
RUN-TIME COMPILATION AND DYNAMIC MEMORY USE ANALYSIS FOR

GPUs

by

DEREK WHITE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2014

Copyright c© by DEREK WHITE 2014

All Rights Reserved

ACKNOWLEDGEMENTS

Foremost, I would like to thank my dissertation advisor Prof. Ishfaq Ahmad

for his kind and extraordinary support from my arrival at the University of Texas

at Arlington to the conclusion of my Ph.D. study. I would like to thank the rest

of my dissertation committee: Prof. Lynn Peterson, Prof. Ramez Elmasri for his

guidance and patience, as well as Dr. Bahram Khalili for his unwavering support

and dedication to students. Dr. Khalili has been not only a wonderful advisor but

friend during this process. I would also like to thank Dr. Nathaniel Nystrom and Dr.

Christoph Csallner for their invaluable inspiration and direction during their time on

my committee and afterwards.

My sincere thanks goes to Camille Costabile for always patiently working with

me through the paperwork and process associated with the completion of Ph.D. mile-

stones.

I thank Rocky Lombardo for my first programming course. Also I thank Dr.

Marjan Trutschl, Dr. Urska Cvek, Dr. John Sigle and all of my friends at Louisiana

State University Shreveport.

I would like to thank my family: my parents Jerry and Denise White, and my

sister Devin for being my biggest supporters and always encouraging me to follow my

interests, as well as my in-laws Robert and Kimberly Bell for believing in me.

Finally, I would like to thank my wife, Jennifer. She has always there through

the easy and the difficult times with limitless love and patience. I can’t imagine

having done this without her by my side.

May 13, 2014

iii

ABSTRACT

RUN-TIME COMPILATION AND DYNAMIC MEMORY USE ANALYSIS FOR

GPUs

DEREK WHITE, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Ishfaq Ahmad

Powerful Graphics Processing Units (commonly called GPUs) are proliferating

rapidly and are becoming a viable choice for a wide range of user applications. For

performing computationally intensive tasks on these processors, it is highly desir-

able to have software tools that can facilitate writing effective programming code

while taking advantage of the full potential offered by these processors. Multi-level

memory hierarchy, extensive data transfer, and the utilization of a large number of

processing cores are daunting challenges in writing code for data-parallel computing

tasks. The programming experience becomes more cumbersome due to the significant

restrictions imposed by the OpenCL specification including the inability to allocate

memory dynamically. The contribution of this dissertation is developing a methodical

framework that can assist the programmer in writing efficient code using a modern,

expressive programming language combined with creative uses of static and dynamic

program analysis that can alleviate some of the challenges mentioned above. Our

methodology allows writing codes with object-oriented programming style that can

take advantage of the GPU capabilities. Our framework addresses the problem of

iv

dynamic memory allocation and proposes a memory usage analysis that gives pro-

grammers the advantage of dynamic memory allocation while operating within the

constraints of OpenCL devices. We have also developed a sofware tool that performs

static analysis on GPU kernels written in the Scala programming language using the

Firepile GPU programming library. The tool computes an upper bound on memory

usage and utilizes this bound to pre-allocate memory needed to successfully execute

the kernel on the GPU.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF ILLUSTRATIONS . viii

Chapter Page

1. Introduction . 1

1.1 Thesis Statement . 1

1.2 Motivation . 1

1.3 Background of GPU programming . 2

1.4 Example: reduce . 3

1.5 Reduce in Firepile . 5

1.6 Memory Use Analysis . 7

2. Firepile Run Time System . 10

2.1 Code Trees . 10

2.2 Constructing Code Trees at Run-time 12

2.2.1 Loading the Function Bytecode 12

2.2.2 Type Reconstruction . 13

2.2.3 Tree Construction . 13

2.3 The Firepile Compiler . 14

2.3.1 Writing a Kernel . 15

2.3.2 The Run-time Compiler . 17

2.3.3 Class Translation . 18

2.3.4 Expression Translation . 19

vi

2.4 Related Work . 21

2.4.1 Meta Programming . 22

2.4.2 GPU Programming . 23

3. Memory Use Analysis . 27

3.1 Introduction . 27

3.1.1 GPU Challenges . 28

3.1.2 Motivating Example . 29

3.2 Approach . 31

3.3 Implementation . 33

3.3.1 Loop Language Trees . 33

3.3.2 Complexity Analysis Algorithm 34

3.3.3 Calculating Memory Use . 36

3.3.4 Malloc Generation . 38

3.3.5 Heap Buffers and Runtime . 39

3.4 Evaluation . 40

3.5 Related Work . 41

3.5.1 GPU Memory Allocation . 42

3.5.2 Memory Use Analysis . 44

4. EXPERIMENTAL EVALUATION AND CONCLUSION 46

4.1 Experimental results . 46

4.2 Conclusion . 49

4.3 Future work . 50

REFERENCES . 51

BIOGRAPHICAL STATEMENT . 57

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Performing a reduction in parallel . 4

