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Abstract 

EXPERIMENTAL TESTBED FOR ROBOT SKIN CHARACTERIZATION 

AND INTERACTION CONTROL 

 

Kyle Shook, M.S  

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Dan O. Popa 

This thesis presents the research and work we conducted with an experimental 

testbed designed for testing and characterizing various types of robot skin with tactile 

sensing. The main goal of this research is to develop reduced-order models of robot skin 

for use in physical human-robot interaction simulations. The reduced-order models are 

developed from data collected by the testbed. 

The experimental testbed presented is designed around a National Instruments 

compactRIO (cRIO). The cRIO controls and reads from a linear actuator and can collect 

synchronous measurements from multiple force sensors. The software developed for 

different test scenarios is also presented. 

Experiments were conducted on force sensors, force sensors embedded in robot 

skin, and different materials for robot skin. Models built from these experiments are 

presented and validated through further testing.
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Chapter 1  

Introduction 

1.1 Motivation for Robot Skin Characterization 

Generally speaking, robots are able to reliably perform repeated, specific tasks 

when their movements are predefined and reside in structured environments, for instance 

in manufacturing. Servo technology and control enables manufacturing robots to far 

exceed any human when comparing the two in precision, accuracy and repeatability of 

movements, yet place the most advanced robot in a random kitchen and it would be 

much more difficult for it to fetch a glass of water [1]. One of the reasons for this is an 

increasing need for robots to perceive their surroundings to the extent that humans can. 

Robot skin with embedded multi-modal sensors, such as temperature, pressure, 

and proximity is one direction that has been pursued for several decades. For our 

purposes we will classify such robot skin as a “heteroceptive sensor inspired by nature 

that could eventually enable social robots to share their workspace with humans” [2]. This 

defines robot skin as transmitting information through multiple modalities, with human-like 

qualities (aesthetically and in transmission, control, etc.) and enabling a situation where 

humans can safely go about their business in proximity to the robot without the need for 

structured barriers (real or imaginary). 

Electronic sensors are the primary method for robots to gather information about 

their surroundings. There are many types of sensors that have been exploited in robotics 

already, including vision, pressure, vibration, temperature, proximity, touch and infrared, 

and have been routinely used to reduce uncertainty for robots in an unknown 

environment [1]. Pressure, vibration, temperature and touch fall in the category of tactile 

sensing, or sensing through physical interaction, which allows the robot to discern the 
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physical nature of the objects or humans in near proximity.  In a sense, tactile perception 

allows humans to differentiate between what is “me” and what is “not me” [3]. 

  

Figure 1-1 SkinSim user interface and sensor array on PR2 forearm [4] 

Tactile sensing and tactile transduction methods have been studied extensively 

as discussed in chapter 2. However, there is limited prior research on design tools for 

tactile skin that considers questions of optimal sensor placement, density, resolution, 

bandwidth, even modality [3]. Realistic robot skin system models can be very helpful in 

reducing trial and error, and avoiding costly and time consuming design iterations for 

robot skin. Toward this aim, a skin simulation environment - SkinSim - is currently under 

development at the University of Texas at Arlington (UTA) in the Next Generation 

Systems Group (NGS). SkinSim is a simulator framework for multi-modal robot skin as a 

physical interface between robots and humans [4].  SkinSim will be used for design 

optimization of robot skin parameters using real time feedback and can test methods for 

optimal placement, data management and types of sensors. In SkinSim realistic reduced-

order models of robot skin must be implemented to relate external forces applied to the 

skin to force measurements gathered on taxels embedded in the skin. Reduced-order 

models of robot skin will also be used in simulated force control experiments. This 

includes but is not limited to creating models of individual sensors, sensor arrays, 
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sensors embedded in robot skin material and the robot skin material itself. This work 

discusses methods to develop reduced-order models that can and will be used in 

SkinSim.  

1.2 Challenges in Robot Skin Characterization 

Biologically inspired technology looks to the oldest form of optimization for clues 

on how to improve our present day technology. If we look to human skin in this manner, 

we will find that tactile sensing for humans is “[hysteretic], nonlinear, time varying, and 

slow” [3]. None of those qualities sound like ways we would like to describe our latest 

expensive robot skin. Fortunately for humans, we possess a central nervous system that 

can derive useful information from our own “technologically poor” sensors [3]. 

Unfortunately, robots have nothing analogous in scope with that yet. Biological inspiration 

aside, many other challenges are present in robot skin characterization. 

Two of the main forms of tactile transduction, piezoresistive and capacitive, 

involve deforming materials to measure a change in resistance or capacitance, 

respectively. All deformable materials experience some degree of hysteresis. Hysteresis 

is a nonlinear phenomenon where the relationship between a system’s input and output 

differ between loading and unloading [5]. Another issue piezoresistive and capacitive 

sensors experience is drift. Drift, like hysteresis, is a nonlinear behavior where input 

stimuli on materials require a recovery time to produce an equivalent output. Model 

parameters for both hysteretic and drift behavior can be identified for individual 

materials/sensors for use in a simulation environment. The challenge can be in selecting 

what model to use for what behavior and material. Outside of parameter identification, 

there can be challenges implementing these models because of their computation 

requirement and memory storage of previous states. 
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Tactile sensors experience unit-to-unit variation between sensors of the same 

type and brand. This can be remedied through calibration of each individual sensor unit. 

Calibration procedures must be consistent for each unit to compare signal output from 

multiple sensors. 

With many types of tactile sensors, a dynamic testbed must be designed to 

accommodate them. The testbed must record synchronous measurements from multiple 

instruments including tactile sensors, motion control devices and other sensors used for 

characterization.  

Model identification requires prior wisdom on the system in question. Fitting 

experimental data to randomly selected models is not an efficient method of model 

identification. Model components need to be based off of the physical phenomena they 

are describing. Randomly selected model components with no meaning should not 

increase the soundness of a model. An example is viscoelastic material; the elasticity of 

the material can be modeled by a spring, the viscous behavior by a dashpot. 

1.3 Description of Work Conducted 

In this thesis we present the experimental testbed used to perform experiments 

on tactile sensors. We also present the methods used to analyze the measurements 

gathered from these experiments that help characterize different setups of robot tactile 

skin. Reduced-order models were created for three different thicknesses of robot skin 

using piezoresistive pressure sensors.  

 The experimental setup was created with equipment from the UTA 

Research Institute (UTARI) and NGS labs. A linear actuator with encoder feedback was 

mounted vertically on an optical table above a horizontal x-y stage. The linear actuator 

was controlled by a National Instruments (NI) compactRIO (cRIO). The cRIO was 
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interfaced with a NI servo-drive module and a Maxon servo amplifier through a terminal 

block and custom cabling to communicate with the linear actuator.  

 The purpose of the linear actuator was to control the movement of a 

cylindrical plunger as it depressed into different types of robot skin and tactile sensors. 

Force and pressure data from the plunger were recorded through an attached in-line load 

cell. We designed and printed, with a rapid prototyping machine, a mounting plate to 

attach the load cell to the linear actuator. The mounting plate was designed so that forces 

from the plunger would produce minimal torqueing on the linear actuator axis. 

 LabVIEW (LV) programs were created that controlled the motion of the 

plunger mounted on the linear actuator and recorded time-stamped measurements from 

the load cell, tactile sensors and encoder. The programs were run from the cRIO using 

Scan Interface mode. The cRIO Scan Interface mode is optimal for sampling rates up to 

300 Hz [6]. Sampling rates above 300Hz should utilize FPGA control. The sampling rate 

was 100Hz during all of our testing. Programs were written for the following experiments: 

• Single or repeated step input loading 

• Stair-step loading/unloading 

• Random step input loading/unloading 

• Sinusoidal loading/unloading 

• Incremental force control 

Program parameters were set on the LV user interface (UI) and then compiled 

and ran from the cRIO internal processor. Live measurements were visible on the UI but 

were set to update at a slower rate than the measurement collection rate of 100Hz. Inside 

the LV programs priority levels can be set for separate timing loops; so for our purposes, 

the measurement collection and motion control loops were highest priority, followed by 

the UI update loop at a significantly lower priority. This ensures the measurement 
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collection and motion control takes precedence over updating the UI.  Once the 

experiment was completed the measurement data was extracted from the cRIO memory. 

Measurements from the load cell and tactile sensors were amplified through 

separate signal conditioners and sent to an analog input module on the cRIO. The 

piezoresistive tactile sensors we chose, FlexiForce taxels from Tekscan, were tested for 

drift and individually calibrated. The force applied was the load measured by the load cell; 

the force sensed was the load measured by the calibrated taxel. A total of four FlexiForce 

sensors were tested. 

Silicone skin samples were fabricated from molds in thicknesses of 2mm, 4mm 

and 6mm. This required printing of square molds in a 3D rapid prototyping machine. To 

improve the removal of the silicone from the mold cavities all of the molds were coated 

with an ultrathin layer of parylene by a SCS parylene deposition system. The silicone 

used for the skin samples were room temperature vulcanizing (RTV) silicone rubber 

mixed in a 10:1, base to curing-agent ratio. Once the mixture is poured into the mold 

cavities they undergo degassing to remove air bubbles. After degassing the samples are 

oven cured and removed from the molds. Three different samples were fabricated at 

each thickness. All of the samples were not mixed at the same time and not all air 

bubbles were removed so each sample is not homogeneous. Instead, each sample has 

slightly different properties. 

Taxels were fixed to the x-y stage and centered under the plunger. Once 

centered, the skin samples were taped to the taxel surface and pressed down on to 

ensure the bottom of the samples were flat against the taxel and stage surface. To 

identify parameters for reduced-order models representing robot skin, a sinusoidal input 

was provided as stimulus to the skin surface. We tested three thicknesses of silicone skin 

(2mm, 4mm and 6mm) and one sample of Frubber® skin. The silicone skin deformation 
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was fitted to a sinusoidal curve that was then used, along with the taxel and load cell 

force measurements, in a least squares algorithm to identify the parameters for the 

reduced-order model. With the model it is possible to relate the applied load on robot skin 

to the sensed load of a taxel embedded in the skin. Three verification tests were 

performed on silicone skin verifying the effectiveness of the reduced-order model to 

mimic the output of the taxel. The same reduced-order model was used with the 4mm 

Frubber®, however, parameter identification for the model was performed using a 

transfer function identification method from MATLAB’s System Identification Toolbox 

instead of a LS algorithm. 

A larger mold of 4mm thickness was fabricated for use in experiments with a 

taxel array. Three taxels were fixed side by side to the x-y stage forming a 3x1 array. The 

taxel array was then covered with the skin sample. The load applicator was depressed 

into the skin multiple times along the length of the taxel array in defined increments. The 

test was designed to understand the transmission of force that occurs through robot skin 

to adjacent taxels that are not experiencing a direct perpendicular application of force. A 

loading profile was created from the sensor measurements from this test for each skin 

sample. A similar experiment was performed on a 4mm silicone and 4mm Frubber® 

sample to model the load distribution at distances a certain distance from the taxel 

center. From the measurements a Gaussian distribution was fit for both silicone and 

Frubber® skin. 

Experiments were conducted to highlight the viscoelastic behavior of two types of 

soft robot skin. First, repeated step loading and unloading was applied to silicone rubber 

and Frubber®. Force measurements collected from the load cell show varying degrees of 

hysteresis, a nonlinear behavior, for each sample. Second, a constant strain input was 

applied to each sample. Measurements from the load cell make it clear that drift is 



 

8 

another nonlinear problem encountered when modeling robot skin. In the future, 

nonlinear models to mimic the hysteresis and drift behavior will be implemented for 

improved interaction control in SkinSim. 

An experiment was conducted testing the difference between a taxel placed on 

top of robot skin versus underneath. The same step loading and unloading was applied to 

a 4mm skin sample with the taxel fixed to the bottom of the x-y stage and the taxel taped 

to the top of the skin sample. 

1.4 Research Contributions of Thesis 

1.4.1 Experimental Testbed 

A primary contribution of this thesis is the experimental testbed. The testbed is 

designed for multipurpose motion experiments with a focus on robot skin testing and 

characterization. Experiments on the testbed are capable of applying predefined motion 

profiles on robot skin and tactile sensors while sending and recording signals from an 

analog input module, an analog output module and a digital I/O module. Multiple LV 

programs were written to control the motion of the linear actuator as well as an 

incremental force controller.  

1.4.2 Modeling & Characterization of Robot Skin & Tactile Sensors 

Experiments were conducted to better understand how the thickness of robot 

skin affects the transmission of applied force to a taxel directly underneath the contact 

point and to taxels adjacent to the point of contact. The placement of taxels on top of or 

underneath robot skin was also looked at. 

Reduced order models were identified for varying thicknesses of silicone and 

Frubber® robot skin for use in the sensor optimization program SkinSim. These scalable 

models will allow further tests to be performed in a simulation environment to determine 

optimal parameters for robot sensing like taxel placement, taxel density, etc. 
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In addition to the reduced-order models, Gaussian fits of the load distribution 

through silicone and Frubber® skin were identified. The Gaussian fits can be used in 

defining load profiles throughout a large array of sensorized skin in SkinSim. 

