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Abstract 

INTERACTION OF GROWING CRACKS IN HYDRAULIC FRACTURING 

 

Li Wei Lo, MS 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Bo Yang 

Recently, hydraulic fracturing has been utilized to extract natural gas and 

oil from low-permeability shale rocks. This technique has been studied in 

hundreds of papers. A deep understanding of the fracture network formation in 

hydraulic fracturing is essential to advancing the technology, e.g., to enhance the 

quality of fracking, and to keep aquifers from being contaminated. In the present 

study, the Linear Elastic Fracture Mechanics (LEFM) is applied to approach the 

crack extension behaviors in brittle rocks under hydraulic loading. The boundary 

element method is used to carry out the simulation where numerical treatment is 

only needed upon the cracks and the boundaries. When cracks extend, only new 

elements are added, but no re-meshing is necessary. With an appropriate crack 

extension criterion, the problems of crack initiation, crack interaction, and crack 

arrest are studied. This effort provides the oil and gas industry with more 

knowledge and understanding of crack growth in fracking. 
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Chapter 1  

Introduction 

Hydraulic fracturing has been a hot topic in recent years. The 

unconventional oil and gas revolution has revitalized the U.S economy regarding 

geoscience, oil gas, and engineering fields. Economically, some mid-west regions 

in the United States such as Montana and Texas have experienced an economy 

boom, clustering around the areas storing a large amount of shale gas formation, 

and the shale gas rush made the unemployment rate dropped to less than 1 percent 

in those two states. However, there are some downsides for shale gas extraction. 

Environmentally, the extraction of shale gas out of ground may pollute the water 

supply, an example happening in Pennsylvania. Although hydraulic fracturing is 

an old and well-known technique, the sophisticated crack network in hydraulic 

fracturing in shale gas has not been understood yet. The main point of this study is 

to make the hydraulic fracturing more controllable, which can benefit not only the 

oil company to improve the efficiency of this technique in shale gas, but also the 

oil company to prevent contaminating the environment. As a result, the objective 

in my thesis study is to understand crack initiation and the crack propagation, and 

the complicated crack network. 
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1.1 Drilling Completion Process 

The initial step is about the same as conventional drilling. The hole is 

drilled vertically straight down by pumping water based fluid, which cools the 

drill bed, carries the rock back to the surface, and stabilizes the surface of the 

wellbore. Once the well extends over the deepest fresh water aquifer, the drill 

pipe is removed, and it is replaced with steel pipe called casing. This casing is 

cemented in place, and provides a multi-layer barrier to protect fresh water 

aquifer. The process for steel pipe is first pump cement down to casing until 

reaching the bottom. The cement flows between the casing and bore hole well, 

which creates an impermeable additive barrier, and can prevent the casing from 

contacting any water source. Second step is to continuously drill vertically until 

the kick-off point. The kick-off point is where the drilling becomes horizontal. 

The key point for horizontal drilling is to make several wells in one drill, and then 

minimize the impact for the environment. When the targeted area is reached, the 

drill pipe is removed. The steel casing is cemented to the additional full length of 

wellbore. Third step is to load a perforated gun in order to make crack initiation. 

Perforated gun is fired, and the perforated hole is connected to cement and the 

rock reservoir. The perforated gun is removed. The next step is hydraulic 

fracturing, which injects typically millions gallons of water mixed with sand and 

chemicals, and some mixture as lubricant under high pressure into a wellbore to 
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increase pressure down hole at the targeted zone and also kill bacteria. Some 

papers have mentioned to optimize the fluid viscosity that can contribute highly 

extracted rate of shale gas. The sand is to keep the fractured hole open within 

1centimeter when the pumping is relieved. This allows the gas flows to well bore, 

and it is easier to extract the trapped natural gas. Once the first drill is finished, 

the isolation plug is inserted, and another well is perforated by firing the 

perforated gun. With this technique, we can create hundreds of well in this 

horizontal drilling distance. However, hydraulic fracturing has been well used 

over 60 years. Hydraulic fracturing is to unlock natural gas out of massive 

reservoir. The crack initiation has not been understood totally, and the crack 

network is not understanding for people working in the industries. Thus, this 

paper is to create a way to understand how the crack network works by using 

Linear fracture mechanics with boundary element method. 
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Figure 1 Hydraulic fracturing process in detail graphic by Al Granberg. 

 

1.2 Review Papers 

There are plenty of hydraulic fracture studies. Riahi [1] utilized numerical 

method to study interaction between hydraulic fracture and discrete fracture 

network with non-polar and polar network in a 2-dimensional case. The objective 

in this study is to model fluid injection numerically into the fractured rock mass 

and the discrete fracture network. In this case, we can estimate the hydraulic 

aperture and Area with respect to time, but we are not able to know how the crack 

propagates under in-situ stress. Discrete fracture model would be computationally 
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demanding while dealing with sophisticated fractures regarding opening, 

shearing, or growth, and fluids in the fracture, since discrete fracture model 

(DFN) treat fractures as entities, but the model did not consider the interaction of 

hydraulic fractures with pre-existing fractures[2-4]. In addition, a hydraulic 

fracture will propagate perpendicular to the minimum principal stress. Bai[5] 

provided a number of injection cases where the important adequate fracture 

closure and the inadequate case. However, this was not compatible with any plane 

strain cases of study. Moreover, natural fractures interact with hydraulic fractures 

under plane strain condition; this can simplify the model into two dimensional 

cases. A simple test problem with a hydraulic fracture interacting with a natural 

fracture in a random geometry case was carried out by Jaber [6].The shale gas 

rock was assumed impermeable, isotropic and elastic. With this, we can know the 

suituation that hydraulic fracuring interacts with a natural fracture at a certain 

angle. Jeffery and Zhang [7] propagted that hydraulic aperture was an imaginary 

opening of closed crack, enabling the aperture to stimulate the residual 

conductivity of the Nature Fracture (NF) and did not consider the gradient of 

stress. Chuprakov[8] tried to validate the model on coalescence of fluid flow 

branches. In the experiment shown in Fig. (1-2), two parallel hydraulic fractures 

with a 0.8m spcacing were driven by same fluid source, and the natural fracture 

was going orthogonally with two hydraulic fractures, and the sum of their inflow 
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rates was a constant. They found that the crack continously grew with respect to 

time when the pressure value met a sufficient value. 

