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Abstract

DYNAMIC SYMBOLIC DATA STRUCTURE REPAIR AND EVALUATION OF

PROGRAM ANALYSIS TOOLS WITH THE RUGRAT RANDOM PROGRAM

GENERATOR

ISHTIAQUE HUSSAIN, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Christoph Csallner

Generic automatic repair of complex data structures is a new and exciting area

of research. Existing approaches can integrate with good software engineering prac-

tices such as program assertions. But in practice there is a wide variety of assertions

and not all of them satisfy the style rules imposed by existing repair techniques. That

is, a badly written assertion may render generic repair inefficient or ineffective. More-

over, the performance of existing approaches may depend on the location of an error

in a corrupted data structure. This dissertation shows that generic automatic data

structure repair can be implemented with full dynamic symbolic execution. Such

an implementation can solve some of the problems of the existing generic repair ap-

proaches.

The dissertation also evaluates the usefulness of a novel random program gen-

erator, RUGRAT-Random Utility Generator for Program Analysis and Testing, for

the evaluation and benchmarking of different Java source–to–bytecode compilers and

pRogram Analysis and Testing (RAT) tools. It generates several programs in different

vii



size categories, ranging up to 5MLOC and uses them to compare and find bugs in

the various RAT tools.
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Chapter 1

Introduction

1.1 My Thesis

Generic automatic data structure repair can be implemented with full dynamic

symbolic execution. Such an implementation can solve some of the problems of the

existing generic repair approaches.

Random program generators can create benchmarks with different sizes, prop-

erties and complexities. These benchmarks can be used to evaluate performance and

find bugs in the different program analysis and testing tools.

1.2 Importance of Software Reliability

In todays modern world, software is everywhere. From as little significant de-

vices as digital wristwatches to those more important as home appliances, hand held

devices, telecommunications, automobiles, industries, office and businesses, to mission

critical applications such as space crafts, flights and life saving health care systems -

software running on top of computer hardware play vital roles. And because of the

proliferation of such technologies in our daily lives, our reliance on these systems has

never been greater.

Software reliability is defined as the probability of failure-free software operation

for a specified period of time in a specified environment [134, 105]. Lack of software

reliability due to software failures cost the US economy billions of dollars annually

and with the rising dependency of businesses on software, it is expected to further

increase [122, 86, 170, 54].
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While many software failures may cause inconvenience, some software reliability

issues can have severe consequences. Reliability of mission critical applications are

crucial. For example, the European Space Agency’s Ariane 5 Flight 501, a 1 billion

US dollar prototype was destroyed just after launch because of a failure of its on-

board guidance software [52]. These systems do not allow user intervention when

a failure occurs and it is often hard (or impossible) to update them once they are

deployed or in use. Similarly, reliability of health care systems is very important. An

unreliable system can even cost human lives. For example, the Therac-25 radiation

therapy machine was directly responsible for at least five patient deaths in the 1980s

when it administered excessive quantities of X-rays due to an error in the code [99].

1.3 Threats to Software Reliability

Software failures that reduce software reliability can occur for various reasons.

They may be due to errors, ambiguities, oversights or misinterpretations of the specifi-

cation that the software is supposed to satisfy, carelessness or incompetence in writing

code, inadequate testing, incorrect or unexpected usage of the software, or other un-

foreseen problems [125, 92]. Some software errors can be found quickly but others

may remain undetected and occur only rarely after years of successful operation [83].

Similarly, while some hardware failures can crash a system, others may be almost

benign and just flip a few bits in the memory.

Every software manipulates some sort of data structures and while a software

executes, it often assumes the data structure to be in the correct states. However, at

runtime the underlying data structures can dynamically get into inconsistent states

and if not handled properly, can have dire consequences such as data loss, program

halt, unexpected behavior, security breaches and even software crash. A rare unde-

2



tected bug or a hardware failure that caused a few bits to flip in the memory can

cause such inconsistencies.

Even without the mentioned errors, the data structure state can get corrupted.

For example, a single bit flip due to a cosmic ray is considered to be the reason behind

an inconsistent state in an aircraft software that resulted in the plane plunging few

hundred feet several times during flight injuring its crew and passengers [2]. Though

bit flips in [2] are caused by random environmental events, an attacker who has access

to the physical device (e.g., smart card, palmtop or desktop) can also provoke such

a bit flip by heating up the memory chip, compromise the safety of a Java Virtual

Machine, and run arbitrary code [70]. It is reported [4] that microchip manufacturers

have taken this seriously and are planning to build in-chip detectors for such flip bits.

However, this might not be enough as the communication busses between processors

and memory units would be still exposed to errors or attacks [70].

1.4 Overview of Existing Approaches to Detect and Repair of Corruptions

There are many approaches for detecting and repairing software corruptions.

However, existing approaches are partial solutions and have their strengths and lim-

itations. In this section we briefly discuss these approaches and their strengths and

limitations.

1.4.1 Overview on Corruption Detection Approaches

To detect bugs, software developers can use assertions (e.g., user input verifica-

tion and validation, pre and post–condition of a method, etc.), correctness condition

(which is popularly known as repOk method [103]) that checks program consistency,

or simply wait for the system to produce an incorrect, unexpected result or behave

in an unintended way.
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Software testing is also conducted primarily to detect bugs [120]. It is part of

the software development process that provides the stakeholders with the informa-

tion about the quality of the product or service under test [89]. However, software

testing may not identify all the defects within a software [125, 129] and hence cannot

guarantee a software will be bug free [8]. For example, software testing cannot detect

the bit flips due to cosmic rays.

There are numerous software testing approaches including static and dynamic

testing, manual and automatic testing, automated static analysis and dynamic-symbolic

testing, etc. A detailed discussion of these approaches is out of the scope of this dis-

sertation and can be found elsewhere: [16, 174, 120].

1.4.2 Overview on Repair Approaches

Depending in which phase of the software development process a bug is detected,

the cost to fix it varies and it is perceived that the earlier the bug is detected, the

cheaper it is to fix [113]. During the development phase, once a bug is detected it is

usually the programmer who manually fixes it [8].

To lower the probability of developers making identical software faults in devel-

oping a software, researchers have proposed an approach called N-version program-

ming [33]. The main idea of N-version programming is that from the specifications,

independent teams will develop different versions of the same functionality of the

software, probably using different algorithms and programming languages, and at the

various program points the execution environment would choose between the outputs

of the different versions [33, 11]. There are mainly two components of N-version pro-

gramming approach: first, detecting that different versions returned different results

and second, deciding on the final output (e.g., this could be taking the result of the

majority versions or using some other complex decision algorithms [101]).

4



Although there are criticisms of the N-version programming approach; for in-

stance, that it does not lower the probability of developers making identical soft-

ware faults in developing a software, i.e., different teams can make similar mis-

takes [121, 95], it has been used in developing different software, e.g., software per-

forming flight control computations, switching trains and electronic voting systems,

etc. [101, 11, 121].

Researchers have proposed automatic repair approaches for buggy software [167,

143, 152, 151]. Weimer et al. [167] proposed a technique that utilizes a set of successful

test cases and a single failing test case to locate the possible bug and then tries to

evolve the program by source code modification until it passes all the test cases

(including the failing test case). Schulte et al. [143] extended the approach to mutate

the assembly code [143]. The main limitation of such a technique is that it depends

on the availability of successful and failing test cases. Moreover, such techniques can

fix only very specific bugs [8]. For example, Staber et al.’s approach [151] can only

repair expressions and left-hand side of assignment statements in the program [8].

To correct faults, repair can be done in a software after delivery. But such

a repair is costly and it is estimated that around 20 billion US dollars could be

saved in the USA alone if better testing was done before a software release [8, 156].

Any modification of a software product after deployment or delivery is identified as

software maintenance [5]. E.B Swanson et al. [154, 102] identified three categories of

software maintenance: corrective, adaptive and perfective. They defined corrective

maintenance as the modification of a deployed software product to correct discovered

problems; adaptive maintenance as modifications that ensure a software’s usability in

a changed or changing environment; and perfective maintenance as the modification

that improve performance or maintainability of a deployed software [154, 102]. It is
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estimated that the corrective maintenance is roughly 17% of the total maintenance

cost [67].

Researchers have also proposed techniques to repair software faults at runtime

without modifying the source code [128, 100, 32]. However, these techniques are not

generic and can repair only very specific faults at runtime. For example, Perkins

et al.’s technique [128] can fix out-of-bound memory write and illegal control flow

transfer attacks on Windows X86 programs. Chang et al.’s technique [32] can handle

specific integration issues with third party library invocation provided that the library

writers provide the repair module.

1.5 Non-generic Repair of Complex Data Structures

Non-generic data structure repair is not new; traditionally, repair routines have

been written manually for the specific data structure at hand [157, 117]. Classic

examples include the IBM MVS/XA operating system [117] and the Lucent 5ESS

telephone switch [73, 77]. In both the cases, developers used non-generic manual

error detection and repair procedures. Other examples include the file system repair

tools: fsck [3] and chkdsk [1]. These tools scan the file system at boot time and repair

any inconsistencies.

1.6 Generic Repair of Complex Data Structures

Generic repair of complex data structures is a new approach to software robust-

ness [50, 49, 55, 56, 107]. It promises to mutate the state of a running program in

such a way that the resulting state satisfies a given assertion or correctness condition.

It is generic in the sense that a single repair algorithm can repair many kinds of

data structures. It thereby differs from traditional repair, wherein each kind of data
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structure needs a separate repair algorithm. This makes generic repair potentially

very powerful. Indeed, initial generic repair techniques [50, 55] and implementations

such as Juzi [56] are very promising.

Based on how the correctness condition is defined, generic data structure repair

techniques can be broadly divided into two categories: the first category consists of

approaches [50, 48, 176, 177] that use additional specification languages or gram-

mar rules in defining the correctness condition. The second category consists of ap-

proaches [56, 55, 93, 82, 81] that do not use any additional specification languages or

grammar rules and utilize the same programming languages that the data structures

are implemented in to define the correctness condition.

Based on whether the repair approaches use dynamic symbolic execution tech-

niques [29], generic repair approaches can be divided into two categories: dynamic

symbolic execution-based and non-dynamic symbolic execution-based repair. The

following subsections discuss them in brief.

1.6.1 Specification-based Generic Data Structure Repair

Demsky and Rinard proposed specification based generic data structure re-

pair techniques [48, 50]. Their approach uses specification languages to define rules

to transform concrete data structures and their consistency constraints into models

(consisting of sets and relations). When the data structure model is checked against

the consistency model and violations are detected, they apply repair actions in the

data structure model and modify it to conform to the constraints. Later concrete

data structure updates are made to reflect the changes done in the model to repair

the corruption.

There are other approaches that use additional behavioral specification lan-

guages (e.g., Alloy) in defining the repOk method: [176, 139, 166]. The main strength
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of such a technique is that it tries to leverage the power of the specification language

(or grammar rules) and their constraint solver (or repair algorithms). But it comes

with the cost that the programmer must learn these specification languages or gram-

mar rules. If the constraints are not written in these rules in the first place, then

the she must transform these consistency constraints into grammar rules – which

may be hard and error-prone. Moreover, some programmers may not be good at

learning specification languages, as they are different from mainstream programming

languages such as Java. Since correctness of these rules are crucial, an incomplete or

buggy rule set may result in an inefficient or ineffective repair and ultimately lead to

the failure of the approach.

We believe that the data structure repair approaches that do not require any

specification languages in defining the correctness condition are more intuitive to a

programmer since she does not need to learn a new language.

1.6.2 Dynamic Symbolic Execution-based Data Structure Repair

With recent advancement in dynamic symbolic execution [29] techniques, these

techniques have been applied to wide range of software engineering fields [131] includ-

ing automatic test input generation and testing [27, 28, 69, 68, 158, 141], automatic

exploit generation [23, 94], program invariant detection [61, 42, 75] and finding im-

plementation deviations [22, 133], etc.

Elkarablieh et al. in Juzi [56] combined dynamic symbolic execution techniques

with exhaustive search strategies in repairing the runtime corrupted state of a data

structure. Specifically, they used dynamic symbolic execution techniques to repair

corruptions in the integer type data fields but for corruptions in the reference type

data fields, they applied exhaustive search strategies. Later they [57, 175] applied

heuristics on the exhaustive search strategies and improved Juzi’s performance.
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Our approach [82, 81] uses dynamic symbolic execution techniques to repair

corruptions in both the primitive and reference type data fields.

We have analyzed existing repair approaches in our category (i.e., generic dy-

namic symbolic execution techniques that do not require other specification languages

in defining the correctness condition) and found that their efficiency, and in some

cases, overall success depend on: (i) the style of the correctness condition and on (ii)

the initial state of the runtime corrupted data structure. That is, the correctness

condition has to be written in a repair-specific style and for errors in different loca-

tions of a data structures, existing approaches may perform unnecessary repairs that

change other parts of the data structure resulting in increased execution time and

reduced scalability (details in Chapter 3).

1.7 Evaluation of Compilers, Program Analysis and Testing Tools

In this section we use materials from Hussain et al. [83] to introduce benchmarks,

their importance and usage in the evaluation of the performance of a software, as well

as program analysis and testing tools. The paper [83] proposes a novel approach to

generate random benchmark applications with different properties.

A benchmark is a point of reference from which measurements can be made in

order to evaluate the performance of hardware or software or both [114, 83]. Evalu-

ation is important to organizations and companies that choose mission-critical soft-

ware for the business operations [91]. Organizations and companies (e.g., U.S. De-

partment of Defense) use application benchmarks in their evaluation and acquisition

process [169]. Moreover, benchmarks are used for evaluating pRogram Analysis and

Testing (RAT) algorithms and tools [137, 53, 17, 18, 142, 126, 83].

Different benchmarks exist to evaluate different RAT aspects. RAT aspects

can be: how scalable RAT tools are, how fast they can achieve high test coverage,
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how through they are in handling different language features, how well they are in

refactoring code, and how efficient they are in profiling, etc [83, 126].

Not all benchmarks can be readily used to evaluate a RAT aspect. For example,

consider a situation where different test input generators are evaluated to determine

which one achieves higher test coverage faster for a benchmark application [126].

Typically, test input generators use different algorithms to generate input data for

each application run, and the cumulative statement coverage is reported for all runs

as well as the elapsed time for these runs [126]. A “real-world” application of low

complexity is a poor benchmark in this case as most test input generation approaches

will perform very well by achieving close to 100% coverage in few runs. On the other

hand, a real-world high complexity benchmark may have dependencies on components

written in different languages and run on different platforms, making it hard to adjust

to use in the experiments. Moreover, implementation of test generation approaches

may have limitations and not support all the language features of such a complex

program. Ideally, a large number of different benchmark applications are required

with different levels of code complexity to appropriately evaluate test input data

generation tools [126].

To overcome the problems of such real-world programs, one may think to

write benchmark applications from scratch. But writing benchmark application from

scratch requires a lot of manual effort, it can also introduce significant bias and human

errors [88]. Moreover, more than one benchmark is often required to determine the

sensitivity of the RAT approaches based on the variability of results for applications

that have different properties [83].

Ideally, users should be able to easily generate benchmark applications with

desired properties. This idea has already been used successfully in testing relational

database engines, where complex Structured Query Language (SQL) statements are
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generated using a random SQL statement generator [149]. In [83] researchers have

proposed an approach Random Utility Generator for pRogram Analysis and Testing

(RUGRAT) for generating application benchmarks within specified constraints and

within the range of predefined properties. RUGRAT is implemented for Java and it

is open source software and available for download from the RUGRAT tool web site1.

We used RUGRAT generate several Java application and used them to evaluate Java

compilers and different RAT tools.

1.8 Contributions

Given a corrupted data structure and a correctness condition, which is popularly

known as the repOk method to check the consistency, we propose that our Dynamic

Symbolic Data Structure Repair Algorithm can overcome some of the limitations of

the existing approaches and improve in repair performance in the following ways:

� When existing approaches do not scale, are slow or inefficient (e.g., due to

exhaustive search strategies), it can take less time and fewer repair attempts in

repairing the data structure.

� Less dependent on the style of the correctness condition and location of an error

in the data structure.

We realize that our approach cannot be applied for all the data structures and

in special cases it may perform less efficiently than the existing current state of the art

approaches. For example, consider the case when a well written correctness condition

finds a corruption that has a trivial solution (e.g., a null to break a self loop in the

binary tree) and the existing approach uses the trivial solution as its first attempt to

repair the structure in its exhaustive search. In this case the existing approach will

1RUGRAT: https://sites.google.com/site/rugratproject/
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repair the corruption very quickly with less overhead (e.g., without building the path

condition, invoking the constraint solver etc.) to find the solution. Details on the

limitations of our approach, when and why it may fail or perform less effectively will

be discussed under the context of threats to validity.

To explore the potential of automatic program generation for program analysis

tool evaluation, we picked the recent automatic program generator tool RUGRAT [83]

to generate dozens of Java applications, ranging from 300 LOC to 5 MLOC, to bench-

mark several versions of a popular Java source to bytecode compiler as well as popular

program analysis and testing tools. That is, we conducted several experiments to ex-

plore the usefulness of RUGRAT for the evaluation and benchmarking of Java RAT

tools.
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Chapter 2

Background and Terminology

In this chapter we discuss the necessary background on program assertions

and correctness, categories of data structure constraints, dynamic symbolic execution

engine, one of the state-of-the-art data structure repair tool called Juzi, and constraint

solvers – which we will need for a motivating example. We also discuss in brief which

programming paradigm our approach applies to and how we evaluate it.

2.1 Assertions and Correctness

Software customers and developers likely have an informal notion of the con-

ditions under which the state and behavior of their programs are correct. Such

informal notions are the notions of program correctness that typically matter most

in real-world software applications. Large parts of software engineering are therefore

concerned with capturing informal correctness notions and transforming them into

more formal ones, culminating in the fully formal notion of source code. This formal

notion of correctness influences the terminology used in this dissertation. By correct

we mean correct in the informal sense of the user. A correctness condition tries to

capture this informal correctness in a more formal notion.

An easy way to write down a correctness condition is to add to the program

text a simple if-condition or program assertion, commonly known as repOk [103].

Empirical evidence suggests that programmers write assertions into their code and

the code that contains more assertions tends to contain fewer bugs [97].
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Correctness conditions or the repOk methods check partial program correctness.

Programs typically do not have a repOk method that returns true if and only if the

entire program is in a correct state. Instead, a repOk method checks if some (small)

part of the program is in a correct state. Moreover, the sum of all repOk methods in

a program typically does not amount to a check of the full program state correctness.

Correctness conditions may be expressed in different styles and languages, rang-

ing from formal modeling languages to program assertions. For this work, we concen-

trate on program assertions. Assertions are attractive as programmers do not have

to learn a separate language in order to write down correctness conditions.

The main assumption we use is that correctness conditions have been engineered

to be correct. This assumption is also used in all the previous works that we are aware

of. However, we do not require the related assumption that is often made in this area,

namely that correctness conditions also satisfy style rules that are specific to a certain

repair technique. Our goal is therefore to provide an approach that does not depend

on such repair-specific style rules.

2.2 Data Structure Constraints

Based on the related work on data structure repair of which we are aware, data

structure constraints can be classified into two categories: (1) structural constraints

and (2) data constraints. Data structures can be complex and these two categories

can overlap to create constraints that have a combination of both the structural and

data constraints. Structural constraints specify the structural correctness conditions

that involve pointers and references of a data structure, whereas the data constraints

specify correctness conditions over the non-pointer data that a data structure holds.