1.2 Reduce in Firepile . 9

2.1 Translation to Java and code tree for the function (x:Int) => x+a . 11

2.2 Selected code tree classes . 12

2.3 Firepile class translation . 18

2.4 Dispatch method for a method m with two possible implementing classes 20

3.1 Example of two array allocations, one within a loop. 29

3.2 Phases of memory analysis and translation. 31

3.3 Loop language tree nodes . 35

3.4 Complexity Analysis Algorithm . 37

3.5 Memory Use Algorithm . 38

3.6 Abbreviated ray tracing kernel showing new Ray objects being allocated

inside a loop . 41

4.1 Summary of benchmarks run for Firepile and C++ 47

4.2 Total execution times in ms of each benchmark for different problem

sizes. 48

viii

CHAPTER 1

Introduction

1.1 Thesis Statement

Restrictions of the OpenCL GPU programming model can be overcome with

static and dynamic program analysis.

1.2 Motivation

Graphics processing units (GPUs) are increasingly being used to solve general-

purpose computational problems. A single GPU can provide hundreds of processors

at little cost. They are being used for scientific data analysis, financial applications,

digital signal processing, cryptography and other applications Yet, programming these

devices remains difficult. Languages such as OpenCL [1] and CUDA [2] allow data-

parallel programming of GPUs at the C (or C++) level of abstraction. However,

the programming models of these languages are restrictive, prohibiting a number

of standard features of object-oriented languages, e.g., recursion, dynamic memory

allocation, and virtual method dispatch. In addition, programmers must explicitly

manage the movement of data between the host memory and the device and between

layers of the memory hierarchy on the device. Achieving optimal performance often

relies on subtle details of the programming model. For example, misalignment of

memory accesses can degrade performance by an order of magnitude [3].

This chapter introduces Firepile [4], the contribution of a sophisticated library

for GPU programming in Scala. Firepile hides details of GPU programming within

the library, allowing programmers to focus on the problem they wish to solve. This

1

library and the research behind program analysis and architecture that supports it is

the main topic and contribution of this dissertation. The library performs facilities for

managing devices and memory. Collections classes support data-parallel, functional

operations. Performance of Firepile-generated code is comparable to C/C++ code.

The library uses a novel approach of constructing code trees from function values at

runtime. From these code trees, Firepile generates OpenCL kernels to run on the

GPU. Kernel functions may be written in Scala and may use objects, higher-order

functions, and virtual methods. The run-time compiler uses method specialization to

translate these problematic constructs into the subset of C accepted by the OpenCL

specification. The code tree mechanism provides advantages over explicit staging, as

found in Lisp and other programming languages [5, 6, 7, 8, 9], that otherwise might

require annotations, special types, or other extensions of standard Scala.

1.3 Background of GPU programming

To help understand some of the challenges on GPU programming, we first

sketch the architecture of a GPU and how one is programmed. We illustrate using

NVIDIA’s latest hardware architecture, Fermi [10] and the OpenCL programming

model [1]; however, many of the same issues occur with other GPU architectures and

other GPU programming models.

A Fermi GPU consists of up to 16 streaming multiprocessors (SM), each with

32 scalar processors, for a total of up to 512 cores. Threads are executed in groups

of 32 called warps. All threads in a warp are executed using SIMD instructions on a

single SM; that is, all threads execute the same instruction simultaneously. OpenCL

abstracts threads and groups of threads into work items and work groups, respectively.

The number of work items in a work group need not match the number of hardware

threads in a warp.

2

A thread (work item) running on the GPU has access to multiple classes of

memory. In addition to private, per-thread memory, all threads in a warp running on

the same SM have access to shared, per-SM memory. Correspondingly, in OpenCL

all work items in a work group have access to shared, local memory.1 Finally, all

threads running on the GPU have access to global GPU memory. Typical memory

sizes are 64 KB for per-block memory and 256 MB up to 6 GB for global memory. In

this architecture, communication between threads is limited. Threads running on the

same SM can communicate through per-block memory. Threads running on different

SMs could communicate through global memory, but global memory provides no

synchronization guarantees: a write performed by a thread running on one SM will

not be visible to a thread running at a different SM. OpenCL programmers must

allocate data to work items and work groups with all of these restrictions in mind.