1.5 Thesis Organization 

Chapter 2 is a literature review in the following: 1) research in human skin 

properties and tactile signal processing in humans; 2) successful implantation of whole-

body robot skin over the last two decades and advanced technology in robot skin; 3) 

research in viscoelastic materials; 4) parameter estimation with linear least squares. 

 Chapter 3 begins with a detailed description of the experimental testbed. The 

cRIO and LV programs are discussed along with the sensors and accompanying 

components used in our experiments. Results from the calibration of four FlexiForce 

taxels are presented. Additionally, fabrication of silicone skin is discussed. 

 Chapter 4 outlines the data collection and insights of our experiments on robot 

skin. First we look at drift and hysteresis of silicone skin and Frubber® and the 

challenges they present. Then we describe the effects of taxel placement and the 

transmission of force picked up by a sensor array. Finally we present a reduced-order 

model for robot skin relating the applied force on the skin to the sensed force by a taxel in 

the skin. We describe the methods for gathering data for parameter identification and 

present three validation cases. 

 Chapter 5 concludes the thesis by discussing the results presented and 

provides an outline for future research that could build upon our work. 
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Chapter 2  

Literature Review 

2.1 Research in Human Skin  

Along with sensing technology, another facet of robot skin that is in constant 

development is the skin-like covering used to house and protect sensors on social robots. 

The Uncanny Valley has been studied at length and has proven to be an important factor 

in the acceptance of social robots [7]. While it may be unnecessary for robot skin to 

exactly mimic human skin, it could be important for robot skin to be “skin-like” at the least. 

To better develop human-like robot skin, it is first important to understand human skin. 

Human skin exhibits a nonlinear stress-strain relationship and ultimate elongation 

of 74-96% on the legs and arms [8]. It is “multilayered…, nonhomogeneous, and 

viscoelastic” [3]. Fingertip skin conforms to objects during grasping, spreading out the 

detection to multiple mechanoreceptors, and contains intermediate and papillary ridges 

that improve grip [3].  

Human skin consists of multiple sensing modalities including temperature, 

pressure, vibration and pain. These “sensors” in human skin have varying density over 

different parts of the human body. For example, mechanoreceptors in human hands 

range in density from 241 per square centimeter in the fingertips to 58 per square 

centimeter in the palms [9]. Receptor density relates to spatial acuity. Two point 

discrimination acuity in the fingers is less than 1mm and greater than 30mm in the 

forearm, back and calf [10]. The mean pressure sensitivity threshold in female and male 

hands is approximately 2.5mg and 3mg, respectively; mean temperature thresholds for 

both sexes of warm and cold is approximately 38degC and 32degC, respectively [11]. 

Human skin can detect vibrations up to a frequency of 700 Hz and can distinguish 
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between consecutive collisions in the fingertips at different locations down to  30-50ms 

[12] [13]. 

Research in [3] details “hints” for designing robot skin that is modeled after 

human skin. They call for multi-modal, distributed skin with a resolution mimicking that of 

human skin, e.g., higher resolution in areas used for grasping and lower for areas that will 

receive less contact. They also call for sensors with high sensitivity, dynamic range and 

quick response.  

In addition to physical properties of robot skin and sensors, we can also look to 

the human body for influence and inspiration on the control and processing of information 

from sensors. In humans, signals from mechanoreceptors are transferred through nerves 

in the form of action potentials which is “similar to digitizing and coding analog signals by 

an analog-to-digital convertor” [3] [14]. The signals from mechanoreceptors then travel 

through multiple paths and at different speeds depending on the level of importance and 

also undergo preprocessing before the signal reaches the central nervous system [3]. 

This helps streamline information processing and reduces the “load” on the bodies’ main 

“processor”. This can be replicated in robot skin through sensing units with local 

processing. 

2.2 Research in Robot Skin  

Tactile sensing technology in general has been widely reviewed [15] including 

tactile sensing for dexterous manipulation by robots [16]. While specific components 

behind robot skin technology have been researched for half a century, only in the last two 

decades has whole-body robot sensing been fully investigated. In 2001, Lumelsky, a 

pioneer in robot skin, proposed flexible, large-area, “sensitive skin” for robots composed 

of multi-modal sensors to allow robots to interact with humans in an unstructured 

environment [17]. Much progress has occurred in robot skin technology since Lumelsky’s 
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proposal: from improvements in manufacturing flexible printed circuit boards (PCB) [18] 

[19] to multi-sensing units deployed on functioning social robots [20]. In this section we 

will discuss research in robot skin, from Lumelsky’s proposal to today’s achievements. 

2.2.1. Robot Skin Prototypes 

Lumelsky demonstrated the possible elegance of humans and robots interacting 

with a ballerina safely dancing with a sensorized robot arm [17]. The arm’s surface was 

covered with infrared sensing taxels that detected the nearby presence of humans and 

other objects. The sensors prevented the arm from colliding with and damaging its 

“partner”, an absolute requirement for any pHRI. Unique to Lumelsky’s research was the 

idea that the entire surface of the robot must be covered in “sensitive” skin. “Sensitive”, in 

this case, refers to the ability to detect one’s local surroundings through multiple 

modalities: proximity, temperature, pressure, touch and others. Lumelsky also discussed 

the massive amount of processing power that would be required to handle the data from 

the number of sensors it would require to sensorize an entire robot. He foresaw this 

problem, the immense density of data and sensors, as the main restriction for robot 

sensing moving forward. However, he also discussed that once this hurdle of massive 

parallel information processing is tackled, the knowledge learned from the technology 

would be applied in countless fields in new and currently unknowable ways. 

HEX-O-SKIN, a project from Germany, is a self-organizing, multi-modal sensing 

module that has been deployed on a KUKA arm and HRP-2 robot [20] [21]. The module 

has four sensing modalities: proximity, acceleration, temperature and normal force. The 

proximity, acceleration and temperature sensors are commercial off-the-shelf (COTS) 

while the normal force sensor is custom made. The module is a hexagon with sides 

1.4cm in length and has a 3D printed elastomer cover. Each module has local 

intelligence and a unique ID that allows it to determine where it is in relation with the 
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other interconnected modules. This ability, along with the accelerometer, allows the HEX-

O-SKIN modules to create a map of their location relative to the robot host. To add 

robustness to the sensing system it incorporates a “highly redundant network structure”. 

Of the four ports located on each module, it is only necessary that one is working at any 

given time. This is possible because the modules can reroute information through other 

adjacent modules if they detect a broken connection. Grasping experiments of large 

objects, a trashcan, were performed with the modules incorporated on a HRP-2 robot. 

The HRP-2 used feedback from “tactile driven motion primitives” to adjust its arms to 

grasping the object. 

Another example of a fully-developed robot skin employed on iCub, KASPER 

and NAO robots is an Italian project called ROBOSKIN [22]. Like HEX-O-SKIN, 

ROBOSKIN consists of small, interconnected PCB sensing modules. Unlike, HEX-O-

SKIN, ROBOSKIN limits its sensing to one modality, capacitive pressure sensing, and the 

modules are flexible. Each triangular module, sides 3cm in length, is composed of twelve 

individual capacitive taxels, with up to sixteen triangles able to connect and 

communicate. Each PCB module incorporates local processing with a COTS analog-to-

digital convertor. Custom mounting components were created to incorporate ROBOSKIN 

on each robot. Once embedded on the robot surface, the modules were covered in 

silicone foam. After experiencing problems with relevant drift, two of the twelve taxels 

were made to respond to changes in temperature [23]. These two taxels were then used 

to compensate for temperature variation in the other ten taxels. On the iCub, modules 

were implanted in the forearms, palm and fingertips. Grasping experiments were 

performed demonstrating the improved ability of the iCub to pick up deformable objects 

with tactile feedback versus without. 
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(a)  

(b) 

 

(c)  

(d)  

 

Figure 2-1 Electronic skin examples: (a) HEX-O-SKIN, (b) ROBOSKIN, (c) DLR Artificial 

Skin and (d) TakkTile tactile arrays 
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DLR artificial skin, developed in Germany, is a stretchable robot skin designed 

for sensitivity to minute pressures and the ability to withstand high impact collisions [24]. 

DLR skin utilizes orthogonally layered electrically conductive polymer based circuit tracks 

(PBCT) for its tactile sensing modality. Compressive deformation on the skin causes the 

contact area between two cross-linked PCBT to increase resulting in a measureable 

resistance change at the node. During experiment the DLR skin withstood impact forces 

up to 50N while collecting tactile data at a rate of 409 FPS. The second incarnation of the 

DLR artificial skin focuses on scalability concerns, specifically related to size, spatial 

resolution, measuring range and readout frequency [25]. The PCBT are altered to have 

triangular cross sections to optimize the scalable measuring range and “multiplexers are 

replaced by analog switches for both the supply and… readout electrodes of the… 

sensor array”. The analog switches enable “dynamic connection of individual row and 

column electrodes” resulting in “variable receptive fields.” This means the resolution of an 

n x n array can be set during different tasks and according to the desired readout 

frequency. 

TakkTile are low cost tactile array sensors utilizing barometric pressure sensors 

on PCB [26]. The PCB sensors incorporates instrumentation amplifiers, analog-to-digital 

convertors, pressure and temperature sensors and control circuitry encapsulated in a soft 

polymer [26]. TakkTile sensor arrays are currently available for purchase and can be 

customized for different array sizes and rubber skin thicknesses. 

2.2.2. Advantages of Soft Robot Skin 

Compliant, or soft, robot skin has many advantages to the hard outer surface of a 

typical robot. Soft skin better mimics the pliable, almost fluid behavior of human skin and 

might be better accepted in a social environment with pHRI. Soft skin also can absorb 

impacts experienced by a robot as it travels through cluttered, unstructured 
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environments. Another advantage is the increased sensitivity taxels embedded in soft 

skin experience. This is highlighted by the phenomena of hyperacuity.  

 In [27] hyperacuity in robot sensing is researched. Hyperacuity is the ability to 

detect spatial differences at a distance smaller than the length between adjacent sensors. 

This ability results from overlapping sensor fields and is naturally present in animals. A 

given example is braille reading, where users are able to perceive “spatial patterns of a 

finer resolution than the spacing between touch receptors in the fingertips.” This ability 

was tested on an iCub palm and fingertip implanted with ROBOSKIN tactile sensing 

modules [22]. Experiments conducted on the iCub demonstrated a 10:1 ratio between 

position acuity and taxel resolution, e.g., position acuity for the fingertip reached 

approximately 0.3mm while taxel spacing was 4mm. This demonstrates the advantage of 

covering tactile sensors with a soft, deformable material in that responses to mechanical 

input will be spread out across multiple sensors. 

Another example of this can be seen in [28] with an optical three-axis tactile 

sensor. The sensor surface is covered in rubber skin which serves both to protect the 

sensitive light-emitting diodes (LED) and eliminates insensible areas. Computational finite 

element method (FEM) was performed on the design and showed that sensitivity to 

three-axis forces are not decreased. 

2.2.3. Robot Skin Manufacturing Technology 

As much as from improved implementation of current sensing technology, robot 

skin will also benefit from advances in micro- and nano-scale manufacturing of flexible 

electronics.  

Research in [18] details high-performance, 2.5µm silicone wires and 

microstructures realized on ultra-thin (10µm) polyimide which can be used for developing 

integrated circuits (IC) on flexible substrates. The performance of organic and inorganic 
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electronics on bendable substrates and plastic foils are discussed in both [29] and [30]. In 

these studies electronic performance was observed to decrease at a bending radius of 

5mm; resistivity at the same bending radius only changed by 5% [29]. Piezoelectric 

flexible tactile sensors printed on ultrathin polyimide were constructed in [31]. The 

sensors showed a linear response to both sinusoidal stimuli up to 2 Newtons (N) and a 

1N stimuli from 200-1200 Hz. 

2.2.4. Frubber® 

Frubber®, a patent of Hanson Robotics Inc., is an artificial skin material used to 

enhance the realism of social robots. It has been used on multiple robots including Zeno, 

an interactive robot designed to treat and diagnose children with autism, and an android 

portrait of Philip K. Dick (PKD), designed for lifelike emotions and expressions during 

pHRI. Frubber is a porous elastomer with high elongation properties and low tear 

strength that better mimics the aesthetics of human skin than solid elastomers [32]. 

2.3 Research in Viscoelastic Materials 

Any elastic polymer, whether foam or solid, that is used to cover or embed tactile 

sensors will experience viscoelastic behavior. To accurately model and interpret the 

signals from these sensors viscoelastic behavior must be understood. In this section we 

take a look at the different behaviors of viscoelastic material and how they can be 

modeled. 

 When a material undergoes small strains, the response is assumed to be elastic. 

Larger deformations require the consideration of viscoelastic behavior. Viscoelastic 

materials are materials whose stress-strain relationship depends on time [33]. When 

deformed, some of the behaviors viscoelastic materials exhibit include creep, relaxation, 

recovery and other combinations of elastic and inelastic responses (figure 2-2). 
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(a)     (b)  

(c)  

Figure 2-2 Behaviors of viscoelastic material: (a) creep under constant stress, (b) stress 

relaxation under constant strain, (c) instantaneous and delayed recovery from stress 

input (figure adapted from [34]) 

Viscoelasticity has multiple causes. One of the causes in polymers is friction 

during deformation between entangled and neighboring molecular chains [33]. Under 

small strains porous elastomers, like Frubber®, deform due to the buckling of the cell 

structure. Straining further causes the expulsion of air from the pores until the cell 

structures are fully collapsed. During this region the material experiences an increase in 

density and the stress-strain curve rises significantly. 

