± Std. Dev. for Group 3 
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Figure 3-26 Weekdays Load Profile – Mean ± Std. Dev. for Group 4 

 

Figure 3-27 Weekends Load Profile – Mean ± Std. Dev. for Group 4 
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Figure 3-28 Weekdays Load Profile – Mean ± Std. Dev. for Group 5 

 

Figure 3-29 Weekends Load Profile – Mean ± Std. Dev. for Group 5 
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To provide examples of Load Profiles for Day Type considering customers’ 

behavior similarities, only Group 1 is plotted for the sake of clarity from Figure 3-30 to 

Figure 3-37. Nevertheless, load profiles can be calculated for all groups. 

 

Figure 3-30 Holidays Load Profile – Mean ± Std. Dev. for Group 1 
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Figure 3-31 Mondays Load Profile – Mean ± Std. Dev. for Group 1 

 

Figure 3-32 Tuesdays Load Profile – Mean ± Std. Dev. for Group 1 
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Figure 3-33 Wednesdays Load Profile – Mean ± Std. Dev. for Group 1 

 

Figure 3-34 Thursdays Load Profile – Mean ± Std. Dev. for Group 1 
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Figure 3-35 Fridays Load Profile – Mean ± Std. Dev. for Group 1 

 

Figure 3-36 Saturdays Load Profile – Mean ± Std. Dev. for Group 1 
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Figure 3-37 Sundays Load Profile – Mean ± Std. Dev. for Group 1 
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Chapter 4  

AMI Data to Enhance the Performance of Load Forecasting 

Load forecasting is an essential task for multiple utility business processes 

including power generation, power trading, capacity planning, and demand management. 

For instance, demand forecasting is useful for planning and purchasing power supply by 

utilities, scheduling equipment maintenance, and providing an early warning of potential 

load curtailment or advance pricing information. Since load forecasting accuracy has a 

significant impact on scheduling, operation, and control of the utility grid, it is crucial to 

accurately know the total and local system demand for the following minutes, hours, and 

days. This is the domain of Very Short Term Load Forecasting (VSTLF), and Short Term 

Load Forecasting (STLF). When the load forecasting is concerned with the prediction of 

longer time horizons, they are usually categorized as Mid Term Load Forecasting 

(MTLF), and Long Term Load Forecasting (LTLF). Table 4-1 shows examples of this LF 

classification. 

Table 4-1 Load Forecasting Classification 

 
Load Forecasting 

 

Load Data 
Resolution5 Horizon References 

VSTLF 1 minute 
1 minute 
5 minutes 

30 minutes 
10 to 30 minutes 
1 hour 

[39] 
[40] 
[41] 

STLF 1 hour 
½ hour 

24 hours – 3 weeks 
1 day 

[42] 
[43] 

MTLF ½ hour 31 days [44] 
LTLF ½ hour 10 years [45] 

 

Though technical literature presented a wide range of methodologies and models 

to improve the accuracy of load forecasting, most of them are based upon aggregated 

power consumption data at the system (corporate) level with little or even no information 

                                                 
5  Load data resolution at the net system level. 
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regarding power consumption profiles of different classes of customers. With the 

deployment of Advanced Metering Infrastructure (AMI), an avalanche of new energy-use 

information becomes available. Unlike traditional aggregated system level load 

forecasting, the AMI data introduces a fresh perspective to the way load forecasting can 

be performed, ranging from very-short term load forecasting (STLF) to long-term load 

forecasting (LTLF) at the system level, regional level, feeder level, or even down at the 

consumer level. One of the most critical steps to realizing these benefits is to develop 

data management and analysis processes to transform smart meter data into useful 

information for load forecasting and other applications. 

This dissertation addresses the efforts involved in using AMI data from residential 

customers as an example to the Load Forecasting problem, focusing particularly on 

utilizing sub-hourly interval data with a time horizon up to one day ahead and assessing 

the possibility of applying unsupervised learning to identify customers’ consumption 

patterns first, and then developing load forecasting models at each identified group. Load 

forecasting can take full advantage of clustering methods because grouping load profiles 

based on consumption behavior similarities will reduce the variability of predicted load, 

and therefore, the forecasting error. 

4.1 A Review on Load Forecasting Techniques 

Since the main interest of this work is to utilize AMI data for Load Forecasting, 

this dissertation focuses on Load Forecasting of sub-hourly data with a time horizon up to 

one day ahead. Out of the four categories, VSTLF and transition to STLF could serve 

well for this purpose. 

Many different techniques have been introduced for STLF with system level data. 

A comprehensive review on this subject can be found in [46-49]. In general, time series 

models, traditional econometric models, artificial neural network-based models, fuzzy 
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logic-based models, nonparametric/semi-parametric regression-based models, hybrid 

models (i.e. combination of different models like neuro-fuzzy models, among others), and 

judgmental forecasting models have been applied with relatively high accuracy to STLF. 

On the other hand, only a few articles have been published on VSTLF [40] using 

system level data. The following gives a general overview of VSTLF approaches. 

In [39], the authors performed a forecast of the next 30 minutes of real time 

(moving window) load on intervals of 1 minute. They utilized two-stage fuzzy logic (FL) for 

training and on-line forecasting. In training, patterns are recognized and stored in a 

database of one-minute filtered historical load data. In on-line mode, input load data is 

compared with the patterns to predict the load. Also, a fully-connected feed-forward 

neural network with 38 inputs (past 30 load values, 4 time components, 4 load 

parameters), 16 outputs (the Karhunen–Loève transformed values of the next 30 load 

values), and two hidden layers (30 and 25 units, respectively) with sigmoidal activation 

functions was used for predicting the load. Finally, an auto-regressive (AR) model of the 

next minute load but whenever a new prediction is generated, it is treated as the new 

actual load datum until 30 data are generated. Authors concluded that FL and NN 

performance are much superior to AR-based forecaster. 

In [41], the authors used separate neural networks applied to wavelet 

decomposed filtered load data. NN results are combined to produce the final forecast. 

The forecasting output was forecast of 1 hour in 5-minute steps in a moving window 

manner. 

In [50], the authors used “parsimoniously designed” neural networks to forecast 

relative increments in load based on the recent load pattern. Each forecaster was trained 

using the data from day 1, and then used to forecast the 20-min ahead load of day 2. 
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They predicted 8 values of load for the time leads from 20-90 minutes in 10-minute 

increments. 

For VSTLF to STLF approach, in [40], the authors presented and compared 

several univariate methods including a comparison with an additional approach based on 

weather forecasts. Best results were achieved by a double seasonal adaptation of Holt-

Winters’ exponential smoothing. In addition, beyond VSTLF, combining methods based 

on weather forecast with the Holt-Winters’ adaptation are promising to forecast load 

beyond an hour ahead. The forecast horizon was up to 30 minutes ahead in 1-minute 

step. 

In contrast, load forecasting utilizing real-world smart meter data can be 

summarized as follows: 

In [51], the authors proposed a “short-term multiple load forecasting (STMLF)” 

model which combines individual load time-series into a succinct model for forecasting 

many loads with a single model and the use of anthropologic and structural data within 

STMLF to tackle the problem of the high volatility in dynamics for an individual customer 

that makes forecasting for each individual load difficult.  While multiple linear regression 

and artificial neural networks were the main forecasting engines, the authors suggested 

that ANN and SVM will be suitable for STMLF.  

In [38], the authors discussed time series approaches that can be used to 

characterize individual customer demand load profiles, even though time-series have 

rarely been used at an individual dwelling level. Fourier transforms and Gaussian 

processes were devised suitable techniques to accomplish this task when applied to half-

hourly electricity demand on a daily basis for each individual customer. 

In [52], the authors examined six methods, successfully used for forecasting 

energy demand on a large scale, to forecast the load on a smaller scale similar to the 
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load of a single transformer. Artificial neural network, auto-regressive, auto-regressive 

moving average, auto-regressive integrated moving average, fuzzy logic, and wavelet 

neural networks were utilized for day ahead, and week ahead electric load forecasting in 

two different scenarios, with 90 houses, and with 230 houses. The authors concluded 

that at a small scale, the noise and chaotic behavior have a great impact on the forecast 

accuracy. 

In [53], the author proposed forecasting functional time series applied to intra-day 

household-level load curves using smart meter data via two methods: Functional 

Wavelet-Kernel (FWK) and Clustering-Based FWK. Both approaches are identical, 

except the latter identifies a common pattern between days at each individual customer 

following the idea of the similar-day approaches but through an unsupervised 

classification method, and then it utilizes FWK to perform one-day ahead forecasting of 

each individual customer. It is also stated that household loads are very volatile, which 

makes household-level forecasting difficult to solve. 

Taking into consideration the above description, it is clear that despite the fact 

that load forecasting is a challenging task by itself at any level and at any time horizon, it 

is more difficult to forecast load at the household level with fine granularity data. 

Forecasting individual load consumption for each customer at an electric utility company 

will require large computing resources due to the volume of data. Moreover, to apply any 

load forecasting technique for each household will require identifying what drives 

individual load consumption behavior in great detail to be able to capture adequately its 

complex dynamics. 

It also reveals two general trends of using smart meter data in Load Forecasting: 

(1) Forecast individual household loads, and (2) aggregate all the loads and construct a 

single forecasting model for the system load. This dissertation proposes a different 
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approach that takes into account smart meter data (lower level), to forecast load at a 

larger level, e.g. system level, that considers individual volatile loads grouped based on 

consumption behavior similarities, and then develop load forecasting models at each 

identified group. Since the interest is to utilize AMI data for Load Forecasting, this 

dissertation is focused on Load Forecasting of sub-hourly data with different time 

horizons up to one day ahead. 