For example, the standard singly linked-list data structure only has structural

constraints that specify that there cannot be any cycle or loop through the node’s next
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pointer. The binary search tree data structure has both structural and data con-

straints (i.e., it has to maintain the tree structure and any node’s left (right) subtree

should contain nodes with keys less (greater) than the node’s key, etc.) but the binary

tree has only structural constraints. Similarly a sorted array only has data constraints

over its elements’ values.

2.3 Dynamic Symbolic Execution

Dynamic analysis is the ability to monitor code as it executes [144]. On the

other hand, symbolic execution is a program analysis technique that executes pro-

grams with symbolic rather than concrete inputs [29]. As Cadar et al. describes [29],

symbolic execution maintains a symbolic state of the program by mapping program

variables to symbolic variables and a path condition of symbolic expressions that

accumulates constrains on inputs that trigger the execution to follow the associated

path. At every conditional statement, the path condition is updated with conditions

on the input to choose between alternative paths (i.e., the then and else branch),

resulting in two path conditions for the two execution paths. As a result, the pro-

gram output is represented as a function of symbolic inputs. The the satisfiability of

these path conditions are checked with a constraint solver. The main limitation of

the symbolic analysis is that there are large numbers of possible paths. Moreover, one

constraint solving attempt for a single path condition can take a long time (even infi-

nite time) and many path conditions are simply infeasible and cannot be solved. For

these limitations symbolic analysis suffers from scalability issues. Combining the two,

dynamic symbolic execution or DSE tries to leverage benefits of both the approaches

and tackle the scalability issues. DSE marks the program input as symbolic and then

monitors concrete execution while performs symbolic execution of the program along

the concrete path [131].
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During a concrete execution a program can hit different branch conditions.

Decisions of many of these branch conditions depend on the input values. In DSE,

the path condition is formed by conjunction of all such branch conditions (involving

some symbolic inputs) seen in a concrete execution. Any actual input that satisfies

this path condition will steer the program execution along the same path as the

original execution. A new path condition can be found by negating one of the branch

conditions and removing the subsequent ones. A constraint solver can then check the

satisfiability of the new path condition. If satisfiable, the solution from the constraint

solver can provide values for the inputs (represented as the symbolic variables in

the path condition) that will execute the program up until the modified branch and

then take the other path. Thus DSE engines can analyze a program’s execution and

determine what input would cause which part of the program to execute.

Researchers have utilized this property in many ways: detecting program invari-

ants [61, 42, 75], detecting software security issues and implementation anomalies [150,

23, 94, 22, 133], input generation and software testing [27, 28, 69, 68, 158, 141], etc.

There are two ways of performing DSE: through code instrumentation or trace-

based analysis [131, 144]. In the code instrumentation approach, while the DSE engine

executes the program concretely, it simultaneously runs the instrumented code using

a symbolic interpreter [68, 158, 145]. This interpreter keeps track of the symbolic

path condition along with all the symbolic expressions of all registers and memory

locations. In the trace-based approach, DSE is performed in two steps [131]. First,

for each value the program computes, it records all the input values that influence

the computed value [65]. Then it finds the presence of these inputs in the execution

trace and marks them as symbolic. In the second step it analyzes and extracts the

path condition from the trace involving symbolic inputs [150].
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2.4 Dynamic Symbolic Execution Engine: Dsc

We used Dsc [84, 126] 1 which is a dynamic symbolic execution engine for Java

bytecode that uses code instrumentation approach. It uses the instrumentation facil-

ities provided by the JVM of Java 5 to instrument the user program at load-time [34],

using the open source bytecode instrumentation framework ASM [24]. Dsc instru-

ments the bytecode of the target application automatically by inserting method calls

(i.e., callbacks) after each instruction in the code. During the application’s execution,

the callbacks enable Dsc to maintain the symbolic state by mirroring the effects of

each user program instruction. By manipulating programs at the bytecode level, Dsc

extends its analysis from the user code into all libraries called by these programs. In

addition, Dsc allows users to selectively exclude classes from instrumentation.

We used the the data structure consistency method, (i.e., the repOk method)

as the target of Dsc. Since Dsc, unlike Juzi, can reason about the primitive and

reference types and corresponding field accesses, we were able to apply the full DSE

for our data structure repair approach.

There are other dynamic symbolic execution engines, e.g., Dart, jCute, and

Pex [68, 145, 158]. These tools are used in automatic random testing [68] or automatic

unit test case generation [145, 158]. We chose Dsc over these tools as they did not

have support for Java programs (e.g., Dart and Pex) and because not all tools had

source code available. Moreover, we had the expertise of the Dsc author 2 available

to help us implement and integrate the data structure repair module on top of Dsc.

1Dsc: http://ranger.uta.edu/~csallner/dsc/
2Christoph Csallner: http://ranger.uta.edu/~csallner/
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2.5 Most Closely Related Prior Work: Juzi

Juzi is one of the state of the art approaches to generic repair using assertions

[55, 56]. It builds on the Korat framework [21] and monitors the execution of the

assertion to determine the order in which the assertion accesses data structure fields.

When the assertion returns false, Juzi mutates the value of the field that was accessed

just before the assertion failed. If this repair attempt does not result in a satisfactory

state, Juzi backtracks in the list of field accesses and continues with the field that the

assertion had accessed earlier. Each repair attempt mutates the original state in one

field.

Depending on the field type, Juzi uses different techniques to determine can-

didate values to be used in a mutation. For corruptions in integer fields, it applies

dynamic symbolic execution to build the path condition and then employs a mix of

integer constraint solvers [57, 56], Dicos [59] and CVCLite [12]. If the path condi-

tion is satisfiable it assigns the solution from the constraint solver to the symbolic

variables. For reference fields, Juzi uses a systematic search algorithm along side the

Korat technique [21] of skipping isomorphic structures in an exhaustive trial and error

approach. Therefore, Juzi cannot be considered as a full dynamic symbolic execution

technique as it does not apply the technique in repairing all data type corruptions.

2.6 Constraint Solver

Constraint solver is a basic component to most dynamic symbolic execution

approaches as they heavily rely on it for checking the feasibility of a modified path

condition and for solutions for the involved symbolic inputs in the expression [60].

Recently, researchers have renewed their focus on dynamic symbolic execution ap-
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proaches and applications due to unprecedented improvements in constraint solver

capabilities [13, 15] and growth in the computational power of average computers [60].

Our dynamic symbolic execution engine, Dsc, uses a powerful automated con-

straint solver from Microsoft Research, called Z3 [116]. Dsc can handle both the

reference and primitive type data fields and invokes Z3 for solving data structure

constraints involving both the data types. Juzi, on the other hand, uses a mix of con-

straint solvers, Dicos [59] and CVCLite [12] for solving corruptions in the primitive

integer type data fields, but for reference type fields, it applies a systematic search

algorithm along with Korat technique [21] to reduce the solution search space [57, 56].

To promote improvements and compare the performance of different existing

constraint solvers over benchmarks, starting from 2005, organizers have regularly

arranged competitions [14, 15]. Since Z3’s first appearance in 2007, with some minor

exceptions, it has always shown better performance over CVC and other constraint

solvers in all the benchmark categories [13]. In our research we did not compare the

performance differences between Z3 and CVC in solving integer type constraints for

the data structure repair and intend to pursue it as a future study. Nevertheless,

we believe Z3 will outperform CVC as it has done so for almost all the benchmark

categories in the competitions [13].

2.7 Application Domain and Evaluation of Our Approach

We describe our implementation in terms of object-oriented software and espe-

cially Java programs, but the algorithm equally applies to related languages (C++,

C#, etc.) and related programming paradigms (i.e., procedural languages).

We evaluate our approach by applying it to a few text book data structures with

induced errors. We utilize the consistency checker (or repOk) methods of these data

structures to detect the errors. Both the data structures and the repOk methods are
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written in Java. We compare the performance of one of the state-of-the-art tools Juzi

and the prototype implementation of our approach. We also discuss our experience

in solving corruptions in a simplified example of a file allocation table data structure.
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Chapter 3

The Problem

In this chapter we discuss the limitations of existing Java-based generic data

structure repair techniques. These approaches include: [93, 57, 55, 56]. As a repre-

sentative of these approaches, we picked Juzi [56] since it works for data structures

and repOk methods written in Java and was available for experimentations. Other

approaches are close variants of Juzi but were not available for experimentation. For

example, Starc [57] extends Juzi by using static analysis to find the fields used in

the repOk method to traverse the data structure. For corruptions in such a reference

field, it prunes the search space by looking for forward or not yet traversed pointers

as solutions.

In the following sections we discuss the limitations of Juzi. Juzi has style

dependency on the repOk method. The repOk method must be written in such

a way that all the fields in the data structure are directly accessed and it should

return immediately after a corruption is detected. Moreover, Juzi performance varies

for errors at different locations in a data structure and sometimes in repairing a

corruption, it changes other data values instead of the original corrupted one resulting

in data loss.

3.1 Overview of Limitations of Juzi

We have found that the performance of Juzi depends on the style of the repOk

method. For example, for the two functionally same repOk methods, depending on

the style of when it returns after detecting an error (either immediately or late), Juzi
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can take different execution time and number of repair attempts. For example, in

some of our experiments we had to stop Juzi as it was taking too long (e.g., as in

Figure 4.8, more than few hours for a random binary tree of size 12, as compared to

a different repOk method, for which for the same binary tree it took only less than

100 milliseconds) to repair a corrupted data structure. This varying performance due

to style dependency may cause problem where there is an upper bound on allowed

repair execution time and number of repair attempts.

Moreover, Juzi requires that a data structure field must be directly accessed

in the repOk method for it to be considered as a corrupted field. For example, if a

local variable is used and a field is accessed indirectly through the local variable, Juzi

cannot detect the field’s involvement in a corruption. In such cases Juzi might miss

potential corrupted fields and try to repair other fields resulting in futile attempts.

Authors of Juzi acknowledged that the performance of Juzi varies with different

error locations in the data structure [54]. That is, for the same error in different

locations of a data structure, it can take different execution time and number of

attempts in repairing the structure. This varying performance can be an issue where

we have an upper bound on execution time and number of allowed repair attempts

in repairing a corrupted data structure.

We have also found that in repairing errors in different locations of a data

structure, Juzi sometimes changes other data values instead of the original corrupted

one resulting in data loss.

In practice the above problems may appear together (e.g., a late-returning re-

pOk method may only use indirect field accesses). But we analyze the problems

individually. In the following sections we describe these limitations with examples.
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3.2 Correctness Condition Style Dependency

In this section we discuss Juzi’s correctness condition (i.e., repOk method)

style dependency. This is a problem since it affects Juzi’s performance in repairing a

corrupted data structure efficiently.

To illustrate the problem, we consider the binary tree data structure given in

Figure 3.1. We took the correctness condition from [56]. The constraints for the

binary trees are: (1) acyclic along the left and right pointers and (2) the number of

nodes reachable from the root node along the left and right fields is stored in the size

field. To emphasize the fact that Juzi’s repair actions heavily depend on the writing

style of the correctness condition, we slightly modified the correctness condition of

Figure 3.1 creating another version in Figure 3.2. This modified version of repOk

produces the same result as the original. It differs only in the style that whenever

it discovers a corruption, it stores the result in a temporary boolean variable named

result and returns the desired answer at the end of the method.

Figure 3.3 (a) shows an example binary tree that consists of five nodes. The first

node has a corrupt value in its left field, namely it points to the root node creating

a cycle. Note that, in the modified repOk of Figure 3.2, the size field of the binary

tree is always the last accessed field. To repair the corruption, as shown in Figure 3.3

(b), Juzi first tries to mutate this last accessed field of the repOk method. After

each repair attempt Juzi executes the repOk method to check if the resulting data

structure satisfies the repOk method. Since size is an integer field, Juzi performs

dynamic symbolic execution and tries to solve for the field with a constraint solver.

But because size is not the corrupted field, mutation of this field does not repair the

data structure. It then tries to mutate the second-to-last accessed field, right of node

5. Since this is a reference type field, Juzi applies its systematic search algorithm

to find a solution. For each possible value for this field, it also tries to mutate the
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1 public class Node {
2 Node l e f t ;
3 Node r i g h t ;
4 // . .
5 }
6

7 public class BinaryTree {
8 Node root ;
9 int s i z e ;

10 // . .
11 public boolean repOk ( ) {
12

13 // An empty t r e e must have zero in s i z e
14 i f ( root == null )
15 return ( s i z e == 0 ) ;
16

17 Set<Node> v i s i t e d = new HashSet<Node>() ;
18 v i s i t e d . add ( root ) ;
19 LinkedList<Node> workList = new LinkedList<Node>() ;
20 workList . add ( root ) ;
21

22 while ( ! workList . isEmpty ( ) ) {
23

24 Node cur rent = workList . removeFirst ( ) ;
25

26 // The t r e e must have no c y c l e s a long l e f t
27 i f ( cur r ent . l e f t != null ) {
28 i f ( ! v i s i t e d . add ( cur rent . l e f t ) )
29 return fa l se ;
30 else
31 workList . add ( cur rent . l e f t ) ;
32 }
33

34 // The t r e e must have no c y c l e s a long r i g h t
35 i f ( cur r ent . r i g h t != null ) {
36 i f ( ! v i s i t e d . add ( cur rent . r i g h t ) )
37 return fa l se ;
38 else
39 workList . add ( cur rent . r i g h t ) ;
40 }
41 }
42

43 // S i z e must be equa l to #v i s i t e d nodes
44 return ( v i s i t e d . s i z e ( ) == s i z e ) ;
45 }
46 }

Figure 3.1: Example binary tree data structure, abbreviated, consisting of a Node
class and a BinaryTree class. Method repOk is a correctness condition for the binary
tree, which may be invoked by assertions throughout the program.
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1 public boolean repOk ( ) {
2

3 // An empty t r e e must have zero in s i z e
4 i f ( root == null )
5 return ( s i z e == 0 ) ;
6

7 boolean r e s u l t = true ;
8

9 Set<Node> v i s i t e d = new HashSet<Node>() ;
10 v i s i t e d . add ( root ) ;
11 LinkedList<Node> workList = new LinkedList<Node>() ;
12 workList . add ( root ) ;
13

14 while ( ! workList . isEmpty ( ) ) {
15

16 Node cur rent = workList . removeFirst ( ) ;
17

18 // The t r e e must have no c y c l e s a long l e f t
19 i f ( cur r ent . l e f t != null ) {
20 i f ( ! v i s i t e d . add ( cur rent . l e f t ) )
21 r e s u l t = fa l se ;
22 else
23 workList . add ( cur rent . l e f t ) ;
24 }
25

26 // The t r e e must have no c y c l e s a long r i g h t
27 i f ( cur r ent . r i g h t != null ) {
28 i f ( ! v i s i t e d . add ( cur rent . r i g h t ) )
29 r e s u l t = fa l se ;
30 else
31 workList . add ( cur rent . r i g h t ) ;
32 }
33 }
34

35 // S i z e must be equa l to #v i s i t e d nodes
36 i f ( v i s i t e d . s i z e ( ) != s i z e )
37 r e s u l t = fa l se ;
38

39 return r e s u l t ;
40 }

Figure 3.2: Modified correctness condition. It produces the same output as the
corresponding correctness condition of Figure 3.1. However, it stores the status of
the check temporarily in a local variable and returns it at the end.
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previously attempted size field. Failing to repair the data structure, subsequently (as

shown in c - h), Juzi backtracks in the list of fields accessed in the repOk method and

continues its repair actions in an exhaustive fashion trying all possible mutations for

each reference fields and invoking the constraint solver for the integer type data field

(along with mutating the previously attempted fields).

Using Juzi’s [56] repair visualization option, we monitored Juzi’s repair attempts

for the binary tree example in Figure 3.3 (a). Table 3.1 shows first 17 attempts of

Juzi’s approach.

Finally, Juzi reaches a field that the repOk method had accessed very early, the

corrupt left field of the first node, and now Juzi repairs the binary tree successfully

in Figure 3.3 (z).

An exhaustive approach such as the one of Juzi may work for repairing small

data structure instances, containing few nodes. But when repairing larger structures,

at some point exhaustive search becomes inefficient. The number of possible muta-

tions grows exponentially and most mutations do not result in a correct state.

Our key insight is that we can guide the repair by mutating the data structure

in such a way that the repaired data structure takes a pre-determined execution path.

In our example, we want to invert the outcome of the if-condition just after which the

temporary variable result got assigned such that, instead of returning false, repOk

returns true.

Chapter 4 discusses how we implement this insight and presents evaluations

that show the promise of our proposed repair approach.

3.3 Error Location Dependency

We have found that depending on error locations in a data structure, Juzi’s

performance can significantly vary. In repairing errors in different locations, Juzi
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Table 3.1: Juzi’s repair attempts to repair the binary tree example in Figure 3.3 (a). The
binary tree object is represented by bt. Node objects are represented by numbers that
correspond to the numbers in Figure 3.3. For each repair attempt the table shows: attempt
count, target repair object and field, attempted repair and result of the repOk invocation
after the repair. Juzi starts with the last accessed field in the repOk method, size. Since
mutation of this field (Juzi shows it as X ) does not repair the structure, Juzi backtracks to
the second-to-last accessed field, i.e., right of node 5 (attempt 2). For each possible value
for this field, it also tries to mutate the previously attempted size field. After trying all
possible values in an exhaustive fashion for the right field, it then tries to repair left of node
5 in combination with size and right of node 5 (attempts 12, 13, ..., 24, ...). Finally, Juzi
backtracks to the actual corrupted field, left of node 1 and repairs the data structure in
1,345,333-th attempt.

Atmpt. Target Target Atmpt. repOk
count object field repair returns

1 (Figure 3.3 (b)) bt size X false
2 5 right 1 false
3 bt size X false
4 5 right 2 false
5 bt size X false

6 (Figure 3.3 (g)) 5 right 3 false
7 bt size X false
8 5 right 4 false
9 bt size X false
10 5 right 5 false
11 bt size X false
12 5 left 1 false
13 bt size X false
14 5 right 1 false
15 bt size X false
16 5 right 2 false
17 bt size X false
... ... ... ... ...
... ... ... ... ...
24 5 left 2 false
25 bt size X false
26 5 right 1 false
27 bt size X false
28 5 right 2 false
... ... ... ... ...
... ... ... ... ...

1,345,333 (Figure 3.3 (z)) 1 left null true
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Figure 3.3: Exhaustive approach in Juzi. Initially (a), the binary tree is corrupt.
Dotted lines and X in size field show repair attempts (b - g). Omitted are several
subsequent repair attempts (h). Ultimately repair culminates in the binary tree (z).
Note that there are no fresh objects in Juzi.
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sometimes change other data values instead of the original corrupted one. These

result in unnecessary repair attempts, increased execution time and data loss.

To illustrate the problem of error location dependency, we consider the binary

search tree data structure and its correctness condition (Figure 3.4 and Figure 3.5)

that we have also taken from the authors of Juzi [56] and added conditions to control

the return.

The constraints for a traditional binary search tree are: (1) no-cycle: acyclic

along the left and the right pointers, (2) The left (right) subtree of a node contains

only nodes with keys less (greater) than the node’s key; the subtrees must be binary

search trees. The repOk method in Figure 3.5 has another constraint, (3) the number

of nodes reachable from the root node along the left and the right fields is stored

in the size field. The purpose of the third constraint probably is to prevent trivial

repairs (e.g., making the root null) and ensure that the initial corrupted binary search

tree and the repaired one are equal in size.