2.3.1. Linear Constitutive Models of Viscoelastic Behavior 

Linear constitutive models for viscoelastic materials relate the stress and strain at 

instant t by linear differential equations with constant coefficients [35]. Elements in the 

differential model consist of springs and dashpots which represent elastic and viscous 

elements, respectively. These elements are combined in both parallel and series to 

model different behavior. 

Linear springs follow Hooke’s law, 
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 𝜎 = 𝐸 ∈ (1) 

where σ, E and ϵ represent stress, Young’s modulus and strain, respectively. 

 Linear dashpots follow Newton’s law, 

 
σ =  η 

𝑑𝜖

𝑑𝑡
 

(2) 

where η represents Newtonian viscosity. 

 The Kelvin-Voigt model combines a spring and a dashpot connected in parallel. 

The elements experience the same strain while the total stress is the sum of the stress 

from each element. The Maxwell model connects a spring and dashpot in series. Both 

elements experience the same stress while the total strain is the sum of the individual 

strains on each element. The Kelvin-Voigt, Maxwell and standard viscoelastic solid 

rheological models are seen in figure 2-3. The standard viscoelastic solid model is a 

Kelvin-Voigt model with the dashpot replaced by a Maxwell model.  

(a)     (b)        (c)  

Figure 2-3 Rheological models of (a) Kelvin-Voigt model, (b) Maxwell model and (c) 

standard viscoelastic solid model 

The differential equation describing the stress-strain relationship for the Kelvin-

Voigt model is the following: 

 
∈ ̇ +  

𝐸

𝜂
∈   =    

𝜎

𝜂
 

(3) 
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Under a constant stress input 𝜎0 (applied at t=0) the strain in a Kelvin-Voigt 

model experiences creep. After loading the strain slowly approaches a maximum 
𝜎0

𝐸
. The 

equation is: 

 
∈ (𝑡)   =    

𝜎0

𝐸
 (1 −  𝑒

−
𝐸𝑡

𝜂 )  
(4) 

If the Kelvin-Voigt model is unloaded at t = t1, the stress, again, slowly reaches 

equilibrium and relaxes to its original length. The equation for t > t1 is: 

 
∈ (𝑡)  =    

𝜎0

𝐸
 𝑒

−
𝐸𝑡
𝜂  (𝑒

−
𝐸𝑡
𝜂  −  1) 

(5) 

The stress-strain relationship for a Maxwell model is the following: 

 
∈̇  =    

�̇�

𝐸
 +  

𝜎

𝜂
  

(6) 

Under a constant stress input 𝜎0 (applied at t=0) the strain in a Maxwell model 

undergoes an immediate elastic response and a viscous response that increases with 

time. The equation is: 

 ∈ (𝑡)  =    
𝜎0

𝐸
+  

𝜎0

𝜂
𝑡 (7) 

The stress for a Maxwell model under constant strain ∈0 (with an accompanying 

initial stress𝜎0) experiences and immediate stress that decays exponentially over time. 

The equation is: 

 
𝜎(𝑡)  =   𝜎0 𝑒

−
𝐸𝑡
𝜂   =   𝐸 ∈0 𝑒

−
𝐸𝑡
𝜂   

(8) 

2.3.2. Hysteresis 

Hysteresis is a nonlinear phenomenon where the relationship between a 

system’s input and output differ between loading and unloading [5]. The relationship 

between loading and unloading is demonstrated in figure 2-4. 
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Figure 2-4 The reaction force 𝐹𝑅 is different during loading and unloading due to the 

friction force 𝐹𝐹 opposing the direction of movement. 𝐹𝐹 is added to the force from 

the skin 𝐹𝑆 during compression and subtracted during relaxation  

(figure adapted from [36]) 

 

Figure 2-5 Stress σ vs. strain ϵ example graphs of nonlinear viscoelastic  

materials [33] 
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Figure 2.5 showcases the hysteretic behavior of several nonlinear viscoelastic 

materials. The area inside the loops represents the energy per volume dissipated per 

cycle [33]. 

2.4 Linear Least Squares 

Linear least squares can be used for curve fitting, parameter identification and 

system model realization [37]. In this thesis, we use a linear least squares algorithm to 

identify parameters for a reduced-order model composed of a mass element, two springs 

and two dashpots. The residual error, error between measured values and estimated 

values, is minimized in a least squares algorithm to estimate the unknown parameters 

[37]. Below is detailed the process of using linear least squares (taken from [37]). 

A set of m discrete measurements is required: 

 {�̃�1, 𝑡1;  �̃�2, 𝑡2; … ; �̃�𝑚, 𝑡1𝑚} (9) 

A process y(t) with a proposed mathematical of the form 

 
𝑦(𝑡) =  ∑ 𝑥𝑖ℎ𝑖(𝑡),   𝑚 ≥ 𝑛

𝑛

𝑖=1

 
(10) 

with independent basis functions 

 ℎ𝑖(𝑡) ∈ {ℎ1(𝑡), ℎ2(𝑡), … , ℎ𝑛(𝑡)}  (11) 

We represent the measured values �̃�𝑗 and the estimated values �̂�𝑗 with the 

following equations: 

 
�̃�(𝑡𝑗) =  ∑ 𝑥𝑖ℎ𝑖(𝑡𝑗) + 𝑣𝑗 , 𝑗 = 1, 2, … , 𝑚

𝑛

𝑖=1

 
(12) 

 
�̂�(𝑡𝑗) =  ∑ �̂�𝑖ℎ𝑖(𝑡𝑗), 𝑗 = 1, 2, … , 𝑚

𝑛

𝑖=1

 
(13) 

where 𝑣𝑗 and �̂�𝑖 represent the measurement error and estimated states, respectively [37]. 
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The measured values �̃�𝑗 and the estimated values �̂�𝑗 can be related through the 

following equation: 

 
�̃�(𝑡𝑗) =  ∑ �̂�𝑖ℎ𝑖(𝑡𝑗) + 𝑒𝑗 , 𝑗 = 1, 2, … , 𝑚

𝑛

𝑖=1

 
(14) 

defining 𝑒𝑗 as the residual error 

 𝑒𝑗 ≡ �̃�𝑗 −  �̂�𝑗 (15) 

The compact matrix form of the previous equation for �̃�𝑗 can be expressed as 

 �̃� = 𝑯𝒙 + 𝒆 (16) 

with the arrays equal to: 

 �̃� = [�̃�1  �̃�2  … �̃�𝑚]𝑇 (17) 

  𝒆 = [𝑒1 𝑒2  … 𝑒𝑚]𝑇 (18) 

  𝒙 = [�̂�1 �̂�2  … �̂�𝑚]𝑇 (19) 

  

𝑯 = [

ℎ1(𝑡1) ℎ2(𝑡1)
ℎ1(𝑡2) ℎ2(𝑡2)

… ℎ𝑛(𝑡1)
… ℎ𝑛(𝑡2)

⋮ ⋮
ℎ1(𝑡𝑚) ℎ2(𝑡𝑚)

 ⋮
… ℎ𝑛(𝑡𝑚)

]  

(20) 

The optimum choice for the unknown parameters is the one that minimizes the 

sum square of the residual errors J: 

 
𝐽 =  

1

2
𝒆𝑇𝒆 

(21) 

J can be reworked into the following form (with substitution of the compact matrix 

form for �̃�𝑗): 

 
𝐽 =  𝐽(𝒙) =

1

2
(�̃�𝑻�̃� − 2�̃�𝑻𝑯𝒙 +  𝒙𝑻𝑯𝑻𝑯𝒙) 

(22) 

Using matrix calculus differentiation and applying the rules for global minimum of 

the quadratic function J present the following requirements for the Jacobian of J: 

 ∇𝑥𝐽 ≡  𝑯𝑻𝑯𝒙 −  𝑯𝑻�̃� = 𝟎 (23) 
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With this form we can solve for 𝒙 to obtain the equation for the optimal 

parameters to minimize the residual error: 

 𝒙 = (𝑯𝑻𝑯)−1𝑯𝑻�̃� 

 

(24) 
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Chapter 3  

Description of Experimental Testbed 

To gather measurements for many experiments in a repeatable, efficient manner 

we selected a platform that has been developed with extensively and had many options 

for hardware capabilities. The platform of our experimental testbed is a National 

Instruments (NI) compactRIO (cRIO) with accompanying programming package 

LabVIEW (LV). In our testbed the cRIO gathers real-time measurements from multiple 

sensors and controls a Newport actuator. The completed testbed and system architecture 

can be seen in figure 3-1 and 3-2. Two types of sensors are used for our experiments: 

FlexiForce force sensors and a Transducer Techniques Inc. (TTI) load cell. The 

FlexiForce sensor acts as an embedded taxel in robot skin and measures what load the 

robot perceives. The force applied to this sensing element is measured by the load cell. 

In this section we will detail each component of the experimental testbed including the 

programs that were used to run the experiments. 

 

Figure 3-1 Experimental testbed: the load cell and load applicator are mounted to the 

linear actuator to depress into the robot skin 
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Figure 3-2 Testbed system architecture 

3.1 Testbed Controller 

The following section details the hardware used for controlling the experiments 

we conducted in this thesis.  

To gather measurements from multiple sensors and control an actuator in real-

time, a NI cRIO was selected. The model number of the controller is NI cRIO-9074 and 

can be seen in figure 3-3. 

 

Figure 3-3 National Instruments cRIO-9074 [38] 

The cRIO is a reconfigurable, deterministic data acquisition device that can be 

programmed with NI LV graphical programming. It has a 400 MHz real-time processor 
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and an 8-slot FPGA chassis housing hot-swappable modules [38].The advantage of this 

controller is in its ability to gather synchronous time-stamped measurements from 

multiple sensors while also controlling actuators or other devices in a testbed. 

Synchronous, time-stamped measurements are essential to the model fitting that will be 

discussed in Chapter 4. Two NI C Series modules were used in our testbed: the NI 9201 

Analog Input Module and the NI 9516 Servo Drive Interface Module (Figure 3-4).  

(a)  (b)  

Figure 3-4 (a) NI 9201 AI Module [39], (b) NI 9516 Servo Drive Interface [40] 

The NI 9201 is an 8-channel, 12-bit analog to digital converter with a range of ± 

10V. This module is used for recording the measurements from the two force sensors in 

the testbed. The module has a maximum sampling rate of 500kS/s, or 62.5kS/s per 

channel and a resolution of 4.88mV [39].  

The NI 9516 is a servo drive interface used for sending signals to and receiving 

signals from the linear actuator and servo amplifier. It has dual encoder feedback with a 

50µs control loop rate along with spline interpolation, position and torque control [40]. 

The NI 9516 is used in conjunction with a Maxon servo amplifier, model number LSC 

30/2 (Figure 3.5). The Maxon servo amplifier receives drive signals from the NI 9516 and 

sends the corresponding current to the actuator. With feedback from the actuator’s 

encoder the servo amplifier can adjust the transmitted current to reduce the position error 

of the actuator. 
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Figure 3-5 Maxon LSC 30/2 servo amplifier [41] 

The linear actuator is a Newport UTMCC1HL. The actuator has a 150mm range 

and on-axis accuracy of 5µm. The maximum travel speed is 20mm/sec. The actuator has 

a single 2000pts/rev encoder with a resolution of 1µm. 

3.2 LabVIEW Motion Control and Measurement Collection 

3.2.1 Motion Control 

Motion control “is a complex system with several nested control loops” consisting 

of motion control software, communication module, servo amplifier, motor with 

transmission device and feedback devices [6]. An architectural overview of motion control 

software and hardware is seen in figure 3.6. 

 

Figure 3-6 Motion control for cRIO 



 

29 

The motion control software algorithms transmit desired motion profiles from the 

user into motion control commands for the communication I/O module [6]. For our 

experiment the motion control software running on the cRIO was NI SoftMotion. 

SoftMotion is a high-level application programming interface (API) that implements 

supervisory control and trajectory generation [6]. The top level supervisory control loop 

includes initialization of the system, event handling, and fault detection [6]. The 

deterministic nested trajectory generation loop receives commands from the supervisory 

control loop and creates location set points for a path profile based on user input [6]. 

 The communication module we used was the NI 9516 servo drive interface. The 

NI 9516 includes a processor to perform spline interpolation from set points sent by the 

trajectory generation loop. The servo drive sends drive command signals to the servo 

amplifier and receives encoder feedback for position control. The servo amplifier for our 

testbed is the Maxon LSC 30/2 which converts drive commands from the NI 9516 to high-

current motor signals to control the linear actuator. 

3.2.2 Motion Control Programs 

LV programs, or Virtual Instruments (VI), were created to provide user input for 

motion generation of the motion control system and for measurement collection. Several 

VIs were created to perform the following movements: single step input; stair-step input; 

user set ramp profiles for random input; sinusoidal motion. In addition, a VI was created 

to implement incremental force control. 

