
ONLINE EFFICIENT AND EFFECTIVE SEARCH

IN LARGE AND NOISY SEQUENCE DATABASES

by

ALEXIOS KOTSIFAKOS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2014

Copyright c© by Alexios Kotsifakos 2014

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Vassilis Athitsos for his

invaluable advice and support during the course of my doctoral studies. I also wish

to thank the professor Dr. Panagiotis Papapetrou who co-supervised my thesis, as

well as my committee members Dr. Leonidas Fegaras, Dr. Chengkai Li, and Dr.

Ramez Elmasri for their interest in my research, their helpful comments, and for

taking time to serve in my dissertation committee.

I am grateful to all the teachers who taught me during all the years I spent

in school, in Athens (Greece) and at the University of Texas at Arlington (UTA).

In addition, I would like to thank my friends and colleagues for their confidence and

trust on the successful completion of my doctoral studies.

Finally, I would like to express my deep gratitude to my family who have encour-

aged, inspired, and supported my undergraduate and graduate studies. This thesis

is dedicated to my grandfathers and grandmothers, Evangelos, Ioannis-Prodromos,

Eleni, and Athena, the spirit, blessings, wisdom, and light of whom were, are, and

will always be leading my way.

April 4, 2014

iii

ABSTRACT

ONLINE EFFICIENT AND EFFECTIVE SEARCH

IN LARGE AND NOISY SEQUENCE DATABASES

Alexios Kotsifakos, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Vassilis Athitsos

This thesis investigates the problem of similarity search in large and noisy se-

quence databases. A key application domain of interest in this work is the very chal-

lenging Query-By-Humming (QBH) problem, according to which, given a hummed

part of a song, we would like to identify the closest matches in a large music repos-

itory. The problem of selecting the most appropriate, based on each specific query,

distance measure out of a pool of measures for classification in time series data is also

investigated. In addition, searching time series databases via examples, which may

be either time series or models, is also part of this work. Moreover, motivated by

the nature of music notes in the noisy QBH application, we explore the problem of

interval-based sequence matching in a variety of application domains.

More specifically, this thesis makes contributions both by defining novel simi-

larity measures that are used to identify the best database matches, and by propos-

ing methods to improve efficiency. Referring to the similarity measures, the thesis

contributes a method, named SMBGT (shorthand for Subsequence Matching with

Bounded Gaps and Tolerances), for finding the closest subsequence matches from a

iv

large database to a given query. This measure is applied to the noisy QBH application

domain, where the music pieces are represented as 2-dimensional time series. Since

efficiency should be a key characteristic when searching large time series databases,

ISMBGT is also proposed, which performs indexing on top of the SMBGT method

in a filter-and-refine manner. Applying ISMBGT on synthetic and real query sets for

QBH shows the usefulness of our indexing scheme.

A second contribution of this thesis is the “Hum-a-song” QBH system, which

allows the user to select among a variety of distance measures and music represen-

tations in order to retrieve the closest songs to a hummed query. Apart from that,

SMBGT is also exploited to perform genre classification of music pieces, which, among

others, can be beneficial in the area of assistive environments. For example, music

systems with therapeutic and educational functionalities need to be adapted based on

the music preferences of the end-users, such as children, patients, or disabled. Being

able to identify the genres of songs that fit to each category of end-users is imperative

in such settings as it can assist effectively in medical treatments and learning tasks.

Moreover, we address the problem of selecting the most appropriate distance

measure out of a pool of measures, which depends on each specific query, for clas-

sification of time series. The proposed approach is, to the best of our knowledge,

the first one to deal with this problem. The reason for the importance of such a

problem is given through an example. Assuming that there are two available dis-

tance measures performing whole sequence matching, there may be cases where the

first one may correctly classify a given query, while it may fail to classify another

query, which is correctly classified by the second distance measure. Thus, it would be

highly desirable to be able to choose the “best” measure for each query. The classifi-

cation accuracy of the proposed method compared to three state-of-the-art distance

measures is significantly competitive on actual data.

v

Furthermore, due to the fact that performing classification through the use

of distance measures can be computationally expensive due to their quadratic com-

plexity, we have explored the use of models, and specifically Hidden Markov Models

(HMMs). HMMs are widely known and have been applied to a variety of domains,

such as biology, speech recognition, and music retrieval, since they are able to model

the underlying structure of sequences determining the relationships between their ob-

servations. Thus, in order to perform classification, we present a way of representing

each class of a time series database with an HMM, and then perform searching based

on the constructed models. The proposed indexing framework MTSI (shorthand for

Model-based Time Series Indexing) works in a filter-and-refine manner, and is shown

to be both effective and efficient compared to a variety of distance-based measures

on a large number of time series databases. Additionally, we have exploited HMMs

so as to extract knowledge on what has happened in the past or to recognize what is

happening in the present. Specifically, instead of searching a database of time series

by providing a time series corresponding, e.g., to a specific activity, for finding the

time series that are similar to that query, we can provide a model representing this

activity. Comparing HMMs and several distance measures for such searches shows

that our approach is particularly meaningful with excellent accuracy results.

Finally, the problem of interval-based whole sequence matching has received

limited attention, although it appears in many application domains, such as music

informatics, sign language, medicine, geo-informatics, cognitive science, linguistics.

Another contribution is a novel distance measure for event-interval sequences, called

IBSM (abbreviation of Interval-Based Sequence Matching), which captures the sim-

ilarity between event intervals, which are characterized by a label and a duration.

Thorough experimental evaluation of IBSM on a variety of datasets demonstrates

state-of-the-art performance.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF ALGORITHMS . xii

LIST OF ILLUSTRATIONS . xiii

LIST OF TABLES . xix

Chapter Page

1. INTRODUCTION . 1

2. BACKGROUND . 7

2.1 Music Terminology . 7

2.2 Representing Music Pieces . 10

2.3 Time Series Representations . 11

2.4 Sequence Matching . 13

2.4.1 Whole sequence matching . 13

2.4.2 Subsequence matching . 16

2.5 Model-Based Matching . 17

2.6 n-grams . 18

2.7 Open Problems in QBH . 18

2.8 Conclusions . 19

3. A SUBSEQUENCE MATCHING WITH GAPS-RANGE-TOLERANCES

FRAMEWORK . 20

3.1 Introduction . 20

3.2 Related Work . 22

vii

3.3 Problem Setting . 24

3.3.1 Definitions . 24

3.3.2 Problem Formulation . 28

3.4 Background Methods . 28

3.4.1 Edit distance-based . 29

3.4.2 SPRING . 29

3.4.3 DTW tempo scaling . 30

3.4.4 Iliopoulos et al. 30

3.4.5 Hidden Markov Model-based Method 31

3.5 SMBGT . 32

3.5.1 Method . 32

3.5.2 Example of SMBGT . 38

3.6 ISMBGT: Indexed Subsequence Matching with Bounded Gaps and Tol-

erances . 40

3.6.1 SMBGT Embeddings . 40

3.6.2 Properties of SMBGT Embeddings 42

3.6.3 A filter-and-refine Framework 43

3.6.4 Filter Step . 45

3.6.5 Refine Step . 46

3.6.6 Query-optimized reference sequences 47

3.7 Experiments . 48

3.7.1 Experimental Setup . 48

3.7.2 Evaluation of Brute-Force SMBGT on Synthetic Queries . . . 52

3.7.3 Evaluation of Brute-Force SMBGT on Hummed Queries . . . 56

3.7.4 Evaluation of ISMBGT on Synthetic and Hummed Queries . . 59

3.7.5 Highlights . 76

viii

3.8 Conclusions and Future Work . 78

4. HUM-A-SONG: A SUBSEQUENCE MATCHING WITH GAPS-RANGE-

TOLERANCES QUERY-BY-HUMMING SYSTEM 79

4.1 Related Work . 79

4.2 Hum-a-song - DEMO . 80

4.2.1 Recording Queries . 80

4.2.2 Method Selection . 81

4.2.3 Tuning Parameters and Tolerances 81

4.2.4 Evaluation . 82

4.3 Conclusions . 83

5. GENRE CLASSIFICATION OF SYMBOLIC MUSIC WITH SMBGT . . 86

5.1 Related Work . 89

5.2 Measuring Song Similarity . 90

5.3 Experiments . 91

5.3.1 Experimental Setup . 91

5.3.2 Experimental Results . 93

5.4 Conclusions and Future Work . 96

6. QUERY-SENSITIVE DISTANCE MEASURE SELECTION FOR TIME

SERIES NEAREST NEIGHBOR CLASSIFICATION 98

6.1 Related Work . 103

6.2 Background . 105

6.2.1 Dynamic Time Warping . 106

6.2.2 Edit distance with Real Penalty 107

6.2.3 Move-Split-Merge . 108

6.3 Query-sensitive Measure Selection . 110

6.3.1 Measure-selection Framework 110

ix

6.3.2 Methods . 116

6.4 Experiments . 119

6.4.1 Experimental Setup . 119

6.4.2 Experimental Results . 123

6.5 Conclusions and Future Work . 131

7. MODEL-BASED TIME SERIES INDEXING FOR NEAREST NEIGH-

BOR CLASSIFICATION . 134

7.1 MTSI: Model-based Time Series Indexing 136

7.1.1 Hidden Markov Models . 136

7.1.2 Training HMMs . 136

7.1.3 Filter-and-Refine Framework 139

7.2 Experiments . 141

7.2.1 Experimental Setup . 141

7.2.2 Experimental Results . 142

7.3 Conclusions and Future Work . 148

8. CASE STUDY: MODEL-BASED VS. DISTANCE-BASED SEARCH IN

TIME SERIES DATABASES . 150

8.1 Experiments . 151

8.1.1 Experimental Setup . 151

8.1.2 Experimental Results . 153

8.2 Conclusions and Future Work . 160

9. IBSM: INTERVAL-BASED SEQUENCE MATCHING 162

9.1 Related Work . 165

9.2 Background . 167

9.3 IBSM . 168

9.3.1 Event table representation . 168

x

9.3.2 Resizing the event table . 169

9.3.3 Complexity . 170

9.4 Nearest neighbor search using IBSM 170

9.4.1 Speedup by sampling . 171

9.4.2 Speedup by alphabet reduction 171

9.5 Experiments . 173

9.5.1 Experimental Setup . 173

9.5.2 Experimental Results . 176

9.6 Conclusions . 181

10. DISCUSSION AND CONCLUSIONS . 183

REFERENCES . 185

BIOGRAPHICAL STATEMENT . 204

xi

LIST OF ALGORITHMS

1 Function Update() for SMGT and SMBGT 34

2 Function Reset() for SMGT . 35

3 SMBGT . 37

xii

LIST OF ILLUSTRATIONS

Figure Page

2.1 A part of the ”Happy Birthday” music score. 8

2.2 Initial part of the ”Rondo Alla Turca” monophonic music score. 8

2.3 Initial part of the ”Rondo Alla Turca” polyphonic music score. 9

2.4 Initial part of the ”Here is darkness and morning” polyphonic music

score (with Greek lyrics). 9

2.5 Example of the music score and its 2-dimensional time series represen-

tation. IOIR is the duration ratio of two consecutive notes. 12

3.1 SMBGT: error-tolerant matching is denoted as ε-match. 21

3.2 DP matrices for SMBGT (a) before and (b) after reset. 39

3.3 (up-left) Accuracy of all DP and HMM-based methods for K = 20

in terms of MRR for synthetic queries; Recall of SMBGT and SMGT

for: (up-right) synthetic queries vs. DP and HMM-based methods

for K = 20; (bottom-left) hummed queries varying α, β, r, and K;

(bottom-right) hummed queries vs. Edit distance varying K, when

r = 1.2 for both SMBGT and SMGT, and α = 5, β = 6 (SMBGT). . . 55

3.4 Average execution time for all methods per query length. 56

3.5 Recall for the synthetic queries of bucket b1. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (up-left) k = 1−8 and 10 with no

sampling (s = 1); (up-right) k = 1 − 8, 10 with s = 3; (bottom) k = 3

with s = 1, 3, 5, 7. 65

xiii

3.6 Recall for the synthetic queries of bucket b2. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (up-left) k = 1, 13 − 15 and 20

with no sampling (s = 1); (up-right) k = 1, 13 − 15, 20 with s = 3;

(bottom) k = 20 with s = 1, 3, 5, 7, 9. 66

3.7 Recall for the synthetic queries of bucket b3. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (up-left) k = 1, 5, 8, 14, 15, 18 with

no sampling (s = 1); (up-right) k = 1, 5, 8, 14, 15, 18 with s = 3; (bot-

tom) k = 18 with s = 1, 3, 5, 7, 9. 67

3.8 Recall for the synthetic queries of bucket b4. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (up-left) k = 15, 18, 20 with no

sampling (s = 1); (up-right) k = 15, 18, 20 with s = 3; (bottom-left)

k = 15 with s = 1, 3, 5, 7, 9; (bottom-right) k = 20 with s = 1, 3, 5, 7, 9. 68

3.9 Recall for the synthetic queries of bucket b5. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (left) k = 5, 7, 8, 10, 15, 18 with

no sampling (s = 1); (right) k = 5, 7, 8, 10, 15, 18 with s = 3; (bottom)

k = 10 with s = 1, 3, 5, 7, 9. 69

3.10 Recall for the hummed queries of bucket b1. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k = 5 − 8

reference sequences with sampling parameter s = 1, 3, and k = 7 with

s = 7. 70

xiv

3.11 Recall for the hummed queries of bucket b2. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (left) k = 1 − 5 with s = 1, 3;

(right) k = 2 with s = 1, 3, 5, 7, 9. 70

3.12 Recall for the hummed queries of bucket b3. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (left) k = 1 − 5 with s = 1, 3;

(right) k = 1 with s = 1, 3, 5, 7, 9; (bottom) k = 2 with s = 1, 3, 5, 7, 9. 71

3.13 Recall for the hummed queries of bucket b4. Recall is shown in absolute

numbers for BF and ISMBGT for perc = 1% and the best k reference

sequences and sampling parameter s: (left) k = 5− 8, 10 with s = 1, 3;

(right) k = 10 with s = 1, 3, 5, 7. 72

4.1 “Hum-a-song”: Screenshots of setting the experiment and getting the

results for SMBGT, where |Q| = 31, the database has 4,000 sequences,

and the target “Yesterday” song is the Top-1. For the target sequence,

Score = 20, Startpoint = 28, Endpoint = 56. 85

6.1 An example that illustrates the challenging nature of our problem. We

used 45 datasets from the UCR time series repository (x axis). On

the y axis we show the number of time series for each dataset that are

classified correctly by either DTW or MSM, or misclassified by both,

when the class of the NN object is different between DTW and MSM. It

can be seen that the number of time series correctly classified by DTW

is comparable to that of MSM. 100

xv

6.2 An example that illustrates the number of available distance measures

may affect the classification accuracy. We used 45 datasets from the

UCR time series repository (x axis). On the y axis we show the number

of time series for each dataset that are misclassified by all measures in

the pool. It can be seen that as the number of measures in the pool

increases (from 1 to 3), the number of time series that are still incorrectly

classified by all measures in the pool decreases for most of the datasets,

or remains the same. 101

6.3 Illustration of the offline and online steps of the proposed query-sensitive

measure selection framework. 115

6.4 Average runtimes per query, for each dataset, for all parts of the Homogeneity-

based measure selection method: the computations of MSM, DTW,

ERP, Homogeneity-based scheme, and the final measure selection part.

The total average runtime per query for each dataset (summing up all

of the above parts) is also shown. 132

7.1 Speedup of MTSI against Cross Validation for 33 datasets. Each bar

represents the ratio of the Cross Validation average total runtime to

that of MTSI for NN classification of a test object. 145

8.1 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is >= 1. 155

8.2 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is >= 10. 155

8.3 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is >= 60. 156

8.4 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is >= 120. . . . 156

xvi

8.5 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is >= 200. . . . 157

8.6 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is < 5. 157

8.7 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is < 10. 158

8.8 Precision vs. recall for model and distance-based time series search,

when the number of training time series of the classes is between 10 and

15. 158

9.1 Example of a sequence of five event intervals. Four event labels are used

in this example: A, B, C, and D. Note that event A occurs twice. . . 162

9.2 Three sequences of two event intervals A and B. In all sequences the

temporal relation between the events is the same (they are overlapping),

though the time duration of both the intervals and their overlap is different.164

9.3 Seven temporal relations between two event intervals. 168

9.4 Comparison of IBSM, Artemis, and DTW-based for different sampling

rates r for the first four datasets. No alphabet reduction was applied

(ε = 0). The flat lines are used to indicate the 1-NN accuracy of the

two competitor methods and IBSM without sampling. 179

9.5 Comparison of IBSM, Artemis, and DTW-based for different sampling

rates r for the last four datasets. No alphabet reduction was applied

(ε = 0). The flat lines are used to indicate the 1-NN accuracy of the

two competitor methods and IBSM without sampling. 180

xvii

9.6 Comparison of IBSM, Artemis, and DTW-based for different alphabet

reduction rates s for the first four datasets. Note that the sampling

rate for IBSM was fixed to r = 10%. The flat lines are used to indicate

the 1-NN accuracy of the two competitor methods and IBSM without

sampling. 181

9.7 Comparison of IBSM, Artemis, and DTW-based for different alphabet

reduction rates s for the last four datasets. Note that the sampling

rate for IBSM was fixed to r = 10%. The flat lines are used to indicate

the 1-NN accuracy of the two competitor methods and IBSM without

sampling. 182

xviii

LIST OF TABLES

Table Page

2.1 Code numbers for 2-dimensional representations 12

3.1 Recall of SMGT for various top-K and ranges for the hummed queries. 54

3.2 Recall and MRR of the proposed methods vs. Edit distance for the

hummed queries (K = 50). 55

3.3 Buckets statistics. 59

3.4 Runtimes of brute-force SMBGT and ISMBGT for the synthetic (BF-S

and ISMBGT-S) and the hummed queries (BF-H and ISMBGT-H) per

query length interval. Ratio is the ratio of times of BF to ISMBGT. The

two numbers in parentheses correspond to the best k reference sequences

selected in the filter step and the sampling parameter s used. 73

3.5 Average times of ISMBGT for synthetic queries. The values of k and s

per query length interval are given in Table 3.4. 73

3.6 Average times of ISMBGT for hummed queries. The values of k and s

per query length interval are given in Table 3.4. 74

3.7 Efficiency of ISMBGT for synthetic queries. The values of k and s per

query length interval are given in Table 3.4. 75

3.8 Efficiency of ISMBGT for hummed queries. The values of k and s per

query length interval are given in Table 3.4. 76

xix

5.1 Characteristics of the dataset used in the experiments. There are 100

songs, and the total number of channels comprising these songs in their

MIDI representation, along with the number of 2-dimensional points

corresponding to these channels are shown. In the final column, the

number of songs belonging to each of the four selected genres is presented. 91

5.2 Classification accuracies with k-NN for the dataset of Table 5.1. For

each value of k in [1,10] we present the following statistics. The num-

ber of songs that were classified having a clear winner genre (column

“Non-Tied”), and having more than one tied genres to classify them to

(column “Tied”). In addition, for each of the aforementioned columns,

the number of songs that were correctly classified is shown in columns

“Non-Tied Classified” and “Tied Classified”, respectively, along with

the corresponding classification accuracies (columns “Accuracy (Non-

Tied)” and “Accuracy (Tied)”). The final classification accuracy for

each k is also presented in column “Accuracy (Total)”. 94

6.1 Notation Table. 106

6.2 Description of the 45 datasets from the UCR repository that were used

in our experiments. The table shows for each dataset: the number of

training and test objects, the length of each sequence in the dataset,

and the number of classes. 124

6.3 Number of datasets for which each method yields lower (Better), equal

(Tie), or higher (Worse) classification error rate compared to Cross

Validation. We observe that Heterogeneity-based achieves at least

as good or better error rates than Cross Validation on up to 35 out

of 45 datasets. 124

xx

6.4 NN classification error rates attained by the two proposed methods (de-

noted as Dist-Ratio and Hom.) as well as Basic, and Cross Validation

on each of the 45 datasets in the UCR repository of time series datasets.

In addition, the table shows for each dataset: the classification error rate

of MSM, DTW, and ERP for the training and test sets and the value of

c used by MSM on that dataset, which yielded the lowest error rate on

the training set (when more than one values are given, the one in ital-

ics was randomly chosen). All rates are in percent and the numbers in

bold indicate the smallest classification error rates for each dataset when

comparing the two proposed methods and Cross Validation. We also

present the error rate of the Basic scheme. The number of test time

series per dataset that are misclassified by all distance measures is also

provided in the last column. 129

6.5 Number of datasets for which each method yields lower (Better), equal

(Tie), or higher (Worse) classification error rate compared to always

choosing one distance measure, i.e., MSM, DTW, or ERP. 130

6.6 The probabilities that are the outcome of the ANOVA statistical test

when the input vectors are the classification results (for all test time

series) of each of the proposed methods against MSM, DTW, ERP, and

Cross Validation (denoted as “C.V.”) are presented for each of the

45 datasets. 131

xxi

7.1 NN classification error rates attained by MSM, DTW, ERP, and HMMs

on the training set of 45 datasets from the UCR repository of time series

datasets. The table shows for each dataset: the number of training and

test objects, the length of each time series in the dataset, the number

of classes, the value of parameter c used by MSM on that dataset that

yielded the lowest error rate on the training set (when two or three

values are given, the one in italics was randomly chosen), the number

of states as a percentage of the time series length and the number of

iterations for which the HMMs achieved the lowest error rate on the

training set. The numbers in bold indicate the smallest error rate. . . . 144

7.2 NN classification error rates attained by MTSI and Cross Validation

on the test set of 33 datasets from the UCR repository of time series

datasets. The table also shows for each dataset: the classification error

rate of MSM, DTW, and ERP on the test set, the number of HMM

models used at the refine step of MTSI and the respective percentage of

classes it corresponds to, the average number of training objects eval-

uated at the refine step per test object, and the percentage of training

objects this average corresponds to. The numbers in bold indicate the

smallest error rate. 146

xxii

8.1 NN classification error rates attained by MSM, DTW, cDTW, ERP, and

HMMs on the training set of 45 datasets from the UCR repository of

time series datasets. The table shows for each dataset: the number of

training and test objects, the length of each time series in the dataset,

the number of classes, the value of parameter c used by MSM on that

dataset that yielded the lowest error rate on the training set (when

two or three values are given, the one in italics was randomly chosen),

the number of states as a percentage of the time series length and the

number of iterations for which the HMMs achieved the lowest error rate

on the training set. The numbers in bold indicate the smallest error rate.154

8.2 Average time (in seconds) of DTW, cDTW, MSM, ERP, and HMMs for

searching on each of the 45 datasets from the UCR repository of time

series datasets. 159

9.1 Datasets Statistics . 173

9.2 1-NN classification accuracy. For IBSM neither sampling nor aplhabet

reduction have been applied. 178

9.3 Runtime in seconds. We show the average total runtime (including pre-

processing and matching) for comparing a pair of e-sequences. For IBSM

neither sampling nor alphabet reduction have been applied. 178

xxiii

CHAPTER 1

INTRODUCTION

A problem of particular interest that has attracted the attention of music,

database, and data mining communities during the last few decades is that of finding

the best matching subsequence to a query in a large database. The problem of

subsequence matching is defined as follows: given a query sequence and a database

of sequences, identify the subsequence in the database that best matches the query.

Achieving efficient subsequence matching is an important problem in domains where

the target sequences are much longer than the queries, and where the best subsequence

match for a query can start and end at any position in any sequence in the database.

A large number of Dynamic Programming (DP) [1] based distance or similar-

ity measures perform similarity search in several application domains including time

series, categorical sequences, and multimedia data. Nonetheless, there are still many

application domains, such as music retrieval, where these methods are not directly

applicable or have very poor retrieval accuracy, since in many cases several properties

and characteristics of the specific domain are ignored. Thus, we focus on time series

subsequence matching and approach the problem from the music retrieval perspec-

tive: suppose you hear a song but you cannot recall its name, or the melody of a

song may sound similar to some other song that you cannot recall; in both cases one

solution is to hum a short part of the song that you can easily remember and perform

a search on a large music repository to find the song you are looking for or even songs

with similar melody. The main task of a Query-By-Humming (QBH) system is, given

a hummed query song, to search a music database for the K most similar songs. This

1

directly maps to subsequence matching as the hummed query is typically a very small

part of the target sequence.

In order to guarantee robust and meaningful subsequence matching for a poten-

tially very noisy domain, like QBH, several factors should be considered. First, when

humming a song, errors may occur due to instant or temporary key or tempo loss, re-

spectively. Thus, the matching method should be error-tolerant, otherwise there may

be false negatives during the retrieval. In addition, the method should allow skipping

a number of elements in both query and target sequences. Nonetheless, the number

of allowed consecutive gaps in both query and target sequences should be bounded,

in order to provide a setting that controls the expansion of the matched subsequences

during the DP computation. Furthermore, to avoid producing very long matching

subsequences, we should constrain the length of the matching subsequence, which can

be set appropriately for the application domain. Also, to ensure that the matching

subsequences will include as many matching elements as possible, the minimum num-

ber of matching elements may be lower bounded. However, constraining the number

of matching elements may decrease the number of candidate matches. Specifically,

if we have prior knowledge about the singing skills of the person who produced the

hummed queries, we can tighten or loosen this constraint for strong or weak hummers,

respectively. Finally, it is very important for a method to be used in QBH to choose

a proper representation for music pieces that best fits their needs, without sacrificing

efficiency and accuracy. QBH, along with music genre classification, are studied in

Chapters 3, 4, and 5.

In this thesis, we also tackle the problem of Nearest Neighbor (NN) classifi-

cation applied to whole sequence matching. First, given a query time series, a large

database of time series, and a pool of distance measures, we are interested in identi-

fying the most appropriate measure for the given query, so that we can perform NN

2

classification. In other words, we would like to annotate the query time series with

the class of the closest database time series by applying a distance measure, which

is the most suitable one out of several measures based on the specific query. This is

a very tough problem, which, to the best of our knowledge, has not been addressed

before. As shown in Chapter 6, the method we propose provides very competitive

accuracy compared to the cross validation approach and individually using several

distance measures. Secondly, we take advantage of the power of Hidden Markov

Models, which are capable of modeling the underlying structure of sequences deter-

mining the relationships between their observations, so as to perform classification.

Classes of time series are modeled via HMMs, and, given a query time series, we iden-

tify the models that have most likely produced that time series so as to narrow the

search space. Then, the expensive distance-based computations take place between

the query and the time series belonging to these classes. Again, the performance of

our framework provides very competitive accuracy results, as shown in Chapter 7.

In Chapter 8 we also demonstrate the usefulness of HMMs for searching time series

databases, and compare our approach with several distance-based measures. Last but

not least, we explore the NN classification problem on event-interval sequences. The

main advantage of event-interval sequences over traditional event sequences, which

model series of instantaneous events, is that they incorporate the notion of duration in

their event representation. Essentially, sequences of event intervals can be encoded as

a collection of labeled events accompanied by their start and end time values. Many

application domains are characterized by sequences of event intervals, such as sign

language [2, 3], medicine [4], geo-informatics [5], cognitive science [6], linguistics [7].

For example, in sign language, sentences are constructed by events corresponding to

occurrences of various grammatical, syntactic, and gestural expressions. Moreover,

in medicine [4], patients typically undergo a series of diagnostic tests and treatments

3

that have a time duration and may also occur concurrently. Melodies in music can also

be represented by such sequences, where each note has a duration and a label, while

it may also have multiple instances. In Chapter 9 we propose a method for interval-

based sequence matching, which is shown to provide excellent results compared to the

state-of-the-art methods on datasets of a variety of domains.

The main contributions of the thesis are the following:

• A subsequence matching framework that allows for a constrained number of gaps

on both query and target sequences, variable tolerance levels in the matching

(tolerances are functions of the query and target elements), and a matching

range that constrains the maximum match length. Based on this framework, a

similarity measure, SMBGT, is proposed, which given a query Q and a target

sequence X finds the subsequence of X that best matches Q. Comparative

evaluation on QBH of several DP-based methods, a probabilistic model-based

method, and SMBGT on real and synthetic queries shows the superiority of

SMBGT in terms of accuracy for several parameter settings.

• A embedding-based indexing approach, called ISMBGT, that works in a filter-

and-refine manner and is designed for speeding up similarity search under SM-

BGT. Experimental evaluation of ISMBGT using synthetic and hummed queries

on a large music database demonstrates that ISMBGT can achieve speedups of

up to an order of magnitude against brute-force search under SMBGT, while

maintaining a retrieval accuracy close to that of brute-force.

• An open-source QBH system named “Hum-a-song”, which allows a user to hum

a (part of a) song and search a large music repository to identify the top-K

matches/songs. The user can select the method to be used from a pool of mea-

sures, provide the desirable music representation, and also the error tolerance

to be applied.

4

• Exploiting SMBGT for music genre classification using the k-NN classifier.

• A framework for solving the problem of selecting the best measure, given a query

and a pool of measures, for time series NN classification. The selection of the

appropriate distance measure is performed via statistical significance testing on

the pool of measures using a set of training time series. The framework is also

query-sensitive. Within this framework three methods are employed that exploit

different schemes to select the appropriate training time series for the statistical

test. Experimental evaluation of the three methods against a baseline approach

on a large collection of 45 time series datasets shows that our framework can

achieve at least as good or better classification accuracies than the baseline on

up to 35 datasets. Thus, it is highly competitive in terms of NN classification

accuracy by using a pool of measures instead of using only one of them.

• A way of representing time series of a specific class via an HMM. Experimental

evaluation of this representation against four distance measures in terms of

classification accuracy on the training sets of 45 datasets demonstrates that

HMMs can attain better or equal accuracy in 32 datasets. In addition, the

performance of model-based search with HMMs against distance-based search

with four measures on the test sets of the same datasets is examined. This

evaluation indicates that the former type of search produces significantly better

precision vs. recall tradeoffs than the competitors when the HMMs are trained

with a sufficient number of time series.

• An indexing framework for time series NN classification, named MTSI. The

framework works in a filter-and-refine manner, by exploiting the novel model-

based representation of time series belonging to the same class. Extensive ex-

periments on 33 datasets reveal that MTSI attains high accuracy as it is at least

5

as good as the baseline approach in 23 datasets, while achieving a speedup of

up to an order of magnitude, showing both its effectiveness and efficiency.

• A novel method, called IBSM, for matching event-interval sequences that ex-

ploits a vector-based representation of event-interval sequences, which facilitates

full sequence matching, by applying bilinear interpolation, and computes the

Euclidean distance of the resulting sequence representations. Two techniques

are also developed based on sampling and alphabet reduction that speed up

the runtime and decrease the memory requirements of IBSM when performing

NN search in a database of event-interval sequences. Experimental evaluation of

IBSM against two state-of-the art measures on eight real datasets from different

application domains shows that IBSM outperforms them in 7 out of 8 datasets

in terms of NN classification accuracy, and by up to two orders of magnitude

in terms of runtime.

6

CHAPTER 2

BACKGROUND

In this chapter, we first present some widely used terms in music, which will

also be used in many chapters. Then, the representation methods for music pieces

and time series will be given, and an overview of the matching methods that have

been proposed, either for addressing QBH specifically or for other noisy sequence

application domains that could be of interest in QBH as well, is provided. The dis-

crimination of the different categories is done based on whether the methods perform

sequence, model, or n-gram based similarity search [8].

2.1 Music Terminology

Next, we provide some basic terms used in music that will help the reader

throughout the thesis. Every piece of music (as shown in Figure 2.1) is a sequence

of notes characterized by a key that defines the standard pattern of allowed intervals

that the sequence of notes should conform with, and a tempo that regulates the speed

of the music piece. Each note consists of two parts, the pitch and the duration.

A pitch interval is the difference in frequency of two adjacent notes. In western

music the smallest pitch interval is called semitone, a tone comprises two consecutive

semitones, and the interval of 12 consecutive semitones is called octave. Another

important term is transposition, which is significant when representing music pieces

as time series, and is defined as shifting a melody of a piece written in a specific key

to another key. A time series can be seen as a variable evolving over time, sampled

at regular time intervals. Finally, there is a discrimination between monophonic and

7

polyphonic music, where the latter allows two or more notes to sound simultaneously,

as opposed to the former case. Figures 2.2 and 2.3 show a monophonic and its

corresponding polyphonic part, respectively, of a well-known instrumental Classical

piece of Wolfgang Amadeus Mozart, the “Rondo Alla Turca”. Figure 2.4 presents the

initial part of a polyphonic traditional orthodox church melody (with Greek lyrics)

named “Here is darkness and morning” arranged for choir by S.N. Chatzistamatiou.

We study monophonic music rather than polyphonic as in QBH we deal with melodies

hummed by users. The interested reader can refer to the literature [9, 10, 11, 12, 13,

14] for approaches in polyphonic music.

Figure 2.1: A part of the ”Happy Birthday” music score.

It is important to understand the pros and cons of the different categories of

methods (and certainly of the methods in particular), since music pieces are essentially

sequences of values evolving in time, and thus the QBH problem is just an application

accentuating the problematic aspects of methods that deal with time. With this in

mind, improvements over existing methods can be introduced so that they can be

used in other areas of interest, such as finding specific patterns in financial, weather,

and sensor data observing the movements of humans. In the latter case assistive

actions can be taken when particular patterns are observed.

Figure 2.2: Initial part of the ”Rondo Alla Turca” monophonic music score.

8

Figure 2.3: Initial part of the ”Rondo Alla Turca” polyphonic music score.

Figure 2.4: Initial part of the ”Here is darkness and morning” polyphonic music score
(with Greek lyrics).

Next, we present different ways of representing music pieces and time series,

along with the variety of matching methods that are, or may be, of interest in QBH

and other similar noisy sequence domains, categorized in sequence, model, and n-gram

based methods.

9

2.2 Representing Music Pieces

Songs are essentially music audio signals that can be either represented in sym-

bolic format based on musical scores, or in audio format based on analogue signals,

which can be sampled and encoded in different ways. A widely used format of the first

type of representation is MIDI 1, while Humdrum has also been used. Although the

MIDI has some disadvantages, such as that the sound quality depends on synthesizer

and it cannot store voice, it has some important advantages. It takes very little space

making it easy to store and communicate, and it provides a format that can be easily

handled allowing easier comparison between different instruments and music pieces.

Thus, it has been widely accepted, and in the next chapters we focus on this type of

symbolic format.

There are three common ways to express pitch: (a) absolute pitch, where the

frequency of the note is used [15, 16, 17, 18] - in MIDI, the music format we are

interested in, this value is an integer in [1, 127] (0 corresponds to pause) - (b) the note

number in the key of the piece [19], and (c) pitch interval, the frequency difference

between two adjacent notes. We note that for the second way of representing pitch

the key does not usually remain the same throughout the whole music piece, which

makes this encoding very hard to use. Pitch intervals can be transformed/quantized

in [-11,11] by applying modulo 12 [20], leading to two octaves, a reasonable range as

the human singing range rarely goes beyond this interval.

Regarding the encoding of duration there are three options [21]: (a) Inter-

Onset-Interval (IOI), defined as the difference in time onsets/clicks of two adjacent

notes, (b) IOI Ratio (IOIR), defined as the ratio of IOIs of two adjacent notes with

the IOIR of the last note equal to 1, and (c) Log IOI Ratio (LogIOIR), the logarithm

1Musical Instrument Digital Interface

10

of IOIR. A variation of LogIOIR is to quantize the LogIOIR values of the notes to

the closest integer or the closest value in [−2, 2] [21].

Although many approaches represent notes by encoding only pitch [19], it has

been shown that the use of both pitch and duration information improves music re-

trieval [22] and the melody sequences are made more unique [17, 20]. For example,

two or more songs may share similar note frequencies (i.e., pitch values) but their

melodies may vary due to different individual pitch durations. Hence, if, for instance,

only pitch is used to represent a music song, there is a high risk of erroneously match-

ing two songs. As a result, we take into account both pitch and duration information.

Melodies are represented by 2-dimensional time series of notes of arbitrary length,

where the first dimension corresponds to pitch and the second one to duration.

Considering all possible combinations of pitch and duration encoding, we can

easily conclude that pitch interval and IOIR (or variations of them) leads to transpo-

sition and time invariance when comparing melodies. Thus, with these combinations

we deal with note transitions, saving much computational time as we do not have to

check for possible transpositions of a melody, nor do we have to scale in time when

comparing melodies. Such combinations are shown in Table 2.1, and any of them can

be incorporated in the 2-dimensional representation of music pieces. In Figure 2.5(b)

we can see an example of the 〈pitch interval, IOIR〉 representation of the part of

“Happy Birthday” song shown in Figure 2.5(a).

2.3 Time Series Representations

One recent line of research has been focusing on identifying discriminant time

series subsequence patterns, known as Shapelets [23] and variants [24, 25, 26, 27].

Shapelets are mainly used for time series classification, since due to their construc-

11

Table 2.1: Code numbers for 2-dimensional representations

Code number Representation

1 〈mod12, IOIR〉
2 〈mod12, LogIOIR〉
3 〈mod12, LogIOIR in [−2, 2]〉)
4 〈mod12, LogIOIR quantized to closest integer〉
5 〈pitch interval, IOIR〉
6 〈pitch interval, LogIOIR〉
7 〈pitch interval, LogIOIR in [−2, 2]〉)
8 〈pitch interval, IOIR quantized to closest integer〉

(a) Part of the music score.

0 1 2 3 4 5 6 7 8 9 10 11 12

−4

−2

0

2

4

6

notes transition

Pitch Interval

IOIR

(b) Representation using pitch intervals and IOIR.

Figure 2.5: Example of the music score and its 2-dimensional time series representa-
tion. IOIR is the duration ratio of two consecutive notes.

tion they are expected to be more informative and representative of some class. Other

time series representations that capture global or local structural characteristics in-

clude SpaDe [28], DFT [29], SAX [30], and Bag-Of-Patterns [31]. For a comparison

of a variety of representations, please refer to Wang et al. [32], which demonstrates

that there is little difference among them. Speeding up similarity matching in large

databases based on representations has also attracted the attention of researchers.

F-Index [29] exploits DFT to build an index on which a lower bound of the Eu-

12

clidean distance is applied, before the expensive computation in the original space is

performed.

2.4 Sequence Matching

There are two broad categories of matching between sequences, the whole/full

sequence matching and the subsequence matching. Next, we give a brief overview of

methods of these categories. It should be mentioned that some of them have already

been applied to music retrieval, while others not. It is of particular importance to

identify the pros and cons of such methods, so that we can further decide if some

of these methods can be improved to apply to QBH where the music pieces are

represented as sequences of notes.

2.4.1 Whole sequence matching

Referring to the first category of whole sequence matching, the most common

measure for computing the distance between time series is the dynamic programming

(DP) method [1] Dynamic Time Warping (DTW) [33]. DTW is a distance measure

allowing to compare two sequences that may vary in time or speed. Since DTW has

been highly appropriate for time series similarity measurement, several lower bounds

have been proposed to speed up its expensive computation [34, 35, 36]. There are

also several variants of DTW, among which constrained DTW (cDTW) [37, 38],

Edit Distance on Real sequence (EDR) [39], and Edit distance with Real Penalty

(ERP) [40] widely used in many application domains. The most attractive property

of these algorithms is that they are robust to misalignments along the temporal axis,

i.e., to differences in the speed in which observations evolve across time. Some of

these methods, such as DTW and cDTW, have been shown to achieve high accuracy

in applications such as time series mining and classification [32, 39, 41]. The first

13

variant, cDTW, avoids the matching of elements that are far away from each other

by bounding the difference of the sequences’ indices. EDR [39] and ERP [40] are

DP-based distance measures and use the triangle inequality for pruning purposes;

the latter is also a metric. It should be noted that ERP is more robust to noisy data.

A novel measure for time series, called Move-Split-Merge (MSM), was proposed very

recently [42]. MSM is metric and uses three fundamental operations, Move, Split,

and Merge, which can be applied in some sequence to transform any time series into

any other time series. In addition, it is invariant to the choice of origin, as opposed

to ERP. The Edit distance [43], which is a metric measure, can be used to find the

distance between two strings. It is defined as the minimum number of edit operations

needed to transform one string into the other, with the allowable operations being

insertion, deletion, and substitution of a single character. Last but not least, the

Time Warp Edit Distance (TWED) [44] is a metric distance measure whose goal is

to find a sequence of edit operations (deleting an element from any time series and

match two elements) allowing for the simultaneous transformation of two time series

so as to superimpose them with minimal cost. Additionally, it is an elastic measure

supporting local time shifting using timestamp differences between compared points.