1.4 Example: reduce

To illustrate how the GPU architecture is utilized, consider a parallel reduction

operation, a common building-block of many parallel algorithms. The reduce oper-

ation takes a non-empty input array with element type T and an associative function

f : (T, T) → T. The operation performs a reduction (or fold) on the array, comput-

ing a single value of type T for the entire array by applying f to pairs of elements.

For instance, reducing an array of numbers with the + operation will sum the array,

reducing with max will compute the maximum element of the array.

Because of the limited communication between threads on a GPU, a reduce

operation cannot be written in the same way as it typically would be in a sequential

1CUDA and OpenCL use different names to refer to similar concepts. Per-thread memory is

called local memory in CUDA, but private memory in OpenCL. Per-block memory is called block

memory in CUDA, but local memory in OpenCL. We use the OpenCL terminology in this thesis.

3

x0 x2x1 x3

f(x0,x1) f(x2,x3)

f(f(x0,x1), f(x2,x3))

x4 x6x5 x7

f(x4,x5) f(x6,x7)

f(f(x4,x5), f(x6,x7))

f(f(f(x0,x1), f(x2,x3)), f(f(x4,x5), f(x6,x7)))

Figure 1.1. Performing a reduction in parallel. Operations in each row can be imple-
mented independently. The output of the previous row is input to the next..

program or in a parallel program to run on multicore processor with shared memory.

The developer must keep in mind memory access limitations and the hierarchy of

work items and work groups. Global data is partitioned among work groups, and

each group can be allocated an area of per-group local memory for its work items to

perform their task.

The reduce operation is implemented as a kernel. Each work item executes the

kernel in parallel on a segment of the input array. The kernel uses work group and

work item identifiers to calculate indices into global and local memory arrays. Using

this approach, reduction of an array of length n can be computed in parallel log2 n

rounds, illustrated in Figure 1.1. First, f is applied to pairs of elements, producing

4

n/2 intermediate results. Then f is applied to pairs of these elements, halving the

number of elements again. This process is repeated until one element remains.

To execute on a GPU, the array is first copied to GPU global memory. Then,

in the first round, pairs of elements of the array are reduced and stored in a per-group

local array. The remaining rounds read from this local array. All SMs thus run in

parallel on their own data. Since each round depends on writes to the local memory

performed by the previous round, a memory barrier is required to ensure these writes

are visible to other threads running in that work group. In the end, each work group

produces a single value.

Because writes at one SM are not visible to other SMs, the reduction of these

intermediate per-group results cannot be completed on the GPU. Hence, the next

step is to write each of the per-group results back to global memory. From here, the

results, a much shorter array, are copied back to the host memory, and the reduction

is completed on the CPU.

Using OpenCL, before invoking the kernel, the programmer must explicitly

allocate storage on the GPU for the input, output, and local arrays. The programmer

must also explicitly copy the input to the GPU’s global memory and copy back the

output. In addition, because C does not support first-class functions and because

OpenCL does not allow dynamic dispatch, a new version of reduce must be written

for each function f. This code duplication can be avoided by using the C preprocessor,

but this is potentially error-prone.

1.5 Reduce in Firepile

Using Firepile’s GPUArray class, to compute the sum of an array A via parallel

reduction, one simply calls:

A.reduce(0)(_+_)

5

Figure 1.2 shows the implementation of reduce in the GPUArray class. The code

is based on an example from the NVIDIA OpenCL SDK.2 The implementation of

reduce handles partitioning of the problem space and specifying how the operation

should be parallelized. This implementation is built on top of a lower-level device

library [11], handles the details of data movement to and from the GPU, and compiles

Scala code into OpenCL kernels, as described in Section 2.3.

The reduce method starts by partitioning the problem space by rounding the

input array size up to the next power of two and dividing it into blocks of equal length.

Each work group will work on a different block, and each work item is responsible for

computing a single output or intermediate result. Each work group thus accesses one

segment of the array, performing a reduction into a local array.

The call to space.spawn invokes the reduce kernel on the GPU. The spawn

method takes a call-by-name parameter. The block of code containing the kernel

implementation is passed as a closure into spawn. The spawn method then compiles

this block at run time into an OpenCL kernel.

Bytecode of the block passed to spawn is loaded into Soot for further exam-

ination. Case classes for Soot units representing bytecode expressions are matched

for the generation of code trees that will later be translated into OpenCL C code for

execution on the device.

The compiler has access to the environment of the block, allowing it to specialize

the code based on the run-time values z and f. For instance, in the call to reduce

above, the compiler can generate a specialized version of reduce using the + operator.