During each experiment, the VI allowed a user to view the current position of the 

linear actuator, force reading from the load cell and force reading from the taxel. An 

example of the front panel on a motion control VI is seen in figure 3-7. This VI 

implements straight-line movement with a user able to set the position increment, velocity 

and acceleration. Because the linear actuator does not include a tachometer, velocity and 
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acceleration are calculated through the finite difference method of position. The front 

panel includes an execute button for initializing and starting movement and a stop button 

for halting the progression of the current move. The front panel tracks the number of both 

the measurement acquisition loop cycle and the UI update cycle. The measurement 

acquisition loop number represents the number of iterations the timed-loop recording 

measurements from the encoder and force sensors has undergone; the UI update loop 

number represents how many times the UI has updated. The UI loop intentionally runs 

slower than the acquisition loop and is given lower priority on the cRIO real-time 

controller. A file path input allows the array of collected measurements to be named for 

each experiment. The files are stored on the cRIO and must be saved under 

“C:\file_name”. Once stored the files are downloaded from the cRIO through NI 

Measurement and Automation Explorer (MAX). 

All the processes in the VI run inside a timed-loop, synchronized to the scan 

engine of the cRIO. The scan engine is used during LV projects utilizing Scan Mode 

which is optimal for control loops lower than 500Hz and accessing single-point I/O data. 

During an experiment multiple timed loops can be run at the same time.  Loops acquiring 

and storing measurements from one of the devices and loops for motion commands were 

set to the same loop time as the scan engine, 100Hz. Loops updating the user interface 

iterated every 2 periods of the scan engine, or at 50Hz. The acquisition and recording of 

device measurements was the most important task for each VI. This is conveyed to the 

cRIO by setting priority levels for timed-loops. The acquisition timed-loop has the highest 

priority level at 100, followed by the motion command loops at 99, then the UI loop at 50. 

A level of 100 priority ensures that the cRIO always records measurements from the 

encoder and force sensors; only when that task is completed will the cRIO continue on to 

the motion command signals and then update the UI. These priority levels were set for 
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user assurance, and are not a major issue considering the slow loop rate of the VI at 

100Hz. 

 

Figure 3-7 Front panel of motion control VI 

Each VI used for experiments contained a loop for acquiring and storing 

measurements from the encoder and force sensors. This loop was synchronized to the 

scan engine and given highest priority. Readings for the force sensors are gathered from 

the analog input module and assigned as global variables. The stage position variable is 

the position of the bottom surface of the plunger and is read from an encoder function 

block. Global variables can be accessed from any loop in the VI. The size of the storage 

array is set from the front panel and is set based off experience. To determine the time 

that has elapsed between consecutive loops, the Execution Time loop was created; this 

can be seen on the far right side of figure 3-8. Values are stored in the storage array 

based upon the iteration number of the timed-loop, which corresponds to a specific row. 
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Once the Stop button has been pressed on the front panel the array is compiled into a 

tab-delimited file and sent to the specified file path. 

 

Figure 3-8 Timed-loop for measurement collection & storage 

Both single step input and stair-step input movements are achieved through the 

use of the Straight-Line Move (figure 3-9) function block (FB). First, after the Execute 

button has been pressed on the UI, all motion is initiated with the Power FB. The Power 

FB enables the servo drive and movement along the specified axis. After initialization a 

signal is sent to the Straight-Line Move FB executing a straight-line move to the relative 

or absolute position set by the user. The user can also specify the velocity and 

acceleration for each move in the UI. 

Figure 3-10 shows a FB structure similar to the straight-line move, but designed 

to perform repeated straight-line moves. Specifically, this program performs a stair-step 

pyramid type movement which was used for calibrating the taxels. The load applicator 

descends a certain number of times into the taxel (holding a user-specified length of time) 

and then reverses course. A case structure was required to implement consecutive 

movements with a hold-time in-between. 
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Figure 3-9 Function block structure for straight-line move 

(a)  

(b)  
Figure 3-10 Function block structure for straight-line move: (a) case structure false, (b) 

case structure true 
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Sinusoidal motion is completed in a similar manner to straight-line movements 

but instead utilizes the Arc Move FB (figure 3-11). The arc move is designed to be 

implemented with two perpendicular stages. However, when used with just one stage it 

can perform sinusoidal motion. A program implementing the Arc Move FB was used in 

parameter identification for the reduced-order models. 

 
Figure 3-11 Arc Move function block for sinusoidal motion input 

Another program was created utilizing the Straight-Line Move FB that was used 

for applying repeated step inputs. The user set the position increment for the load 

applicator along with the stage velocity and acceleration; the user also set the length of 

time the load applicator should depress into the sample and/or taxel. This repeated step-

input program works similar to the straight-line move program except the position 

increment is fed to the Straight-Line Move FB with the case structure shown in figure 3-

12. The position increment fed to the Straight-Line Move FB alternates between a 

negative and positive value of the position increment and zero. 

A program was written to implement pseudo-random motion input so we could 

validate the reduced-order models. The Straight-Line Move FB is utilized as in previous 

cases but the case structure providing user-set position moves has changed (figure 3-
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13). The pseudo-random position moves are determined before the experiment and then 

typed into an array on the UI. The program then grabs the increments from the array and 

sends the appropriate move to the Straight-Line Move FB. 

 

Figure 3-12 Repeated step-input case structure 

 

Figure 3-13 Pseudo-random motion input case structure 

The previous VIs implemented position control of the plunger using encoder 

feedback. If instead a user wanted to control the specific force applied to a skin sample or 

taxel another method must be used. An incremental force controller was developed for 
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the testbed to provide position-based force control. An incremental force controller uses 

the difference between a desired and measured force to provide a user-set position 

increment to the motion controller. Advantages of the incremental force controller are that 

it is easy to implement, robust and effective even if a system is nonlinear; disadvantages 

include the slow response of the system and chatter as a function of the position 

increment [42]. For implementation in the VI the desired force, set by the user, is 

compared to the load cell force global variable measurement (figure 3-14).  The sign of 

the error determines the direction of the user-set position increment sent to the Straight-

Line Move FB. 

 

Figure 3-14 Incremental force controller 

While the linear actuator has a home limit switch it was not utilized in our testbed. 

Instead, to set the zero position at the top surface of skin samples and taxels a rolling 

average loop was implemented. The rolling average loop records the previous 100 

measurements from the load cell and averages them. The implementation is shown in 

figure 3-15. The zero position of skin samples and taxels was always set to the point 

where the load cell had a rolling average of 0.01 V. When the load cell reading reached 

this number, the encoder position was set to zero on the axis configuration panel. 
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Figure 3-15 Loop for calculating the average of the previous 100 measurements 

3.3 Force Sensors 

For our experiments two different sensors were used: a Tekscan FlexiForce 

A201 force sensor representing a robot taxel and a TTI MLP load cell to measure the 

applied force to the taxel. 

3.3.1 FlexiForce Force Sensor 

The Tekscan FlexiForce A201 force sensor is a piezoresistive, flexible, thin 

printed circuit (figure 3-16). Piezoresistive materials respond to strain with a change in 

resistance across the material, a useful property for small sensing elements. As the strain 

is increased on a piezoresistive material, corresponding to an increase in applied force, 

the resistance decreases. Resistance is inversely proportional to conductance which is 

what is used to measure the change in force on the taxels. As the force increases on the 

sensing element of the taxel the conductance linearly increases. This change is 

measured and converted to a voltage reading through a drive circuit. 

The taxels have the following specifications [43]: 
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 Linearity error: < ± 3% 

 Repeatability: < ± 2.5% of full scale 

 Hysteresis: < ± 4.5% of full scale 

 Drift: < 5% per logarithmic time scale 

 Response time: < 5µs 

 

Figure 3-16 Tekscan FlexiForce A201 [43] 

The taxels have a sensing area 9.53mm in diameter and a thickness of 

0.203mm. The taxels used in our experiments have a 25lbs capacity. Due to the high 

part-to-part variability of the FlexiForce sensors, as high as 40%, calibration of each 

sensor is a necessity [44]. Calibration of the taxels is discussed in section 4.1. 

 To convert the change in resistance of the taxel to a measureable change in 

voltage, a Phidgets 1120 FlexiForce Adapter was used (figure 3-17) [45]. The Phidgets 

1120, powered by a 5V source, converts the analog signal of the taxel resistance change 

to an analog voltage of 0-5V. This 0-5 V output signal is wired into a terminal on the NI 

9201. As previously mentioned, the resolution of the NI 9201 is 4.88mV. With the 0-5V 

output of the Phidgets corresponding with the 0-25lbs capacity of the taxel, the sensing 

resolution of the taxel in our system is approximately 0.107 N. 
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Figure 3-17 Phidgets 1120 FlexiForce Adapter 

3.3.2 Taxel Calibration 

The FlexiForce force sensors were used to represent embedded taxels in robot 

skin. Because the relationship between the taxel signal conditioner output and the 

applied force on the taxel is unknown, each taxel must first be calibrated before 

experiment. Each taxel had an incrementally increasing force applied to its surface 

resulting from the plunger pushing into the taxel. An example of the deformation 

experienced by the taxel, in compression, is shown in figure 3-18. The sensors are 

compressed up to 87% of their original thickness of 0.203mm. 

The reaction force applied to the plunger is recorded by the load cell which is 

pre-calibrated. The load cell voltage output is related to applied force through the 

following equation: 

 
𝐹𝐿𝐶 =  𝑉𝐿𝐶  ×  

25 𝑙𝑏𝑓

8 𝑉
 × 

4.44822 𝑁

1 𝑙𝑏𝑓
 

(25) 

As seen in figure 3-19, the relationship between taxel voltage output and applied 

force is nearly linear and a linear relationship was used for analysis. To determine the 

slope between the two the load cell response is plotted against the voltage output of the 

taxel. Four calibration runs were performed on four different taxels. The equation relating 

taxel voltage output to the applied force is: 
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 𝐹𝑇𝑎𝑥𝑒𝑙 =  𝑉𝑇𝑎𝑥𝑒𝑙  ×  𝑆𝑙𝑜𝑝𝑒 (26) 

Table 3-1 shows the calibration results of four separate taxels. Taxel 1 and taxel 

3 calibration tests were performed all in the same day while taxel 2 and taxel 4 tests 

spanned multiple days. The calibration results show high sensor-to-sensor variation and 

low variation between tests on a specific taxel. The maximum standard deviation for any 

of the taxel calibrations was 0.620 N/V; the minimum was 0.0266 N/V. This analysis 

shows that while taxels can experience up to 40% sensor-to-sensor variation, they are 

individually consistent and a slope calculated through calibration experiments can be 

used for analysis if we take into account which taxel was used. 

 

Figure 3-18 Example of the deformation of a single taxel during calibration 

The response of each taxel undergoes hysteresis because of the deformable 

material present inside the sensor (figure 3-20). However, the effect is small enough 

(maximum 6% difference between upper and lower curve) that it is ignored for our 

analysis. 
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Table 3-1 Slope values calculated from calibration curves of taxel voltage output vs. 

applied force 

Units: N/V Taxel 1 Taxel 2 Taxel 3 Taxel 4 

Experiment 1 9.413 14.08 10.52 14.04 

Experiment 2 9.443 14.26 9.975 14.20 

Experiment 3 9.368 13.36 10.29 12.75 

Experiment 4 9.409 13.30 10.59 13.07 

Average 9.408 13.75 10.34 13.51 

Std. Dev. 0.0266 0.425 0.240 0.620 

 

 

Figure 3-19 Calibration curve fitted from measurements of a single dataset on one taxel 
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Figure 3-20 Calibration curve (close-up) from single taxel showing hysteresis of response 

From the same tests that were used to calibrate each taxel, we can also 

determine a rough estimate of the Young’s modulus of each taxel. The Young’s modulus 

describes the rate of change of the reaction force of elastic materials to strain. The 

Young’s modulus of each taxel was calculated by fitting a linear equation to the plot of 

applied force as a function of deformation (figure 3-21). Note the y-intercept at zero 

deformation is not zero for these fits. A polynomial fit or other equation can be used to 

better model the behavior of the taxel force response. Four our purposes only the linear 

fit was used to show the slope consistency between taxels. Table 3-2 contains slope 

values for all linear fits of the four taxels tested. The variation between taxels is 

approximately 6-7%, much lower than the variation in the calibration curves. 

Hysteresis is also present in the Young’s modulus plots and shown in figure 3.22. 

The nonlinearities and hysteresis present in the taxel can be ignored if, for future tests, 

we want to model the taxel as a linear spring. 
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Table 3-2 Slope values calculated from curves of taxel deformation vs. applied force 

Units: kN/m Taxel 1 Taxel 2 Taxel 3 Taxel 4 

Experiment 1 229.6 219.4 210.7 228.0 

Experiment 2 231.6 219.0 227.7 224.7 

Experiment 3 241.4 221.7 227.0 228.1 

Experiment 4 235.7 221.8 228.4 227.6 

Average 234.6 220.5 223.4 227.1 

Std. Dev. 4.49 1.29 7.39 1.41 

 

 

Figure 3-21 Linear fit of force response of single taxel to deformation 
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Figure 3-22 Hysteresis in force response of single taxel to deformation 

3.3.3 TTI Load Cell 

The MLP-25 TTI load cell is a strain gauge based transducer. Strain gauges take 

advantage of conductive materials that experience change in resistance due to 

deformation. When a load is applied to the load cell the surface that the strain gauge is 

fixed to deforms. The change in resistance caused by the deformation is measured by a 

Wheatstone bridge and then related to a force through signal conditioning and calibration. 