We introduce corruptions that break the second constraint. Specifically, we

induce corruptions that change the data values of different nodes without introducing

any cycle or changing the total number of nodes in the binary search tree. In Figure 3.4

the repOk method checks the tree property of the binary search tree. In the continued

code in Figure 3.5, repOk method checks the second constraint. Note that, instead of

using recursion, which is commonly used in checking the constraint, authors of Juzi

in the repOk method in Figure 3.5 use a stack and iteratively check the property in

a bottom-up fashion.

Figure 3.6(a) shows an example of a corrupted binary search tree of nine nodes:

the left child of the root has a key which is greater than the root’s key. For simplicity,

we will refer to a node by its key from now on. Since the repOk method in Figure 3.5

uses a stack to check the invariant iteratively in a bottom-up fashion, the first detected
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error (at line 69) involves nodes 176 and 79. The error specifically is that the node

79, being in the right sub-tree of node 176, should have a greater value than 176 as

its key, or the other way around.

When Juzi detects an error, it returns false immediately from the repOk method

to initiate the repair process. To repair the corruption, Juzi tries to mutate the field

that the repOk method accessed last – the key of node 79. Note that, Juzi fails

to detect indirect field accesses and ignores 176 (it is accessed through min at line

69). As shown in Figure 3.6(b), Juzi replaces it with a symbolic variable, e.g., X

and tries to solve for it. The first attempt solves X for 177, which further corrupts

the data structure, resulting in a different last accessed field in the second attempt.

Subsequently (omitted from the figure) Juzi backtracks in the list of fields that the

repOk method accessed and continues its repair attempts in an exhaustive fashion.

Finally, Juzi repairs the data structure in (z). Note that the corruption is in a location

which affects other parts of the data structure, and since Juzi tries to mutate the last

accessed field in a greedy fashion, its repair validates the original corrupted node by

changing almost all the other nodes’ key values (except three, including the original

corrupted node).

In situations like this, our key insight is that we can guide the data structure

repair by considering all fields involved in any corruption rather than just the last

accessed field as the target; and when a corruption is detected, instead of returning

from the repOk method immediately and attempt a repair in a greedy fashion, we can

let it run and gather more constraints in solving for the corrupted field. Moreover,

running the repOk until it returns at the end has its added benefit that we can count

how many times any field appears in a corruption and take the most occurring (i.e.,

the most influential corrupted) field first as the repair target.

30



Chapter 5 discusses the updated algorithm that incorporates this insight and

presents experiment data to show the promise of the approach.
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1 public class Node {
2 Node l e f t ;
3 Node r i g h t ;
4 int key ;
5 }
6

7 public class BinarySearchTree {
8 Node root ;
9 int s i z e ;

10 boolean return immediate = fa l se ;
11 // . .
12 public boolean repOk ( ) {
13 // An empty t r e e must have zero in s i z e
14 i f ( root == null )
15 return ( s i z e == 0 ) ;
16

17 boolean r e s u l t = true ;
18 Set<Node> v i s i t e d = new HashSet<Node>() ;
19 v i s i t e d . add ( root ) ;
20 LinkedList<Bst Node> workList = new LinkedList<Bst Node >() ;
21 workList . add ( root ) ;
22

23 // Checks f o r c y l c l e s a long l e f t or r i g h t
24 while ( ! workList . isEmpty ( ) ) {
25 Node cur rent = workList . removeFirst ( ) ;
26 i f ( cur r ent . l e f t != null ) {
27 // The t r e e must have no c y c l e s a long l e f t
28 i f ( ! v i s i t e d . add ( cur rent . l e f t ) ) {
29 i f ( return immediate )
30 return fa l se ;
31 r e s u l t = fa l se ;
32 }
33 else
34 workList . add ( cur rent . l e f t ) ;
35 }
36

37 i f ( cur r ent . r i g h t != null ) {
38 // The t r e e must have no c y c l e s a long r i g h t
39 i f ( ! v i s i t e d . add ( cur rent . r i g h t ) ) {
40 i f ( return immediate )
41 return fa l se ;
42 r e s u l t = fa l se ;
43 }
44 else
45 workList . add ( cur rent . r i g h t ) ;
46 }
47 }

Figure 3.4: Example binary search tree data structure [56], consisting of a Node class
and a BinarySearchTree class.
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49 // S i z e must be equa l to #v i s i t e d nodes
50 i f ( v i s i t e d . s i z e ( ) != s i z e ){
51 i f ( return immediate )
52 return fa l se ;
53 r e s u l t = fa l se ;
54

55 }
56

57 // Check f o r BST proper ty
58 int min = −1;
59 Stack<Node> s tack = new Stack<Node>() ;
60 Node p = root ;
61

62 while (p != null ) {
63 s tack . push (p ) ;
64 p = p . l e f t ;
65 }
66

67 while ( s tack . s i z e ( ) > 0) {
68 Node q = stack . pop ( ) ;
69 i f ( q . key < min ) {
70 i f ( return immediate )
71 return fa l se ;
72 r e s u l t = fa l se ;
73 }
74

75 min = q . key ;
76 Node r = q . r i g h t ;
77

78 while ( r != null ) {
79 s tack . push ( r ) ;
80 r = r . l e f t ;
81 }
82 }
83

84 i f ( return immediate )
85 return true ;
86

87 return r e s u l t ;
88 }
89 }

Figure 3.5: Example binary search tree data structure continued from Figure 3.4.
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Figure 3.6: Initially (a), the binary search tree is corrupt in root’s left child (176).
Solid arrows represent left child to a node, dotted as right child. In (b), X in the key
field represents symbolic variable in repair attempts. Omitted are several subsequent
repair attempts in Juzi’s exhaustive approach. Ultimately repair culminates in the
correct binary search tree (z) which is different in all but three nodes from the initial
structure.
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Chapter 4

Solution: Dynamic Symbolic Data Structure Repair

Our approach has two parts: at the lower level is a dynamic symbolic execution

engine that has a broad interface to allow modification of path conditions, etc. At

the top layer, using the dynamic symbolic engine, sits our generic repair algorithm.

In Section 2.4 we briefly discussed Dsc, the dynamic symbolic execution engine that

we used in our approach. In this section we briefly describe the algorithm, imple-

mentation and present the evaluation of our approach. The material presented in

this section is essentially from our two short papers on automatic data structure

repair [82, 81]

4.1 Repair Algorithm

Figure 4.1 gives a high-level overview of our algorithm, Dynamic Symbolic Data

Structure Repair or DSDSR. As part of its normal execution, a program invokes as-

sertions or other methods that implement a correctness condition. In our description

we follow previous work and name such a method repOk [56, 55]. When the cor-

rectness condition fails, i.e., repOk returns false, execution is handed over to our

extended dynamic symbolic engine, which in turn invokes the instrumented version

of repOk (I-repOk). Executing the instrumented repOk builds the path condition of

the execution path that leads to the point at which repOk failed.

With the full symbolic path condition in hand, we can now modify the path

condition to obtain a different path. I.e., if we invert the last if-condition (or, when

we allow repOk to run and return late, the if-condition after which the error was
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Figure 4.1: Overview of our dynamic symbolic data structure repair algorithm (DS-
DSR). RepOk is a method that implements a given correctness condition. I-RepOk
is the instrumented version of repOk.

detected) we obtain a path that does not return false at the point at which the

original execution failed. At the same time, solving such a new path condition can

give us an input state that will trigger the new path. If the new state satisfies the

repOk correctness condition, we can mutate the existing state to resemble the new

one, which completes the repair.
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The algorithm relies on a faithful encoding of the path condition and other

program constraints in a format suitable for automated reasoning. It further relies on

a powerful automated constraint solver that can simplify such constraints and, if a

solution exists, can produce a concrete solution. Finally, the solution of the constraint

solver needs to be mapped back into the program state, to repair the existing data

structures.

We repair the data structure according to the solution of the constraint solver

and invoke repOk to check if the resulting structure satisfies the repOk correctness

condition. If repOk again returns false, indicating there are more errors, we may

make another iteration and attempt another repair.

To prevent an infinite loop of repair attempts, the algorithm terminates after

reaching a user-defined number of futile attempts. If the repOk method returns true,

we consider the repair attempt to be successful and resume normal program execution.

The main advantage of our approach is that, unlike Juzi, in the search for

a data structure that satisfies a repOk correctness condition, we do not need to

exhaustively generate many possible candidate data structures. Instead, DSDSR

derives conditions directly from the repOk implementation to generate a single data

structure that satisfies the correctness condition.

4.2 Design

We explain the design of our algorithms with the help of our motivating example

the binary tree data structure and its correctness condition given in Figures 4.2 and

3.2, respectively. Recall that when the correctness condition fails, i.e., repOk returns

false, execution is handed over to the extended dynamic symbolic engine, which in

turn invokes the instrumented version of the repOk method. It calls the instrumented
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version of the repOk method twice, as shown in Algorithm 1, and the purpose of these

two executions are twofold:

� Explore the state space to collect meta information of the data structure and

identify the corrupt instance and field.

� Build an appropriate path condition, by negating the constraint that represents

the corruption in the data structure.

fieldAccessList← emptyList;

instanceAccessList← emptyList;

constraintsList← emptyList;

lastF ieldAccessed← −1;

lastInstanceAccessed← −1;

corruptConstraint← −1;

maps← createMaps(root);

repOkExec1(maps);

updateMap(maps);

repOkExec2();

negate constraintsList[corruptConstraint] and update the path condition;

solvethemodifiedpathcondition;

updatethedatastructurewiththesolution;

Algorithm 1: Main Algorithm

Table 4.1 summarizes the purpose of the different items used in the Algorithm 1.

The algorithm maintains three lists: lists for the instance and field accesses, and the

observed constraints from the regular DSE during the repOk method execution. It

also keeps three indices to the corresponding lists that points to the instance, field
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Table 4.1: Items in the Algorithm 1 and their purposes

Item Purpose
fieldAccessList Field accesses in repOk
instanceAccessList Instance accesses in the repOk
constraintsList Constraints, both meta and branch constraints, observed by the repOk
lastFieldAccessed An integer index to the last accessed field before the corruption
lastInstanceAccessed An integer index to the last accessed instance before the corruption
corruptConstraint An integer index to the last observed constraint before the corruption
root Root or access point to the data structure
createMaps Traverses the data structure to create map for each field type
repOkExec1 Finds target: the corrupted instance and the field; updates the indices.
updateMap Replaces value of the corrupted field with symbol.
repOkExec2 Builds the path condition from constraintsList and corruptConstraint

and constraint that is accessed or observed just before a corruption is detected. After

initialization of these lists and indices, the algorithm at first calls the createMaps

method, which using Java’s reflection mechanism (as shown in Algorithm 2), traverses

the data structure to build maps for each field type.

Then it calls the instrumented repOk method, repOkExec1 the first time which

primarily finds the target corrupted instance and the field. Furthermore, the method

gathers meta data regarding the state space. These meta information include the sub-

type and supertype relations, the dynamic type of objects, types of referenced objects,

visibility and others that Dsc collects as part of normal DSE. These relationships are

asserted and later utilized in solving for the modified path condition.
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classSet← emptySet;

objectSet← emptySet;

map← emptyMap;

objectSet.add(root);

worklist← emptyQueue;

worklist.enqueue(root);

while worklist not empty do

obj ← worklist.dequeue();

classSet.add(class(obj));

foreach field f in refF ields(obj) do

refObj ← get referenced object in f of obj;

update map for f at key obj with refObj;

if objectSet.add(refObj) then

worklist.enqueue(refObj);

foreach class in classSet do

foreach field in refF ields(class) do

assert map for field;

return map

Algorithm 2: createMaps(Object root): Traverses the data structure to create

map for each field type

Algorithm 3 describes repOkExec1 – the first call of the instrumented repOk

method. It basically monitors different instance and field accesses during the repOk

method execution. In cases when there is a direct instance and field access, it simply

records the event by appending to the corresponding lists. But there could be indirect

accesses through local variables. Such indirect accesses usually occur first by assigning
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a field to a local variable and then using the local variable at the later part of the

code.

Ideally, there should be no side effects of such assignment statements in the

correctness conditions. So, as a heuristic, for any such assignment statement at a

program point P, the algorithm wraps the value with two indices: the last accessed

field and the last accessed instance prior to program point P. As a result, whenever

the value is used later in the code, the corresponding instance and the field that it

represents are easily traced back.

For example, the modified repOk method for the binary tree in Figure 3.2 at

line 21, assigns false to the local boolean variable when it detects an error. At the end

of the execution, when the repOk method finally returns false, the algorithm deduces

the target corrupted instance and field by utilizing the instance and field access lists

and the indices. It finds the values for the indices by either unwrapping the operand

stack top return value (when it is wrapped) or simply by the maximum index of the

lists. In our binary tree example in Figure 3.2, when the repOk method returns false

using temporary variable result at line 39, it unwraps the result to get the indices

and deduces that the first node (node 1) is the corrupt instance and its left field is

the corrupted field.

Once the target corrupted instance and field is detected, the updateMap method

as described in Algorithm 4, replaces the concrete value (in the field) with a symbolic

variable. Specifically, it updates the map for the corrupted field by replacing the value

with a symbolic variable at the corrupted instance key location. This update helps

the second instrumented repOk method, repOkExec2 to build the path conditions

with symbolic variable.

Algorithm 5 describes repOkExec2. Its responsibility is to build the path condi-

tion. Whenever the method execution hits a condition and takes a branch, it creates
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while more bytecode statements do

match statement do

case field read:

resolve accessed instance and field;

add to fieldAccesses;

add to instanceAccesses;

case local variable read:

if field access through local variable then

resolve accessed instance and field;

add to fieldAccesses;

add to instanceAccesses;

case (x ← e):

wrap e with pointers to maximum index of fieldAccesses,

instanceAccesses;

case return e:

if operand stack top e is wrapped then

unwrap the e and get pointers: fieldAccessedPointer

instanceAccessedPointer;

lastF ieldAccessed← fieldAccessedPointer;

lastInstanceAccessed← instanceAccessedPointer;

else

lastF ieldAccessed←

maximum index of fieldAccesses;

lastInstanceAccessed←

maximum index of instanceAccesses;

Algorithm 3: repOkExec1(maps): Finds target: the corrupted instance and the

field; updates the indices.
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corruptF ield← fieldAccessList[lastF ieldAccessed];

corruptInstance← instanceAccessList[lastInstanceAccessed];

symbolicV ar ← getSymbol(corruptInstance);

update map for corruptF ield at key corruptInstance with symbolicV ar;

assert map for corruptF ield;

Algorithm 4: updateMap(maps): Replaces value of the corrupted field with sym-

bol.

the corresponding constraint and adds it to the constraint list. For same reasons as

in Algorithm 3, for any assignment statement, it tracks the index to the last built

constraint in the list. At the end, before returning from the method, it updates the

index, corruptConstraint that points to the target corrupted constraint in the list.

The main algorithm, Algorithm 1, then negates the target corrupt constraint

in the constraints list. Conjunction of the constraints up to the negated constraint

in the list yields the modified path condition. It then invokes the constraint solver to

solve for the modified path condition. The solution (if exists) is then reflected back

to update the data structure state in an attempt to repair the corruption.

Figure 4.2 shows the repair attempts of our approach for the example binary

tree. Note that the solution is a new node for the corrupted field (the left child of

the root node). But this repair attempt changes the size of the data structure which

mismatches with the size field – resulting in another corruption. As a result, we

need a second repair attempt and that updates the size field to finally repair the

data structure. We acknowledge that creation of a new node might arise complexities

on what the initial values of the new node should be. In such a case, an alternate
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while more statements do

match statement do

case branch:

create constraint of outcome;

add constraint to constraintsList;

case (x ← e):

wrap e with pointer to maximum index of constraintsList;

case return e:

if operand stack top e is wrapped then

unwrap the e and get pointer: ptConstraint;

corruptConstraint← ptConstraint;

else

corruptConstraint←

maximum index of constraintsList;

Algorithm 5: repOkExec2(): Builds the path condition from constraintsList and

corruptConstraint

solution could be to use null for the corrupted field in the first attempt. We plan to

investigate this issue in the future.

4.3 Implementation

We implement our generic repair algorithm on top of the new dynamic symbolic

execution engine for Java, called Dsc. Dsc works on top of any standard Java virtual

machine. It does not require modifications of the virtual machine or the user code.

This means we can repair existing Java code when it is executed on a standard JVM.
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Figure 4.2: Directed approach in DSDSR. Solid lines represent left field and dashed
lines represent right field. Initially (a), the binary tree is corrupt, as the first node’s
left field points to the root, creating a cycle, which is incorrect according to repOk
correctness condition. In first attempt (b), DSDSR creates a new node for left field.
Finally, in (c), updates the size field to reflect the repair.

Dsc analyzes user code at the bytecode level. It uses the instrumentation facili-

ties provided by Java 5 to instrument user code at load-time, using the ASM bytecode

instrumentation framework [34, 24].

4.4 Evaluation

In this section we present our experiments and the result that shows how existing

repair algorithms depend on the style of the correctness condition. We evaluate our

approach and Juzi [56] and show that ours is less dependent on the style of the

correctness condition and takes less repair attempts in repairing a corrupted data

structure.
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4.4.1 Subject Data Structures

Singly-linked list: We considered the singly linked list data structure given in

Figure 4.3. Apart from the usual reachability constraint of a singly linked list, the

correctness condition for this structure is that the first node has to have a value that

is equal to the number of nodes in the list.

1 public class Node {
2 int value ;
3 Node next ;
4 // . .
5 }
6

7 public class LinkedLis t {
8 Node header ;
9 // . .

10 public boolean repOk ( ) {
11 Node n = header ;
12 i f (n==null )
13 return true ;
14

15 int l ength = n . value ;
16 int count = 1 ;
17

18 while (n . next != null ) {
19 count += 1 ;
20 n = n . next ;
21 i f ( count > l ength )
22 return fa l se ;
23 }
24

25 i f ( count != length )
26 return fa l se ;
27

28 return true ;
29 }
30 }

Figure 4.3: Example singly linked list data structure, abbreviated, consisting of a
Node class and a LinkedList class. Method repOk is a contrived correctness condition
for the linked list, which may be invoked by assertions throughout the program.
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Figure 4.4: Exhaustive approach in Juzi. Initially (a), the LinkedList is corrupt, as
the first node contains value 4, which is incorrect according to the Figure 4.3 repOk
correctness condition. Dotted lines show the first three repair attempts (b, c, d).
Omitted are several subsequent repair attempts. Ultimately repair culminates in the
correct list (z).

The repOk method in Figure 4.3 checks the correctness as follows: it first stores

the value field of the first node in a temporary variable named length. Then the

method iterates over the list nodes to count them. This loop terminates prematurely

once the node count exceeds the value of the length variable. This also prevents lists

that are circular from forcing repOk into an infinite loop. Finally, the length variable

is compared with the node count, to produce the desired answer.

Binary Tree: We took the binary tree data structure example as described in

Figure 3.1. As mentioned earlier we took the constraints from [56], specifically these

are: (1) acyclic along the left and right pointers and (2) the number of nodes reachable

from the root node along the left and right fields is stored in the size field.
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4.4.2 Induced Errors

For the singly linked list, we constructed lists of different lengths. Specifically,

each run constructed a correct singly linked list of a given length and then corrupted

the value of the first node by increasing it by one.