Out of the several load forecasting techniques, neural network is selected to 

illustrate the proposed approach.  

4.2 Neural Network-Based Load Forecasting 

Neural networks (NNs) are well accepted in practice and used by many utilities 

[54]. Moreover, since NNs can approximate any continuous function, they can be seen as 

a multivariate, nonlinear, method that can model complex nonlinear relationships. In 

addition, NNs are data-driven methods, and therefore well suited for using them with 

smart meter data. 

When designing a neural network-based forecasting model, the first step is 

selecting an appropriate architecture. Although there are many types of NNs [55], in 

reality, most NN-based load forecasting models utilize a feed-forward multilayer 

perceptron (MLP) with satisfactory results in terms of accuracy [48]. In a typical MLP, 

neurons are organized in layers: one input layer, one or more hidden layers, and one 

output layer. Once the MLP-NN architecture is selected, one must decide the number of 

input nodes, number of hidden layers and the type of activation function, and the number 

of output nodes. 

Considering that the purpose is to forecast the load with a horizon up to one day 

ahead at a resolution equal to the meters’ resolution, there are essentially two ways on 

doing so: 
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1. Use the NN model to forecast one step ahead. Note that for leading times 

larger than the time interval considered, the one-step ahead forecasts can be 

iteratively used as inputs in order to generate multi-step predictions [40, 43]. 

2. Use the NN model to forecast multi-steps ahead. By using a system of NNs, 

one for each time interval or a large NN with many outputs corresponding to 

each interval for a full day ahead forecast [48]. 

In this study, method 1 is explored. Therefore, the neural network-based 

forecasting model’s architecture is an MLP with one hidden layer with hyperbolic tangent 

activation function, and one linear output neuron. The hyperbolic tangent function g is 

given by [56]: 

𝑔(ℎ) = 2
1+𝑒−2ℎ

− 1  (4.1) 

The parameters of this NN are the weights associated with the connections from 

the input nodes to the hidden layer, and the weights for the connections from the hidden 

layer to the output node. The estimation of the network parameters is called “training the 

NN”, and its purpose is to find the weighting matrices that minimize a loss function [48]. 

The Levenberg-Marquardt approach is used to train the model. This approach is 

suitable for training medium-size NNs with low mean square error. One of the key 

problems in NN application is to select the number of hidden neurons in the hidden layer 

which affects the learning process and forecasting capability of the network. An approach 

similar as in [57] is adopted to overcome this problem. The method starts by choosing a 

small number of hidden neurons and gradually increases this number. Each time, the 

model is trained, and a forecast error from the testing set is recorded for comparison. The 

process stops at an optimal number of hidden neurons when the error decreases to an 

acceptable threshold or no significant improvement is observed as the number of hidden 

neuron increases. Another issue that occurs during neural network training is called 



 

74 

overfitting where the NN loses its generalization ability. This problem is tackled by using 

regularization [58]. Without getting into much detail, it was determined that using 20 

hidden neurons and a regularization parameter of 0.9 performed well in the study. 

Moreover, because the estimation of the weighting matrices, from input to hidden layer 

and from hidden layer to output, is sensitive to the choice of initial values, each model 

was estimated 20 times from random initial values. Then, the best model was determined 

by calculating the out-of-sample MAPE. The lower the out-of-sample MAPE is, the better 

the model. 

Last but not least is the selection of input variables. A highly significant model 

term does not necessarily translate into good forecasts [59]. To select appropriate input 

variables, it is primarily important to understand which factors contribute to the load 

consumption. It is well understood that load consumption is mainly driven by temperature, 

with seasonal patterns. Once all the possible input variables are identified, one can begin 

with the full model including all the variables. Then, the predictive capacity of each 

variable is tested independently by dropping each term from the model while retaining all 

other terms. Omitted variables that led to a decrease in MAPE were left out of the model 

for subsequent test [59]. Through the above mentioned process, the variables which are 

used in the model are: 

Smart Meter Data Variables 

 Interval (sub-hourly) Load Readings 

 Lagged Load Readings at a sub-hourly resolution: last 3 hours same day, 

last 3 hours day before (plus same hour day before), last 3 hours previous 

week (plus same hour previous week) 

Calendar Variables 

 Day of the Week 
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 Holiday 

 Month of the Year 

Weather Variables 

 Temperature Variables: Temperature was interpolated between neighboring 

values to obtain measurements at a resolution similar as the smart meter 

data (e.g. 15 or 30 minutes). Only historical values were considered and no 

temperature forecasting was used as input for the load forecasting. 

4.3 Forecasting Application 

4.3.1 Data Collection 

Real-world smart meter data for residential customers of two different electric 

utility companies (1) from the United States, and (2) from Ireland are used in this study. 

Starting in 2009, the Consolidated Edison Company of New York, Inc. (Con 

Edison) initiated a Smart Grid Project aimed at deploying a wide-range of grid-related 

technologies, including automation, monitoring and two-way communications, to make 

the electric grid function more efficiently and enable the integration of renewable 

resources and energy efficient technologies [60]. Twenty one months of 15-minute load 

data from February 2012 to October 2013 have been used to validate the proposed 

approach for STLF. The first 12 months of the data were used for training the model 

parameters, and observations from the last 9 months were used for model evaluation. 

The Commission for Energy Regulation (CER) made publicly available full data 

sets in an anonymized format of the recent “Electricity Smart Metering Customer 

Behaviour Trials” in Ireland recorded from July 14, 2009 to December 31, 2010 with over 

5,000 Irish homes and businesses [61].  The data were obtained via the Irish Social 

Science Data Archive (ISSDA) [62]. The smart meters collected the electricity 

consumption at a resolution of 30 minutes. Although there are three available service 
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classes from the data set: (1) Residential, (2) Small-to-Medium Enterprises (SMEs or 

Commercial), and (3) Other, only Residential customers were considered for this study, 

and without distinction of any tariff program. Seventeen months of half-hourly load data 

from August 2009 to December 2010 have been used to validate the proposed approach 

for STLF. Similarly, the first 12 months of the data were used for training the model 

parameters, and observations from the last 5 months were used for model evaluation. 

Data preprocessing was performed to verify the quality of the smart meter data 

following the concepts introduced in Chapter 2. Records with missing or incomplete data 

can have significant impact on the accuracy of the predictive model. Noisy/incomplete 

AMI data reads will lead to an inaccurate sequence of load forecasts. These records 

must be completed, corrected, or eliminated so that the ultimate predictive model is as 

accurate as possible. 

In addition to these data sets, temperature data at both locations for their 

respective time periods were obtained from wunderground.com. 

With all these data, point forecasts were generated using a rolling forecast for 

horizons varying from 15 minutes or 30 minutes up to one day ahead. 

4.3.2 Smart Meter Load Data Grouping Based on Clustering 

Figure 4-1 and Figure 4-2 shows a daily “system” load profile composed by the 

aggregation of all residential customers, and also a single residential customer load 

profile on July 17, 2012, and December 25, 2009, for the two datasets respectively.  It 

can be observed that the consumption across the day is very different from that of an 

aggregated system load profile. Each household will have an individual daily load curve, 

though each will be different because each home has different appliances and is 

occupied by people with different schedules and usage preferences. 
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Figure 4-1 Daily load profile for Residential Customers for Residential System Demand, 

and a Single Residential Customer Across a 24-hour Period on July 17, 2012 
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Figure 4-2 Daily load profile for Residential Customers for Residential System Demand, 

and a Single Residential Customer Across a 24-hour Period on December 25, 2009 
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Figure 4-3 Daily load profiles for Six Residential Customers Chosen at Random 

Illustrating Variation Between Household Consumers on April 28, 2012 
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Figure 4-4 Daily load profiles for Six Residential Customers chosen at Random 

Illustrating Variation Between Household Consumers on August 12, 2009 

 

It should be clear by now that load consumption differs in both, magnitude and 

time of use, depending on lifestyle, weather, and many other factors, so what it can be 

achieved by means of clustering is to group load customers in a meaningful way, taking 

into consideration these inherent daily and intra-daily variations [38] that can/will improve 

current practice on load forecasting. 

0:00 4:00 8:00 12:00 16:00 20:00 0:00
0

2

4
Customer 1

kW

0:00 4:00 8:00 12:00 16:00 20:00 0:00
0

2

4
Customer 2

0:00 4:00 8:00 12:00 16:00 20:00 0:00
0

2

4
Customer 3

kW

0:00 4:00 8:00 12:00 16:00 20:00 0:00
0

2

4
Customer 4

0:00 4:00 8:00 12:00 16:00 20:00 0:00
0

2

4
Customer 5

kW

Time of Day
0:00 4:00 8:00 12:00 16:00 20:00 0:00
0

2

4
Customer 6

Time of Day



 

81 

 

Figure 4-5 Daily Load Profiles for a Single Customer Chosen at Random Over a Weekly 

Period 
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Figure 4-6 Daily Load Profiles for a Single Customer Chosen at Random Over a Weekly 

Period for Dataset 2 
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 Normalize the load in a range of 0 to 1 to emphasize grouping the customers 

according to who contributes to the total consumption at a certain time of the 

day, a.k.a. coincident demand.  Another benefit of doing so is to obtain a 

more equally distributed number of customers at each cluster. 

The data points can be arranged in the m-by-n data matrix D, where m is the 

number of meters, and n is the number of features.  Therefore, the dimension of D is 

equal to 35 (5 segments per day for the 7 days of a typical week). At this moment, k-

means is applied with k ranging from 1 to 12, and with 1,000 repetitions to overcome the 

curse of local minimum. 