The method proposed by Adams et al. [45] operates using DTW and has been applied

to music retrieval. It takes into account absolute pitches and deals with the problems

of invariance by applying occasionally normalizations, depending on the proposed

representation. Another approach that incorporates tempo variations was introduced

by Mongeau and Sankoff [19], while Dannenberg and Hu [46] modified the latter

approach to deal with various representations as well. To deal with tempo variation

the method presented by Mazzoni and Dannenberg [47] scales the target sequences

before applying DTW.

14

Apart from these DTW-based whole sequence matching methods, the similarity

between two sequences can be measured by finding their Longest Common SubSe-

quence (LCSS) [20, 48, 49, 50], i.e., the greatest number of elements that are common

in both of them, and this can be done again using a DP approach. Thus, LCSS-based

approaches can tolerate noise introduced by the user in the QBH application, while

they allow for gaps on both sequences during their alignment. However, since no

bounds are imposed to the allowed gaps this may result in a large number of false

positives when |Q| << |X|. Since errors in QBH systems are imposed by the users,

tolerance in pitch and duration is highly eligible. Though, we should not be tolerant

to skip too many elements in the target sequence, as in that case there is small possi-

bility of finding a good match. With this direction in mind, Iliopoulos and Kurokawa

[51] proposed an algorithm which accounts for a bounded number of gaps only in the

target sequence. The algorithm also handles errors by using constant values as toler-

ances for each query element. Variations regarding the sum, differences, and length

of consecutive gaps are proposed by Crochemore et al. [52] when matching two se-

quences, but, as in the work by Iliopoulos et al. [51], they are allowed to exist in the

target sequence only. Notice that both approaches deal with whole query matching

and absolute pitches, while none of them accounts for note duration, i.e., they are pro-

posed for 1-dimensional sequences. Some approaches embed transposition invariance

as a cost function in the DP computation [53, 54], though, with not attractive run-

time. In addition, Lemstrom et al. [54] and Deorowicz [55] aim at matching the whole

query ignoring duration. Transposition invariance can also be encoded by a proper

representation [56]. Other proposed distance/similarity measures are TQuEST [57],

DISSIM [58], and CID [59].

15

2.4.2 Subsequence matching

To efficiently address the QBH application, where it is more suitable to use sub-

sequence matching methods, the aforementioned whole sequence matching methods

could be retrofitted by performing a sliding window search over the database. The

issue with such an approach is that it would be computationally expensive requiring

one DP computation per window. The approach of Han et al. [60] is based on uni-

form segmentation and sliding windows, which requires the user to manually select

the length of the segments and is therefore not sensitive to the actual behavior of the

data and can efficiently handle only near exact matching.

Some DP methods reduce subsequence matching to full sequence matching, by

cutting database sequences into small pieces, and requiring each query to correspond

to an entire such piece. Such approaches though fail when the query corresponds

to a database subsequence that is not stored as a single piece. One example is the

Query-By-Humming system described by Zhu et al. [61], where each database song

is cut into smaller, disjoint pieces, and they developed an efficient lower-bound for

DTW. As a result, this method is not directly applicable to subsequence matching.

Two similar methods for subsequence matching are presented by Hu et al. and

Jang et al. [62, 63], which implicitly account for tempo scaling. However, they are not

transposition invariant, as absolute pitches are used. Furthermore, the Edit distance

[43] has been used for music retrieval with several variations [53, 54, 64, 65]. Its

most recent version used in QBH is presented by Unal et al. [66], where the cost

function has been properly modified so that this distance measure uses both pitch

and duration information. Another DP-based method for finding the subsequences

of evolving numerical streams that are closest to a query is presented by Sakurai

et al. [67]. SPRING is based on DTW and does not sacrifice accuracy, in spite of

16

the fact that DTW is not a metric distance function. Another reason for making

this method attractive is that it operates in constant space, and time linear to the

database size (for short queries). Thus, it is a promising method to be applied to

the problem of QBH. A method for improving the efficiency of subsequence matching

under unconstrained DTW is described in Zhou and Wong [68], where it is assumed

that the length of the optimal subsequence is known, and equal to the length of the

query. Its best-case complexity is O(mn), where m is the size of the query and n is

the size of the long sequence that we search for subsequence matches. We note here

that, unlike the method proposed by Zhou and Wong [68], SPRING does not place

any constraint on the length of the subsequence match. Smith-Waterman [69] is a

local alignment method for finding similarity, which compares segments of all possible

lengths optimizing the similarity measure, and has been applied to QBH [20].

2.5 Model-Based Matching

Several probabilistic methods (HMM-based) have been developed for speech

recognition and music retrieval [66, 70, 71, 72, 73, 74]. An extended HMM is used by

Meek et al. [71], where the target and query notes are associated through a series of

hidden states, modeling the local and cumulative error in pitch and durations. HMMs

have also been used to compute the match score of the local alignment when both

pitch and duration [72] are exploited. An extended HMM architecture Factorial HMM

has been proposed to model music, and more specifically Bach’s chorales [70]. Fac-

torial HMMs are based on a factored, distributed representation of the hidden state

variable. Due to its complicated structure, inference and learning is intractable, and

approximate learning is necessary. Although the model may be effective in capturing

the statistical structure in the Bach’s chorales, it is not built for any query processing

17

as QBH. Unal et al. used HMMs for the segmentation of the humming instances,

followed by energy and pitch analysis to correct the segmentation errors. They use

both pitch and duration and the retrieval stage is done by using salient information in

the transcribed symbolic sequences (FingerPrints), but their method does not signifi-

cantly outperform edit distance [66]. Although the HMM-based methods are suitable

for modeling the probabilistic behavior that is inherent in an application domain such

as music retrieval, they are computationally expensive due to the required training,

and creating models to represent and discriminate all the different genres of music

in a large database is a very tough task. Other approaches that exploit HMMs are

presented by Shih et al. [75, 76], though their focus is to use HMMs as their front

end to capture the location of notes in the input and not perform retrieval.

2.6 n-grams

A method that has been successfully used in string matching is n-grams, ac-

cording to which the number of matching substrings of a fixed length n is counted.

Also, since it is more likely for long sequences to have a match, this count should

be normalized. An efficient method for approximate string matching is proposed by

Ukkonen [77], but is not suitable for the case of QBH where we have to deal with

very noisy queries. n-gram-based methods proposed for music retrieval [20, 78] fail

to handle noisy queries efficiently leading to poor performance as they are designed

for near exact matching, although they may keep pitch and duration information.

2.7 Open Problems in QBH

Having studied the aforementioned methods for solving the similarity search

problem in QBH, we observed several issues that need to be taken into account when

18

trying to address this problem. First, there is no standard and preferred music format

to store music pieces. MIDI and MP3 are the mostly used formats for this problem,

and although MP3 is richer in information, it cannot be easily extracted and exploited

as opposed to MIDI. Second, there is no music database widely available that can be

used as a testbed to test the proposed methods on, and as a result the results reported

are most of the times subjective, or at least cannot be generalized since the datasets

are quite small and limited to a few genres of music or to songs of Beatles. Moreover,

to the best of our knowledge, automatic music genre classification, which would help

efficiency and accuracy, is not part of the proposed end-to-end systems. Last but not

least, since QBH is a very noisy application domain, a method should allow for both

slight and more serious key or tempo loss errors at the same time without affecting

accuracy.

2.8 Conclusions

In this chapter, we first presented a brief overview of the ways to encode music

pieces and time series. Also, we have presented methods for matching sequences

that have been proposed in the literature for the QBH application or that would

be of interest for the community to study in more detail. The latter would help in

better understanding the problematic aspects of applying them to similar application

domains.

19

CHAPTER 3

A SUBSEQUENCE MATCHING WITH GAPS-RANGE-TOLERANCES

FRAMEWORK

3.1 Introduction

In this chapter, we first describe the SMBGT (shorthand for Subsequence

Matching with Bounded Gaps and Tolerances) method that is based on a framework,

which, given a query Q and a target sequence X (with |Q| << |X|), finds the subse-

quence of X that best matches Q [79]. SMBGT is error-tolerant and allows gaps in

the alignment, which and can be bounded in both query and target sequences (by β

and α respectively). Moreover, the maximum match length in X as well as the min-

imum number of matching elements may be constrained (by r and δ respectively).

An example of SMBGT is shown in Figure 3.1.

However, one limitation of SMBGT is its computational time complexity, which

is O(|Q||X|) [79]. For application domains with many and large database sequences,

such as QBH, the runtime is critical. Hence, a method for efficient similarity search

under SMBGT is needed, that can achieve significant speedups against brute-force

search with minor losses in accuracy. As a result, a novel embedding-based filter-

and-refine approach is also presented, which we call ISMBGT, shorthand for Indexed

Subsequence Matching with Bounded Gaps and Tolerances. ISMBGT is designed

to improve the efficiency of processing subsequence matching queries in time series

databases under the SMBGT method. The key idea is that the subsequence matching

problem can be partially converted to the much more manageable problem of near-

est neighbor retrieval in a real-valued vector space. This conversion is achieved by

20

defining an embedding function that maps each database sequence into a sequence

of vectors, which we call database sequence embeddings. There is a one-to-one cor-

respondence between each such vector and a position in the database sequence. The

embedding function also maps each query sequence into a vector, which we call query

embedding. The mapping is performed in such a way that if the query is very similar

to a subsequence of the database, the new vector-based representation of the query is

likely to be similar to the vector corresponding to the endpoint of that subsequence.

These vectors are computed by matching queries and database sequences with

the so-called reference sequences, that is, a relatively small number of preselected

sequences. The expensive operation of matching database and reference sequences is

performed offline. At runtime, the query time series is mapped to a vector by matching

the query with the reference sequences, which is typically orders of magnitude faster

than matching the query with all database sequences. Then, promising candidates

for the best subsequence match are identified by finding the nearest neighbors of

the query vector among the database vectors. Applying sampling on the database

vectors demonstrates that this process can be accomplished even faster. An additional

refinement step is finally performed, where subsequences corresponding to the top

vector-based matches are evaluated using the SMBGT method.

Figure 3.1: SMBGT: error-tolerant matching is denoted as ε-match.

21

We note that ISMBGT differs substantially from existing embedding-based in-

dexing methods, in that

• it does not require any training, which can be prohibitively costly for large

databases, for creating the embeddings of the database sequences: reference

sequences are selected randomly from the database and cover all ranges of query

lengths,

• it is query-sensitive: the construction of the query vector is performed using a

technique that optimizes the selection of the reference sequences based on the

query length,

• it exploits the flexibility of SMBGT: it allows for a bounded number of gaps

in both the query and target sequences, variable tolerance in the matching, a

matching range in the alignment, and also optionally constrains the minimum

number of matching elements.

3.2 Related Work

Indexing methods for sequence matching can be divided based on the underlying

distance or similarity measure that they target. In string matching, OASIS [80]

employs a best-first search technique over a suffix tree for string alignment under

the Smith-Waterman similarity measure, and achieves significant speedups over the

brute-force application of Smith-Waterman. However, this method is not directly

applicable to the problem of subsequence matching of time series, which typically

uses values obtained from a continuous space, such as the space of real numbers or

higher-dimensional vector spaces. One way of retrofitting these methods for time

series subsequence matching is to transform both the time series database and the

query into strings [81, 82] and use these methods directly for retrieving the best match.

22

Such an approach, however, will produce results different from those given by specific

subsequence matching methods (e.g., under DTW). Moreover, the limited number of

symbols in strings has been exploited to design indexing methods based on q-grams

[82, 83] and suffix trees [80, 84], while other embedding-based methods have been

developed for subsequence matching in large string databases [85]. Applying such

methods to our problem setting requires discretizing time series (i.e., real values),

which is not a very trivial task.

An indexing structure for unconstrained DTW-based subsequence matching has

been proposed [86]. However, as database sequences get longer, the time complexity

for that method becomes similar to that of unoptimized DTW-based matching. In

contrast, the method in Park et al. [87] can handle such long database sequences

by using monotonicity, but is only applicable to 1-dimensional time series. A re-

lated method that can be used for multidimensional time series is named piece-wise

approximation method (PAA) [88], where time series are approximated by shorter

sequences obtained by replacing each constant-length part of the original sequence

with the average value over that part. The lower-bounding method LB Keogh for

time series matching is described in Keogh et al. [41]. The main idea is to use the

warping constraint to create an envelope around the query sequence. Then, using a

sliding window of size equal to the query, a lower bound of the matching cost between

the query and each possible subsequence can be estimated, and thus it can be used

to prune a large number of subsequences. Nonetheless, its performance deteriorates

as warping width and query size increase, and its computation for each possible sub-

sequence can be time consuming for large databases. Proposed improvements to the

LB Keogh (e.g., [89]) achieve not more than a small constant factor in terms of both

the tightness of the lower bound and the query time performance. The DTK method

[90] is a method for subsequence matching under cDTW. DTK breaks the database

23

into small non-overlapping sequences and further employs PAA [88] for efficient in-

dexing. This approach, however, does not scale well as the query size increases. A

similar approach is used to index time series for sequence and subsequence matching

under scaling and DTW [91].

The indexing approach proposed is embedding-based. Several embedding meth-

ods exist in the literature for speeding up distance computations and nearest neighbor

retrieval. Examples of such methods include Lipschitz embeddings [92], FastMap [93],

MetricMap [94], SparseMap [95], and BoostMap [96, 97]. Such embeddings can be

used for speeding up full sequence matching [95, 96, 97]. Similar embedding-based

methods have been developed for subsequence matching in time series (EBSM [98])

and string (RBSA [85]) databases. In this chapter, we present an indexing method

for SMBGT that achieves significant speedups against brute-force search. We chose

SMBGT because it is very competitive in terms of retrieval accuracy against existing

DP-based and HMM-based methods for QBH, as shown in the experiment evaluation.

3.3 Problem Setting

3.3.1 Definitions

Let us now give a more general problem setting. Consider X = (x1, . . . , x|X|)

to be a multi-dimensional time series, where |X| denotes the length of X. We use

xdj to denote the d-th dimension of xj, where j = 1, . . . , |X|. In our case, where X

represents a music piece, each xj = 〈x1
j , x

2
j〉 ∈ X is a pair of real values, where x1

j and

x2
j correspond to pitch and duration information respectively, and are represented

using any of the schemes described in Section 2.2. A music database is a set of

time series DB = {X1, . . . , XN}, where N is the number of music pieces in DB. A

subsequence of X, denoted as X[ts : te] = {xts, . . . , xte}, is an ordered set of elements

24

from X appearing in the same order as in X. The first element of the subsequence

is xts and the last is xte. Note that X[ts : te] is not necessarily continuous, i.e., gaps

are allowed to occur by skipping elements of X. Let Q = (q1, . . . , qm) be another

multi-dimensional time series, and consider the following definitions:

Definition 1. (Variable error-tolerant match) Consider elements qi ∈ Q and xj ∈ X.

For each dimension d of xj and qi, we define a function εfd(i, j) = f(qdi , x
d
j). We say

that qi and xj match with variable ε-tolerance, and denote it as qi ≈fε xj, if for each

d a constraint C(qdi , xdj , ε
f
d) is satisfied.

Depending on the form of C we can define two types of variable tolerance, i.e.,

absolute and relative:

• variable absolute error tolerance: values qdi , x
d
j may differ by at most εfd :

C(qdi , xdj , ε
f
d) = {|xdj − qdi | ≤ εfd}. (3.1)

• variable relative error tolerance: value qdi may vary between a fraction and a

multiple of value xdj :

C(qdi , xdj , ε
f
d) = {xdj/(1 + εfd) ≤ qdi ≤ xdj ∗ (1 + εfd)}. (3.2)

Note that if εfd(i, j) is a constant function then the last two tolerances are called

constant absolute and relative error tolerances, respectively.

Based on this definition, it can be observed that the proposed variable tolerance

framework is generic and can be used for any time series application domain. In Sec-

tion 3.3.1.1, we present an instantiation of the above definition for the 2-dimensional

time series used in the QBH application.

Definition 2. (Common bounded-gapped subsequence) Consider two subsequencesQ[ts1:

te1] and X[ts2:te2] of equal length. We use GQ and GX to denote the indices of those

elements in Q and X, respectively, that are included in the corresponding subse-

25

quences. Let α and β be the number of consecutive elements that can be skipped in

X and Q, respectively. If qπi ≈fε xγi , ∀πi ∈ GQ, ∀γi ∈ GX , i = 1, . . . , |GQ|, and

πi+1 − πi − 1 ≤ β, γi+1 − γi − 1 ≤ α, (3.3)

then, pair {Q[ts1:te1], X[ts2:te2]} defines a common bounded-gapped subsequence of

Q and X. The longest such subsequence satisfying te2 − ts2 ≤ r is called Longest

Common Bounded-Gapped Subsequence and denoted as LCBGS(Q,X).

3.3.1.1 Variable Tolerances - Instantiation

A reasonable definition for variable εf1 (where d = 1 corresponds to the pitch

dimension) is the following:

εf1(i, j) = f(q1
i) = dq1

i ∗ te, with t = 0.2, 0.25, 0.5. (3.4)

Note that εf1 is a function of only the first dimension of qi, i.e., the pitch.

Using εf1 given by Equation 3.4, the variable relative error tolerance for pitch is

defined as follows:

C(q1
i , x

1
j , ε

f
1) =

x1
j/(1 + εf1) ≤ q1

i ≤ x1
j ∗ (1 + εf1), q1

i , x
1
j ≥ 0,

x1
j/(1 + εf1) ≥ q1

i ≥ x1
j ∗ (1 + εf1), q1

i , x
1
j < 0.

(3.5)

Note that in the equation above it was necessary for the given application to

distinguish between positive and negative values of pitch intervals.

For pitch, in our evaluation we experimented with constant and variable abso-

lute and relative tolerances.

For duration, we had to differentiate between the two representations used in

this framework, IOIR and LogIOIR. Hence, for finding a suitable form for C we asked

people to hum several pieces of different kinds of music and we observed a tendency

26

of making duration ratios smaller, even half of their actual values. This is reasonable,

as users care more about singing melodies than being exact in tempo. Also, our

definition of C should account for cases of queries at slower tempos.

Thus, for IOIR, we define the following form of variable error tolerance without

providing any function εf2 :

C(q2
i , x

2
j ,−) = {x2

j ≤ 2 ∗ q2
i and x2

j − q2
i ≥ −0.5}. (3.6)

Furthermore, for the case of LogIOIR, taking into account that negative values

may occur, we define the following form of variable error tolerance, again without

providing any function εf2 :

C(q2
i , x

2
j ,−) =

{0 ≤ log2(x2

j/q
2
i) ≤ 1}, log2x

2
j ≥ 0.

{|log2(x2
j/q

2
i)| ≤ 1}, log2x

2
j < 0.

(3.7)

As the logarithmic values get smaller, the difference in ratios gets smaller as

well. Notice that the two forms of C shown in Equation 3.6 and Equation 3.7 are

appropriate for variable error tolerance for the QBH application.

Example: Let Q = (6, 3, 10, 5, 3, 2, 9), X = (1, 1, 3, 4, 6, 9, 2, 3, 1). For simplicity

we assume that Q and X are 1-dimensional. Now, consider subsequence Q[2:6] with

GQ = {2, 4, 5, 6}, which corresponds to sequence {3, 5, 3, 2}, and X[3:8] with GX =

{3, 4, 7, 8}, which corresponds to {3, 4, 2, 3}. Also, assume the following parameter

setting: εf1 = 1 (constant absolute tolerance) and εf2 = 0 (since we only consider

1-dimensional time series), α = 2, β = 1, and r = 6. Clearly, the two subsequences

are of the same length, at most two (α = 2) consecutive gaps occur in X (between

the second and third elements in X[3:8]), and at most one (β = 1) consecutive gap

occurs in Q (between the first and second elements in Q[2:6]). Range constraint r = 6

clearly holds for X[3:8], while all matching elements in the two subsequences differ

by at most 1 (εf1 = 1). Thus, pair {Q[2 : 6], X[3 : 8]}, is the LCBGS(Q,X).

27

3.3.2 Problem Formulation

Problem: (Top-K Subsequence Matching) Given a database DB with N se-

quences of arbitrary lengths, a query sequence Q, and positive integers δ and r, find

set S = {Xi[ts : te]|Xi ∈ DB} with the K subsequences having the largest LCBGS,

such that

|LCBGS(Q,Xi[ts : te])| ≥ δ. (3.8)

It should be mentioned that each database sequence contributes with only one sub-

sequence Xi[ts : te] to S. Note the additional constraint te − ts ≤ r which is by

definition included in LCBGS.

3.4 Background Methods

In this section, we briefly describe five DP-based methods and a probabilistic

method that are promising for QBH.

DP-based methods typically use an “alignment array” a of size (|Q|+1)∗(|X|+

1), where Q, X are the compared sequences. For 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |X|, each

cell ai,j represents either the minimum cost for aligning subsequences of Q and X

ending at i and j, respectively, or the maximum number of their matched elements,

depending on whether the method uses a distance or similarity measure. We have to

note that all methods given below except for the Iliopoulos et al. and the probabilistic

method are designed for subsequence matching.

28

3.4.1 Edit distance-based

The most recent variation of the Edit distance [66] between two sequences Q

and X, with slight extensions to deal with LogIOIR and quantizations, is computed

as follows:

a0,j = 0 and ai,0 = i, (3.9)

ai,j = min {ai−1,j + 1, ai,j−1 + 1, ai−1,j−1 + w(qi, xj)} ,

where w(qi, xj) is defined as:

w(qi, xj) =
1

2
∗
{
|

q1
i − x1

j

PitchRange
|
}

+
1

2
∗DurationCost (3.10)

DurationCost =

|1− min{q2i ,x2j}

max{q2i ,x2j}
|, for IOIR.

| q2i−x2j
DurationRange

|, for LogIOIR.

(3.11)

PitchRange and DurationRange correspond, respectively, to the maximum pitch in-

terval and LogIOIR range in DB. After a is computed, this method reports minj{a|Q|,j},

i.e., the minimum cost of aligning Q with the subsequence of X ending at position j.

3.4.2 SPRING

Apart from the alignment array a, SPRING [67] also uses an additional matrix

s, which keeps for each cell ai,j the start point of its current best alignment. The

recursive computation of ai,j is:

a0,j = 0 and ai,0 = ∞, (3.12)

ai,j = w(qi, xj) + dbest, (3.13)

dbest = min {ai−1,j, ai,j−1, ai−1,j−1} , (3.14)

29

with w(qi, xj) being the Lp norm of qi and xj. The same initialization is used for si,j

and at each iteration the start point of the element that was used to produce dbest is

propagated. Finally, after a is computed, SPRING reports minj{a|Q|,j}.

3.4.3 DTW tempo scaling

The next two methods were developed to measure the melodic similarity of two

sequences Q and X without using tempo information directly, though allowing to

locally adjust the tempo at certain positions. We refer to them as simple (DTWs)

[63] and complex (DTWc) [62]. Both methods share the same initial condition, shown

in Equation 3.15, where the simple scheme has been slightly modified to conform with

the complex scheme. The recursions for the simple and complex scaling schemes are

shown in Equation 3.16 and Equation 3.17, respectively.

a0,j = 0 and ai,0 = ai−1,0 + c, (3.15)

ai,j = w(q1
i , x

1
j) + min {ai−1,j−1, ai−1,j−2, ai−2,j−1} , (3.16)

ai,j = min

ai−1,j−1

ai−2,j−1 + w(q1
i−1, x

1
j)

ai−1,j−2 + w(q1
i , x

1
j−1)

+ w(q1

i , x
1
j). (3.17)

Note that c is a user-defined positive integer and w(q1
i , x

1
j) = |q1

i − x1
j |. Finally, both

schemes report minj{a|Q|,j}.

We note that the time complexity of the four aforementioned methods is O(|Q||X|).

3.4.4 Iliopoulos et al.

The method proposed by Iliopoulos et al. [51], named here Il. et al. in short,

performs whole query matching, by demanding all elements of Q to match within a

constant ε-tolerance in a subsequence of X, and allows for a limited number of gaps

30

only in the target sequence. A DP computation is performed, where every match is

rewarded with a score of 1, whereas whenever a mismatch occurs between qi and xj it

checks whether the best matching value found so far for qi can be propagated without

exceeding α gaps in X. The time complexity of this method is O(|X|+ |Q||X|2).

3.4.5 Hidden Markov Model-based Method

Since probabilistic methods have also been applied to music retrieval, for com-

pleteness, in the first part of our experiments we evaluate all the aforementioned

methods with a Hidden Markov Model (HMM)-based method.

An HMM [73, 99] is a doubly stochastic process that contains a finite set of

states. Each state emits/observes one symbol based on a probability distribution,

and transitions between states are regulated by the so-called transition probabilities.

More formally, an HMM is defined by: (1) M distinct states, (2) L distinct symbols

that can be observed at each state, i.e., the discrete alphabet 1, (3) set T = {tij}

of transition probabilities, where tij = P [st = j|st−1 = i], 1 ≤ i, j ≤ M , where st is

the state at time t (first order Markov chain assumption), (4) set E = {ej(k)} of the

probabilities of observation symbols at state j, where ej(k) = P [ot = k|st = j] and ot

is the observed symbol at time t, and (5) set Π = {πj} of prior probabilities, where

πj = P [s1 = j], 1 ≤ j ≤M .

Given a database of sequences, if we had a probabilistic model for each indi-

vidual sequence or group of homogeneous sequences, we could transform the query

matching problem to a probability calculation of each model having generated a se-

quence (query Q). In other words, we would be looking for the model that maximizes

the log-likelihood of the query sequence.

1Depending on the time series domain, real numbers can also be observed.

31

In QBH the database may contain a large number of songs covering a wide range

of music genres, as happens with our data. This would impose high heterogeneity

in the database and there would be no implication about any kind of correlation

between the sequences. Thus, it is obvious that the most reasonable and fairest

approach would be to model each database sequence with one HMM [72], which is

in fact the approach we adopted. Regarding the time complexity of this method,

training an HMM for a sequence X is O(W |X|M2), and computing the log-likelihood

of a query Q being generated by an HMM is O(|Q|M2), where W is the number of

iterations of the Baum-Welch algorithm [73].

3.5 SMBGT

In this section, we first present a method, called SMBGT , for identifying the

LCBGS of a query Q and a sequence X [79]. We also demonstrate how the method

operates through an example.

3.5.1 Method

SMBGT bounds the number of consecutive gaps allowed in both X and Q by two

positive integers α and β, respectively. In addition, it allows for variable tolerance in

the matching, constrains the matching range by r, and bounds the minimum number

of matching elements by δ. The intuition behind allowing gaps in both sequences

is to deal with serious humming errors that are likely to occur due to temporary

key/tempo loss or significant instant note loss (more than the acceptable tolerance).

Thus, we should be able to skip these elements. We will refer to a special case of

SMBGT where α and β are set to infinity as SMGT, i.e., no constraints are imposed

on the length of the allowed gaps.

32

3.5.1.1 Computation

Consider an “alignment array” a of size (|Q| + 1) ∗ (|X| + 1), where Q, X

are the compared sequences. ∀i ∈ {1, . . . , |Q|} and ∀j ∈ {1, . . . , |X|}, the recursive

computation for SMGT is:

a0,j = 0 and ai,0 = 0, (3.18)

ai,j =

ai−1,j−1 + 1 , if qi ≈fε xj

max {ai−1,j, ai,j−1} , otherwise.

(3.19)

An additional matrix s keeps for each cell ai,j the start point of its best alignment,

in si,j, and is updated according to the transitions.

For both SMGT and SMBGT, the computation of a is performed in an online

fashion and the space complexity is O(|Q|) as they do not need to store the whole

matrix a. Instead, two 1-dimensional arrays are used, prev, cur, to track the scores

(prev.value and cur.value) and start points (prev.start and cur.start) of two consec-

utive columns, j − 1, j, of a, since having the values of column j − 1 of a suffices to

compute column j. The goal is to be able to match any subsequence of Q with any

subsequence in the database. According to the above recursion, whenever a match

occurs the score on the alignment path is increased by 1, otherwise the maximum

score of the two adjacent (left, top) cells is inherited with no extra transition penalty.

In case of a tie, we choose the transition that corresponds to the subsequence with

the most recent start point since this subsequence includes a smaller number of gaps.

In SMBGT, the recursion for a is modified to include constraints α and β. Thus,

when a mismatch occurs at position (i, j), ai,j stores the largest number of matched

elements that can be propagated vertically or horizontally, while not violating α and

β. This is checked by an additional step, called propagation (Section 3.5.1.2).

33

Input: query Q, target X, column index j, array cur, and δ.

Output: current best match best.

begin

// return the value and start point of the cell with the maximum value in cur.

{lmax, lstart} = max{cur};

llen = j − lstart + 1;

blen = bestend − beststart + 1;

if best == null ∧ lmax ≥ δ then

bestvalue = lmax; beststart = lstart; bestend = j;

end

else if lmax > bestvalue ∨ (lmax == bestvalue ∧ blen > llen) then

bestvalue = lmax; beststart = lstart; bestend = j;

end

end

Algorithm 1: Function Update() for SMGT and SMBGT .

The maximum length of the database subsequence with the longest common

bounded-gapped subsequence is constrained by r, and the minimum matching score by

δ (Section 3.3.2). Notice that during the computation, best = (bestvalue, beststart, bestend)

keeps track of the current best solution, with bestvalue being the value of the best

match, and beststart, bestend the start and end points of that match, respectively. best

is updated as shown in Algorithm 1 taking into account δ. At the end of the com-

putation best corresponds to LCBGS(Q,X). Finally, given K, SMBGT reports the

K database sequences, where the K longest common bounded-gapped subsequences

occur. This is essentially the solution to the Top-K Subsequence Matching Problem.

To keep track of these subsequences, a priority queue S is maintained and updated ac-

cordingly using function Updatequeue(). When a new candidate subsequence is found,

34

Input: query Q, target X, column index j, array cur, functions εf1 and εf2 , and

match range r.

Output: updated column cur.

begin

for i← 1 to |Q| do

if j − curi.start+ 1 == r then

if qi ≈fε xj then curi.value = 1;

;

else //determine the appropriate transition and return the value

and start point.

{curi.value, curi.start} = check(cur, prev);

;

end

end

end

Algorithm 2: Function Reset() for SMGT .

S is updated if it contains less than K elements or if the new candidate match has

a higher score than any of the K subsequences in S. The main steps of SMBGT are

shown in Algorithm 3.

3.5.1.2 Propagation

Two additional arrays, Astart and Bstart, are used to determine the direction

of the propagation (left or top). Thus, for each cell (i, j), Astart and Bstart store

the latest match positions in X and Q, respectively. Two versions of these arrays

(Aprevstart, A
cur
start and Bprev

start, B
cur
start) are used corresponding to prev and cur, respectively.

Suppose that the value for cell (i, j) (i.e., curi) is being computed and propagation()

35

is triggered due to a mismatch between qi and xj. This function will check whether

the value of an adjacent (left or top) cell can be inherited. If j − Aprevstart(i) ≤ α then

left propagation is allowed. Similarly, if i − Bcur
start(i − 1) ≤ β, top propagation is

allowed. We always choose the propagation that inherits the highest value in matrix

a. In case both previ (i.e., ai,j−1) and curi−1 (i.e., ai−1,j) can be propagated, we

choose max {previ.value, curi−1.value}. If no propagation is possible, curi.value = 0

and curi.start = 0, so that another match can start at this point. In case of a tie, we

choose the transition that leads to the subsequence with the most recent start point

as this subsequence includes a smaller number of gaps.

3.5.1.3 Eliminating Large Matches

Regarding SMGT, due to constraint r it is necessary to perform an additional

step (called Reset()) in order to avoid expanding matching subsequences whose length

is r, and therefore are not going to be included in the final set of top-K matches. After

computing cur and updating best, we scan cur to detect those cells that correspond

to subsequence matches with length equal to r. This elimination is performed by

function check(), which returns the new value and corresponding start point for each

cell. Hence, for each cell (i, j), if qi ≈fε xj, then curi (that corresponds to that cell)

is set to 1. Otherwise, it is checked whether inheriting the value of the left (prevj−1)

or top (curi−1) cell may lead to a violation of r. The value of the left cell can be

inherited if the subsequence length that corresponds to that cell is less than r − 1.

The intuition is that if the corresponding length is equal to r − 1 this subsequence

would have already been reported as a candidate match on cur and thus we should

not expand it further. Moreover, the value of the top cell can never be equal to

r, as the elimination is performed on cur from top to bottom. Thus, the value of

the top cell can always be inherited. If both values can be inherited, we select the

36

Input: query Q, target X, gap constraints α and β, functions εf1 and εf2 , match

range r, and parameter K.

Output: priority queue S.

begin

S = null;

for t← 1 to |DB| do
bestvalue = 0; beststart = 0;

for j ← 1 to |Xt| do

for i← 1 to |Q| do

if qi ≈fε xj then

curi.value = previ−1.value+ 1;

curi.start = previ−1.start;

end

else

curi = propagation(i, j, Astart, Bstart);

end

end

best = Update(j, cur);

cur = ResetB(j, cur,Astart, Bstart);

end

Updatequeue(S, best,K);

end

end

Algorithm 3: SMBGT .

transition with the highest value and in case of a tie the transition that leads to the

subsequence with the most recent start point. If no transition is possible, check()

returns 0 as the cell and start point value. The main steps of function Reset() can be

37

seen in Algorithm 2. In SMBGT the reset function that has to be triggered (called

ResetB()) is similar to Reset() with an additional propagation check in case of a

mismatch between qi and xj. If no propagation is possible the value and start point

of the cell are set to 0, otherwise they are updated accordingly. In particular, in

the case of a top propagation, the value of the top cell is inherited by the current

cell. In the case of a left propagation, it should be ensured that it may not lead to

a subsequence that violates r (the length of the subsequence that corresponds to the

left cell is less than r− 1). Finally, if both propagations are possible, we perform the

one leading to the subsequence with the highest score and in case of a tie we perform

the one that leads to the subsequence with the most recent start point.

3.5.2 Example of SMBGT

Consider the following example: let Q = (0,−4, 1, 2,−2) and X = (0, 0,−4, 3, 0,

2,−3, 1). We want to find the LCBGS(Q,X), with α = 2, β = 1, δ = 3, and

r = |Q| = 5. For simplicity, we consider only the pitch dimension and do not impose

any matching tolerance. We show four matrices: (1) a, which is the alignment array

used for the DP computation, (2) s, which contains for each cell of a the start point of

the best matching subsequence that ends on that cell, (3) Astart, and (4) Bstart, which

are the additional matrices used by function propagation(). Following Equation 3.18

and Algorithm 3, the first 6 columns of all four matrices are shown in Figure 3.2 (a).

At this phase, column 6 contains cells that will trigger function ResetB(). Consider

row 5 of column 6. The start point of the subsequence that corresponds to that row

is at position 2, which gives a subsequence of length 6−2 + 1 = 5 = r. Thus, this cell

should be reset. Since qi = xj = 2 (match), the new value of that cell should be 1.

Let us check the next row of column 6. The length of the corresponding subsequence

is now 6− 2 + 1 = 5 = r, however in this case qi 6= xj, thus we should check whether

38

any propagation is possible. Regarding the left propagation, j−Aprevstart(i) = 6−0 > α;

hence left propagation is not allowed. Also, i− Bcur
start(i− 1) = 5− 4 = 1 = β; hence

top propagation is allowed, and the new value of cell (5, 6) is set to 1. Notice that s,

Astart, and Bstart are updated accordingly. The new matrices are now reset and are

shown in Figure 3.2 (b). Clearly, bestvalue = 3, beststart = 2, and bestend = 6.

Figure 3.2: DP matrices for SMBGT (a) before and (b) after reset.

The appropriate tuning of the parameters used in SMBGT depends on the application

domain. Learning approaches such as leave-one-out cross validation on a sample of

training queries could be used for parameter tuning.

According to the algorithm described in Section 3.5.1, the computational time

complexity of SMBGT is O(|Q||X|), which may be prohibitive for large databases.

Moreover, due to the fact that this method is not metric, the task of speeding up

similarity search under SMBGT is even tougher. Consequently, there is a need for an

efficient indexing approach, which is proposed in the next section.

39

3.6 ISMBGT: Indexed Subsequence Matching with Bounded Gaps and Tolerances

Next, we present ISMBGT, a novel approach for speeding up similarity search

under SMBGT. ISMBGT exploits an embedding-based technique for indexing the

database sequences, and, given a query sequence, works in a filter-and-refine manner.

3.6.1 SMBGT Embeddings

The task at hand is to identify the top-K subsequence matches to a query Q

in a database of sequences DB. The naive solution to this problem is to employ

brute-force search by using the SMBGT method described in the previous section.

Here, we present a more efficient method, which is based on defining a novel

embedding function H, called SMBGT embedding. The key novelty of this embedding

function is that it is specifically tailored for subsequence matching under SMBGT.

Every element xj of each database sequence X is mapped into an n-dimensional

vector, called SMBGT database sequence embedding, and each query Q is also mapped

into an n-dimensional vector, called SMBGT query embedding. This mapping is

performed via the use of a set of relatively short sequences, which we call reference

sequences.

Let R be a reference sequence, Y be a target sequence (either database sequence

or query), and Y [i : j] be a subsequence of Y . We define S|R|,j(R, Y [i : j]) to be the

highest value of the last column of the alignment table α when we compute (in a

dynamic programming manner) LCBGS(R, Y [i : j]) using SMBGT:

S|R|,j(R, Y [i : j]) = maxt=0,...,|R|{αt,|Y [i:j]|+1} . (3.20)

We shall use R to define a 1-D SMBGT embedding.

40

Definition 3. (1-D SMBGT embedding) Given a reference sequence R and a target

sequence Y , function HR is a 1-D SMBGT embedding that maps any subsequence

Y [i : j] of Y into a real number using R as follows:

HR(Y, i, j) = S|R|,j(R, Y [i : j]) . (3.21)

Using the above definition, we can compute a 1-D SMBGT database sequence

embedding as follows:

HR(X, i, j) = S|R|,j(R,X[i : j]) . (3.22)

Regarding i, it is set to j − c+ 1, where c > 0 is a constant determined by |Q|.

Note that, in order to define i, it has to hold that j ≥ c. However, if |X| < c then we

set i = 1 and j = |X|. The instantiation for c is given in Section 3.7.4.

Similarly, a 1-D SMBGT query embedding is computed as follows:

HR(Q, i, |Q|) = S|R|,|Q|(R,Q[i : |Q|]) . (3.23)

In this case we set i = |Q| − c+ 1.

Consequently, for each reference sequence R, each database sequence is mapped

to |X| − c+ 1 values, if |X| ≥ c, or one value if |X| < c. Note that for the case of the

query, by definition, it holds that |Q| ≥ c.

Naturally, instead of picking a single reference sequence R, we can pick multiple

reference sequences to create a multi-dimensional embedding, as defined below.

Definition 4. (n-D SMBGT embedding) Given a set of n reference sequences R =

{R1, . . . , Rn} and a target sequence Y , function HR is an n-D SMBGT embedding

that maps any subsequence Y [i : j] of Y using R to the following vector:

HR(Y, i, j) = {S|R1|,j(R1, Y [i : j]), . . . , S|Rn|,j(Rn, Y [i : j])} . (3.24)

41

Hence, using Equations 3.22 and 3.23 we can compute the n-D SMBGT database

sequence and query embedding vectors, respectively, as follows:

HR(X, i, j) = {HR1(X, i, j), . . . , HRn(X, i, j)) . (3.25)

HR(Q, i, |Q|) = {HR1(Q, i, |Q|), . . . , HRn(Q, i, |Q|)} . (3.26)

3.6.2 Properties of SMBGT Embeddings

The construction of the SMBGT embeddings is performed in such a way that

if Q is similar to a subsequence of X starting at xi and ending at xj, and if R is some

reference sequence, then HR(Q, i, |Q|) is likely to be similar to HR(X, i, j). Using the

same argumentation as in Papapetrou et al. [98], we can see that:

• if Q appears exactly as a subsequence X[i : j] in X, it holds that HR(Q, i, |Q|) =

HR(X, i, j), given that the optimal alignment path computed by SMBGT when

matching R with X[i : j] does not start before position i, which is the position

in X where the appearance of Q starts, and

• if X[i : j] is a slightly perturbed version of Q in X, then HR(Q, i, |Q|) ≈

HR(X, i, j). In other words, the perturbed version of Q has been obtained, for

example, by adding some noise to each query value qt, t = 1, . . . , |Q|, of Q.