Similarly, we conducted experiments with binary trees of different sizes. Each

run constructed a correct binary tree of a given size and then corrupted one of the leaf

node’s left or right field by pointing the root as its child. To emphasize the fact that

writing good correctness condition is very hard and repair actions heavily depend

on the programmer defined correctness condition, we considered slightly different

versions of the same correctness condition and applied both the repair tools. We

considered three versions of the same correctness condition. They vary in places

of return statements, e.g., the first one returns false immediately when it detects a

corruption (Figure 3.1), the second one waits until the end of the method (Figure 3.2)

and the last one returns false immediately if the corruption is in the right pointer but

returns late if it is in the left pointer and vice versa.

4.4.3 Experiment Setup

We conducted the experiment with the latest version of Juzi (0.0.0.1) which we

obtained from the Juzi website1 and took all measurements on a Sun HotSpot JVM

1.6.0 17 running on Windows on an intel laptop 2.26GHz Core2 Duo processor.

At each experiment run, after inducing an error, we invoked one of the repair

tools, and measured the time the tool takes to repair 2.

1http://users.ece.utexas.edu/˜elkarabl/Juzi/index.html
2The current version of our prototype makes only one repair attempt. For cases where we needed

multiple repair actions to finally correct the data structure, we ran the tool multiple times—adding

the time taken each time to simulate the final repair.
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4.4.4 Results
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Figure 4.5: Result of applying the linked list example of Figure 4.4 to lists of different
lengths. #nodes is the number of nodes in the list. Repair time is the time a tool
took to produce the correct repair action. Smaller repair times are better.

Figure 4.4 shows an example of how Juzi exhaustively repairs the corrupted

singly linked list. Figure 4.5 shows the result of our experiment with the singly linked

list 3. In the experiment both tools succeed in that they terminate with producing

the correct repair action in all cases. Juzi repairs small lists more efficiently than our

prototype implementation. But starting with 13 nodes, our approach is more efficient.

This makes sense intuitively, as an exhaustive approach such as Juzi is bound to be

inefficient for larger data structures, motivating more directed approaches such as

ours.

3At the time of this experiment, our prototype suggested but did not perform a repair action.

The implementation of performing a suggested repair was later straightforward and added only a

negligible overhead.
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Figure 4.6: Repair time for binary trees of different sizes and immediately returning
correctness condition (Figure 3.1). #nodes is the number of nodes in the binary tree.
Repair time is the time a tool took to produce the correct repair action. Smaller
repair times are better.
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Figure 4.7: Repair time for binary trees of different sizes and late returning correctness
condition (Figure 3.2).
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Figure 4.8: Repair time for three sets of random binary trees and yet another variation
of the correctness condition. We had to terminate Juzi for 10, 11, or 14 nodes.

Figures 4.6, 4.7, and 4.8 show the result of our experiments with the binary

tree. For a carefully designed correctness condition, Juzi repairs more efficiently

than our prototype implementation, as shown in Figure 4.6. But with a modified

correctness condition, as shown in Figure 4.7, starting with 5 nodes, our approach is

more efficient.

Figure 4.8 shows the result of our experiment with third version of the repOk

method that returns false immediately if the corruption is in the right field but returns

late if the corruption is in the left field. We found similar results for the opposite case

of this repOk. We applied both the tools for three sets of binary trees, where each

set had randomly built binary trees containing from 1 to 15 nodes. In each case, we

had to terminate Juzi prematurely because it was taking too long to repair. This is

intuitively expected as an exhaustive approach such as Juzi is bound to be inefficient

for larger data structures. This motivates our more directed approach, which takes
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approximately the same amount of time to repair—irrespective of the size of the data

structure and variation in the correctness conditions.

4.5 Limitations

The main concerning issue with a data structure repair approach is that it

does not guarantee producing the same data structure that a normal execution of

the program would have produced [49, 54]. It also incurs the possibility of data

loss. Therefore, the program might behave differently and even produce unexpected

results after a successful repair. We acknowledge that, such limitations prevent ap-

plying our approach to programs where absolute correctness is more desirable than

continued execution. Examples of such programs can be cryptographic algorithms

and applications that have strict numerical calculations [49].

However, in case of a corruption, similar to other approaches, the main goal

of our repair approach is to enable the program for continued execution rather than

having it halted or in the worst case, crashing it and thereby loosing all it’s volatile

state.

Our approach that takes the correctness condition or the repOk method as

input, assumes the successful and correct implementation of the repOk method. As a

result, a faulty repOk method can jeopardise the whole repair effort. But we believe

that a programmer who uses a data structure also knows the details of it and since she

uses the same programming language that she uses to implement the data structure

to write the repOk method, she could implement it correctly.

From the implementation perspective, since our approach is built on top of

the dynamic symbolic execution engine Dsc and uses Z3 as the constraint solver,

it carries all the limitations of these frameworks. For example, current prototype

implementation has limitations on solving floating point arithmetic, infinite loop,
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etc. Moreover, since our evaluation does not contain all possible data structures and

corruption scenarios, it is neither sound nor complete. It may contain bugs and fail

to repair many corrupted data structures.
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Chapter 5

Priority Based Corruption Repair

In this chapter we propose an updated approach that tries to address the second

problem mentioned in Section 3.3, namely, the error location dependency problem of

the existing repair approaches. That is, for the same error in different positions in

the same data structure, existing approaches can take different execution time and

number of attempts in repairing the structure. Moreover, while trying to fix the

problem, these repair attempts sometimes change other data values instead of the

original corrupted one and results in data loss.

To illustrate the problem, we consider the binary search tree data structure

introduced in Section 3.3 that we took from the authors of Juzi [56]. For the ease of

explanation we present the same example again in Figures 5.1 and 5.2.

As mentioned earlier, the repOk method in Figures 5.1, 5.2 check the following

constraints of the binary search tree: (1) no-cycle: acyclic along the left and right

pointers, (2) The left (right) subtree of a node contains only nodes with keys less

(greater) than the node’s key; the subtrees must be binary search trees, and (3) the

number of nodes reachable from the root node along the left and right fields is stored

in the size field.

We introduce corruptions that break the second constraint. Specifically, we

induce corruptions that change the data values of different nodes without introducing

any cycle or changing the total number of nodes in the binary search tree. Figure 5.2

shows the code that checks the second constraint. As before, note that, instead of

using recursion, which is commonly used in checking the constraint, authors of Juzi
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1 public class Node {
2 Node l e f t ;
3 Node r i g h t ;
4 int key ;
5 }
6

7 public class BinarySearchTree {
8 Node root ;
9 int s i z e ;

10 boolean return immediate = fa l se ;
11 // . .
12 public boolean repOk ( ) {
13 // An empty t r e e must have zero in s i z e
14 i f ( root == null )
15 return ( s i z e == 0 ) ;
16

17 boolean r e s u l t = true ;
18 Set<Node> v i s i t e d = new HashSet<Node>() ;
19 v i s i t e d . add ( root ) ;
20 LinkedList<Bst Node> workList = new LinkedList<Bst Node >() ;
21 workList . add ( root ) ;
22

23 // Checks f o r c y l c l e s a long l e f t or r i g h t
24 while ( ! workList . isEmpty ( ) ) {
25 Node cur rent = workList . removeFirst ( ) ;
26 i f ( cur r ent . l e f t != null ) {
27 // The t r e e must have no c y c l e s a long l e f t
28 i f ( ! v i s i t e d . add ( cur rent . l e f t ) ) {
29 i f ( return immediate )
30 return fa l se ;
31 r e s u l t = fa l se ;
32 }
33 else
34 workList . add ( cur rent . l e f t ) ;
35 }
36

37 i f ( cur r ent . r i g h t != null ) {
38 // The t r e e must have no c y c l e s a long r i g h t
39 i f ( ! v i s i t e d . add ( cur rent . r i g h t ) ) {
40 i f ( return immediate )
41 return fa l se ;
42 r e s u l t = fa l se ;
43 }
44 else
45 workList . add ( cur rent . r i g h t ) ;
46 }
47 }

Figure 5.1: Same Figure as Figure 3.4 example binary search tree data structure,
consisting of a Node class and a BinarySearchTree class. Partial repOk method that
checks acyclicity. 55



49 // S i z e must be equa l to #v i s i t e d nodes
50 i f ( v i s i t e d . s i z e ( ) != s i z e ){
51 i f ( return immediate )
52 return fa l se ;
53 r e s u l t = fa l se ;
54

55 }
56

57 // Check f o r BST proper ty
58 int min = −1;
59 Stack<Node> s tack = new Stack<Node>() ;
60 Node p = root ;
61

62 while (p != null ) {
63 s tack . push (p ) ;
64 p = p . l e f t ;
65 }
66

67 while ( s tack . s i z e ( ) > 0) {
68 Node q = stack . pop ( ) ;
69 i f ( q . key < min ) {
70 i f ( return immediate )
71 return fa l se ;
72 r e s u l t = fa l se ;
73 }
74

75 min = q . key ;
76 Node r = q . r i g h t ;
77

78 while ( r != null ) {
79 s tack . push ( r ) ;
80 r = r . l e f t ;
81 }
82 }
83

84 i f ( return immediate )
85 return true ;
86

87 return r e s u l t ;
88 }
89 }

Figure 5.2: Example binary search tree data structure, repOk continues from Fig-
ure 5.1, checks correctness condition for the binary search tree.
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made the repOk method use a stack and iteratively check the property in a bottom-up

fashion.
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Figure 5.3: Initially (a), the binary search tree is corrupt in root’s left child (176).
Solid arrows represent left child to a node, dotted as right child. X in key field
represents symbolic variable in repair attempts. Upper: exhaustive approach in Juzi,
omitted are several subsequent repair attempts. Ultimately repair culminates in the
binary search tree (z) which is different in all but three nodes. Bottom: starting with
the same corrupted structure in (a’), our approach that allows repOk to return late,
detects the actual corrupted field in (b’), and, repairs the structure in first attempt
retaining key values in (c’).
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Figure 5.3(a) shows an example of a corrupted binary search tree of nine nodes.

The corruption is with the left child of the root node: namely, it has a key value that

is greater than the root’s key value. For simplicity, we will refer to a node by its key

value from now on.

The repOk method in Figure 5.2 uses a stack to check the second invariant

iteratively in a bottom-up fashion. The code works as follows: it initializes the local

variable min to −1 and starting from the root node, pushes all the non-null left nodes

into the stack (lines 62–65). Figure 5.4(a) shows the stack state for the example at

this point. Next, while the stack is not empty (lines 67–82), it pops a node q from

the stack and performs basically two things: first, it compares q ’s key value with the

min (at line 69); if the min is greater than the key value then the repOk detects an

error. Otherwise, it updates the min with the key value. Figure 5.4 (b) – (d) shows

the updates of min for the nodes in the left branch of the example binary search

tree. Second, it pushes the non-null right node of q (if it exists) and all its non-null

left nodes into the stack. Figure 5.4 (e) shows the stack state at this point for the

example binary search tree. The while loop continues performing these operations

until the stack is empty or repOk detects a violation and returns false.

For our example, in the second iteration of the loop, while the stack is in the

state of Figure 5.4 (f), it detects an error. Specifically, the current min, 176 is greater

than the popped value 79. Intuitively, this is an error as the node 79, being in the

right sub-tree of node 176, should have a greater value than 176 as its key, or the

other way around.

Note that the last directly accessed field before the corruption is detected is

the key of node 79. The check that detects this error (at line 69) involves the local

variable min through which another data field (key of node 176) is indirectly accessed.
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Figure 5.4: Different stack states while the repOk runs on the binary search tree in
Figure 5.3. With the min set to -1, (a) shows the stack state after all the nodes in
the left branch of the tree are pushed in; (b)–(d) shows stack pops; min is updated
with the popped value if the popped value is greater than the min. Stack states after
the pushes at lines 38–43 in the repOk are shown in (e)–(f), which keeps the min
unchanged. (f) also shows the stack state before the error is detected at line 69 of
the repOk method.
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Recall that Juzi always considers the last accessed field as corrupted and cannot

detect indirect field accesses. As a result, in Juzi’s repair attempt for the example

binary search tree, it tries to mutate the value in the key field of node 79 but ignores

the value in the key field of node 176. Juzi replaces it with a symbolic variable as

shown in Figure 5.3(b), and tries to solve for it. The first attempt yields the value

177 – which further corrupts the data structure. Subsequently (omitted from the

figure) Juzi backtracks in the list of field accesses and continues its repair actions in

an exhaustive fashion. Finally, Juzi repairs the data structure in (z). Note that it

validates the original corrupted node by changing almost all the nodes’ key values

(except three, including the original corrupted node).

Our key insight is that we should not consider only the last accessed field before

the corruption as the target corrupted field. Rather we should consider all the involved

fields in any corruption, both directly and indirectly accessed fields as targets. For

our example binary search tree this would make both the key fields of nodes 79 and

176 (accessed indirectly through the local variable min) as targets. Moreover, when

a corruption is detected, instead of returning from the repOk method immediately,

we should rather let it run to discover more corruptions (if exists) and gather more

constraints on the overall data structure state. This way we can prioritize among

the target corrupted fields, reduce the search space with the gathered constraints and

guide the repair approach to save futile attempts and improve repair efficiency.

5.1 Updated Algorithm

Figure 5.5 gives a high-level overview of our updated algorithm. As before, as

part of its normal execution, a program invokes its correctness specification method,

repOk. When repOk fails, i.e., returns false, execution is handed over to the ex-
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tended dynamic symbolic engine, which in turn invokes the instrumented version of

the repOk, shown as I-repOk.

normal program exec.

repOk()

I-repOk1:
lists fields in
descending
corruption
frequency

backtrack
= false

backtrack?

take next most
corrupted

field as target

take most
corrupted

field as target

I-repOk2:
builds path-

condition

constraints
SAT?

backtrack
= true

update data
structure

false

true

false

no
yes

true

Figure 5.5: High-level overview of our approach. I-repOk1 and I-repOk2 are the in-
strumented versions of repOk. I-repOk1 returns late: for each detected corruption, it
increments the counter for the involved fields and at the end, based on the occurrence
count, prioritizes all the corrupted fields. I-repOk2, with the target field replaced by a
symbolic variable, executes and returns late: it builds the path-condition by negating
all the constraints involved in any corruption involving the symbolic variable.
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The instrumented repOk or I-repOk is called twice. In both the cases, when an

error is detected, it does not return immediately, rather it executes and returns late.

The first call to I-repOk, represented as I-repOk1, monitors the program execution

and logs all the involved fields in any corruption.

Whenever I-repOk1 detects an error, rather than returning immediately making

the last accessed field (before the detected corruption) as the target, it logs all the

accessed fields involved in the corruption, increments the counters for each of the

involved fields (maintained in a map) and continues the execution. At the end of its

execution, I-repOk1 lists all the corrupted fields in the descending order of occurrence,

i.e, the field that appeared the most in the detected corruption(s) appears at the top

of the list. We call the field at the top of this list as the most corrupted field. If there

are multiple candidate fields for the top position (i.e., with equal maximum values

in their counters), we apply our heuristic that considers the access sequence of these

fields and prefers the field that was accessed relatively later in the repOk method

over other fields to be in the top position. For example, in the example binary search

tree, both the key fields of the nodes 79 and 176 were involved in the only detected

corruption (hence both have a counter value of 1) and both are the targets. But since

the key field of 176 was accessed later, it is selected as the target corrupted field.

Once the most corrupted field is selected as the target, the algorithm replaces

it with a symbolic variable and calls the instrumented repOk for the second time,

represented as I-repOk2. I-repOk2 monitors the program execution and builds the

path condition. Note that, I-repOk2 also does not return immediately as it detects

any corruption, rather completes its execution and returns false late. At the end,

with the full path condition at hand, it modifies the path condition by inverting

the constraint(s) (involving the symbolic variable) that correspond to the detected

corruption(s). In our example, replacing the key of the node 176 with a symbolic
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variable X, the observed constraints in the path condition involving X are : (X ≥ 75)

and (X > 79) (from Figures 5.4 (c) and (e)). Since the later constraint represents

the detected corruption, the algorithm inverts it to get the modified path condition

as: ... ∧ (X ≥ 75) ∧ (X ≤ 79) ∧ ....

Next the algorithm calls the constraint solver with the modified path condition

as input. If the modified path condition is solvable, the constraint solver gives back

a solution for the symbolic variable that satisfies the path condition. Mutating the

target corrupted field with the solution yields a new data structure state which,

if passes the repOk correctness condition, completes the repair process. If it does

not pass the repOk method, the repair process is repeated. But if the modified

path condition is not solvable, the algorithm backtracks and chooses the next top

corrupted field as the target and tries to repair. To prevent an infinite loop of repair

attempts, the algorithm terminates (not shown in Figure 5.5) after reaching a user-

defined number of futile attempts. In our example, the modified path condition is

solvable and the constraint solver gives 76 as the solution for the symbolic variable

X. Mutating the corrupted key with 76, as shown in Figure 5.3 (c‘), gives a new data

structure state that passes the repOk method and completes the repair.

5.2 Evaluation

5.2.1 Experiment on Text Book Data Structures

We conducted our experiments with four types of data structures: singly-linked

list, doubly-linked list, binary search tree and binary heap. We selected these basic

data structures as they are easy to implement and their correctness either depends on

the structural constraints or data constraints or both. We describe their structural
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and data constraints, size and the induced errors for the experiments in the following

sections.

5.2.1.1 Subject Data Structures

Specialized singly-linked list or SSLL: we reused our previous example from [82].

The integrity constraints are : (1) no-cycle: acyclic along the next pointer; (2) the

first node’s value should be equal to the length of the list. The length of the list is

the number of nodes reachable from the header following the next pointer. An empty

list has null in the header.

Doubly-linked list or DLL: we took the algorithm from the authors of Juzi [56].

The integrity constraints of that doubly-linked list are: (1) circular structure along

next (and also prev); (2) transpose relation between the next and prev fields; and (3)

number of nodes reachable from the header following next is stored in size. An empty

list has null in the header and its size is 0.

Binary search tree or BST: we also took the binary search tree algorithm from

the authors of Juzi. The constraints of the binary search tree here: (1) no-cycle:

acyclic along the left and right pointers; (2) The left (right) subtree of a node contains

only nodes with keys less (greater) than the node’s key; the subtrees must be binary

search trees; and (3) the number of nodes reachable from the root node along the left

and right fields is stored in the size field.

Binary heap or BH: we took the algorithm from the popular algorithm text

book by Cormen et al. [39]. It uses an integer array based implementation of the

max-heap property of binary heap: for every entry at i, other than the root (0-th

position), A[Parent(i)] ≥ A[i] – where Parent(i) is bi/2c. Because of the array based

implementation, it did not have any structural constraints.
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Table 5.1: Structural and data constraints of the data structures used in the experi-
ments.

Data Structural Primitive Type
Structure Constraints Constraints

Special singly-linked list
acyclicity, reachability

first node’s value should be equal
(SSLL) to the length of the list

Doubly-linked list reachability, transpose,
n/a

(DLL) circularity
Binary search tree acyclicity, reachability,

natural order on elements
(BST) one parent

Binary heap
n/a

max heap: for any index i of array A–
(BH) A[Parent(i)] ≥ A[i]; where Parent(i) is bi/2c

Table 5.1 follows the format from [57] to summarize the structures and integrity

constraints of these data structures.