 

Figure 2 Hydraulic fracturing process in detail graphic by Chuprakov[8]. 

Chen [9] considered a 2 dimensional hydraulically drvien fracture, 

propagating in a homogeneous, isotropic, linear elastic, impermeable medium 

under plane strain conditionby using extended finite element method (XEFM). 

However, this method was plausible , but it could not tell the whole story for 

sophisicated crack network. In addition, Jo [10] utilized displacement 

discontinuity method (DDM) to obtain more accurate Stress Intensity Factor (SIF) 

in the crack tip and on the fracture profile, and the result of DDM method was 

compared with other methods, such as analytical method, square root element 

method, and quarter element method except boundary element method.   

 



 

7 

1.3 Linear Elastic Fracture Mechanics 

Fracture mechanics is the field of study of the formation and propagation 

of cracks in materials by using analytical solid mechanics to calculate the driving 

force on a crack and those of experimental solid mechanics to characterize the 

material’s resistance to fracture. Linear elastic fracture assumes the material to be 

linearly elastic and the crack tip to be sharp. It is applicable to brittle material. In 

1920, Griffith [11] observed that larger cracks propagate more easily than smaller 

ones, he proposed an energy balance criterion to explain the failure of brittle 

materials. The objective of the theory is to determine whether or not a crack 

would grow. It states that a crack would propagate if the reduction in strain 

energy due to its extension exceeds or equals the surface energy increase. In 1956 

within the Griffith’s energy balance approach, Irwin ( ref 13 on page 21 of 

Anderson’s textbook) introduced the concept of energy release rate G as the crack 

growth driving force. In 1957, he (ref. 15 on page 22 in Anderson’s textbook) 

further introduced the parameter of stress intensity factor KI based on 

Westergaard’s singular stress analysis of a crack in a linearly elastic, isotropic 

material [12], and related it to the energy release rate. Thus, either the energy 

release rate or the stress intensity factor maybe be used to rephrase the Griffith 

fracture criterion: a crack would extend either the energy release rate or the stress 

intensity factor reaches a threshold, i.e., G >= Gc, or KI >= KIC. This threshold, 

Gc or KIC, is the critical material resistance to fracture, namely, the material 
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toughness. In the case of linear elastic fracture mechanics (LEFM), the use of 

stress intensity factors is more convenient, because they can be directly extracted 

from a stress analysis. 

1.4 Boundary Element Method 

Boundary element method (BEM) [13] has been popular alongside finite 

element method (FEM), especially in computational fracture mechanics [14]. 

Boundary element method is a numerical technique that can be formulated by the 

reciprocal theorem and by the method of weighted residuals using by Green’s 

function. Compared to FEM, BEM can be often advantageous. BEM would be 

more accurate than FEM and other numerical methods, since the governing 

equation is exactly satisfied within the domains. Numerical treatment is only 

needed upon boundaries and cracks, and solution is more efficient. Moreover, 

BEM is far more convenient for meshing, etc. We can discretize the boundary 

alone, and only focus on certain region, which make us engineering work 

efficiently. Another big advantage of BEM in crack problems over FEM is that 

domain re-meshing is not necessary when a crack grows; only one more element 

is possible if a crack is added with the already existing elements un-interacted. 

1.5 Rock Mechanics 

Shale gas is natural gas trapped in low-permeability shale rocks. From 

those low permeability and heterogeneity characteristics, the mass formation of 

shale gas happens in the Earth Crust. This sedimentary rock has been 
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strengthened during geological evolution. In the following, we review some 

previous papers with pertinent material properties and typical values of pressure 

in hydraulic fracturing. In our present study, we need to know the range of ICK  and 

the range of loading pressure.  

From Chuprakov [15] to study fracture propagation across a weak 

discontinuity, Chuprakov used ICK  in the range from 0.1 to 0.5
2.7MPa m⋅ , as shown 

below 

Table 1 Range of the problem’s dimensional specific to gas shale fracturing jobs. 

 

Kear[16] provided in CSRO commercial software, and KIC was 2.3 Mpa.m0.5, 

shown in the below chart. 
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Table 2 Adelaide Black Granite material properties. 

 

The chart below was provided by Adams[17]. Adams intended to find a more 

reasonable hydraulic pumping pressure. He applied more than 15K psi to extract 

oil and gas out of tight reservoirs, as shown in the following figure. 

 

 

 

Table 3 Treatments based on conventional oil and gas method. 
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Kresse[18] studied the flow rate and the viscosity of the fluid, which is not used in 

our present study but may be useful for future further study, as shown in the 

following chart. 

Table 4 Input data for Barnett Shale case. 

 

Men[19] used fracture toughness to simulate hydraulic fracturing in 

heterogeneous rock, which is a good reference for our present research. The two 

figures are shown below.  
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Table 5 Rock material mechanical parameter 

 

Table 6 Bedding material mechanical parameter. 
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Table 7 Change of elastic modulus and uniaxial compressive strength values of 

bedding material. 