Thus, little tweaks in the values of Q should slightly affect the difference between

the values of HR(Q, i, |Q|) and HR(X, i, j). This claim becomes even stronger when

more reference sequences are used (see Papapetrou et al. [98]), which is the case

in our approach. Unfortunately, due to the non-metric nature of SMBGT, there

exists no approximation method that can make any strong theoretical guarantees in

the presence of perturbations along the temporal axis. In order for the proposed

embeddings to provide good retrieval accuracy, the following statistical property has

to hold empirically:

42

Property: (Embedding Similarity) Let jopt be the position in X where the

optimal SMBGT subsequence match of Q in X ends. Then, given some random

position j 6= jopt, it should be very likely that HR(Q, i, |Q|) is closer to HR(X, i, jopt)

than to any other HR(X, i, j).

The above statistical property can be established by embedding optimization.

It can be seen that the quality of the SMBGT embeddings depends on the selection of

the reference sequence set R. In Section 3.6.6, we describe a way of doing this, which

is also one of the key differences of our framework against existing state-of-the-art

embedding-based filter-and-refine techniques.

3.6.3 A filter-and-refine Framework

Applying brute-force SMBGT on the database for a given query would be pro-

hibitively computationally expensive for large databases. Our goal is to improve

retrieval efficiency with very small loss in retrieval accuracy. Towards this objective,

the design of ISMBGT enables a filter-and-refine nearest neighbor retrieval [92] using

the SMBGT embeddings defined in the previous section. ISMBGT employs a filter

step, where a small set of candidate database subsequences are selected, which are

then passed to the refine step to perform the costly SMBGT computation. The sub-

stantial speedup is achieved by keeping the number of filtered sequences quite small

while allowing for very small loss in accuracy.

A pre-processing step is needed to create the SMBGT database embeddings. In

particular, ISMBGT first performs a one-time offline step computation, where vector

HR(X, i, j) is computed for every allowable position j of each database sequence

X. Computing the set of all n-D SMBGT database embeddings HR(X, i, j), for

j = c, . . . , |X| (with |X| ≥ c) takes time O(|X|
∑n

l=1 |Rl|). This process is repeated

for all database sequences and the resulting set of embeddings corresponds to the

43

embedding of the whole database. This set is stored and ISMBGT is then ready for

receiving queries.

At query time, qiven a query sequence Q, ISMBGT performs three steps:

• Query embedding step: The SMBGT query embedding HR(Q, i, |Q|) is com-

puted online, by applying the SMBGT method n times, one time for each of

the n reference sequences. The total running time is O(|Q|
∑n

l=1 |Rl|). This

time is typically negligible compared to running SMBGT between Q and all

sequences X in DB, which takes O(|Q|
∑N

l=1 |Xl|) time, because we enforce∑n
l=1 |Rl| <<

∑N
l=1 |Xl|.

• Filter step: HR(Q, i, |Q|) is compared to HR(X, i, j) of each database sequence,

for j = c, . . . , |X|, and some j’s are chosen such that HR(Q, i, |Q|) is very similar

to HR(X, i, j). Specifically, some pairs of database sequences X and positions

j in those sequences (we denote them as (X, j)) are selected according to the

distance between each HR(X, i, j) and HR(Q, i, |Q|). These are the candidate

endpoints of the subsequences that best match with Q.

• Refine step: For each such j, and for a matching range r, SMBGT is run between

Q and X[j − r + 1 : j] to find the best subsequence match. At the end of this

step the subsequences with the K highest SMBGT scores, or else the K best

matching subsequences to Q, will have been identified, thus solving the Top-K

Subsequence Matching Problem.

It is obvious that if we are able to choose a small number of such promising

subsequences X[j − r + 1 : j], evaluating only those areas will be much faster than

running SMBGT between Q and the whole database.

44

3.6.4 Filter Step

3.6.4.1 Original Scheme

We first select the best k reference sequences, i.e., the reference sequences that

provide the k highest similarity scores in HR(Q, i, |Q|). Then, for every (X, j) we

compute the Euclidean distance between HR(Q, i, |Q|) and HR(X, i, j) using only the

dimensions corresponding to the selected reference sequences. Finally, all database

positions (X, j) are ranked in increasing order of the distance between HR(X, i, j)

and HR(Q, i, |Q|), so that they can be further used at the refine step.

The time complexity of this step is O(k
∑N

l=1 |Xl|), which suggests that for large

database sizes the filter step can still be expensive. Hence, we next present a sampling

technique which, as we confirm in our experiments, can achieve significant speedups.

3.6.4.2 Speeding Up the Filter Step

To reduce the computational cost of the filter step, ISMBGT performs sampling

over the vector space of each SMBGT database sequence embedding. The intuition is

that embeddings are constructed in a way that embeddings of nearby positions, such

as HR(X, i, j) and HR(X, i, j + 1), tend to be very similar.

We choose a sampling parameter s, and then sample uniformly one out of every

s vectors HR(X, i, j) in each X. In other words, we only store vectors:

HR(X, i, 1), HR(X, i, 1 + s), HR(X, i, 1 + 2s),

Given HR(Q, i, |Q|), we compute its distance with the vectors that we have sampled,

using only the k dimensions that correspond to the reference sequences that provide

the best k similarity scores in HR(Q, i, |Q|) (similar to the original scheme). If for

a database position (X, j) its vector HR(X, i, j) was not sampled, then we assign to

45

that position the distance between HR(Q, i, |Q|) and the vector that was actually

sampled among {HR(X, i, j − bs/2c), . . . , HR(X, i, j + bs/2c)}.

The time complexity of this step is O(k
∑N

l=1d
|Xl|
s
e). In our experiments, we

observed that sampling achieves significant runtime improvements compared to brute-

force search, without essential loss in accuracy.

3.6.5 Refine Step

As mentioned above, the filter step ranks all database positions (X, j) in in-

creasing order of the distance, or estimated distance when we use approximations such

as sampling, between HR(X, i, j) and HR(Q, i, |Q|). The refine step then evaluates a

percentage perc of the total number of candidate positions (which are ranked), where

perc is a system parameter that provides a trade-off between retrieval accuracy and

efficiency.

Since candidate positions (X, j) actually represent candidate endpoints of a

subsequence match, we can evaluate each such candidate endpoint by performing the

SMBGT method from a startpoint determined by r up to this endpoint. Specifically,

if jend is the endpoint of a potential match, we run the SMBGT method between Q

and X[jend − r + 1 : jend]. In other words, SMBGT is used to find the best matching

score and the corresponding subsequence for that candidate endpoint. We have to

mention that if we do not put any constraint on the value of the matching range

parameter r, or else set it to infinity, SMBGT will be evaluated from the beginning

of the database sequence X. However, subsequences of X that are much longer than

Q are very unlikely to be good matches for Q, since there will be many unmatched

elements creating large gaps when aligning the two sequences with SMBGT.

After all similarity scores between Q and candidate positions (X, j) have been

computed, we sort them in decreasing order and check if the correct/targeted sequence

46

is included in the returned results. If this is the case, then the rank of the query is

the position of the correct sequence. Otherwise, the rank of the query is the rank of

the targeted sequence when we apply the ISMBGT to all the endpoints, and not just

the perc of them.

The time complexity of the refine step is O(r |Q| perc
∑N

l=1 |Xl|).

3.6.6 Query-optimized reference sequences

It can be easily seen that the construction of the SMBGT query embedding

is highly dependent on the length difference between the query and the reference se-

quences. If the length difference is high (the reference sequence is either much smaller

or much longer than the query), then this will produce a low SMBGT similarity score.

In order to guarantee that the Embedding Similarity Property holds, we should al-

ways choose reference sequences that are shorter than the queries but not too much

shorter either. This has also been argued in Papapetrou et al. [98].

Hence, we employ a novel technique for building the SMBGT query embeddings.

We first introduce a lower and an upper bound of the possible query lengths that our

filter-and-refine framework may accept, denoted as LQ and UQ, respectively. Next,

we split the query lengths into d′ intervals, which results in a set of d′ buckets B =

{b1, . . . , bd′}. Each backet bi corresponds to interval [uvi−1, uvi), for i = 1, . . . , d′,

where u = LQ and uvd
′
= UQ. The resulting set of buckets is the following:

B = {[u, uv), [uv, uv2), [uv2, uv3), . . . [uvd
′−1, uvd

′
)} (3.27)

Then, we assign a set of reference sequences to each bucket bi that satisfies the

corresponding length requirement of bi. Specifically, for each bucket bi, the number

of reference sequences is set to q, and their length is defined as a percentage p of the

47

lower bound of the bucket, i.e., puvi−1. This process is performed offline as well as

the construction of the embedding of the whole database.

At query time, given Q, we identify the bucket bi = [uvi−1, uvi), such that

uvi−1 ≤ |Q| < uvi.

The SMBGT query embedding is then created using the set of q reference sequences

that correspond to bucket bi.

3.7 Experiments

In the first part of our experiments (Sections 3.7.2 and 3.7.3) we show the su-

periority of SMGT and SMBGT in terms of accuracy over several DP-based methods

and the HMM-based method on QBH, using both synthetic and hummed queries.

In the second part (Section 3.7.4) we show the usefulness of the proposed indexing

approach, ISMBGT, when compared to the brute-force SMBGT in terms of retrieval

accuracy and runtime. Finally, in Section 3.7.5 we highlight the main observations

and conclusions from our experimental evaluation.

3.7.1 Experimental Setup

3.7.1.1 Database

We created a music database of 5,643 freely available on the web MIDI files that

cover various music genres, such as Blues, Rock, Rock ’n’ Roll, Pop, Classical, Jazz,

and also themes from movies and tv series. For each MIDI (comprising 16 channels)

and channel, we extracted the highest pitch at every time click (all-channels extraction

[20])2. Then, we converted tuples 〈pitch, click〉 to 〈pitch interval, IOIR〉, resulting

2In the extraction process we excluded channel 10, since it is used for drums and cannot offer

any musical information in QBH.

48

in 40,891 sequences (that is the |DB|) and a total of 13,455,603 tuples. This pre-

processing procedure was done offline and only once, guaranteeing that there is no

chance of missing a melody existing in any channel of a song.

3.7.1.2 Synthetic Queries

Six synthetic query sets (100 queries per set) of lengths between 13 and 137

were generated: Q0, Q.10, Q.20, Q.30, Q.40, and Q.50. Q0 contained 100 exact segments

of the database, while Q.10 − Q.50 were generated by adding noise to each query in

Q0. For all queries of Q0 we randomly modified 10, 20, 30, 40, and 50% of their

corresponding time series in both dimensions. The pitch interval of the modified

elements was changed by ±z ∈ [3, 8] (integer), as we wanted the noise to range within

one octave. This simulates the error performed by a human when singing a song by

memory as well as the intrinsic noise that may be added by any audio processing

tool. An erroneous interval of 3 to 8 semitones, i.e., 1.5 to 4 tones, is very reasonable

for QBH. Regarding IOIR, each q2
i was modified by ±z ∈ [2, 4] (real), so that several

reasonable variations of duration ratios could be simulated, and also be outside the

bounds described by Equation 3.6, avoiding any bias in favor of SMBGT and SMGT.

In case of a negative value in IOIR, it is reset to a very small real positive value,

as duration ratios should be positive. Moreover, in all noisy query sets we allowed

at most 3 consecutive elements to be replaced with noisy values. This is because in

QBH we do not expect to have too many consecutive matching errors. We note that

noise was added to existing query elements without any insertions or deletions.

3.7.1.3 Hummed Queries

To evaluate the methods in QBH in a real application scenario we also experi-

mented with a set of 100 hummed queries of lengths between 14 and 76. In our setting,

49

4 males were asked to hum 25 songs each. Two of them were musically trained with

middle and low level studies on the piano and the guitar, while the third and fourth

had no musical background. The users were asked to sing close to a microphone

and avoid singing with lyrics. The hummed melodies were then converted to MIDI

using the Akoff music composer-version 2.0 3, a well-known tool commonly used for

evaluating QBH systems (e.g., by Zhu et al. [61]). All-channels extraction was ap-

plied to the queries to obtain the same representation with the database. The query

set covered several genres of music, such as Classical (“Für Elise”), Blues (“Hide-

away”), Jazz (“Strangers in the Night”), Rock ’n’ Roll (“Rock Around the Clock”),

Rock (“Fly Away”), Country (“Hey Good Lookin”), and romantic songs (“What a

Wonderful World”).

An acute reader may notice that the number of people who voluntarily helped

in the construction of the hummed query set is not quite large. However, we have

to mention that creating such a set is not a trivial task, since selecting the final

set of hummed queries involved much manual process. Apart from the mistakes

that a user can make, any recording procedure may introduce noise in both pitch

and duration. After listening to the MIDI of each hummed song, noise had been

introduced, especially in pitch. Consequently, users had to hum each song several

times before selecting the version with the least amount of noise, i.e., the one whose

melody sounded as close to the target as possible according to them.

3.7.1.4 Evaluation

In the first part of our experimental evaluation (Sections 3.7.2 and 3.7.3) we

show the comparison among SMBGT, SMGT, the five DP-based methods and the

probabilistic-based approach that were described in Section 3.4, i.e., Edit distance-

3http://www.akoff.com/music-composer.html.

50

based, SPRING, DTWs, DTWc, Il. et al., and HMM-based. Edit distance was slightly

modified to deal with LogIOIR and quantizations (Section 3.4.1), while for Il. et al. a

more elastic version was used that is suitable for subsequence matching and supports

both constant and variable error tolerance. In addition, the whole query matching

requirement is eliminated, and the rationale behind this is that it would be a too tight

constraint to demand all hummed query elements to match in X. Moreover, both Il.

et al. and SPRING were modified to allow for r [79]. First, we present the robustness

of all methods with respect to noise using the synthetic query sets (Section 3.7.2).

Secondly, the methods that achieved a reasonably high recall (> 90%) even for high

noise levels (50%) were further tested on hummed queries where the noise level can

be much higher (Section 3.7.3).

The performance is evaluated in terms of recall, mean reciprocal rank (MRR)

[100], and runtime. Recall is the percentage of queries for which the correct answer

is among the top-K returned results. MRR is the mean inverse rank of all queries

(of a query set) in their top-K results. Thus, its value belongs to [0, 1]. If the right

answer is not included in the results, then the inverse rank is 0. The rank of a query

is the number of matches (i.e., database sequences) with similarity/distance value at

least as high/low as that of the correct match (including the correct match). Both

measures are essential for the evaluation of a QBH method, as recall shows how

successful the method is in finding the correct answer among the top-K, whereas

MRR indicates if there is room for improvement in terms of recall when decreasing

K. For all methods all variations and parameter settings were tested [79], and here

we report those variations that achieved the best performance.

In the second part of our experiments (Section 3.7.4) we evaluated the per-

formance of ISMBGT compared to that of brute-force SMBGT for the five noisy

synthetic query sets and the hummed query set in terms of recall, runtime, and ef-

51

ficiency, which is a particularly useful measure that influences the retrieval runtime.

Efficiency is defined as the ratio of the number of database elements that are evaluated

during the refine step by SMBGT to the length of the database.

Experiments were run on an AMD Opteron 8220 SE processor at 2.8GHz, and

implemented in C++.

3.7.2 Evaluation of Brute-Force SMBGT on Synthetic Queries

3.7.2.1 Parameters, Tolerance, and Representation

For the methods that consider r in their computation (SPRING, Il et al., SMGT,

and SMBGT) we set r = |Q|, as due to the construction of the query sets, the desirable

match does not exceed that value. Taking into account the noise levels of the query

sets, in SMBGT and SMGT δ was set to 0.9, 0.7, 0.6, 0.5, 0.35, and 0.3 times the

length of each query in the six query sets, Q0 −Q.50, respectively. We selected these

gradually decreasing δ values, so as to be elastic enough as noise increases, and avoid

false dismissals. We experimented with α = β = 3, as we know that the maximum

number of gaps in all query sets is 3. We tested several values for K, from 5 to 150, for

all synthetic query sets. In QBH, however, high values of K may not be practical as

users may not be willing to look at a large number of candidate songs to identify the

targeted one; we chose a reasonable value, K = 20, to report the accuracy regardless

of noise level.

For pitch, we tested constant and variable absolute and relative tolerances. For

duration, we experimented with variable error tolerance (Equations 3.6 - IOIR and 3.7

- LogIOIR). For all synthetic query sets and pitch SMBGT achieved its best accuracy

when using variable absolute tolerance (Equations 3.1 and 3.4) with t = 0.2, SMGT

when using variable absolute tolerance with t = 0.5, and Il. et al. when using constant

52

relative tolerance (Equation 3.2) with εf1 = 1. All the above accuracies where obtained

using IOIR for duration. The best accuracy for the HMM-based method was achieved

for M = 5 states, and the observation distribution of the states we experimented with

was Gaussian (which is common) [79]. The results of the performance evaluation of

SMBGT and SMGT with respect to accuracy are shown in the upper part of Figure

3.3.

Regarding the representation of music pieces, as the noise level increases the

representations achieving the highest recall per DP-based method are a subset of the

representations of lower noise levels. Moreover, representations 〈mod12, IOIR〉 and

〈pitch interval, IOIR〉 appear most in all synthetic query sets. For the HMM method,

the representation used is 〈mod12, LogIOIR in [−2, 2]〉. These observations show that

the simpler the representation the more promising it seems to be in QBH [79].

3.7.2.2 Accuracy

Regarding the 100 exact queries (Q0), all DP-based methods achieved 100%

recall with MRR 1 for top-5, except for DTWs, which did not exceed a recall of 96%

even for K = 250. The HMM-based method, achieved 96% recall for top-5 with MRR

0.95, and recall 100% for top-150. SMBGT, SMGT, and Edit distance performed

best, and behaved similarly for all query sets. Even for Q.50 their recall is 97, 96,

and 97%, respectively. The reason for the high recall of Edit distance is that if two

elements do not match, it will increase the total matching score by at most 1, while

for the remaining intact elements this score will not be affected. On the contrary,

the recall of all other competitor methods degrades with noise. SPRING and the

HMM-based method behave similarly for Q.10, Q.20, and Q.30 presenting a recall of

more than 91%, but further increasing the noise level results in a smooth degradation

53

for SPRING and a sharp one for the HMM-based method. For Q.50 their recall is

only 75 and 56%, respectively. The accuracy of DTWc and Il. et al. degrades very

sharply when adding noise, achieving for Q.40 27 and 53% recall, and for Q.50 7 and

32%, respectively. The latter method presents such behaviour, as it will sooner stop

its computation when not being able to find a match for a query element. SMBGT

significantly outperforms Il. et al. with α = β due to its additional ability to skip

query elements. DTWs performs worst for all noise levels (0% recall for Q.50), and

this behaviour, along with that of DTWc, is justified by the fact that they implicitly

embed time by allowing it to adjust locally, and they are unable to skip non-matching

elements, as they force them to align. For both of them, the value of parameter c

(Equation 3.15) achieving their best recall was 2. SPRING explicitly accounts for

duration information in its computation, thus it can tolerate higher noise levels as

opposed to DTWs and DTWc. Referring to MRR, the same conclusions hold, with

SMBGT, SMGT, and Edit distance remaining close to 1 for all noise levels, which is

expected as the other competitors identify fewer correct answers in the top-K results.

An overview of these findings is shown in Figure 3.3 (upper-part).

Table 3.1: Recall of SMGT for various top-K and ranges for the hummed queries.

Recall (%)

r |Q| 1.1|Q| 1.2|Q| 1.5|Q| 2|Q| ∞
K = 5 32 31 34 31 30 0

K = 10 38 40 42 36 40 0

K = 20 41 46 48 44 42 0

K = 50 47 52 62 57 56 0

54

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

noise levels (%)

M
R

R

MRR for synthetic query sets vs. matching methods

DTW
s

DTW
c

SPRING
Il. et al.
Edit
SMGT
SMBGT
HMM

0 10 20 30 40 50
0

20

40

60

80

100

noise levels (%)

re
c
a

ll

Recall for synthetic query sets vs. matching methods

DTW
s

DTW
c

SPRING
Il. et al.
Edit
SMGT
SMBGT
HMM

0 5 10 20 50
0

10

20

30

40

50

60

70

80

90

100

top−K

re
c
a

ll

Recall vs. top−K varying r, α, β

SMGT: r = ∞
SMBGT: r = ∞, α = β = 4
SMBGT: r = 2, α = 5, β = 6
SMBGT: r = 1.5, α = 5, β = 6
SMBGT: r = 1.2, α = 5, β = 6
SMGT: r = 1.2

0 5 10 20 50
0

10

20

30

40

50

60

70

80

top−K

re
c
a

ll

Recall vs. top−K

SMBGT
SMGT
Edit

Figure 3.3: (up-left) Accuracy of all DP and HMM-based methods forK = 20 in terms
of MRR for synthetic queries; Recall of SMBGT and SMGT for: (up-right) synthetic
queries vs. DP and HMM-based methods for K = 20; (bottom-left) hummed queries
varying α, β, r, and K; (bottom-right) hummed queries vs. Edit distance varying K,
when r = 1.2 for both SMBGT and SMGT, and α = 5, β = 6 (SMBGT).

Table 3.2: Recall and MRR of the proposed methods vs. Edit distance for the
hummed queries (K = 50).

Accuracy

Methods Recall (%) MRR Tol.

SMBGT 67 0.3661 abs. t = 0.2

SMGT 62 0.2956 abs. t = 0.25

Edit 2 0.0012 -

55

3.7.2.3 Runtime

In Figure 3.4 we show the average execution time for all methods per query

length conforming with the complexities of the methods.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

query length

ti
m

e
 i
n
 m

in
s

Runtime for varying query lengths

SMGT

SMBGT
DTW

s

DTW
c

SPRING

Il. et al.

Edit

HMM

Figure 3.4: Average execution time for all methods per query length.

3.7.3 Evaluation of Brute-Force SMBGT on Hummed Queries

The methods that showed to be noise-tolerant even for high noise levels of 50%,

i.e., SMBGT, SMGT, and Edit distance, were further evaluated for the hummed

query set, since possibly none of the elements of the correct targeted song will be

intact, due to humming errors and noise introduced by the recording procedure.

3.7.3.1 Parameters, Tolerance, and Representation

We experimented with parameters r, α, and β, for δ = 0. First, the effect of

r in SMGT, where no constraint is imposed on the number of consecutive gaps, was

studied. Increasing r, starting from r = |Q|, we observe that the recall of SMGT

56

increases, until r = 1.2 ∗ |Q|, after which the recall degrades. Interestingly, setting

r = ∞ leads to a recall of 0%. This is not surprising, though, since increasing r

without any additional constraint in the number of gaps results in a larger number

of erroneous candidate matches. We also studied the influence of α and β for the

extreme case of r =∞ for SMBGT. Several pairs of α, β were tested, and the recall

was significantly improved [79]. The best recall value was achieved for α = β = 4

(51% for K = 50), as shown in Figure 3.3 (bottom-left). Then, in order to capture

the impact of r combined with α and β, we tested the same pairs of values and we

gradually decreased the value of r. The best accuracy was achieved for α = 5, β = 6,

and r = 1.2 ∗ |Q|, verifying the need for skipping elements in both target and query

sequences. In Figure 3.3 (bottom-left) we also show how accuracy is improved when

varying r from 1.2 to 2, for α = 5 and β = 6.

In Figure 3.3 (bottom) we can see the results for SMBGT and SMGT, using

variable absolute tolerance (Equations 3.1 and 3.4), with t = 0.2 and t = 0.25, for

pitch, respectively, and variable error tolerance (Equation 3.6 - IOIR) for duration.

For any tolerance type, small constant tolerance and small values of t for variable

tolerance made our methods perform better than for greater values, with variable

tolerance being better. Moreover, variable absolute tolerance always outperformed

variable relative tolerance in all experiments. For example, for t = 0.2 and K = 10,

relative tolerance was 33% worse than absolute. Regarding Edit distance, no matching

tolerance can be defined.

The representation used for the music pieces and the hummed queries that led

to highest accuracies was 〈pitch interval, IOIR〉.

57

3.7.3.2 Accuracy

Figure 3.3 (bottom-right) shows that SMBGT and SMGT are at least 30 times

higher in recall than Edit distance for K = 50, while SMBGT achieves 10% higher

recall than SMGT for K = 5, and 15% for K = 10 and K = 20. The recall of

Edit distance is 0% even for K = 10. These values are achieved for r = 1.2, α = 5

and β = 6 (for SMBGT), and δ = 0.1 ∗ |Q| for all K. Regarding MRR, SMBGT

outperforms Edit distance by more than two orders of magnitude for K = 50, while

SMGT achieves worse MRR than SMBGT, as these measures are influenced by the

recall. Also, the values of MRR for K < 50 are very close to those of K = 50.

Increasing K > 50 may improve the recall of all methods, though, trading K for

higher recall will increase retrieval cost as more database sequences will be reported.

Our goal, in QBH, is to achieve high recall by reporting as few candidates as possible.

Hence, for K = 5-50 SMBGT and SMGT clearly offer higher recall.

Finally, we tested the impact of δ on recall for the best combination of param-

eters for SMBGT. Increasing δ, even for δ = 0.5 ∗ |Q| and K = 50 the recall does not

decrease, while further increasing it makes recall worse. For example, for δ = 0.6∗ |Q|

it degrades to 28%, and for δ = 0.7∗ |Q| to 9%, when K = 5. This behavior indicates

that the recall on the hummed queries for which the correct song appeared in the top-

K results was not influenced by requesting more elements of the targeted sequences

to match to theirs, until δ = 0.5 ∗ |Q|. In other words, these hummed queries were

very similar to the targeted songs, leading us to the conclusion that if, in QBH, the

users are singing well (both in pitch and time), δ can be set, for example, to 0.5 ∗ |Q|,

resulting in fewer false positive candidates. We note here though that, in order to

maximize the accuracy, δ can be set to a very small value, e.g., 0.1 ∗ |Q|, since the

58

Table 3.3: Buckets statistics.

Interval Interval c |R| Hummed Synthetic
Notation Queries Queries

b1 [13, 21) 13 10 15 25
b2 [21, 33) 21 17 30 90
b3 [33, 53) 33 26 39 180
b4 [53, 86) 53 42 16 135
b5 [86, 138) 86 69 - 70

target group of users may include people with not only good but also bad singing

capabilities.

3.7.4 Evaluation of ISMBGT on Synthetic and Hummed Queries

3.7.4.1 Reference Sequences

We followed the process described in Section 3.6.6 to select reference sequences

for the construction of the SMBGT embeddings. We first created the set of query

length buckets B. Since query lengths are in [13, 137], we set LQ = 13 and UQ =

138. In addition, we set d′ = 5, which means that we considered 5 query length

intervals. Thus, v ≈ 1.60. Next, for each bucket we set q = 1, 000 and p = 0.8.

Thus, we randomly selected 1, 000 sequences from DB with their lengths being 80%

of the lower bound of the bucket. As a result, n = 1, 000, i.e., we constructed

1,000-dimensional SMBGT embeddings. We should note that the construction of the

SMBGT database sequences embeddings is done offline. The value of c needed when

creating the SMBGT embeddings is set to the lower bound of the bucket that the

length of a query belongs to. Hence, for our experiments c was 13, 21, 33, 53, and

86 for the 5 buckets, respectively. We will use the terms (query length) intervals and

buckets interchangeably. The lower and upper bounds of the buckets, the lengths of

the reference sequences, and the c values are shown in Table 3.3.

59

3.7.4.2 Representation, Parameters, and Implementation details

For the experimental evaluation of ISMBGT and its comparison with the brute-

force SMBGT (which for the remainder of this section we will also denote as BF), the

representation used is 〈pitch interval, IOIR〉. This is because, as shown in Section

3.7.2.1 and 3.7.3.1, this representation leads to highest accuracies for both synthetic

and hummed query sets compared to all other possible representations.

In order to be fair when comparing brute-force SMBGT with ISMBGT, we set

the parameters of SMBGT as follows. For the synthetic queries the number of gaps

that could be skipped in the target sequences and the query was 3 (α = β = 3)

and the subsequence matching range r was set to |Q|. No matching tolerance was

imposed, so as to enforce the intact elements of the queries to be matched with the

corresponding ones from the targeted subsequences, while the remaining elements

were skipped through the α and β parameters. The minimum number of elements

that have to match between the query and the target sequence δ was set to 0.1 ∗ |Q|.

For the hummed queries, variable absolute tolerance with t = 0.2 was applied for

pitch (Equations 3.1 and 3.4) and variable error tolerance (Equation 3.6 - IOIR) for

duration, α = 5, β = 6, r = 1.2 ∗ |Q|, and δ = 0.1 ∗ |Q| so as to have at least some

elements of Q to match with the subsequences returned in the top-K results.

With regard to the percentage of endpoints evaluated at the refine step of

ISMBGT, after experimenting with perc = 0.1−0.9% with step 0.2 and perc = 1−5%

with step 2, we set it to 1%. This choice accounts for the trade-off between accuracy

and runtime. Lower values of perc did not provide satisfying recall, although speedup

improvements were higher than for perc = 1%, while greater values significantly

decreased speedup. perc = 1% makes ISMBGT at least 2 times faster than BF

60

(Section 3.7.4.4), which is very significant in a real QBH scenario, especially if we

consider that it leads to very high recall values.

At the refine step we keep for each sequence X corresponding to a channel an

array of size equal to |X|, which is initialized with zeros. Then, for each candidate

endpoint jend of the database, i.e., that belongs to the perc of the sorted endpoints,

we put the value one to all the positions of the array starting from jend and going

backwards up to position jend−r+1. After that operation, we trace each sequence that

has non zero values in its array and perform SMBGT between Q and the segments

that were filled in with ones. If there are more than one segments for X, then we keep

the best similarity score that was obtained after applying SMBGT to all of them as

the similarity score for X. The similarity scores of the channel sequences are finally

sorted and it is checked whether any channel of the correct/targeted song is included

in these channels. If there exists a channel of the correct song, then the rank of

the query is the rank of the channel of the correct song with the highest similarity

score (worst in case of similarity score ties). Otherwise, the rank of the query is the

(worst in case of ties) rank of the closest channel of the song (the one with the highest

similarity score) when we apply the ISMBGT to all the endpoints, and not just the

perc of them.

3.7.4.3 Accuracy

We first evaluated BF and ISMBGT in terms of accuracy on the five noisy

synthetic query sets and the hummed query set (given in Section 3.7.1). For com-

pleteness, we mention that the approach followed to find the recall for BF is the same

as that of ISMBGT, as mentioned in Section 3.7.4.2. In other words, the correct

channel of the targeted song is the channel with the highest similarity score among

all channels of that song.

61

In Figures 3.5 - 3.9 we present the recall vs. the top-5, 10, 20, 50, 100 returned

results for the synthetic queries belonging to each of the 5 intervals for both BF and

ISMBGT, when varying the number of the k best reference sequences used in the

filter step and the sampling parameter s (for ISMBGT). At the upper part of these

figures we present the recall vs. top-K for different values of k, when a) there is

no sampling during the filter step (left sub-figure), i.e., s = 1, and b) the sampling

parameter is s = 3 (right sub-figure). At the bottom part of these figures we show

how the recall vs. top-K varies for different values of s, for the value(s) of k that

seemed more promising when we applied sampling with s = 3. The same type of

information is shown in Figures 3.10 - 3.13 for the hummed queries of each of the 4

intervals. The results when s = 1 and s = 3 are now merged in one sub-figure, and

the results when varying s for one or two values of k are also shown. In all figures, for

ease of readability, ISBMGT is denoted as EMB. It is clear that high recall values are

desirable for small K, while s and k are as high and small, respectively, as possible.

Next, we present for each interval the combination of k and s values that attained

the highest recall curve while still achieving significant speedup compared to BF.

Starting with the synthetic queries and b1, BF achieves 64% recall for the top-5

returned results (16 correct results out of 25 queries) and 84% for K = 10, 20, 50

(21 correct results), while ISMBGT for k = 3 and s = 5 achieves 72% recall for the

top-5, 10, 20, 50 returned results (Figure 3.5). This shows that by even retrieving as

few as the top-5 returned results the indexing method achieves higher recall than

the BF, which is ideal. For b2 BF has a recall of 97.77% (88 correct results out

of 90 queries) for K = 5, 10 and 98.88% for K = 50, while ISMBGT gives 84.44%

when k = 20, s = 3 and K = 5 (76 correct results), and 85.55%, 86.66%, and 90%

for K = 10, 20, 50, respectively (Figure 3.6). This difference of approximately 10%

is perfectly acceptable, especially if we consider the runtime speedup and efficiency

62

evaluation measure when compared to BF, as shown in the next sections and Tables

3.4 and 3.7. Similar conclusions hold for intervals b3, b4 and b5. More specifically, BF

has 100% recall for all of these intervals when K = 5. Regarding ISMBGT, for b3

with k = 18 and s = 3 it achieves 87.77% recall for K = 5 (158 correct results out of

180 queries). For b4 with k = 20, s = 5, and K = 5 its recall is 88.15% (119 correct

results out of 135 queries) while for 50 returned results it slightly increases to 88.88%.

With respect to the bucket of largest query lengths, i.e., b5, ISMBGT with k = 10,

s = 3, and K = 5 has 85.71% recall and 87.14% for K = 20 (61 correct answers out

of 70 queries). For more details on the different values of parameters and recalls for

b3, b4, and b5, please refer to Figures 3.7, 3.8, and 3.9.

With regard to the hummed queries, we observe the following accuracies for

the different intervals. The query songs of the first interval, b1, are very hard to

identify even by BF, since for K = 5 there are only 3 correct answers, while for

K = 10, 20, and 50 there are 5, 6, and 8 correct answers, respectively. As happens

with BF, ISMBGT with k = 7, s = 3 and K = 5 has 3 correct results, while for

K = 10, 20, and 50 it has 4, 5, and 7, respectively (Figure 3.10). According to these

recall values, we can clearly see that although the query lengths are very small for

interval b1, ISMBGT is almost identical in accuracy with BF, and that the number

of reference sequences needed in the filter step is relatively low (k = 7). Referring to

the sampling parameter s, it cannot be greater than 3, since the small query lengths

do not allow to skip more candidate endpoints during the filter step and still attain

good retrieval accuracy. Similar to the first interval, BF for b2 attains 6 out of 30

queries to have their correct answer in the top-5 returned results, while ISMBGT

with k = 2 and s = 7 has 7 correct results (for K = 5), i.e., even higher than BF.

For K = 10 and 20 there are 9 and 14 correct results for BF, while for ISMBGT we

get 7 and 8 (Figure 3.11). The reason for not getting higher recall for the indexing

63

framework is that only 2 reference sequences are used and the sampling parameter is

very high for a real QBH scenario. Real queries of b3 are again very hard to identify.

BF has 22 queries (out of 39) with their targeted song in the top-5 returned results,

while ISMBGT has 15 with k being only 1 and s = 7 (Figure 3.12). This combination

of values for k and s is considered to be extremely good for our proposed indexing

framework and the QBH application, and thus different parameters can be used in

order to increase the recall (but in parallel decrease the speedup). For the queries

that belong to the final bucket, b4, BF decides correctly for 6 (out of 16) queries

when K = 5, while ISMBGT for more queries, i.e., 7, with k = 10 and s = 5. When

K = 10 and 20 BF has 9 and 11 correct results, and ISMBGT has 8 for both values

of K (Figure 3.13).

3.7.4.4 Runtime

In Table 3.4 the runtimes of BF and ISMBGT are shown for the synthetic

and hummed queries (suffix ‘-S’ and ‘-H’, respectively) for each query length interval

(b1-b5). The runtimes presented for ISMBGT correspond to the best recall that was

achieved, as described in Section 3.7.4.3 and shown in Figures 3.5 - 3.13, and the

values of k and s are given in parentheses. Furthermore, the ratio of brute-force

SMBGT runtime to that of ISMBGT per bucket is provided. Ratio is essentially the

indicator of how well ISMBGT performs in terms of speedup over the brute-force

approach. In addition, although no sampling gives better accuracies than applying

it, in Table 3.4 we show the runtimes (and ratios) for the values of s and k that yield

the highest recall (for each bi, i = 1− 5), when s > 1. This is because, as mentioned

in Section 3.7.4.3, we want to maximize recall while gaining as much as possible with

regard to runtime when comparing ISMBGT to BF.

64

Figure 3.5: Recall for the synthetic queries of bucket b1. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences and
sampling parameter s: (up-left) k = 1−8 and 10 with no sampling (s = 1); (up-right)
k = 1− 8, 10 with s = 3; (bottom) k = 3 with s = 1, 3, 5, 7.

By looking at Table 3.4, it is clear that the ratio is much greater for the hummed

queries than the synthetic ones for every query length interval. To be more specific,

the ratios for the synthetic queries for bi, i = 1− 5, are 1.99, 2.25, 3.2, 4.28, and 5.85,

while for the hummed queries they are 2.72, 7.82, 4.47, and 8.32 (no hummed queries

for b5). The main reason for getting better ratios for the hummed queries per interval

compared to those of synthetic queries (or else for gaining more in terms of runtime

for the hummed queries than for the synthetic) is that the BF-H runtimes are on

65

Figure 3.6: Recall for the synthetic queries of bucket b2. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences and
sampling parameter s: (up-left) k = 1, 13 − 15 and 20 with no sampling (s = 1);
(up-right) k = 1, 13− 15, 20 with s = 3; (bottom) k = 20 with s = 1, 3, 5, 7, 9.

average 2 times higher than those of BF-S. This happens due to the fact that the

computation scheme of SMBGT is more complex for the hummed queries than for the

synthetic ones. There is no tolerance when applying SMBGT to the synthetic queries,

while for the hummed queries variable absolute tolerance with t = 0.2 is used, which

by default is a more sophisticated tolerance type. What is more, ISMBGT runtimes

do not differ much between ‘S’ and ‘H’. In fact, for no interval is ISMBGT-H runtime

greater than 1.67 times the ISMBGT-S runtime. In contrast, ISMBGT-H runtime

66

Figure 3.7: Recall for the synthetic queries of bucket b3. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences
and sampling parameter s: (up-left) k = 1, 5, 8, 14, 15, 18 with no sampling (s = 1);
(up-right) k = 1, 5, 8, 14, 15, 18 with s = 3; (bottom) k = 18 with s = 1, 3, 5, 7, 9.

for b2 is even smaller than ISMBGT-S runtime by 1.63 times. The reason for this

decrease is that in the latter case (ISMBGT-S) k = 20 and s = 3, while in the former

case (ISMBGT-H) k is an order of magnitude smaller and the sampling parameter is

more than 2 times greater, i.e., k = 2 and s = 7. This combination of parameters

leads to computing distances between much smaller and fewer vectors during the filter

step.

67

Figure 3.8: Recall for the synthetic queries of bucket b4. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences and
sampling parameter s: (up-left) k = 15, 18, 20 with no sampling (s = 1); (up-right)
k = 15, 18, 20 with s = 3; (bottom-left) k = 15 with s = 1, 3, 5, 7, 9; (bottom-right)
k = 20 with s = 1, 3, 5, 7, 9.

Another important observation is that the ratio values increase as we move from

b1 to b5 for both synthetic and hummed queries. The main reason underlying this is

that the runtimes of BF-S and BF-H increase as well, but more than the runtimes of

ISMBGT-S and ISMBGT-H. The complexity of ISMBGT depends on the length of

the queries and the length of the segments of the database channels that are evaluated

during the refine step. These segments get bigger as we move to buckets of greater

values because they are created based on r, which in turn is defined as a factor of

|Q|. We have to note that the ratio for the hummed queries for b2 is 7.82, which is

68

Figure 3.9: Recall for the synthetic queries of bucket b5. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences and
sampling parameter s: (left) k = 5, 7, 8, 10, 15, 18 with no sampling (s = 1); (right)
k = 5, 7, 8, 10, 15, 18 with s = 3; (bottom) k = 10 with s = 1, 3, 5, 7, 9.

greater than the 4.47 ratio for b3. Although s = 7 for both query length intervals and

k = 2 for b2 while it is k = 1 for b3, the difference in the query lengths between those

intervals makes ISMBGT-H yielding much lower total runtime for b2 (3.68 seconds)

than for b3 (8.71 seconds).

The average runtimes for each step of ISMBGT (i.e., embedding, filter, and

refine) per interval for the synthetic and hummed queries are given in Tables 3.5 and

3.6, respectively. The times presented correspond to the k and s values shown in

69

Figure 3.10: Recall for the hummed queries of bucket b1. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k = 5 − 8 reference
sequences with sampling parameter s = 1, 3, and k = 7 with s = 7.