5.2.2 Induced Errors

Table 5.2 describes induced errors for each of the data structures. These errors

corrupt different locations of the data structures. For example, for the binary search

tree, the first error that swaps the root’s key with its left child’s key (BST-E1),

corrupts the data structure next to its root, at the top. It violates the data constraint

that the root’s left subtree should contain nodes with keys less than the root’s key.

Another such data constraint violation occurs when the key of the first leaf node,

discovered by the breadth-first-search approach, is swapped with its parent node’s

key (BST-E2). This error corrupts the bottom part, the edge of the binary search

tree. Similarly, errors BST-E3 and BST-E4 corrupts different parts of the binary

search tree.

As another example, for the specialized singly-linked list, the first error (SSLL-

E1) corrupts the data structure at the end (i.e., far from the node pointed by the

header) by making the last node’s next point to the first node. This corruption

violates the structural acyclicity constraint of the singly-linked list. On the other
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Table 5.2: Description of different induced errors in the data structures used in the
experiments. First column shows abbreviated names of the data structures used,
namely, special Singly-linked list, Doubly-linked list, Binary Search Tree and Binary
Heap. Second and third column, respectively, show their annotations (used in Ta-
ble 5.3) and describe how each of them corrupt a corresponding data structure. Note
that, for Binary Search tree and Binary heap we used the same kinds of errors.

Data Error Error
Structure Type Description

SSLL

E-1 Self loop by next pointer in third node
E-2 First node’s value is not equal to the length of the list
E-3 Cycle as the last node’s next points to the first node
E-4 Second node’s next points to the last node

DLL

E-1 Self loop by next pointer in third node
E-2 First node’s next points to the last node
E-3 Third nodes’ prev points to the last node
E-4 Fourth node’s prev points to the second node

BST / BH

E-1 Swaps root’s value with its left child’s value
E-2 First leaf node’s value, found by BFS with it’s parent’s value
E-3 Swaps first node’s value in level-1 with it’s right child’s value
E-4 Increments fifth node’s value, found by breadth-first-search, by 100

hand, the second error (SSLL-E2) changes the value of the first node (pointed by the

header) and violates the data constraint that it should be equal to the length of the

list.

Similar errors were introduced for other subject data structures that corrupt

different locations of the data structure. Table 5.2 summarizes these induced errors

for different data structures. Though the binary heap is an array-based data structure

it can be visualized as a binary tree [39]. We induced errors by modifying the values at

different indices of the data structure. Since these errors resemble the errors induced

in the binary search tree, Table 5.2 describes the induced errors for the binary search

tree and the binary heap together.
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5.2.3 Experiment Setup and Time-out

We applied three repair tools: the state-of-the-art repair tool Juzi [56], our

previous prototype DSDSR [81] that implements the algorithm in Section 4.1, and

our latest prototype DSLTR that implements the updated algorithm in Section 5.1

on the subject data structures with the induced errors and measured their repair

performance. Specifically, we measured their execution time and counted the number

of repair attempts. We also monitored if the final repair changed the size of the initial

corrupted data structure and counted the affected nodes in the process.

For all the subject data structures, we allowed the repOk method to return

late. For our prototypes, DSDSR and DSLTR we allowed a maximum of 100 repair

attempts before we terminated and declared it a time-out. This was done to avoid

infinite loop in repair attempts. For Juzi we did not have any such restrictions and

allowed it to run till the end.

We ran all the experiments on a HotSpot 1.6.0 32 JVM on Windows 7 on a

2.26GHz 32-bit Intel Core2 Duo processor laptop with 3GB RAM.

5.2.4 Results

We start the discussion by describing the issues that we faced choosing the sizes

of the different subject data structures in our experiments with Juzi. Note that when

we mention a data structure, we mean the corrupted version of the data structure in

general, not with any specific induced errors as mentioned in the Section 5.2.2.

We observed that for the larger data structures, Juzi took too long to complete

its repair executions. For example, for the specialized singly-linked list with 15 nodes,

it was more than 2 hours but Juzi was still running its repair actions. When we

reduced the size to 10 nodes, Juzi still did not complete its execution after 2 hours.

We observed similar behaviors with the doubly linked-lists. As a result, we chose 5
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nodes-sized data structures for both the specialized singly and doubly-linked lists in

our experiments.

For the binary search tree examples, Juzi could handle relatively larger data

structures than the singly or doubly-linked lists. It could repair up to 15 nodes sized

binary search trees in reasonable time (e.g., less than 30 minutes). But for more than

15 nodes binary search trees, Juzi was again taking too long to terminate. Therefore,

in our experiments, we chose to build 15 nodes-sized binary search trees.

Juzi cannot handle array based data structures. As a result Juzi could not

repair our array based binary heap data structures. For comparisons between our

prototype tools DSDSR and DSLTR for the binary heap, we simply took the size

that we used for the binary search trees and used an integer array of 15 elements for

the experiments.

Table 5.3 shows the experimental results. For the subject data structures with

induced errors, it shows the performance of the repair tools in terms of the following

metrics: execution time (in milliseconds), number of repair attempts, whether the

size of the original structure is altered in the final repair and the number of affected

nodes.

A highlevel observation from the table is that, for a fixed sized data structure

with errors at different locations, the repair performance of the tools can vary. For

example, for the binary search tree, as mentioned earlier, both the errors E1 and E2

swap a node’s key with its parent’s key but at different locations. To repair these

errors in the two versions of the binary search tree (V1 and V2), the tools show

varying metrics values. This is intuitive as errors at different locations may have

different influences over the rest of the structure. Detecting and repairing errors on

such depended-on locations may have differing affects in the execution time, repair

attempts, etc.
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With respect to execution time and number of repair attempts, Juzi’s perfor-

mance varies the most. That is, Juzi shows more error location dependency for its

repair performance, but our prototype tools are less dependent on the error locations.

For example, for the first version of the binary search tree (i.e. V1), Juzi took more

than 22,000 attempts in repairing the error E1 but only 3 attempts for E2; whereas

our prototype DSLTR took only 3 and 1 attempts, respectively.

We acknowledge that our earlier prototype DSDSR timed-out in repairing the

E1 error for the binary search tree. DSDSR showed such time-outs for few other errors

for other data structures as well. We investigated and found that since DSDSR did

not backtrack in finding a target corrupted field when the modified path-condition

was unsatisfiable, it resulted in futile attempts.

Regarding the number of affected nodes in the final repair of the data structures,

the results (i.e., the Aff. columns in the table) show that Juzi modifies more nodes

than our prototype tools. That is, Juzi may incur more data loss in the final repair.

Moreover, for the doubly-linked list we saw Juzi changed the size of original data

structure in its final repair.

Among the three tools, DSLTR showed steady performance and in general is

less dependent on the error locations. It can repair a corrupted data structure with

smaller number of repair attempts and results in less affected nodes.

5.2.5 File System Example

We next present a simple file system example that we took from Demsky’s

paper [50]. The file system consists of three parts: the directory, the file allocation

table (FAT), and an array of file blocks. Each file is considered to have a chain of file

blocks. The directory has fixed size of entries. Each directory entry represents a file
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Table 5.3: Experiment results for different data structures (D.S ): the first column
shows abbreviated name of a data structure with its size in parenthesis. Second col-
umn shows the induced error type. For the binary search tree, we used two randomly
built trees with different node values, they are represented by V1, V2. For each of
the repair tools, i.e., Juzi, DSDSR and DSLTR, following columns show experiment
results for different metrics: required repair time in milliseconds (T(ms)), number
of repair attempts made (Att.), if the final repair has altered the size of the initial
corrupt data structure (Alt?), and finally, how many node(s) were affected by the
repair, (Aff.). Juzi could not handle array based binary heap data structure, we also
had time-outs (T.O, allowed 100 attempts) for DSDSR and DSLTR for some data
structures. We could not measure performance of the tools for these cases and the
metrics are represented as not-applicable (n/a).

D.S. Error Juzi DSDSR DSLTR
(size) Type T(ms) Att. Alt? Aff. T(ms) Att. Alt? Aff. T(ms) Att. Alt? Aff.

SSLL (10) E-2 T.O n/a n/a n/a 503 1 no 1 510 1 no 1
E-1 16 35 no 1 858 2 no 1 845 2 no 1

SSLL E-2 26 194 no 1 412 1 no 1 425 1 no 1
(5) E-3 14 2 no 0 305 1 no 0 311 1 no 0

E-4 20 34 no 1 365 1 no 0 404 1 no 1

E-1 42813 99769 yes 5 T.O n/a n/a n/a T.O n/a n/a n/a
DLL E-2 40619 93224 yes 5 792 2 yes 3 865 2 yes 3
(5) E-3 50342 118162 yes 5 378 1 no 0 396 1 no 0

E-4 53091 128323 yes 5 371 1 no 0 397 1 no 0

V1-E1 733 22363 no 8 T.O n/a n/a n/a 4943 3 no 2
V1-E2 32 3 no 1 1637 1 no 1 2013 1 no 1
V1-E3 749 22225 no 4 T.O n/a n/a n/a 4695 3 no 2

BST V1-E4 749 22363 no 8 1451 1 no 1 1774 1 no 1
(15) V2-E1 129745 3596457 no 6 T.O n/a n/a n/a 4415 3 no 2

V2-E2 1707857 42043961 no 2 2075 1 no 1 1232 1 no 1
V2-E3 131462 3575857 no 4 T.O n/a n/a n/a 4620 3 no 2
V2-E4 119371 3314553 no 2 1591 1 no 1 1373 1 no 1

E-1 n/a n/a n/a n/a 2823 7 no 7 432 1 no 1
BH E-2 n/a n/a n/a n/a 429 1 no 1 414 1 no 1
(15) E-3 n/a n/a n/a n/a 2486 6 no 6 487 1 no 1

E-4 n/a n/a n/a n/a 1167 3 no 3 419 1 no 1

and holds the following information: the file name, size of the file in terms of blocks

and the index of the first file block in the FAT.

The FAT is an array that is used to quickly find which file blocks are in use,

which are free to allocate, etc. The number of entries in the FAT are equal to the

available number of the file blocks. It also helps to maintain the chain structure of

the file blocks. Specifically, if a file has two consecutive file blocks i and j in the chain,

then the FAT will indicate this by having the value j at index i, i.e., FAT[i] = j. A file
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block can also be in two other states: the last block in a chain or not in any chain at

all and free for allocation. These states are indicated by special values, the last block

is indicated by the value -1, and free block by -2.

fl-one 3 0

name size first

fl-two 1 3

name size first

1 2 -1 -1 -2 -2

Directory Entries FAT Table File Blocks

1

Figure 5.6: Correct file system example. Two entries in the directory for the two files.
No file block is shared, no file block chain contains a free block.

Figure 5.6 shows an example of such a file system. Specifically, it has two entires

in the directory for the two files, fl-one and fl-two. The first file contains three file

blocks and starts from the first block (at index 0) in the FAT. The second file contains

only one block, the fourth block (at index 3) in the FAT.

Similar to [50] we realize that even a file system this simple has many consis-

tency constraints and we focus on the following two FAT constraints:

� Chain Disjointness: Each block should be in at most one chain.

� Free Block Consistency: No chain should contain a block marked as free in the

FAT.

Note that, the file system example in Figure 5.6 is in a valid state since it

complies to the two consistency constraints: the files do not share any common file

block and no file block marked as free belongs to any of the file chains. Some of the
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other obvious constraints are: all the blocks except the last should be marked as used

(state must be 1) and the last block should be marked as last (state must be -1). For

simplicity, we ignore these constraints.

name: fl-one

forward

file-size : 3

first : 0

name: fl-two

forward

file-size : 1

first : 3

forward

state : 1

next : 1
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state : 1

next : 3

forward

state : -1

next : nil
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next : nil
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next : nil
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Figure 5.7: Equivalent file system example with modified structure as in Figure 5.6.
Two entries in the directory for the two files. No file block is shared, no file block
chain contains a free block.

Since, Juzi cannot handle arrays, for our experiments we modified the file system

structure from arrays to linked-lists while keeping the basic concept. Figure 5.7

shows the equivalent file system example with the modified structure. Specifically, we

introduced a reference, forward that maintains the list structure in both the directory

and the FAT entries. Instead of the indices to the FAT array, the directory entries

now hold a reference, first that points to the first FAT block. Similarly, each of the

FAT entries hold a reference field, next that points to the next block in the chain.

We introduced an integer field, state in each of the FAT entry nodes that represents

the corresponding block’s states. Namely, any free block has -2, any block that used
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in a file chain but is not the last block has 1 and the last block in the chain has -1 as

their values in the state field.

1 public class DirectoryEntry {
2 St r ing name ;
3 DirectoryEntry forward ;
4 int s i z e ;
5 FAT f i r s t ;
6 }
7

8 public class FAT {
9 FAT forward ;

10 int s t a t e ;
11 FAT next ;
12 }
13

14 public class FileSystem {
15 DirectoryEntry dirHeader ;
16 FAT fatHeader ;
17 // . . .
18 public boolean repOk ( ) {
19

20 HashSet<FAT> s e t = new HashSet<FAT>() ;
21 boolean r e s u l t = true ;
22 DirEntry d i r = dirHeader ;
23

24 while ( d i r != null ) {
25 int count = 0 ;
26 FAT node = d i r . f i r s t ;
27

28 while ( node != null ) {
29

30 // Chain d i s j o i n t n e s s error
31 i f ( s e t . add ( node ) == fa l se )
32 r e s u l t = fa l se ;
33

34 // Free b l o c k cons i s t ency error
35 i f ( node . next != null && node . s t a t e != 1)
36 r e s u l t = fa l se ;
37

38 count++;
39 node = node . next ;
40 }

Figure 5.8: Example of simple file system data structure, abbreviated, consisting of
a file allocation table (FAT) class and a DirectoryEntry class. Method repOk is a
correctness condition that checks chain disjointness and free block consistency.
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41

42 // S i z e mismatch
43 i f ( count != d i r . s i z e )
44 r e s u l t = fa l se ;
45

46 d i r = d i r . forward ;
47 }
48

49 return r e s u l t ;
50 }
51 }

Figure 5.9: Continued repOk method from Figure 5.8 that checks for directory size
mismatch.

Figure 5.8 shows the repOk method for the modified file system example. It

checks the two constraints as follows: for each of the directory entries, the repOk

starts by following the first field to get the first block in the FAT. Then it traverses

the chain through the next field until it hits the end, the null. For each of the visited

block in the chain it checks two things. First, it utilizes a set to check the block’s

uniqueness. If an attempt to add the block to the set fails, it means that the block

has been visited before indicating a violation to the chain disjointness constraint.

Second, it checks if the visited block’s state is -2 (i.e., the free block). In such a chase

it detects a free block consistency error.

fl-one 3 0

name size first

fl-two 1 3

name size first

1 3 -2 -1 -2 -2

Directory Entries FAT Table File Blocks

1

Figure 5.10: File system example with chain disjointness error. Files should not share
blocks, but both the files share the fourth block.
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Figure 5.11: File system example with chain disjointness error. Both the files share
the fourth block.

In our experiment, we manually induced errors to break the consistent state.

For example, the equivalent Figures 5.10 and 5.11 shows an induced error that breaks

the chain disjointness consistency. Files should not share blocks but both the files

share the fourth block. In other examples we deliberately made the state of a used

block to be free breaking the second consistency constraint.

In all our examples, Juzi suffered time-outs and failed to repair the corruptions.

Whereas our approach took less than 5 attempts to repair. We further investigated

Juzi’s performance and found the reason behind it’s time-outs. Because of its style

dependency on the repOk method, Juzi was trying to fix the next field (which was

not corrupted) in futile attempts. An updated repOk finally helped Juzi to repair the

corruptions but still took more than 50 attempts.
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Chapter 6

Evaluation of Tools and Compilers with Large Generated Random Benchmark

Applications

This section and the following sections describe the experience with the Random

Utility Generator for pRogram Analysis and Testing (RUGRAT) tool [83]. That

is, we have conducted several experiments to explore the usefulness of RUGRAT

for the evaluation and benchmarking of Java pRogram Analysis and Testing (RAT)

algorithms and tools.

The RUGRAT project1 is a joint work by several people from different institu-

tions. The contributors are: Christoph Csallner and myself, Ishtiaque Hussain from

the University of Texas at Arlington, Mark Grechanik and his students B.M. Mainul

Hossain, Balamurugan Prabakaran, Nischit Rangapan and Arthi Vijayakumar at the

University of Illinois at Chicago, Chen Fu (now at Microsoft) and Qing Xie from the

Accenture Technology Labs, Sangmin Park from the Georgia Institute of Technology

and Kunal Taneja (now at Accenture) from the North Carolina State University.

I collaborated with Mark’s students in developing the algorithm and imple-

menting the RUGRAT framework. However, since my major contribution was in the

evaluation of the RUGRAT tool, this section focuses on the evaluation of the tool

with Java source-to-bytecode compilers and RAT tools.

1RUGRAT: https://sites.google.com/site/rugratproject/
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6.1 Background, Goal, Approach and Benefits of RUGRAT

In this section, at first we briefly describe how RUGRAT relates to the data

structure repair. Then we discuss the background on the random program generation

approach, how RUGRAT implements and leverages the approach by building on top

of it with added goals. Finally we discuss the benefits of using RUGRAT in creating

benchmark applications over hand-written ones.

6.1.1 Data Structure Repair and RUGRAT

Data structure repair approaches require subject data structures to work on. To

evaluate performance and effectiveness of a repair approach and compare against other

existing techniques, a developer needs to run her repair approach, along with other

existing techniques, on different target data structures with varying complexities.

Creating large number of different data structures with varying complexities and

defining their correctness conditions can be quite challenging.

An automatic technique that can generate data structures and define their cor-

rectness conditions would be beneficial for a developer of a data structure repair

approach. Ideally, random program generators should be able to automatically cre-

ate applications that have desired data structure components. Based on the data

structures used in the generated programs, these random program generators could

also automatically define their correctness conditions. Although current implemen-

tation of RUGRAT does not have this feature, it can be considered as a first step in

this research direction.

6.1.2 Stochastic Grammar Model

Consider that every program is an instance of the grammar of the language in

which this program is written. Typically, grammars are used in compiler construction
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to write parsers that check the syntactic validity of a program and transform its

source code into a parse tree [7]. An opposite use of the grammar is to generate

branches of a parse tree for different production rules, where each rule is assigned the

probability with which it is instantiated in a program. These grammars and parse

trees are called stochastic, and they are widely used in natural language processing,

speech recognition, information retrieval [35], and also in generating SQL statements

for testing database engines [149]. RUGRAT uses a stochastic grammar model to

generate large random object-oriented programs.

Random programs are constructed based on the stochastic grammar model, and

the construction process can be described as follows. Starting with the top production

rules of the grammar, each nonterminal is recursively replaced with its corresponding

production rule. When more than one production rule is available to replace a non-

terminal, a rule is randomly chosen based on the rules’ probabilities. Terminals are

replaced with randomly generated identifiers and values that preserve syntax rules of

the given language. Termination conditions for this process of generating programs

include the limit on the size of the program or selected complexity metrics.