Now, rather than using any clustering validity index to decide on a suitable 

number of clusters, a different venue is pursued. Since the ultimate goal is to improve 

load forecasting based on grouping customers based on their consumption behavior, the 

number of clusters is evaluated based on a metric of how well it performs when 

forecasting the load. In this dissertation, the Mean Absolute Percentage Error (MAPE) is 

utilized to measure the forecasting performance, and therefore the MAPE will be used to 

determine how many clusters are adequate. 

4.3.4 Forecasting Results 

In this research, the application of clustering to determine groups of customers 

considering load consumption similarities is studied as an aid to improve the performance 

of load forecasting at the system level, but with load data at the household level from 

smart meters. To confirm the findings from this approach, the study was performed in two 

completely different datasets (1) from a utility in USA, and (2) from a utility in Ireland. As 

explained in the preceding sections, 78 independent NN-based forecasting models were 

constructed at each of the groups when k was varied from 1 to 12 utilizing the two 
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datasets. To determine the “optimal” number of clusters, the monthly out-of-sample 

MAPE was evaluated. Then, the mean MAPE was calculated for the whole testing period. 

For dataset 1, it was determined that 3 clusters give a reduction in MAPE of 

approximately 0.5 % with respect to its counterpart with 1 cluster only, at one-day ahead 

forecasting. Figure 4-7 depicts this result on predicting the load at different lead times: 

15min ahead, 30min ahead, 1h ahead, 2h ahead, …, 24h ahead for 6 clusters only, 

although it was calculated for 12 clusters, only 6 are depicted for the sake of clarity. 

Figure 4-8 shows the average load profiles for each one of the three clusters during July 

15, 2013 to July 21, 2013. It can be noticed that the load profiles are quite different 

among different clusters. 

For dataset 2, it was determined that 4 clusters give a reduction in MAPE of 

approximately 1.07 % with respect to its counterpart with 1 cluster only, at one-day ahead 

forecasting. Figure 4-9 depicts this result for 6 clusters only, for the sake of clarity, on 

predicting the load at different lead times: 30min ahead, 1h ahead, 2h ahead, …, 24h 

ahead. Figure 4-10 shows the average load profiles for each one of the four clusters 

during December 20, 2010 to December 26, 2010. It is obvious that the load profiles are 

quite different among different clusters as well. 
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Figure 4-7 MAPE Results Plotted Against Lead Time for the 9-Month Out-of-Sample 

Period for Lead Times of 15min Ahead, 30min Ahead, 1h Ahead, 2h Ahead, …, 24h 
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Figure 4-8 Load Profiles of the 3 Groups of Meters When k = 3, the Optimal Number of 

Clusters in Dataset 1 
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Figure 4-9 MAPE Results Plotted Against Lead Time for the 5-Month Out-of-Sample 

Period for Lead Times of 30min Ahead, 1h Ahead, 2h Ahead, …, 24h 
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Figure 4-10 Load Profiles of the 4 Groups of Meters When k = 4, the Optimal Number of 

Clusters in Dataset 2 
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Chapter 5  

Major Appliances Identification Considering ZIP Load Models – A Statistical Approach 

The concept of non-intrusive load monitoring (NILM) is not new, but to our 

knowledge AMI data for this purpose is limited. Many researchers’ approaches, as the 

technical literature indicates, are based on installing additional hardware (meter-

extension) or sensors (at each appliance-ILM) besides the revenue meter with sampling 

rates ranging from 1 Hz to 100 MHz approx., and mainly developed in the laboratory, 

which, from the practical point of view, are not viable. 

The purpose in this part of this dissertation is to investigate a viable solution for a 

realistic environment based on the AMI data and considering polynomial load models. 

Major Appliance Identification (MAI) considers a statistical approach based on 

predetermined databases, as a minimum, for identifying load components with emphasis 

on major appliances because of the sampling rate. 

The polynomial model is one of the static load models widely accepted among 

utility industries. This model is commonly referred as the ZIP model, as it is composed of 

Constant Impedance-Current-Power components. 

5.1 Databases Development for Major Appliances Identification 

MAI program requires the use of predetermined data, as a minimum, for 

identifying load components with emphasis on major appliances. Careful research was 

done as part of this present work to determine a set of default databases. Load 

components models, typical rated power consumption of the load components, end-use 

profiles for typical average days of the load components, and typical time of use of the 

load components are the databases taken into consideration that MAI program uses to 

uniquely identify appliances’ operation. 
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The subject of data sources will be dealt with in this section. A procedure for 

building a “database” for major appliances identification, as well as verifying its accuracy, 

would consist of the following steps: 

 Collect available information on load components that exist in the utility’s 

power system distribution grid. 

 Obtain any information is available on load components 

o ZIP load models 

o Typical rating values 

o Daily load curve shapes 

o Typical time of use 

 Synthesize all this information 

 Develop the databases 

5.2 End-Use Load Categories and Components in the Utility Service Area 

Load modeling is for all power system studies, as important as the rest of the 

power system models; however, most utilities treat their load as constant PQ in their 

simulations due to the complexity in obtaining accurate models to represent the load 

behavior. Although this approach is adequate for some applications, utility companies 

recognize that substantial changes in the nature of their supplied electric load have made 

it increasingly clear that a more appropriate load representation is needed. Even though 

the load is inherently random, unpredictable depending on lifestyle, weather, and many 

other uncontrollable factors, it is still possible to find a suitable model that can/will 

improve accuracy of simulations. 

In [63] and [64], the authors have conducted extensive load survey at various 

residential and commercial customers at the utility company. In [63], it has been 

established load models for eighteen load components in order to provide an accurate 



 

91 

representation of the load under low voltage contingency conditions. According to [63], 

the field surveys helped to determine which types of equipment and appliances were in 

use at commercial and at residential sites in the utility service area. Those models were 

based on the existing equipment during the period in which they were developed. 

Although [63] provided a significant contribution towards improving the utility’s 

understanding of their load components, it is necessary to update and/or include new 

products that have emerged into the market after the development of the original load 

models. In this way, in [64], a series of new surveys in the utility company, which explores 

the changes occurred in the load composition over time, is established. 

These studies have laid the foundation for establishing End-Use Categories and 

End-Use Load Components for typical “commercial” and “residential” customers [64], as 

shown in Table 5-1. 

5.2.1 End-Use Load Component Models: PQ-ZIP Database 

MAI approach requires the specification of the End-Use Load Component Models 

which are designed to incorporate the major components affecting energy use in the 

Utility residential sector. The End-Use Load Component models consist of ZIP load 

models corresponding to the most representative residential loads powered by the Utility. 

It is designated as PQ-ZIP Database. PQ stands for P, the active power, and Q the 

reactive power. 

To obtain the ZIP load models for the present study it has been taken into 

consideration important sources of data provided by the utility company in [63] and [64],  

coupled with in-house testing models following the procedure as described in Section 

5.2.1.1 whose preliminary results were presented in [65]. The sole purpose of all of these 

is to get a solid ZIP load models database as possible based on the available information 
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for the load component characteristics that represent different makes, brands, and 

technologies found in the Utility’s distribution system. 

 

Table 5-1 Residential End-Use Categories and Load Components 

 
End-Use Category 

 

End-Use Load 
Component 

Air Handling Air conditioner 
Chillers 
Ventilators 
Fans 

Compressor Air compressor 
Industrial freezer 

Pump Hot & cold water 
circulation 
Chiller pump 
Fire pump 

Lighting Fluorescent 
Incandescent 
Halogen 
Compact fluorescent 

Kitchen Appliances Refrigerator 
Freezer 
Warmer 
Oven 
Microwave oven 

Laundry Appliances Washer 
Dryer 

Electronics Power supply 
Television 
Computer 
Peripheral 

Elevators Hydraulic 
Pneumatic 
Traction 
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5.2.1.1 ZIP load component models in-house testing 

Substantial changes in the nature of the loads have occurred recently with the 

development of the new technologies. This makes clear the necessity to update the load 

model and provide an accurate representation of the new generation loads. 

Mathematically, the ZIP model is represented as follows: 

𝑃 = 𝑃0 �𝑍𝑝 ∙ �
𝑉
𝑉0
�
2

+ 𝐼𝑝 ∙ �
𝑉
𝑉0
� + 𝑃𝑝�   (5.1) 

𝑄 = 𝑄0 �𝑍𝑞 ∙ �
𝑉
𝑉0
�
2

+ 𝐼𝑞 ∙ �
𝑉
𝑉0
� + 𝑃𝑞�  (5.2) 

where  𝑃 is the total active power, 𝑄 is the total reactive power, 𝑍𝑖 , 𝐼𝑖, 𝑃𝑖, 𝑖 = {𝑝, 𝑞}  are 

constant impedance, constant current, and constant power fractions, respectively, and 

they constitute the parameters to be determined. 𝑃0 and 𝑄0 are the load active and 

reactive power respectively at rated voltage 𝑉0. 

5.2.1.1.1 Testing 

The load component testing was executed in a controlled environment. The 

required power is obtained from the grid through an auto-transformer, and only voltage 

excursions are considered through a stepwise variation of the voltage in a slow ramp 

(voltage rampdown test) to develop the static load model. Starting at 130V, the voltage is 

decreased in steps of 5V until the device shuts down. The shut down voltage is referred 

as Voff. Even though the voltage of operation of some appliances is rated in a range (e.g. 