Figure 3.11: Recall for the hummed queries of bucket b2. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences and
sampling parameter s: (left) k = 1−5 with s = 1, 3; (right) k = 2 with s = 1, 3, 5, 7, 9.

parentheses in Table 3.4, i.e., the ones that lead to the highest accuracies for each

query length interval while saving the maximum possible computational time.

We observe that the embedding step times increase per interval for both syn-

thetic and hummed queries. This is reasonable because the only difference among

intervals is the query length, which increases, and the time for this step depends

on the complexity of SMBGT that is influenced by |Q| and |R| (|R| also increases

70

Figure 3.12: Recall for the hummed queries of bucket b3. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences and
sampling parameter s: (left) k = 1−5 with s = 1, 3; (right) k = 1 with s = 1, 3, 5, 7, 9;
(bottom) k = 2 with s = 1, 3, 5, 7, 9.

as shown in Table 3.3). The maximum value for synthetic and hummed queries is

achieved for b5 and b4 and is only 0.15 and 0.21 seconds, respectively.

Regarding the filter step times, they depend on the values of k and s. For

synthetic queries and b1 the runtime is only 0.58 seconds. This is due to the fact

that k is only 3 and s is relatively high, i.e., s = 5. For b2, b3, and b4 the filter times

are much greater, i.e., 2.76, 2.55, and 2.13 seconds, since the number of reference

sequences used is 18, 20, and 18, respectively. For b4 the filter time is smaller than

71

Figure 3.13: Recall for the hummed queries of bucket b4. Recall is shown in absolute
numbers for BF and ISMBGT for perc = 1% and the best k reference sequences
and sampling parameter s: (left) k = 5 − 8, 10 with s = 1, 3; (right) k = 10 with
s = 1, 3, 5, 7.

that of b2 and b3 because of using a greater sampling parameter s (5 instead of

3). This indicates that even though |Q| and |R| are higher for b4, sampling plays

a significant role in the speedup of ISMBGT. Filter step runtime for b5 is between

the aforementioned times (1.63 seconds), mainly because of the value of k, which is

10, i.e., in-between the k value of the other intervals. For the hummed queries the

smallest runtimes are for b2 (0.36 seconds) and b3 (0.3 seconds), because k is only 2

and 1, respectively. Since s = 7 for both buckets, and they only differ in the value of

k, the time is greater for b2. Also, the higher value of k, which is 7, for b1 leads to

a filter time that is just over 2 seconds. What is more, although k is greater for b4

than b1, b4 has a smaller filter time since its sampling parameter is 5 (for b1 s = 3).

The maximum value for the synthetic queries is 2.76 (bucket b2) and for the hummed

queries 2.04 seconds (bucket b1), which confirm the importance of having a fast filter

step in this embedding-based indexing approach.

72

For the refine step of ISMBGT and the synthetic queries we can see that the

time increases when we examine intervals of greater query lengths. This is because the

runtime of the refine step depends on |Q| and the lengths of the segments of channels

to which SMBGT is applied, while the number of these channels does not deviate

much. Regarding the hummed queries there is no trend in the runtimes, verifying

here the dependence of the refine step on the number of channels to which SMBGT

is applied. Finally, the maximum time for the refine step and the synthetic queries is

5.93 seconds (bucket b5), while for the hummed queries it is 8.36 (bucket b3), showing

that this step is the one that essentially determines the total runtime of ISMBGT.

Table 3.4: Runtimes of brute-force SMBGT and ISMBGT for the synthetic (BF-S
and ISMBGT-S) and the hummed queries (BF-H and ISMBGT-H) per query length
interval. Ratio is the ratio of times of BF to ISMBGT. The two numbers in paren-
theses correspond to the best k reference sequences selected in the filter step and the
sampling parameter s used.

Time (in seconds)

Method b1 b2 b3 b4 b5

BF-S 7.1301 13.4625 20.9028 29.3055 45.0879

ISMBGT-S 3.5777 (3, 5) 5.9902 (20, 3) 6.5189 (18, 3) 6.8446 (20, 5) 7.7136 (10, 3)

Ratio 1.9929 2.2474 3.2065 4.2816 5.8452

BF-H 16.3179 28.763 38.9623 62.1828 -

ISMBGT-H 5.9953 (7, 3) 3.676 (2, 7) 8.7088 (1, 7) 7.4714 (10, 5) -

Ratio 2.7218 7.8245 4.4739 8.3228 -

Table 3.5: Average times of ISMBGT for synthetic queries. The values of k and s
per query length interval are given in Table 3.4.

Query Length Intervals
ISMBGT Steps b1 b2 b3 b4 b5

Embedding 0.0088 0.0164 0.0294 0.0635 0.1503
Filter 0.5812 2.7607 2.5453 2.1275 1.6274
Refine 2.9709 3.2131 3.9442 4.6536 5.9309

73

Table 3.6: Average times of ISMBGT for hummed queries. The values of k and s per
query length interval are given in Table 3.4.

Query Length Intervals
ISMBGT Steps b1 b2 b3 b4

Embedding 0.0080 0.0190 0.0456 0.2088
Filter 2.0427 0.3643 0.2990 1.1981
Refine 3.9447 3.2913 8.3647 6.0607

3.7.4.5 Efficiency

In Tables 3.7 and 3.8 we present the min, max, mean, and median statistics

for the efficiency evaluation measure of ISMBGT per query length interval for the

synthetic and hummed queries, respectively. All statistics correspond to the values

of k and s shown in Table 3.4 in parentheses, and certainly depend on the number

of channels evaluated during the refine step. As a result, we cannot compare the

efficiency values among different intervals.

Starting with the synthetic queries (Table 3.7), we observe that the min values

for all intervals, i.e., the minimum efficiency achieved by any query for each bucket,

range approximately from 2.61% (bucket b3) to 3.36% (bucket b1). The max values

range from 9.59% (bucket b2) to 18.62% (bucket b5), showing that in the worst case

for the synthetic queries we visit less than one fifth of the database and still manage to

achieve high recall. Moreover, the mean and the median are very close to each other

for all intervals, except for b1 as the mean is affected by the max value. In addition,

the median (and the mean) increase when moving from lower to higher query length

intervals, i.e., from b1 to b5, except for b3 where the efficiency is a little higher than

that of b4. More specifically, the mean efficiencies per interval are the following:

4.95%, 6.18%, 8.28%, 7.54%, and 10.71%. One reason for this is the fact that, for

74

the intervals that involve larger queries, the SMBGT has to be evaluated for larger

queries and segments of the database, while the number of channels evaluated does

not deviate much among the intervals. The aforementioned efficiency values show

that there is a significant speedup of ISMBGT compared to BF as (approximately)

at most only 10% of the database is actually evaluated with SMBGT.

Regarding the hummed queries, the min values for all intervals range approxi-

mately from 3.8% (bucket b2) to 6.77% (bucket b3), while the max values range from

6.74% (bucket b1) to 40.84% (bucket b3). Also, as happens with the synthetic queries,

mean and median are very similar per bucket. In particular, the median efficien-

cies for the four query length intervals are the following: 5.75%, 4.43%, 20.49%, and

7.76%. These values are very low for b1, b2 and b4, showing again the valuable trade-

off between retrieval runtime and recall that we can get (Figures 3.10, 3.11, 3.13).

For b3, though, efficiency is 20.49%. This is because of the nature of the hummed

queries that belong to that interval; many more different channels are evaluated, and

consequently more segments are evaluated with SMBGT. We note, though, that vis-

iting on average one fifth of the database for queries of lengths 32 up to 49 still shows

the superiority of the proposed indexing scheme over the brute-force search.

Table 3.7: Efficiency of ISMBGT for synthetic queries. The values of k and s per
query length interval are given in Table 3.4.

Query Length Intervals
% of |DB| visited b1 b2 b3 b4 b5

Min 3.3583 3.0687 2.6058 3.2933 2.7061
Max 13.8881 9.5921 17.5954 11.1619 18.6247
Mean 6.2597 6.2138 8.4114 7.5427 10.8905
Median 4.9476 6.1826 8.2846 7.5408 10.7105

75

Table 3.8: Efficiency of ISMBGT for hummed queries. The values of k and s per
query length interval are given in Table 3.4.

Query Length Intervals
% of |DB| visited b1 b2 b3 b4

Min 5.1977 3.8012 6.7706 6.0090
Max 6.7417 9.3819 40.8400 9.3077
Mean 5.9357 5.2568 20.8187 7.5871
Median 5.7459 4.4315 20.4938 7.7620

3.7.5 Highlights

Based on the results shown in this section, we can first conclude that SMBGT

and SMGT are highly suitable for the QBH application. Regarding the synthetic

queries, even for high noise levels (e.g., 50%), the recall and MRR values of both

methods for the top-20 returned results were close to 100% and 1, respectively. The

same was observed with the Edit distance. However, for the hummed queries Edit

distance had 0% recall for K = 10. In contrast, SMBGT and SMGT achieved 57%

and 42% recall, respectively, while for K = 50 they were more than 30 times higher

in recall than Edit distance.

Regarding the proposed indexing approach ISMBGT, we showed that the sam-

pling parameter s can provide significant speedups for the filter step. Specifically,

ISMBGT can achieve recall values very close, or even higher for some cases, to those

of BF by using relatively large sampling rates of up to s = 7, hence considering only

1/7th of the embedding of the whole database.

We should also note that, although all the obtained results are based on ran-

domly selecting reference sequences for all intervals, ISMBGT can still achieve high

recall values. Consequently, applying a more sophisticated method for selecting ref-

erence sequences can lead to even better accuracies, confirming that ISMBGT is

meaningful and can be successfully applied to other time series application domains.

76

Moreover, by looking at the values of the ratio of brute-force SMBGT runtime

to that of ISMBGT for synthetic and hummed queries, we reached the following con-

clusions. For the synthetic queries the minimum gain we can achieve with ISMBGT

in terms of runtime is 2 times (bucket b1), while the maximum gain is 5.85 times

(bucket b5). Also, the longer the query is the better the runtime gain. Regarding

the hummed queries, the minimum gain is 2.72 (bucket b1) and the maximum 8.32

(bucket b4). Again, the longer the query the better the retrieval cost (or greater ra-

tio); for queries of length in [33, 53) significant speedup can also be achieved (7.82).

These ratios show the importance of ISMBGT, especially in real-time scenarios.

Furthermore, comparing the runtimes of the three steps of ISMBGT we can

conclude that the most demanding one is the refine step. More specifically, the

maximum time required for the embedding step is 0.15 seconds for the synthetic

queries (bucket b5) and 0.21 seconds for the hummed queries (bucket b4). For the

filter step the time ranges from 0.58 to 2.76 seconds for the synthetic queries, and

from 0.36 to 2.04 seconds for the hummed queries. The refine step requires at most

5.93 seconds for the synthetic queries (bucket b5) and 6.06 seconds for the hummed

ones (bucket b4).

Finally, with regard to efficiency (for ISMBGT), its median value is 4.94%

(bucket b1) and increases up to at most 10.71% (bucket b5) for the synthetic queries.

For the hummed queries, the lowest median value is 4.43% (bucket b2), while the

largest one is 20.49% (bucket b3). These results indicate that, in the worst case, only

one fifth of the whole database will be (on average) actually evaluated using the costly

SMBGT method, making the proposed indexing method highly efficient for the QBH

application domain.

77

3.8 Conclusions and Future Work

In this chapter, we presented a subsequence matching framework suitable for

QBH, and the SMBGT method, which is based on this framework. In addition,

we presented an embedding-based subsequence matching indexing approach under

SMBGT, which allows for gaps in both query and target sequences, variable tolerance

in the matching of elements, and constrains the maximum match length and optionally

the minimum number of matched elements. The brute-force approach was shown

to outperform several DP-based subsequence matching methods and a model-based

probabilistic method in terms of accuracy, after extensive experimental evaluation on

a large music database using hummed and synthetic queries. We also showed that the

filter-and-refine indexing method can achieve speedups of up to an order of magnitude

compared to brute-force SMBGT. A very important remark is that ISMBGT achieves

high recall values, which are very close to those of brute-force SMBGT, even by using

random reference sequences that are tailored for the given query. This is a substantial

advantage over existing embedding-based methods for subsequence matching.

Directions for future work include testing the performance of ISMBGT in other

application domains where noise is present. Additionally, we could investigate further

ways of compressing the embedding space, for example, by applying commonly used

time series segmentation methods [101].

78

CHAPTER 4

HUM-A-SONG: A SUBSEQUENCE MATCHING WITH

GAPS-RANGE-TOLERANCES QUERY-BY-HUMMING SYSTEM

In this chapter, we present the “Hum-a-song” QBH system [102], which allows

the user to record a melody that she recalls and search a large music database to

retrieve the top-K most similar songs to the sung melody. The system gives the

opportunity to the user to select among various similarity or distance based methods

to assess the similarity between the query and the database songs. Secondly, since

QBH is a very noisy domain, we are interested in performing robust and efficient

subsequence matching. Consequently, apart from the fact that the user is given

the opportunity to test and compare several methods, the SMBGT method is also

implemented and included in our system. Furthermore, our system is open source, so

that it can be extended to include, for example, more similarity/distance measures

for comparison and benchmarking purposes. Last but not least, since we approach

the QBH problem by mapping it to the time series domain, the system can be easily

extended for other time series application domains in which subsequence matching

would be of interest, such as finding specific patterns in sensor, financial, and weather

data among others.

4.1 Related Work

Several commercial products exist for music retrieval and QBH. Given a part

of a song recording Shazam (http://www.shazam.com) identifies the song. The lim-

itation of Shazam is that it is not applicable to QBH, i.e., it only works for queries

79

that are recordings of songs (with potential noise) having an exact match in the tar-

get database and not for songs that are hummed by some individual. In addition,

Soundhound (known as Midomi until 2009, http://www.soundhound.com), is an ap-

plication that works for QBH, as opposed to Shazam. However, it is not open-source

and the technical details of its matching methods are unknown.

4.2 Hum-a-song - DEMO

4.2.1 Recording Queries

The user of the system is first asked to record the part of the song she recalls and

is interested in finding in the database. For this purpose, the Akoff music composer-

version 2.0 1, a tool commonly used for evaluating QBH systems is used [61]. The

user is asked to hum the part of song close to a microphone, and to avoid singing with

lyrics. Then, the melody sang is converted to MIDI through Akoff. Finally, to get a

2-dimensional time series from the melody, the pitch at every time click is extracted,

and tuples 〈pitch, click〉 are converted to representation 5 of Table 2.1. It is noted

that the user can also perform an experiment on a pre-recorded hummed query.

After recording a query song, the user is able to select among a variety of 2-

dimensional time series representations. For the purposes of our demo, and since we

are interested in note transitions, so as not to check all possible transpositions of a

melody nor to scale in time when comparing time series, we consider the following

encoding schemes: 〈pitch interval, IOIR〉 and 〈pitch interval, LogIOIR〉.
1http://www.akoff.com/music-composer.html

80

4.2.2 Method Selection

Since we are interested in evaluating a QBH system, apart from the SMBGT

and SMGT methods described in Chapter 3 [79], the user is allowed to choose among a

variety of methods that can be applied to music retrieval. These methods, performing

DP-based subsequence matching, are SPRING [67], a version of Edit distance suitable

for music retrieval [66], and two DTW-based [62, 63] (denoted DTWs and DTWc).

We note that Edit has been modified to account for LogIOIR and quantizations

(Table 2.1), and SPRING allows for varying r [79]. These DP-based methods were

also described in Section 3.4.

4.2.3 Tuning Parameters and Tolerances

Having selected the query, the representation, and the method, the user has

to provide the appropriate parameters for the requested method. For SMBGT, the

number of consecutive gaps allowed in both X and Q has to be given, which are

identified by the α and β positive integers, respectively. Also, parameter r is used

to eliminate large matches, e.g., r = 1.2 ∗ |Q|, and δ to bound the minimum number

of matching elements, e.g., 0.5 ∗ |Q|. As mentioned in the previous chapters, since

in QBH it is quite usual for users to make instant humming errors [72] error-tolerant

matches should be allowed. The “Hum-a-song” system provides the possibility of

applying constant or variable absolute or relative tolerances, as described in Section

3.3. If the user selects SMGT then the input parameters are the same, except that no

constraint is imposed on the lengths of the allowed gaps. With regard to SPRING,

since it has been modified not to account for infinite matching lengths, the user has to

provide r, as happens with SMBGT and SMGT. Finally, DTWs and DTWc require

81

the initialization parameter c, while the version of Edit distance used [79] does not

require any input parameter.

4.2.4 Evaluation

Below, we present the final steps for getting the final result set for the hummed

query. However, for completeness and demo purposes, our system has some pre-

inserted synthetic and hummed query sets (that the user may use to compare accu-

racies between different methods), instead of humming a query.

4.2.4.1 Database

The music database that we used for our system (and its transformation to

2-dimensional time series) is the same as the one described in Section 3.7.1. We note

that the 40,891 time series are loaded in memory at runtime.

4.2.4.2 Hummed Query

The user also has to insert the number of top-K songs she wishes to be returned

in the result set for the melody sung. The top-K results appear in the final screen of

our system, along with the 2-dimensional time series plot of the given melody with

the top candidate and the time for returning the results. What is more, the user can

select and listen to a song appearing in the list of results, listen to the query, see more

details regarding the selected song, i.e., similarity/distance score, channel giving that

score, start and end points of the matching, and also the 2-dimensional plot of the

song’s channel giving the best score. The performance of the system depends on the

hummed query, the method, and the parameters given. The whole procedure can be

certainly repeated by recording another melody (Main Menu button). An example

82

of setting an experiment for our system along with the experimental results is shown

in Figure 4.1.

4.2.4.3 Testbeds

Another possibility offered by the proposed system is the testbeds, comprising

five synthetic query sets and one hummed set. These query sets were described in

detail in Sections 3.7.1.2 and 3.7.1.3.

When choosing a testbed, in the final screen, apart from the time required for

the results to be returned, the user is presented with three evaluation measures for the

method and representation selected: recall, Mean Reciprocal Rank (MRR) [100], and

the average rank (AR) of all queries in the selected query set. It has to be mentioned

that all measures are of particular importance for evaluating a QBH method, since

recall indicates if the method identifies the correct answer in the top-K results, and

MRR along with average rank show if recall can be improved by decreasing K. The

representation, number of top-K results used, and the parameters of the selected

method giving the best recall are also shown.

Our system is implemented in Matlab, currently runs in Windows Operating

System, and can be downloaded from http://vlm1.uta.edu/∼akotsif/hum-a-song/.

4.3 Conclusions

Motivated by the QBH application, we have developed a demo system named

“Hum-a-song” that allows the user to hum a part of a song that she recalls and find

the most similar songs to this. This is done by transforming this problem to the time

series domain, where the query and the songs of the music database are mapped to 2-

dimensional time series and then applying a matching method to get the subsequences

83

of the database that best match the query. Several methods have been implemented

and given as an option, including the robust and efficient SMBGT method. Finally,

our system can be easily extended to other time series application domains, basically

due to the fact that the queries and the target sequences are represented as time

series and the methods employed perform on top of such representation.

84

(a) Setting the Query.

(b) Query results.

Figure 4.1: “Hum-a-song”: Screenshots of setting the experiment and getting the
results for SMBGT, where |Q| = 31, the database has 4,000 sequences, and the target
“Yesterday” song is the Top-1. For the target sequence, Score = 20, Startpoint =
28, Endpoint = 56.

85

CHAPTER 5

GENRE CLASSIFICATION OF SYMBOLIC MUSIC WITH SMBGT

Music can be seen as an effective means of stimulating and focusing attention.

Particularly for specific groups of people who are weak in responding to other physi-

cal interventions, music can be highly significant. Hence, music can be considered as

an assistive technology with high therapeutic and educational functionality for chil-

dren and adults with disabilities. Skill areas such as mental retardation, autism, and

learning disabilities can be affected by music therapy. Music can be used to structure

an entire therapeutic intervention in order to maintain attention. It can be used as

means of alerting people for important information or interactions, or it can function

as a calming down mechanism when anxiety intervenes with cognitive focus. In addi-

tion, music is of high importance in learning, as it can provide significant assistance

in memorization.

A problem of particular interest to the community of music informatics as well

as to the communities of data mining and assistive technologies is that of classify-

ing a query song of unknown category to one of several existing and known cate-

gories/genres.

Music genre classification is highly related to the area of assistive environments,

since it can facilitate many of the music functionalities described above. For example,

music systems with therapeutic and educational functionalities need to be adapted

based on the music preferences of the end-users, such as children, patients, or disabled.

Hence, being able to identify the genres of songs that fit to each category of end-users

is imperative in such settings as it can assist effectively in medical treatments. As

86

another example, consider the task of learning and memorization. It would be very

useful to identify for each individual the music genres that are more suitable when

performing a learning task or are less disruptive than other genres.

Similarity search is the basis for a variety of applications, such as playlist gen-

eration, similarity-based browsing interfaces, and recommendation systems. It has to

be mentioned though that end-users are more likely to browse and search by genre

than by recommendation, artist similarity or music similarity [103]. As a result,

genre classification has been studied in the music literature, and research focuses on

exploiting machine learning and data mining methods for meaningful results.

As mentioned by Scaringella et al. “Music genres are categories that have arisen

through a complex interplay of cultures, artists, and market forces to characterize

similarities between musicians or compositions and organize music collections” [104].

Music genres can be characterized by using several types of rules [105], while there is

a good work by Aucouturier and Pachet on how to represent music genres [106].

Constructing automatic music classifiers is of great interest for a variety of rea-

sons [107]. Starting with genre classifiers, which are the focus of this chapter, they can

be used to understand the important characteristics of music that help distinguishing

particular genres and how these characteristics vary. What is more, classifiers can be

used to categorize recordings whose authorship is unknown to composers. In addi-

tion, results produced by automatic classifiers can be combined with sociological and

psychological research and give insight on the way that humans understand musical

similarity and construct clusters of music pieces.

Although much research has focused on how to represent music genres and on

genre classification, still there are many problematic aspects that should be addressed,

as mentioned below [108]. First of all, there is not reliable ground truth, which is

not only fundamental to effectively train genre classifiers, but also to evaluate genre

87

classification systems. Secondly, genre classification is most of the times done by

artist or album and not by individual recording that is certainly inappropriate for

the classification task. Moreover, most of the times no consensus can be achieved

by human annotators both on the genre of songs, due to the non-existing strict

boundaries between genres [109], and on the different categories that can be used

to classify songs in. Consequently, it is tough to build up a taxonomy of genres that

is widely acceptable [110]. In addition, most genres have fuzzy definitions that may

change from source to source and the criteria to define some genres vary. Also, some

genres may overlap and individual songs may be classified to more than one genre

making the classification task even harder, if only one genre per recording is allowed.

Apart from these difficulties, not much psychological research has been performed

on how humans perform genre classification [109, 111], while a significant amount

of time is required for human annotators to classify songs. It is also important to

have large training sets to create meaningful models and large test sets to have a

better guarantee on the performance of the classification systems. Finally, it has

been shown in the literature that increasing the number of genres and the number

of songs reduces the performance of classification. All the aforementioned problems

that arise in automatic music genre classification make current software tools not

achieving satisfyingly high accuracy, and as a result research on this field should be

continued.

In order to perform genre classification systems first extract important features

representing salient information from the recording, and then classify the music piece

to a music genre based on the output of one or more combined classifiers that take as

input these features. These features are low-level and/or high-level. Features of the

first category are based on signal processing quantities and include temporal, energy,

perceptual, and spectral shape features. Furthermore, melodic and harmonic content

88

are better described by low-level attributes than notes or chords. High-level features,

which are also referred to as semantic, include tempo, rhythm, key, instrumentation,

vocal style, and meter, among others. For music classification humans use high-level

information, which is better provided by recordings in symbolic format, such as MIDI.

It should be noted that selecting appropriate features requires knowledge of diverse

domains, such as signal processing, musicology, music theory, psychology, and in the

last few years text and web-mining.

5.1 Related Work

Artist and genre classification where vectors of low-level audio features (MFCCs)

are mapped to points in a Euclidean anchor space has been proposed [112]. These

points are vectors of posterior probabilities of membership in the anchor classes (di-

mensions), which are represented by neural networks. Since points can be seen as

samples from a distribution characterizing a song, the song is modeled by GMMs

and an approximation to KL-divergence is used to compare songs. However, due to

lack of ground truth, the classification accuracy is not very satisfying. McKay et al.

showed the effectiveness of using large feature sets that are combined with feature

weighting systems, high-level features, and also the importance of instrumentation-

based features for genre classification when performed with k -NN, neural networks

and combination of several classifiers [107]. Cataltepe et al. exploit the MIDIs and

their audio versions. The MIDI is turned into a string from a finite alphabet and

the distance between pieces is computed by the Normalized Compression Distance.

MIDIs are also converted to audio from which timbre, rhythmic, and pitch features

are extracted. Finally, diverse and independent classifiers based on Linear Discrim-

inant Classifier and k -NN are combined with weights to perform classification [113].

89

SVMs have also been used for genre and music classification [114, 115], as well as

HMM-based methods [116]. Moreover, McKay et al. suggested that background re-

search from musicology and psychology has to be exploited for genre classification,

as should happen with cultural features and metadata mined from the Web [108].

Other very interesting approaches for genre classification can be found in the liter-

ature [117, 118, 119, 120]. Finally, surveys on audio-based music classification and

annotation, and automatic genre classification have been proposed [104, 121].

5.2 Measuring Song Similarity

To perform the genre classification task based on MIDI recordings we should be

able to define the similarity or distance between songs [122]. The similarity measure

that we use to compare sequences is SMBGT, presented in Chapter 3 [79]. Although

SMBGT was proposed motivated by the QBH application, due to the fact that it can

account for several desirable properties when matching a query and a target sequence,

it is a general similarity measure for sequences guaranteeing a robust and meaningful

matching. In addition, it can be used for both whole sequence and subsequence

matching. The scheme for computing song similarity is the following.

Assume that we would like to compare two songs, namely Si and Sj, which are

in MIDI format and consist of |ci| and |cj| channels (there are at most 16 per song).

First, for each song and channel, we extract the highest pitch at every time click (all-

channels extraction [20]). It has to be noted that in the extraction process we exclude

channel 10, since it is used for drums and cannot offer any melodic information. Then,

we convert the tuples 〈pitch, click〉 of each channel to 〈pitch interval, IOIR〉, resulting

in |ci|′ and |cj|′ converted channels, yielding transposition and time invariance. After

these steps, we compare all channels |ci|′ of Si with the |cj|′ channels of Sj using

90

SMBGT, and get |ci|′ ∗ |cj|′ scores. Finally, we retrieve the maximum score sij out

of all the pairwise similarity scores, and normalize it by dividing with the maximum

length of the two channels of Si and Sj that gave sij. The resulting score is assigned

as the similarity between Si and Sj. The similarity score of a song Si to itself is

considered to be 0. This is done basically to exclude the query song itself from being

a neighbor in the k-NN classification task; the less the similarity score is between two

songs the less similar they are.

5.3 Experiments

Next, we provide the setup for our experiments and the experimental results.

5.3.1 Experimental Setup

5.3.1.1 Data

For the purposes of our experiments we collected 100 freely available on the

web MIDI songs that cover four genres of music: Classical, Blues, Rock, and Pop. In

Table 5.1 there is more information for the dataset, i.e., the total number of channels

it covers or else |DB|, the number of 2-dimensional points corresponding to these

channels, and also the number of songs per genre of music.

Table 5.1: Characteristics of the dataset used in the experiments. There are 100 songs,
and the total number of channels comprising these songs in their MIDI representation,
along with the number of 2-dimensional points corresponding to these channels are
shown. In the final column, the number of songs belonging to each of the four selected
genres is presented.

of songs # of channels # of points Genres

100 821 310,798
Blues (20), Rock (31)

Classical (27), Pop (22)

91

We have to note that during the process of selecting MIDI songs we observed

that pop and disco songs have many common characteristics and acoustic similarities

as genres. As a result, we picked pop songs, which we considered to be sufficient for

our experiments. Moreover, each song was labeled with one genre. This is because

assigning a song to more than one genres would make the classification task biased

and providing higher accuracies, since the number of songs and genres is not huge.

Following the selection of the 100 songs, for each of them we first applied the

all-channels extraction process, and then converted the tuples 〈pitch, click〉 of each

channel to 〈pitch interval, IOIR〉. This pre-processing procedure was done offline and

only once, guaranteeing that there is no chance of missing a melody existing in any

channel of a song that may be similar to melodies of channels of other songs.

5.3.1.2 Evaluation

The classifier that is used for genre classification is the k-NN. First, we created

the similarity matrix of all songs to all others (of size 100x100), based on the procedure

mentioned in Section 5.2. Then, each of the 100 songs was considered to be a query

to which we applied k-NN classification, for k in [1,10]. A query is classified correctly

if the majority of its k nearest neighbors belong to the same genre as that of the

query, and the measure that we used for evaluating our framework is the classification

accuracy, which is defined as the percentage of the query songs that were classified

correctly. Clearly, we are interested in a large number of queries for which there is

clear majority for one genre in their k neighbors and are classified correctly.

In case that for a query song there are more than one genres with the highest

number of votes in the returned k-NN results, then there is no clear majority for

a genre (independently of whether that genre is the correct one for the query or

not). To resolve ties of such cases we applied the following scheme. In the ordered

92

similarity scores of the k-NN that are returned, the output genre of the classifier is

the first genre for which the maximum number of votes is reached (by taking one by

one the k neighbors and increasing the counter of the genre they belong to). This is

an intuitively good approach for the case of ties, instead of, for example, randomly

picking one of the genres that has the maximum number of votes or, even worse,

not classifying the query to any genre (and just return all tied genres as possible

answers). We believe that further looking at the structure of the songs may provide

more accurate results.

With regard to the parameters of SMBGT, the number of elements allowed to

be skipped in a query Q was set to β = 6, and for the target sequence X to which

Q is compared was set to α = 5. For εf1 absolute variable tolerance was studied with

t = 0.2 (Equation 3.4). In addition, the maximum matching range r was set to 1.2 and

the minimum number of matching elements δ to 0.1. The reason for instantiating the

parameters of SMBGT with these values is because they have been proved to provide

the best accuracy for the QBH application (Chapter 3). Although QBH is not the

target application in this chapter, we believe that these values should be tested for

the genre classification as well. As part of future work, cross-validation can be done

to obtain the best combination of parameter values.

Experiments were run on an AMD Opteron 8220 SE processor at 2.8GHz, and

implemented in Matlab.

5.3.2 Experimental Results

In Table 5.2 we present the classification accuracies that we obtained for several

values of k in the k-NN classification. The “Non-Tied” column shows the number

of queries (out of the 100) for which the classifier could clearly decide and return

one genre, i.e., there was only one clear winner genre with the maximum number of

93

Table 5.2: Classification accuracies with k-NN for the dataset of Table 5.1. For
each value of k in [1,10] we present the following statistics. The number of songs
that were classified having a clear winner genre (column “Non-Tied”), and having
more than one tied genres to classify them to (column “Tied”). In addition, for each
of the aforementioned columns, the number of songs that were correctly classified
is shown in columns “Non-Tied Classified” and “Tied Classified”, respectively, along
with the corresponding classification accuracies (columns “Accuracy (Non-Tied)” and
“Accuracy (Tied)”). The final classification accuracy for each k is also presented in
column “Accuracy (Total)”.

k Non-Tied
Non-Tied Accuracy

Tied
Tied Accuracy Accuracy

Classified (Non-Tied) (%) Classified (Tied) (%) (Total) (%)

1 100 31 31 0 0 NaN 31

2 30 12 40 70 19 27.14 31

3 72 26 36.11 28 10 35.71 36

4 77 27 35.06 23 10 43.48 37

5 76 29 38.16 24 8 33.33 37

6 66 25 37.88 34 14 41.18 39

7 80 32 40 20 7 35 39

8 83 31 37.35 17 7 41.18 38

9 88 34 38.64 12 5 41.67 39

10 75 30 40 25 10 40 40

votes. Column “Non-Tied Classified” gives the number of queries that were correctly

classified out of those for which there was a clear winner genre by the classifier (as

indicated by column “Non-Tied”). “Accuracy (Non-Tied)” provides the classification

accuracy for the queries that were correctly classified when there was a clear winner

genre. In other words, for a specific k it is the division of the number in column

“Non-Tied Classified” with that of column “Non-Tied”. Column “Tied” is basically

the remaining number of query songs up to 100 when we consider column “Non-

Tied”. “Tied Classified” shows the number of queries that were correctly classified

when there were more than one genres with the same maximum number of votes in

the returned results (ties) and we treated them following the scheme described in

Section 5.3.1.2. In “Accuracy (Tied)” we present the classification accuracy obtained

when dividing column “Tied Classified” with “Tied”. Finally, the total classification

94

accuracy is shown in “Accuracy Total”, which refers to the total number of queries

that were classified correctly (whether they had a clear winner genre in the returned

results or after resolving ties).

From Table 5.2 we can observe that the best accuracy for non-tied queries is

achieved for k = 10 and k = 7, and is 40%. We note here that, although 40% accuracy

is also achieved for k = 2 the total number of non-tied queries is only 30, and thus it is

not considered to be a reliable value for accuracy. Regarding the accuracies for “tied”

queries the best ones are obtained for k = 4 with 43.48% and k = 9 with 41.67%.

Finally, the best total accuracy is 40% for k = 10. According to these accuracies,

we observe that the best value for k among all tested values is 10, especially if we

observe the total classification accuracy, which is essentially the measure returned to

the user by an automatic genre classification system.

There are several reasons for not getting total classification accuracies greater

than 40%, while also requiring to look at the %10 of the database songs’ scores

for each query (k = 10) to attain this accuracy. First of all, there is a significant

percentage of queries for which we have to resolve ties. This indicates that a more

thorough study of the structure of songs should be done so as to apply a more clever

mechanism to deal with ties, or even use another similarity measure for such cases

that will be based on low-level features of the songs. What is more, we perform genre

classification with k-NN, which is a simple classifier that does not require any kind of

training. However, since in the music domain describing a genre requires knowledge of

not only intrinsic properties of songs but also cultural features (that greatly influence

the characterization of songs into genres), more complex and trained classifiers on

larger databases of songs should provide more promising classification accuracies.

Another important observation that we came up with is that for the majority

of k values that we experimented with the best “Accuracy (Non-Tied)” per genre was

95

achieved in the following order: Blues, Rock, Pop, and Classical. This is indeed the

case in music. Blues songs have a very well-defined compositional structure, followed

by Rock songs, which can also be characterized to have a particular style, but less

well-defined than Blues. Additionally, Pop songs are much harder to be treated as

having one style, since they cover a wide variety of “popular” music. Finally, Classical

music is the hardest genre to classify songs to, because the structure and especially

the melody of each piece depends basically on the personal taste and the music era

of the composer. According to these music observations that are confirmed by our

experiments, SMBGT is proved to be very promising with regard to discriminating

genres based on their structure.

5.4 Conclusions and Future Work

We have applied SMBGT to perform music genre classification with the k-NN

classifier. Music genre classification can be highly applicable to assistive environments

since music can be seen as a means of stimulating and focusing attention for people

with disabilities. Since both the definition of genres and the discrimination among

them is in general very vague and problematic, the classification accuracies that we

got for a set of 100 queries were not very high for different values of k. Thus, to

improve the classification accuracy there are several aspects that could be considered

for future work.

First, instead of using a simple classifier that does not require training, diverse

and independent trained classifiers (and combination of them) can be used. Secondly,

features can be extracted from short segments of music pieces to create multidimen-

sional sequences, and then evaluate the performance of classifier(s) using SMBGT.

Additionally, different parameters for SMBGT could be tested, for example by using

96

cross-validation. What is more, polyphonic music could be analyzed in order to see if

the compositional structure of songs is meaningful for the classification task. Finally,

to build a more realistic automatic music genre classification system bigger datasets

should be collected covering more genres (and even splitting them to subgenres).

97

CHAPTER 6

QUERY-SENSITIVE DISTANCE MEASURE SELECTION FOR TIME SERIES

NEAREST NEIGHBOR CLASSIFICATION

Time series data have become ubiquitous during the last decades. Sequences of

numerical measurements are daily produced at regular or irregular time intervals in

vast amounts in almost every application domain, such as stock markets, medicine,

sensor networks (cameras, accelerometers, implantable sensors measuring vital statis-

tics of a patient, RFID’s, and devices measuring temperature and humidity), moving

objects (e.g., in traffic and astronomy), scientific experiments, and biology. As a re-

sult, there has been a significant amount of research on mining and querying time

series. However, due to the importance of querying time series, there is still a need

for new techniques for classification, clustering, indexing, and approximation of time

series [123].

Large databases of time series can be exploited so as to extract knowledge on

what has happened in the past or to recognize what is happening in the present. As

an example, consider that we have a sequence of measurements and we would like

to identify the sequences of the database that are the most similar to that sequence.

This would help in determining, e.g., the state of the environment or of a patient,

the traffic congestion, financial situation of countries, or even the genre of a music

piece [122]. In addition, given examples or models of specific important events in the

present, we may be interested in identifying similar events that have happened in the

past.

98

Specifically, a fundamental task in knowledge discovery is 1-Nearest Neighbor

(NN) classification. According to this task, given a dataset of time series belonging

to certain categories/classes (also known as training time series) and an unclassified

query time series, we identify its class by looking at the class of its nearest neighbor.

The nearest neighbor is found by computing the distance between the query and all

time series in the dataset via a distance measure, and then selecting the time series

with the smallest distance.

In such a setting, the key challenge is to define or choose an appropriate dis-

tance measure to perform whole sequence matching between each time series in the

collection and the query, which is expected to retrieve the correct class label for a

given query. It can be easily understood that the selection of the distance measure to

be used for comparing time series is critical, as it essentially decides whether a time

series is a good match for the query or not, influencing the classification accuracy

(percentage of time series correctly classified).

As mentioned in Section 2.4, several distance and similarity measures have been

developed for performing whole sequence matching between two time series, such as

DTW [33], EDR [39], ERP [40], TWED [44], and MSM [42]. Moreover, alternative

methods have been developed for the same problem, that focus on global or local

structural similarity, such as SpaDe [28], Shapelets [23], DFT [29], Bag-Of-Patterns

[31], and SAX [30]. Nonetheless, none of these methods is guaranteed to be optimal

for the task of NN classification. In other words, some measure or method may fail to

correctly classify some queries while some other may be successful with these queries,

and vice versa.

We will now illustrate the previous observation with a motivating example.

Suppose we have a collection of 45 time series datasets from a variety of application

domains and a pool of distance measures. For simplicity, we consider only two mea-

99

sures in our pool, e.g., DTW and MSM. More information about these datasets can

be found in Section 6.4.1. Our main question is the following: given an unlabeled

query, which of the two measures is more likely to classify it correctly using our data

collection? Unfortunately the answer to this question is not straightforward.

Figure 6.1: An example that illustrates the challenging nature of our problem. We
used 45 datasets from the UCR time series repository (x axis). On the y axis we
show the number of time series for each dataset that are classified correctly by either
DTW or MSM, or misclassified by both, when the class of the NN object is different
between DTW and MSM. It can be seen that the number of time series correctly
classified by DTW is comparable to that of MSM.

In Figure 6.1 we present for each of the 45 datasets in our collection the number

of time series where the class of the NN for DTW is different than that of MSM (blue

dotted line), and out of these time series how many are classified correctly by either

DTW or MSM (green and red dotted lines, respectively), or misclassified by both of

100

them (black line). Thus, the black line essentially represents the number of time series

for which there is no room for improvement, or, in other words, whatever measure

(DTW or MSM) is selected they cannot be classified correctly. We observe that there

is no clear winner between the two measures. In other words, for some datasets DTW

performs better than MSM, while for some other datasets MSM is better. Ideally,

we would like to select the measure that would correctly classify a given query time

series, if that is possible by any of the two measures.

Figure 6.2: An example that illustrates the number of available distance measures
may affect the classification accuracy. We used 45 datasets from the UCR time series
repository (x axis). On the y axis we show the number of time series for each dataset
that are misclassified by all measures in the pool. It can be seen that as the number
of measures in the pool increases (from 1 to 3), the number of time series that are still
incorrectly classified by all measures in the pool decreases for most of the datasets,
or remains the same.

101

Furthermore, we note that the more distance measures we have available to

choose from, the higher the chance of correctly classifying the given query. Figure 6.2

illustrates results of our study when more distance measures are added to our pool.