In addition to the rules that are found in a typical context-free grammar of a

programming language, RUGRAT takes into account additional rules and constraints

that are imposed by the programming language specification. For example, a variable

has to be defined before it can be used and a non-abstract class in an object-oriented

program has to implement all abstract methods it inherits from its super-types. With

such an enhanced stochastic grammar model it is ensured that the generated program

is syntactically correct and compiles. The construction process can be fine-tuned

by varying the ranges of different configuration parameter values and limiting the

grammar to a subset of the production rules that are important for evaluating specific
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RAT tools (e.g., recursion, use of arrays, or use of different data types can be turned

off if a RAT approach does not address these).

6.1.3 RUGRAT’s Configuration Options

To satisfy different requirements for generated programs, RUGRAT is highly

configurable. Some of the important parameters include number of classes, number of

methods per class, number of interfaces, number of methods per interface, maximum

depth of the inheritance hierarchy, number of class fields, number of parameters per

method, and recursion depth (if recursion is enabled). Most of the parameters have

a lower and an upper limit. Moreover, many parameters are inter-dependent (e.g.,

there should be enough classes to populate an inheritance tree of a desired depth).

Once these limits are defined, RUGRAT randomly chooses values from each range.

For each of these configuration parameters, we define a default range that seems

reasonable based on empirical data [72, 178, 36]. For example, to determine the

number of classes, we follow Zhang et al.’s observation that LOC is roughly 114 times

the number of classes in a program [178] and set classes = LOC/114. To define

the number of interfaces, we follow the observation of Collberg et al. [36], that each

package in a program has roughly 12 classes and there is one interface per package.

Hence we set interfaces = LOC/(114∗12) = LOC/1368. Grechanik et al. [72] found

that the average value for the ‘maximum number of methods per interface’ is 3.4, and

thus we took ten times the average value and set the upper limit of the range to 34.

Collberg et al. [36] found that 96% of the programs have less than 20 class fields, and

99% of the programs have less than 60 methods per class. We conformed to these

observations and used these values as the upper bound for respective parameters.

We used similar heuristics for other parameters, such as number of parameters per
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method and maximum inheritance depth. The RUGRAT tool website2 has a complete

list of the configuration parameters and their default values.

6.1.4 RUGRAT’s Goal and Approach

RUGRAT addresses one main goal—to allow experimenters to automatically

generate benchmark applications that have desired properties for evaluating RAT

approaches and tools. RUGRAT is not a replacement of real-world applications for

evaluating RAT approaches and tools. It is a tool that enables experimenters to

quickly generate a large number of application benchmarks that have desired prop-

erties. The goal of RUGRAT is thus to supplement evaluations of RAT tools using

real-world application benchmarks. In a way, RUGRAT can be viewed as a rapid

prototyping tool for producing a set of benchmark applications for initial evaluation

of RAT approaches and tools.

To achieve the goal, RUGRAT has to address several issues. First, generated

programs must have a wide variety of language constructs that are important for

evaluating RAT approaches and tools. Sample constructs include recursion, dynamic

dispatch, and array manipulations using expressions that compute array indices that

test the boundaries of RAT algorithms. Existing program generators often do not

take into consideration such language constructs and do not add them to generated

programs.

In addition, there is a requirement that generated programs should represent

real-world programs using software metrics. This requirement is motivated by the

needs of the potential RUGRAT users. That is, we expect that RAT tool developers

and RAT tool users care most about the performance of RAT tools on real-world

2RUGRAT tool website: https://sites.google.com/site/rugratproject/
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programs, since processing real-world programs is likely going to be the main use

case of these RAT tools.

While stress-testing a RAT tool with unusual programs is also important, we

expect RUGRAT users to care most about RAT tool performance on programs that

are more mainstream. In this regard we expect RUGRAT users to be similar to RAT

tool users. RAT tool users have frequently complained about RAT tools generating

input values for the analyzed program that appear exotic and do not represent ex-

pected program behavior as well as about warnings on bugs that cannot occur or can

only occur in very rare situations [119, 136, 180, 161].

As a consequence, RUGRAT allows to tune the default parameters such that

generated programs are as similar as possible to what one would consider a normal

hand-written program. RUGRAT implements this issue by varying the probabilities

that are assigned to different production rules of the language grammar. RUGRAT

users can diverge from the default parameters to produce more exotic kinds of pro-

grams. In our evaluation we explore an example use of RUGRAT with non-standard

parameters.

6.1.5 Benefits of Using RUGRAT

RUGRAT scales to generating programs that at the same time are large, have

complex properties, and are similar to hand-written programs [83]. While RUGRAT-

generated programs are similar to hand-written programs, it provides multiple bene-

fits over benchmarking with hand-written applications.

First, using RUGRAT one can easily generate a large variety of random pro-

grams. Such a large set of programs can complement existing suites of hand-written

benchmark programs, which are often relatively small sets of programs. For exam-

ple, the well-known Siemens suite [51] consists of a few small programs and could
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benefit from a large set of complimentary applications that cover a range of program

configuration points.

Second, RUGRAT-generated programs have a designated entry point or main

function. In contrast, hand-written programs such as libraries typically lack such a

clear entry point, which forces many RAT tool developers to write test harnesses for

RAT tool evaluation [90]. Each RUGRAT-generated program has a dedicated main

method that can be used to start the program directly and does not require a test

harness.

Third, RUGRAT can scale down from realistic applications to toy applications

that only contain a specified set of language features. This down-scaling is useful

during RAT tool development. That is, at an early RAT tool development stage, a

RAT tool may only be able to handle a few programming language features. At this

point a RAT tool developer may still want to test her RAT tool on large applications.

However hand-written applications often use multiple language features and it may be

hard to find hand-written applications that only use a given set of language features,

especially when looking for a variety of larger applications. For example, randomly

sampling current open-source Java programs will likely yield programs that are using

newer language features like generics, etc., which makes it impossible to use it to

compare all versions of the JDK compilers.

Fourth, as a special case of down-scaling, RUGRAT is useful for generating

programs that have no external dependencies. In contrast, most realistic hand-written

applications have external dependencies such as on external libraries. Such external

dependencies often complicate RAT tool operation, even for industrial-strength RAT

tools. For example, in a recent study of why the industrial-strength Pex dynamic

symbolic execution (DSE) tool achieved less than perfect branch coverage, more than

a quarter of the missed branches were due to calls to external libraries such as native
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code [171]. To analyze such applications, DSE tool developers sometimes have to

resort to writing mock versions or models of the external dependencies, which is

tedious and laborious [110]. In contrast, programs generated by RUGRAT do not

have external dependencies, so DSE tool developers can easily compare the scalability

of their tools on benchmark applications.

Fifth, since RUGRAT-generated applications do not have external dependencies

it is very easy to compile, install, execute, and test RUGRAT-generated applications.

In contrast, hand-written programs are often difficult to install and execute. Ad-

ditional systems such as databases, servers, and communication infrastructure may

need to be installed and configured for such programs. Moreover, before a realistic

hand-written application can be tested, external dependencies have to be resolved.

These can be tedious. For example, it took me more than two hours to figure out all

the necessary external libraries, look up, download them and finally resolve the build

path before I could compile the open-source Java project fmj 3 from SourceForge with

different Java compilers.

A survey on evaluating static analysis tools and benchmarks showed that most

user-reported failures in software repositories are false failures, i.e., failures that will

not be fixed as they do not concern the code [165]. Indeed, the false failures are

mostly installation failures, which may be caused by poor documentation and difficult

deployment procedures. RUGRAT users avoid this potential pitfall as RUGRAT-

generated applications do not require any installation or configuration and can be

compiled and executed immediately.

Given the difficulties inherent in using hand-written programs for benchmark-

ing, it is maybe not surprising that existing comparisons of RAT tools have mainly

focused on using small to medium-sized subject programs for benchmarking. That is,

3fmj website: http://sourceforge.net/projects/fmj/
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the empirical comparisons we are aware of are limited to subject sizes of small test

cases [46, 164, 163], less than 150k LOC [136, 161, 165], or less than 500k LOC [10].

With RUGRAT it is easy to generate subject applications that contain several million

lines of code (see Section 6.2.2).

Finally, RUGRAT enables more experiments at lower cost by providing, on de-

mand, many high-quality programs in short time. When evaluating a RAT tool with

hand-written programs, if the RAT developer wants to evaluate the tool with more

programs, she needs to explore code repositories with specific requirements, which

can be time-consuming. However, with RUGRAT she can generate such programs

automatically in a short amount of time (see the RUGRAT resource consumption

evaluation in Section 6.2.2), by specifying such requirements as parameters to RU-

GRAT.

6.2 Overview of Experiments with RUGRAT-generated Applications as RAT Tool

Benchmarks

At a high level, a prospective Java RAT tool user is interested in comparing

and benchmarking RAT tools and may be asking several questions. For example,

how do Java RAT tools behave when running on applications of different sizes? This

question is especially relevant if experiments published to date do not cover the kind

of input application sizes that are relevant for the prospective RAT tool user [136,

161, 46, 165, 45, 164, 163, 10].

Specifically, before acquiring a particular Java RAT tool, a prospective RAT

tool user may be wondering if a given Java RAT tool will break down for large input

applications, while a competitor RAT tool may scale to such applications. Secondary

questions are how for different input application size categories the time and memory

requirements of various RAT tools compare against each other.
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When using a random benchmark program generator such as RUGRAT to

explore such questions, it is important to determine if the RUGRAT-generated appli-

cations resemble real-world applications. Only if generated applications are similar to

real-world applications we can attempt to extrapolate results obtained on benchmark

applications to how RAT tools will behave on actual user applications.4

Before using a new tool such as RUGRAT, a potential user may want to know

how expensive RUGRAT is in terms of computational resources. Part of the appeal

of RUGRAT is that RUGRAT can save the user time, as installing handwritten

programs can be very time intensive. Then a natural question is how much time it

takes RUGRAT to generate programs.

We thus explore the following concrete research questions.

� RQ0. How many computational resources (i.e., execution time, main mem-

ory and disk space) does the RUGRAT random benchmark program generator

require?

� RQ1. Can RUGRAT-generated applications be used for focused benchmarking

of existing Java RAT tools—i.e., compilers and static and dynamic program

analysis tools?

– RQ1a. Can RUGRAT-generated applications be used for benchmarking

the execution time and memory requirements of existing Java source to

bytecode compilers?

– RQ1b. Can RUGRAT-generated applications be used for benchmarking

the execution time and amount of output of existing static and dynamic

Java program analysis tools?

4Another interesting question is whether RUGRAT-generated applications provides more benefits

than real-world programs. We list such benefits in Section 6.1.5, and our research questions deal

with comparisons and the effectiveness of RUGRAT on RAT tools.
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� RQ2. Can RUGRAT-generated applications find defects in program analysis

tools?

Recall that the goal of RUGRAT is not to supplant all other ways of RAT

tool benchmarking (Section 6.1.4). Instead, RUGRAT aims at enabling a focused

benchmarking of specific RAT tool features. A complete benchmarking of existing

Java RAT tools is therefore outside the scope of this work. A complete benchmarking

would also address important issues such as RAT tool installation and maintenance

requirements, the precision and recall of the RAT tool outputs, and ease of use.

We leave such issues for future work. Instead, in the following we focus on selected

features of RAT tools that are easy to measure, such as the quantity of RAT tool

outputs as well as RAT tool memory consumption and execution time.

6.2.1 RUGRAT Generated Applications

For each experiment we used RUGRAT to generate applications of various sizes,

ranging from some 10kLOC to 5MLOC. Specifically, we picked 7 target application

sizes given in non-comment, non-blank lines of code (LOC), i.e., 10k, 50k, 100k, 500k,

1M, 2.5M, and 5M and generated several applications for each target LOC size. (Due

to implementation limitations the actual LOC of an AUT may deviate slightly from

the target value.)

In the context of benchmarking RAT tools, we refer to RUGRAT-generated

applications also as applications under test or just AUTs. For these experiments we

generated only single-threaded applications. Extending RUGRAT to generate multi-

threaded applications is a subject of future work.
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Table 6.1: RUGRAT execution time, main memory, and disk space consumption when
generating AUTs of various sizes on a standard desktop computer. Later experiments
in Section 6.4 were performed on a more powerful machine. AUT sizes (10k, 50k, etc.)
are given in LOC. All aborts are due to RUGRAT running out of main memory.

Resource 10k 50k 100k 500k 1M 2.5M 5M

Time [s]
Avg. 7 26 73 440 794 5,934 3,259
Best 2 6 19 113 113 383 227

Worst 12 49 230 798 1,867 20,696 6,256

Mem [MB]
Avg. 20 48 105 415 575 847 1,327
Best 16 23 42 174 286 361 866

Worst 25 81 341 826 997 1,060 1,498

Disk [MB]
Avg. 1 5 12 55 72 173 262
Best <.4 2 4 23 40 110 137

Worst 2 12 47 109 130 315 315
Abort 0 0 0 0 0 1 5

6.2.2 RQ0: RUGRAT Resource Consumption

In this section we try to answer the research question, R0, namely, how many

computational resources (i.e., execution time, main memory and disk space) does the

RUGRAT random benchmark program generator require?

To capture RUGRAT’s behavior on a standard desktop computer, we performed

most experiments on a 32-bit Windows 7 OS running on a 2.5GHz AMD dual core

processor with 4GB RAM. This machine is a few years old, but it is well suited to

explore the scalability limitations of the current RUGRAT implementation. With

these limitations established we switched to a more powerful machine for subsequent

experiments that benchmark existing RAT tools on RUGRAT-generated applications.

The more powerful machine has more main memory with 32GB RAM and is running

a 64-bit Windows XP OS on a 2.33GHz Xeon processor (see Section 6.4).

Table 6.1 summarizes the resource consumption of our RUGRAT prototype.

For each column or LOC category (10k, 50k, etc.), we used RUGRAT and its default
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parameter ranges to generate 10 random programs. For 2.5M LOC we generated

9 programs, as one attempt aborted with an out of memory exception. Similarly,

for 5M LOC five attempts were aborted with out of memory exceptions. This data

indicates that the current RUGRAT implementation scales to about 2.5MLOC on a

standard desktop computer (a 2.5GHz machine with 4GB RAM).

For each column or group of 10 RUGRAT executions, the table shows the

average, best, and worst consumption of time, main memory5, and disk space of that

group. Lower numbers are better as they indicate lower resource consumption. Disk

space consumption is the space that is required to store a generated application.

In our experiments the size of the generated applications grew about linearly

with the target LOC size. The data further suggests that the average RUGRAT

execution time currently does no scale linearly with respect to LOC. In general, the

RUGRAT tool implementation can be used on a standard desktop computer but it

is currently not optimized for either speed or (main) memory consumption and we

expect that these aspects can be improved with more engineering work.

6.3 Experience with RUGRAT-Generated Applications as Benchmarks for Java Source

to Bytecode Compilers

In this section we describe our experiments with the RUGRAT-generated AUTs

and several versions of a popular Java source to bytecode compiler (RQ1a).

6.3.1 Experimental Setup

We obtained 8 versions of the Java development kit (JDK) from the Oracle Java

Archive6, i.e., versions 1.2.1, 1.2.2, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.6.0, and 1.7.0. Each

5We used the Windows 7 default performance monitor PerfMon to log memory usage.
6http://www.oracle.com/technetwork/java/archive-139210.html
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downloaded development kit contains a default Java source to bytecode compiler.

These 8 compilers are listed in Table 6.2 by their JDK version jY.Z, i.e., as j2.1, j2.2,

etc., omitting the common top-level version 1 identifier.

Since some of the older Java development kits were only available in 32-bit ver-

sions, we conducted all experiments on our standard desktop computer, a 32-bit

Windows 7 OS running on a 2.5GHz AMD dual core processor with 4GB RAM. As

on this machine our current RUGRAT random benchmark program generation pro-

totype does not scale to generating 5M LOC programs (Section 6.2.2) we used a more

powerful machine to run RUGRAT and supply us with a total of 70 subject programs,

10 in each size category.

For the experiments we configured each compiler to use the maximum amount

of memory (heap space) that was possible on our machine for that particular compiler.

As a side note, the compiler options for setting this maximum amount of memory

changed between compiler versions and the corresponding maximum amount that

could be set on the machine also fluctuated between compiler versions, i.e., between

1.15 GB (for j3.0) and 2 GB (for j2.1 and j2.2). The remaining compilers accepted a

maximum of either 1.6 GB (j4.0) or 1.5 GB.

6.3.2 RQ1a: Comparing Java Source to Bytecode Compilers on RUGRAT-Generated

Benchmark Applications

Table 6.2 shows the absolute execution time and main memory consumption of

the subject compilers when compiling our 70 RUGRAT-generated subject programs.

For both execution time and memory consumption the table shows average (	),

maximum (>), and minimum (⊥) measurements. Lower values are better, as they

indicate lower resource consumption.
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Figure 6.1 plots these values to show the trends in these data. Each plot in Fig-

ure 6.1 shows the compiler execution time and memory consumption for all compilers

on the 10 subject programs of an AUT size category. The plot uses box and whiskers

to show minimum, lower quartile, median, upper quartile, and maximum values.

Table 6.2: Benchmarking the standard JDK Java source to bytecode compilers. The table
shows average (	), maximum (>), and minimum (⊥) absolute execution time (t) and main
memory consumption (m) of the subject compilers. Lower values are better, as they indicate
lower resource consumption. All compilers compiled all 10k, 50k, and 100k AUTs. For the
other AUT size categories dnc (did not compile) is the number of subjects a compiler could
not compile.

LOC
j2.1 j2.2 j3.0 j3.1 j4.0 j5.0 j6.0 j7.0

[s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB]

10k

t
> 6 6 3 3 4 6 5 7
	 4 4 2 3 3 4 4 4
⊥ 2 3 2 2 2 3 3 3

m
> 33 32 25 27 28 35 54 59
	 22 22 17 19 21 25 38 43
⊥ 18 17 7 15 16 20 29 33

50k

t
> 64 64 14 14 18 21 19 26
	 18 19 6 7 8 10 10 12
⊥ 7 8 4 4 5 6 5 8

m
> 191 187 143 144 156 175 292 318
	 76 76 61 62 68 72 114 121
⊥ 45 44 38 38 40 43 68 69

100k

t
> 110 112 31 33 37 36 41 45
	 46 47 15 16 18 20 21 25
⊥ 12 12 5 6 7 9 9 11

m
> 385 386 323 324 365 423 648 667
	 166 166 131 131 147 152 247 258
⊥ 73 73 61 60 69 67 107 111

500k

t
> 125 350 166 197 194 205 247 365
	 108 179 81 98 106 112 110 138
⊥ 76 82 31 31 35 35 34 43

m
> 398 519 969 1,273 1,444 1,432 1,483 1,510
	 333 406 510 593 665 676 948 987
⊥ 249 249 201 201 226 216 353 376

dnc 7 5 1 0 0 0 0 0
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Table 6.3: Continued from Table 6.2

LOC
j2.1 j2.2 j3.0 j3.1 j4.0 j5.0 j6.0 j7.0

[s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB]

1M

t
> 237 236 204 481 466 477 367 591
	 218 220 129 177 183 194 159 208
⊥ 188 195 80 81 90 104 62 102

m
> 519 519 953 1,430 1,591 1,450 1,493 1,504
	 519 518 668 761 856 813 1,182 1,212
⊥ 518 518 437 445 507 482 737 776

dnc 7 7 2 1 0 0 0 0

2.5M

t
> n/a n/a n/a 615 729 802 583 1,021
	 n/a n/a 587 461 566 567 302 562
⊥ n/a n/a n/a 288 302 302 125 181

m
> n/a n/a n/a 1,532 1,631 1,522 1,524 1,505
	 n/a n/a 930 1,355 1,484 1,374 1,487 1,486
⊥ n/a n/a n/a 961 1,077 1,027 1,364 1,392

dnc 10 10 9 5 5 4 4 4

5M

t
> n/a n/a n/a n/a n/a n/a n/a n/a
	 n/a n/a n/a 919 1,064 1,031 214 462
⊥ n/a n/a n/a n/a n/a n/a n/a n/a

m
> n/a n/a n/a n/a n/a n/a n/a n/a
	 n/a n/a n/a 1,492 1,569 1,469 1,496 1,405
⊥ n/a n/a n/a n/a n/a n/a n/a n/a

dnc 10 10 10 9 9 9 9 9

From the results we can make several observations. First, maybe expected, the

newer the compiler the more likely it can compile more of the generated applications,

including the very large ones. Each case in which a compiler failed to compile a

subject is noted in Table 6.2 as dnc (“did not compile”). In our experiments each dnc

case was caused by the compiler running out of available (heap) memory. In other

words, the older the compiler, the more likely it ran out of memory when attempting

to compile some of the largest applications in our sample.