110-120V), 120V and 60 Hz are defined as the nominal values. Standard laboratory 

instrumentation was used in these tests. The quantities monitored are voltage, current, 

real power, reactive power, and power factor recorded at a sampling rate of ½ second 

(due to logger equipment capabilities) for later analysis. 
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5.2.1.1.2 Data handling 

 All recorded data is in a raw format, so it is necessary to extract refined data 

from them. All raw data has been plotted as a means of identifying valid data.  Therefore, 

the entire test sequence can be visually previewed, and the valid test data can be 

specified by a beginning and ending sample number. This treatment converts the test 

data to a usable form. 

5.2.1.1.3 Determination of the ZIP coefficients 

The determination of the ZIP coefficients is formulated as an optimization 

problem. Let 𝐿 be the error to be minimized, 

𝐿 = ∑ 𝐿𝑖2𝑁
𝑖=1 = ∑ (𝑔(𝑉𝑖) − 𝑔𝑖)2𝑁

𝑖=1     (5.3) 

Here, 𝑔 can represent 𝑃 or 𝑄, the ZIP load models. Therefore, 

𝐿 = ∑ �𝑍𝑝 ∙ �
𝑉𝑖
𝑉0
�
2

+ 𝐼𝑝 ∙ �
𝑉𝑖
𝑉0
� + 𝑃𝑝 −

𝑃𝑖
𝑃0
�
2

𝑁
𝑖=1   (5.4) 

𝑉𝑖/𝑉0 and 𝑃𝑖/𝑃0 correspond to normalized values of voltage and power 

respectively, with respect to their nominal values; 𝑁 is the number of samples. 

The ZIP coefficients can be fitted to the measured data considering three cases: 

1. No constraints; therefore, minimization of (5.4). 

2. One constraint added: minimization of (5.4) subject to the sum of all 

coefficients should be equal to one (5.5). This constraint ensures that the 

load consumes the correct power at nominal voltage [66]. 

ℎ�𝑍𝑝, 𝐼𝑝,𝑃𝑝� = 𝑍𝑝 + 𝐼𝑝 + 𝑃𝑝 − 1 = 0   (5.5) 

3. Two constraints added: minimization of (5.4) subject to the sum of all 

coefficients should be equal to one (5.5), and all coefficients should greater 

than or equal to zero (5.6). 

𝑍𝑝, 𝐼𝑝,𝑃𝑝 ≥ 0      (5.6) 
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For cases 1 and 2, it should be noticed that the coefficients can be negative 

values, making the model not physically based, as long as the model behavior matches 

the load characteristic. The reactive power is treated in a similar fashion to determine its 

ZIP coefficients. 

5.2.1.1.4 Case examples for ZIP load model coefficients determination 

The steady-state ZIP load models resulting from the foregoing procedure is 

presented here for a 55-inch LCD-TV and a 55-inch LED-TV as case examples. The 

curves of Active Power vs. Voltage (PV) and Reactive Power vs. Voltage (QV) of the 

measurements and the ZIP models are shown in Figure 5-1 and Figure 5-2. For voltages 

above 100 V (approximately), one may notice that the TVs load consumption are nearly 

constant power for both LCD and LED technologies.  

 

Figure 5-1 PV and QV Curves - 55” LCD Television 
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Figure 5-2 PV and QV Curves - 55” LED Television 

Table 5-2 and Table 5-3 show the ZIP coefficients for the LCD-TV and the LED-

TV respectively. The ZIP coefficients have been determined for the three cases N = No 

Constraints, 1 = One Constraint, and 2 = Two Constraints. 

Table 5-2 ZIP Models for the 55-Inch LCD-TV 

V0 
(V) 

Voff 
(V) 

Active Power Reactive Power 

P0 (W) Q0 (VAr) 

120 50 296.29 -27.65 

Constraints Zp Ip Pp Zq Iq Pq 

N 0.546 -1.051 1.499 -0.646 2.204 -0.560 

1 0.580 -1.088 1.509 -0.637 2.194 -0.557 

2 0.000 0.000 1.000 0.247 0.753 0.000 
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Table 5-3 ZIP Models for the 55-Inch LED-TV 

V0 
(V) 

Voff 
(V) 

Active Power Reactive Power 

P0 (W) Q0 (VAr) 

120 46 119.36 -10.44 

Constraints Zp Ip Pp Zq Iq Pq 

N 0.276 -0.546 1.271 0.546 0.909 -0.482 

1 0.271 -0.540 1.269 0.726 0.697 -0.423 

2 0.000 0.000 1.000 1.000 0.000 0.000 

 

5.2.1.2 PQ-ZIP database 

The steady-state PQ ZIP load models database resulting from the foregoing 

procedure considering one constraint and references [63] and [64] are summarized in 

Table 5-4, Table 5-5, and Table 5-6. Appliances in blue background correspond to UTA 

developed models. 
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Table 5-4 PQ-ZIP Single Phase Load Models Database 

No. Device S0 
(VA) 

P0 
(W) 

Q0 
(VAr) pf Voff 

(V) 
V0 
(V) 

Active Power Reactive Power 

Zp Ip Pp Zq Iq Pq 

1 No Candidate SP6 0 0 0 0 0 120 0 0 0 0 0 0 

2 Air Conditioner #1 497.93 483.00 121.00 0.9700 100 120 1.74 -2.92 2.18 21.01 -36.57 16.56 

3 Air Conditioner #2 529.96 513.00 133.00 0.9680 100 120 0.28 -0.13 0.85 9.51 -16.07 7.56 

4 Laptop Charger 80.45 35.90 72.00 0.4462 100 121 -0.27 0.47 0.80 -0.36 1.22 0.14 

5 Air Compressor 1ph 1215.80 1114.00 487.00 0.9163 100 120 0.75 0.38 -0.13 -0.92 3.23 -1.31 

6 Fan #1 73.52 33.40 65.50 0.4543 100 121 -0.98 2.17 -0.19 -1.03 2.59 -0.56 

7 Fan #2 312.46 295.00 103.00 0.9441 100 121 -0.01 1.29 -0.28 5.41 -8.25 3.84 

8 Portable Fan 86.62 81.58 29.09 0.9419 50 120 0.48 0.70 -0.18 0.44 0.68 -0.12 

9 Electronic Ballast (Advance) 59.21 59.00 4.94 0.9965 100 121 0.23 -0.51 1.28 10.16 -22.48 13.32 

10 Electronic Ballast (GE) 62.86 61.50 13.00 0.9784 100 121 -0.02 1.24 -0.22 6.30 -9.71 4.41 

11 Electronic Ballast (Universal) 61.72 61.50 5.23 0.9964 100 121 0.10 -0.24 1.14 4.43 -6.01 2.58 

12 Magnetic Ballast 82.25 81.80 8.57 0.9946 100 121 -1.62 3.84 -1.22 35.76 -66.35 31.59 

13 CFL Bulb #1 49.38 28.10 40.60 0.5691 100 120 1.21 -1.58 1.37 1.20 -1.27 1.07 

14 CFL Bulb #2 41.71 23.30 34.60 0.5586 100 120 0.26 -0.22 0.96 0.54 -0.39 0.85 

15 Incandescent Bulb 104.00 104.00 0.80 1.0000 100 121 0.45 0.65 -0.10 1.44 -1.09 0.65 

16 Incandescent Eco Bulb 72.21 72.20 0.90 0.9999 100 120 0.47 0.61 -0.08 0.27 0.72 0.01 

17 Refrigerator #1 131.71 120.00 54.30 0.9111 100 121 1.15 -1.76 1.61 6.97 -10.66 4.69 

18 Refrigerator #2 159.15 91.80 130.00 0.5768 100 121 2.39 -3.84 2.45 2.51 -2.63 1.12 

19 Refrigerator Top Mounted 146.97 143.47 17.11 0.9762 90 120 1.69 -3.40 2.71 16.43 -34.32 18.90 

20 Halogen #1 109.00 109.00 0.91 1.0000 100 121 0.45 0.65 -0.10 0.78 -0.27 0.49 

21 Halogen #2 95.71 95.70 1.01 0.9999 100 121 0.46 0.63 -0.09 -0.58 2.44 -0.86 

22 Halogen #3 92.00 92.00 0.64 1.0000 100 121 0.46 0.64 -0.10 12.87 -22.43 10.56 

23 LCD Television 209.06 208.00 -21.00 0.9949 100 121 0.11 -0.17 1.06 1.60 -1.72 1.12 

24 LCD TV 55" 297.70 296.41 -27.65 0.9957 58 120 0.58 -1.09 1.51 -0.63 2.19 -0.55 

                                                 
6 No Candidate SP is a reserved space to represent any Single Phase (SP) appliance whose characteristics do not match any of the known loads from 2 to 32. 
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25 LED TV 55" 122.41 121.68 -13.38 0.9940 51 120 0.43 -0.81 1.39 0.41 1.02 -0.43 

26 Microwave (GE) #1 1451.89 1405.00 366.00 0.9677 100 121 1.68 -2.51 1.83 60.21 -115.59 56.38 

27 Microwave (Haier) #2 1446.39 1334.00 559.00 0.9223 100 121 1.31 -1.80 1.49 40.14 -71.30 32.16 

28 Microwave #3 1252.20 1252.00 -22.13 0.9998 100 120 5.49 -9.30 4.81 -638.37 1088.14 -448.76 

29 Microwave #4 929.69 922.60 114.62 0.9924 100 120 2.17 -2.84 1.67 101.07 -169.38 69.31 

30 PC (Monitor & CPU) 208.85 117.00 173.00 0.5602 100 121 0.19 -0.26 1.07 0.07 0.48 0.45 

31 DesktopPC-LCD24" 189.10 187.45 -24.87 0.9913 66 120 0.40 -0.72 1.32 2.34 -4.19 2.85 

32 Vacuum Cleaner 897.91 869.00 226.00 0.9678 100 121 0.80 0.36 -0.16 3.38 -4.46 2.08 

 