Specifically, we show for each dataset the number of misclassified time series when the

pool consists of either only DTW (blue asterisk), or MSM and DTW (black cross), or

ERP, MSM, and DTW (red circle). We can argue that the more distance measures

we add to the pool, the higher the classification accuracy may be if we manage to

select the proper measure. For example, for datasets with IDs 41 and 44 there are 788

and 396 time series, respectively, misclassified when our pool consists of only DTW.

When MSM is also added to the pool, the numbers of time series misclassified by

both MSM and DTW drop to 413 and 179, respectively. Finally, when ERP is also

included in the pool, the numbers of time series that are misclassified by all three

measures drop further to 342 and 145, respectively, for the same datasets.

We study the following challenging problem: given a pool of distance measures

and a query time series, identify the most appropriate distance measure for NN clas-

sification for the given query. Note that our focus is not to find the best distance

measure or “golden” standard method for time series NN classification, but the most

suitable one for a given query in a predefined pool of measures.

The contributions of our work can be summarized as follows:

• To the best of our knowledge, there exists no relevant work towards selecting

the best measure, given a query and a pool of measures, for time series NN

classification.

• We propose a framework for solving the aforementioned problem, where the

selection of the appropriate distance measure is performed via statistical sig-

nificance testing on the pool of measures using a set of training time series.

102

The framework is also query-sensitive, i.e., the selected distance measure can

be different for each query.

• Within this framework we propose two methods that employ different schemes

in order to select the appropriate training time series for the statistical test.

The intuition of the first method is that, if a query is much closer to its nearest

neighbor, which has a certain class, than to the closest object of a different

class, then we are more confident that the query belongs to the class of the

nearest neighbor. The idea behind the second method is to count the number

of objects that belong to the same class as that of the nearest neighbor, or, in

other words, to measure the homogeneity of an object’s neighborhood.

• We provide an extensive experimental evaluation of the proposed methods

against a baseline approach on a large collection of 45 time series datasets

from the UCR repository [124], which shows that our framework can achieve at

least as good or better classification accuracies than the baseline on up to 35

datasets. This suggests that our framework can be highly competitive in terms

of NN classification accuracy by using a pool of measures instead of using only

one of them.

6.1 Related Work

All the whole sequence matching measures presented in Section 2.4 could be

used in our pool of measures for NN classification. We also have to note that, although

the time series representation methods presented in Section 2.3 are not directly appli-

cable to our problem setting since we are particularly interested in distance measures,

they could be employed for NN classification in time series databases, and hence could

as well be considered in our pool of measures.

103

In order to deal with the curse of dimensionality when performing NN classifi-

cation, a linear discriminant analysis has been proposed [125] to estimate an effective

metric for computing neighborhoods. Based on centroid information, local decision

boundaries are determined, the neighborhoods are shrunk in directions orthogonal to

these boundaries, and any NN classifier is performed on the modified neighborhoods.

Similarly to this approach, Domeniconi et al. [126] propose an adaptive NN classifi-

cation method to minimize estimation bias in high dimensions. Based on Chi-squared

distance analysis, a flexible metric, which depends on query locations in the feature

space, is estimated for computing neighborhoods that are constricted along the most

influential feature dimensions. Both of these methods are designed for patterns that

are represented as vectors in Euclidean space, and thus they are not applicable to

time series, which is the focus of this work. Furthermore, they do not select the most

appropriate query-based measure from a pool of measures, rather they try to find

the most influential dimensions. Finally, Athitsos et al. [127] proposed a method for

approximate nearest neighbor retrieval by mapping objects from the original space to

a real vector space using a set of reference objects. The query-sensitive nature of that

work is that the distance measure used in the vector space is a weighted Lp norm,

where the weights are learned via boosting during an expensive pre-processing step.

In our work, we tackle a much different problem, that of classifying a time series by

selecting the most appropriate distance measure for the given query out of a pool of

measures.

104

6.2 Background

Given a distance measure dist, the distance between two time series X and Y

is defined as a function ddist(X, Y). Additionally, L = {dist1, . . . , distn} defines a pool

of distance measures, where each distx, x = 1, . . . , n, is a distance measure.

Problem Setting. Given a collection of time series T = {X1, . . . , XN}, a pool of

distance measures L, and a query time series Q, we want to identify the distance

measure distx ∈ L that is most suitable to perform NN classification for Q.

We explore three time series distance measures, which are used to construct

our pool L. These measures are: Dynamic Time Warping (DTW) [33], Edit distance

with Real Penalty (ERP) [40], and Move-Split-Merge (MSM) [42]. The selection of

these measures is based on the following three rationales: (1) DTW is one of the most

commonly used and studied distance measures for time series matching, (2) ERP is

a variant of DTW and Edit Distance that fixes the non-metric property of DTW,

and (3) MSM is a metric distance measure that has been proposed very recently and

is shown to outperform ERP and DTW in terms of NN classification accuracy for

several datasets. These three measures are described next in more detail.

It should be noted that we do not intend to claim that these are the best

measures among all existing ones. Our aim is to demonstrate that the proposed

framework can achieve competitive performance to existing measures in terms of NN

classification accuracy, since instead of using only a single distance measure it exploits

the strengths of each measure in the pool and identifies the most appropriate one for

a given query. Hence, other measures could be used alternatively without any change

in the framework.

For the convenience of the reader, in Table 6.1 we present the notation used

throughout this chapter.

105

Table 6.1: Notation Table.

Notation Explanation

X = (x1, . . . , x|X|) A 1-dimensional time series of length |X|.
dist A distance measure.

ddist(X, Y) A distance function computing dist between X and Y .

L = {dist1, . . . , distn} A pool of distance measures.

T = {X1, . . . , XN} A collection of N training time series.

DdistxXi,T Set of distances between Xi and all time series in T using distx.

f scheme A scheme function.

si The score given by a scheme function f scheme for Xi.

oi The closest to Xi training time series for some distx.

cri The 1-NN classification result for Xi using distx.

s An array of all si values for some distx.

o An array of all oi values for some distx.

cr An array of all cri values for some distx.

s′distx The sorted values of s for some distx.

o′distx The sorted indices of o based on the sorting of s′distx .

cr′distx The sorted indices of cr based on the sorting of s′distx .

Q A query time series.

Qo The closest to Q training time series.

Qs The score given by a scheme function f scheme for Q.

pos(Qs, s
′distx) The position of Qs in s′distx .

T The T -neighborhood parameter.

vdistx The T -neighborhood classification vector for some distx.

P distx
E The 1-NN classification error probability for some distx.

distmin The measure with the lowest classification error probability.

VT The set of T -neighborhood classification vectors for all measures.

pval(VT , α) The p-value computed by ANOVA with significance threshold α.

6.2.1 Dynamic Time Warping

DTW identifies an optimal alignment between two time series and computes

the matching cost of that alignment in quadratic computational time. Each time

series element is allowed to match with at least one element of the other time series,

allowing for local stretching and shrinking along the time axis. Given two time series

106

X and Y , their DTW distance dDTW(X, Y) is defined recursively using a dynamic

programming matrix [1] Cost of size (|X| + 1)×(|Y | + 1). A null element is added

at the beginning of X and Y , and it matches the other null element with zero score

and any other element with a score of ∞. Let Costi,j denote the element at the i-th

row and j-th column of Cost. Denoting with Lp(xi, yj) the Lp norm based distance

measure of xi and yj, we define dDTW(X, Y) as follows:

Initialization:

Cost0,0(X, Y) = 0 , Cost0,j(X, Y) =∞ , Costi,0(X, Y) =∞ .

Main Loop:

Costi,j(X, Y) = Lp(xi, yj) + min

Costi,j−1(X, Y),

Costi−1,j(X, Y),

Costi−1,j−1(X, Y)

∀(i = 1, . . . , |X|; j = 1, . . . , |Y |) .

Output :

dDTW(X, Y) = Cost|X|,|Y |(X, Y) .

6.2.2 Edit distance with Real Penalty

ERP [40] is a metric distance measure with quadratic time complexity that can

be seen as a variant of the L1 norm, EDR, and DTW. The main advantage over DTW

is that it satisfies the triangle inequality. Specifically, while DTW replicates the value

of the previous element when a gap is introduced in either time series, ERP applies a

nonnegative constant penalty g for computing the distance between the gap and the

corresponding element from the other time series. In the case of non-gap elements, the

matching penalty is simply their L1 norm. Given a nonnegative constant parameter

107

g, function G is used in computing values for the Cost array, where G(xi, yj) is defined

as follows:

G(xi, yj) =

|xi − yj|, if xi and yj are not gaps,

|xi − g|, if yj is a gap,

|g − yj|, if xi is a gap .

The distance dERP(X, Y) is now defined as follows:

Initialization:

Cost0,j(X, Y) =

|Y |∑
j=1

|yj − g|

Costi,0(X, Y) =

|X|∑
i=1

|xi − g|

Main Loop:

Costi,j(X, Y) = min

Costi−1,j−1(X, Y) +G(xi, yj),

Costi−1,j(X, Y) +G(xi, gap),

Costi,j−1(X, Y) +G(gap, yj)

∀(i = 1, . . . , |X|; j = 1, . . . , |Y |) .

Output :

dERP(X, Y) = Cost|X|,|Y |(X, Y) .

6.2.3 Move-Split-Merge

MSM [42] is a metric time series distance measure, robust to misalignments,

translation invariant, and has again a quadratic computational time complexity.

Given two times series X and Y , MSM transforms X to Y by employing three funda-

mental operations: Move, Split, and Merge. The Move operation changes the value

of a single point of the time series, the Split operation splits a single point of the

108

time series into two consecutive points that have the same value as the original point,

while the Merge operation merges two successive equal values into one. Thus, the

MSM distance between X and Y , dMSM(X, Y), is defined as the cost of the lowest-cost

transformation of X to Y . Similarly to DTW and ERP, given two time series X and

Y , their MSM distance can be computed using dynamic programming. For each (i, j)

such that 1 ≤ i ≤ |X| and 1 ≤ j ≤ |Y |, Costi,j is defined to be the MSM distance

between the first i elements of X and the first j elements of Y . Given a nonnegative

constant parameter c, function C is used in computing values for the Cost array,

where C(xi, xi−1, yj) is:

C(xi, xi−1, yj) =

 c, if xi−1 ≤ xi ≤ yj or xi−1 ≥ xi ≥ yj

c+ min(|xi − xi−1|, |xi − yj|), otherwise

The distance dMSM(X, Y) is now defined as follows:

Initialization:

Cost1,1(X, Y) = |x1 − y1| .

Costi,1(X, Y) = Costi−1,1(X, Y) + C(xi, xi−1, y1) .

Cost1,j(X, Y) = Cost1,j−1(X, Y) + C(yj, x1, yj−1) .

∀(i = 2, . . . , |X|; j = 2, . . . , |Y |) .

Main Loop:

Costi,j(X, Y) = min

Costi−1,j−1(X, Y) + |xi − yj|,

Costi−1,j(X, Y) + C(xi, xi−1, yj),

Costi,j−1(X, Y) + C(yj, xi, yj−1)

∀(i = 2, . . . , |X|; j = 2, . . . , |Y |) .

109

Output :

dMSM(X, Y) = Cost|X|,|Y |(X, Y) .

6.3 Query-sensitive Measure Selection

In this section, we present a framework for solving the problem defined in Sec-

tion 6.2, and also two methods that are based on this framework.

6.3.1 Measure-selection Framework

The proposed framework consists of two steps: the offline and the online step.

6.3.1.1 Offline step

This is a pre-processing step and is performed only once. Given the set T of

N training time series (also referred to as training objects) and a distance measure

distx, we first compute the distance of each time series Xi ∈ T to all other time series

Xj ∈ T , resulting in the following set of distances:

DdistxXi,T = {ddistx(Xi, Xj)|∀Xj ∈ T , i 6= j} . (6.1)

Next, for each Xi ∈ T we determine its closest time series oi based on distx, i.e.,

oi = argmin
{
DdistxXi,T

}
. (6.2)

Then, the set of distances DdistxXi,T is passed into a scheme function f scheme(·). For

the remainder of this subsection we will use the term scheme function as a black box

that, given a time series Xi and the pairwise distances of Xi to all other objects in the

training set T , produces a score si based on these distances. Note that in our current

110

case where Xi is already part of the training set, we only consider the remaining N−1

objects in T . The score si is given by:

si = f scheme(Xi,DdistxXi,T) . (6.3)

Further details about schemes and their functions are discussed in Section 6.3.2.

Finally, we treat each Xi as a query and determine whether it was correctly

classified by distx using the 1-NN classifier, that means comparing its class with that

of oi. The result of this comparison is stored in cri:

cri =

 0, if Xi is correctly classified,

1, otherwise.
(6.4)

As a result, for each Xi ∈ T we store three values: oi, si, and cri. Effectively,

this produces three arrays of size N :

• o = [o1 . . . oN]: for each Xi the index of its closest training time series oi,

• s = [s1 . . . sN]: for each Xi the score si given by the scheme function f scheme,

and

• cr = [cr1 . . . crN]: for each Xi the classification result cri determined by the

1-NN classifier using distx.

In addition, for ease of the online step, array s is sorted in ascending order, while the

indices of arrays o and cr are rearranged accordingly. This sorting procedure results

in the rearranged arrays o′ = [o′1 . . . o
′
N], s′ = [s′1 . . . s

′
N], and cr′ = [cr′1 . . . cr

′
N].

Finally, the offline step is performed for each distance measure distx ∈ L, and

the corresponding arrays are denoted as o′distx , s′distx , and cr′distx , respectively.

111

6.3.1.2 Online step

At runtime, given a query time series Q, we identify the most appropriate

distance measure to classify Q via statistical significance testing using the set of

training objects T .

Distance computation. First, for each distance measure distx ∈ L, the distances of Q

to all training objects Xj ∈ T are computed, resulting in the following set:

DdistxQ,T = {ddistx(Q,Xj)|∀Xj ∈ T } . (6.5)

Similarly to the offline step, the closest training time series is identified, i.e.,

Qo = argmin
{
DdistxQ,T

}
, (6.6)

and the score of the scheme function is recorded, i.e.,

Qs = f scheme(Q,DdistxQ,T) . (6.7)

The challenge now is to determine the class of Q by deciding which distance

measure to “trust” for our NN classifier.

Query classification. Next, we identify the position of Qs in each s′distx (computed in

the offline step) as follows:

pos(Qs, s
′distx) = p, if

s′distxp = Qs and 1 ≤ p ≤ N ,

or s′distxp < Qs < s′distxp+1 and 1 ≤ p < N ,

or s′distxN < Qs,

or s′distx1 > Qs .

(6.8)

In other words, we identify the position p in s′distx with value equal to Qs. If

Qs does not appear exactly in s′distx , then p corresponds to the position of the last

value that is smaller than Qs (except for the last case).

112

The rationale here is that we expect that objects given similar scores by the

scheme function should have similar classification results for a given distance measure.

Hence, we should focus on a “neighborhood” of Qs in s′distx .

In particular, for all distance measures in L we define a parameter T that

specifies the T-neighborhood of Q. We select T − 1 training time series from the left

and T from the right side of pos(Qs, s
′distx) in s′distx , including pos(Qs, s

′distx) itself.

This results in 2 ∗ T time series in total (for each distx ∈ L). In case that there are

are less than T −1 or T training time series on the left or right side of pos(Qs, s
′distx),

respectively, we fill out the remaining time series from its other side, so that there

are always 2 ∗ T time series. The classification result for each of the 2 ∗ T time series

can be directly retrieved from cr′distx .

Consequently, for each distance measure distx ∈ L we can now extract the

following vector of classification result values:

vdistx = (cr′distx
pos(Qs,s′distx)−T+1

, . . . , cr′distx
pos(Qs,s′distx)+T

) (6.9)

Using vectors vdistx for all distx ∈ L, we compute the classification error proba-

bility for each distance measure as follows:

P distx
E =

‖vdistx‖1

2 ∗ T
(6.10)

Next, we select the distance measure distmin with the lowest such probability

and use that measure for the NN classification task for the given query:

distmin = argmin
distx∈L

{P distx
E } . (6.11)

Finally, Q is assigned the class of the closest training time series, as defined by

distmin.

113

The intuition for creating vectors vdistx and computing the error probabilities

P distx
E for each measure distx ∈ L for a given T is the following: given two mea-

sures disti and distj, if there are more misclassified training time series in the T -

neighborhood of Q using disti than in the T -neighborhood of Q using distj, then this

leads in a higher value of P disti
E . More precisely, the T -neighborhood for disti does

not provide a good guarantee for correct classification of Q, in contrast to distj that

classifies more training objects around Q correctly according to the selected scheme.

Consequently, distj is more suitable for Q, since it is less likely to produce wrong

classification.

Defining the T -neighborhood. An appropriate value for T is chosen for all distance

measures distx ∈ L based on statistical significance testing. Specifically, we use the

ANalysis Of VAriance (ANOVA) test [128], which is a generalization of the t-test

when more than two groups are analyzed.

First, for each T ∈ [1, dN/2e], we construct the corresponding set of vectors

VT = {vdist1 , . . . , vdistn} for all distance measures in L. Note that the vectors are

constructed around pos(Qs, s
′distx) as described in the previous section. Next, we

perform ANOVA with statistical significance threshold α, which produces a p-value:

pval(VT , α) = ANOV A(VT , α) , ∀T ∈ [1, dN/2e] . (6.12)

Using Equation 6.12, we assign our final threshold T with the value that corresponds

to the smallest p-value:

T = argmin
T∈[1,dN/2e]

{
pval(VT , α)

}
. (6.13)

The rationale here is that this way of determining the T -neighborhood gives the

most statistically significant NN classification accuracy results when using the set of

measures in L and the training time series for all possible neighborhoods of Q. T is

114

then used for the computation of the classification error probabilities (Equation 6.10),

and will hence determine the most appropriate measure (Equation 6.11) for the given

query Q.

It has to be mentioned that if more than one T values provide the same lowest

probability the smallest one is chosen to define the query neighborhood. Also, note

that, by construction, in each vdistx vector there are always 2 ∗ T objects.

In Figure 6.3 we illustrate the main steps of the proposed framework.

T: collection of
training time

series

for each distx in L compute the
pairwise distances between all time

series in T

offline step

o’ = {o’1, … ,o’N}

s’ = {s’1, … ,s’N}

cr’ = {cr’1, … ,cr’N}

for each distx and fscheme compute sets o, s,
and cr, sort s and rearrange o and cr

for each distx in L compute pairwise distances
between Q and each time series in T

for each distx and fscheme compute Qo and Qs

Query Q

identify the position of Qs in s’ for
each distx and fscheme

for each distx define the
T-neighborhood of Qs and vector
udistx, for each T in [1, ceil(N/2)]

perform ANOVA among udistx for each T in [1,
ceil(N/2)], select T-neighborhood with min. p-value

output

online step

fscheme: a scheme
function

L = {dist1, … , distn}

compute the classification error probability
PE

distx for each distx

Figure 6.3: Illustration of the offline and online steps of the proposed query-sensitive
measure selection framework.

115

6.3.2 Methods

We present two methods that can be used within our framework for constructing

the neighborhood of training objects for a given query. Each method is characterized

by a scheme, which is a technique for computing the values in the array s and the

value of Qs used in the framework. Each scheme uses a function f scheme to compute

these values. Note that we first describe a basic scheme that is used as a building

block by the two proposed schemes.

6.3.2.1 Scheme 0: Basic

This basic scheme constructs s and Qs based exclusively on distances. The

intuition here is the following: if a query Q is very close to its NN, then we can be

more confident that Q indeed belongs to the class of its NN. If we find that Q is

very close to its NN for one distance measure distx and not for the others, then we

have a reason to trust distx more than the other measures, for the specific query. The

neighborhood of a query is thus created by the training objects for which the distance

from their closest object is close to the distance of the query to its closest training

object.

More specifically, in the offline step, after the computation of the set of distances

DdistxXi,T of the training objects Xi ∈ T for all distance measures distx ∈ L, we apply

the scheme function f 0 as follows:

si = f 0(Xi,DdistxXi,T) = min(DdistxXi,T) . (6.14)

116

In other words, the value si returned by the scheme function is the distance of Xi to

its closest time series oi. In a similar manner, during the online step, Qs is computed

for each distx using the scheme function as follows:

Qs = f 0(Q,DdistxQ,T) = min(DdistxQ,T) . (6.15)

As it can be seen from the above equation, Qs corresponds to the distance of Q to its

closest training object. The remaining steps of the online step proceed as described

in the previous section.

6.3.2.2 Scheme I: Distance ratio-based

The first technique for constructing s is an extension of the basic scheme. It is

computed by using the ratio of distance from the closest object to the distance from

the next closest object with a different class. The intuition behind this scheme is this:

if a query Q is much closer to its nearest neighbor, which has a certain class, than

to the closest object of a different class, then we are more confident that Q indeed

belongs to the class of the nearest neighbor. If this happens for one distance measure

distx and not for the others, then we have a reason to trust distx more than the other

measures, for the specific query Q.

In particular, for each Xi the scheme identifies its closest object oi by Equation

6.2. Furthermore, DdistxXi,T is sorted, resulting in D′distxXi,T , and the corresponding objects

are scanned until an object of a different class than that of oi is found; let us call this

object Xl and let l be the index of this object in D′distxXi,T .

The value produced by the corresponding scheme function f I is given below:

si = f I(Xi,DdistxXi,T) = f 0(Xi,DdistxXi,T)/ddistx(Xi, Xl)

= ddistx(Xi, oi)/ddistx(Xi, Xl) . (6.16)

117

Finding this ratio for all training objects and then sorting these ratios in ascending

order ends up in array s′distx .

During the online step, DdistxQ,T is sorted resulting in D′distxQ,T . Then, the value of

Qs is computed as the ratio of its distance from the closest training object Qo to its

distance from the first object that has a different class than that of Qo, say Ql′ with

l′ being the index of Ql′ in D′distxQ,T :

Qs = f I(Q,DdistxQ,T) = f 0(Q,DdistxQ,T)/ddistx(Q,Ql′)

= ddistx(Q,Qo)/ddistx(Q,Ql′) . (6.17)

Based on the intuition for this method, ideally, if Qs is small then its T -neighborhood

will comprise objects with low ratios, and these objects (or most of them) are not

misclassified. Consequently, in such case there is higher probability of classifying the

query correctly.

6.3.2.3 Scheme II: Homogeneity-based

Using the same notation as in the previous method, another approach is to

count the number of objects from oi to Xl and from Qo to Ql′ , respectively. We note

that objects oi and Qo are included in the counting, while objects Xl and Ql′ are not.

Hence, the scheme function f II for a training object Xi is defined as follows:

si = f II(Xi,DdistxXi,T) = l − 1 . (6.18)

And similarly, for the query Q:

Qs = f II(Q,DdistxQ,T) = l′ − 1 . (6.19)

So, essentially, we count the number of objects that belong to the same class as

that of the NN. By doing so, we are in practice measuring the homogeneity of an

118

object’s neighborhood. Each s′distx thus consists of the sorted (in ascending order)

homogeneity values of all training objects under measure distx.

An ideal situation would be to obtain a high value for Qs making it lie within

several objects with high homogeneity values in s′distx . This would imply that all of

these objects have many neighbors of the same class, and if this class is the correct one

for all objects (or for most of them) then the probability of the query being classified

correctly would increase.

Since our framework follows a statistical analysis based on the significance pro-

duced by ANOVA, there may be scenarios where, although Qs may be small for the

Distance ratio-based or high for the Homogeneity-based scheme in the ideal situations

described above, the T -neighborhood with the highest statistical significance may be

large. This means that the neighborhood of the query may even include objects that

are misclassified. This fact shows that there is a tradeoff between getting a “good”

value for the selected scheme and a “proper” relatively small value for T .

It has to be noted that all of the aforementioned scheme-based measure selection

methods are based on the following concept: objects of the same class create regions

well separated from objects of other classes. This inter-class dissimilarity, however, is

not always the case, since there may be outlier objects making the classification task

harder whatever the classifier may be.

6.4 Experiments

6.4.1 Experimental Setup

6.4.1.1 Datasets

We experimented on the 45 time series datasets available on the UCR time

series archive [124]. The number of training and test time series (“train size”, “test

119

size”), the length of each time series (“seq. length”), and the number of classes (“class

num.”) for each dataset are shown in Table 6.2.

6.4.1.2 Methods

We evaluated the two proposed methods, i.e., Distance ratio-based and

Homogeneity-based against a baseline competitor method, which is described be-

low and we shall call Cross Validation. For completeness, we also show the per-

formance of the Basic method. The pool of measures L included DTW, ERP, and

MSM (described in Sections 6.2.1, 6.2.2, and 6.2.3).

We designed the Cross Validation method as follows: (1) for each dataset we

first computed the classification accuracy for DTW, ERP, and MSM on the training

set using leave-one-out cross validation, and (2) the method outputs the classification

accuracy on the test set of the measure with the best accuracy on the training set.

If more than one measures provide the same highest (best) classification accuracy

on the training set, then the accuracy of Cross Validation is the average of the

accuracies of these measures on the test set.

Regarding the parameters of the measures, MSM has one free parameter, namely

c, which is the cost of every Split and Merge operation. For each of the datasets, the

value for c was chosen from the set {0.01, 0.1, 1}, using leave-one-out cross-validation

on the training set and comparing the three classification accuracies. In addition,

it has been shown that no greater value of c may achieve good classification results,

while these values are sufficient to produce very competitive classification accuracies

compared to DTW and ERP [42]. For DTW the Lp used was the Euclidean distance,

and the penalty g of ERP was set to 0 [40, 42]. Finally, for the statistical significance

testing, the significance threshold α of ANOVA was set to 0.05.

120

6.4.1.3 Evaluation Measures

Since the task at hand is NN classification, for each dataset, we evaluate all of

the aforementioned methods in terms of classification error rate, which is defined as

the percentage of the test time series that are misclassified using the NN classifier.

At this point we note that if in our framework there are ties among the measures

in the minimum error probability (computed by Equation 6.10) for a query, we select

the measure with the smallest classification error rate on the training set. In case of

further tie we use all measures involved in the tie, by taking the average classification

result of these measures (recall that 0 corresponds to correct classification, whereas

1 to misclassification). For example, if for a query the minimum error probability is

the same for both MSM and ERP, the respective error rates on the training set are

the same, and MSM misclassifies the given query while ERP correctly classifies it,

then the classification result for this query is considered to be 0.5.

Apart from the classification error rate, we evaluated the efficiency of the

Homogeneity-based method, which is the one that yields at least as good or better

classification accuracies than the baseline method on the largest number of datasets

compared to the other proposed methods. In particular, we analyzed the runtimes

for all of its parts, which are reported in Figure 6.4.

The framework and the proposed methods were implemented in Matlab, while

DTW, MSM, and ERP were implemented in Java. The experiments were performed

on a PC 64-bit running Linux, a Dual-Core AMD Opteron(tm) Processor 8220 SE at

2.8GHz using a single threaded implementation.

121

6.4.1.4 Training and Test Sets

For several datasets [124] we observed that the error rates on the training and

test sets are very different for each of the distance measures, showing that the training

set is not representative of the test set. For example, for the training set of the FaceAll

dataset the error rate for DTW is 6.79%, for MSM 1.07%, and for ERP 2.5%, while

for the test set the error rates are much different, i.e., 19.23%, 18.88%, and 20.2%,

respectively. For the training set of OSU the error rates for DTW and ERP are 33%

and 30.5%, while for the test set they are 40.91% and 39.7%, respectively. Another

example is the GunPoint dataset, for which the error rate of DTW on the training

set is 18% and of ERP it is 8%, whereas for the test set it is just 9.33% for DTW and

4% for ERP. The differences are also apparent in the Fish dataset, where DTW has

error rates 26.29% and 16.57% for the training and test set, MSM has 13.71% and

8%, and ERP achieves 17.14% and 12%.

Since measure selection is about learning statistics for each dataset, we had to

be fair on selecting the train and test time series. Thus, based on the iid (independent

identically distributed) criterion, for each dataset, all time series originally provided

as training and test sets by Keogh et al. [124] were merged, and then for each class half

of them were randomly picked and included in the training set while the remaining

ones were put in the test set. More formally, assuming that the number of time series

of a class is M , bM/2c randomly selected time series comprise the training set, while

the rest M − bM/2c objects form the test set. Following this procedure, and, for

example, for the aforementioned datasets, the error rates achieved on the training

and test sets for all measures are much closer to one another, implying that the

training sets are much more representative of the test sets compared to the original

split. For the FaceAll dataset DTW achieves 3.30% and 3.90% error rates, MSM

122

1.16% and 1.06%, and ERP 1.52% and 1.86%, and for the OSU dataset DTW has

error rates 33.18% and 35.14%, and ERP 30% and 31.98% for the training and test

set, respectively. With regard to the GunPoint dataset, the error rates for DTW

are 8% for both training and test sets, and for ERP they are 2% and 3%. Finally,

referring to the Fish dataset MSM achieves 11.43% and 10.29% error rates for the

training and test sets, DTW 25.71% and 23.43%, and ERP 17.71% and 14.29%. The

sizes of the two modified sets for each dataset are shown in columns “train size” and

“test size” of Table 6.2, respectively.

The datasets used for our experiments are available here:

http://vlm1.uta.edu/~akotsif/query_sensitive_measure_selection

6.4.2 Experimental Results

6.4.2.1 Classification Accuracy

The performance of the proposed methods in terms of classification accuracy is

shown in Tables 6.3 and 6.4.

The main highlights of our experimental evaluation can be found in Table

6.3, where we show the number of datasets for which our methods provide better,

equal, or worse classification error rates than Cross Validation. We observe that

Heterogeneity-based achieves at least as good or better error rates than Cross

Validation on up to 35 out of 45 datasets. For completeness, we also show the

performance of Basic. More specifically, for Distance ratio-based there are 18

datasets with lower error rates and 11 with the same error rate as that of Cross

Validation, while for Homogeneity-based 23 datasets yield better accuracies than

Cross Validation and the number of ties is 12.

123

Table 6.2: Description of the 45 datasets from the UCR repository that were used in
our experiments. The table shows for each dataset: the number of training and test
objects, the length of each sequence in the dataset, and the number of classes.

ID Dataset train test seq. class
size size length num.

1 Synthetic 300 300 60 6
2 GunPoint 100 100 150 2
3 CBF 465 465 128 3
4 FaceAll 1,122 1,128 131 14
5 OSU 220 222 427 6
6 SwedishLeaf 555 570 128 15
7 50Words 442 463 270 50
8 Trace 100 100 275 4
9 TwoPatterns 2,499 2,501 128 4

10 Wafer 3,582 3,582 152 2
11 FaceFour 55 57 350 2
12 Lightning-2 60 61 637 2
13 Lightning-7 70 73 319 7
14 ECG 99 101 96 2
15 Adiac 387 394 176 37
16 Yoga 1,650 1,650 426 2
17 Fish 175 175 463 7
18 Beef 30 30 470 5
19 Coffee 27 29 286 2
20 OliveOil 29 31 570 4
21 ChlorineConc. 2,153 2,154 166 3
22 ECG torso 708 712 1,639 4
23 Cricket X 384 396 300 12
24 Cricket Y 384 396 300 12
25 Cricket Z 384 396 300 12
26 Diatom Red. 160 162 345 4
27 ECG5Days 442 442 136 2
28 FacesUCR 1,122 1,128 131 14
29 Haptics 231 232 1,092 5
30 InlineSkate 324 326 1,882 7
31 ItalyPower 547 549 24 2
32 MALLAT 1,200 1,200 1,024 8
33 MedicalImages 568 573 99 10
34 MoteStrain 635 637 84 2
35 SonySurface 310 311 70 2
36 SonySurfaceII 490 490 65 2
37 StarLightC. 4,617 4,619 1,024 3
38 Symbols 508 512 398 6
39 TwoLeadECG 580 582 82 2
40 uWaveGest X 2,238 2,240 315 8
41 uWaveGest Y 2,238 2,240 315 8
42 uWaveGest Z 2,238 2,240 315 8
43 WordsSynon. 450 455 270 25
44 ECGThorax1 1,871 1,894 750 42
45 ECGThorax2 1,871 1,894 750 42

Table 6.3: Number of datasets for which each method yields lower (Better), equal
(Tie), or higher (Worse) classification error rate compared to Cross Validation.
We observe that Heterogeneity-based achieves at least as good or better error
rates than Cross Validation on up to 35 out of 45 datasets.

Homogeneity-based Distance ratio-based Basic
Better 23 18 11
Tie 12 11 18
Worse 10 16 16

Better or Tie 35 29 29

124

The classification error rates of Cross Validation and the proposed methods

are shown in Table 6.4. For each dataset, the classification error rates for MSM,

DTW, and ERP for both the training and test sets are also shown, along with the c

value used for MSM on that dataset. As mentioned in Section 6.4.1, the value of c

that was chosen is the one providing the smallest classification error rate (or highest

classification accuracy) for the training set. In cases where more than one values

of c provided the same error rate, in Table 6.4 we present all of these values, and

we randomly picked the one shown in italics. All rates shown are in percent and the

numbers in bold indicate the smallest error rates for each dataset when comparing the

two proposed methods and Cross Validation. The last column of Table 6.4 (“All

Miscl.”) presents the number of test time series per dataset that are not classified

correctly by any distance measure. This is important since we would like to minimize

these numbers, which may happen when adding more distance measures in the pool

L. This way our statistical framework may be able to capture the most appropriate

measure that classifies correctly each query.

There are several datasets for which the proposed methods provide lower clas-

sification error rates for the test set than the Cross Validation method. This is

because for these datasets our methods are able to select a measure that correctly

classifies the test time series for which the measure that is used by Cross Validation

misclassifies them when using the NN classifier. If the class of the NN is the same

for all measures, then the time series are either classified correctly or misclassified

whatever measure selected. For the datasets with IDs 13, 37, 40-42, 44, and 45,

the classification accuracies given by the Homogeneity-based and in all cases but

one by the Distance ratio-based method are better than the Cross Validation

method. More specifically, for the Lightning-7 dataset (ID=13) the error rate of Cross

Validation is 27.40%, while for Distance ratio-based and Homogeneity-based it

125

is 19.18% and 20.55%, respectively. Furthermore, for the StarLightC. dataset (ID=37)

Homogeneity-based and Distance ratio-based classify correctly 3 and 29 time

series more than Cross Validation, respectively. This is because they select the

MSM or ERP distance measure instead of the DTW used by the baseline method for

these time series. Similarly, for the uWaveGest X, uWaveGest Y, and uWaveGest Z

datasets (IDs=40-42), the error rates of the Homogeneity-based method are lower

than the competitor method that uses MSM (8, 25, and 16 more time series correctly

classified by our method for each dataset, respectively). For the last two datasets

(IDs=44, 45), the error rates of the Distance ratio-based and Homogeneity-based

methods indicate that there are at least 16 and up to 39 more test time series that are

correctly classified than the Cross Validation method, which is based on ERP and

MSM, respectively. Moreover, for the datasets Cricket X, Cricket Y, and Cricket Z

(IDs=23-25), Cross Validation achieves error rates 23.99%, 21.97%, and 18.69%

by using DTW, while Distance ratio-based and Homogeneity-based have lower

error rates for all of them. In particular, the Distance ratio-based has the small-

est error rates among all methods for Cricket X (21.21%) and Cricket Y (17.17%),

which correspond to 11 and 19 more test time series correctly classified compared

to Cross Validation, respectively. Homogeneity-based has 15.15% error rate for

Cricket Z, the lowest among all methods (Cross Validation misclassifies 14 more

test time series than Homogeneity-based). We also present the performance of Basic,

which achieves lower or equal error rates than Cross Validation in 29 datasets. We

note that for the OliveOil (ID=20) and WordsSynon. (ID=43) datasets Basic even

achieves the lowest error rates among all methods.

For completeness, in Table 6.5 we present the number of datasets for which

each of the proposed methods (including Basic) perform better, the same, and worse

than always selecting one distance measure, i.e., MSM, DTW, or ERP. We observe

126

that, although MSM is a very competitive distance measure, Distance ratio-based

and Homogeneity-based methods outperform each of the three measures much more

often than not. It also has to be mentioned that even Basic yields much better

classification error rates than both DTW and ERP.

In Table 6.6 we present the probabilities that are the outcome of ANOVA

when the input vectors are the classification results of each of the proposed meth-

ods against Cross Validation (denoted as “C.V.”) for all test time series. We also

present the probabilities when comparing the classification results of Basic, Distance

ratio-based, and Homogeneity-based with each of the distance measures (MSM,

DTW, ERP). It has to be mentioned that the lower the probabilities are the more

different the vectors of classification results are. When the probabilities are high

the vectors are very similar, and when the probabilities are 1 we can conclude that

the vectors are several times identical, as it happens, for example, between each of

the proposed methods and Cross Validation for datasets with IDs 8, 9, and 10, as

the corresponding error rates are 0.00%, 0.00%, and 0.28%, respectively. In other

words, the same distance measure may be selected (for all test time series) by each

of the proposed methods and Cross Validation, e.g., for datasets 8 and 10 DTW

and MSM is selected, respectively, by the proposed methods and Cross Validation.

Note that for dataset 9 all measures provide 0.00% error rate in the training and test

sets, hence all methods yield the same vectors of classification results.

In conclusion, the number of datasets for which we achieve a lower error rate

than Cross Validation increases as we move from Scheme 0 to Scheme II. Moreover,

based on these results, we can argue that the Homogeneity-based method (Scheme

II) outperforms the competitor Cross Validation method in terms of classification

error rate more often than not. This is why we argue about the importance of the

intuition to select the most appropriate distance measure for each query in the test

127

sets, and in addition that these results are worth disseminating to the time series

classification community.

6.4.2.2 Runtime

In Figure 6.4, for each dataset, we present the average runtimes of a query

for all parts of the Homogeneity-based method: MSM, DTW, ERP Computation,

selecting the “best” T (“Homogeneity-based scheme”), and determining the most

suitable distance measure (“Remaining Time”). Adding up the runtimes of all parts

gives the total time, which is also shown.

It can be clearly seen that, for any dataset, the bottleneck of total runtime is

the computation of distances for the three measures. DTW takes more time than

MSM and ERP for all datasets, which is obvious, e.g., for datasets 22, 30, 32, 37,

44, and 45. The reason for the higher total runtime per query for datasets 16, 22,

29, 30, 32, 37, 40-42, and 44, 45 is the number of their training time series to which

the MSM, DTW, and ERP distances have to be evaluated for the query, and also the

large length of their time series (as Table 6.2 indicates).

Comparing the proposed methods, since the framework is the same for all of

them, the average DTW, MSM, and ERP distance computation times for all queries

of each dataset are essentially the same for all methods. In addition, the “Remaining

Time” part is negligible for all of them. As a result, the only part that basically

differentiates the Homogeneity-based method and the rest is the procedure for finding

the “best” value for T . However, since the total runtime is dominated by the distance

computations, all proposed methods have approximately the same total runtime per

query.

Finally, regarding the baseline Cross Validation method, the total runtime

for a query depends on whether there is a clear distance measure winner in the error

128

Table 6.4: NN classification error rates attained by the two proposed methods (de-
noted as Dist-Ratio and Hom.) as well as Basic, and Cross Validation on each of
the 45 datasets in the UCR repository of time series datasets. In addition, the table
shows for each dataset: the classification error rate of MSM, DTW, and ERP for the
training and test sets and the value of c used by MSM on that dataset, which yielded
the lowest error rate on the training set (when more than one values are given, the
one in italics was randomly chosen). All rates are in percent and the numbers in bold
indicate the smallest classification error rates for each dataset when comparing the
two proposed methods and Cross Validation. We also present the error rate of the
Basic scheme. The number of test time series per dataset that are misclassified by
all distance measures is also provided in the last column.

ID Basic Dist. Hom. Cross train test MSM All

Ratio Valid. MSM DTW ERP MSM DTW ERP c Miscl.