The load cell in our experiment was shipped pre-calibrated – this was validated through 

testing with a known weight. The load cell has a 25lb capacity. 

 

Figure 3-23 TTI MLP-25 load cell 
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The load cell has the following specifications [46]: 

 Nonlinearity: 0.1% of rated output (RO) 

 Hysteresis: 0.1% of RO 

 Nonrepeatability: 0.05% of RO 

 Zero Balance: 1.0% of RO 

The change in resistance of the strain gauge during loading is measured by a 

TTI TMO-1 load cell signal conditioner. The TMO-1 has a 2200Hz bandwidth filter. The 

TMO-1 must be zeroed with a multimeter with zero load applied to the load cell. A gain 

potentiometer is used with the load cell calibration chart (shipped with item) to adjust the 

response of the signal conditioner. The TMO-1 requires a 12VDC power source and 

outputs 0-8V. The output signal is wired to the analog input module of the cRIO. 

 

Figure 3-24 TTI TMO-1 signal conditioner 

The 0-8V analog output signal from the signal conditioner corresponds with an 

applied force on the load cell of 0-25lbs. As previously stated, the cRIO analog input 

module has a resolution of 4.88mV. Thus, the sensing resolution of the load cell for our 

system is 0.07 N. 

 The load cell was mounted on the linear actuator with a 3D printed mounting 

plate designed in CAD software. The material of the mounting plate is Somos® 

WaterShed XC11122. The Young’s modulus of cured XC11122 is approximately 

2750MPa [47]. 
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 The cylindrical plunger was machined from a 12mm diameter 6060 aluminum 

rod. One end of the plunger was threaded so it could be connected to the load cell with 

an adapter. The other end was machined down to a diameter of 9.9mm to be the same 

size as the sensing area of the taxels. 

(a)   (b)  

Figure 3-25 (a) 3D printed mounting plate & (b) cylindrical load applicator 

3.4 Fabricated Silicone Skin 

Skin samples made from two different materials (silicone and Frubber®) were 

tested in this thesis. With the exception of one sample, all of the silicone skin patches 

were fabricated specifically for this thesis at UTARI. The Frubber® samples were 

fabricated by David Hanson. In this section is detailed the fabrication process of silicone 

rubber skin.  

 All of the silicone skin patches created for this thesis were made at UTARI from 

P-10 silicone rubber from Silicones, Inc. The RTV silicone rubber is a 10:1 mixture of 

base to curing agent. Each skin sample was made from a 3D-printed mold that was 

parylene-coated in a SCS parylene deposition system. The ultra-thin (5µm) parylene 

coating on the 3D-printed mold helps with removal of the cured silicone. The skin 

samples were made into 40mm x 40mm squares of 2mm, 4mm, and 6mm thickness. In 
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addition, silicone skin samples were made into 40mm x 60mm rectangles with 4mm 

thickness. Once mixed and poured into the molds, the silicone mixture is degassed in a 

vacuum chamber, removing air bubbles introduced into the silicone during mixture. Once 

most of the air was removed (approximately 30 minutes) the molds were covered in a flat 

plate and cured inside an environmental oven. Curing in an oven is not necessary except 

for convenience; the silicone will cure at room temperature in less than 24 hours. Once 

cured, P-10 silicone rubber has a tensile strength of 2413 ± 345 kPa and percent 

elongation of 450 ± 50. 

 

Figure 3-26 RTV silicone in 3D printed molds during degassing 
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Chapter 4  

Robot Skin Experiments & Models 

4.1 Soft Skin Material Testing 

If social robots are to be covered in soft skin, understanding the behavior of the 

material used for skin is important. Many different materials can be used for the soft 

tissue on robot skin. In this thesis we looked at two types of material: Frubber® and 

silicone rubber. 

Both silicone rubber and Frubber® experience hysteresis and drift. Hysteresis is a non-

linear phenomenon where the relationship between a system’s input and output differ 

between loading and unloading [5]. Drift occurs when a material relaxes after a constant 

strain input and the stress decreases with time. To study hysteresis and drift in silicone 

rubber and Frubber® we applied several motion inputs to soft skin samples without an 

embedded taxel. The load applicator descended into each sample while the deformation 

and reaction force were recorded. 

Figure 4-1 and figure 4-2 show the hysteresis present in a 5mm thick silicone 

rubber sample and a 6mm thick Frubber® sample, respectively. The silicone rubber had 

a maximum difference between loading and unloading of approximately 15%; for 

Frubber® the maximum difference was approximately 55%. The force response of 

silicone rubber skin to strain is approximately linear while the Frubber® response is 

highly nonlinear. It is obvious the silicone rubber is much stiffer than the Frubber® 

sample. The silicone rubber reached a reaction force of 10 N after only 16% deformation; 

the Frubber® sample required 70.8% deformation to reach 10 N. The rate dependence of 

the force response in silicone rubber was tested and is small but measureable (figure 4-

1). As the strain rate increases the stress-strain curve shifts towards the left, meaning at 

higher strain rates an equivalent deformation produces higher stress than at lower strain 
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rates. This could be explained by the material having less time to relax at higher strain-

rates. 

(a)  

(b)  

Figure 4-1 (a) Force response of 5mm silicone skin sample to deformation. The rate 

dependence (b) of the material response is small but measureable 
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(a)   

(b)   
Figure 4-2 (a) Force response of 6mm Frubber® skin to deformation; (b) close-up of Run 
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Hysteresis models been described in literature and include models such as the 

Bouc-Wen model and Preisach model [5] [36]. The Bouc-Wen model has been used to 

describe such hysteretic systems as magnetic materials [5]. In the future, a Preisach 

model will be implemented on a silicone rubber sample to mimic the behavior of a test 

case. The Preisach model is useful because its parameters can be identified from 

reference curves gained through experiment [36]. 

 

Figure 4-3 Normalized stress response of 5mm silicone rubber & 6mm Frubber® 

Drift response of both samples is shown in figure 4.3. The graph shows the 

normalized force response of each sample over time so that the two materials can be 

better compared. As can be seen from the graph, the Frubber® sample experiences 

higher stress relaxation compared to the silicone rubber. After ten seconds the silicone 

force response had decreased by 10.6% for test 1 and 12.0% for test 2 for an average of 

11.3%. After ten seconds the Frubber® force response had decreased by 39.3% for test 

1 and 42.3% for test 2 for an average of 40.8%. The initial force response immediately 
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after the step input for each case was: 7.45N for silicone test 1; 13.1N for silicone test 2; 

3.74N for Frubber® test 1; 11.66N for Frubber® test 2. 

4.2 Taxel Placement Testing 

Robot sensing taxels can be placed above, below or inside soft skin. We 

performed two different tests to study the effect of this design change to the skin 

response: in one test we placed a taxel underneath a 4mm silicone skin sample; in the 

second test we placed the taxel on the surface of the same skin sample. The load 

applicator was centered directly above the taxel. The same motion profile for the load 

applicator was used for each case: the load applicator repeatedly depressed 1mm into 

the skin sample. The results for taxel placement on top and on bottom of the skin are 

seen in figure 7. Both the applied and sensed force were higher with the taxel on top of 

the skin sample. The max applied load was 34N with the taxel on top and 15N with the 

taxel on the bottom. The max sensed load was 18.5N with the taxel on top and 8N with 

the taxel on bottom. 

 

Figure 4-4 Force measured by load cell & taxel with taxel underneath 4mm silicone 
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Figure 4-5 Force measured by load cell & taxel with taxel on top of 4mm silicone 

4.3 Robot Skin with Embedded Taxels Testing 

4.3.1 Parameter Identification for Reduced-Order Model 

A primary goal of the testbed was to relate the input force on a skin sample to the 

force detected by an embedded taxel in the sample. This relationship describes the 

difference between what a robot is subjected to in an environment (the applied force to 

robot skin) and what the robot perceives during an interaction (the sensed force by robot 

skin). This interaction between robot skin and environment is what we have designed our 

testbed to mimic (figure 4-6). The load applicator, centered above a taxel, applies a 

uniform load on a small area which is then distributed through soft skin to the taxel below 

and adjacent areas (including adjacent taxels). During real implementation of robot skin, 

there will exist a large array of taxels detecting signals all over the surface of the robot. 

The effect of an applied force to adjacent taxels is studied in section 4.3.2 of this thesis. 

 The models relating input force on robot skin to the force detected by an 

embedded taxel are required for robot skin implementation in SkinSim. Because of the 

nature of SkinSim, a simulation environment meant to optimize numerous parameters of 
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large-scale robot skin, a scalable reduced-order model of the force to force relationship is 

desired. While a force to deformation relationship in robot skin may be non-linear, it is not 

unreasonable to suggest a linear relationship between applied force and sensed force. 

This is showcased in figures 4-7 and 4-8. A linear reduced-order model describing the 

relationship between applied force and sensed force will serve well for the purposes of 

SkinSim, where an appropriate scalable approximation can be supplanted for a 

complicated, computationally expensive model. 

A linear reduced-order “dispersion” model was developed to relate the force 

applied to robot skin to the sensed force by a taxel underneath the skin (figure 4-9) [4]. 

The model uses the term “dispersion” to describe it because the applied force is 

dispersed throughout the material. The linear model consists of one mass element 

connected to a tactile sensor by two springs and two dashpots. The total force applied 

𝐹𝐿𝐶 is contributed to by both springs and both dashpots while the taxel sensed force 𝐹𝐹𝐹 

is only contributed to by spring 𝑘1and dashpot𝑏1. The spring 𝑘2 and dashpot 𝑏2 represent 

the force dispersed throughout the soft robot skin not detected by the taxel. 

 

Figure 4-6 Robot skin with embedded taxels 



 

55 

 

Figure 4-7 Force response of load cell & taxel with 4mm silicone to cyclic deformation 

 

Figure 4-8 Force response of load cell & taxel with 6mm Frubber® to step-inputs 
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Figure 4-9 Reduced-order “dispersion” model relating applied force to sensed force in 

robot skin 

The two forces 𝐹𝐿𝐶 and 𝐹𝐹𝐹 are related through the following equations: 

 𝐹𝐿𝐶(𝑡) = 𝑚(�̈�(𝑡) − 𝑔) + (𝑏1 + 𝑏2)�̇�(𝑡) +  (𝑘1 + 𝑘2)𝑥(𝑡) (27) 

   𝐹𝐹𝐹 = 𝑏1�̇�(𝑡) +  𝑘1𝑥(𝑡) (28) 

We performed experiments on three different types of robot skin and identified 

the parameters of the “dispersion” model for each. The robot skin samples consisted of 

silicone rubber skin with a FlexiForce taxel underneath the skin. Three samples each of 

three different thicknesses of silicone rubber skin were tested, i.e., three samples of 2mm 

skin, three samples of 4mm skin and three samples of 6mm skin were tested. Further, 

each individual skin sample was tested three times. After each experiment the 

parameters 𝑚,𝑘1,𝑏1,𝑘2, and 𝑏2 were identified using a linear least squares algorithm. 
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The basis functions used in the linear least squares algorithm were those for 𝐹𝐿𝐶 

and 𝐹𝐹𝐹.  Because both of these functions include either �̈�(𝑡) or �̇�(𝑡) a differentiable 

motion input was required for 𝑥(𝑡). Towards this end, the load applicator depressed into 

the robot skin with a sinusoidal motion given by: 

 𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝐵𝑡) + 𝐶 (29) 

At 𝑥 = 0 the load applicator is just at the surface of the robot skin. Positive 𝑥 

values denote compression of the skin. For each parameter identification test four 

sinusoidal periods were recorded. Different values of A, B and C were used for each 

thickness of skin, but the same values were used for samples of the same thickness. 

However, the actual motion of the load applicator measured by the encoder varied from 

these set values by a small amount. To find the exact values for each experimental 

motion profile the parameters A, B and C were manually adjusted to minimize the error 

between the actual measurement position and position calculated using A, B and C. An 

example comparing the measured position to the position calculated using the identified 

A, B and C is seen in figure 4-10. As seen in the figure, they overlap. The time values 

were adjusted to minimize the error which is why the plot shows negative values for time 

t. The adjusted values for A, B, C and time t were used in the linear least squares 

algorithm. A representative plot of the error between the actual position measurements 

and calculated measurements is seen in figure 4-11. The error is largest at the beginning 

of the dataset when the linear actuator is starting with zero velocity. Outside the 

beginning of the motion the maximum error is approximately 0.009 mm. The average 

error for all measurement sets of all three thicknesses is approximately 0.002 – 

0.006mm. 