Table 5-5 PQ-ZIP Bi Phase Load Models Database 

No. Device S0 
(VA) 

P0 
(W) 

Q0 
(VAr) pf Voff 

(V) 
V0 
(V) 

Active Power Reactive Power 

Zp Ip Pp Zq Iq Pq 

1 No Candidate BP7 0 0 0 0 0 240 0 0 0 0 0 0 

2 Air Conditioner 1019 988 249.4 0.969 100 208 0 0 1 0 0 1 

 

Table 5-6 PQ-ZIP Three Phase Load Models Database 

No. Device S0 
(VA) 

P0 
(W) 

Q0 
(VAr) pf Voff 

(V) 
V0 
(V) 

Active Power Reactive Power 

Zp Ip Pp Zq Iq Pq 

1 No Candidate TP8 0 0 0 0 0 120 0 0 0 0 0 0 

2 Air Compressor 3ph 1461.43 1175.00 869.00 0.8040 174 211 0.12 0.02 0.86 4.87 -7.64 3.77 

3 Elevator Emulation (0.75HP) 995.05 802.00 589.00 0.8060 174 210 0.53 -0.99 1.46 1.96 -2.47 1.51 

4 Elevator Emulation (1.0HP) 1150.25 988.00 589.00 0.8589 174 211 0.24 -0.44 1.20 5.71 -10.18 5.47 

5 Elevator Emulation (1.5HP) 1723.81 1383.00 1029.00 0.8023 174 210 0.39 -0.70 1.31 3.80 -5.75 2.95 

                                                 
7 No Candidate BP is a reserved space to represent any Bi Phase (BP) appliance whose characteristics do not match any of the known loads if they exist. 
8 No Candidate TP is a reserved space to represent any Three Phase (TP) appliance whose characteristics do not match any of the known loads from 2 to 5. 

Table 5-2—Continued 
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5.2.2 Typical Rated Power Consumption of Load Components: Prange Database 

Important information of any electrical appliance can be found in its nameplate 

regarding the identifying name and the rating in volts and amperes or in volts and watts; or if the 

appliance is to be used on a specific frequency or frequencies [67]. The wattage of an appliance 

is stamped in most cases on the nameplate on the bottom of the back of the appliance. The 

wattage listed is the maximum power drawn by the appliance. It should be noted that the actual 

amount of power consumed depends on the setting used at any one time. Therefore, the 

wattage from an appliance’s nameplate is just a reference value, and not its actual drawn 

power. If the wattage is not listed on the appliance, it can still be estimated by finding the current 

draw (in amperes) and multiplying that by the voltage (in volts) used by the load component. 

Prange accounts for the variability in size and makes of the appliances in the PQ-ZIP 

database base case. Each load component listed before is associated with sets of reference 

active power values consumed by each of the appliance respectively. These reference values 

were obtained from different sources: 

 Local department store nameplate recordings 

 Datasheets from appliances’ manufacturers 

 Appliance Efficiency Database from the California Energy Commission [68] 

 Energy Star Qualified Products [69] 

 Estimating Appliance and Home Electronic Energy Use from the U.S. Department 

of Energy, Energy Efficiency & Renewable Energy [70] 

 

5.2.3 Hourly Load Curve Shapes: Normalized End-Use Load Profile Database 

Statistically averaged usage pattern of end-use appliances is utilized as means of 

determining which appliance is turned on most likely in the event of more than one appliance 

candidate is found during the identification process of MAI program. 
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This average usage pattern is what is referred to as “appliance load shape”, and it is a 

measure of the average electricity consumption of an appliance over the course of each hour on 

an average day. An “average” day could be an average annual day, an average summer day, or 

an average winter day [71]. All average hourly load profiles are normalized (dimensionless), and 

they represent an energy-weighted probability distribution of the load’s occurrence at any given 

hour [72].  For the purpose of this dissertation, the load shapes developed as part of the End-

Use Load and Consumer Assessment Program are used. Two sources of information were 

explored to assist in the process of obtaining these curve shapes that are publicly available: 

 The Building America Analysis Spreadsheets [73] by Building America House 

Simulation Protocols report [74]; for example Home Entertainment in Table 5-7, 

Figure 5-3. 

Table 5-7 Building America - Home Entertainment Devices Hourly Load Profile 

Winter (October - March) Normalized Energy Use Profile 
Hour 1 2 3 4 5 6 7 8 9 10 11 12 

% 4.8 2.7 1.4 0.2 0.1 0.1 0.5 1.0 1.7 2.4 3.3 4.2 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 

% 4.3 4.4 4.6 4.8 5.4 6.0 7.0 8.1 8.7 9.3 8.1 6.9 
Summer (April - September) Normalized Energy Use Profile 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
% 4.2 1.2 0.6 0.0 0.0 0.0 0.5 0.9 1.9 2.9 3.2 3.5 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 
% 3.7 3.8 4.1 4.3 4.7 5.0 7.0 9.0 10.7 12.3 9.7 7.1 
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Figure 5-3 BA - Home Entertainment Devices Load Shape for an Average (a) Winter, and (b) 

Summer Day 

 
 

 Repository files for GridLAB-D simulation software [75]; for instance Heating-

Cooling (Air Conditioner) in Table 5-8, Figure 5-4. 
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Table 5-8 GridLAB-D Rep. Files - Air Conditioner Hourly Load Profile 

Winter (October - March) Normalized Energy Use Profile 
Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Weekday (%) 3.2 3.4 3.6 3.8 4.1 5.1 6.2 6.2 5.6 4.9 4.3 3.9 
Weekend (%) 3.3 3.4 3.6 3.8 4.1 4.8 5.5 6.2 6.3 5.7 4.9 4.3 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 
Weekday (%) 3.7 3.5 3.4 3.6 4.1 4.4 4.3 4.1 4.0 3.9 3.5 3.2 
Weekend (%) 3.9 3.7 3.6 3.6 3.8 3.9 3.8 3.8 3.9 3.8 3.5 3.2 

Summer (April - September) Normalized Energy Use Profile 
Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Weekday (%) 2.1 1.8 1.6 1.4 1.4 1.6 2.3 2.8 3.0 3.3 3.7 3.9 
Weekend (%) 2.1 1.7 1.6 1.4 1.4 1.6 2.1 2.8 3.3 3.5 3.8 4.2 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 
Weekday (%) 4.4 5.1 5.8 6.6 7.5 8.0 8.2 7.5 6.3 5.1 4.0 2.8 
Weekend (%) 4.7 5.2 5.9 6.6 7.3 7.8 8.0 7.3 6.1 4.9 3.8 2.8 

 

Figure 5-4 GLD - Air Conditioner Load Shape for an Average (a) Winter, and (b) Summer 
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5.2.3.1 EUNLP assignment to the end-use load components for MAI 

After the End-Use Normalized Load Profiles have been introduced in the previous 

section, it is time to assign them to the End-Use Load Components.  EUNLPs from the 

GridLAB-D Repository files are preferred whenever possible because of their weekdays and 

weekends distinction. EUNLP from Building America are utilized when there is no load 

component in EUNLP-GLD that can describe its corresponding ZIP load component. 

Table 5-9, Table 5-10, and Table 5-11 provide the EUNLP assignment to the End-Use 

Load Components that are used in the MAI program for Single, Bi, and Three Phase appliances 

respectively. 

5.2.4 Typical Interval Time of Use Load Components Database 

Each load component has been associated with sets of typical interval Time of Use by 

each of the appliance respectively. Therefore, Typical Interval Time of Use can improve MAI 

program’s ability to match characteristics to observed data and help explain load behavior. 

In recent years, load disaggregation has drawn renewed interest from the research 

community, making it possible to provide publicly usage information from real homes 

consumption. This usage information has been processed to obtain the typical interval time of 

use as well as other available sources: 

 The Reference Energy Disaggregation Data Set (Initial REDD Release, Version 

1.0) [76] 

 Building-Level Fully Labeled Electricity Disaggregation Data Set (BLUED) [77] 

 The Building America Analysis Spreadsheets [73] by Building America House 

 ResPoNSe: modeling the wide variability of residential energy consumption [78] 
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Table 5-9 End-Use Normalized Load Profile Assignment for Single Phase Loads 

 
No. 

 
Device EUHLP-GLD EUHLP-BA 

1 No Candidate SP - - 
2 Air Conditioner #1 Heating Cooling - 
3 Air Conditioner #2 Heating Cooling - 
4 Laptop Charger - Other MELs 
5 Air Compressor 1ph Freezer - 
6 Fan #1 - Ceiling Fans 
7 Fan #2 - Ceiling Fans 
8 Portable Fan - Ceiling Fans 
9 Electronic Ballast (Advance) Light Plugs - 

10 Electronic Ballast (GE) Light Plugs - 
11 Electronic Ballast (Universal) Light Plugs - 
12 Magnetic Ballast Light Plugs - 
13 CFL Bulb #1 Light Plugs - 
14 CFL Bulb #2 Light Plugs - 
15 Incandescent Bulb Light Plugs - 
16 Incandescent Eco Bulb Light Plugs - 
17 Refrigerator #1 Refrigerator - 
18 Refrigerator #2 Refrigerator - 
19 Refrigerator Top Mounted Refrigerator - 
20 Halogen #1 Light Plugs - 
21 Halogen #2 Light Plugs - 
22 Halogen #3 Light Plugs - 
23 LCD Television - Home Entertainment 
24 LCD TV 55" - Home Entertainment 
25 LED TV 55" - Home Entertainment 
26 Microwave (GE) #1 Food Preparation - 
27 Microwave (Haier) #2 Food Preparation - 
28 Microwave #3 Food Preparation - 
29 Microwave #4 Food Preparation - 
30 PC (Monitor & CPU) Other - 
31 DesktopPC-LCD24" Other - 
32 Vacuum Cleaner Other - 

 

Table 5-10 End-Use Normalized Load Profile Assignment for Bi Phase Loads 

 
No. 