Although the GPU itself does not support dynamic memory allocation, the pro-

grammer can allocate memory within code passed to spawn. The compiler identifies

array and object allocations within the kernel body and generates code to run on

2http://developer.nvidia.com/opencl-sdk-code-samples.

6

the host to allocate sufficient storage in GPU memory before the kernel is invoked.

When the kernel is invoked, the input array is copied to the GPU. When the kernel

completes, the output array is copied from the GPU into host memory. Unlike with

the C API for OpenCL, the programmer does not need to specify the kind of memory

(global, local, etc.) to allocate. Instead, the Firepile compiler analyzes the code to

determine where a given buffer should be allocated. Movement of data between the

host and GPU device are also handled by the library.

Developers can use the GPUArray library to program at a high-level or can

implement their own kernels using the lower-level mechanisms provided by Firepile.

Even at this lower level, tedious details of data movement and memory allocation are

handled by the library rather than by the kernel developer.

1.6 Memory Use Analysis

A novel static memory use is described to overcome a serious restriction of

OpenCL by allowing programmers to dynamically allocate memory on a GPU. We

implement our memory use analysis on Firepile [4], a library for GPU programming

in Scala. Like other resource consumption analyses [12, 13, 14, 15], our analysis op-

erates at the bytecode level. Information about allocation points, locations within

bytecode where objects and arrays are created, is collected. Loops containing alloca-

tion points are reconstructed into an AST that allows them to be easily solved for a

loop complexity expression, assisting in summing up the total number of allocations

performed at an allocation point. A simple escape analysis is performed that aids in

determining which level of memory should be used for heap space. Finally, runtime

information is substituted for unknown values in our complexity expression, combined

with types sizes and number of thread executions required for program execution to

7

automatically pre-allocate the suitable amount of memory as a heap buffer for each

allocation point.

8

1 def reduce(z: A)(f: (A,A) => A)

2 (implicit dev: Device): A = {

3

4 val input = this.array

5

6 val n = input.length

7

8 // partition the problem by padding out to the next

9 // power of 2, and dividing into equal-length blocks

10 val space = dev.defaultPaddedBlockPartition(n)

11

12 // spawn the computation on the GPU, returning

13 // an array with one result per block

14 val results = space.spawn {

15 // allocate output in global storage

16 val output = Array.ofDim[A](space.groups.size)

17

18 // for each block, in parallel

19 for (g <- space.groups) {

20 // allocate temp in per-block storage

21 val temp = Array.ofDim[A](g.items.size)

22

23 // for each thread, in parallel

24 for (item <- g.items) {

25 val i = item.id

26 val j = g.id * (g.items.size * 2) + i

27

28 // do the first round of the reduction into

29 // per-block storage

30 temp(i) = if (j < n) input(j) else z

31

32 if (j + g.items.size < n)

33 temp(i) = f(temp(i), input(j + g.items.size))

34

35 // make sure subsequent rounds can see

36 // the writes to temp

37 g.barrier

38

39 // do the remaining log(n) rounds

40 var k = g.items.size / 2

41

42 while (k > 0) {

43 if (i < k)

44 temp(i) = f(temp(i), temp(i + k))

45 g.barrier

46 k /= 2

47 }

48

49 // copy the result back into global memory

50 if (i == 0)

51 output(g.id) = temp(0)

52 }

53 }

54

55 output

56 }

57

58 // finish the reduction on the CPU

59 results.reduceLeft(f)

60 }

Figure 1.2. Reduce in Firepile.

9

CHAPTER 2

Firepile Run Time System

2.1 Code Trees

In this section we describe the mechanism by which Firepile translates Scala

code into OpenCL kernels to run on the GPU. The key idea is to create code trees

from run-time function values. These trees can then be analyzed by the program and,

in the case of Firepile, compiled into OpenCL C code.

The spawn method introduced in Section 1.5 serves as the entry point for the

translation mechanism of Firepile. The method translates its argument, a function

value, into an abstract syntax tree representing the function. These abstract syntax

trees are implemented using tree classes based on the scala.reflect.generic.Tree

subclasses in Scala standard library. The standard library classes were not used

directly since using them requires implementing a large number of abstract classes

and methods that were not needed.1

Code trees are constructed from function values by locating the JVM byte-

code for the function, loading and parsing it, reconstructing Scala type and symbol

information, and then finally creating the trees from the bytecode instructions.

The Scala compiler translates function values into anonymous Java objects with

an apply method. This translation is illustrated for the function (x: Int) => x + a in

Figure 2.1(a). Here, a is a local variable captured by the closure. Function invocation

is translated into a call to the apply method. Variables captured by the function body

are represented in bytecode as fields of the function object. Uses of these captured

1http://github.com/dubochet/scala-reflection/wiki.