 

Sesetty[20] simulated sequential and simultaneous hydraulic fracturing, with a 

two dimensional coupled displacement discontinuity numerical model for crack 

propagation. The parameters used in this study are shown below. 
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Table 8 Input data in displacement discontinuity numerical model 

 

Zhang [21] in Discrete Fracture Network model used parameters with maximum 

horizontal stress equal to 55MPa, and minimum horizontal stress equal to 50 

MPa. On the other hand, the vertical stress was 60 MPa.  
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Chapter 2  

Problem Formation 

In conventional reservoirs, pumping is the easiest way to extract the oil 

and gas. In contrast, in unconventional shale gas reservoirs, hydraulic fracturing is 

used to extract the shale gas. Since the shale is a low permeability sedimentary 

rock with natural cracks, each well is perforated by firing the perforated gun, 

which initiates the cracks orthogonal to the main well by thousands of miles. By 

hundreds of hydraulic fracturing, the sophisticated hydraulic fractured crack 

network is created. Since the pressure (traction) in normal direction is under 

compression along the thickness direction of shale gas rock, we can simplify into 

plain strain condition. As a result, the model could be simplified into a two-

dimensional case. In the present study, we use boundary element method to 

simulate growing cracks in order to better understand the interaction between new 

and pre-existing cracks to see if the cracks would arrest, promote, or bifurcate 

each other. Boundary element method can provide us an analytical method to 

understand the crack initiation and propagation. LEFM is the fundamental theory 

we use to characterize the cracks in rocks. 
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2.1 Basic Equations of Elasticity 

Let us consider a homogeneous, isotropic, linearly elastic domain Ω of 

piecewise smooth boundary Γ, as shown in Fig. 2.1. The equilibrium equations at 

a point xϵΩ, in absence of inertia effects, are  

Ϭ𝑖𝑗,𝑗 + 𝑏𝑖 = 0,                 ( 2 . 1 )  

 

Figure 3 A homogenous, isotropic, linearly elastic body Ω with piecewise smooth 

boundary Γ in equilibrium. 

Where Ϭij are components of the stress tensor, bi is the body force per unit 

volume, and ,j is partial differentiation with respect to xj. The indices I and j range 

from 1 to 3, which refer to Cartesian coordinate directions. When an index in a 

subscript is repeated in any particular term, a summation over that index is 

implied. However, the convention of summation is not applicable to superscript 

indices. When describing two-dimensional problems, Greek indices may be 

utilized instead, ranging from 1 to 2. The stress-displacement relationships are  
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Ϭij = λ𝛿ij𝑢k,k + µ�𝑢i,j + 𝑢j,i�,                                                       ( 2 . 2 )          

Where λ and µ are the Lame’s constants which are related to Young modulus E 

and Poisson’s ratio ν by 

λ = νE
(1+ν)(1−2ν)

R                                                             ( 2 . 3 )                              

µ = 𝐸
2(1+𝜈)                                                                           ( 2 . 4 )     

In the above equations ( 2.3) and (2.4) , ijσ  is the Kronecker delta which equals to 

1 if i = j, and 0 otherwise. By substituting Eq. (2.2) into Eq. (2.1), we can obtain 

Navier’s equations, 

(𝜆 + 𝜇)𝑢𝑘,𝑘𝑖 +  𝜇 𝑢𝑖,𝑘𝑘 + 𝑏𝑖 = 0,               ( 2 . 5 )                                                

Proper boundary conditions along boundary Γ is imposed in order to have unique 

solutions to Eq. (2.5). If either displacements ui or traction pi (= Ϭijnj) are given 

for any boundary point,  

   ui = ui or pi = pi, 

nj is outward normal vector at a boundary point. However, in some cases, the 

formulation of the boundary creates a problem must be adjusted.  

Then consider a body Ω with external boundary Γex and singular surfaces 

Γc across which a displacement jump occurs, as shown in Fig. 2.2. The stress and 

displacement relationship in the bulk material is assumed to be the same as given 

by Eq. (2.2). The whole domain satisfies equilibrium condition Eq. (2.1). External 

boundary Γex was using the boundary condition given by Eq. (2.6), and the 
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following relationship is used to relate traction p with the displacement jump w 

across the singular surfaces Γc, 

Pi=fi(w) on Γc , with w=u--u+                                       ( 2 . 7 ) 

Where fi is a given function, u- and u+ are the displacements on either sides of the 

singular surfaces. The singular surfaces may be in contact or opening. If fi is 

identical to zero, which are traction-free crack in the singular surfaces, the stress 

field around the crack tip is singular. The singularity- based model will be 

discussed in Section 2.2. If fi is not trivial, it can induce to cohesive zone model 

of a crack; with the non-trivial traction, the singularity term in stress field at the 

crack tip will be eliminated. The cohesive zone will not be discussed in this study. 

In the contact mode, Eqs.(2.7) is proper to describe the behavior of the tangential 

interaction of the singular surfaces. The contact mode of the singular surfaces will 

be described in Section 2.4. We now turn to the description of the singular crack-

tip stress field for the opening traction-free cracks.  

 

2.2 Singularity-based Fracture Mechanics ( L.E.F.M.) 

Consider a mathematical planar traction-free sharp crack tip in linear 

elasticity under far-field loading maybe expressed as 

𝜎𝑖𝑗 = � 𝑘
√𝑟
� 𝑓𝑖𝑗(𝜃) + ∑ 𝐴𝑚𝑟𝜎𝑦𝑦

𝑚
2∞

𝑚=0 𝑔𝑖𝑗𝑚(𝜃)         

( 2 . 8 ) 
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Figure 4 Stress field at crack tip in linear elasticity. 