 
Device EUHLP-GLD EUHLP-BA 

1 No Candidate TP - - 
2 Air Conditioner Heating 

C li  
- 
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Table 5-11 End-Use Normalized Load Profile Assignment for Three Phase Loads 

 
No. 

 
Device EUHLP-GLD EUHLP-BA 

1 No Candidate TP - - 
2 Air Compressor 3ph Freezer - 
3 Elevator Emulation (0.75HP) Other - 
4 Elevator Emulation (1.0HP) Other - 
5 Elevator Emulation (1.5HP) Other - 

 

5.2.5 Adaptive PQ-ZIP Database 

Initially this database can be filled out with the appliances presented in Section 5.2.1 to 

establish a good starting point. Keep in mind that the appliance which is labeled “No Candidate” 

(NC) corresponds to a special tag reserved for any appliance that has not been named9 yet, 

and gives flexibility to add a new element whenever a match of NCs is found during an ON-OFF 

operation, and it is established a known relationship with the stored appliances in the PQ-ZIP 

Database during the appliance identification process. Once the identification is possible through 

the algorithm, a new element is added into this database. This happens every time a new 

appliance is matched, and identified. 

Therefore, this database adapts whenever a new appliance appears. 

𝑃0𝑠 𝑄0𝑠 𝑛𝑙𝑐 
where, 

𝑃0𝑠 is the tailored active power at rated voltage 𝑉0 

𝑄0𝑠 is the tailored reactive power at rated voltage 𝑉0 

𝑛𝑙𝑐 is the index that identifies uniquely to a load component, and it is used to  extract the 

ZIP load coefficients from the PQ-ZIP load database. 

The adaptive PQ-ZIP Database has three files with each one storing a different set of 

appliances. The first file stores adaptive PQ-ZIP load components for Single-Phase loads, the 

                                                 
9 Named and identified means similar concepts. By named, it indicates that the appliance has 
been given a name, e.g. air conditioner, and by identified means that the appliance is identified 
to be a known appliance, e.g. the air conditioner. Therefore, they are used indistinctively. 
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second file stores adaptive PQ-ZIP load components for Bi-Phase10 loads, and the third file 

stores adaptive PQ-ZIP load components for Three-Phase loads. All of them have reserve index 

𝑛𝑙𝑐 = 1 to denote a No Candidate. 

5.3 Major Appliances Identification Algorithm 

The software starts with the specification of the input data file to be analyzed. No 

manual training stage is necessary because the software will learn automatically during the 

identification process. Every time a new appliance appears and is recognized by MAI program, 

it will be catalogued and stored in the adaptive PQ-ZIP database. 

5.3.1 Data Reading 

Database initialization is performed where MAI program will read and load: 

1. ZIP load models 

2. Active power range 

3. Normalized end-use load hourly profile 

4. Known CT ratios 

5. Adaptive ZIP load models 

MAI algorithm is intended to work in real-time, so the algorithm is implemented in a 

recursive form by passing once through the data. During the algorithm design stage, the data 

are read as a block per day for a particular customer as they are available. Refer to Chapter 2 

for detailed information about smart meter readings. 

5.3.2 Edge Detection Based on Current and Phase Identification: 3-Phase 2-Level Edge 

Detection Algorithm 

Load disaggregation platform will detect when there is an actual appliance being 

switched (on/off) by identifying changes in steady-state level. A triggering threshold scheme is 

used as means of detecting positive and negative edges. Careful observation and testing of the 

                                                 
10 By bi-phase load it is understood that it corresponds to a load that is connected to two phases 
out of the three phase system. 
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available channels that provide edge information has made possible to determine that rather 

than using power measurements on the edge detection, current measurements can be used. 

Current measurements have proven to provide stable changes because almost all the 

transitions (down-up and up-down steps) occur within one step –or one minute. Whereas the 

active power measurements were seen to ramp up/down, in some cases, in 2 steps or even 

more for the same event; this is an undesirable condition because the objective is to be able to 

identify appliance operations in real time. Moreover, the first measurement after a transition 

occurs is uncertain because on/off operation can happen at anytime within 1 minute. Therefore, 

this condition is skipped by taking the next measurement, as far as the detection is concerned, 

where a steady period is assumed to be reached after a maximum time of 1-minute following 

the transition. In other words, the identification is possible with 1-minute delay. More than 2 

steps to reach steady state values is equivalent to say that the appliance takes 3 minutes and 

beyond to become in steady state operation. It can happen of course, and the current should 

follow this behavior. However, this condition is beyond MAI’s capability as it will be explained 

later. 

Alternatively, a change in voltage following an appliance operation was examined; 

however this change is small, can be masked by noise, and is not a real appliance operation. 

The 3-phase 2-level edge detection algorithm is based on the current measurements. 

From a practical point of view, to detect a step change in the current value, a threshold 𝑡ℎ𝑟𝐼 is 

defined. All outputs below this threshold are discarded because from the project’s perspective, 

the utility is interested in major appliances operation, and with steady state measurements at 1-

minute sampling interval it is not expected to be able to identify small appliances. This threshold 

could be meter-specific, and should be above noise levels. 

Firstly, flag statuses are initialized, and they are intended to help in identifying an edge 

nature. Let 𝑘 be the present time, in minutes or time index, and 𝐼𝑘 or 𝐼(𝑘) the present 
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measurement of the current 𝐼 at time 𝑘, in amps. The algorithm compares two consecutive 

current measurements, at each corresponding phase A, B, and C, 

(Δ𝐼)1 = 𝐼(𝑘) − 𝐼(𝑘 − 1)    (5.7) 

If there is a significant change, i.e. any current variation of 5 A or more (5 A is the 

current threshold 𝑡ℎ𝑟𝐼), a flag status is set to 1 indicating that there is an event at time 𝑘 and it is 

ready to check the 𝑘 − 2  variation; otherwise there is no any event, and that particular phase is 

in a “Steady State” condition. All the current measurements and variations get to this point, and 

it is called level one. Once the flag status is activated, then the current variation (Δ𝐼)2 for 𝑘 − 2 

is calculated, 

(Δ𝐼)2 = 𝐼(𝑘) − 𝐼(𝑘 − 2)    (5.8) 

(Δ𝐼)1 and (Δ𝐼)2 are then compared against ±𝑡ℎ𝑟𝐼 to set flag indicators up and down for 

level one, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝1, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝2, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛1, and (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛2 accordingly: 

 If (Δ𝐼)1 > 𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝1 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝1 = 0, End if 

 If (Δ𝐼)1 < −𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛1 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛1 = 0, End if 

 If (Δ𝐼)2 > 𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝2 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝2 = 0, End if 

 If (Δ𝐼)2 < −𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛2 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛2 = 0, End if 

After setting the flag indicators up and down for level one, the status level is changed to 

2. Then, the edge detection algorithm advances to time 𝑘′ = 𝑘 + 1, where the whole procedure 

is repeated without reinitializing any flag, (Δ𝐼)′1 and (Δ𝐼)′2 are calculated for the new 

measurements, and it is time to compare them against ±𝑡ℎ𝑟𝐼 to set flag indicators up and down 

for level two, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝1, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝2, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛1, and (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛2 with a logic similar as 

before: 

 If (Δ𝐼)′1 > 𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝1 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝1 = 0, End if 

 If (Δ𝐼)′1 < −𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛1 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛1 = 0, End if 

 If (Δ𝐼)′2 > 𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝2 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝2 = 0, End if 

 If (Δ𝐼)′2 < −𝑡ℎ𝑟𝐼, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛2 = 1; Else, (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛2 = 0, End if 
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When the status level flag is 2, it is time to decide the nature of the edge. The edge 

nature is decided based on the flag indicators up and down that were assigned for levels one 

and two, and they have been grouped in a matrix designated as 𝐅LVL1&2 for convenience, 

𝐅LVL1&2 = �
(𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝1 (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝1 (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛1 (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛1
(𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑢𝑝2 (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑢𝑝2 (𝑓𝑙𝑙𝑒𝑣𝑒𝑙1)𝑑𝑜𝑤𝑛2 (𝑓𝑙𝑙𝑒𝑣𝑒𝑙2)𝑑𝑜𝑤𝑛2

� 

There are eleven cases that have been considered to determine the edge nature, as 

they are shown in Table 5-12. Here, edge nature numbers 2, 5, 7, 8, 9, 10 and 11 indicate fast 

transitions up and down (ON) or down and up (OFF), and they do not provide meaningful 

information for appliance identification. Thus, edge nature 1, 3, 4, and 6 indicate that there is an 

operation (turn on, or turn off) of an appliance.  If the transition meets one of the four meaningful 

edge nature conditions, a status flag for edge detection will be set to one at its corresponding 

phase A, B, and/or C. What follows next is to calculate the variation in power, active ∆𝑊 and 

reactive ∆𝑉𝐴𝑟, that occur during this transition. 