1 1.67 1.00 1.00 2.00 1.67 1.33 1.00 1.33 1.00 2.00 0.1,1 0

2 3.00 3.00 2.00 3.00 3.00 8.00 2.00 0.00 8.00 3.00 0.1 0

3 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.22 0.00 0.00 0.1 0

4 1.15 1.15 1.06 1.06 1.16 3.30 1.52 1.06 3.90 1.86 1 10

5 19.37 20.72 19.37 19.37 15.91 33.18 30.00 19.37 35.14 31.98 0.1 26

6 11.58 11.93 11.05 11.58 12.25 21.44 12.97 11.58 20.70 12.63 1 36

7 19.44 18.36 20.73 19.22 20.36 35.29 29.86 19.22 33.05 28.51 1 59

8 0.00 0.00 0.00 0.00 4.00 0.00 17.00 5.00 0.00 11.00 0.1 0

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0

10 0.28 0.28 0.28 0.28 0.11 0.50 0.20 0.28 0.78 0.36 1 8

11 11.98 9.65 7.89 7.60 1.82 1.82 1.82 3.51 14.04 5.26 0.01,0.1,1 2

12 11.48 8.20 13.11 14.75 16.67 15.00 13.33 18.03 14.75 14.75 0.01,1 2

13 28.08 19.18 20.55 27.40 32.86 25.71 32.86 26.03 27.40 34.25 0.01,1 10

14 19.80 16.83 17.33 16.83 9.09 14.14 9.09 13.86 21.78 19.80 1 9

15 38.32 36.80 36.80 39.34 35.66 39.28 37.73 39.34 38.83 40.86 1 116

16 4.85 5.15 4.97 4.79 4.42 8.67 5.58 4.79 8.67 5.88 0.1 49

17 10.86 10.86 9.71 10.29 11.43 25.71 17.71 10.29 23.43 14.29 1 13

18 56.67 53.33 53.33 53.33 60.00 63.33 60.00 53.33 60.00 53.33 1 16

19 17.24 20.69 13.79 17.24 22.22 22.22 25.93 20.69 13.79 20.69 0.01 2

20 6.45 9.68 12.90 12.90 20.69 24.14 24.14 12.90 9.68 12.90 0.01 2

21 7.06 7.15 7.29 7.01 7.71 5.67 7.85 7.71 7.01 7.85 0.1,1 130

22 0.14 0.14 0.14 0.14 0.00 2.54 0.14 0.14 2.67 1.12 1 0

23 23.99 21.21 23.74 23.99 22.14 17.97 23.70 24.75 23.99 25.51 1 60

24 21.46 17.17 18.94 21.97 22.92 17.45 23.70 19.19 21.97 19.70 1 41

25 18.69 17.68 15.15 18.69 27.60 20.57 28.91 22.98 18.69 23.23 1 44

26 0.62 0.62 0.62 0.62 0.00 0.63 0.63 0.62 1.23 1.23 1 1

27 0.68 0.90 1.02 0.68 0.45 1.13 1.13 0.68 1.58 2.26 0.01,1 2

28 0.89 0.98 0.80 0.89 1.16 3.48 1.87 0.89 3.19 1.24 1 7

29 52.16 55.60 52.16 52.16 55.41 57.14 58.01 52.16 62.50 55.17 1 84

30 43.87 45.09 42.64 42.94 45.06 50.93 45.99 42.94 53.99 44.17 1 104

31 3.64 3.73 3.46 3.74 4.94 5.67 4.94 3.28 4.92 4.19 1 13

32 1.17 1.17 1.17 1.42 0.10 2.25 0.75 1.42 1.50 1.17 1 4

33 19.37 18.15 19.02 19.02 20.60 26.06 24.47 19.02 21.12 21.47 0.1 60

34 3.30 2.98 3.14 3.30 2.52 5.51 3.31 3.30 5.49 4.08 0.1 7

35 0.96 0.64 0.96 0.32 2.26 4.52 2.90 0.32 1.61 1.61 1 1

36 0.41 0.41 0.61 0.41 1.63 4.29 3.67 0.41 2.45 1.63 1 1

37 6.47 5.93 6.49 6.56 8.43 7.06 10.48 8.34 6.56 10.11 0.1 109

38 1.56 1.56 1.17 1.37 1.18 1.97 1.77 1.37 1.95 2.34 0.01,0.1 4

39 0.17 0.17 0.17 0.17 0.00 0.00 0.34 0.17 0.17 0.34 0.01 1

40 21.88 20.40 20.67 21.03 21.27 24.66 23.06 21.03 26.52 22.05 1 291

41 28.13 27.90 26.74 27.86 28.06 35.17 31.95 27.86 35.18 30.71 1 242

42 27.05 25.85 25.71 26.43 27.97 32.98 28.55 26.43 31.03 29.55 1 331

43 18.46 19.78 19.78 19.12 19.33 32.67 28.00 19.12 31.43 25.05 1 55

44 16.26 15.73 15.10 17.16 19.08 20.36 18.12 18.06 20.91 17.16 1 145

45 10.61 9.87 9.82 10.72 10.69 14.27 12.03 10.72 13.73 10.82 1 96

129

Table 6.5: Number of datasets for which each method yields lower (Better), equal
(Tie), or higher (Worse) classification error rate compared to always choosing one
distance measure, i.e., MSM, DTW, or ERP.

Basic Distance ratio-based Homogeneity-based

MSM DTW ERP MSM DTW ERP MSM DTW ERP

Better 14 35 37 20 37 36 24 37 39

Tie 12 6 5 8 6 3 11 6 5

Worse 19 4 3 17 2 6 10 2 1

Better or Tie 26 41 42 28 43 39 35 43 44

rate on the training set or not. In case one of the three measures provides the smallest

classification error rate on the training set, then this measure is evaluated. Thus, given

a query of e.g., dataset with ID x, the total runtime is practically given by the point

of the curve corresponding to this measure at position x (of the horizontal axis) in

Figure 6.4. Similarly, if more than one measures attain the lowest classification error

rate, then all these measures contribute to the total runtime for a query, which is

the sum of the distance computation times of the query to all training time series for

the tied measures. Hence, if, in the worst case, all measures in the pool need to be

evaluated for the query, then the total runtime of Cross Validation is approximately

the same as that of our methods.

An astute reader may argue that the runtime comparison of Homogeneity-based

against Cross Validation is unfair since we could alternatively have used exist-

ing speedup methods for DTW [129], or even powerful pruning techniques such as

cDTW with the LB Keogh lower bound [41]. Nonetheless, we argue that any speedup

achieved by each method used by Cross Validation is also equally beneficial for our

framework (and hence for Homogeneity-based). This is due to the fact that our

framework is using the exact same set of distance measures, and thus any speedup

obtained by Cross Validation can essentially be exploited by our framework as well.

130

Table 6.6: The probabilities that are the outcome of the ANOVA statistical test when
the input vectors are the classification results (for all test time series) of each of the
proposed methods against MSM, DTW, ERP, and Cross Validation (denoted as
“C.V.”) are presented for each of the 45 datasets.

ID Basic Dist. Ratio Hom.

MSM DTW ERP C.V. MSM DTW ERP C.V. MSM DTW ERP C.V.

1 0.656 1 0.083 0.083 0.656 1 0.083 0.083 0.706 0.480 0.318 0.318

2 0.083 0.058 1 1 0.158 0.033 0.320 0.320 0.083 0.058 1 1

3 0.318 1 1 1 0.318 1 1 1 0.318 1 1 1

4 0.318 0.000 0.021 0.318 1 0.000 0.013 1 0.318 0.000 0.021 0.318

5 0.180 0.000 0.000 0.180 1 0.000 0.000 1 1 0.000 0.000 1

6 0.564 0.000 0.528 0.564 0.257 0.000 0.160 0.257 0.000 0.000 0.377 0.000

7 0.318 0.000 0.000 0.318 0.090 0.000 0.000 0.090 0.318 0.000 0.000 0.318

8 0.025 1 0.001 1 0.025 1 0.001 1 0.025 1 0.001 1

9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 0.000 0.083 1 1 0.000 0.083 1 1 0.000 0.083 1

11 0.018 0.024 0.024 0.022 0.058 0.034 0.083 0.058 0.019 0.164 0.035 0.073

12 0.033 0.159 0.103 0.103 0.321 0.742 0.709 0.709 0.209 0.419 0.419 0.419

13 0.167 0.013 0.004 0.013 0.288 0.024 0.017 0.024 0.683 0.863 0.236 0.863

14 0.158 0.158 0.057 0.108 0.127 0.251 0.227 0.177 0.033 0.508 1 0.517

15 0.025 0.268 0.005 0.025 0.018 0.277 0.003 0.018 0.415 0.778 0.086 0.415

16 0.157 0.000 0.109 0.157 0.318 0.000 0.047 0.318 0.564 0.000 0.027 0.564

17 0.319 0.000 0.083 0.319 0.319 0.000 0.011 0.319 0.319 0.000 0.083 0.319

18 0.000 0.161 0.000 0.000 0.000 0.161 0.000 0.000 0.326 0.326 0.326 0.326

19 1 0.326 1 0.663 0.326 1 0.326 0.663 0.326 0.663 0.573 0.494

20 0.325 1 0.325 0.325 1 0.572 1 1 0.161 0.325 0.161 0.161

21 0.103 0.083 0.047 0.083 0.199 0.034 0.096 0.034 0.039 0.763 0.015 0.763

22 1 0.000 0.008 1 1 0.000 0.008 1 1 0.000 0.008 1

23 0.019 0.041 0.006 0.041 0.528 0.835 0.275 0.835 0.681 1 0.415 1

24 0.249 0.001 0.086 0.001 0.882 0.028 0.640 0.028 0.250 0.564 0.371 0.564

25 0.003 0.372 0.001 0.372 0.000 0.003 0.000 0.003 0.038 1 0.022 1

26 0.000 0.319 0.319 0.000 0.000 0.319 0.319 0.000 0.000 0.319 0.319 0.000

27 0.318 0.180 0.014 0.318 0.180 0.276 0.016 0.180 1 0.045 0.008 1

28 0.318 0.000 0.318 0.318 0.318 0.000 0.096 0.318 1 0.000 0.206 1

29 0.183 0.021 0.862 0.183 1 0.001 0.179 1 1 0.001 0.287 1

30 0.209 0.000 0.675 0.209 0.848 0.000 0.476 0.848 0.565 0.000 0.876 0.565

31 0.318 0.042 0.318 0.318 0.655 0.021 0.158 0.406 0.415 0.071 0.083 0.249

32 0.083 0.414 1.000 0.083 0.083 0.414 1 0.083 0.083 0.414 1 0.083

33 0.370 0.044 0.010 0.370 1.000 0.163 0.052 1 0.528 0.292 0.128 0.528

34 0.480 0.002 0.162 0.480 0.763 0.005 0.201 0.763 1 0.008 0.336 1

35 0.318 0.083 0.180 0.318 0.158 0.158 0.415 0.158 0.158 0.318 0.158 0.158

36 0.000 0.004 0.034 0.000 0.318 0.007 0.096 0.318 0.000 0.004 0.034 0.000

37 0.000 0.013 0.000 0.013 0.000 0.799 0.000 0.799 0.000 0.317 0.000 0.317

38 0.318 0.318 0.249 0.318 0.564 0.045 0.058 0.564 0.318 0.415 0.206 0.318

39 0.000 0.000 0.318 0.000 0.000 0.000 0.318 0.000 0.000 0.000 0.318 0.000

40 0.201 0.000 0.008 0.201 0.530 0.000 0.005 0.530 0.059 0.000 0.775 0.059

41 0.938 0.000 0.000 0.938 0.093 0.000 0.000 0.093 0.109 0.000 0.003 0.109

42 0.339 0.000 0.000 0.339 0.206 0.000 0.000 0.206 0.253 0.000 0.000 0.253

43 0.366 0.000 0.001 0.366 0.318 0.000 0.001 0.318 0.180 0.000 0.000 0.180

44 0.002 0.000 0.028 0.028 0.000 0.000 0.003 0.003 0.016 0.000 0.116 0.116

45 0.046 0.000 0.080 0.046 0.041 0.000 0.056 0.041 0.527 0.000 0.717 0.527

6.5 Conclusions and Future Work

In this chapter we studied the problem of selecting the most appropriate time se-

ries distance measure for a given query out of a pool of measures, so as to perform time

series NN classification. We demonstrated that the problem is important and chal-

131

Figure 6.4: Average runtimes per query, for each dataset, for all parts of the
Homogeneity-based measure selection method: the computations of MSM, DTW,
ERP, Homogeneity-based scheme, and the final measure selection part. The total
average runtime per query for each dataset (summing up all of the above parts) is
also shown.

lenging, and proposed a novel framework to solve it. The framework consists of two

steps, the offline pre-processing step, and the online query classification step. Based

on this framework we developed two methods for identifying the T -neighborhood of

the query. Each method, in order to create the neighborhood, accounts for a different

scheme, named Distance ratio-based or Homogeneity-based. The classification

error rates attained by our framework on 45 datasets are very promising for this

problem, since they are at least as good or better than those for Cross Validation

on up to 35 datasets.

Additional measures can be investigated that will correctly classify the objects

misclassified by the current measures in our pool, and that will make our methods

132

achieve even smaller classification error rates. New schemes can also be explored for

defining the T -neighborhood and alternative statistical tests.

133

CHAPTER 7

MODEL-BASED TIME SERIES INDEXING FOR NEAREST NEIGHBOR

CLASSIFICATION

As mentioned in Chapter 6, we can search large time series databases with any

of the distance measures referred to so far. However, this approach can be computa-

tionally expensive due to the quadratic complexity of the distance measures, unless

applying, e.g., lower-bounding techniques. An example of the latter alternative is the

lower-bounding technique for cDTW [130], which can achieve important speedups.

Another approach would be to first represent each class of the time series database

with a model, and then perform searching based on the constructed models, which has

received limited attention in time series literature. We focus on Hidden Markov Mod-

els (HMMs) [73, 131], which are widely known and have been applied to a variety of

domains, such as biology, speech recognition [73], and music retrieval [8, 132]. HMMs

model the underlying structure of sequences determining the relationships between

their observations [133], and, although they may be computationally expensive for

their training, once they are constructed they can be highly applicable to time series,

as shown next through the classification task.

In this chapter, we deal with both effectiveness (accuracy) and efficiency (run-

time) when searching time series databases, and hence we present a novel approach,

named MTSI (shorthand for Model-based Time Series Indexing). Given sets of time

series of certain classes, MTSI first models their underlying structure through the

training of one HMM per class. At runtime, given a query time series of unknown

class, MTSI finds the top-K models that have most likely produced the query. Then,

134

it refines the search by applying an appropriate distance measure between the query

and all the training time series that compose the K selected models. What remains

to be answered is what distance measure to use during the refine step. Intuitively,

given a collection of distance measures, we can choose the one providing the highest

classification accuracy on the training set of the database. The main contributions of

this chapter include:

• A novel way of representing time series of a specific class via an HMM, and a

comparative evaluation of this representation against three distance measures

(DTW, ERP, and MSM) in terms of classification accuracy on the training sets

of 45 datasets [124]. The evaluation shows that HMMs can attain significantly

higher accuracy in 18 datasets, relatively higher accuracy in 12, and equal ac-

curacy in 4; hence better or equal accuracy in 34 datasets.

• MTSI: an indexing framework for effective and efficient time series NN classifi-

cation. The framework works in a filter-and-refine manner, by exploiting the

novel model-based representation of time series belonging to the same class.

• An extensive experimental evaluation on NN classification accuracy between

MTSI and the Cross Validation method defined over DTW, ERP, and MSM,

on 33 datasets. We observed that MTSI is at least as good as Cross Validation

in 23 datasets, while achieving a speedup of up to an order of magnitude,

showing both its effectiveness and efficiency.

We have to mention that although there have been several very interesting time

series representation methods proposed in the literature (Section 2.3), they target in

representing each individual time series by taking advantage of its structure. However,

here we try to represent “groups” of time series that belong to the same class, which

is orthogonal to the previously proposed techniques. In addition, our approach differs

from selecting the best model in Markovian Processes [134], since at each state we

135

neither perform an action nor give a reward. Furthermore, model-based kernel for

time series analysis requires significant amount of time [135]. Conditional Random

Fields (CRFs) [136, 137] can be used for modeling temporal patterns. Nonetheless,

we do not target in finding and modeling patterns, rather to represent groups of

“homogeneous” sequences by identifying the relationships among their observations.

7.1 MTSI: Model-based Time Series Indexing

Here, we describe how we can represent classes of time series with appropriate

training of HMMs, and describe the MTSI framework, which takes advantage of the

trained models for NN classification. Using the same notation as in Chapter 6, given

a distance measure distx, the distance between time series X and Y is denoted as a

function ddistx(X, Y).

7.1.1 Hidden Markov Models

When a database consists of sets of time series belonging to certain classes,

HMMs can be used to model the different classes after being trained on their respec-

tive time series. This lies on the fact that a trained HMM can reflect the probabilistic

relations of the values within the sequences, and consequently represent their common

structure. Thus, HMMs can be highly applicable for retrieval or classification [132].

Given a query Q, we can look for the model that maximizes the likelihood of hav-

ing generated Q. With this direction in mind, the time series matching problem is

transformed to probabilistic-based matching.

7.1.2 Training HMMs

Assume that we have a dataset D comprised of N training time series and z

classes C1, . . . , Cz. Let Ci be the set of training time series that belong to class Ci,

136

with i = 1, . . . , z. The size of Ci is denoted as |Ci| = ni. The training phase of an

HMM for each Ci is split to two phases, which are performed offine: a) initialization

and b) iterative refinement.

7.1.2.1 Initialization Step

For each time series Xj (j = 1, . . . , ni) of Ci (i ∈ [1, z]) we compute the average

distance of all other time series Xk ∈ Ci (j 6= k) to Xj, which we denote as ajdistx , i.e.,

ajdistx =
1

ni − 1

∑
∀Xk∈Ci,Xj 6=Xk

ddistx(Xj, Xk).

For the above computation we choose DTW to be the distance measure, i.e., distx =

DTW, since it has been shown to be one of the most competitive measures for time

series matching [32]. In addition, we keep track of the warping path of all the pair-wise

time series alignments involved in this process.

Next, we identify the medoid of Ci, denoted as XµCi
, which is the time series

with the minimum average distance to the rest of the training set, where

µCi
= arg min

j
(ajdistx),∀(j = 1, . . . , ni).

The medoid XµCi
is broken into M equal-sized segments, where each segment

m ∈ [1,M] corresponds to one HMM state. Using these segments and the stored

warping paths we can determine the observed values of each state. Specifically, for

each state (that corresponds to a segment m) the observed values include all elements

of XµCi
in m, along with the elements of all time series in Ci that have been aligned

to elements of m; the latter can be retrieved from the stored warping paths.

A common case in HMMs is to have for each state a Gaussian distribution for

E, which is defined by the mean and standard deviation of the stored elements. To

compute T , since we consider each segment as a state, at time t when an observation

137

is emitted we can either stay at the same state or move forward to the next state.

Let |st| denote the total number of elements at time t of state st. The probability of

jumping to the next state is p = ni/|st|. This is quite straightforward: consider only

one segment and one time series Xj (j = 1, . . . , ni), and suppose that Xj contributes

y elements to that segment. Since only the last element in the segment can lead to

a transition from st to st+1, the transition probability is 1/y. Considering now all ni

time series in the segment, the probability of a state transition is p = ni/|st|. Finally,

the probability of staying at the same state is (1− p) = (|st| − ni)/|st|, while for the

last state it is 1. In total, the complexity of this step is O((n2
imaxj∈[1,ni]|Xj|)2).

7.1.2.2 Iterative Refinement Step

In this step, we refine the z HMMs constructed during initialization.

For a specific class Ci (i ∈ [1, z]), for each Xj ∈ Ci, we compute the Viterbi

algorithm [73] to find its best state sequence. Specifically, let us denote as δ the

Mx|Xj| probability matrix. Each Xj always starts from state 1 (thus π1 = 1), and in

the initialization phase the log-likelihood of its first element is computed according

to the Gaussian distribution. The remaining elements of the first column of δ are set

to −∞. Since to get an observation we have either stayed at the same state or have

performed a transition from the previous state, in the recursion phase we consider only

the values of δ representing the probabilities of the previous element for the previous

and the current state. For cell (u, v) these values are δ(u, v − 1) and δ(u− 1, v − 1),

which were computed in the initialization step. Hence, we first find the most probable

transition by computing m = max(δ(u, v− 1) + log(tuu), δ(u− 1, v− 1) + log(tu−1u)),

and then δ(u, v) = m + log(eu(k)). Finally, we backtrack from δ(M, |Xj|) and store

the elements of Xj falling within each state. Having done this step for all Xj ∈ Ci,

138

the mean and standard deviation for E of each state, and also T are updated. The

complexity of the aforementioned procedure is O(M
∑ni

j=1 |Xj|).

The refinement step is performed for the z HMMs and is repeated until a stop-

ping criterion is met, e.g., the classification accuracy on the N training time series

composing D cannot be further improved (Section 7.2.1.2). The final outcome of this

step is a set of z HMMs, denoted as H = {H1, . . . , Hz}, where each Hi ∈ H defines a

probability distribution for Ci, which essentially describes the likelihood of observing

any time series of class Ci.

7.1.3 Filter-and-Refine Framework

Given D, we are now ready to present the MTSI framework.

7.1.3.1 Offline Step

First, we construct H as described in Section 7.1.2. To make our frame-

work more generic, assume that we have available a set of l distance measures

{dist1, . . . , distl}. For each distx (x ∈ [1, l]) we compute the NN classification ac-

curacy on the N training time series using leave-one-out cross validation.

7.1.3.2 Filter Step

Since we have created a “new” probabilistic space for time series similarity

matching, we should define a way of measuring how “good” each HMM model Hi ∈ H

is for a query Q. This can be achieved by applying the Forward algorithm [73], which

computes the likelihood of Q having been produced by Hi. Thus, the “goodness” of

Hi is the likelihood estimate given by the algorithm. The complexity of the Forward

algorithm is O(|Q|M2). Note that this step involves only z computations of the

Forward algorithm and it is significantly fast, given that in practice z is rarely higher

139

than 50. This is based on the fact that in the 45 datasets of the UCR archive [124],

which cover real application domains, z is at most 50. After computing the likelihood

of each Hi for Q, we identify the K models with the highest likelihood of producing

Q.

7.1.3.3 Refine Step

Next, the training time series that comprise each of the top-K selected models

are evaluated with Q. This evaluation is performed using the distance measure that

achieved the highest classification accuracy on the training set during the offline step.

Finally, Q is assigned with the class of the closest time series. The complexity of this

step is O(K ′comp(distx)), where K ′ is the total number of training time series corre-

sponding to the K selected models, and comp(distx) is the complexity of computing

the distance between two time series using distx (selected in the offline step).

It has to be mentioned that the smaller the K the faster our approach is. However,

since each HMM is a very compact representation of all time series of a certain class,

reducing the number of models selected at the filter step may greatly reduce accuracy,

as the time series that will be evaluated at the refine step may not include those of

the correct class. On the contrary, as K increases towards z, more training time

series will be evaluated, resulting in the brute-force approach evaluating Q with all

time series when K = z, which is certainly undesirable. Hence, a good value for K is

needed to achieve a good tradeoff between effectiveness and efficiency. The choice of

distance measure also influences accuracy, but it is beyond the scope of this chapter

to select the “best” measure for each Q.

140

7.2 Experiments

In this section, we present the setup and the experimental evaluation for HMM-

based representation and MTSI.

7.2.1 Experimental Setup

7.2.1.1 Datasets

Similarly to Chapter 6, we experimented on the 45 time series datasets available

from the UCR archive [124]. In Table 7.1 we present the number of training and test

time series (“train size”, “test size”), which are different than the ones presented in

Table 6.4.1. The length of each time series (“length |X|”) and the number of classes

(“class num. z”) for each dataset are also presented.

7.2.1.2 Methods

First, we evaluated the performance of HMMs (Section 7.1.2) against DTW,

ERP, and MSM (Section 6.2). Secondly, we compared MTSI with Cross Validation

using the same three measures. The rationales behind selecting these measures are

the same as those mentioned in Chapter 6. The Cross Validation method works

as described in Section 6.4.1. Note that if more than one measures provide the

same highest classification accuracy on the training set, then the accuracy of Cross

Validation is the accuracy on the test set of the measure that outperforms the other

tied measure(s) on most datasets (on their training sets).

For each dataset, parameter c of MSM [42] was selected from {0.01, 0.1, 1}, and

was found using the same procedure as described in Section 6.4.1. For the training

of HMMs, for each of the 45 datasets, we varied M from 0.1 to 0.9 ∗ |X| (step

0.1) and applied 15 refinement iterations (135 combinations). For each combination

141

we measured the percentage of training time series for which the model producing

the highest likelihood through the Forward algorithm was the correct one. Then,

the combination leading to the highest accuracy was selected. If more than one

combinations provided the same highest accuracy we chose the smallest M (for further

ties smallest number of iterations).

7.2.1.3 Evaluation Measures

We first evaluated the performance of HMMs against DTW, ERP, and MSM on

the training sets, and between MTSI and Cross Validation on the test sets in terms

of classification error rate. For the HMMs, each training time series is evaluated

with all HMMs representing the classes of a dataset using the Forward algorithm,

and the class of the HMM yielding the highest probability is considered to be the

result of the classifier. Secondly, we evaluated the efficiency of MTSI and Cross

Validation. Nonetheless, runtime measurements may depend on particular aspects

of the hardware, implementation details, compiler optimizations, and programming

language. To overcome these limitations, we also present per dataset the percentage of

classes selected at the filter step ((K/z)∗100), and, more importantly, the percentage

of training time series that were finally evaluated by MTSI, as the number of time

series may (sometimes greatly) deviate among classes in the same dataset. MTSI was

implemented in Matlab, while, for efficiency, DTW, MSM, ERP, and the Forward

algorithm were implemented in Java. Experiments were performed on a PC running

Linux, with Intel Xeon Processor at 2.8GHz.

7.2.2 Experimental Results

Next, we present our experimental findings for the methods and evaluation

measures described in Section 7.2.1.

142

7.2.2.1 Classification accuracy of HMMs

In Table 7.1 we show for each of the 45 datasets the classification error rates

attained on the training set for MSM, DTW, ERP, and HMMs. The percentage of

time series length |X| defining M and the number of iterations to yield the error rate

for HMMs is presented in columns “state perc.” and “iter. num.”, respectively. The

c value for MSM is shown in column “parameter c (MSM)”. We observe that HMMs

achieve better or equal error rate than that of the competitor distance measures in 34

datasets, out of which they outperform them in 30. The performance of HMMs is in

many cases significantly better than all competitors. For example, for ECGFiveDays

HMMs achieve an error rate of 0% as opposed to the next best which is 26.09%

(achieved by both ERP and MSM), while for 18 datasets (e.g., 50Words, Lightning-7,

Adiac, Beef, OliveOil, and ECG torso) the error rate of HMMs is at least two times

lower than that of the competitors. These numbers show that modeling time series

classes with HMMs is highly competitive and promising for NN classification.

7.2.2.2 Classification accuracy of MTSI

In Table 7.2 we present the error rates of MTSI and Cross Validation on the

test sets of the 33 datasets with z > 2. We have to mention that if z = 2 with

MTSI we can either select one or two models for the refine step. However, K = 1

would essentially exclude the refine step, since time series of only one class would be

evaluated, which is meaningless. Hence, the classification error rate would depend

solely on how well the HMMs represent and discriminate the classes of the dataset,

which is not always the case due to their very compact representation of (sometimes

large) classes. In addition, K = 2 would make our approach perform brute-force

search, which is undesirable. In columns “top K”, “% classes”, “avg train num.”,

143

Table 7.1: NN classification error rates attained by MSM, DTW, ERP, and HMMs on
the training set of 45 datasets from the UCR repository of time series datasets. The
table shows for each dataset: the number of training and test objects, the length of
each time series in the dataset, the number of classes, the value of parameter c used
by MSM on that dataset that yielded the lowest error rate on the training set (when
two or three values are given, the one in italics was randomly chosen), the number
of states as a percentage of the time series length and the number of iterations for
which the HMMs achieved the lowest error rate on the training set. The numbers in
bold indicate the smallest error rate.

ID Dataset train error rate (%) train test length class parameter state iter.
MSM DTW ERP HMMs size size |X| num. z c (MSM) perc. num.

1 Synthetic 1.33 1.00 0.67 0.33 300 300 60 6 0.1 0.4 3
2 CBF 0.00 0.00 0.00 0.00 30 900 128 3 0.1 0.5 2
3 FaceAll 1.07 6.79 2.50 1.25 560 1,690 131 14 1 0.5 11
4 OSU 19.50 33.00 30.50 17.00 200 242 427 6 0.1 0.3 11
5 SwedishLeaf 12.40 24.60 13.40 12.20 500 625 128 15 1 0.9 6
6 50Words 21.11 33.11 28.22 8.89 450 455 270 50 1 0.5 1
7 Trace 1.00 0.00 9.00 0.00 100 100 275 4 0.01 0.3 2
8 TwoPatterns 0.00 0.00 0.00 0.00 1,000 4,000 128 4 1 0.1 1
9 FaceFour 8.33 25.00 12.50 0.00 24 88 350 4 1 0.1 1

10 Lightning-7 27.14 32.86 28.57 7.14 70 73 319 7 1 0.2 1
11 Adiac 38.97 40.51 39.49 15.90 390 391 176 37 1 0.5 8
12 Fish 13.71 26.29 17.14 7.43 175 175 463 7 0.1 0.5 4
13 Beef 66.67 53.33 66.67 23.33 30 30 470 5 0.1 0.4 2
14 OliveOil 16.67 13.33 16.67 3.33 30 30 570 4 0.01 0.3 2
15 ChlorineConc. 38.97 38.97 38.76 56.32 467 3,840 166 3 1 0.7 4
16 ECG torso 12.50 32.50 25.00 2.50 40 1,380 1,639 4 1 0.4 3
17 Cricket X 18.46 20.26 21.54 25.38 390 390 300 12 1 0.5 14
18 Cricket Y 24.10 20.51 23.33 19.23 390 390 300 12 0.1, 1 0.4 9
19 Cricket Z 24.10 22.56 24.87 23.08 390 390 300 12 1 0.4 14
20 Diatom Red. 6.25 6.25 6.25 0.00 16 306 345 4 0.01, 0.1, 1 0.1 4
21 FacesUCR 2.50 10.00 5.50 0.50 200 2,050 131 14 1 0.8 9
22 Haptics 49.68 58.71 54.19 29.68 155 308 1,092 5 1 0.1 15
23 InlineSkate 50.00 59.00 49.00 43.00 100 550 1,882 7 1 0.5 3
24 MALLAT 5.45 5.45 5.45 0.00 55 2,345 1,024 8 1 0.1 1
25 MedicalImages 27.82 27.56 26.51 34.91 381 760 99 10 0.1 0.4 13
26 StarLightC. 10.70 9.60 13.80 8.60 1,000 8,236 1,024 3 0.1 0.5 14
27 Symbols 0.00 4.00 8.00 0.00 25 995 398 6 0.1 0.1 1
28 uWaveGest X 25.78 29.35 26.67 25.22 896 3,582 315 8 0.1, 1 0.5 11
29 uWaveGest Y 28.24 37.05 33.93 34.60 896 3,582 315 8 1 0.7 13
30 uWaveGest Z 29.24 33.59 31.25 27.46 896 3,582 315 8 1 0.2 12
31 WordsSynon. 22.10 36.33 28.46 13.86 267 638 270 25 1 0.8 13
32 ECGThorax1 18.17 20.11 17.83 7.17 1,800 1,965 750 42 1 0.5 15
33 ECGThorax2 10.83 14.17 11.72 7.67 1,800 1,965 750 42 1 0.5 14
34 Gun Point 4.00 18.00 8.00 8.00 50 150 150 2 0.01 0.3 2
35 Wafer 0.10 1.40 0.10 1.70 1,000 6,164 152 2 1 0.9 4
36 Lightning-2 16.67 13.33 13.33 5.00 60 61 637 2 0.01 0.1 15
37 ECG 14.00 23.00 18.00 12.00 100 100 96 2 1 0.8 2
38 Yoga 12.00 18.33 17.33 22.33 300 3,000 426 2 0.1 0.2 15
39 Coffee 25.00 14.29 25.00 21.43 28 28 286 2 0.01 0.3 1
40 ECGFiveDays 26.09 43.48 26.09 0.00 23 861 136 2 1 0.2 4
41 ItalyPowerDemand 4.48 4.48 5.97 5.97 67 1,029 24 2 0.1, 1 0.9 2
42 MoteStrain 15.00 25.00 25.00 0.00 20 1,252 84 2 0.1 0.5 7
43 SonySurfaceI 10.00 20.00 15.00 0.00 20 601 70 2 1 0.1 1
44 SonySurfaceII 11.11 14.81 18.52 3.70 27 953 65 2 0.1 0.3 1
45 TwoLeadECG 4.35 8.70 4.35 0.00 23 1,139 82 2 0.01, 0.1 0.1 4

“% train obj.” we show the K value used at the filter step of MTSI (due to space

limitations we present the smallest K < z for which the accuracy could not be

further improved or provided a competitive error rate), the ratio (K/z) ∗ 100, the

144

average number of training time series evaluated per query at the refine step, and the

percentage of the “train size” to which this average corresponds to, respectively.

We observe that MTSI achieves at least as good or better error rates than Cross

Validation in 23 datasets; it is better in 17 datasets and equal in 6. There are two

reasons for such competitive performance of MTSI: a) the correct class of the test time

series is among the K models selected at the filter step, and the distance measure

applied at the refine step is able to better differentiate the correct class from the rest

K − 1 classes, since there are less training objects to throw away as being “bad”

matches compared to brute-force search, and b) the HMMs of these 23 datasets have

been constructed exploiting a sufficient number of training time series comprising their

classes, which makes the probability distribution of such classes effectively represent

these (and similar) time series.

Figure 7.1: Speedup of MTSI against Cross Validation for 33 datasets. Each bar
represents the ratio of the Cross Validation average total runtime to that of MTSI
for NN classification of a test object.

145

Table 7.2: NN classification error rates attained by MTSI and Cross Validation on
the test set of 33 datasets from the UCR repository of time series datasets. The
table also shows for each dataset: the classification error rate of MSM, DTW, and
ERP on the test set, the number of HMM models used at the refine step of MTSI and
the respective percentage of classes it corresponds to, the average number of training
objects evaluated at the refine step per test object, and the percentage of training
objects this average corresponds to. The numbers in bold indicate the smallest error
rate.

ID Dataset MTSI Cross error rate (%) top K % classes avg train % train
Valid. MSM DTW ERP num. obj.

1 Synthetic 3.33 3.70 2.67 0.70 3.70 2 33.33 100.00 33.33
2 CBF 3.67 1.22 1.22 0.30 0.30 2 66.67 20.45 68.16
3 FaceAll 18.99 18.88 18.88 19.20 20.20 5 35.71 200.00 35.71
4 OSU 22.73 19.83 19.83 40.90 39.70 5 83.33 169.00 84.50
5 SwedishLeaf 9.60 10.40 10.40 21.00 12.00 3 20.00 100.87 20.17
6 50Words 19.56 19.56 19.56 31.00 28.10 40 80.00 412.26 91.61
7 Trace 0.00 0.00 7.00 0.00 17.00 2 50.00 49.82 49.82
8 TwoPatterns 0.05 0.08 0.08 0.00 0.00 2 50.00 498.47 49.85
9 FaceFour 4.55 5.68 5.68 17.00 10.20 2 50.00 11.44 47.68

10 Lightning-7 21.92 23.29 23.29 27.40 30.10 6 85.71 64.18 91.68
11 Adiac 33.76 38.36 38.36 39.60 37.90 2 5.41 20.96 5.37
12 Fish 7.43 8.00 8.00 16.70 12.00 6 85.71 149.87 85.64
13 Beef 46.67 50.00 50.00 50.00 50.00 3 60.00 18.00 60.00
14 OliveOil 16.67 13.33 16.67 13.33 16.67 3 75.00 21.80 72.67
15 ChlorineConc. 40.42 37.40 37.27 35.20 37.40 2 66.67 362.14 77.55
16 ECG torso 15.07 10.29 10.29 34.90 25.00 3 75.00 30.36 75.91
17 Cricket X 25.90 27.18 27.18 22.30 29.23 5 41.67 162.54 41.68
18 Cricket Y 20.00 20.80 16.67 20.80 21.28 5 41.67 162.38 41.64
19 Cricket Z 20.77 20.77 21.54 20.77 24.36 10 83.33 330.00 84.62
20 Diatom Red. 4.58 4.58 4.58 3.30 5.23 3 75.00 14.67 91.67
21 FacesUCR 3.20 3.27 3.27 9.51 4.24 13 92.86 191.02 95.51
22 Haptics 57.47 59.42 59.42 62.30 57.47 3 60.00 98.00 63.22
23 InlineSkate 57.45 56.91 55.64 61.60 56.91 6 85.71 87.25 87.25
24 MALLAT 6.74 6.74 6.74 6.60 7.46 6 75.00 41.98 76.33
25 MedicalImages 27.89 27.89 24.74 26.30 27.89 7 70.00 334.98 87.92
26 StarLightC. 9.35 9.30 11.72 9.30 13.62 2 66.67 759.62 75.96
27 Symbols 3.12 3.02 3.02 5.00 5.83 5 83.33 21.00 83.98
28 uWaveGest X 22.28 22.36 22.36 27.30 25.71 5 62.50 574.04 64.07
29 uWaveGest Y 30.35 30.37 30.37 36.60 33.61 5 62.50 553.80 61.81
30 uWaveGest Z 29.12 31.07 31.07 34.20 32.97 2 25.00 222.04 24.78
31 WordsSynon. 23.67 23.51 23.51 35.10 32.13 24 96.00 263.92 98.85
32 ECGThorax1 18.37 19.29 18.27 20.90 19.29 2 4.76 85.99 4.78
33 ECGThorax2 10.89 11.25 11.25 13.50 10.74 7 16.67 300.03 16.67

Carefully analyzing our experimental findings, we concluded that 16 training

time series is a sufficient number to provide a good model representing a class of

objects. This claim is supported by the following examples, where MTSI yields worse

error rates than Cross Validation. Datasets 14, 16, and 20 consist of 4 classes, but

no class of the first two has more than 15 training time series, while the classes of

the latter include only 1, 6, 5, and 4 time series. Moreover, none of the 6 classes of

dataset with ID 27 has more than 8 time series, WordsSynon. (ID 31) with z = 25 has

only 4 classes with more than 15 time series, as happens with 3 out of the 7 classes

146

of InlineSkate (ID 23). The error rates for datasets ChlorineConc. and StarLightC.

(ID 15 and 26) can be attributed to overfitting, since for the first no class comprises

of less than 91 time series, while for the second all classes have more than 152 time

series. In addition, building a histogram over the number of classes that include

specific numbers of training time series, we observed that 167 out of the 399 classes

(comprising the 33 datasets) have up to 15 training time series. As a result, we would

like to emphasize the need for a sufficient number of training time series per class.

7.2.2.3 Efficiency

In Figure 7.1 we present the average speedup per test time series when using

MTSI instead of Cross Validation for 33 datasets. The speedup is the runtime ratio

of Cross Validation over MTSI, and it intuitively depends on K. For example, we

gain up to an order of magnitude in terms of runtime for dataset with ID 32, since

MTSI selects only 2 out of 42 classes at the filter step, and its error rate is lower than

that of Cross Validation. We observe that there are several datasets for which

there is no significant speedup. This is mainly because, for these datasets, MTSI could

not achieve a competitive error rate for large K, even for z − 1 in some cases. Thus,

for such values its runtime converged to that of brute-force using the appropriate

distance measure. Additionally, there may be cases where the length of the time

series is not huge enough to provide a noticeable difference in the runtimes of the two

competitors (ID 25), resulting in a slight speedup. The latter result may also happen

when “train size” is small and/or the average number of training time series for the

K selected models is much higher than that of the non-selected ones. The last claim

holds, e.g., for datasets with ID 6, 15, 20, 25, 26, where the value of “% train obj.”

is significantly higher than that of “% classes”, showing that the training time series

are not equally distributed to all classes. In Table 7.2 the percentage of training time

147

series evaluated ranges from just 4.78% (ID 32) to 98.85% (ID 31), which is the worst

possible case since no smaller K could provide better accuracy. We have to point

out, though, that out of the 23 datasets for which MTSI is better than or equal to

Cross Validation there are 11 datasets for which less than 50% of their training set

is evaluated.

Based on these results, we can argue that MTSI outperforms Cross Validation

in classification error rate more often than not, while allowing for a speedup of up

to an order of magnitude. An acute reader may argue that the runtime comparison

of the two methods is unfair since we could alternatively have used existing speedup

methods for DTW[129], or even faster techniques such as cDTW with LB Keogh

[130]. Nonetheless, we argue that any speedup achieved by each method used by

Cross Validation is also equally beneficial for MTSI. This is due to the fact that

MTSI is using the exact same set of methods for the refine step, and thus any speedup

obtained by Cross Validation is essentially exploited by MTSI as well (the filter step

cost is negligible compared to the refine step).

7.3 Conclusions and Future Work

In this chapter, we presented an effective way of modeling classes of time series

via HMMs, which have been shown to be highly applicable to a variety of domains.