 

Where k and mA  are all constants to be determined by loading conditions. The 

complicated loading condition can be differentiated into three modes: opening 

mode (mode I), in-plane shear (mode II), and out-of-plane shear (mode III). There 

is a singularity at r-1/2 in the Williams’ expansion. First, in mode I, the forces are 

perpendicular to the crack pulling the crack open. The crack is horizontal and the 

forces are vertical. Second, in mode II, the forces are parallel to the crack. 

Basically, one is pulling the top half of the crack forward, and the other is pulling 

the bottom half of the crack backward. The crack is sliding along itself. In plane 

shear is that the forces are causing the material moves along the crack plane. 

Third, mode III is called out of plane shear. The forces are perpendicular to the 

crack, and move in the front and back direction. This causes the material to 

separate and move out of the original plane. Stress intensity factor KI, KII, and 

KIII are used to characterize energy release rate of the fields, which is 

independent to specimen geometry, loading condition, and environment. The 
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equations show in Eqs (2-9) and (2-10)  KI, KII, and KIII in mode I and mode II 

in Cartesian coordinaters (x1, x2) and polar coordinates (r, θ)  

 

 

Figure 5 A mathematical planar crack in Cartesian coordinates ( x1, x2) and polar 

coordinates 

�𝜎11𝜎12
𝜎22
�= 

𝐾𝐼
(2𝜋𝑟)1/2 cos �θ

2
�

⎝

⎛
1−sin�θ2� sin�

3θ
2 �

sin�θ2� cos�
3θ
2 �

1+sin�θ2� sin�
3θ
2 �⎠

⎞ + �𝑇0
0
�+ O (𝑟1/2)  ( 2 - 9 ) 

 �𝜎11𝜎12
𝜎22
�= 

𝐾𝐼𝐼
(2𝜋𝑟)1/2

⎝

⎛
−sin�θ2��2+cos�

θ
2�cos�

3θ
2 ��

cos�θ2��1−sin�
θ
2�sin�

3θ
2 ��

sin�θ2� cos�
θ
2�cos�

3θ
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⎞+O (𝑟1/2)                (2-10) 

 

Where μ is the shear modulus, κ is (3-4ν) on plane strain condition, and κ is (3-

ν)/(1+ ν) on plane stress condition. 
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2.3 Crack Initiation and Propagation Criteria 

Strength and dissipation capacity are two key materials properties to crack 

initiation and propagation analyses. When the stress at a crack tip reaches the 

strength, the crack starts to develop a fracture process zone without crack 

propagation. The crack grows after the process zone is fully developed or the 

structure has become structurally unstable. During the crack propagation, the 

crack tip advances along with the process zone tip. There are a few criteria for 

crack initiation and propagation in brittle materials proposed in the literature, 

which take into account the dissipation energy only, as discussed before in 

Griffith’s theory[11]. We utilize the maximum tangential stress (MTS) criterion in 

the framework of LEFM. Based on in Yang’s paper[22], the T-stress and other 

higher-order terms of the crack-tip stress field have no direct effect in determining 

crack path in this approach because of the singularity dominance.  

 

2.4 MTS Criterion in LEFM 

In the polar coordinates, the tangential component of the two-dimensional 

in-plane asymptotic stress field can be presented by  

𝜎𝜃 = 1
√2𝜋r

𝑐𝑜𝑠2 �𝜃
2
� �𝐾𝐼 cos(𝜃

2
) − 3𝐾𝐼𝐼 sin(𝜃

2
)�                 (2.11) 

The maximum tangential stress can be achieved in the direction. 

θ𝐼 = 2 tan−1 �
𝐾𝐼−�𝐾𝐼2+8𝐾𝐼𝐼2

4𝐾𝐼𝐼
�,                                               (2.12) 
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by solving the equation of the first derivative of stress with respect to θ equal to 

zero, which means the stationary points, and under the condition of the second 

derivative of stress with respect to theta being negative in Yang’s study[23], 

which means the slope concaving down. Substituting Eq. (2.12) into Eq. (2.11), 

the effective mode-I stress intensity factor along the direction of MTS is obtained, 

 𝑘𝐼 = 𝜎𝜃𝐼√2𝜋r = 𝐾𝐼
2𝜇
𝐾𝐼𝑐𝑜𝑠3 �

𝜃𝐼
2
� − 3𝐾𝐼𝐼 sin(𝜃𝐼

2
)𝑐𝑜𝑠2 (𝜃𝐼

2
)                     (2.13) 

The MTS criterion states that a crack grows when KI is larger than fracture 

toughness (KIC), i.e., 

𝑘𝐼 ≥ 𝐾𝐼𝐶 ,           (2.14) 

KIC is a material constant to be acquired by experiments. 

We should be aware of that the maximum tangential stress derived above 

is not the maximum tensile stress that happens in the crack tip region. The MTS is 

not a criterion of material strength, but a criterion of energy release rate. In fact, 

Nuismer [24] (1975) proved that MTS is a equivalent to the maximum energy 

release rate criterion based on energy consideration.  
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Chapter 3  

Boundary Element Method 

3.1 The Single Domain Dual Integral Equations for a Cracked Structure 

In this section, a structure containing a mathematically sharp crack de-

generates the boundary integral formulation because of coincidence of the crack 

surfaces. Based on Yang’s study[25], we can use a single-domain dual-boundary-

integral method to approach this problem. The formulation of a single-domain 

dual-boundary-integral method is based on Kelvin’s solutions. In order to apply 

the dual integral equation to each separated domain, we cut a domain with crack 

elastostatic structure into subdomains of simple topology. As shown in Figure 3-

1, a structure with a crack can be sect into two subdomains with a path that 

circulate into each subdomain. First, the value of the external regular boundary 

should equal to the sum of two sub-domains’ integral values. Second, we apply 

continuity condition at displacement components at the points along the artificial 

boundary, and we can set the displacement components in two sub-domains are 

the same. Third, we set traction components in two sub-domains are equal 

magnitude but opposite direction due to structure equilibrium. Fourth, the integral 

kernels are the same magnitude but in opposite values. Applying all conditions we 

mentioned above, we also neglect the body force term for simplicity.  We can 
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obtain the well-known single-domain dual integral equations of a cracked 

structure in Eqs. (3-1) and (3-3). 