The variation in active and reactive power is no more than the difference between its 𝑘 

and 𝑘 − 2 values. 

∆𝑊(𝑘) = 𝑊(𝑘) −𝑊(𝑘 − 2)    (5.9) 

∆𝑉𝐴𝑟(𝑘 − 2) = 𝑉𝐴𝑟(𝑘) − 𝑉𝐴𝑟(𝑘 − 2)  (5.10) 

It should be noticed that the calculations in all equations in this Section 5.3.2 are 

performed at each phase A, B, and C. In the notation showed above the letters A, B, and C 

were dropped for convenience. Therefore, for ∆𝑊, for instance, there exist ∆𝑊𝐴, ∆𝑊𝐵, and ∆𝑊𝐶, 

and so forth for all the expressions. 

 

 

 

 



 

111 

Table 5-12 Edge Nature Definitions 

Edge Nature 
No. 

Edge Nature 
Name 𝐅LVL1&2 

1 Upward �1 0 0 0
1 1 0 0� 

2 Up/Down 1 minute �1 0 0 1
1 0 0 0� 

3 Ramp Up 2 minutes �1 1 0 0
1 1 0 0� 

4 Downward �0 0 1 0
0 0 1 1� 

5 Down/Up 1 minute �0 1 1 0
0 0 1 0� 

6 Ramp Down 2 minutes �0 0 1 1
0 0 1 1� 

7 Up half down �1 0 0 0
1 0 0 0� 

8 Down half up �0 0 1 0
0 0 1 0� 

9 Half down up half �1 0 0 0
0 0 0 0� 

10 Half up down half �0 0 1 0
0 0 0 0� 

11 Tick shape up �1 0 0 0
0 1 0 0� 

 

5.3.3 i-Phase Load Identification 

Once the edge detection has been performed for all three phases A, B, and C, all the 

events were classified according to their edge nature, but it only tells us that something was 

turned ON or OFF indistinctly at each phase and independently. Therefore, i-Phase Load 

Identification determines whether the transitions correspond to a Single-Phase, Bi-Phase, or 

Three-Phase Load, 

𝑖 ∈ {𝑆𝑖𝑛𝑔𝑙𝑒,𝐵𝑖,𝑇ℎ𝑟𝑒𝑒} 

A transition as a result of the edge detection can happen in either of three phases, in 

two phases, or in all three phases. A 𝑘𝑒𝑦 value is then specified to indicate in which phase the 

transition exist, as shown in Table 5-13. Ones indicate the existence of a transition. 
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Table 5-13 Transition Key Value Designation 

A B C 𝑘𝑒𝑦 
1 0 0 1 
0 1 0 2 
0 0 1 3 
1 1 0 4 
0 1 1 5 
1 0 1 6 
1 1 1 7 

 

If  𝑘𝑒𝑦 is either 1, 2 or 3, then the operation comes from a Single-Phase Load; likewise, 

it 𝑘𝑒𝑦 is either 4, 5, or 6, then the operation is a Bi-Phase Load, or Single-Phase Loads at each 

one of the two phases. Finally, it is easy to notice what will happen if 𝑘𝑒𝑦 is equal to 7. 

In any 𝑘𝑒𝑦 case, the appropriate active and reactive measured power, 𝑃𝑚𝑠𝑟, and 𝑄𝑚𝑠𝑟 , 

which would correspond to the power consumed by the load component are derived from the 

stored values in ∆𝑊 and ∆𝑉𝐴𝑟, Table 5-14. 

Table 5-14 Possible Pmsr and Qmsr Consumed by the Load Component 

𝑘𝑒𝑦 𝑃𝑚𝑠𝑟 𝑄𝑚𝑠𝑟 
1 ∆𝑊𝐴 ∆𝑉𝐴𝑟𝐴 
2 ∆𝑊𝐵 ∆𝑉𝐴𝑟𝐵 
3 ∆𝑊𝐶 ∆𝑉𝐴𝑟𝐶 
4 ∆𝑊𝐴 + ∆𝑊𝐵 ∆𝑉𝐴𝑟𝐴 + ∆𝑉𝐴𝑟𝐵 
5 ∆𝑊𝐵 + ∆𝑊𝐶 ∆𝑉𝐴𝑟𝐵 + ∆𝑉𝐴𝑟𝐶 
6 ∆𝑊𝐶 + ∆𝑊𝐴 ∆𝑉𝐴𝑟𝐶 + ∆𝑉𝐴𝑟𝐴 
7 ∆𝑊𝐴 + ∆𝑊𝐵 + ∆𝑊𝐶 ∆𝑉𝐴𝑟𝐴 + ∆𝑉𝐴𝑟𝐵 + ∆𝑉𝐴𝑟𝐶 

 

In the same way, in any 𝑘𝑒𝑦 case, the appropriate values of the active and reactive 

power 𝑃𝑍𝐼𝑃 and Q_ZIP are calculated. P_ZIP and Q_ZIP are the active and reactive power, 

respectively, that are obtained from the ZIP load models tailored for a particular meter or group 

of meters, and stored in the Adaptive PQ-ZIP Database: 

𝑃𝑍𝐼𝑃(𝑉𝑚𝑠𝑟) = 𝑃0𝑠 ∙ �𝑍𝑃 ∙ �
𝑉𝑚𝑠𝑟
𝑉0
�
2

+ 𝐼𝑃 ∙ �
𝑉𝑚𝑠𝑟
𝑉0
� + 𝑃𝑃�  (5.11) 
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𝑄𝑍𝐼𝑃(𝑉𝑚𝑠𝑟) = 𝑄0𝑠 ∙ �𝑍𝑄 ∙ �
𝑉𝑚𝑠𝑟
𝑉0
�
2

+ 𝐼𝑄 ∙ �
𝑉𝑚𝑠𝑟
𝑉0
� + 𝑃𝑄�  (5.12) 

where all the variables have been defined in its respective section, and only 𝑉𝑚𝑠𝑟 needs to be 

defined as the voltage at time 𝑘. 

5.3.4 Measured and Calculated Values Comparison for Active and Reactive Powers 

𝑃𝑚𝑠𝑟 and 𝑄𝑚𝑠𝑟  from a meaningful transition that occurs at time 𝑘 have been obtained, as 

well as 𝑃𝑍𝐼𝑃 and 𝑄𝑍𝐼𝑃 for all the possible known appliances from the Adaptive PQ-ZIP Database. 

It is now possible to compare them and determine whether the meaningful transition matches a 

possible candidate from the known appliances. Thus, it only compares the active/reactive power 

measured during a meaningful transition against the known appliances stored in the Adaptive 

PQ-ZIP Database. It should be kept in mind that this database has the first appliance labeled as 

“No Candidate” with 𝑛𝑙𝑐 = 1, while the others are the known appliances with 𝑛𝑙𝑐 > 1. 

5.3.5 Tracking Transition Behavior and Match On-Off Operations 

Every time a meaningful transition is determined to be an appliance changing state from 

OFF to ON (turning on); an ON-event is recorded. The information recorded in the ON-event is 

time-location of this event, and possible candidate index as it was obtained from Section 5.3.4. 

No further action is performed, just save the ON-event. 

Once the meaningful transition is determined to be an appliance changing state from 

ON to OFF (turning off); it is time to match this OFF-event with its ON-event if exists. 

The pairwise matching for an ON-OFF operation is basically based on what is turned off 

must have been turned on before. At the moment when an OFF-event exists, the appliance 

responsible for this operation is looked up on a pool of possible candidates that have been turn 

on already (ON-event possible candidates). If nothing has been turned on before, an error 

message is displayed indicating this matter. 

To improve the accuracy on the matching procedure the Time of Use is taken into 

account. This means that matched ON/OFF appliances should be within their typical Time of 

Use, as described in Section 5.2.4. 
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5.3.5.1 If a match is found within the adaptive PQ-ZIP load models database 

This means that an ON or OFF event is paired with a known appliance in the active 

database, and therefore, a proper index from Table 5-4, Table 5-5 or Table 5-6, if the load is 

single, bi, or three phase  respectively. 

5.3.5.2 If a match is found with “No Candidate” tag appliances 

During the process described in Section 5.3.4, either of the ON or OFF events 

associated with the operation of an appliance can be labeled as NC11. First of all, if two NC 

appliances are matched together, a message is displayed indicating that a “Match is found for 

appliance # 1” followed by the ON and OFF locations. This match is saved in an output variable 

OutV, 

𝑂𝑢𝑡𝑉 = [𝑛𝑙𝑐 𝑡0 𝑘 ∆𝑊(𝑡0) ∆𝑊(𝑘) ∆𝑉𝐴𝑟(𝑡0) ∆𝑉𝐴𝑟(𝑘) 𝑉𝑚𝑠𝑟(𝑡0) 𝑉𝑚𝑠𝑟(𝑘)] 

So far, MAI has determined that there is an appliance that has been turned on at a 

certain location or time 𝑡0, and it has been turned off at time 𝑡1 = 𝑘, 𝑡0 < 𝑡1. However, this 

appliance is still unknown; therefore, when the match is made of NC appliances, the action will 

be to assign a suitable load model, or in other words, to find: 

𝑃0𝑠 𝑄0𝑠 𝑛𝑙𝑐 
 

that represent most likely this appliance, and identify which kind of load component is, e.g. 

refrigerator, air conditioner, or other appliance with known signature given by the ZIP load 

model. Then it can be saved in the adaptive PQ-ZIP database.  This procedure is called MAI 

Learning Algorithm. 