10

public final class A$$anonfunm1

extends scala.runtime.AbstractFunction1

{

private final int a$1;

public int apply(int x) { return x + this.a$1; }

public A$$anonfunm1(int a) { this.a$1 = a; }

}

(a) Java translation of (x:Int) => x+a (simplified)

Function(List(LocalValue(_, x, scala.Int)),

Apply(Select(Ident(LocalValue(_, x, _)),

Method(scala.Int.$plus, scala.Int)),

List(Select(Ident(ThisType(A$$anonfunm1), _),

Field(a$1, scala.Int)))))

(b) Code tree for (x:Int) => x+a

Figure 2.1. Translation to Java and code tree for the function (x:Int) => x+a

where a has been captured from the environment of the function. The Scala compiler
generates JVM bytecode similar to the code generated for the Java code in (a). We
use Java syntax rather than bytecode syntax since it is more readable. The Scala
compiler generates additional methods in the function object, which we elide, to
allow it to be used with generics and for type specialization. The code tree in (b) has
been simplified to remove temporary variables. is used to elide symbols. .

variables are translated into field accesses. In the example, the captured variable a

is translated into the field a$1. The Scala compiler translates function creation into

instantiation of the anonymous function object, passing the captured variables into

the function object constructor, which initializes the fields.

The code tree constructed from the bytecode for (x: Int) => x + a is shown

in Figure 2.1(b). The code tree nodes are instances of the case classes in Figure 2.2.

By using Scala case classes, pattern matching can be done on code trees, making it

easier to identify complex code sequences that need special handling in GPU code

generation.

11

Tree class Description

Function(formals,body) Function tree containing
list of formal parameter
symbols and body tree.

ValDef(symbol,rhs) Definition of a value rep-
resented by symbol with
rhs tree for initialization.

Assign(lhs,rhs) Assign rhs expression to
lhs target.

Select(qual,symbol) Selection of method or
field symbol to be invoked
on qual.

Apply(fun,args) Apply a function fun to
arguments list args.

Method(name,type) Symbol for a method with
name and return type
type.

LocalValue(owner,name,type) Symbol to represent a
local value with owner,
name, and type.

If(cond,tcase,fcase) A conditional branch.
Literal(value) A literal value.
Target(symbol,body) A branch target with label

symbol and body.
Goto(target) Represents a jump to a

target symbol target.
Block(stmts,type) Represents a code block

containing a tree of state-
ments stmts with result
type type.

Figure 2.2. Selected code tree classes.

2.2 Constructing Code Trees at Run-time

Next, we describe the steps the run-time compiler takes to construct code trees

from bytecode produced by the Scala compiler. These code trees form an abstract

syntax tree that will later be used to generate OpenCL kernel code.

2.2.1 Loading the Function Bytecode

The first step in constructing the code tree for a function is to locate the byte-

code for the function. Given a function f, the java.lang.Class for f can be retrieved

12

with f.getClass. Using the class object, the bytecode is loaded from the classpath

into the Soot bytecode analysis framework [16]. The code for the function object’s

apply method is then located.

2.2.2 Type Reconstruction

One challenge with constructing code trees is that type information is lost in

translation from Scala to JVM bytecode. Before building trees, an analysis is per-

formed to reconstruct Scala types from the bytecode. Many Scala types are easily

inferred due to the Scala compiler directly mapping these to appropriate JVM equiva-

lents. For instance, primitive types such as scala.Int and scala.Float are compiled

into their corresponding JVM types. scala.Array[T] is likewise mapped to a T[]

array. However, many Scala types, e.g., structural types and type parameters of

generic types, do not have a corresponding JVM equivalent. In addition, the types

of local variables and operand stack temporaries are not represented directly in the

bytecode.

The Scala compiler encodes signature information for each method and field as

attributes in the class file. These give the Scala types of formal parameters and return

types. Using the formal parameter types and the types of any fields and methods a

method m accesses as a starting point, a simple forward flow analysis can be used to

reconstruct the types of m’s local variables and temporaries.

2.2.3 Tree Construction

Code trees are generated from the Soot representation of the method bytecode.

The translation is mostly straightforward. Scala extractor objects are used to conve-

niently match various elements of Soot’s bytecode representation. The function itself

is represented by a Function object, shown in Figure 2.2. Most Scala expression or

13

type forms have a corresponding Tree class. Branches are represented using Goto

nodes; loops are not reconstructed.