 

Figure 6 A domain Ω with a crack Γc. 

𝐼𝑖(𝑥) = ∫ �𝑢𝑖𝑗∗ (𝑋, 𝑥)𝑝𝑗(𝑋)Γ𝑒𝑥 − 𝑝𝑖𝑗∗ (𝑋, 𝑥, 𝑛)𝑢𝑗(𝑥)}𝑑Γ(𝑥) + ∫ �𝑢𝑖𝑗∗ (𝑋, 𝑥)�𝑝𝑗+(𝑋) +Γ𝑐

𝑝𝑗−(𝑋)� − �𝑝𝑖𝑗∗ (𝑋, 𝑥,𝑛+)(𝑢𝑗+(𝑥) −  𝑢𝑗−(𝑥))�� 𝑑Γ(𝑥)            (3.1) 

 

with 

𝐼𝑖(𝑥) =

⎩
⎨

⎧
𝑢𝑖(𝑋)                              𝑋𝜖 Ω ;

  𝑐𝑖𝑗(𝑋)𝑢𝑖(𝑋)                         𝑋𝜖 Γ𝑒𝑥 ;
 𝑐𝑖𝑗

+(𝑋)𝑢𝑗+(𝑋) +  𝑐𝑖𝑗
−(𝑋)𝑢𝑗−(𝑋)        𝑋𝜖 Γ𝑐 ;

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                                           (3.2) 

and 

𝐽𝑖𝑗(𝑋) =

∫ �𝑈𝑖𝑗𝑘∗ (𝑋, 𝑥)𝑝𝑘(𝑥)Γ𝑒𝑥 − 𝑝𝑖𝑗𝑘∗ (𝑋, 𝑥,𝑛)𝑢𝑘(𝑥)}𝑑Γ(𝑥) + ∫ �𝑢𝑖𝑗𝑘∗ (𝑋, 𝑥)[𝑝𝑘+(𝑥) +Γ𝑐

𝑝𝑘−(𝑥)]− �𝑃𝑖𝑗𝑘∗ (𝑋, 𝑥,𝑛+)�𝑢𝑘+(𝑥) −  𝑢𝑘−(𝑥)��� 𝑑Γ(𝑥),     ( 3 . 3 ) 

 

with 
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𝐽𝑖𝑗(𝑋) =

⎩
⎪
⎨

⎪
⎧ 𝜎𝑖𝑗(𝑋)                                       𝑋𝜖 Ω ;

 𝜎𝑖𝑗(𝑋) /2                                  𝑋𝜖 Γ𝑒𝑥;

� 𝜎𝑖𝑗
+(𝑋) +  𝜎𝑖𝑗

−(𝑋)� /2                      𝑋𝜖 Γ𝑐;
0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                                                     ( 3 . 4 ) 

Where, the superscript + is a side of a crack, and the superscript – is the 

corresponding opposite side. The positive side of rack can be chosen arbitrarily. 

Regarding a crack problem, we can use the integrals along the regular external 

boundary and one side of a crack. For multiple cracks, we can create several sub-

domains to solve the problem by using the same concept. The equation is given in 

the same forms as Eqs. (3-1) and (3-2). 

Eqs. (3-1) and (3-2) with a source point on the boundary, i.e., ex c
X Γ

+
∈ , are 

of the most importance, in the formulation of boundary integral equations of 

elastostatic problems. If they are “multiplied” on the both sides by the outward 

normal at the boundary point X on Eqs. (3-3) with the boundary at ex c
X Γ

+
∈ , we 

obtain  

𝐽𝑖𝑗(𝑋)𝑛𝑗(𝑋) =

∫ �𝑈𝑖𝑗𝑘∗ (𝑋, 𝑥)𝑝𝑘(𝑥)Γ𝑒𝑥 − 𝑝𝑖𝑗𝑘∗ (𝑋, 𝑥,𝑛)𝑢𝑘(𝑥)}𝑑Γ(𝑥) + ∫ �𝑈𝑖𝑗𝑘∗ (𝑋, 𝑥)[𝑝𝑘+(𝑥) +Γ𝑐

𝑝𝑘−(𝑥)]− �𝑃𝑖𝑗𝑘∗ (𝑋, 𝑥,𝑛+)�𝑢𝑘+(𝑥) −  𝑢𝑘−(𝑥)��� 𝑛𝑗(𝑋)𝑑Γ(𝑥).     ( 3 . 5 ) 

Where ( )jn x  is taken to be the outward normal of the positive crack side. On the 

crack surfaces, the tractions are self-equilibrating and hence 

𝑛𝑗
+(𝑋)�𝜎𝑖𝑗

+(𝑋)+𝜎𝑖𝑗
−(𝑋)�

2
= 𝑝𝑖+(𝑋)         and  𝑝𝑖+(𝑋) + 𝑝𝑖−(𝑋) = 0. P          ( 3 . 6 )   
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In this case, traction and displacement on a crack jump can be treated as 

independent variables in a numerical formulation.  