Given the prescribed sinusoidal motion input, the basis functions 𝐹𝐿𝐶 and 𝐹𝐹𝐹 

become: 
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 𝐹𝐿𝐶(𝑡) = 𝑚(−𝐴𝐵2sin (𝐵𝑡) − 𝑔) + (𝑏1 +  𝑏2)𝐴𝐵𝑐𝑜𝑠(𝐵𝑡)

+  (𝑘1 + 𝑘2)(𝐴𝑠𝑖𝑛(𝐵𝑡) + 𝐶) 

(30) 

   𝐹𝐹𝐹 = 𝑏1𝐴𝐵𝑐𝑜𝑠(𝐵𝑡) +  𝑘1(𝐴𝑠𝑖𝑛(𝐵𝑡) + 𝐶) (31) 

The batch of measurements used for the linear least squares algorithm were 

{𝐹𝐿𝐶1
, 𝐹𝐹𝐹1

, 𝑡1; 𝐹𝐿𝐶2
, 𝐹𝐹𝐹2

, 𝑡2; … ; 𝐹𝐿𝐶𝑚
, 𝐹𝐹𝐹𝑚

, 𝑡𝑚} 

 with the following states to be estimated: 

𝑥1 = 𝑚 ; 𝑥2 = 𝑏1 ; 𝑥3 = 𝑘1 ; 𝑥4 = 𝑏2 ; 𝑥5 = 𝑘2  

 

Figure 4-10 Sinusoidal motion measurements vs. calculated measurements 

Three samples of each thickness of silicone skin (2mm, 4mm and 6mm) were 

fabricated and tested. Each sample was then tested three times except for the 4mm #1 

silicone sample which was only tested once. The conditions for testing were the same for 

each sample of the same thickness.  
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Figure 4-11 Position error between measurements & model for 6mm silicone skin sample 

The average values of the identified parameters for each sample of skin is seen 

in Table 4-1, Table 4-2 and Table 4-3. Table 4-4 shows the average value of the 

identified parameters for each thickness of skin. 

Table 4-1 Average values of identified parameters of “dispersion” model for 2mm silicone 

 2mm #1 2mm #2 2mm #3 

m (kg) 0.281 0.247 0.282 
std. dev. (kg) 0.028 .003 0.014 

b1 (kg/s) 1464.4 1286.1 1242.1 
std. dev. (kg/s) 65.1 99.5 35.4 

k1 (N/m) 27635 22738 24753 
std. dev. (N/m) 3174 379 1087 

b2 (kg/s) 645.5 575.5 572.8 
std. dev. (kg/s) 21.4 48.0 33.2 

k2 (N/m) 8879 8285 8694 
std. dev. (N/m) 757 422 445 

 

Table 4-2 Average values of identified parameters of “dispersion” model for 4mm silicone 

 4mm #1 4mm #2 4mm #3 

m (kg) 0.132 0.247 0.204 
std. dev. (kg) NA .011 .051 

b1 (kg/s) 843.1 1186.2 725.1 
std. dev. (kg/s) NA 86.0 113.8 
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Table 4-2—Continued       

k1 (N/m) 8061 10382 9375 
std. dev. (N/m) NA 770 299 

b2 (kg/s) 772.8 662.1 563.6 
std. dev. (kg/s) NA 65.4 13.6 

k2 (N/m) 5563 5605 5167 
std. dev. (N/m) NA 50.3 396 

 

Table 4-3 Average values of identified parameters of “dispersion” model for 6mm silicone  

 6mm #1 6mm #2 6mm #3 

m (kg) 0.199 0.180 0.222 
std. dev. (kg) 0.029 .017 0.006 

b1 (kg/s) 202.5 164.6 378.5 
std. dev. (kg/s) 33.7 31.2 17.0 

k1 (N/m) 4930 4222 3862 
std. dev. (N/m) 61.0 209 209 

b2 (kg/s) 710.7 696.7 900.5 
std. dev. (kg/s) 37.7 54.6 45.6 

k2 (N/m) 7652 7186 6968 
std. dev. (N/m) 8.77 94.6 222 

 

Table 4-4 Average values of identified parameters of “dispersion” model for each 

thickness of silicone skin 

 2mm Skin 4mm Skin 6mm Skin 

m (kg) 0.270 0.212 0.200 
std. dev. (kg) 0.016 .051 .018 

b1 (Ns/m) 1330 939.5 248.6 
std. dev. (kg/s) 96.0 236 93.1 

k1 (N/m) 25042 9619 4338 
std. dev. (N/m) 2010 957 444 

b2 (Ns/m) 598.0 635.7 769.3 
std. dev. (kg/s) 33.7 84.4 92.9 

k2 (N/m) 8619 5411 7269 
std. dev. (N/m) 248 336 285 

 

 The mass m for every identified case is below 0.300 kg. This can be attributed to 

acceleration of the deformation having very little effect on the applied or sensed force. 

The same can be said of the damping factor 𝑏1 and 𝑏2 which are all roughly an order of 
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magnitude smaller than 𝑘1 and 𝑘2 for each sample. The dominant factor influencing 𝐹𝐿𝐶 

and 𝐹𝐹𝐹 in all cases are the spring constants 𝑘1 and 𝑘2. This means our reduced-order 

models are predominantly affected by changes in deformation of the robot skin for low 

frequency motion inputs. 

There is significant variation between parameter values for different skin samples 

of the same thickness. This can be attributed to the variation in composition of each skin 

sample which can occur during fabrication. The skin samples are from multiple fabrication 

batches which contain slight differences in composition. The inclusion of anisotropic air 

bubbles not vacuumed out during degassing also can affect the identified parameters. 

While the state values differ, all state values from the same thickness of skin share the 

same order of magnitude. These values show a general range for what can be expected 

from silicone skin of various thickness when using the “dispersion” model. 

A problem encountered with using this model can be seen when looking at the 

values in Table 4-4. For each thickness of skin, there is not a clear trend in the estimated 

states. For example, we would expect the value of the mass to consistently increase with 

thickness. Instead, we see that mass actually decreases (however slightly) as thickness 

increases from 2mm to 6mm. This does not make physical sense. In addition, there is not 

a clear trend found when looking at the value k2. Unlike k1, which continually decreases 

with increasing skin thickness, k2 first decreases and then increases. This irregular 

change in k2 does not lend itself to a tie-in with physical reality. Further, the goal of 

identifying the parameters is to create some relationship with skin thickness so that many 

different thicknesses of skin can be implemented in SkinSim. These problems present in 

this version of the “dispersion” model and parameter identification must be re-

approached. 
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One approach is to remove the mass as a state that needs to be estimated. 

Because we know the density of the skin, we can calculate the mass and set it in the 

“dispersion” model as a constant for each experiment (mass increases as skin thickness 

increases). We will assume the m in the “dispersion” model represents a block of skin 

directly above the taxel. This block of skin has the same dimensions as the sensing area 

of the taxel and has a height of whatever thickness of skin is being tested. The mass for 

each thickness was calculated based upon the density of silicone material and was 

0.216g, 0.432g and 0.648g for the 2mm, 4mm and 6mm model, respectively. With the 

mass removed as a state, we can rerun the linear least squares algorithm with all the 

same experiments as before and estimate the parameters b1, k1, b2 and k2 again. The 

results of this are seen in Table 4-5. The values of b1 and k1 remain the same while b2 

and k2 change. While both b2 and k2 change from the original values, b2 only changes 

slightly. The values of b2 decrease by an average of 8.4 Ns/m. The average values of k2 

decrease very differently for each thickness as follows: 7016 N/m for the 2mm skin; 2645 

N/m for the 4mm skin; 1669 N/m for the 6mm skin. 

With the new values of the estimated parameters we can identify linear trends for 

each. Each estimated parameter is plotted as a function of skin thickness for the adjusted 

“dispersion” model in figures 4-12 and 4-13. Both b1 and k1 decrease rapidly with 

increasing skin thickness while b2 and k2 increase gradually with increasing skin 

thickness.  

Table 4-5 Average values of identified parameters of adjusted “dispersion” model for 

each thickness of silicone skin 

 2mm Skin 4mm Skin 6mm Skin 

b1 (Ns/m) 1330 939.5 248.6 
std. dev. (kg/s) 96 236 93.1 

k1 (N/m) 25042 9619 4338 
std. dev. (N/m) 2010 957 444 
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Figure 4-5—Continued       

b2 (Ns/m) 590.2 629.2 758.3 
std. dev. (kg/s) 66.7 79.1 93.9 

k2 (N/m) 1603 2766 5600 
std. dev. (N/m) 426 451 439 

 

 

Figure 4-12 Estimated values of b1 & b2 for adjusted “dispersion” model for silicone skin 

 

Figure 4-13 Estimated values of k1 & k2 for adjusted “dispersion” model for silicone skin 
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 Parameter identification tests for the adjusted “dispersion” model were also 

performed on a 4mm thick Frubber® skin sample. The same procedure was applied, with 

a taxel placed underneath the Frubber® skin and a sinusoidal motion input applied on top 

of the skin. Parameters were identified for three trials on one sample of 4mm thick 

Frubber® skin and are seen in Table 4-6. All four parameters are smaller than the 

identified parameters for the silicone skin, of any thickness. Also, the standard deviations 

are lower than for the averages of other individual silicone skin samples. Note, we are 

only looking at the identified parameters for one sample of Frubber® skin, and not three 

different samples of the same thickness like for silicone. The reason for this is because it 

was determined this method of identifying parameters for the “dispersion” model did not 

relate the applied force and sensed force successfully like the model did for silicone skin. 

This will be further discussed in section 4.3.2. 

Table 4-6 Average values of identified parameters for adjusted “dispersion” for 4mm 

Frubber® skin 

 4mm Skin 

b1 (Ns/m) 242.6 
std. dev. (kg/s) 3.03 

k1 (N/m) 1523 
std. dev. (N/m) 82 

b2 (Ns/m) 243.0 
std. dev. (kg/s) 2.11 

k2 (N/m) 481 
std. dev. (N/m) 14.5 

 

4.3.2 Reduced-Order Model Verification 

From each sinusoidal motion parameter identification test we can compare the 

measured sensed load to the calculated sensed load using the identified parameters and 

the “dispersion” model. The “dispersion” model we use is the one where the mass has 

been calculated and only b1, k1, b2 and k2 were estimated, which we call the adjusted 
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“dispersion” model. An example of this on a 6mm silicone skin sample is shown in figure 

4-14. The error between the measurements and model is largest at the extremums of 

deformation. A model implementing a nonlinear spring could possibly better match the 

change in spring constant for varying levels of skin deformation. For our purpose of 

modeling force transmission in a simulation the current “dispersion” model is satisfactory 

when using an elastic-like material such as silicone rubber. As seen in figure 4-14 (a 

graph of the actual sensed force and estimated sensed force using the measurements 

from the sinusoidal identification test), with a linearly elastic material like silicone rubber 

the adjusted “dispersion” model closely matches the actual sensed force.  

  To verify the effectiveness of the “dispersion” model for elastic materials in 

SkinSim three validation cases were tested. A pseudo-random motion input test was 

conducted on a 2mm, 4mm and 6mm robot skin sample. During the tests the load 

applicator randomly deformed the robot skin samples ranging in depth from 0-1.5mm for 

the 6mm sample, 0-1.0mm for the 4mm sample and 0-0.30mm for the 2mm sample. The 

average parameter values for each particular skin sample were implemented offline in the 

“dispersion” model and compared to the measured sensed force from the pseudo-

random motion test. The results can be seen in figure 4-15, 4-16 and 4-17 for a 2mm, 

4mm and 5mm robot skin sample, respectively. For reference, a sensed force of 5N 

corresponds to a pressure of 70.1kPa on the taxel. 
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Figure 4-14 Comparison of sensed load between measurements & “dispersion” model on 

6mm silicone sample during sinusoidal testing for parameter identification 

 

Figure 4-15 Comparison of taxel sensed force & calculated sensed force using reduced-

order “dispersion” model with 2mm silicone skin 
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Figure 4-16 Comparison of taxel sensed force & calculated sensed force using reduced-

order “dispersion” model with 4mm silicone skin 

 

Figure 4-17 Comparison of taxel sensed force & calculated sensed force using reduced-

order “dispersion” model with 5mm silicone skin 
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The mean squared error (MSE) for each sample is the following: 0.667 N for the 

2mm silicone sample; 0.204 N for the 4mm silicone sample; 0.071 N for the 6mm silicone 

sample; 14.64 for the 4mm Frubber® sample. The MSE is less than 8% of the maximum 

measured sensed force for each sample of silicone skin. The relative MSE for each is 

3.70%, 6.28% and 1.73% for the 2mm silicone, 4mm silicone and 6mm silicone, 

respectively. With the silicone skin the “dispersion” model experiences the largest error 

for the 4mm and 6mm silicone skin samples when the sensed load is small. The 2mm 

silicone skin sample experiences large error when the sensed load is very small and very 

large.  

The adjusted “dispersion” model was also tested on a very non-linear material, 

Frubber®. The adjusted “dispersion” model parameters were identified for a 4mm thick 

Frubber® skin in the same manner as for each thickness of silicone skin. With elastic skin 

material, using a LS algorithm to identify parameters for the “dispersion” model works 

well. However, this is not the case when we perform the same comparison on a Frubber® 

sample. The results of the same test on a 4mm Frubber® sample are seen in figure 4-18. 