5.3.5.2.1 MAI learning algorithm 

Major Appliance Identification Learning Algorithm will “learn” which appliances a 

particular costumer (meter) has, based on an eight-step process: 

1. Get the candidate measured data from the output variable 𝑂𝑢𝑡𝑉 

                                                 
11 “No Candidate” appliance has the index number 1. 
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𝑂𝑢𝑡𝑉 stores important information regarding an appliance’s ON-OFF operation. 

Number 1 is the index that represents an appliance without any possible candidate, 

and this is the one that is going to be identified or named. From 𝑂𝑢𝑡𝑉’s information 

the following data can be derived, 

𝑃1 = 1
2
∙ �∆𝑊(𝑡0) − ∆𝑊(𝑘)�  (5.13) 

𝑄1 = 1
2
∙ �∆𝑉𝐴𝑟(𝑡0) − ∆𝑉𝐴𝑟(𝑘)�  (5.14) 

𝑉1 = 1
2
∙ �𝑉𝑚𝑠𝑟(𝑡0) + 𝑉𝑚𝑠𝑟(𝑘)�  (5.15) 

𝑡1𝑢𝑝 = 𝑡0    (5.16) 

𝑡1𝑑𝑜𝑤𝑛 = 𝑘    (5.17) 

2. Calculate the displacement power factor 𝑝𝑓1 from the measured data 

First, calculate the apparent power, 

𝑆1 = �(𝑃1)2 + (𝑄1)2   (5.18) 

then, calculate, 

𝑝𝑓1 = 𝑃1
𝑆1

     (5.19) 

3. Calculate the displacement power factor 𝑃𝐹𝑍𝐼𝑃 from the PQ-ZIP load models 

database 

𝑃𝐹𝑍𝐼𝑃 corresponds to the displacement power factor calculated from the ZIP load 

models. It is a vector of 𝑁 elements, where 𝑁 is the number of appliances in the 

PQ-ZIP database. It is understood that those values are obtained at 𝑉1. 

𝑃(𝑉1) = 𝑃0 ∙ �𝑍𝑃 ∙ �
𝑉1
𝑉0
�
2

+ 𝐼𝑃 ∙ �
𝑉1
𝑉0
� + 𝑃𝑃�   (5.20) 

𝑄(𝑉1) = 𝑄0 ∙ �𝑍𝑄 ∙ �
𝑉1
𝑉0
�
2

+ 𝐼𝑄 ∙ �
𝑉1
𝑉0
� + 𝑃𝑄�   (5.21) 

𝑆 = �𝑃2 + 𝑄2      (5.22) 

𝑃𝐹𝑍𝐼𝑃 = 𝑃
𝑆
      (5.23) 
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4. Compare 𝑝𝑓1 against 𝑃𝐹𝑍𝐼𝑃 

The power factor is chosen as signature which provides the necessary information 

about the electrical behavior of an individual appliance during steady-state 

operation. The assumption is that different loads of interest exhibit a unique power 

factor, and it accounts for the variability of the appliances size of the same kind. For 

instance, let’s pick the LED TV which can be found in 32”, 40”, 55”, and so on, and 

the power consumption will increase when the size increases. However, they all 

may share the same active and reactive power characteristic 𝑃𝐶(𝑉) and 𝑄𝐶(𝑉) 

respectively but different 𝑃0 and 𝑄0, 

𝑃𝐶(𝑉) = 𝑍𝑃 ∙ �
𝑉1
𝑉0
�
2

+ 𝐼𝑃 ∙ �
𝑉1
𝑉0
� + 𝑃𝑃  (5.24) 

𝑄𝐶(𝑉) = 𝑍𝑄 ∙ �
𝑉1
𝑉0
�
2

+ 𝐼𝑄 ∙ �
𝑉1
𝑉0
� + 𝑃𝑄  (5.25) 

A threshold  𝑡ℎ𝑟𝑝𝑓 can be defined to make it easier the comparison of 𝑝𝑓1 against 

𝑃𝐹𝑍𝐼𝑃. A binary list of the known appliances filled out with 1s when the 𝑝𝑓1 is close 

to 𝑃𝐹𝑍𝐼𝑃, otherwise 0s. 

5. Determine if 𝑃𝑚𝑖𝑛 < 𝑃1 < 𝑃𝑚𝑎𝑥 

𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 define a range of possible values in which 𝑃1 could exist. This range 

[𝑃𝑚𝑖𝑛 ,  𝑃𝑚𝑎𝑥] is taken from Prange Database as defined in Section 5.2.2.  For 

example, let’s continue talking about the LED TV.  It is impractical (almost 

impossible) to get (test) the ZIP model for all TVs in the market (different sizes, 

different brands), but the most representative ones can be tested and then 

classified by the technology they use. Thus, one can test TVs such as LED, LCD, 

CTR, Plasma, and get their ZIP load models for these specific technologies to 

include them as benchmarks in the PQ-ZIP database. Keep in mind that 𝑃1 can be 

overlapped in more than one type of load components. 

6. Determine the time interval from 𝑡1𝑢𝑝 to 𝑡1𝑑𝑜𝑤𝑛 that the unknown appliance was ON 
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This time interval, or Time of Use (ToU) measured in minutes, will be used to test 

whether the unknown appliance has a time of use within the Typical Interval Time of 

Use of the possible known appliance candidates. 

7. Determine which appliance is most likely to be ON  according to the hourly load 

curve shapes 

Use 𝑡1𝑢𝑝 and 𝑡1𝑑𝑜𝑤𝑛 to determine the time of the day the appliance is ON, then 

estimate the probability of usage (PoU), from the Normalized End-Use Load Profile 

Database in Section 5.2.3, of the load models in the PQ-ZIP Database. 

8. Finally, appliance naming 

Let’s consider,  

𝐴 = {𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑠𝑡𝑒𝑝 4: 𝑝𝑓1  ∈  𝑝𝑓𝑍𝐼𝑃} 

𝐵 = {𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑠𝑡𝑒𝑝 5: 𝑃1 ∈  [𝑃𝑚𝑖𝑛  ,  𝑃𝑚𝑎𝑥]  } 

𝐶 = {𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑠𝑡𝑒𝑝 6: 𝑇𝑜𝑈} 

Then, the scheme represented in Figure 5-5 is followed to define if the “No 

Candidate” appliance can be identified, or there is definitely not a suitable 

candidate, and therefore “unidentifiable.” 
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A&B&C

A&B

B&C

A&CPoU

Appliance 
identified Unidentifiable

No candidates found

At least one
candidate

A candidate found

At least one
candidate

At least one
candidate

At least one
candidate

No candidates found

No candidates found

No candidates found

 

Figure 5-5 Decision Making Scheme to Determine if the “No Candidate” Appliance is Identifiable 

or Unidentifiable 

Notice that if there is more than one possible candidate is found after 𝐴&𝐵&𝐶, 𝐴&𝐵, 

𝐵&𝐶 and 𝐴&𝐶, PoU is used to rank them according to which known appliance is most likely to 

be operating first at that particular time of the day. Then, that one is the chosen one. 
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Chapter 6  

Conclusions and Future Work Directions 

Smart grid network paradigm relies on the exploitation of smart meter data to improve 

customer experience, utility operations, and advanced power management. In this dissertation, 

algorithms to utilize data collected from the AMI system of a utility company that can benefit 

directly to both, utility and customers have been conceptualized and developed. Applications of 

smart meter data can help the power utility company to improve the performance of its grid, and 

also improve its customers’ experience. 

A robust data reading and preprocessing tool has been developed that can handle large 

Smart Meter data files, and provide clean data ready for analysis. Nevertheless, there is still 

room for improvement and new algorithms will need to be proposed to validate smart meter 

readings and properly address missing values and outliers at individual customers. 

Accurate customer daily load profiling has been developed for load estimation and 

network demand reconciliation to improve the efficiency and security of the utility grid. Load 

profiles were constructed based on customers’ stratification information, and based on 

customers’ consumption behavior similarities. These two approaches work well for smart 

metered customers, and future work should include assigning the load pattern inferred from the 

smart meters to the traditional meters’ loads. 

Real-world AMI data has been utilized to enhance the performance of load forecasting, 

which impacts operating practices and planning decisions to build, lease, or sell generation and 

transmission assets and the decisions to purchase or sell power at the wholesale level. The 

application of clustering to determine groups of customers considering load consumption 

similarities was demonstrated as an aid to improve the performance of load forecasting at the 

system level. It was shown how the load data at the household level from smart meters can be 

used to improve the load forecasting of the entire system by combining the forecasts from each 

group. While this characteristic was exploited for STLF based on Neural Networks, more work 
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should be performed to explore different techniques for STLF including probabilistic load 

forecasting techniques, and expand it to the study of MTLF, and LTLF. 

A nonintrusive load monitoring (NILM) method was investigated for discerning individual 

appliances from a residential customer based on the AMI data. A comprehensive algorithm for 

Major Appliance Identification was developed, and typical consumption patterns (P/Q 

consumption, On/Off cycle, and Time of Use) of each major appliance were created. The AMI 

data were coupled to the polynomial load models to achieve the goal of major appliances 

identification. In this area, the potential use of smart meter data for proper detection of 

appliances operation at the residential service class needs to be explored in more detail, and 

expanded to other service classes like commercial and industrial customers. In addition, 

constant impedance-current-power (ZIP) load models were developed of different home 

appliances that have recently emerged into the market. The importance of updating the load 

models was emphasized to properly represent the electrical behavior of the new appliances, 

and much work still needs to be conducted in load modeling. 
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