 

3.2 Numerical Implementation 

 

 

Figure 7 The discretization of the boundary into elements is shown in this figure. 

One or more nodes are evenly distributed in each element. The nodes are external 

to the element, indicating discontinuous elements. 

The boundaries of a cracked two dimensional structure is discretized into straight 

elements, Γel, with distributed nodes, Nel in each element, as shown in figure 3-2 

We assume that we have Nex nodes on the external boundary, and Nc nodes on 
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the crack locus. A field quantity can be approximated through an element elΓ  by 

interpolating the nodal values, qn in this element, we obtain 

𝑞(𝑥) = ∑ 𝜙𝑛(𝑥)𝜙𝑞𝑛𝑁𝑒𝑙
𝑛=1           (3.7)  

The discretized forms of the dual boundary integral equations can be obtained. 

∑ (𝑔𝛼𝛽
𝑚𝑛𝑝𝛽

𝑛 − ℎ𝛼𝛽
𝑚𝑛𝑢𝛽

𝑛) +𝑁𝑒𝑙
𝑛=1 ∑ ℎ𝛼𝛽

𝑚𝑛𝑤𝛽
𝑛 − 𝐼𝛼(𝑋𝑚) = 0,𝑁𝑒𝑥+𝑁𝑐

𝑛=𝑁𝑒𝑥+1        (3 .8) 

And 

∑ (𝐺𝛼𝛽
𝑚𝑛𝑝𝛽

𝑛 − 𝐻𝛼𝛽
𝑚𝑛𝑢𝛽

𝑛) +𝑁𝑒𝑙
𝑛=1 ∑ 𝐻𝛼𝛽

𝑚𝑛𝑤𝛽
𝑛 − 𝐽𝛼𝛽(𝑋𝑚)𝑛𝛽(𝑋𝑚) = 0,𝑚 =𝑁𝑒𝑥+𝑁𝑐

𝑛=𝑁𝑒𝑥+1

1,2, , …𝑁𝑒𝑥 + 𝑁𝑐.            (3.9) 

Eqs. ( 3.8) and ( 3.9) each represent ex c
2(N +N ) equations that are discretized version 

of Eqs. ( 3.1) and ( 3.4). We can obtain mn

αβg , mn

αβh  , mn

αβG , mn

αβH are given separately below, 

where n
Γ  is the element where the nth node is located.  

𝑔𝛼𝛽
𝑚𝑛 = ∫ 𝑢𝛼𝛽∗𝛤𝑛 (𝑋𝑚, 𝑥)𝜙𝑛(𝑥)𝑑𝛤(𝑥),        (3.10) 

ℎ𝛼𝛽
𝑚𝑛 = ∫ 𝑝𝛼𝛽∗𝛤𝑛 (𝑋𝑚, 𝑥)𝜙𝑛(𝑥)𝑑𝛤(𝑥),        (3.11) 

𝐺𝛼𝛽
𝑚𝑛 = ∫ 𝑈𝛼𝛿𝛽∗

𝛤𝑛 (𝑋𝑚, 𝑥)𝜙𝑛(𝑥)𝑛𝛿(𝑋𝑚)𝑑𝛤(𝑥),      (3.12)  

𝐻𝛼𝛽
𝑚𝑛 = ∫ 𝑢𝛼𝛿𝛽∗

𝛤𝑛 (𝑋𝑚, 𝑥,𝑛)𝜙𝑛(𝑥)𝑛𝛿(𝑋𝑚)𝑑𝛤(𝑥),      (3.13)  

Where n
Γ  is the element where the nth node is located. Eqs. (3.10) thru Eqs. 

(3.13) may be evaluated numerically if m n
X Γ∉ , and analytically if m n

X Γ∈ . Note 

that the condition for a self-equilibrating crack, Eqs. (3.6), has been utilized in the 

above equations.  
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If u and p are different displacement and traction from the exact solution, 

Eqs. (3.8) and  Eqs. (3.9) would not be satisfied, leaving residuals:  

𝑟𝛼𝑚(𝑢, 𝑝) = ∑ �𝑔𝛼𝛽
𝑚𝑛𝑝𝛽

𝑛 − ℎ𝛼𝛽
𝑚𝑛𝑢𝛽

𝑛� +𝑁𝑒𝑥
𝑛=1 ∑ ℎ𝛼𝛽

𝑚𝑛𝑤𝛽
𝑛 − 𝐼𝛼(𝑋𝑚) = 0,𝑚 =𝑁𝑒𝑥+𝑁𝑐

𝑛=𝑁𝑒𝑥+1

1,2, , …𝑁𝑒𝑥 + 𝑁𝑐 ,             (3.14) 

𝑅𝛼𝑚(𝑢,𝑝) = ∑ �𝐺𝛼𝛽
𝑚𝑛𝑝𝛽

𝑛 − 𝐻𝛼𝛽
𝑚𝑛𝑢𝛽

𝑛� +𝑁𝑒𝑥
𝑛=1 ∑ 𝐻𝛼𝛽

𝑚𝑛𝑤𝛽
𝑛 − 𝐽𝛼𝛽(𝑋𝑚)𝑛𝛽(𝑋𝑚) =𝑁𝑒𝑥+𝑁𝑐

𝑛=𝑁𝑒𝑥+1

0,𝑚 = 1,2, , …𝑁𝑒𝑥 + 𝑁𝑐 ,           (3.15)   

We state the displacement residual, m

αr  and the traction residual, m

αR . If the 

residuals are close to zero, the values of u and p represent an approximate solution 

of the boundary value problem. Either displacement or traction vector 

components can be prescribed at all regular boundary points, and the other will be 

induced. In order to handle crack sliding and crack contact modes of deformation, 

field quantities in the discretized equations must be transformed into the local 

orthogonal coordinates in term of the normal and tangential directions.  