Formal parameters and local variables are mapped to instances of the LocalValue

class. LocalValue(owner,name,type) trees contain an owner Symbol, a parameter

name String, and a Type. Symbol is an abstract class representing a class, type,

method, variable, or similar declaration. The Type classes correspond to the various

types constructors defined in the Scala specification [17].

In Scala, primitive operations such as + are actually method calls on values of

the primitive classes (e.g., scala.Int), unary and binary bytecode instructions are

therefore translated into method calls, represented by the Apply class. For example,

the iadd bytecode instruction, which adds two integers a and b is translated into the

node for a.$plus(b):2

Apply(Select(Ident(LocalValue(_, a, _)),

Method(scala.Int.$plus, scala.Int)),

List(Ident(LocalValue(_, b, _))))

Figure 2.1(b) shows an example of the tree generated from the function (x:

Int) => x + a, where a is a value captured from the environment of the function.

The Function tree is generated containing a list of LocalValues for the parameters

to the function. A method of type scala.Int representing + is then applied to the

field a of class ThisType(A$$anonfunm1), which is the type of the function itself.

2.3 The Firepile Compiler

The Firepile library provides collections classes to perform data-parallel oper-

ations on a GPU. We expect most users to write programs that use these classes.

However, to implement these collections classes, and to provide more control over

2For conciseness, we elide some sub-expressions by writing .

14

GPU resources, the library also provides lower-level classes and methods for device

and memory management, as well as a compiler for translating Scala functions into

kernels to run on the GPU. In this section, we focus on the Firepile compiler and

in particular how the code trees described in Section 2.1 are used to implement the

compiler.

2.3.1 Writing a Kernel

Consider again the reduce example from Figure 1.2 in Section 1.5. An input

array of element type A is passed into the reduce method along with a reduction

operation f and an initial value z. The method is written in an explicitly parallel

style. The problem space is mapped onto a one-dimensional grid of work items, one

for each element of the input array, padded out to the next power of two (line 8).

Each work item corresponds to a single thread on the GPU. The grid of work items

is then partitioned into a set of work groups, each of which corresponds to a set of

threads that execute on the same streaming multiprocessor (SM) on the GPU. All

work items can access global memory. Each work group has its own local memory

that can be used to share data between work items in the group.

The method then spawns a computation to run on the GPU (lines 14–56). On

the GPU, an output array is allocated (line 16) into which the result will be written.

In the generated code, the call to allocate memory on the GPU is actually performed

on the CPU. Each work group will write to one element of output.

Next, each work group executes code in parallel with the other work groups

(lines 19–53). Each group creates an array of the group size (line 21) in the local

memory for that group. Again, in the generated code, the actual allocation runs on

the CPU. This array will be used to share partial results between work items in the

group. Next, each work item performs the same computation in parallel on different

15

segments of the input array (lines 24–52). First, two elements of input are reduced

into one element of the temp array. Then, log2 |group| additional reduction operations

are performed on the temp array. After each reduction operation, a barrier is executed

to ensure that other work items in the group observe the writes to the array. Barriers

on local memory are the only synchronization operation on the GPU supported by

OpenCL. These operations put the reduced value for the work group’s segment of

the input array into temp(0). The first work item in the group copies this partial

result to the output array (lines 50–51), which is then returned to the CPU (line 55).

Finally, the partial reduction results are reduced sequentially on the CPU (line 59).

The spawn function invokes the run-time compiler on the code block that is

passed into it. It has the following signature:

def spawn(block: => Unit): Unit

The formal parameter type => Unit indicates that block is a call-by-name argument

of type Unit. Passing by name allows spawn to compile and run block as an OpenCL

kernel rather than having block execute on the CPU. The block passed to spawn

is responsible for assigning computation to the appropriate work items and work

groups to be run on the GPU. In general, the block consists of one or more nested

loops over work groups and work items. Any data declared in the scope of the group

loop (line 19) but outside of the items loop (line 24) is treated as local memory to

the work group and can be shared among the work items. Only array or variable

declarations are expected in this code block since statements can only be executed

by work items. The run-time compiler verifies that the code follows the expected

pattern. The spawn method compiles the body of the work-item loop into a kernel.

The kernel is specialized on function values captured by the block. The results of

the compilation is memoized so that the next invocation of spawn on the same code

block, with a compatible environment, does not recompile the code.

16

2.3.2 The Run-time Compiler

The Firepile compiler generates OpenCL kernels using code trees described

in Section 2.1. The spawn function first constructs a code tree for its code block

argument as outlined in Section 2.1. The trees are then compiled into C through a

recursive translation function. The C code is, in turn, compiled by the JavaCL [11]

library into a binary to be executed on the GPU.