The measurements differ greatly from the model estimation. This is because with the LS 

algorithm we rely upon an assumption of a linear relationship between the force applied 

and deformation. The LS algorithm uses the sinusoidal deformation as an input; however, 

as discussed in section 4.1, the relationship between force applied and deformation in 

Frubber® material is highly nonlinear.  
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Figure 4-18 Comparison of sensed load between measurements & “dispersion” model on 

4mm Frubber® sample using LS algorithm 

Because of the highly nonlinear relationship between force and strain with 

Frubber® we must approach the parameter identification and force to force relationship 

with a different method. MATLAB’s System Identification Toolbox provides transfer 

function estimators to relate an input and output through various techniques. We chose a 

method that fit parameters to a transfer function with prescribed order. However, with this 

approach we do not use deformation as an input, only the force applied. Through Laplace 

transformation of equation (27) we can establish a relationship between force applied and 

force sensed with a transfer function that is linear in the following form: 

 𝐹𝑜𝑟𝑐𝑒 𝑆𝑒𝑛𝑠𝑒𝑑

𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑
=  

𝑏1𝑠 +  𝑘1

𝑠2 + (𝑏1 + 𝑏2)𝑠 + (𝑘1 + 𝑘2)
 

(32) 

The numerator, which represents the force sensed, only depends on b1 and k1 while the 

denominator, which represents force applied, relies on all five “dispersion” model 

parameters. We expected that the model relating the load cell and sensed force data will 
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be considerably more linear than the one relating load cell force and skin displacement. 

Using transfer function estimation methods of the MATLAB® the model parameters that 

best relate the force applied to force sensed were identified with measurements 

conducted on a 4mm Frubber® skin sample. Three datasets were analyzed that all came 

from similar experiments on the same Frubber® sample. All experiments performed 

sinusoidal deformation on the skin sample. The only difference between the three 

experiments was the first experiment was performed with a velocity of 0.25 mm/sec while 

experiment 2 and 3 were at 1 mm/sec. An example of one of the dataset measurements 

plotting force applied and force sensed can be seen in figure 4-19. The force applied is 

the model input and the force sensed the output. The identified parameters of the three 

datasets is seen in Table 4-7. Figure 4-20 shows a comparison of the model fit to the 

measurements for experiment 1. 
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Figure 4-19 Load cell & taxel response to sinusoidal deformation with 4mm Frubber® 

skin 

Table 4-7 Identified parameters for “dispersion” model using MATLAB System 

Identification Toolbox with 4mm Frubber® skin 

 Deformation 
speed (mm/s) 

𝑏1

𝑚
 

(Ns/kg/m) 

𝑘1

𝑚
 

(N/m/kg) 

𝑏2

𝑚
 

(Ns/kg/m) 

𝑘2

𝑚
 

(N/m/kg) 

Experiment 1 0.25 1.61 1.60 0.425 0.566 

Experiment 2 1 6.69 37.1 1.88 11.3 

Experiment 3 1 6.98 39.1 1.58 9.92 
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Figure 4-20 Comparison of taxel sensed force & modeled sensed force using MATLAB 

System Identification with 4mm Frubber® (Experiment 1) 

 As with the silicone skin samples, we applied a pseudo-random deformation 

input to the 4mm Frubber® to compare the model output to the measured sensed force. 

The parameters used in the “dispersion” model were the averages of those identified in 

experiments 1 and 2. This was because the pseudo-random deformation input was set to 

a velocity of 1 mm/sec, which matches the velocity of experiments 1 and 2. The results of 

the validation test are seen in figure 4-21. The MSE for the validation was 0.520 N with a 

relative MSE of 15.5%. For reference, the average of the relative MSE for the silicone 

samples with their validation tests was 3.90%. Like with the silicone validation tests, the 

error is highest at low sensed forces, however, at the peaks (three above 4N) there is low 

error. 
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Figure 4-21 Comparison of taxel sensed force & calculated sensed force for validation 

test using System Identification with 4mm Frubber® skin 
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positions the load applicator deformed the robot skin. The taxels were spaced 14mm 

center-to-center underneath a 40mmx60mm 4mm thick silicone rubber skin sample. 
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(after reaching maximum deformation) along the array were averaged and can be seen in 

figure 4-23. 

 

Figure 4-22 Top view of 3x1 taxel array 

 

Figure 4-23 Overlapping sensing fields with 3x1 taxel array 
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force to deformations applied to the positions immediately adjacent to the taxel center. 

For all taxels zero load was sensed when the deformation occurred greater than one 

position adjacent to the taxel center. The sensed load at immediately adjacent positions 

was 74.2% less than the center load for taxel 1, 73.8% for taxel 2, and 75.8% for taxel 3. 

From these findings we can infer that the applied load is distributed in a predictable 

manner to adjacent areas of the robot skin. Additional tests need to be conducted with 

smaller position increments to better understand the distribution of applied force through 

a particular skin sample. Also, these type of experiments should be performed on 

different thicknesses of skin to determine the effect skin thickness has on force 

distribution. Another insight from this experiment is that the taxels have overlapping 

sensing fields. For example, both taxel 2 and taxel 3 recorded a sensed load for the 

deformation that occurred at position #5. As described in section 2.2.2 of this thesis, 

overlapping sensing fields can result in hyperacuity (higher spatial acuity than sensor 

resolution). This type of experiment can help determine the necessary sensor resolution 

for a desired spatial acuity. 

4.3.4 Taxel Loading Profile with Soft Skin 

In section 4.3.3 we determined that adjacent taxels in an array have overlapping 

sensing fields. That is, adjacent taxels will both detect a sensed force when a 

deformation occurs on a point of the skin in between the two taxels. It was also 

determined that each taxel in the array will have a similar load profile across positions 

adjacent to the center of the taxel. Because each taxel has a similar load profile, we can 

“zoom in” on one taxel load profile and use the measurements gained from it to apply 

standards for every taxel in an array. 

To do this, we performed two tests were we placed 4mm silicone skin and then 

4mm Frubber® skin on one taxel, and depressed the load applicator against the skin for 
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up to 1mm of deformation for the silicone skin, and 3mm for the Frubber® skin. We 

repeated this every 1mm moving in a straight line away from the taxel center. Taxel 

sensed force response measurements were recorded for the entire deformation (0-1mm 

for silicone skin and 0-3mm for Frubber® skin) of each depression along the straight line. 

Experiments were performed up to a maximum of 12mm away from the taxel center. We 

would like to note that the measurements of the deformation at position #2 for the silicone 

skin were corrupted and not used in this analysis. 

 To determine the effect of deformation depth on taxel response, the taxel 

response at deformations of 0 to 1mm with 0.10mm increments were recorded for 

silicone skin and then 1mm, 2.5mm, 2.7mm, 2.8mm and 2.9mm for Frubber® skin. The 

results can be seen in Table 4-10 and 4-11. The columns in the table represent the 

distance from the taxel center. The rows in the table represent the taxel sensed force 

response at different magnitudes of skin deformation. Some of the results are plotted in 

figure 4-24 and 4-25. It is clear from figure 4-24 that the sensed force magnitudes 

resemble a Gaussian distribution with silicone skin while with Frubber® skin they seem to 

be more linear but still somewhat resemble a Gaussian distribution. By assuming 

measurements on the other side of the taxel are identical to the measurements we 

obtained we can fit a general Gaussian model for each depth of deformation (i.e., 1mm, 

0.9mm, 0.8mm, etc. for silicone and 1mm, 2.5mm, 2.7mm, etc. for Frubber®). The 

general Gaussian equation is as follows: 

 
𝑓(𝑥) = 𝑎𝑒−(

𝑥−𝑏
𝑐

)2
 

(32) 

where x is the position along a straight line that the skin is deformed (x = 12mm is taxel 

center), a is the estimated maximum magnitude of the sensed force at the taxel center, b 

the position of the taxel center, and c a parameter identifying the shape of the load 

profile. Using MATLAB each parameter was identified for the given taxel response 
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distribution at each depth along with an R-square value determining the fit of the 

Gaussian model. The results for this are seen in Table 4-8 and 4-9. As expected from 

figure 4-24 and 4-25, the a value increases with deformation depth and the b value 

remains the same for both samples of skin. The estimated c values for the silicone 

sample are very close for deformations greater than 0.40mm with an average value of 

5.25. The c values being similar could be expected both from the similar shapes of the 

distributions in figure 4-24 and because the load should be distributed similarly 

throughout different depths of the same material. The R2 value is above 0.99 for 

deformations greater than 0.40mm. The high R2 value showcases a Gaussian distribution 

as a correct fit for these load profiles. Both deformations of 0.20mm and 0.30 mm have c 

values close to the larger deformations and an R2 value above 0.95. The 0.10mm 

deformation has a much different c value and a R2 well below that of the others. The 

smaller deformations are more affected by noise than the larger deformations and 

therefore the estimated Gaussian model parameters are corrupted. For the Frubber® 

sample the Gaussian fit also seems appropriate, although less so than for the silicone 

sample. For the 1mm deformation no fit was possible because no measureable load was 

transferred to the taxel, only noise was present. At the 2.5mm deformation and above a 

noticeable curve begins to develop and the Gaussian fits have an R2 value above .9600. 

The shape of the curves (the b value) at and above 2.5mm are similar with an average of 

4.17. The primary drawback of using a Gaussian fit with the Frubber® skin seems to be 

the mismatch of the sensed load magnitude at the taxel center. The Gaussian fits for 

2.5mm, 2.7mm, 2.8mm and 2.9mm all have a lower taxel center magnitude (the a value) 

than the actual magnitude, with an average percent error of 12.6%. 
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Table 4-8 Estimated values of general Gaussian model with 4mm silicone skin for varying 

deformation & R2 value for Gaussian fit 

Deformation a b c R2 

0.10mm 0.614 N 12 6.15 .7917 

0.20mm 1.56 N 12 5.41 .9653 

0.30mm 2.57 N 12 5.15 .9599 

0.40mm 3.47 N 12 5.21 .9903 

0.50mm 4.54 N 12 5.19 .9948 

0.60mm 5.65 N 12 5.24 .9948 

0.70mm 6.86 N 12 5.28 .9970 

0.80mm 8.03 N 12 5.28 .9966 

0.90mm 9.23 N 12 5.32 .9976 

0.99mm 10.5 N 12  5.25 .9974 

 

Table 4-9 Estimated values of general Gaussian model with 4mm Frubber® skin for 

varying deformation & R2 value for Gaussian fit 

Deformation a b c R2 

1.0mm NA NA NA NA 

2.5mm 1.51 N 12 4.11 .9642 

2.7mm 3.66 N 12 4.08 .9779 

2.8mm 4.93 N 12 4.19 .9816 

2.9mm 6.08 N 12 4.30 .9861 
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Table 4-10 Taxel sensed force (N) for varying deformation at given distance from taxel center with 4mm silicone skin 

 Distance  From Taxel Center          

Deformation 0mm 1mm 3mm 4mm 5mm 6mm 7mm 8mm 9mm 10mm 11mm 12mm 

0.10mm 0.726 0.432 0.726 0.344 0.235 0.235 0.118 0.118 0.118 0.020 0.118 0.018 

0.20mm 1.63 1.43  1.24 0.922 0.628 0.334 0.235 0.235 0.235 0.020 0.235 0.020 

0.30mm 2.45 2.34  2.14 1.53 0.922 0.432 0.235 0.235 0.333 0.118 0.118 0.235 

0.40mm 3.65 3.26  2.65 1.75 1.33 0.824 0.628 0.530 0.235 0.118 0.118 0.020 

0.50mm 4.36 4.36  3.45 2.55 1.75 1.04 0.726 0.333 0.333 0.235 0.118 0.118 

0.60mm 5.57 5.38  4.26 3.16 2.34 1.33 0.824 0.530 0.333 0.432 0.235 0.020 

0.70mm 6.57 6.57  5.26 3.96 2.75 1.75 1.14 0.628 0.432 0.118 0.020 0.118 

0.80mm 7.79 7.79  5.96 4.67 3.16 1.94 1.33 0.824 0.726 0.333 0.235 0.118 

0.90mm 9.01 8.89  6.99 5.57 3.65 2.45 1.53 0.922 0.628 0.333 0.118 0.020 

0.99mm 10.1 10.1  7.69 6.18 3.96 2.55 1.84 1.04 0.530 0.333 0.235 0.118 

 

Figure 4-24 Response of taxel to deformation of skin at varying distance from taxel center with 4mm silicone 
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Table 4-11 Taxel sensed force (N) for varying deformation at given distance from taxel center with 4mm Frubber® skin 

 Distance  From Taxel Center          

Deformation 0mm 1mm 2mm 3mm 4mm 5mm 6mm 7mm 8mm 9mm 10mm 11mm 

1.0mm 0.00 0.06 0.01 0.00 0.01 0.01 0.00 0.06 0.00 0.01 0.01 0.124 

2.5mm 1.63 1.43  1.24 0.922 0.628 0.334 0.235 0.235 0.235 0.020 0.235 0.020 

2.7mm 2.45 2.34  2.14 1.53 0.922 0.432 0.235 0.235 0.333 0.118 0.118 0.235 

2.8mm 3.65 3.26  2.65 1.75 1.33 0.824 0.628 0.530 0.235 0.118 0.118 0.020 

2.9mm 4.36 4.36  3.45 2.55 1.75 1.04 0.726 0.333 0.333 0.235 0.118 0.118 

 

 

Figure 4-25 Response of taxel to deformation of skin at varying distance from taxel center with 4mm Frubber® 
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Chapter 5  

Conclusion and Future Work 

5.1 Conclusion 

In this thesis we presented the motivation behind whole-body robot sensing, 

specifically the importance of tactile sensing for robots. Multiple types of robot skin 

described in research were presented in addition to the pHRI simulation environment 

SkinSim. SkinSim will be used to study density, placement and modality of sensors on 

social robots. SkinSim requires scalable, “ballpark” approximations relating applied force 

on robot skin to the sensed force detected by tactile sensors in the skin. Towards this 

end, a reduced-order model was developed relating the two forces and experiments were 

conducted to identify parameters for the model utilizing several thicknesses of skin. 