In the iterative solution scheme, a quantity (m,

α

l+1)
q at the (l+1)th iteration isobtained 

from the value at the lth iteration, m,l

αq , and The increment is given by  

m,l+1 m,l l

α α
m
α

R
q =q - R

q
∂
∂

∣            (3.16)  

Where R is the appropriate residual for the field quantity m
αq  at the lth iteration. In 

addition, the displacement component m,l+1
αu  is at (l+1)th iteration step.  
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( )m,l
αm,l+1 m,l

α α m mm
αα αα

ωr u,p
u =u +

(c +h )
, (no sum on α )       (3.17) 

Where w is an adjustable factor of relaxation. The displacement residual, ( )m
αr u,p , 

is calculated by using the nodal values at the (l+1)th iteration step if available or 

1th iteration. Similarly, a traction component m,l+1
αp , is calculated by using the 

results at the lth iteration by  

( ) ( )m,l+1 m, m mm
α α α ααp =p +ωR u,p / 0.5-G , (no sum on α )      (3.18) 

Where the traction residual, ( )m
αR u,p , is calculated by using the nodal values at 

the (l+1)th iteration step if available or 1th iteration, and node m is on the 

boundary, and then we obtain the displacement discontinuity, 

 ( ) ( )m,l+1 m,l m,l mm
α α ααw =w +v u,p / k -H  , (no sum on α )    (3.19) 

Where ϖ is another adjustable relaxation.  

The numerical solution in the boundary element method is obtained in 

three main steps. First, suppose that the solution at the previous load step is 

known. In order to solve the problems in the current step, the crack body is 

iterated to be in equilibrium with all the current nodes being held at the same 

displacement by using Eqs. (3.17) and (3.18). Second, the crack tip has been fixed 

at this step for the purpose to not grow cracks in this step. The whole body is to 

maintain equilibrium by using Eqs. (3.17) until (3.19). This holding and releasing 

process is to produce efficient convergence for the iteration process when cracks 
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propagate. The absolute difference of either displacement or traction between two 

successive iteration steps can be used to judge for the convergence. The best 

relaxation factor mostly depends on geometry shape and the loading conditions. 

In the third steps, stresses at a point of the crack tip are obtained by extrapolation 

of the stresses at three close points by using Eqs. (3.18). The crack will propagate 

when the effective KI is greater than KIC. The crack tip will propagate in a small 

increment in the direction determined by M.T.S criterion.  
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Chapter 4  

Linear Elastic Fracture Mechanics Stimulation 

In this study, we stimulate a hydraulic fracturing with loading condition 

under plane strain condition; we can simplify this problem as two dimensional. 

The driving force is the hydraulic pumping pressure. The determining parameters 

in this study are normalized KIC, and p, pressure in the direction normal to the 

wells. These two key parameters are described below:  

 𝐾𝐼𝐶���� = 𝐾𝐼𝐶
𝐸√𝑏

                                                                           (4-1) 

Where b is characteristic length scale, taken as the pressure zone size, KIC is the 

fracture toughness of shale rock, and E is Young’s modulus of shale rock.  

𝑃� = 𝑃
𝐸

          (4-2) 

where P is applied over the pressure zone and over the crack sides connected to 

the pressure zone, and E is Young’s modulus of shale rock. With these properties, 

we can simulate a practical case. The values KIC = 2.3 MPa.m0.5, Young Modulus 

E = 25 GPa from Hay [26].In addition, pumping pressure is set to be 0.103GPa, a 

typical value used by some big oil companies. Based on Eqs. (4-1) and (4-2),  we 

obtained our normalized P = 0.00412, normalized KIC =0.0001, with b =1 m.  

 First, we take 5 cracks, and try to grow them in multiple steps under a 

constant hydraulic pressure. Based on the crack propagation criterion in LEFM, if 

KI>KIC, cracks propagate. From Figure 4-1 we fix the bottom side, and on the top 
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side we apply an evenly distributed load in our two dimensional model. It is 

observed that the cracks are closed if they are beneath the pressure zone. 

However, the cracks may experience a mode-II shear loading. They can kink to 

obtain opening mode driving force according to the MTS criterion. This driving 

force may sustain the cracks to grow in opening mode for a short distance and 

then vanishes. At that point, the crack is closed again; it would remain dormant 

unless further loading is applied. For instance, the two in-between cracks (# 2 and 

# 4) kink out due to KII dominated loading, as shown in Figure 4-2. The value in 

KI is about zero and the value in KII is 0.00015. As a result, the cracks are under 

shearing at the first step. Crack # 1 and crack # 5 are not directly under the 

pressure zone, and grow successfully. At first step, the values of KI and KII are 

close, as shown in Figure 4-1 and Figure 4-2. The first step is where the crack 

kink out with mixed shearing and opening modes. After that step, the value of KI 

is all greater than KII. The effective KI is slightly greater than KI, as shown in 

Figure 4-1 and Figure 4-3, indicating that there is a small KII along its path. It 

keeps driving the cracks to modify its growth direction. The effective KII is 

always equal to zero as a consequence of the MTS criterion. 

With this example, we checked the convergence of solution with crack 

advance step. The results of KI for two different advance steps = 0.05 and = 0.08 

are shown in Figure 4-5. It can be seen that the difference due to the different 
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values of advance step is negligible, demonstrating the convergence in our 

numerical calculation. Thus, the results presented herein are reliable. 