Variables captured by the block passed to spawn—for instance the input array

in Figure 1.2—are compiled into function parameters in the generated code. When

the kernel is invoked, these parameters are initialized by copying data from the CPU

into the GPU’s global memory.

The compiler assumes a closed world: any classes that will be used in the

generated code are assumed to be available during compilation. Since the compiler

is often invoked immediately before the kernel is run, this assumption usually holds.

Any methods invoked by the kernel function being compiled are also compiled into

native code. Any types referenced by the code block are also translated.

Built-in Scala data types are translated into C primitive types (e.g., scala.Float

is translated into float). Arrays are translated into a two-word struct containing a

field for the array length and a pointer to a buffer containing the array elements.

Because virtual dispatch is not supported by OpenCL, dispatch tables are not

generated for each class; instead, objects are translated into a tagged union: that is,

an object of class C is compiled into a struct containing a one-word type tag and a

union of all possible subclasses of C. These tags will later be used to simulate virtual

dispatch as described in Section 2.3.4. Methods are translated into C functions that

take an explicit this parameter as their first argument.

Rather than treating first-class functions like regular Scala objects, they are

instead handled specially. Since the compiler has access to the run-time environment

17

struct Object {

int __id;

};

struct A {

struct Object _Object;

int x;

};

struct B {

struct A _A;

int y;

};

union Object_sub {

int __id;

struct Object _Object;

struct B _B;

struct A _A;

}

union A_sub {

int __id;

struct B _B;

struct A _A;

};

union B_sub {

int __id;

struct B _B;

};

Figure 2.3. Firepile class translation.

of the code it is compiling, it can often identify the actual function values passed

into a method and will then generate a specialized version of the method for that

value. For instance, given the call A.foldLeft(0)(_+_) the compiler will generate

a specialized version of foldLeft that returns the sum of the elements of A. If the

function value has captured variables, the function’s environment is translated into a

C struct containing fields for each of the captured variables. This structure is passed

into methods that take the function as an argument.

2.3.3 Class Translation

Figure 2.3 illustrates how the following Scala classes are translated.

class A(val x: Int) { ... }

class B extends A(val y: Int) { ... }

Each class is translated into a struct and a union. The struct for class C represents

an object of exactly that class. Each struct begins with the struct for its immediate

18

superclass. The built-in Object class is translated into a struct with a type tag used

to implement method dispatch, as described in the next section. The union generated

for C is the union of the structs for all subclasses of C, plus the type tag. The union is

used whenever a value that could be any subclass of C is needed. A source-language

variable with type C is translated into a variable of the union type.

2.3.4 Expression Translation

When generating C code, the compiler performs pattern matching on the code

trees. It first identifies certain known expressions that need to be handled specially on

the GPU. These include accesses to the work group and work item identifiers, which

are compiled into library calls in the generated kernel. Calls representing primitive

operations like + are translated into the appropriate operation. The Firepile library

also provides utility classes such as unsigned integers (useful when porting C code

to Scala) and math operations analogous to those provided by the OpenCL math

library. These are also handled specially by the compiler.

Since the GPU does not support virtual calls, these must be translated into

nonvirtual calls. First, the compiler enumerates the possible receivers of the method

to determine if it is monomorphic. This is done by first checking the modifiers of

the class and the method for a final declaration. If the class and method are not

final, the known subclasses are searched to determine if they override the method.

If the method call is found to be monomorphic then the called method is recursively

translated and a nonvirtual invocation is generated. If the call is not monomorphic, a

call is generated to a dispatch method, which performs a switch on the object’s type

tag to invoke the appropriate method nonvirtually.

Consider a call to a non-monomorphic method m that could be implemented in

either of classes A or B from Section 2.3.3.

19

int A_m(A_sub* _this, int _arg0) { ... }

int B_m(B_sub* _this, int _arg0) { ... }

int dispatch_A_m(A_sub* _this, int _arg0) {

switch (_this->__id) {

case A_ID: {

return A_m((A_sub*) _this, _arg0);

}

case B_ID: {

return B_m((B_sub*) _this, _arg0);

}

}

}

Figure 2.4. Dispatch method for a method m with two possible implementing classes.

val a: A = ...

a.m(10)

The call is translated into the following call to the dispatch function in Figure 2.4:

A_sub* a = ...;

dispatch_A_m(a, 10);

The types A_sub and B_sub used in the figure are defined in Figure 2.3.

A potential performance issue that can arise from simulating polymorphic calls

is warp divergence when performing a method call over a collection of mixed types.