Specifically, the newest compilers, j5.0, j6.0, and j7.0, could compile the most

applications and, on the sample size of 70 generated applications, failed to compile

only 13 applications. The next older compiler, j4.0, failed to compile 14 applications;
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(b) 50k LOC.
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(c) 100k LOC.
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(d) 500k LOC.
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Figure 6.1: Comparing time and memory consumption of the subject compilers for different
program size AUTs. The x-axis represents the compilers; the left y-axis represents com-
piler runtime in seconds and the right y-axis represents compiler main memory usage in
megabytes. We did not plot a compiler in an AUT size category if the compiler could not
compile all AUTs in that category. No compiler could compile all 2.5M or 5M LOC AUTs.
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the next older compiler, j3.1, failed to compile 15; j3.0 failed to compile 22; j2.2 failed

to compile 32; and j2.1 failed to compile 34. Table 6.2 shows that the applications

that could not be compiled are mostly in the 2.5M and 5M LOC categories.

While for this experiment we ran RUGRAT with its default parameters, the re-

sults of the experiment, somewhat surprisingly, resemble the results of stress-testing.

That is, although all generated programs use common combinations of language fea-

tures, the tested compilers could not compile all programs. This effect increased with

the size of the generated programs and was most pronounced for the largest generated

programs, i.e., in the 5M LOC category.

Second, on the subjects up to and including 2.5M LOC that each compiler

could compile, the newer compilers had the highest average memory consumption.

Specifically, j7.0, had the highest average memory consumption, followed closely by

the next older compiler, j6.0. On individual subjects the older compilers j4.0 and j3.1

had higher memory consumption than their newer peers, but on average these older

compilers consumed less memory.

Third, j2.2 was the slowest compiler with the highest average compile time for

most AUT size categories. The exceptions are the smallest and possibly the largest

AUTs, since for the largest AUTs (2.5M) this compiler did not compile a single

subject. A close second slowest was the predecessor compiler j2.1, with the same

caveats for the smallest and largest AUT sizes.

Finally and maybe somewhat surprising, for the small and medium sized AUTs

of up to 100k LOC, the fastest compiler was j3.0. For these AUT size categories, the

average compile speed of j3.0 was between 50 and 60% of the newer j7.0 baseline com-

piler. This trend continues to larger AUTs of up to 1M LOC if we only consider the

applications the respective compilers could compile. For these larger AUTs the aver-

age compile time of j3.0 fluctuated between 70 and 80% of the j7.0 baseline compiler.
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However, for the largest AUTs of 2.5 MLOC, j3.0 failed to compile 9 of 10 AUTs and

for the one AUT it did compile j3.0 needs more than three times the compile time

than the j7.0 baseline compiler.

6.4 Experience with RUGRAT-Generated Applications as Benchmarks for Static

and Dynamic Java Program Analysis Tools

We conducted two experiments to explore the research questions related to

RAT tools (RQ2b and RQ3). In the first experiment, we used RUGRAT to generate

applications under test (AUTs) using RUGRAT’s default parameter ranges, which

model the properties of typical third-party applications.

In the second experiment we widened the parameter ranges to also allow for

values that are only found rarely in third-party applications. While rare, these values

are still possible according to the empirical data described in Section 6.1.3. This

second experiment simulates a stress-testing of RAT tools.

6.4.1 Experimental Setup

For the first experiment we used RUGRAT to generate 10 random AUTs per

LOC value, yielding 70 AUTs. For the second experiment we just generated a single

AUT per LOC value, yielding 7 AUTs. We ran all experiments on a HotSpot 1.6.0 24

JVM on Windows XP on a 2.33GHz 64-bit Xeon processor with 32GB RAM.

On each of the 77 generated AUTs, we applied five Java program analysis

tools: four static analysis tools, Checkstyle, FindBugs, JLint, and PMD and one

dynamic analysis tool, Randoop7. These tools apply different techniques in analyzing

7Checkstyle version 5.4: http://checkstyle.sourceforge.net/

FindBugs version 1.3.9: http://findbugs.sourceforge.net/

JLint version 2.3: http://artho.com/jlint
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programs and produce output in the form of various kinds of warnings. Such program

analysis tools are typically highly configurable. To approximate the behavior of the

tools under different configurations, for each tool we set a minimum and a maximum

configuration. In the minimum configuration, we try to evoke a minimum amount of

tool features; in the maximum configuration, we try to invoke all tool features.

In the following we briefly summarize the key features of the five Java RAT tools

and describe how we configured them for our minimum and maximum configurations.

6.4.1.1 Checkstyle

Checkstyle [63] works on Java source code, is easy to expand, and supports

custom bug patterns called ‘checks’. Checkstyle provides a standard ‘check’ that has

64 modules to check the Sun coding conventions which we used for the minimum-

effort level experiments. For the maximum effort level experiments, we enabled 128

checking modules (which include the 64 in the standard check). Example modules

are FileLength, MethodName, ConstantName, Indentation, and ParameterNumber.

6.4.1.2 FindBugs

FindBugs [80] applies syntactic bug patterns and dataflow-analysis on AUT

bytecode to find bugs. It supports custom patterns and is easily expandable. For

the configurations, we used two flags (‘effort’ and ‘reportLevel’). For the maximum

configuration, we set ‘effort’ to maximum and ‘reportLevel’ to ‘low’, which yields

all bugs found during analysis. For the minimum configuration, we set ‘effort’ to

minimum and ‘reportLevel’ to ‘high’, to restrict reporting to high priority bugs.

PMD version 4.2.5: http://pmd.sourceforge.net

Randoop version 1.3.2: http://code.google.com/p/randoop
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6.4.1.3 JLint

Like FindBugs, JLint [9] applies syntactic bug patterns and dataflow analysis

on AUT bytecode, but it is not easy to expand [136]. JLint has patterns for detecting

thread synchronization bugs, which we disabled in the minimum configuration. For

the maximum configuration, we enable all patterns.

6.4.1.4 PMD

PMD [37] applies syntactic bug patterns on AUT source code. It supports

custom bug patterns (called ruleset) and is easily expandable. For the minimum

configuration, we enabled only ruleset ‘basic’. For the maximum configuration, we

also enabled rulesets braces, clone, codesize, controversial, coupling, design, imports,

naming, strictexception, strings, typersolution, and unusedcode. Descriptions of these

ruleset are in the PMD manual.

6.4.1.5 Randoop

Randoop [123] applies feedback-directed random test case generation [124] to

AUT bytecode to deduce program behavior and create assertions to detect bugs.

Randoop does not have any flags or configuration options we could set for our con-

figurations. By default, it runs either for 100 seconds or until 100,000,000 tests are

generated. We limit the timing to 100 seconds for the minimum configuration and

2,400 seconds (40 minutes) for the maximum configuration.

6.4.2 RQ1b: Comparing RAT Tools on RUGRAT-Generated Benchmark AUTs

We performed 770 experiments by invoking 5 RAT tools in 2 configurations each

on 77 generated AUTs. The two configurations are the minimum and the maximum
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Table 6.4: Benchmarking popular static and dynamic Java RAT tools. Ef = effort
level defined in Section 6.4.1; W = number of warnings (outputs) a tool generated,
T = tool execution time.

AUT Ef Tool Wmin Wmax Wmean Tmin Tmax Tmean

10k

Min

Checkstyle 37,506 144,799 80,008 2 6 3
FindBugs 111 1,218 499 16 64 25
JLint 76 651 269 1 4 2
PMD 192 1,636 776 1 9 4
Randoop 0 28 8 101 107 103

Max

Checkstyle 58,354 216,221 120,970 3 9 5
FindBugs 778 7,889 3,217 17 35 25
JLint 366 1,101 694 1 5 2
PMD 3,485 17,901 9,550 4 11 7
Randoop 0 795 152 2,401 2,404 2,403

50k

Min

Checkstyle 276,984 1,351,638 513,644 10 47 19
FindBugs 1,080 7,102 2,866 45 146 68
JLint 211 11,241 2,589 1 5 2
PMD 3,149 7,631 4,277 5 60 19
Randoop 0 4 1 102 105 103

Max

Checkstyle 417,065 1,946,076 749,994 14 71 28
FindBugs 4,681 51,335 16,097 54 189 86
JLint 2,468 14,047 4,606 2 11 6
PMD 23,243 156,035 53,334 9 61 21
Randoop 0 75 18 2,402 2,410 2,406

100k

Min

Checkstyle 507,352 3,317,995 1,229,880 21 117 43
FindBugs 1,771 10,026 5,823 77 243 136
JLint 310 13,737 5,023 1 11 4
PMD 5,767 14,530 9,749 11 112 43
Randoop 0 25 4 102 109 105

Max

Checkstyle 757,294 4,637,270 1,809,312 30 158 63
FindBugs 9,067 130,142 48,889 98 326 173
JLint 881 17,486 8,936 3 19 13
PMD 44,214 403,141 144,826 16 112 46
Randoop 0 204 33 2,404 2,411 2,406

500k

Min

Checkstyle 1,798,495 13,252,753 5,998,586 62 486 209
FindBugs 5,172 70,566 30,251 255 1,101 640
JLint 2,522 123,133 30,967 4 59 19
PMD 19,105 85,612 46,662 32 393 188
Randoop 0 0 0 104 134 113

Max

Checkstyle 2,797,354 19,093,653 8,740,053 97 779 325
FindBugs 35,965 622,225 223,451 311 1,535 794
JLint 13,467 145,244 50,548 12 131 69
PMD 171,052 1,713,544 685,026 41 399 194
Randoop 0 17 2 2,406 2,438 2,415

97



 1

 10

 100

 1000

 10000  100000  1e+006  1e+007
 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [

s
e

c
]

#
 W

a
rn

in
g

s

LOC

(a) Checkstyle.
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(b) Jlint.
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(c) PMD.
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(d) Randoop.

Max. config.-Time
Min. config.-Time
Max. config.-Warnings
Min. config.-Warnings

Figure 6.2: (Continued in Figure 6.3) Comparing static and dynamic Java program
analysis tools on RUGRAT-generated programs. Each data point is the average of
10 AUTs from RUGRAT’s default parameter range (experiment 1), except for Fig-
ure 6.3(b), which shows a single data point each from a wider range of configuration
parameters (experiment 2); x-axis = LOC (log scale); left y-axis = RAT tool run-
time; right y-axis = RAT tool warnings (log scale); MaxA/MinA = average A in
maximum/minimum RAT tool configuration where A is either RAT tool time or
number of RAT tool warnings. For static analysis tools both the average execution
time and the average number of warnings mostly increased with program size (6.2(a)–
6.3(a)). FindBugs was an exception when using a wider parameter range (6.3(b)).
The dynamic analysis tool Randoop also behaved differently (6.2(d)).
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(a) FindBugs.
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(b) FindBugs skipping some classes.
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Figure 6.3: Continued from Figure 6.2

RAT tool effort configurations described in Section 6.4.1. For each experiment we

captured each tool’s execution time and the number of warnings generated by the

tool.

Tables 6.4 and 6.5 summarize the experimental results for the bulk of the ex-

periments, i.e., the 700 experiments on the default parameter ranges. For each RAT

tool, program size category, and both the minimum and the maximum RAT tool ef-

fort configurations, these tables give the minimum, maximum, and average RAT tool

runtime and number of warnings produced by a RAT tool.

For space reasons we omit the results of the remaining 70 experiments and

instead plot highlights of both sets of experiments in Figure 6.2 and Figure 6.3.

Figure 6.2 shows the average execution time and average number of warnings for

each program size category for both the minimum and the maximum RAT tool effort

configuration of the experiments on the default parameter ranges. Figure 6.3 shows

these measurements for the relaxed parameter range for the FindBugs experiments.
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From the results we can make several observations. First, as one would expect,

for static analysis tools both the average execution time and the average number of

warnings increased with the program size (LOC). This was true for both the minimum

and the maximum effort category. The one exception to this observation is the data

for JLint in the minimum effort configuration. There the average number of warnings

decreases from 1M LOC to 2.5M LOC, while the average number of warnings for 5M

LOC is again higher than for both 1 and 2.5M LOC.

Second, Checkstyle produced by far the most warnings among all the RAT tools

(Figure 6.2(a)). This is true for both effort categories and across all AUT sizes. The

difference to the second most producing RAT tool was one or two orders of magnitude,

across both effort levels and all AUT sizes. The second highest average number of

warnings was produced by the PMD tool, consistently in both effort categories and

all AUT sizes (Figure 6.2(c)).

Third, the dynamic program analysis tool Randoop consistently produced the

lowest numbers of warnings across both effort categories and all AUT sizes (Fig-

ure 6.2(d)). Moreover, Randoop differed from the other RAT tools in that it produced

fewer warnings with increasing AUT LOC sizes. Since this result is counter-intuitive

we examine it more closely in Section 6.4.3.

Fourth, most tools had vastly different average runtimes between their minimum

and maximum configuration. PMD was an exception and had very similar minimum

and maximum configuration runtimes (Figure 6.2(c)).

Finally, JLint had the lowest execution time among all RAT tools in both effort

categories and all AUT sizes (Figure 6.2(b)). The only exception was the largest AUT

size of 5M LOC for which Randoop had a lower average execution time. However this

caveat may also be related to the counter-intuitive behavior of Randoop discussed in

Section 6.4.3.
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6.4.3 RQ2: RUGRAT Found RAT Bugs/Issues

As a by-product of benchmarking, the RUGRAT-generated programs let us in-

dependently rediscover several issues in RAT tools, i.e., in FindBugs and in Randoop.

While not dramatic, these results demonstrate the potential usefulness of RUGRAT

for testing and debugging.

6.4.3.1 FindBugs

FindBugs may skip classes and miss bugs. I.e., in the second experiment, which

used wider parameter ranges simulating stress-testing, we encountered the situation

depicted in Figure 6.3(b), where FindBugs did not show its usual execution time and

warning behavior. Instead, it terminated quickly and reported only few warnings.

Further investigation revealed that FindBugs has two limitations, which cause it to

skip some code. Specifically, if a class has more than 1,000 methods or is larger

than 1MB, FindBugs declares it to be too large and skips it. In the generated AUT,

the majorities of classfiles were larger than 1MB. FindBugs thus skipped almost

the entire AUT and terminated quickly, reporting few warnings. FindBugs has no

configuration option to prevent such skipping. We confirmed with the tool authors

that the recommend solution is to instead modify the FindBugs source code.

One may argue that such limitations only affect analysis of generated programs.

However, we have found real (manually written as well as generated but then manually

edited) applications on SourceForge that have such large classes, including Apache

Derby, DoctorJ, Drools, and OpenJDK. Reducing the number of methods for some of

the applications caused FindBugs to report warnings where it was previously skipping

the analysis.
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The FindBugs results are also an example of the influence of the RUGRAT

parameters. While FindBugs skipped classes and thus produced few warnings in the

second experiment with non-standard RUGRAT parameters (Figure 6.3(b)), Find-

Bugs did not exhibit this erratic behavior in the first experiment, which uses RUGRAT

with its default parameter settings (Figure 6.3(a)).

6.4.3.2 Randoop

While the other analysis tools generated more warnings for larger programs,

Randoop, surprisingly, did the opposite; i.e., the larger the programs the fewer warn-

ings Randoop generated (Figure 6.2(d)). We verified this behavior in a separate

experiment, in which we increased the time allotted to Randoop’s execution from

40 minutes to up to 8 hours, which would mirror an overnight run as part of an auto-

mated build and integration system. Doing so did not change the average number of

warnings produced by Randoop, and therefore yields the same plot as Figure 6.2(d).

Increasing the runtime to up to 8 hours also led us to independently discover

another issue with Randoop. This issue has been reported previously as Issue 14 in

Randoop’s issue tracking system1. Specifically, in the test generation phase, if no test

is generated after 10 seconds of the last generated test, Randoop terminates without

writing any tests, not even the last generated test.

A third issue we discovered is that for larger programs, Randoop does not

terminate after 100 seconds as it was supposed to in the default setting (our minimum

configuration).

1http://code.google.com/p/randoop/issues/detail?id=14
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Table 6.5: Continued from Table 6.4.

AUT Ef Tool Wmin Wmax Wmean Tmin Tmax Tmean

1M

Min

Checkst. 4,652,104 14,226,538 7,553,695 144 445 248
FindBugs 9,920 72,593 38,263 597 1,794 945
JLint 1,880 153,682 60,802 7 171 35
PMD 25,860 165,267 88,084 42 504 226
Randoop 0 2 0 105 132 116

Max

Checkst. 6,663,438 20,924,135 11,369,848 249 879 449
FindBugs 41,185 560,864 287,923 733 2,009 1,166
JLint 27,850 191,993 104,567 72 217 121
PMD 305,925 1,738,556 863,091 90 504 241
Randoop 0 17 2 2,406 2,543 2,429

2.5M

Min

Checkst. 8,980,257 43,034,144 20,266,502 394 1,304 695
FindBugs 20,455 299,848 113,640 1,221 5,114 2,540
JLint 2,596 163,099 42,259 14 167 64
PMD 25,754 370,177 226,312 93 1,569 593
Randoop 0 0 0 107 219 140

Max

Checkst. 13,188,717 59,743,379 29,621,014 716 3,237 1,506
FindBugs 71,731 1,417,767 628,937 2,006 5,834 3,173
JLint 52,112 261,345 146,593 147 607 342
PMD 268,086 4,689,904 2,056,934 213 1,560 631
Randoop 0 0 0 2,187 2,497 2,413

5M

Min

Checkst. 13,252,180 84,472,865 42,495,951 997 3,108 1,649
FindBugs 8,686 767,965 319,103 1,795 13,837 7,184
JLint 4,611 732,496 175,002 27 1,029 364
PMD 30,281 913,082 391,262 116 3,921 1,577
Randoop 0 0 0 116 816 286

Max

Checkst. 20,717,406 129,182,401 64,471,844 1,976 12,401 5,061
FindBugs 55,583 4,809,618 1,691,975 4,259 21,606 11,239
JLint 87,128 1,114,570 371,335 238 1,398 642
PMD 785,208 8,079,371 4,095,392 335 3,881 1,618
Randoop 0 13 1 1,774 2,984 2,456
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Chapter 7

Related Work

In this chapter we discuss the related work to the data structure repair and

automatic random program generation approaches. Specifically, the first section cov-

ers the related work on the data structure repair and the second section covers the

related work on the automatic random program generations.