Based on such models, we presented MTSI, a filter-and-refine framework for NN clas-

sification of time series, which, given a query time series, first selects the K most

probable models having produced the query, and then applies a distance measure

between the query and the training time series of the K classes. Experimenting with

45 widely known time series datasets and three distance measures, DTW, ERP, and

MSM, we observed that HMMs provide better or equal classification accuracies than

148

the competitor measures on the training set in 34 datasets. Moreover, MTSI has equal

or better accuracy than Cross Validation in 23 out of 33 datasets, while achieving

a speedup of up to an order of magnitude.

For future work MTSI can be applied on larger datasets with more classes,

where we expect the performance of our approach to further improve. Individually

training each HMM, instead of forcing the same number of states and iterations for

all HMMs in a dataset, will also be very beneficial. Finally, the decision for K could

be automated so as to provide a satisfying tradeoff between accuracy and speedup,

and also incorporate MTSI in semi-supervised learning methods.

149

CHAPTER 8

CASE STUDY: MODEL-BASED VS. DISTANCE-BASED SEARCH IN TIME

SERIES DATABASES

As mentioned in Chapter 6, large databases of time series can be exploited so

as to extract knowledge on what has happened in the past or to recognize what is

happening in the present. Assume that we want to search the database for time

series corresponding to a specific activity, such as “person falling down”. The search

process must decide, for each time series, whether that time series is a good match

for this particular search (of instances of “person falling down”) or not. This can be

done as follows: (a) assign a score to each time series in the database, which indicates

how good a match each time series is for the particular search we are conducting, (b)

rank database time series according to their score, (c) return to the user the top-K

matches, where K is a user-specified parameter.

The most critical step of the aforementioned procedure is the first one. Any

mathematically valid scoring function can be used, but the choice will essentially

determine the accuracy of the results. Thus, it is of particular importance to assign

the best scores to the time series that the user would consider to be “correct matches”

for the query.

In distance-based search, to perform our search we provide as a query a time

series, e.g., time series corresponding to the “falling down” activity. Then, the score

assigned to each database time series is the distance/similarity score that is computed

using the selected measure. In model-based search, we specify what we are looking for

by submitting as a query a model of the activity. This model can be a Hidden Markov

150

Model, which has been trained on time series, e.g., of the “falling down” activity. The

score that is assigned to each database time series is the output of the model on that

time series. For HMMs, this score can be computed through the Forward algorithm

[73] taking as input the HMM and the time series.

The main contributions of this chapter include: (a) a comparative evaluation of

representing classes of time series via HMMs against four distance measures, DTW,

cDTW, ERP, and MSM in terms of classification accuracy on the training sets of 45

datasets [124]. The evaluation shows that HMMs can attain significantly higher ac-

curacy in 17 datasets, relatively higher accuracy in 11, and equal accuracy in 4; hence

better or equal accuracy in 32 datasets. (b) An extensive experimental evaluation

of model-based search with HMMs and distance-based search with DTW, cDTW,

ERP, and MSM, on 45 datasets in terms of precision vs. recall and runtime. We

observed that HMMs can produce significantly better tradeoffs than the competitors

when trained with a sufficient number of training time series, while they are usually

slower than the distance-based methods [138].

We should mention that the procedure for training HMMs so as to represent

classes of time series is the same as the one described in Section 7.1.2.

8.1 Experiments

8.1.1 Experimental Setup

In this section, we present the setup for the model-based and distance-based

time series search comparison.

We experimented on the 45 time series datasets available from the UCR archive

[124], which were also used in Chapters 6 and 7. We compared HMMs with four

distance measures. Although any measure (Section 2.4) can be used to perform

151

time series similarity search, an exhaustive consideration of all distance measures is

practically impossible and beyond the scope of this chapter. We investigated DTW,

cDTW with Sakoe-Chiba band [37], ERP, and MSM. The rationales for selecting

DTW, ERP, and MSM have been mentioned in Section 6.2. The reason for also

examining the behavior of cDTW is because it is a much faster version of DTW

providing equally good or better results than DTW [32]. The time complexity of all

measures is quadratic, except for cDTW, which depends on the band constraint value.

The performance of HMMs was evaluated against DTW, cDTW, ERP, and MSM on

the training sets in terms of classification error rate. To evaluate the model and

distance-based time series search methods we used precision and recall for accuracy,

and runtime for efficiency [138].

With regard to the distance-based search methods, for each dataset, for each

class we used all of its training time series as queries (for a total of 15,741 queries for

all datasets and classes), and found the DTW, cDTW, ERP, and MSM of all test time

series to these queries (in total 61,691 test time series for all datasets). Regarding the

model-based search method, we used each of the 423 trained models as a query and

computed, for each dataset, the probability of each time series of the test set being

produced by that query model. For both types of search methods, after computing the

distances/probabilities, we sorted them in ascending/descending order and identified

the ranks of the test time series that belong to the same “correct” class with that

represented by each query. This was done in order to be able to compute the precision

and recall. We note that for the distance-based methods, for each class, since there

are many query time series we took the average precision and recall [138]. All distance

measures and the Forward algorithm were implemented in Java. Experiments were

performed on a PC running Linux, with Intel Xeon Processor at 2.8GHz.

152

8.1.2 Experimental Results

Next, we present our experimental findings.

8.1.2.1 Classification accuracy of HMMs

In Table 8.1 we show for each of the 45 datasets the classification error rates

attained on the training set for MSM, DTW, cDTW, ERP, and HMMs. The percent-

age of time series length |X| defining M and the number of iterations to yield the

error rate for HMMs, along with the value of the c parameter for MSM are also pre-

sented (all these values are the same as the ones presented in Table 7.1). We observe

that HMMs achieve better or equal error rate than that of the competitor distance

measures in 32 datasets, out of which they outperform them in 28. The performance

of HMMs is in many cases significantly better than all competitors. For example, for

ECGFiveDays HMMs achieve an error rate of 0% as opposed to the next best which

is 17.39%, while for 18 datasets (e.g., 50Words, Lightning-7, Adiac, Beef, OliveOil,

and ECG torso) the error rate of HMMs is at least two times lower than that of the

competitors. These numbers show that modeling time series classes with HMMs is

highly competitive and promising for searching time series databases [138].

8.1.2.2 Precision vs. Recall

In Figures 8.1 - 8.8, we present the average precision vs. recall of all classes

(out of 423), which have at least 1, 10, 60, 120, and 200, less than 5 and 10, and

between 10 and 15 training time series [138]. In all figures we also show the number

of classes of all datasets that satisfy the aforementioned thresholds (“num selected

classes”), and also the total number of training time series of these selected classes

153

Table 8.1: NN classification error rates attained by MSM, DTW, cDTW, ERP, and
HMMs on the training set of 45 datasets from the UCR repository of time series
datasets. The table shows for each dataset: the number of training and test objects,
the length of each time series in the dataset, the number of classes, the value of
parameter c used by MSM on that dataset that yielded the lowest error rate on
the training set (when two or three values are given, the one in italics was randomly
chosen), the number of states as a percentage of the time series length and the number
of iterations for which the HMMs achieved the lowest error rate on the training set.
The numbers in bold indicate the smallest error rate.

ID Dataset train error rate (%) train test length class parameter state iter.
MSM DTW cDTW ERP HMMs size size |X| num. z c (MSM) perc. num.

1 Synthetic 1.33 1.00 0.33 0.67 0.33 300 300 60 6 0.1 0.4 3
2 CBF 0.00 0.00 0.00 0.00 0.00 30 900 128 3 0.1 0.5 2
3 FaceAll 1.07 6.79 4.64 2.50 1.25 560 1,690 131 14 1 0.5 11
4 OSU 19.50 33.00 25.00 30.50 17.00 200 242 427 6 0.1 0.3 11
5 SwedishLeaf 12.40 24.60 18.00 13.40 12.20 500 625 128 15 1 0.9 6
6 50Words 21.11 33.11 23.33 28.22 8.89 450 455 270 50 1 0.5 1
7 Trace 1.00 0.00 1.00 9.00 0.00 100 100 275 4 0.01 0.3 2
8 TwoPatterns 0.00 0.00 0.20 0.00 0.00 1,000 4,000 128 4 1 0.1 1
9 FaceFour 8.33 25.00 12.50 12.50 0.00 24 88 350 4 1 0.1 1

10 Lightning-7 27.14 32.86 20.00 28.57 7.14 70 73 319 7 1 0.2 1
11 Adiac 38.97 40.51 39.74 39.49 15.90 390 391 176 37 1 0.5 8
12 Fish 13.71 26.29 22.86 17.14 7.43 175 175 463 7 0.1 0.5 4
13 Beef 66.67 53.33 50.00 66.67 23.33 30 30 470 5 0.1 0.4 2
14 OliveOil 16.67 13.33 10.00 16.67 3.33 30 30 570 4 0.01 0.3 2
15 ChlorineConc. 38.97 38.97 36.62 38.76 56.32 467 3,840 166 3 1 0.7 4
16 ECG torso 12.50 32.50 7.50 25.00 2.50 40 1,380 1,639 4 1 0.4 3
17 Cricket X 18.46 20.26 17.18 21.54 25.38 390 390 300 12 1 0.5 14
18 Cricket Y 24.10 20.51 18.21 23.33 19.23 390 390 300 12 0.1, 1 0.4 9
19 Cricket Z 24.10 22.56 17.69 24.87 23.08 390 390 300 12 1 0.4 14
20 Diatom Red. 6.25 6.25 6.25 6.25 0.00 16 306 345 4 0.01, 0.1, 1 0.1 4
21 FacesUCR 2.50 10.00 8.00 5.50 0.50 200 2,050 131 14 1 0.8 9
22 Haptics 49.68 58.71 46.45 54.19 29.68 155 308 1,092 5 1 0.1 15
23 InlineSkate 50.00 59.00 58.00 49.00 43.00 100 550 1,882 7 1 0.5 3
24 MALLAT 5.45 5.45 1.82 5.45 0.00 55 2,345 1,024 8 1 0.1 1
25 MedicalImages 27.82 27.56 26.25 26.51 34.91 381 760 99 10 0.1 0.4 13
26 StarLightC. 10.70 9.60 9.30 13.80 8.60 1,000 8,236 1,024 3 0.1 0.5 14
27 Symbols 0.00 4.00 4.00 8.00 0.00 25 995 398 6 0.1 0.1 1
28 uWaveGest X 25.78 29.35 24.89 26.67 25.22 896 3,582 315 8 0.1, 1 0.5 11
29 uWaveGest Y 28.24 37.05 27.57 33.93 34.60 896 3,582 315 8 1 0.7 13
30 uWaveGest Z 29.24 33.59 30.13 31.25 27.46 896 3,582 315 8 1 0.2 12
31 WordsSynon. 22.10 36.33 27.34 28.46 13.86 267 638 270 25 1 0.8 13
32 ECGThorax1 18.17 20.11 18.11 17.83 7.17 1,800 1,965 750 42 1 0.5 15
33 ECGThorax2 10.83 14.17 12.44 11.72 7.67 1,800 1,965 750 42 1 0.5 14
34 Gun Point 4.00 18.00 4.00 8.00 8.00 50 150 150 2 0.01 0.3 2
35 Wafer 0.10 1.40 0.30 0.10 1.70 1,000 6,164 152 2 1 0.9 4
36 Lightning-2 16.67 13.33 10.00 13.33 5.00 60 61 637 2 0.01 0.1 15
37 ECG 14.00 23.00 14.00 18.00 12.00 100 100 96 2 1 0.8 2
38 Yoga 12.00 18.33 17.67 17.33 22.33 300 3,000 426 2 0.1 0.2 15
39 Coffee 25.00 14.29 14.29 25.00 21.43 28 28 286 2 0.01 0.3 1
40 ECGFiveDays 26.09 43.48 17.39 26.09 0.00 23 861 136 2 1 0.2 4
41 ItalyPowerDemand 4.48 4.48 4.48 5.97 5.97 67 1,029 24 2 0.1, 1 0.9 2
42 MoteStrain 15.00 25.00 25.00 25.00 0.00 20 1,252 84 2 0.1 0.5 7
43 SonySurfaceI 10.00 20.00 10.00 15.00 0.00 20 601 70 2 1 0.1 1
44 SonySurfaceII 11.11 14.81 14.81 18.52 3.70 27 953 65 2 0.1 0.3 1
45 TwoLeadECG 4.35 8.70 8.70 4.35 0.00 23 1,139 82 2 0.01, 0.1 0.1 4

(“sum training t.s.”). DTW is referred to as “Unconstrained DTW” and cDTW as

“Constrained DTW”.

In Figures 8.1 (i.e., all 423 classes have been considered in the displayed curves)

and 8.2 we observe that the precision-recall curve for model-based search is not worse

154

Figure 8.1: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is >= 1.

Figure 8.2: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is >= 10.

than all other distance-based methods in 9% recall, while it is better than all com-

petitors in 20% recall. In Figure 8.3 HMMs method is best in 5% recall, showing

that when there are many time series to train the HMMs, the model-based method

performs noticeably better than the distance-based search methods. On the contrary,

when the number of training time series gets extremely high, i.e., at least 120 or

(much worse) 200 (Figures 8.4 and 8.5), the model-based method is not better than

155

Figure 8.3: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is >= 60.

Figure 8.4: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is >= 120.

the competitors until when recall is around 17% and 33%, respectively. In the latter

figure we also observe that the curves for DTW and ERP-based methods are very

close to that of model-based. The main reason for the last effect is that the curve for

HMMs includes the results from classes with more than 300 training time series, i.e.,

the third class of dataset 26 that has 573 and the second class of dataset 35 that has

903 training time series - 1,476 in total, consisting the 9.37% of the total number of

156

Figure 8.5: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is >= 200.

Figure 8.6: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is < 5.

training time series of all datasets). As a result, there has been overfitting for these

HMMs, which influences their performance when searching time series datasets. How-

ever, it is important to note that, as the threshold increases (Figures 8.1 - 8.5), the

precision is getting higher as the recall increases, which is essentially what we target

for when searching time series databases. Referring to the distance-based methods,

in Figures 8.1 and 8.2 the worst performance is presented by DTW and cDTW, while

157

Figure 8.7: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is < 10.

Figure 8.8: Precision vs. recall for model and distance-based time series search, when
the number of training time series of the classes is between 10 and 15.

in Figures 8.3, 8.4, and 8.5, cDTW and MSM present the worst curve among all

methods.

In Figures 8.6 and 8.7 we show that the precision-recall curve for HMMs is

particularly influenced by the number of time series used to train them. In Figure

8.6 the curve corresponds to the average precision vs. recall of all classes/models

that have less than 5 training time series, while including classes with more training

158

Table 8.2: Average time (in seconds) of DTW, cDTW, MSM, ERP, and HMMs for
searching on each of the 45 datasets from the UCR repository of time series datasets.

ID DTW cDTW MSM ERP HMMs

1 0.102 0.03 0.09 0.048 0.222
2 1.236 0.414 1.08 0.552 3.534
3 2.466 0.396 2.148 1.074 6.888
4 3.438 0.786 2.724 1.506 9.648
5 0.828 0.126 0.696 0.366 6.678
6 2.568 0.564 2.076 1.134 7.74
7 0.6 0.096 0.492 0.258 1.08
8 5.586 1.068 4.62 2.472 3.018
9 0.864 0.12 0.708 0.372 0.504

10 0.588 0.114 0.498 0.258 0.684
11 0.954 0.156 0.75 0.42 2.856
12 2.844 0.504 2.19 1.26 8.736
13 0.51 0.048 0.408 0.24 1.29
14 0.768 0.084 0.612 0.336 1.35
15 9.042 0.894 7.848 3.9 58.074
16 343.44 77.646 283.536 187.506 732.216
17 2.754 0.666 2.388 1.218 8.388
18 2.79 1.164 2.376 1.2 6.864
19 2.79 0.654 2.382 1.206 6.864
20 2.868 0.27 2.232 1.206 1.65
21 3.06 1.008 2.634 1.32 13.722
22 30.246 5.394 23.814 13.446 16.488
23 179.946 81.78 152.154 99.09 483.348
24 202.77 23.928 158.07 88.728 111.804
25 0.708 0.306 0.516 0.276 1.446
26 717.522 295.884 544.434 322.932 2082.708
27 12.33 3.03 9.396 5.1 7.068
28 27.864 4.668 20.874 11.526 84.786
29 27.906 4.722 21.06 11.586 118.428
30 27.84 5.652 20.88 11.556 33.024
31 3.648 0.894 2.922 1.53 18.156
32 89.34 11.346 70.728 38.568 257.526
33 89.166 11.478 71.064 38.946 259.422
34 0.264 0.03 0.21 0.12 0.174
35 11.382 1.404 8.88 4.992 62.634
36 1.998 0.438 1.614 0.87 1.134
37 0.078 0.012 0.066 0.036 0.384
38 42.756 5.502 33.132 18.69 50.4
39 0.18 0.03 0.15 0.084 0.336
40 1.362 0.15 1.11 0.57 1.518
41 0.084 0.042 0.078 0.054 0.312
42 0.75 0.114 0.63 0.342 2.19
43 0.27 0.048 0.234 0.12 0.168
44 0.492 0.066 0.33 0.174 0.606
45 0.696 0.162 0.522 0.294 0.402

time series, up to 10 for Figure 8.7, the curve is much better. In both figures the

most competitive distance-based method is MSM. Finally, in Figure 8.8 we present the

average precision vs. recall of all methods for all classes that have at least 10 and up to

15 training time series. Clearly, we can see that the HMMs perform best for any recall

value, showing that when the HMMs have been constructed exploiting a sufficient

(and concurrently not overwhelming) number of training time series comprising their

classes, the probability distribution of such classes effectively represents their (and

similar) time series.

159

8.1.2.3 Efficiency

In Table 8.2 for the distance-based methods we present, for each dataset, the

average time to find the distance of a training time series/query with all test time

series, and for the model-based method we present the average time per model to

compute the Forward algorithm with all test time series [138]. According to Table

8.2, cDTW method is always faster than the competitor methods, except for dataset

with ID 25 where ERP is the fastest method. We also observe that ERP is 1.5 to 2

time faster than MSM, which is always faster than DTW. In addition, model-based

search is basically slower than all competitors, except for datasets with ID 8 (it is

better than DTW), 9 (worse than only cDTW), and 20, 22, 24, 27, 36, 43, and 45

(worse than only cDTW and ERP). The explanation for these numbers is that the

Forward algorithm is more time consuming than the distance measures. We also have

to note that in several datasets the differences in runtimes are not clearly noticeable

among the competitors.

8.2 Conclusions and Future Work

In this chapter, we compared the classification error rates of HMMs and four

distance measures, DTW, cDTW, MSM, and ERP, on the training sets of 45 datasets.

We observed that HMMs achieve better or equal error rates than the competitors on

32 datasets. Furthermore, evaluating the model-based search with the four distance-

based methods on the 45 datasets we noticed that the model-based method provides

better tradeoffs between precision and recall than the competitors, especially when

a sufficient number of time series is provided to train the HMMs. For future work,

to further improve the precision-recall curves, each HMM (representing a class of a

database) can be individually trained with a different number of states and iterations,

160

instead of forcing all HMMs of a database to have the same values for states and

iterations. In addition, model-based search can be made more efficient by exploring

new ways of computing the Forward algorithm faster.

161

CHAPTER 9

IBSM: INTERVAL-BASED SEQUENCE MATCHING

Many application domains are characterized by sequences of event intervals,

such as sign language [2, 3], medicine [4], geo-informatics [5], cognitive science [6],

linguistics [7], and music informatics [139]. For example, in sign language, sentences

are constructed by events corresponding to occurrences of various grammatical, syn-

tactic, and gestural expressions. Such expressions have a time duration and they

may occur concurrently, hence, sequences of event intervals are formed. Moreover, in

medicine [4], patients typically undergo a series of diagnostic tests and treatements

that have a time duration and may also occur concurrently.

The main advantage of event-interval sequences over traditional event sequences,

which model series of instantaneous events, is that they incorporate the notion of du-

ration in their event representation. Essentially, sequences of event intervals can be

encoded as a collection of labeled events accompanied by their start and end time

values. An example of a sequence of five labeled temporal intervals is shown in Figure

9.1.

Figure 9.1: Example of a sequence of five event intervals. Four event labels are used
in this example: A, B, C, and D. Note that event A occurs twice.

162

Knowledge discovery tasks have been so far the main focus of many studies

on sequences of event intervals. Such tasks include mining patterns and association

rules [2, 140, 141, 142], mining semi-interval partial orders [143], and discovering

relationships for classification [144]. Surprisingly, similarity searching and matching

has received limited attention [145, 146].

Here, we study the problem of full sequence matching of sequences of event

intervals. Developing robust methods for solving this problem will facilitate a wide

range of knowledge discovery tasks (such as classification and clustering) in a wide

range of application domains where such sequences occur, like the ones mentioned

above. Existing similarity measures on discrete sequences, such as the Levenshtein

distance [43], are not directly applicable to sequences of event intervals. As shown

by Kostakis et al. [146], mapping a sequence of event intervals to a discrete event

sequence, by considering only the start and end points of each event interval and

labeling them with the event label that corresponds to that interval, may lead to a

large number of false matches.

A recent similarity measure, Artemis [146], has been proposed for similarity

matching of event-interval sequences. Each sequence is represented by the set of

temporal relations between all pairs of event intervals. Given two sequences, and

using this representation, Artemis finds an optimum matching between their pairs

of event intervals by mapping the sequences into a bipartite graph. Then, similarity

is inferred using the Hungarian algorithm. One limitation of this method is that it

only considers the types of temporal relations in the matching and ignores the actual

duration of the events. For instance, consider the three sequences shown in Figure

9.2. Each sequence consists of two event intervals with the same label and the same

temporal relation: overlap. Hence, Artemis would conclude that the three sequences

are identical. Nonetheless, one could argue that these sequences differ substantially:

163

A

B

A

B

A

B

(i)

(ii)

(iii)

long intervals
long overlap

short and long intervals
short overlap

short intervals
short overlap

Figure 9.2: Three sequences of two event intervals A and B. In all sequences the
temporal relation between the events is the same (they are overlapping), though the
time duration of both the intervals and their overlap is different.

the time durations of the intervals vary among the three sequences and the time

duration of their overlap is also different.

In this chapter, we address this shortcoming of Artemis and present a novel

method, IBSM (shorthand for Interval-Based Sequence Matching), which performs full

sequence matching by: (1) transforming the compared event-interval sequences to a

vector-based representation, and (2) computing the Euclidean distance of the new

representations of the sequences. The key novelty of IBSM is that it explicitly takes

into account the time durations of the event intervals in the sequences and implicitly

their temporal relations [147].

The main contributions of this chapter include:

• a robust vector-based representation of event-interval sequences that facilitates

full sequence matching,

164

• a novel method, called IBSM, for matching event-interval sequences that exploits

the vector-based representation by applying bilinear interpolation and computes

the Euclidean distance of the resulting sequence representations,

• two techniques based on sampling and alphabet reduction that speed up the

runtime and decrease the memory requirements of IBSM when performing near-

est neighbor search in a database of event-interval sequences, and

• an extensive experimental evaluation of IBSM against two state-of-the art mea-

sures on eight real datasets taken from different application domains, where

IBSM is shown to outperform existing state-of-the-art methods in 7 out of 8

datasets, in terms of nearest neighbor classification accuracy, and by up to two

orders of magnitude in terms of runtime.

9.1 Related Work

Existing work on temporal interval sequences has so far been focusing merely on

frequent pattern and association rule mining. Several approaches [148, 149] consider

discovering frequent intervals in databases, where intervals appear sequentially and

are not labeled, while others [150] consider temporally annotated sequential patterns

where transitions from one event to another have a time duration. A graph-based

approach [151] represents each temporal pattern by considering only two types of

relations between event intervals (follow and overlap). In Ale et al. [141], the

lifetime of an item is defined as the time between its first and last occurrence and the

support is calculated with respect to this interval.

A large variety of Apriori-based techniques [140, 152, 153, 154, 155, 156, 157]

for finding temporal patterns, episodes, and association rules on interval-based event

sequences have been proposed. BFS-based and DFS-based approaches [2, 3, 158, 159]

165

apply efficient pruning techniques, thus reducing the inherent exponential complexity

of the mining problem, while a non-ambiguous hierarchical representation of interval-

based event sequences has been proposed by Patel et al. [160] for frequent pattern

mining. In addition, there has been some recent work on mining semi-partial orders of

time intervals [143], while an efficient method for mining closed patterns of interval-

based events has been proposed [161].

Recent work on margin-closed patterns [143, 162] focuses on significantly re-

ducing the number of reported patterns by favoring longer patterns and suppressing

shorter patterns with similar frequencies. A unifying view of temporal concepts and

data models has been formulated to enable categorization of existing approaches to

unsupervised pattern mining from symbolic temporal data [142]; time point-based

methods and interval-based methods as well as univariate and multivariate methods

are considered.

A thorough survey of the literature on pattern mining from event-interval se-

quences is beyond the scope of this chapter as the problem studied here is fun-

damentally different. To the best of our knowledge, the only existing principled

method for comparing event-interval sequences is Artemis [146]. A baseline approach,

DTW-based, which is described in Kostakis et al. [146], is based on an event-interval

sequence representation that is vector-based, however, due to its construction, it fails

to take into consideration all pair-wise temporal relations [146]. Finally, a matrix-

based representation [145] has been proposed for comparing event-interval sequences.

Unfortunately this representation is ambiguous, i.e., two different event-interval se-

quences may have the same matrix representation, and hence it is not considered

further.

166

9.2 Background

Let Σ = {E1, . . . , Em} be an alphabet of m event labels. An event that occurs

over a time interval defines an event interval and an ordered multiset of event intervals

defines an event-interval sequence. Next, we provide a more formal defintion for these

two concepts.

Definition 5. (event interval) An event interval is defined as a triple S = (E, tstart, tend),

where S.E ∈ Σ and S.tstart, S.tend correspond to the start and end time of S, re-

spectively. In general, S.tstart ≤ S.tend, where the equality holds when the event is

instantaneous.

Definition 6. (e-sequence) An event-interval sequence or e-sequence S={S1, . . . , Sn}

is an ordered multiset of n event intervals. The temporal order of the event intervals

in S is ascending based on their start time and in the case of ties it is descending

based on their end time. In case of further ties, alphabetical order is used.

The size of an e-sequence S, |S|, is the number of event intervals in the e-

sequence, whereas the length of S corresponds to the maximum time point in S, i.e.,

length(S) = Sn.tend. Recalling the example in Figure 9.1 and following the above def-

initions, we derive the following e-sequence representation: S = {(A, 1, 10), (B, 5, 13),

(C, 17, 30), (A, 20, 26), (D, 24, 30)}.

We use Allen’s model for temporal logic [163, 164] to define the relations between

two event intervals. Given two event intervals A and B, we consider seven temporal

relations: meet, match, overlap, left-contain, right-contain, contain, and follow.

These relations are shown in Figure 9.3.

The problem we study here is how to assess the similarity between two e-

sequences S and T . A robust distance measure should take into account several

common characteristics of S and T : (1) common event labels, (2) pairs of event

167

intervals with the same temporal relation, (3) the time duration of each event interval

as well as the duration of each temporal relation.

Figure 9.3: Seven temporal relations between two event intervals.

9.3 IBSM

We introduce a novel approach, called IBSM, for performing e-sequence matching

between two e-sequences. Each e-sequence S is mapped to its corresponding resized

event table representation, which is computed in two phases: (a) S is converted to

an event table AS , and then (b) AS is resized to yield the final representation of S.

Finally, IBSM computes the Euclidean distance of these representations. As shown in

Section 9.3.3, IBSM performs e-sequence matching in time linear to the length of the

e-sequences.

9.3.1 Event table representation

Firstly, we assume that at each point in time all events may appear simultane-

ously. More than that, even multiple instances of one event are allowed to happen

concurrently at a specific time point. Hence, given an e-sequence S and a time point

168

t, some events in Σ may be active and some may be not. We use an event vector to

record this information.

Definition 7. (active event interval) An event interval S = (E, tstart, tend) is active at

time point t if and only if

S.tstart ≤ t ≤ S.tend

Definition 8. (event vector) Given an e-sequence S = {S1, . . . , Sn} and a time point

t, the event vector V tS of S at time t is a vector of size |Σ|, where each value V tS(i) is

a non-negative integer that records how many event intervals with label Ei ∈ Σ are

active at time t.

Therefore, for each time point t ∈ [1, . . . , length(S)], the corresponding event

vector V tS is computed and recorded as a column in the event table AS .

Definition 9. (event table) Given an e-sequence S = {S1, . . . , Sn} its corresponding

event table AS is a matrix of size |Σ| × length(S), where AS(i, j) = VjS(i), for i ∈

[1, . . .Σ] and j ∈ [1, . . . length(S)].

In other words, each e-sequence S is represented by event table AS , where each

cell (i, j) of the table reflects the number of times the i-th event in Σ appears at the

j-th time point in S.

9.3.2 Resizing the event table

The next step of our method is to ensure that the tables of the two e-sequences

S and T under comparison are of the same size. To achieve this, we use a resizing

parameter γ. Typically, γ is set to the maximum time point between the two e-

sequences, that is

γ = max{length(S), length(T)}.

169

Note that, in case we are computing pair-wise distances of more than two e-sequences,

γ is set to the maximum e-sequence length.

Definition 10. (γ-resized event table) Given an event table AS and a resizing param-

eter γ, the γ-rezised event table AγS is computed by resizing AS to γ using bilinear

interpolation.

Consequently, after this step is executed, S and T are represented by their

γ-resized event tables AγS and AγT , respectively, which are of the same size |Σ| x γ.

The final step of IBSM is to compute the distance of the resulting γ-resized event

tables of S and T . The distance measure used is the Euclidean distance, and it is

computed as follows:

D(S, T) =

√√√√ |Σ|∑
i=1

γ∑
j=1

(AγS(i, j)− AγT (i, j))2 (9.1)

9.3.3 Complexity

The online computational complexity of IBSM is linear to the length of the

e-sequences. More specifically, given two e-sequences S, T , defined over an event

alphabet Σ, and a resizing parameter γ, the online computational time and space

complexity of IBSM is O(|Σ| × γ). Regarding the pre-processing step, the method

requires O(|Σ| × length(S)) and O(|Σ| × length(T)) time and space for computing

and resizing the event tables for S and T , respectively.

9.4 Nearest neighbor search using IBSM

IBSM can be used for nearest neighbor search in an e-sequence database, i.e.,

a collection of e-sequences. Let DB be an e-sequence database. Given a query e-

sequence Q we want to find the nearest neighbor of Q in DB. Despite the linear com-

170

plexity of IBSM, which already achieves over an order of magnitude speedup compared

to the state-of-the-art Artemis method, it depends on the lengths of the e-sequences

in DB as well as the alphabet size |Σ|. Thus, we next introduce two techniques for

speeding up IBSM for nearest neighbor search, that can achieve significant speedups

by reducing the e-sequence lengths as well as the alphabet size.

9.4.1 Speedup by sampling

The first speedup technique that can be applied is to reduce the number of

columns of the γ-resized event tables of the e-sequences in DB. Given the γ-resized

event table AγS of each e-sequence S ∈ DB, we perform uniform sampling on the

columns of AγS with a sampling period equal to δ. This results in including only

columns 1, 1 + δ, 1 + 2δ, 1 + 3δ, . . . from AγS .

More formally, we consider the following set of columns:

{j + 1|j ∈ [0, γ) and mod(j, δ) = 0}.

Sampling results in a reduction on the columns of AγS expressed by the sampling rate

r ∈ [0, 1] given by

r =
dγ
δ
e
γ
. (9.2)

Effectively, the number of columns in AγS is reduced from γ to dγ
δ
e, which implies

that each γ-resized event table is reduced to r × 100% of its original size.

9.4.2 Speedup by alphabet reduction

We pressent a second speedup technique that reduces the number of rows of the

γ-resized event tables of the e-sequences in DB. The key idea is to reduce the size of

the alphabet Σ. Specifically, given a γ-resized event table AγS of γ columns, for each

171

event Ei ∈ Σ, the fraction of non-zero occurrences of Ei in row i of the table, denoted

as h(Ei, A
γ
S), is given by

h(Ei, A
γ
S) =

1

γ

γ∑
j=1

I(AγS(i, j)),

where I(·) is an indicator function such that

I(x) =

 0 if x = 0

1 otherwise

Definition 11. (event density) Given a database DB of e-sequences defined over an

alphabet Σ, the event density H(Ei, DB) of each Ei ∈ Σ in DB is defined as follows:

H(Ei, DB) =
1

|DB|
∑
S∈DB

h(Ei, A
γ
S).

In other words, the event density of Ei in DB expresses the average fraction of

non-zero occurrences of Ei in the γ-resized event tables of the e-sequences in DB.

The alphabet reduction technique we propose here computes the density of each

event Ei ∈ Σ in DB and removes Ei from Σ, if

H(Ei, DB) < ε , where ε ∈ [0, 1].

Practically, ε is a threshold placed on the average frequency of event Ei in DB. If

Ei appears in less than ε× 100% of the columns of the γ-resized event tables in DB,

on average, then it is removed from Σ. The intuition behind this technique is that

event labels that appear more frequently in active event intervals in DB are those

that mostly characterize the e-sequences in DB.

Therefore, the ratio of the reduced alphabet size over the initial size, called the

alphabet reduction rate s ∈ [0, 1], is given by

s = 1− |{Ei ∈ Σ|H(Ei, DB) < ε}|
|Σ|

. (9.3)

172

Effectively, the number of rows in AγS is reduced from |Σ| to s|Σ|, which implies

that each γ-resized event table is reduced to s× 100% of its original size.

In the description of the two previous techniques we assumed that each technique

is applied to the original γ-resized event table. To speed up IBSM we apply both tech-

niques and finally compute the distance of the reduced event tables using Equation

9.1. As a result, the overall benefit gained by applying both techniques is a total

reduction of each γ-resized event table to r × s× 100% of its original size.

9.5 Experiments

In this section, we present the experimental setup and results evaluating the

performance of IBSM.

9.5.1 Experimental Setup

In our experiments we used eight real datasets, and compared IBSM with two

competitor methods in terms of 1-NN classification accuracy and runtime.

9.5.1.1 Datasets

Table 9.1: Datasets Statistics

Dataset # of e-sequence size # of # of max e-seq. interval size
e-seq. min. max. average labels classes length mean stdev min max

ASL-BU 873 3 40 17 216 9 5,901 594 590 3 4,468
ASL-BU2 1,839 4 93 23 254 7 14,968 669 808 3 9,967
Auslan2 200 9 20 12 12 10 30 20 12 1 30
Blocks 210 3 12 6 8 8 123 17 12 1 57
Context 240 47 149 81 54 5 284 69 81 1 284
Hepatitis 498 15 592 108 63 2 7,555 634 1,093 1 7,555
Pioneer 160 36 89 56 92 3 80 36 21 1 80
Skating 530 27 143 44 41 6 6,829 576 672 1 6,829

173

Our eight real datasets were taken from various application domains. A sum-

mary of the statistics for each dataset is shown in Table 9.1. Below, we describe each

dataset in more detail:

• ASL-BU [2]. Event labels correspond to grammatical or syntactic forms (e.g.,

wh-word, wh-question, verb, noun, etc.) as well as facial or gestural expressions

(e.g., head tilt right, rapid head shake, eyebrow raise, etc.). An e-sequence is

an expression of a sentence using sign language.

• ASL-BU2. This is the newest version of ASL-BU. The structure is the same as

that of ASL-BU but this dataset contains a large number of new e-sequences

and versions of the previous ones that are improved in terms of annotation,

where additional labels have been introduced.

• Auslan [143]. The e-sequences were derived from the Australian Sign Language

dataset available in the UCI repository 1. Each event interval represents a word

like girl or right.

• Blocks [143]. Event labels correspond to visual primitives obtained from videos

of a human hand stacking colored blocks and describe which blocks are touched

as well as the actions of the hand (e.g., contacts blue or red, attached hand

red, etc.). Each e-sequence represents one of eight different scenarios including

atomic actions, such as pickup, or complete scenarios, such as assemble.

• Context [143]. Event labels were derived from categoric and numeric data de-

scribing the context of a mobile device carried by humans in different situations.

Each e-sequence represents one of five different scenarios such as street or meet-

ing.

1http://www.ics.uci.edu/ mlearn/MLRepository.html

174

• Hepatitis [165] The dataset contains information about patients who have either

Hepatitis B or Hepatitis C. The event intervals represent the results of 63 regular

tests. Each e-sequence describes a series of tests taken by a patient.

• Pioneer [143]. This dataset was constructed from the Pioneer-1 dataset available

in the UCI repository 2. Event intervals correspond to the input provided by the

robot sensors. Each e-sequence in the dataset describes one of three scenarios:

gripper, move, turn.

• Skating [143]. Event intervals describe muscle activity and leg position of 6

professional In-Line Speed Skaters during controlled tests at 7 different speeds

on a treadmill. Each e-sequence represents a complete movement cycle.

9.5.1.2 Methods

We compared the following methods:

• IBSM: we experimented with and without sampling and alphabet reduction.

• Artemis [146]: the state-of-the-art method for similarity mathing of e-sequences.

• DTW-based [146]: the baseline approach which Artemis has been compared to.

Each e-sequence is mapped to a set of vectors. Each vector keeps track of the

number of times each event label appears, and is created only for these time

points where a change occurs, i.e., when one or more event intervals become

active or inactive. The dimensions are combined using the root mean square.

9.5.1.3 Evaluation

We computed the 1-NN classification accuracy for each method and dataset.

For each dataset, each e-sequence was considered to be a query Q and the distance

2http://archive.ics.uci.edu/ml/

175

from the remaining e-sequences in the dataset was computed. The class label of the

1-NN e-sequence was compared to that of Q. In case of ties a majority scheme was

followed.

To be more specific, letDB be the set of e-sequences in a dataset. For each query

Q ∈ DB, we computed its distance D(Q,S) against each e-sequence S ∈ DB \ Q.

Note thatD(·) corresponds to the distance function used by each of the three methods.

Let DQ = {D(Q,S)|∀S ∈ DB \ Q} be the set of distances of Q to DB \ Q and

NNQ = min(DQ) the distance of the 1-NN of Q in DB \ Q. If there is only one e-

sequence in DB \Q with distance NNQ from Q then we just compare the class labels

of the two e-sequences. If there is more than one e-sequence with that distance, then

we consider the union of all classes of these e-sequences and report the majority class

as the class of the nearest neighbor.

In the results reported in Section 9.5.2, the classification accuracy for each

dataset is defined as the percentage of the total number of e-sequences of the dataset

that were correctly classified. We also measured the runtime. The methods have been

implemented in Matlab on an AMD Opteron 8220 SE processor running at 2.8GHz.

9.5.2 Experimental Results

Next, we present our experimental findings in terms of classification accuracy

and runtime.

9.5.2.1 Classification accuracy

We first evaluated the performance of IBSM in terms of 1-NN classification

accuracy on the eight datasets and compared it to that of Artemis and DTW-based.

For this erxperiment, we did not apply the speedup techniques for IBSM, i.e., we set

the sampling period δ = 1 and the alphabet reduction threshold ε = 0. In Table 9.2

176

we can see that IBSM is a clear winner in all datasets except for the Pioneer dataset.

The results strongly suggest that when comparing e-sequences it is essential to take

into account the interval durations along with the relation types (which is what IBSM

does), since the 1-NN classification accuracy can be substantially improved.

Next, we studied the effect of sampling and alphabet reduction on the accuracy

of IBSM when performing nearest neighbor search. We first experimented on different

sampling rates r keeping the alphabet size fixed to |Σ|. In Figures 9.4 and 9.5 we show

the performance of IBSM in terms of 1-NN classification accuracy for different sampling

rates, compared to Artemis and DTW-based. We observed that for all datasets a

sampling rate of r = 10% suffices to maintain the original 1-NN classification accuracy

(i.e., without sampling). Note that for ASL-BU, ASL-BU2, Hepatitis, and Skating

the rate was ≈ 0.9%.

In addition, we experimented on different alphabet reduction rates while main-

taining the sampling rate constant. Using the result of the previous experiment, we

fixed the sampling rate to r = 10%, and varied the alphabet reduction rate s. The

results are shown in Figures 9.6 and 9.7. Observe that the effect of s on the 1-NN

classification accuracy varies per dataset. Specifically, ASL-BU, Blocks, and Skating

can tolerate a reduction down to s = 40% without significant drop in the accuracy,

while for Hepatitis and Pioneer the original accuracy is mantaintaned until s drops

down to 30%. The results are quite worse for Context, where s = 50%, and Auslan2,

where s = 70%. Finally, ASL-BU2 shows the best performance as it can tolerate

an alphabet reduction down to s = 10% without significant loss in terms of 1-NN

classification accuracy.