 

Figure 8 A set of crack pressurized at the domain between -8 to 8 in 10 steps with 

accelerate crack growth at 0.08 after deformed. 
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Figure 9 K1 in cracks in 10 steps with accelerate crack growth at 0.08, series 1 to 

5 is from left to right crack. 

 

Figure 10 KII in cracks in 10 steps with accelerate crack growth at 0.08, series 1 

to 5 is from left to right crack. 

 

-0.0002

0

0.0002

0 5 10

K
II

 V
al

ue
 (D

im
en

si
on

le
ss

) 

Step 

crack1

crack2

crack3

crack4

crack5

0, 0.000159535 0, 0.000159535 

-0.00005

0.0001

0.00025

0 5 10

KI
 E

ffe
ct

iv
e 

Va
lu

e 
(D

im
en

si
on

le
ss

) 

Step 

Crack1

crack2

crack3

crack4



 

35 

Figure 11 K1 effective in cracks in 10 steps with accelerate crack growth at 0.08, 

crack to 5 is from left to right crack. 

 

Figure 12 KI advanced 0.05 and KI advanced 0.08. Series1 is 0.05 advanced step 

and Series2 is 0.05 advanced step. 

Second, we consider a case with 10 cracks, two sets each of 5 cracks 

beside a pressured zone in the middle on the top surface, as shown in Figure 4-6. 

The pressured space is from -10 to 10. We found that the outside cracks would 

propagate with a greater driving force than those inside ones. The two most inner 

cracks (crack #5 and crack#6) at the edges of loading kink out under mixed KI 

and KII with KII dominating, as shown in Figure 4-7 and Figure 4-8. Crack#4 and 

crack#7 were mainly arrested and closed. Crack ( # 1, # 2, and # 3) and Crack ( # 

8, # 9, and # 10) will depend on the ratio between crack length to the spacing, the 

more the ratio is, the more the interaction is. Some cracks may be arrested. 
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Figure 13 Two sets of crack with a spacing pressurized at the domain between -10 

to 10 in 10 steps with accelerate crack growth at 0.08. 

 

48

48.5

49

49.5

50

-35 -25 -15 -5 5 15 25 35

Z 
A

xi
s 

(M
et

er
) 
 

  

After deformed

crack1 

crack2 

crack3 

crack4 

crack5 

crack6 

crack7 

crack8 

crack9 

crack10 

    X Axis (Meter) 



 

37 

Figure 14 K1 in cracks in 10 steps with accelerate crack growth at 0.08, series 1 to 

10 is from left to right cracks. 

 

Figure 15 KII in cracks in 10 steps with accelerate crack growth at 0.05, series 1 

to 10 is from left to right cracks. 
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Figure 16 KI effective in cracks in 10 steps with accelerate crack growth at 0.05, 

series 1 to 10 is from left to right cracks. 

Third, we consider a case with 10 cracks, two sets each of 5 cracks beside 

a pressured zone with in the middle on the top surface, and the pressurized zone 

has a inclined pre-existing crack in the middle, as shown in Figure 4-10. The 

pressured space is from -10 to 10. The outside crack would extend a larger driving 

force than those inside ones. The two most inner cracks at the edge of loading 

kink out under mixed KI and KII, and propel away from the direction of pre-

existing inclined crack. Crack#4 and crack#7 were mainly arrested and closed. 

Crack ( # 1, # 2, and # 3) and Crack ( # 8, # 9, and # 10) will depend on the ratio 

between crack length to the spacing, the more the ratio is, the more the interaction 

is. Some cracks may be arrested. 
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Figure 17 Two sets of crack and a main slanted pre-existing crack with a spacing 

pressurized at the domain between -10 to 10 in 20 steps with accelerate crack 

growth at 0.08. 

 

Figure 18 KI value in two sets of crack and a main slanted pre-existing crack with 

a spacing pressurized at the domain between -10 to 10 in 20 steps with accelerate 

crack growth at 0.08. Crack from 1 to 10 is the initial cracks from left to right. 

Crack 11 is half of the crack for the slanted crack and crack 12 is the other part of 

the slanted crack. 
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Figure 4-19 KII value. 
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Figure 20 KI effective values in two sets of crack and a main slanted pre-existing 

crack with a spacing pressurized at the domain between -10 to 10 in 20 steps with 

accelerate crack growth at 0.08. Crack from 1 to 10 is the initial cracks from left 

to right. 
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Chapter 5  

Conclusions 

We have carried out modeling and simulation of multiple cracks under 

hydraulic loading, pertinent to the fracking process in shale rocks. The LEFM is 

used to approach a crack in the brittle material, and the MTS criterion is utilized 

to predict crack advance direction under mixed-mode loading. The single-domain 

dual element method is applied to solving the degeneration problem of a cracked 

structure. In the LEFM method, the tip-node rule is applied to evaluate the stress 

intensity factor accurately. Based on the analysis, we draw some conclusions as 

follows:  

• Cracks underneath a pressurized zone, if any, are closed and do not 

permit fluid to flow in, and thus are mainly arrested. Such cracks 

can only grow slightly by the wing-crack development mechanism. 

• In contrast, cracks beside a pressurized zone are opened, and 

experience a large driving force. It suggests that a nonuniform 

pressure loading is desired to drive hydraulic fracturing. 

• Growing cracks interact with each other. When crack length to 

spacing ratio increases, the interaction gets stronger. It may result 

in arrest of some cracks. 
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• A preexisting crack may affect growing cracks significantly. Based 

on the simulation, growing cracks tend to avoid a transverse crack 

ahead on the way. 
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