7.1 Related Work on Data Structure Repair

In this section we discuss other existing data structure repair approaches. We

also briefly discuss related repair approaches that do not repair data structures but

try to repair a buggy program. Finally we discuss some related approaches that use

dynamic symbolic execution techniques in detecting program invariants.

Two other resources that contain a good summary of the related works on

data structure repair are Demsky and Bassem’s Ph.D. theses [49, 54]. This section

benefited greatly from these two sources.

7.1.1 Manual Data Structure Repair

Non-generic data structure repair is not new; traditionally, repair routines have

been written manually for the specific data structure at hand [157, 117]. Classic

examples include the IBM MVS/XA operating system [117] and the Lucent 5ESS

telephone switch [73, 77]. In both the cases, developers used manual error detection

and recovery or repair procedures. These resulted in an order of magnitude increase in

system reliability [71]. Other such hand-coded repair tools are fsck [3] and chkdsk [1].
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These tools scan the file system at boot time and repair any inconsistencies. But these

tools use domain-specific repairs that are not generalizable. Generic data structure

repair, pioneered by Demsky and Rinard [48, 50], is a relatively new area of research.

7.1.2 Specification or Model-based Repair

In [48, 50], Demsky and Rinard proposed specification based data structure

repair technique. They use specification languages to define rules to transform con-

crete data structures and their consistency constraints into models (consisting of sets

and relations). They then check for model consistency against the constraints and

when violations are detected they apply repair actions in the model to conform to the

constraints. Later concrete data structure updates are made to reflect the changes

done in the model. The main limitation of this approach is that, developer has to

learn these specification languages other than the programming language to trans-

form the data structure and it’s constraints into the models. Apart from having deep

understanding of the data structure to define model definition rules and constraints

correctly to make the repair effective, a user might also need to define cost factors for

selecting the best repair action among possible repairs.

7.1.3 Assertion-based Repair

Khurshid, Garcia and Suen are the pioneers of assertion-based data structure

repair [93, 66, 153]. Based on these work, Elkarablieh et al. proposed their repair

approach which are closely related to our approach: [56, 57, 58], They consider the

last accessed field in the repOk method as the corrupted field and make this field their

target and tires to mutate it with all possible values iteratively until repOk passes.

After trying all possible values, if no fix is possible, it then backtracks in the list of

accessed fields and continues the process.
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To prune the search space, they applied static analysis in [57] to find the recur-

rent field that is used to traverse the data structure. If the error is in such a field,

they only consider forward or not yet seen object values in the traversal as solutions.

In [58] they introduced checkpoint based repair where they store the data structure

state and do not run the complete repOk after each repair attempt.

7.1.4 Behavioral Specification and Contract-based Repair

Recently Zaeem et al. [176] introduced behavioral specification language (they

used Alloy[85]) on top of Juzi [56] to leverage the constraint solvers to repair a cor-

rupted data structure. They take a method’s pre- and post-condition as well as the

class invariant written in the specification language into consideration and use Kod-

kod [159] - a SAT-based constraint solver to get the solution. Kodkod works in first

order logic with relations, transitive closure and partial models and expects a finite

bound for the search space for each of the types. Zaeem et al. also observed the im-

portance of fields other than the one accessed last in the repOk method in repairing

a data structure [175].

In attempt to repair, they first invoke the SAT solver and try to find a solution

only by mutating the ‘write’ fields. If unsuccessful, they repeat the process but

mutate the read fields. In the worst case, when the corrupted field is the one that

was not touched (written or read) during the repOk execution, they use the SAT

solver produced minimum unsatisfiable constraint core and analyse it to find the

field. Unfortunately, none of the prototype tools of these approaches are currently

available for a performance comparison with our approach.

Samimi et al. developed a tool called PBnJ that also uses behavioral speci-

fication language [139]. PBnJ has its own prototype compiler that augments Java

with the facility of executable specifications [162, 96] supporting class invariants and
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method post-conditions in a form of first order relational logic. Similar to Zaeem et

al.’s work [176], PBn uses the Alloy specification language and uses Kodkod constraint

solver as the back-end of its analyzer.

But the approaches differ in other aspects. For example, PBnJ converts the

specifications automatically into Java methods in such a way that the programmers

can use them as conventional Java code. These methods can be used to dynamically

detect the contract violation. But Zaeem et al.’s approach does not convert the

specifications into Java code. For the expected finite bound on the search space

for Kodkod, PBnJ allows the programmer to specify these bounds resulting in a

pre-bounded search for the constraint solver. On the other hand, Zaeem et al.’s

approach [176] depends on heuristics and iterative based algorithms to specify the

bounds and uses similarity metric to evaluate the effectiveness of the chosen bound.

Moreover, while PBnJ only takes the pre-state of the execution, ignoring the post-

state and the method implementation, and depends completely on the Kodkod SAT

solver, Zaeem et al.’a approach [176] considers both the pre- and post-state of the

execution.

Both the approaches incur the overhead of manually transforming the contracts

into the specification language; correctness of which determines the performance and

the validity of the whole technique.

7.1.5 Abstraction-based Repair

To avoid repeated search for a solution for similar errors, Zaeem etal. recently

proposed a memoization approach of repair in [177]. The main idea of this approach

is to learn from previous errors and capture their corresponding fixes. In the future,

for any data structure corruption, they propose to attempt these fixes first before

invoking any expensive search for the solution. For a successful such repair, they
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prioritize the applied fix, and for an unsuccessful attempt they call the usual repair

algorithm to get the solution but captures the repair to train the system. The core of

the approach is basically abstraction of previous actual fixes and later, concretization

of them into actual mutations for a repair attempt. It still is a iterative process and

suffers if the fixes are too specific for a data structure to generalize. This approach

works well if there is a repeated error of similar kinds in the runtime. For newer errors

it will carry the the overhead of unsuccessful attempts of previous fixes, invoking the

underlying repair module and then capturing and abstracting out the repair.

7.1.6 Other Repair Approaches

Our technique which updates the heap for successful execution of a program,

is related to but differs from other techniques that work to fix a buggy program. For

example, in [167] Weimer et al. applied genetic programming concepts in automatic

repair of a buggy program. It takes as input an unannotated program, a set of

successful test cases and a single failing test case. It then applies genetic programming

to evolve the program by source code modification until it passes all the test cases

including the failing one. Based on this approach, Schulte et al. in [143], took

the repair at the assembly code level and exposed some of the limitations of [167].

Since they mutate the assembly code (for C/C++) and bytecode (for Java) programs

instead of the higher level source code, their approach extends to repairing bugs in

programs written in different programming languages.

Perkins et al. in [128] proposed a repair approach for deployed windows x86

programs where no source code or developer assistance is available. It can fix out-of-

bound memory write and illegal control flow transfer attacks on deployed programs.

Chang et al. [32] proposed a technique that handles compatibility and integration

issues of programs that have third party library or component invocation. Wei et al.
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in [166] presented an advisory tool that suggests corrections for faulty implementa-

tions of programs written in the Eiffel programming language. Lewis et al. in [100]

utilized distributed event-monitoring of a software execution to repair software faults

at runtime.

Long et al. proposed automatic input rectification technique in [104]. Database

researchers also have developed repair algorithms that enforce consistency constraints

at the level of tuples and relations in a database [31, 160]. But these do not repair

the lower-level data structures that implement the abstraction.

7.1.7 Existing Approaches for Invariant Detection

Existing data structure repair algorithms expect the user to provide the integrity

constraints or the repOk method. Writing these repOk methods is hard and require

deep understanding of the underlying data structure. For a complex structure with

complex constrains, it can be error prone to produce the precise predicates. There are

some frameworks to help users synthesize these constraints. These frameworks utilize

static and dynamic techniques to suggest various forms of specifications. For example,

[40, 140] can be used to find loop invariants, [115, 138] helps detect heap abstractions

and [155, 168] for API level specifications. There are several works for dynamically

discovering likely program invariants [61, 62, 42, 41, 127]. Another tool that generates

constraints for complex data structure is Deryaft [108]. But unfortunately the tool

executable is not available for experimentation.

7.2 Related Work on Random Program Generation

In the remainder of this section we focus on related grammar-based test input

generation techniques. Grammar-based test input generation was pioneered by Han-
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ford [74] and Purdom [132] in the 1970s and can be roughly divided into two broad

categories, random and systematic.

In the following, we discuss pieces of related work in more detail that are either

representative or closely related. Additional related work can be found in a survey

article on generating programs for compiler testing [19].

7.2.1 Probabilistic Grammar-Based Program Generation

Several earlier pieces of work have used probabilistic grammar-based random

program generation before [118, 112, 148, 173, 26, 147, 172, 44]. However, earlier

work mostly focused on testing and debugging. These approaches thus tried to sys-

tematically cover corner cases and bugs that are otherwise hard to find. To simplify

debugging, the focus was on triggering these corner cases with minimized, focused

programs or program fragments. From our perspective, the earlier approaches could

be described as generating a collection of maximally diverse micro-benchmarks of rare

program shapes. We aim at end-to-end benchmarking and therefore generate large,

complex benchmark applications that are close to realistic applications but satisfy

specific user-defined constraints.

An early random or probabilistic program generator that is guided by a pro-

gramming language grammar is presented by Murali and Shyamasundar [118]. The

technique targets the PL compiler for a subset of Pascal, the canonical procedural

programming language.

An early expressive language for grammar-based random program generation is

presented by Maurer [112]. That is, the Data-Generation Language or DGL is more

expressive than context-free languages, as it supports various actions. The approach

generates test suites in the C programming language for functional testing of VLSI

circuits.
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Burgess describes a system for testing optimizing Fortran compilers [26]. The

user specifies the Fortran syntax in an attribute grammar and uses the attributes to

express complex correctness rules. The user can also assign probabilities or weights

to individual production rules and thereby control how frequently they are utilized

in program generation. The generated programs are relatively small, with a size of

up to 4kLOC, compared to up to 5MLOC by RUGRAT.

Sirer and Bershad [148] describe probabilistic testing with production gram-

mars. A production grammar is a context-free grammar that can be enhanced with

probabilities and actions. The work also introduces the concrete domain specific lan-

guage (DSL) lava for specifying production grammars. The lava language was used

to generate Java bytecode programs for testing Java virtual machines. The generated

programs ranged up to 60k bytecode instructions. On the other hand, in our experi-

ments we generate large (up to 2.5MLOC) Java source code programs and compare

source code to bytecode compilers.

In recent work, Csmith constructs legal C programs randomly using a subset

of the C language production rules [172]. Specifically, Csmith consults a probability

table, similar to our stochastic selection. Csmith systematically avoids generating

programs that use language features classified as undefined or unspecified by the C

language. To achieve the goal, CSmith employs selective construction and analysis of

the generated programs. Unlike RUGRAT, Csmith does not support object-oriented

language features.

Other than testing C compilers, Cuoq et al. used Csmith for testing static

analyzers [44]. They tested Frama-C, a 300kLOC size framework for analysis and

transformation of C programs and found 50 bugs.

In the domain of object-oriented programs, a random program generator has

been used to test Java just-in-time compilers [173]. This generator takes the number
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of desired classes and branches as input. Then, it generates branches and fills them

randomly with bytecode instructions. In contrast to RUGRAT, this generator does

not allow features such as recursive calls. Moreover, it was evaluated only on small

programs with up to ten classes, ten methods per class, and less than 100 bytecode

instructions per method. We were unable to obtain the tool to compare it with

RUGRAT.

7.2.2 Test Program Generation by Combinatorial Grammar Production Rule Cov-

erage

Combinatorial coverage of grammar production rules is a an alternative to

stochastic production rule coverage. In the following we briefly review representa-

tive and closely related papers.

Purdom has defined a pioneering algorithm for generating small test programs

from a given programming language grammar. That is, Purdom’s algorithm generates

programs that cover each production rule of a given context-free grammar [132].

Celentano et al. describe an early implementation of Purdom’s algorithm [30].

This work uses multi-level grammars to support complex correctness rules that cannot

be expressed in a context-free grammar alone (such as “define before use”). However

it is not clear how this approach scales to complex Java-like languages [78].

Boujarwah et al. implement Purdom’s algorithm for a subset of Java [20].

However the implementation has not been applied to generate entire programs and

no empirical results are available.

Lämmel and Schulte [98] describe the general-purpose syntax-driven test-data

generator Geno. Geno works on grammars written in a hybrid of EBNF and alge-

braic signatures. Geno systematically achieves a user-defined combinatorial coverage

of the grammar’s production rules. Geno supports computations during test data
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generation, yielding expressiveness similar to attribute grammars. However Geno

does not address the complex correctness rules of Java-like programming languages

(such as “define before use”, visibility, and inheritance). Geno is also not available

for experimentation.

Fischer, Lämmel, and Zaytsev use a grammar-guided test case generator to

compare different concrete grammars of the same grammar specification [64]. For

example, the work compares various ANTLR grammars of the Java 5 language spec-

ification. However, the program generation technique ignores semantic rules (such as

“define before use”) and removes all such rules from the input ANTLR grammars,

yielding context-free grammars.

Harm and Lämmel extend test case generation from systematically covering

context-free grammar production rules to systematically covering production rules of

attribute grammars [76]. For generating benchmark programs, this technique may

enable generating programs that satisfy semantic correctness rules (such as “define

before use”). However the scalability of the technique is unclear [98] and the technique

has not been applied to Java-like programming languages.

In recent work, Hoffman et al. present YouGen, a practical tool for combina-

torial production rule coverage [79]. Similar to earlier work, YouGen takes as input

a context-free grammar. YouGen has a wider range of configuration options than

previous combinatorial production rule coverage generators.

7.2.3 Exhaustive Test Program Generation

Exhaustive test program generation aims at enumerating all possible test pro-

grams up to a given size. In the following we discuss three representative recent

approaches.
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Coppit and Lian describe yagg, a generator for test data generators that ex-

haustively enumerate all possible test data up to a given length [38]. The yagg tool

supports context-free input grammars that can be enriched with semantic actions.

ASTGen by Daniel et al. systematically generates small Java programs [47].

However, ASTGen requires the user to combine several generators. More importantly,

many generated programs have compile errors, and they do not have complex struc-

tures (e.g., only value equality (==) is supported in conditions and no deep if nesting

is possible).

Majumdar and Xu describe a directed test program generation technique that

attempts to exhaust the execution paths of a particular compiler or program analysis

tool under test [106]. The technique converts a given context-free grammar into a

symbolic grammar, exhaustively derives all possible symbolic strings (programs) up

to a certain size, and uses these strings in a dynamic symbolic or concolic execu-

tion as inputs to the program under test. This directed search yields a small set of

representative test programs, as the symbolic reasoning prevents the generation of

concrete input programs that cover the same path in the program under test. On

the other hand, symbolic reasoning is very expensive, which limits the scalability of

the technique. The corresponding tool, CESE, has been used to generate small test

programs. RUGRAT on the other hand can quickly generate very large random test

programs independent of any particular program under test.

7.2.4 Model-Based Test Program Generation

Beyond grammar production rules, other models of programming language spec-

ifications exist. Such models often encode rich semantic information and can be

covered systematically by program generators. Given the richness of the informa-
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tion encoded in these models, test case generators are typically slower and focus on

generating small programs that are focused on testing specific features.

For example, Zhao et al. capture the rules under which individual compiler op-

timizations can be applied in temporal logic [179]. The JTT tool then systematically

generates focused test programs to test individual compiler optimizations. However it

is not clear how this approach scales to entire applications and especially large-scale

benchmark applications.

7.2.5 Random Test Data Generation for Different Domains

Random test data generators have been applied to domains related to object-

oriented programming such as generating valid XML files and generating SQL queries.

In the following we focus on SQL as an example domain.

Probabilistic test data generation has been successfully used in testing relational

database engines, where complex SQL statements are generated using a random SQL

statement generator [149]. RUGRAT extends this idea by applying it to imperative

languages such as C++ and Java in that RUGRAT generalizes the approach to gen-

erate applications with predefined properties while the SQL statement generator is

designed only for a declarative language such as SQL.

A few other approaches are created for generating SQL statements and query

sets. One of them is QGEN, a flexible, high-level query generator optimized for

decision support system evaluation. QGEN generates arbitrary query sets, which

conform to a selected statistical profile without requiring that the queries be statically

defined or disclosed prior to testing [130]. QGEN links query syntax with abstracted

data distributions, enabling users to parameterize their query workload to match an

emerging access pattern or data set modification.
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Another recent approach for random SQL generation is a work by Khurshid

et al. that generates syntactically and semantically correct SQL queries as inputs

for testing relational databases [6]. They leverage the SAT-based Alloy tool-set to

reduce the problem of generating valid SQL queries into a SAT problem. With their

approach, SQL query constraints are translated into Alloy models, which enable it

to generate valid queries that cannot be automatically generated using conventional

grammar-based generators. Both this approach and QGEN are complementary to

RUGRAT, since the latter can use generated SQL statements to integrate in its

generated Java and C++ programs to interact with backend databases. This is our

work in progress that gives positive initial results.

Interestingly, generating random images is widely used to evaluate image pro-

cessing and pattern recognition algorithms [109, 135]. Essentially, finding images with

desired properties to evaluate specific algorithms is difficult and laborious; not always

these images can be located on the Internet. Yet it is important to obtain images

that have specific geometric figures that highlight certain properties of algorithms that

use these images. Generating images with desired properties is a standard practice

in image processing and pattern recognition [25, 87, 43, 111].

7.2.6 Other Non-Generated Benchmarks

Other benchmarks of test programs have been developed besides the already

discussed widely used DaCapo Java benchmarks [17].

For example, Sewe et. al introduce a Scala benchmark based on the popular

DaCapo benchmark for the JVM [146]. Several programming languages (e.g., Scala,

Clojure, Groovy, JRuby, and Jython) are typically compiled to Java bytecode and

target the JVM. But in JVM research, benchmarks written in these languages are not

commonly in use. The authors address this issue by presenting a Scala benchmark
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and comparing it with the popular DaCapo benchmark on different bytecode metrics.

The results show differences between Scala and Java code.
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Chapter 8

Conclusion

We have shown that generic automatic data structure repair can be implemented

with full dynamic symbolic execution. We have implemented our approach in a

prototype and compared its performance with one of the state-of-the-art tool Juzi

in repairing corrupted data structures. We have shown that such an implementation

can solve some of the problems of the existing generic repair approaches.

We have also explored the potential of automatic program generation for pro-

gram analysis tool evaluation. We picked the recent automatic program generator

tool RUGRAT to generate dozens of Java applications, ranging from 300 LOC to

5 MLOC. We used these generated programs to benchmark several versions of a pop-

ular Java source to bytecode compiler as well as popular program analysis and testing

tools. We have shown that RUGRAT can be used in benchmarking program analysis

tools and detect bugs in them.
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[64] B. Fischer, R. Lämmel, and V. Zaytsev, “Comparison of context-free grammars

based on parsing generated test data,” in Proc. 4th International Conference

on Software Language Engineering (SLE). Springer, Jul. 2011, pp. 324–343.

[65] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox fuzzing,”

in Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference

on. IEEE, 2009, pp. 474–484.
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