We conclude that in the majority of the datasets applying a sampling rate r of

10% and reducing the alphabet size by 50%, hence reducing the computational cost

177

Table 9.2: 1-NN classification accuracy. For IBSM neither sampling nor aplhabet
reduction have been applied.

Dataset IBSM Artemis DTW

ASL-BU 90.1 79.56 43.58
ASL-BU2 82.2 80.53 77.25
Auslan2 39.5 28.5 22
Blocks 100 99 87
Context 97.08 90 89
Hepatitis 77.91 72.09 74.03
Pioneer 93.75 97.5 93
Skating 97.74 84 77

by a factor of 95%, can still maintain a 1-NN classification accuracy that is higher

than that of the competitor methods for 7 out of 8 datasets.

Table 9.3: Runtime in seconds. We show the average total runtime (including pre-
processing and matching) for comparing a pair of e-sequences. For IBSM neither
sampling nor alphabet reduction have been applied.

Dataset IBSM Artemis DTW

ASL-BU 81.34 1,915.97 190.89
ASL-BU2 659.73 14,018.08 2,140.47
Auslan2 0.94 9.64 2.73
Blocks 0.79 22.20 1.56
Context 5.53 121.66 9.56
Hepatitis 27.96 537.16 58.23
Pioneer 8.76 98.41 25.48
Skating 14.96 259.63 39.90

9.5.2.2 Runtime

Finally, we benchmarked the methods in terms of runtime. The results are

shown in Table 9.3. Note that for IBSM neither sampling nor alphabet reduction have

been applied. For each dataset, we show the average total runtime (including pre-

178

00.0020.0040.0060.0080.01
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for ASL−BU

IBSM without sampling
IBSM with sampling
Artemis
DTW

(a) ASL-BU

00.0020.0040.0060.0080.01
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for ASL−BU2

IBSM without sampling
IBSM with sampling
Artemis
DTW

(b) ASL-BU2

00.10.20.30.40.5
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for Auslan2

IBSM without sampling
IBSM with sampling
Artemis
DTW

(c) Auslan2

00.10.20.30.40.5
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for Blocks

IBSM without sampling
IBSM with sampling
Artemis
DTW

(d) Blocks

Figure 9.4: Comparison of IBSM, Artemis, and DTW-based for different sampling rates
r for the first four datasets. No alphabet reduction was applied (ε = 0). The flat
lines are used to indicate the 1-NN accuracy of the two competitor methods and IBSM

without sampling.

processing and matching) for comparing a pair of e-sequences. It turns out that IBSM

is a clear winner in all cases achieving up to two orders of magnitude speedup against

179

00.10.20.30.40.5
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for Context

IBSM without sampling
IBSM with sampling
Artemis
DTW

(a) Context

00.0020.0040.0060.0080.01
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for Hepatitis

IBSM without sampling
IBSM with sampling
Artemis
DTW

(b) Hepatitis

00.10.20.30.40.5
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for Pioneer

IBSM without sampling
IBSM with sampling
Artemis
DTW

(c) Pioneer

00.0020.0040.0060.0080.01
0

10

20

30

40

50

60

70

80

90

100

sampling rate

1
−

N
N

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

1−NN classification accuracy vs. sampling rate for Skating

IBSM without sampling
IBSM with sampling
Artemis
DTW

(d) Skating

Figure 9.5: Comparison of IBSM, Artemis, and DTW-based for different sampling rates
r for the last four datasets. No alphabet reduction was applied (ε = 0). The flat lines
are used to indicate the 1-NN accuracy of the two competitor methods and IBSM

without sampling.

Artemis. This speedup becomes significantly higher (by at least another order of

magnitude) when applying sampling and alphabet reduction.

180

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for ASL−BU

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(a) ASL-BU

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for ASL−BU2

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(b) ASL-BU2

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for Auslan2

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(c) Auslan2

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for Blocks

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(d) Blocks

Figure 9.6: Comparison of IBSM, Artemis, and DTW-based for different alphabet
reduction rates s for the first four datasets. Note that the sampling rate for IBSM was
fixed to r = 10%. The flat lines are used to indicate the 1-NN accuracy of the two
competitor methods and IBSM without sampling.

9.6 Conclusions

We have proposed a novel method for full matching of sequences of interval-

based events. The novelty of the method against existing approaches is the fact

that it considers both temporal relations and duration of the event intervals in the

e-sequences. The method converts the original sequences to an event table repre-

sentation and then computes a Euclidean-based distance between the event tables.

181

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for Context

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(a) Context

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for Hepatitis

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(b) Hepatitis

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for Pioneer

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(c) Pioneer

00.10.20.30.40.50.60.70.80.91
0

10

20

30

40

50

60

70

80

90

100

alphabet reduction rate

1−
N

N
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

1−NN classification accuracy vs. alphabet reduction rate for Skating

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(d) Skating

Figure 9.7: Comparison of IBSM, Artemis, and DTW-based for different alphabet
reduction rates s for the last four datasets. Note that the sampling rate for IBSM was
fixed to r = 10%. The flat lines are used to indicate the 1-NN accuracy of the two
competitor methods and IBSM without sampling.

Additionally, we have presented two techniques for speeding up IBSM when used for

nearest neighbor search in large e-sequence databases. We provided an extensive

experimental evaluation of IBSM against two state-of-the-art methods on eight real

datasets. The performance of our method in terms of 1-NN classification accuracy and

runtime is significantly better than the two competitors. Directions for future work

include the exploration of additional speedup techniques as well as the theoretical

analysis of the properties of the proposed method.

182

CHAPTER 10

DISCUSSION AND CONCLUSIONS

This thesis described methods for similarity search in large and noisy sequence

databases. The different uses that such search can have are illustrated with applica-

tions such as music retrieval, time series analysis, and sign language recognition.

The fundamental problems in similarity search are accuracy and efficiency. Ac-

curacy may refer to how well results agree with human judgment, or with how well an

efficient approximation preserves the information of the slower method that it approx-

imates. The thesis has proposed five methods that can be applied on time series and

event-interval sequences and improve retrieval accuracy, by producing results that are

more in line with human expectations. For music retrieval, we have proposed SM-

BGT, which performs subsequence matching for time series and provides much better

results for the very challenging and interesting Query-By-Humming application do-

main. Motivated by SMBGT, the “Hum-a-song” system has also been proposed for

the QBH application, which is an open source system and significantly contributes

to this domain. The SMBGT measure, however, can be applied to any other time

series domain, and even for whole sequence matching. In addition, we have proposed

three techniques for searching time series databases. Two of them are able to select

for each query the best distance measure out of a pool of measures via statistical sig-

nificance testing, so as to perform nearest neighbor classification on time series. The

third one exploits the Hidden Markov Models, which are capable of modeling classes

of time series, and has been applied to searching time series databases. The results

of the aforementioned three measures on several public datasets demonstrate that

183

they provide better accuracy compared to several baseline methods in the majority of

datasets. The fifth method proposed, named IBSM, targets event-interval sequences,

and has been shown to outperform the state-of-the-art methods in both classification

accuracy and runtime on most datasets tested, including sign language.

With respect to improving retrieval efficiency, the thesis has proposed two meth-

ods that significantly improve efficiency in two target domains. The first method,

ISMBGT, focuses on the topic of speeding up retrieval on the QBH domain. Thus, it

is built on top of the SMBGT method, which is very flexible and can take into account

several intrinsic properties of this noisy domain, and works in a filter-and-refine way

by exploiting the idea of embeddings. The second method, MTSI, takes advantage of

the novel model-based representation of classes of time series, and operates again in a

filter-and-refine manner. The performance evaluation of both methods on searching

and classifying time series has proved how meaningful and accurate they are.

While the proposed methods have extended the state-of-the-art in their respec-

tive target domains, there are still important challenges remaining. First, since the

complexity of the query-selection methods proposed in the thesis can be prohibitive

for very large time series databases, especially when many distance measures compose

the pool of measures, their online step has to be made faster. Second, event-interval

sequences have received limited attention from the database community. Thus, ex-

tending our approach, or even proposing a new one, for subsequence matching in

event-interval sequences would be particularly useful. Finally, although the model-

based approaches that have been proposed produce very accurate results, there is

still room for improvement by making the Forward algorithm perform faster, and

by training the Hidden Markov Models with different parameters for each class they

represent. These challenges, among others, are of particular interest, and hence will

be part of future work.

184

REFERENCES

[1] R. Bellman, “The theory of dynamic programming,” Bulletin of the American

Mathematical Society, vol. 60, no. 6, pp. 503–515, 1954.

[2] P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos, “Mining frequent

arrangements of temporal intervals,” Knowledge and Information Systems

(KAIS), pp. 133–171, 2009.

[3] ——, “Discovering frequent arrangements of temporal intervals,” in Interna-

tional Conference on Data Mining (ICDM), 2005.

[4] R. Kosara and S. Miksch, “Visualizing complex notions of time,” Studies in

Health Technology and Informatics, pp. 211–215, 2001.

[5] N. Pissinou, I. Radev, and K. Makki, “Spatio-temporal modeling in video and

multimedia geographic information systems,” GeoInformatica, vol. 5, no. 4, pp.

375–409, 2001.

[6] B. Berendt, “Explaining preferred mental models in Allen inferences with a

metrical model of imagery,” in Conference of the Cognitive Science Society

(CogSci), 1996, pp. 489–494.

[7] B. Bergen and N. Chang, “Embodied construction grammar in simulation-based

language understanding,” Construction grammars: Cognitive grounding and

theoretical extensions, pp. 147–190, 2005.

[8] A. Kotsifakos, P. Papapetrou, J. Hollmén, D. Gunopulos, and V. Athitsos, “A

survey of query-by-humming similarity methods,” in PErvasive Technologies

Related to Assistive Environments (PETRA), 2012, pp. 5:1–5:4.

185

[9] M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz, “Proms: A web-based

tool for searching in polyphonic music,” in International Society for Music In-

formation Retrieval (ISMIR), 2000.

[10] A. Lubiw and L. Tanur, “Pattern matching in polyphonic music as a weighted

geometric translation problem,” in International Society for Music Information

Retrieval (ISMIR), 2004, pp. 289–296.

[11] R. Typke, P. Giannopoulos, R. Veltkamp, F. Wiering, and R. Van Oostrum,

“Using transportation distances for measuring melodic similarity,” in Interna-

tional Society for Music Information Retrieval (ISMIR), 2003, pp. 107–114.

[12] E. Ukkonen, K. Lemström, and V. Mäkinen, “Geometric algorithms for trans-

position invariant content-based music retrieval,” in International Society for

Music Information Retrieval (ISMIR), 2003, pp. 193–199.

[13] G. Wiggins, K. Lemström, and D. Meredith, “SIA(M)ESE: An algorithm for

transposition invariant, polyphonic content-based music retrieval,” in Interna-

tional Society for Music Information Retrieval (ISMIR), 2002, pp. 13–17.

[14] C. Yang, “Efficient acoustic index for music retrieval with various degrees of

similarity,” in International Conference on Multimedia, 2002, pp. 584–591.

[15] J. Downie, “The musifind music information retrieval project, phase iii: eval-

uation of indexing options,” in Canadian Association for Information Science

(CAIS), 1995, pp. 135–146.

[16] A. Ghias, J. Logan, D. Chamberlin, and B. Smith, “Query by humming: Musi-

cal information retrieval in an audio database,” in International Conference on

Multimedia, 1995, pp. 231–236.

[17] R. McNab, L. Smith, I. Witten, C. Henderson, and S. Cunningham, “Towards

the digital music library: Tune retrieval from acoustic input,” in International

Conference on Digital Libraries (ICDL), 1996, pp. 11–18.

186

[18] A. Uitdenbogerd and J. Zobel, “Manipulation of music for melody matching,”

in International Conference on Multimedia, 1998, pp. 235–240.

[19] M. Mongeau and D. Sankoff, “Comparison of musical sequences,” Computers

and the Humanities, vol. 24, no. 3, pp. 161–175, 1990.

[20] A. Uitdenbogerd and J. Zobel, “Melodic matching techniques for large music

databases,” in International Conference on Multimedia (Part 1), 1999, pp. 57–

66.

[21] B. Pardo and W. Birmingham, “Encoding timing information for musical query

matching,” in International Society on Music Information Retrieval (ISMIR),

2002, pp. 267–268.

[22] T. Kageyama, K. Mochizuki, and Y. Takashima, “Melody retrieval with hum-

ming,” in International Computer Music Conference (ICMC), 1993, pp. 349–

349.

[23] L. Ye and E. Keogh, “Time series shapelets: a novel technique that allows

accurate, interpretable and fast classification,” Data Mining and Knowledge

Discovery (DAMI), vol. 22, no. 1-2, pp. 149–182, 2011.

[24] Z. Xing, J. Pei, P. S. Yu, and K. Wang, “Extracting interpretable features for

early classification on time series,” in SIAM International Conference on Data

Mining (SDM), 2011, pp. 247–258.

[25] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: an expressive prim-

itive for time series classification,” in International Conference on Knowledge

Discovery and Data Mining (SIGKDD), 2011, pp. 1154–1162.

[26] J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform for time

series classification,” in International Conference on Knowledge Discovery and

Data Mining (SIGKDD), ser. KDD ’12, 2012, pp. 289–297.

187

[27] B. Hu, Y. Chen, and E. Keogh, “Time series classification under more realistic

assumptions,” in SIAM International Conference on Data Mining (SDM), 2012,

pp. 578–586.

[28] Y. Chen, M. A. Nascimento, B. Chin, O. Anthony, and K. H. Tung, “Spade:

On shape-based pattern detection in streaming time series,” in International

Conference on Data Engineering (ICDE), 2007, pp. 786–795.

[29] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence

databases,” in Foundations of Data Organization and Algorithms (FODO).

Springer Verlag, 1993, pp. 69–84.

[30] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time

series, with implications for streaming algorithms,” in Special Interest Group on

Management of Data (SIGMOD) workshop on Research issues in data mining

and knowledge discovery (DMKD), 2003, pp. 2–11.

[31] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series us-

ing bag-of-patterns representation,” Journal of Intelligent Information Systems

(JIIS), vol. 39, no. 2, pp. 287–315, 2012.

[32] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. J. Keogh,

“Experimental comparison of representation methods and distance measures

for time series data,” Data Mining and Knowledge Discovery (DAMI), vol. 26,

no. 2, pp. 275–309, 2013.

[33] J. B. Kruskall and M. Liberman, “The symmetric time warping algorithm:

From continuous to discrete,” in Time Warps. Addison-Wesley, 1983.

[34] S. Kim, S. Park, and W. Chu, “An index-based approach for similarity search

supporting time warping in large sequence databases,” in International Confer-

ence on Data Engineering (ICDE), 2001, pp. 607–614.

188

[35] I. Assent, M. Wichterich, R. Krieger, H. Kremer, and T. Seidl, “Anticipatory

dtw for efficient similarity search in time series databases,” Proceedings of Very

Large Data Bases (PVLDB), vol. 2, no. 1, pp. 826–837, 2009.

[36] D. Lemire, “Faster retrieval with a two-pass dynamic-time-warping lower

bound,” Pattern Recognition, vol. 42, no. 9, pp. 2169–2180, 2009.

[37] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for

spoken word recognition,” Transactions on Transactions on Acoustics, Speech,

and Signal Processing (ASSP), vol. 26, pp. 43–49, 1978.

[38] F. Itakura, “Minimum prediction residual principle applied to speech recogni-

tion,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 23,

no. 1, pp. 67–72, 1975.

[39] L. Chen and M. T. Özsu, “Robust and fast similarity search for moving object

trajectories,” in Special Interest Group on Management of Data (SIGMOD),

2005, pp. 491–502.

[40] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,” in Very

Large Data Bases (VLDB), 2004, pp. 792–803.

[41] E. Keogh, “Exact indexing of dynamic time warping,” in Very Large Data Bases

(VLDB), 2002, pp. 406–417.

[42] A. Stefan, V. Athitsos, and G. Das, “The move-split-merge metric for time

series,” Transactions on Knowledge and Data Engineering (TKDE), 2012.

[43] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals,” Soviet Physics, vol. 10, no. 8, pp. 707–710, 1966.

[44] P.-F. Marteau, “Time warp edit distance with stiffness adjustment for time

series matching,” Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 2, pp. 306–318, 2009.

189

[45] N. Adams, M. Bartsch, J. Shifrin, and G. Wakefield, “Time series alignment

for music information retrieval,” in International Society on Music Information

Retrieval (ISMIR), 2004, pp. 303–311.

[46] R. Dannenberg and N. Hu, “Understanding search performance in query-by-

humming systems,” in International Society on Music Information Retrieval

(ISMIR), 2004, pp. 232–237.

[47] D. Mazzoni and R. Dannenberg, “Melody matching directly from audio,” in

International Society on Music Information Retrieval (ISMIR), 2001, pp. 17–

18.

[48] D. Maier, “The complexity of some problems on subsequences and superse-

quences,” Journal of the ACM (JACM), vol. 25, no. 2, pp. 322–336, 1978.

[49] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common subse-

quence algorithms,” in String Processing and Information Retrieval (SPIRE),

2000, pp. 39–48.

[50] B. Bollobás, G. Das, D. Gunopulos, and H. Mannila, “Time-series similarity

problems and well-separated geometric sets,” in Symposium on Computational

Geometry (SOCG), 1997, pp. 454–456.

[51] C. Iliopoulos and M. Kurokawa, “String matching with gaps for musical melodic

recognition,” in Prague Stringology Club (PSC), 2002, pp. 55–64.

[52] M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and

K. Tsichlas, “Approximate string matching with gaps,” Nordic Journal of Com-

puting, vol. 9, no. 1, pp. 54–65, 2002.

[53] T. Crawford, C. Iliopoulos, and R. Raman, “String matching techniques for

musical similarity and melodic recognition,” Computing in Musicology, vol. 11,

pp. 73–100, 1998.

190

[54] K. Lemström and E. Ukkonen, “Including interval encoding into edit distance

based music comparison and retrieval,” in Symposium on Creative & Cultural

Aspects and Applications of AI & Cognitive Science (AISB), 2000, pp. 53–60.

[55] S. Deorowicz, “Speeding up transposition-invariant string matching,” Informa-

tion Processing Letters, vol. 100, no. 1, pp. 14–20, 2006.

[56] V. Makinen, G. Navarro, and E. Ukkonen, “Algorithms for transposition invari-

ant string matching,” Lecture notes in computer science, pp. 191–202, 2003.

[57] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz,

“Similarity search on time series based on threshold queries,” in International

Conference on Extending Database Technology (EDBT). Springer, 2006, pp.

276–294.

[58] E. Frentzos, K. Gratsias, and Y. Theodoridis, “Index-based most similar trajec-

tory search,” in International Conference on Data Engineering (ICDE), 2007,

pp. 816–825.

[59] G. E. Batista, E. J. Keogh, O. M. Tataw, and V. M. de Souza, “CID: an efficient

complexity-invariant distance for time series,” Data Mining and Knowledge Dis-

covery, pp. 1–36, 2013.

[60] T. Han, S.-K. Ko, and J. Kang, “Efficient subsequence matching using the

longest common subsequence with a dual match index,” in Machine Learning

and Data Mining in Pattern Recognition (MLDM), 2007, pp. 585–600.

[61] Y. Zhu and D. Shasha, “Warping indexes with envelope transforms for query

by humming.” in Special Interest Group on Management of Data (SIGMOD),

2003, pp. 181–192.

[62] N. Hu, R. Dannenberg, and A. Lewis, “A probabilistic model of melodic similar-

ity,” in Internationl Computer Music Conference (ICMC), 2002, pp. 509–515.

191

[63] J. Jang and M. Gao, “A query-by-singing system based on dynamic program-

ming,” in International Workshop on Intelligent Systems Resolutions, 2000, pp.

85–89.

[64] K. Lemström and S. Perttu, “Semex-an efficient music retrieval prototype,”

in International Society on Music Information Retrieval (ISMIR), 2000, pp.

23–25.

[65] S. Pauws, “Cubyhum: A fully operational query by humming system,” in Inter-

national Society on Music Information Retrieval (ISMIR), 2002, pp. 187–196.

[66] E. Unal, E. Chew, P. Georgiou, and S. Narayanan, “Challenging uncertainty in

query by humming systems: a fingerprinting approach,” Transactions on Audio

Speech and Language Processing (ASSP), vol. 16, no. 2, pp. 359–371, 2008.

[67] Y. Sakurai, C. Faloutsos, and M. Yamamuro, “Stream monitoring under the

time warping distance,” in International Conference on Data Engineering

(ICDE), 2007, pp. 1046–1055.

[68] M. Zhou and M. Wong, “Efficient online subsequence searching in data streams

under dynamic time warping distance,” in International Conference on Data

Engineering (ICDE), 2008, pp. 686–695.

[69] T. Smith and M. Waterman, “Identification of common molecular subse-

quences,” Journal of Molecular Biology, vol. 147, pp. 195–197, 1981.

[70] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,” Journal

of Machine Learning Research (JMLR), vol. 29, pp. 245–275, 1997.

[71] C. Meek and W. Birmingham, “A comprehensive trainable error model for sung

music queries,” Journal of Artificial Intelligence Research (JAIR), vol. 22, no. 1,

pp. 57–91, 2004.

[72] B. Pardo, J. Shifrin, and W. Birmingham, “Name that tune: A pilot study

in finding a melody from a sung query,” Journal of the American Society for

192

Information Science and Technology (JASIST), vol. 55, no. 4, pp. 283–300,

2004.

[73] L. Rabiner, “A tutorial on hidden Markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[74] J. Shifrin, B. Pardo, C. Meek, and W. Birmingham, “HMM-based musical query

retrieval,” in Joint Conference on Digital Libraries (JCDL), 2002, pp. 295–300.

[75] H. Shih, S. Narayanan, and C. Kuo, “An HMM-based approach to humming

transcription,” in International Conference on Multimedia and Expo (ICME),

2002.

[76] H.-H. Shih, S. S. Narayanan, and C.-C. Kuo, “A statistical multidimensional

humming transcription using phone level hidden markov models for query

by humming systems,” in International Conference on Multimedia and Expo

(ICME), vol. 1. IEEE, 2003, pp. I–61.

[77] E. Ukkonen, “Approximate string-matching with q-grams and maximal

matches,” Theoretical Computer Science (TCS), vol. 92, no. 1, pp. 191–211,

1992.

[78] R. Dannenberg, W. Birmingham, B. Pardo, N. Hu, C. Meek, and G. Tzanetakis,

“A comparative evaluation of search techniques for query-by-humming using the

MUSART testbed,” Journal of the American Society for Information Science

and Technology (JASIST), vol. 58, no. 5, pp. 687–701, 2007.

[79] A. Kotsifakos, P. Papapetrou, J. Hollmén, and D. Gunopulos, “A Subsequence

Matching with Gaps-Range-Tolerances Framework: A Query-By-Humming Ap-

plication,” Proceedings of Very Large Data Bases (PVLDB), vol. 4, no. 11, pp.

761–771, 2011.

193

[80] C. Meek, J. M. Patel, and S. Kasetty, “OASIS: An online and accurate technique

for local-alignment searches on biological sequences,” in Very Large Data Bases

(VLDB), 2003, pp. 910–921.

[81] E. Keogh, J. Lin, and A. W.-C. Fu, “Hot sax: Efficiently finding the most

unusual time series subsequence,” in International Conference on Data Mining

(ICDM), 2005, pp. 226–233.

[82] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel symbolic

representation of time series,” Data Mining and Knowledge Discovery (DAMI),

vol. 15, no. 2, pp. 107–144, 2007.

[83] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vin-

gron, “Q-gram based database searching using a suffix array (quasar),” in In-

ternational Conference on Computational Molecular Biology (RECOMB), 1999,

pp. 77–83.

[84] G. Navarro and R. Baeza-yates, “A new indexing method for approximate string

matching,” in Symposium on Combinatorial Pattern Matching (CPM), 1999,

pp. 163–185.

[85] P. Papapetrou, V. Athitsos, G. Kollios, and D. Gunopulos, “Reference-based

alignment of large sequence databases,” in Very Large Data Bases (VLDB),

2009.

[86] S. Park, W. W. Chu, J. Yoon, and J. Won, “Similarity search of time-warped

subsequences via a suffix tree.” Journal of Information Systems (JIS), vol. 28,

no. 7, 2003.

[87] S. Park, S. Kim, and W. W. Chu, “Segment-based approach for subsequence

searches in sequence databases.” in Symposium on Applied Computing (SAC),

2001, pp. 248–252.

194

[88] E. Keogh and M. Pazzani, “Scaling up dynamic time warping for data mining

applications,” in International Conference on Knowledge Discovery and Data

Mining (SIGKDD), 2000.

[89] Y. Shou, N. Mamoulis, and D. Cheung, “Fast and exact warping of time se-

ries using adaptive segmental approximations,” Journal of Machine Learning

(JMLR), vol. 58, no. 2-3, pp. 231–267, 2005.

[90] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang, “Ranked subsequence matching in

time-series databases,” in Very Large Data Bases (VLDB), 2007, pp. 423–434.

[91] A. W.-C. Fu, E. Keogh, L. Y. H. Lau, C. Ratanamahatana, and R. C.-W. Wong,

“Scaling and time warping in time series querying,” The Very Large DataBases

(VLDB) Journal, vol. 17, no. 4, pp. 899–921, 2008.

[92] G. Hjaltason and H. Samet, “Properties of embedding methods for similarity

searching in metric spaces,” Transactions on Pattern Analysis and Machine

Intelligence (PAMI), vol. 25, no. 5, pp. 530–549, 2003.

[93] C. Faloutsos and K. I. Lin, “FastMap: A fast algorithm for indexing, data-

mining and visualization of traditional and multimedia datasets,” in Special

Interest Group on Management of Data (SIGMOD), 1995, pp. 163–174.

[94] X. Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapiro, and K. Zhang, “An

index structure for data mining and clustering,” Knowledge and Information

Systems (KAIS), vol. 2, no. 2, pp. 161–184, 2000.

[95] G. Hristescu and M. Farach-Colton, “Cluster-preserving embedding of pro-

teins,” CS Department, Rutgers University, Tech. Rep. 99-50, 1999.

[96] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios, “BoostMap: A method for effi-

cient approximate similarity rankings,” in Computer Vision and Pattern Recog-

nition (CVPR), 2004, pp. 268–275.

195

[97] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff, “Query-sensitive

embeddings,” in Special Interest Group on Management of Data (SIGMOD),

2005, pp. 706–717.

[98] P. Papapetrou, V. Athitsos, M. Potamias, G. Kollios, and D. Gunopulos,

“Embedding-based subsequence matching in time-series databases,” Transac-

tions on Database Systems (TODS), vol. 36, no. 3, p. 17, 2011.

[99] S. Levinson, L. Rabiner, and M. Sondhi, “An introduction to the application of

the theory of probabilistic functions of a Markov process to automatic speech

recognition,” The Bell System Technical Journal, vol. 62, no. 4, pp. 1035–1074,

1983.

[100] R. Dannenberg, W. Birmingham, G. Tzanetakis, C. Meek, N. Hu, and B. Pardo,

“The Musart Testbed for Query-by-Humming Evaluation,” Computer Music

Journal (CMJ), vol. 28, no. 2, pp. 34–48, 2004.

[101] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A survey

and novel approach,” in Data mining in Time Series Databases, published by

World Scientific. Publishing Company, 1993, pp. 1–22.

[102] A. Kotsifakos, P. Papapetrou, J. Hollmén, D. Gunopulos, V. Athitsos, and

G. Kollios, “Hum-a-song: a subsequence matching with gaps-range-tolerances

query-by-humming system,” Proceedings of Very Large Data Bases (PVLDB),

vol. 5, no. 12, pp. 1930–1933, 2012.

[103] J. Lee and J. Downie, “Survey of music information needs, uses, and seek-

ing behaviours: Preliminary findings,” in International Conference on Music

Information Retrieval (ICMIR), 2004, pp. 441–446.

[104] N. Scaringella, G. Zoia, and D. Mlynek, “Automatic genre classification of music

content: a survey,” Signal Processing Magazine, vol. 23, no. 2, pp. 133–141,

2006.

196

[105] F. Fabbri, “A theory of musical genres: Two applications,” Popular Music

Perspectives, vol. 1, pp. 52–81, 1982.

[106] J. Aucouturier and F. Pachet, “Representing musical genre: A state of the art,”

Journal of New Music Research, vol. 32, no. 1, pp. 83–93, 2003.

[107] C. McKay and I. Fujinaga, “Automatic music classification and the impor-

tance of instrument identification,” in Conference on Interdisciplinary Musicol-

ogy (CIM), 2005.

[108] ——, “Musical genre classification: Is it worth pursuing and how can it be

improved?” in International Society on Music Information Retrieval (ISMIR),

2006, pp. 101–106.

[109] S. Lippens, J. Martens, and T. De Mulder, “A comparison of human and auto-

matic musical genre classification,” in International Conference on Acoustics,

Speech and Signal Processing (ICASSP), vol. 4, 2004, pp. 233–236.

[110] F. Pachet, D. Cazaly et al., “A taxonomy of musical genres,” in Content-Based

Multimedia Information Access (RIAO), 2000, pp. 1238–1245.

[111] D. Perrot and R. Gjerdigen, “Scanning the dial: An exploration of factors in the

identification of musical style,” in Society for Music Perception and Cognition

(SMPC), 1999, p. 88.

[112] A. Berenzweig, D. Ellis, and S. Lawrence, “Anchor space for classification and

similarity measurement of music,” in International Conference on Multimedia

and Expo (ICME), vol. 1, 2003, pp. 1–29.

[113] Z. Cataltepe, Y. Yaslan, and A. Sonmez, “Music genre classification using midi

and audio features,” EURASIP Journal on Advances in Signal Processing, vol.

2007, no. 1, pp. 275–279, 2007.

197

[114] T. Lidy and A. Rauber, “Evaluation of feature extractors and psycho-acoustic

transformations for music genre classification,” in International Society on Mu-

sic Information Retrieval (ISMIR), 2005, pp. 34–41.

[115] M. Mandel and D. Ellis, “Song-level features and support vector machines for

music classification,” in International Society on Music Information Retrieval

(ISMIR), 2005, pp. 594–599.

[116] H. Soltau, T. Schultz, M. Westphal, and A. Waibel, “Recognition of music

types,” in International Conference on Acoustics, Speech and Signal Processing

(ICASSP), vol. 2, 1998, pp. 1137–1140.

[117] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl, “Aggregate features

and adaboost for music classification,” Journal of Machine Learning (JMLR),

vol. 65, no. 2, pp. 473–484, 2006.

[118] R. Cilibrasi, P. Vitányi, and R. Wolf, “Algorithmic clustering of music based on

string compression,” Computer Music Journal (CMJ), vol. 28, no. 4, pp. 49–67,

2004.

[119] R. Dannenberg, B. Thom, and D. Watson, “A machine learning approach to mu-

sical style recognition,” in Internationl Computer Music Conference (ICMC),

1997, pp. 344–347.

[120] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,”

Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293–302, 2002.

[121] Z. Fu, G. Lu, K. Ting, and D. Zhang, “A survey of audio-based music classifica-

tion and annotation,” Transactions on Multimedia, vol. 13, no. 2, pp. 303–319,

2011.

[122] A. Kotsifakos, E. E. Kotsifakos, P. Papapetrou, and V. Athitsos, “Genre clas-

sification of symbolic music with SMBGT,” in PErvasive Technologies Related

to Assistive Environments (PETRA), 2013.

198

[123] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques. Morgan

kaufmann, 2006.

[124] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, and C. Ratanama-

hatana, “The UCR time series classification/clustering homepage:

www.cs.ucr.edu/∼eamonn/time series data/,” 2011.

[125] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neighbor classifi-

cation,” Transactions on Pattern Analysis and Machine Intelligence (PAMI),

vol. 18, no. 6, pp. 607–616, 1996.

[126] C. Domeniconi, J. Peng, and D. Gunopulos, “Locally adaptive metric nearest-

neighbor classification,” Transactions on Pattern Analysis and Machine Intel-

ligence (PAMI), vol. 24, no. 9, pp. 1281–1285, 2002.

[127] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff, “Query-sensitive

embeddings,” Transactions on Database Systems (TODS), vol. 32, no. 2, Jun.

2007.

[128] D. Cox, Principles of Statistical Inference. Cambridge University Press, 2006.

[129] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and D. Gunopulos, “Ap-

proximate embedding-based subsequence matching of time series,” in Special

Interest Group on Management of Data (SIGMOD), 2008, pp. 365–378.

[130] E. Keogh, “Exact indexing of dynamic time warping,” in Very Large Data Bases

(VLDB), 2002, pp. 406–417.

[131] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains,”

The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–171, 1970.

[132] A. Pikrakis, S. Theodoridis, and D. Kamarotos, “Classification of musical pat-

terns using variable duration hidden Markov models,” Transactions on Audio,

Speech, and Language Processing, vol. 14, no. 5, pp. 1795–1807, 2006.

199

[133] A. Kotsifakos, V. Athitsos, P. Papapetrou, J. Hollmén, and D. Gunopulos,

“Model-based search in large time series databases,” in PErvasive Technologies

Related to Assistive Environments (PETRA), 2011.

[134] A. Hallak, D. Di-Castro, and S. Mannor, “Model selection in markovian pro-

cesses,” in International Conference on Machine Learning (ICML), 2013.

[135] H. Chen, F. Tang, P. Tino, and X. Yao, “Model-based kernel for efficient time

series analysis,” in International Conference on Knowledge Discovery and Data

mining (SIGKDD), 2013, pp. 392–400.

[136] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:

Probabilistic models for segmenting and labeling sequence data,” in Interna-

tional Conference on Machine Learning (ICML), 2001, pp. 282–289.

[137] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hid-

den conditional random fields for gesture recognition,” in Computer Vision and

Pattern Recognition (CVPR), vol. 2, 2006, pp. 1521–1527.

[138] A. Kotsifakos, “Case study: Model-based vs. distance-based search in time

series databases,” in Exploratory Data Analysis (EDA) Workshop in SIAM

International Conference on Data Mining (SDM), 2014.

[139] F. Pachet, G. Ramalho, and J. Carrive, “Representing temporal musical objects

and reasoning in the MusES system,” Journal of New Music Research, vol. 25,

no. 3, pp. 252–275, 1996.

[140] P. Kam and A. W. Fu, “Discovering temporal patterns for interval-based

events.” in International Conference on Data Warehousing and Knowledge Dis-

covery (DaWaK), 2000, pp. 317–326.

[141] J. M. Ale and G. H. Rossi, “An approach to discovering temporal association

rules,” in Symposium On Applied Computing (SAC), 2000, pp. 294–300.

200

[142] F. Mörchen, “Unsupervised pattern mining from symbolic temporal data,” In-

ternational Conference on Knowledge Discovery and Data mining (SIGKDD)

Exploration Newsletter, vol. 9, pp. 41–55, June 2007.

[143] F. Mörchen and D. Fradkin, “Robust mining of time intervals with semi-interval

partial order patterns,” in SIAM International Conference on Data Mining

(SDM), 2010, pp. 315–326.

[144] D. Patel, W. Hsu, and M. Lee, “Mining relationships among interval-based

events for classification,” in Special Interest Group on Management of Data

(SIGMOD), 2008, pp. 393–404.

[145] O. Kostakis, P. Papapetrou, and J. Hollmén, “Distance measure for querying

arrangements of temporal intervals,” in PErvasive Technologies Related to As-

sistive Environments (PETRA), 2011.

[146] ——, “Artemis: Assessing the similarity of event-interval sequences,” in Euro-

pean Conference on Machine Learning and Principles and Practice of Knowl-

edge Discovery in Databases (ECLM/PKDD), 2011, pp. 229–244.

[147] A. Kotsifakos, P. Papapetrou, and V. Athitsos, “IBSM: Interval-based sequence

matching,” in SIAM International Conference on Data Mining (SDM), 2013,

pp. 596–604.

[148] J.-L. Lin, “Mining maximal frequent intervals,” in Symposium On Applied Com-

puting (SAC), 2003, pp. 624–629.

[149] R. Villafane, K. A. Hua, D. Tran, and B. Maulik, “Knowledge discovery from

series of interval events,” Journal of Intelligent Information Systems (JIIS),

vol. 15, no. 1, pp. 71–89, 2000.

[150] F. Giannotti, M. Nanni, and D. Pedreschi, “Efficient mining of temporally

annotated sequences,” in SIAM Data Mining Conference (SDM), vol. 124, 2006,

pp. 348–359.

201

[151] S.-Y. Hwang, C.-P. Wei, and W.-S. Yang, “Discovery of temporal patterns from

process instances,” Computers in Industry, vol. 53, no. 3, pp. 345–364, 2004.

[152] T. Abraham and J. F. Roddick, “Incremental meta-mining from large temporal

data sets,” in Advances in Database Technologies, 1999, pp. 41–54.

[153] X. Chen and I. Petrounias, “Mining temporal features in association rules,”

in European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases (ECLM/PKDD). Springer-Verlag, 1999,

pp. 295–300.

[154] F. Höppner, “Discovery of temporal patterns - learning rules about the qualita-

tive behaviour of time series,” in European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases (ECLM/PKDD),

2001, pp. 192–203.

[155] F. Höppner and F. Klawonn, “Finding informative rules in interval sequences,”

in International Symposium on Intelligent Data Analysis (IDA), 2001, pp. 123–

132.

[156] C. Mooney and J. F. Roddick, “Mining relationships between interacting

episodes,” in SIAM International Conference on Data Mining (SDM), 2004.

[157] S. Laxman, P. Sastry, and K. Unnikrishnan, “Discovering frequent generalized

episodes when events persist for different durations,” Transactions on Knowl-

edge and Data Engineering (TKDE), vol. 19, no. 9, pp. 1188–1201, 2007.

[158] E. Winarko and J. F. Roddick, “Armada - an algorithm for discovering richer

relative temporal association rules from interval-based data,” Data & Knowl-

edge Engineering (DKE), vol. 63, no. 1, pp. 76–90, 2007.

[159] P. Papapetrou, G. Benson, and G. Kollios, “Discovering frequent poly-regions in

DNA sequences,” in International Conference on Data Mining (ICDM) Work-

shop on Data Mining in Bioinformatics, 2006.

202

[160] S.-Y. Wu and Y.-L. Chen, “Mining nonambiguous temporal patterns for

interval-based events,” Transactions on Knowledge and Data Engineering

(TKDE), vol. 19, no. 6, pp. 742–758, 2007.

[161] Y.-C. Chen, W.-C. Peng, and S.-Y. Le, “CEMiner- an effcient algorithms for

mining closed patterns from interval-based data,” in International Conference

on Data Mining (ICDM), 2011.

[162] F. Mörchen, “Temporal pattern mining in symbolic time point and time interval

data,” in International Conference on Knowledge Discovery and Data mining

(SIGKDD), 2010.

[163] J. F. Allen, “Maintaining knowledge about temporal intervals,” Communica-

tions of the ACM (CACM), vol. 26, no. 11, pp. 832–843, 1983.

[164] J. Allen and G. Ferguson, “Actions and events in interval temporal logic,”

Journal of Logic and Computation (JLP), 1994.

[165] D. Patel, W. Hsu, and M. Lee, “Mining relationships among interval-based

events for classification,” in Special Interest Group on Management of Data

(SIGMOD), 2008, pp. 393–404.

203

BIOGRAPHICAL STATEMENT

Alexios Kotsifakos was born in Athens, Greece, in 1985. He received his B.Sc.

degree in the Department of Informatics and Telecommunications (DI&T) from the

National and Kapodistrian University of Athens (NKUA), Greece, in 2007, being

ranked first (8.74/10) and with honors and awards in all four years of studies. He

received his M.Sc. in “Advanced Information Systems” from DI&T in 2009, again

being ranked first (9.74/10). From 2008 to 2011 he was a Research and Teaching

Assistant at the same Department, and from 2010 to 2011 he was also an Instructor in

several Greek Institutes of Professional Training giving lectures on Computer Science

courses. In April 2014 he received his Ph.D. degree in Computer Science from the

University of Texas at Arlington. His research areas include, but are not limited to,

similarity search and efficient indexing techniques for sequence databases applied on

clustering and classification tasks, and analysis of sensor data.

204