Validation cases for three skin thicknesses were presented showcasing the effectiveness 

of the reduced-order “dispersion” model. 

To perform these and other robot skin characterization tests an experimental 

testbed was designed and built. The purpose of the testbed was to provide a platform to 

test many different types of robot skin. The testbed is a tabletop testing and 

characterizing apparatus with built in flexibility. The NI cRIO controller has a chassis that 

allows multiple modules to be used in addition to the servo drive module and analog input 

module. The apparatus exceeded all requirements we initially had for it.  

The linear actuator has an encoder that provides micrometer resolution which 

works well with the precise movements performed in our experiments. The encoder can 

determine the position of the linear stage down to the thousandths of a micrometer. The 

only drawback is that while the encoder has very good resolution, down to the 

thousandths of a millimeter, the linear actuator is only able to move reliably down to the 

tenths of a millimeter. This presented difficulties when zeroing the load applicator on skin 
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samples and taxels. For example, at the beginning of all sinusoidal deformation tests, the 

load applicator z-position was zeroed; however, bringing the linear actuator back to this 

precise location was extremely difficult. Usually the actuator would come to rest 

anywhere from .001mm to .005mm from the zeroed location. Because the actuator could 

only move in .01mm increments (approximately) it required extensive, tedious work to 

bring the actuator back to the actual zero position. For many experiments, the start 

position was changed to a position .001-.002mm away from the initial zero position. 

Another concern at the beginning of testing was the resolution of the analog input 

module (NI 9201) which was 12-bit. However, as experiments and model identification 

have shown, the voltage sensing resolution was not an issue and 12-bit AI modules can 

successfully be used for this type of work. Additionally, gathering measurements at 

100Hz was successful. The cRIO can run at much faster sampling rates, however, model 

identification was successfully implemented using 100Hz.  

An advantage of running the cRIO at 100Hz is the guarantee of synchronous 

measurements. Although the deterministic architecture of the cRIO implies synchronous 

data measurements, it does not guarantee programs will run lag free. Large 

measurement sets with VI running multiple complicated loops with several modules in the 

cRIO could cause the entire program to slow down, possibly resulting in lost 

measurements or measurements gathered at a slower rate than defined. We believe our 

work presented in this thesis showcases the viability of running model identification tests 

at 100Hz. 

Before a taxel type can be used in sensor experiments it must be thoroughly 

studied. The testbed was used in this thesis to study the FlexiForce A201 force sensor. 

The A201 is only used as a test case for taxels in soft skin; the testbed is designed to test 
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many different types of taxels. The FlexiForce was used because of its cost-effectiveness 

in testing large-scale sensing applications.  

With all taxels utilizing deformable materials we can expect variation between 

individual taxel responses. We tested the variation in four A201 taxels and confirmed 

unit-to-unit variation, both in single day tests and multiple day tests. Deformable material 

taxels must be expected to change throughout continuous testing. Calibration tests 

performed on the taxel from one day cannot be reliably used for calibrating the taxel on 

subsequent days. Even within tests performed on the same day the taxel response will 

change over the course of multiple experiments. To combat this in our testing, taxels 

were calibrated before each experiment and after, with the average of the two used for 

post-processing the data. Deformable material taxels will always experience drift and 

hysteresis, but as shown with the A201 it is possible to neglect these effects if they are 

minimal. The apparatus we present has the ability to test these non-linear factors for 

many types of taxels and develop models to correct for them if needed.  

We present taxels as they are used embedded in soft elastomer skin. Like the 

studying of the taxels, the elastomer material used for the soft skin must also be studied 

before implementation. The apparatus we present can perform necessary experiments to 

characterize material and develop models to mimic its behavior. As presented, the type of 

material used in robot skin will determine the type of models that are available for 

implementation of mimicking its behavior.  

We tested both silicone rubber skin and Frubber® skin. The silicone rubber skin 

is highly elastic and exhibits nearly linear behavior. If a material like silicone rubber is 

used in robot sensing applications, modeling will be considerably easier than if a material 

such as Frubber® is used. This is because more rigid and purely elastic materials like 

silicone rubber have minimal non-linear behavior. Although, as shown through 
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experiment, silicone rubber displays hysteresis and drift, it is much less of a factor than 

with Frubber®. A material like Frubber®, a porous elastomer, experiences large drift and 

hysteresis. If the extreme behaviors of Frubber® are present in the material selected for 

robot skin the nonlinear behaviors cannot be ignored. Models exist, however, that can 

properly mimic the behavior of such non-linear materials and the parameters for those 

models can be identified through experiments performed on our test apparatus.  

Taxel placement in soft robot skin is something that designers will most likely 

wish to know more about when creating robot skin. Our experiments with taxel placement 

were limited to the use of the A201 taxels and as such sweeping conclusions are hard to 

draw. However, what was noticed is that for similar deformations of skin, much larger 

loads are applied and sensed when the taxel is placed on top of the skin. This is most 

likely due to the large surface area of the taxel compared to its sensing area. When the 

taxel is beneath the soft skin the load applicator is only pushing against an area of soft 

skin equal to that of the area of the load applicator. When the A201 taxel is placed on top 

of the skin the load applicator is pushing against the rigid taxel, which has an overall area 

much greater than that of the load applicator surface area (the rigid taxel is acting like a 

snow-shoe on top of the soft skin). We can conclude that this effect would not be so 

dramatic if the entire taxel area was the same size as the taxel sensing area (which is not 

the case for the A201). More tests are needed with different types of taxels to determine 

a better relationship between taxel placement along the z-direction and expected loads 

sensed. 

Two reduced-order models comparing the applied force on robot skin to the 

sensed force by taxels embedded underneath soft skin were discussed. Nine different 

silicone skin samples were tested and “dispersion” model parameters were identified for 

each. Initially, when the mass of a spring-mass-damper model was considered unknown, 
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model parameters did not follow a visible trend. When the “dispersion” model’s mass was 

determined from actual skin properties and held constant model parameters were 

identified that followed a consistent linear trend.  

The “dispersion” model accounts for a load distributed and lost to areas adjacent 

to the taxel center. As skin thickness increases, a higher percentage of the applied load 

is lost. It can be gathered from the estimated parameter graphs that at a certain thickness 

of skin (somewhere between 4mm and 6mm) the load sensed becomes less than the 

load lost. This means more load is distributed to adjacent areas than is picked up by the 

taxel. This is reflected in the increase of the k2 value, which represents the load lost to 

surroundings. The same trend also presents itself with the damping values b1 and b2; b1 

decreases and b2 increases with an increase of skin thickness.  

One might expect the overall spring-constant of the soft skin (k1 +k2) to remain 

constant as the stiffness of the silicone rubber does not change with thickness, but that is 

not reflected in our findings; instead, the overall spring-constant continually decreases, 

driven primarily by the decrease in k1. This could be because the adjusted “dispersion” 

model still does not accurately reflect physical values, despite consistent trends in the 

parameters being presented. Although the adjusted model most likely does not reflect 

real-world physical values, it still can be used for SkinSim simulation.  

Because the trends in the estimated values for the adjusted “dispersion” model 

are approximately linear, users of SkinSim can implement model parameters for a range 

of skin thicknesses and are not limited to the three thicknesses tested here. In addition, 

because the model verifications tests were consistent in their relative accuracy, trust can 

be placed in the identified parameters for use in large-scale sensor experiments for 

simulation.  
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These conclusions are only for robot skin implementing a linear elastomer such 

as silicone rubber with parameters identified through LS. It was shown that for a highly 

nonlinear material such as Frubber® using a linear LS algorithm to identify parameters 

for the “dispersion” model is inadequate. This is because the Frubber® stress vs. strain 

relationship is better modeled by a nonlinear spring and also that the stress is greatly 

affected by the time history of deformation.  

To accurately model the force to force relationship in a material like Frubber® we 

focused on identifying a transfer function that strictly relates force applied to force sensed 

in the robot skin. This was done by using Laplace transform techniques to acquire a 

transfer function relating an input force applied to an output force sensed. Using 

MATLAB’s System Identification Toolbox parameters were identified for the transfer 

function model.  

The three experiments presented for System Identification used two different 

deformation velocities. This affected the identified parameters, resulting in smaller 

parameters when the experiment deformation ran at a slower speed. This illuminates the 

effect strain rate has on a material like Frubber® even when considering only a force to 

force relationship. It is possible that adding a nonlinear or memory term to the model 

could result in the parameters remaining the same despite a change in strain rate. This 

needs to be further studied because during real pHRI deformation to robot skin will be 

both unknown and changing.  

When validating the parameters through a pseudo-random deformation input 

experiment we found the model was able to accurately mimic actual sensed force 

measurements. However, the relative MSE was higher than with the silicone skin (an 

average of 3.9% for silicone skin compared to 15.5% for Frubber®).  
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 A 3x1 taxel array was constructed to study the dispersion of applied load 

throughout a skin sample. A test such as this can help define the limits of taxel spatial 

acuity relative to taxel resolution. Because of overlapping sensing fields from adjacent 

taxels the position of a load applied at an intermediate point between two taxels can be 

narrowed down to a certain range better than only using the response form one taxel. 

Overlapping sensing fields can be expected to be present in most taxel arrays 

embedded or underneath soft elastomer skin. This is because the elastomer skin 

distributes the applied load throughout the skin, and not just to the area directly 

underneath the contact point. Through the 3x1 taxel array tests it is confirmed this 

behavior can be studied with our testing apparatus.  

The tests also demonstrate how load distribution for a given taxel will be similar 

to all taxels in the array (same thickness of skin, same load applied, etc.). Due to this, 

studying the response of one taxel and its response to loads applied at adjacent points to 

its center can be used to characterize all taxels in a given array. This was performed on 

an A201 in 4mm thickness silicone and 4mm Frubber® skin by applying a consistent 

deformation at 1mm increments in a straight line away from the taxel center. The 

response of the taxel was compared at equivalent deformations for each increment away 

from the taxel center.  

The load profile for each thickness of skin is easily identifiable as a Gaussian 

distribution and using model identification techniques in MATLAB the parameters for 

each general Gaussian model can be found. Through these tests it was determined that 

the load profile for each level of deformation keeps a similar Gaussian “shape” which we 

might expect from the nearly linear silicone rubber material. We can assume that this 

consistency in shape will present itself for all thicknesses of silicone skin. Because of this, 

it is possible only one level of deformation need be tested for each thickness of skin – 
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probably the maximum deformation expected. This can be done because with one set of 

deformation tests (only one level of deformation done in increments along a straight line 

from the taxel center) the “shape” of the Gaussian distribution can be determined. From 

there, the only additional change needed in the Gaussian model is the load sensed for a 

particular desired deformation centered at the taxel. The sensed loads at distances in a 

straight line from the taxel center can then be estimated because all parameters in the 

model are known (the “shape” of the distribution, the maximum magnitude of the sensed 

load at the taxel center, and the distance from the center of the taxel for the desired 

sensed load). Also, the Gaussian load profile distribution coupled with the adjusted 

“dispersion” model will be used in SkinSim to simulate real world interactions.  

With knowledge of the tests described in this thesis as well as the apparatus to 

perform all needed experiments, many different types of taxel and skin combinations can 

be characterized, modeled and used in simulation (SkinSim). While not all cases and 

types of robot skin are addressed in this thesis, a groundwork of robot skin modeling has 

been established along with a platform to perform many of the tests that will be required 

in the future.  

5.2 Future Work 

Future research with the experimental testbed presented in this thesis should 

include testing and characterizing additional types of skin sensors, including PPS sensors 

housed at UTARI. For this thesis, only a flat, cylindrical load applicator was used, but in 

the future it will be useful to determine how taxels react to more human like contacts, 

such as a solid member covered in soft skin (like a human finger). Additionally, linear 

servos should replace the manual x-y stages currently used as a base for skin samples. 

This will improve the speed, accuracy and repeatability for testing taxel arrays as well as 

defining sensing-fields centered on a taxel.  
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 An incremental force-controller was developed but no experiments were 

conducted on robot skin samples with this controller. Instead, a position-based explicit 

force controller should be programmed in LV to use when testing skin samples. Programs 

utilizing a position-based explicit force controller would be able to apply desired loading 

profiles based on force, instead of position. 

 Modeling non-linear behavior of elastomer skin needs to be further studied. Once 

the reduced-order model is implemented and tested in SkinSim, the users will have a 

better indication of what types of models can be used in future iterations. More 

computationally expensive nonlinear models could be more necessary than currently 

thought. However, this will not be known until SkinSim is functional and can be 

extensively tested. 
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