Depending on the dynamic type of an item in a collection, a given method call may be

dispatched to different functions in different threads executing within the same warp

on an SM. Because of the SIMD execution model, the different execution paths will

be serialized, resulting a slowdown. A possible optimization is to split the collection

into separate arrays based on their run-time type, thus making the calls monomorphic

and avoiding the warp divergence. Rearranging the collection to clustering elements

of the same type would have a similar effect. We plan to support these optimizations

in later versions of Firepile.

20

The compiler also handles array and object allocation specially. Since dynamic

allocation cannot be performed on the GPU, all memory used by a kernel on the

GPU must be pre-allocated before the kernel is invoked. Memory is allocated in one

of the levels of the GPU memory hierarchy: global, local, and private. It must also

be determined whether a given global array is to be used for input, output, or both.

Most object allocation is simply rejected by the compiler. The kernel can only access

objects passed into the compiler. The compiler identifies array allocations and based

on their scope determines in which class of memory to allocate the array before the

kernel is invoked. If the array does not escape the scope of the kernel’s work-item

loop, it is allocated in per-thread private memory; if it does not escape the scope of

the kernel’s work-group loop, it is allocated in per-group local memory. Otherwise,

it is allocated in global memory. Since all memory used by the GPU must be pre-

allocated before the kernel is invoked, allocation within loops that run on the GPU

are prohibited. An allocation site in a given scope must dominate the exit of that

scope. In addition, if the size of the array depends on a value computed by the kernel

itself, the allocation is rejected. We plan to implement a more thorough memory

analysis in the future, computing the memory requirements of the kernel as functions

of the kernel’s formal parameters.

Other expression types such as basic control constructs are translated in a

straightforward manner. Exception throws are rejected by the compiler; exception

handlers are simply elided from the generated code.

2.4 Related Work

Work related to this chapter intersect areas of meta programming as well as

alternative GPU programming approaches. These works are discussed in the following

subsections.

21

2.4.1 Meta Programming

Lisp [5] was the first language to introduce meta-programming features. Lisp

supports quasiquoting [6], which allows programmers to construct code templates

with “holes” that can be filled in with concrete values. Various forms of quasiquoting

are supported in many languages nowadays, including Scheme [18], Haskell [7], and

C] [19]. MetaML [8] and MetaOCaml [9] support type-checking of quoted code. Scala

has some experimental quasiquoting support in the class scala.reflect.Code. The

Mnemonics [20] library uses this feature to generate bytecode from function values—

the inverse of our code trees.

A key difference between our approach and quasiquoting is that our code trees

are constructed at run time from function values. With quasiquoting, code trees are

constructed statically by the programmer. By constructing trees statically, library

writers who want access to the code of functions passed into the library must require

that code trees, rather than functions, be passed into the library. Consider the reduce

function from Figure 1.2. Rather than passing in a function of type (A,A) => A, the

programmer would instead pass in a code tree, e.g., of type Code[(A,A) => A]. This

exposes details of the implementation of the library to the caller. If the call to a

function like reduce is hidden under a stack of other functions, then the use of code

trees is exposed further.

Java [21] and other JVM languages also support code introspection or reflection

features. These allow the programmer to inspect objects at run time and to access

their members without having static knowledge. Firepile’s code tree construction

extends this feature by allowing introspection on the implementation of an object or

function.

Bytecode instrumentation is an another approach we considered taking with

Firepile. Java 6 supports agents in the java.lang.instrument package. Agents

22

are loaded into the VM to intercept class loading and can rewrite classes as they

are loaded. They can be used to implement new language features. For example,

Deuce [22] adds software transactional memory support to Java through bytecode

instrumentation. Our code trees differ from Java agents in that the program repre-

sentation is at a higher level. Code trees are closer to the original Scala code than to

Java bytecode. The Scala program itself, rather than an external entity, has control

over when and how the trees are constructed.

Compiler plugins provide another way to extend the base programming lan-

guage with new functionality. Compiler plugins extend the base compiler with new

semantics by adding new compiler passes. For instance, the ScalaCL compiler plu-

gin [23] transforms uses of the standard Scala collections library into OpenCL kernels.

The ScalaQL plugin [24] extends Scala with database queries.

2.4.2 GPU Programming

The two most widely used programming models for GPUs are CUDA [2] an

OpenCL [1]. Both provide similar abstractions and require explicit management

of data movement to and from the GPU as well as between the different classes

of memory on the GPU. Firepile generates OpenCL kernels. OpenCL kernels are

written in an “extended subset” of C with no support for dynamic memory allocation,

function pointers, or recursion. OpenCL C supports additional vector types not

found in standard C. Firepile does not support these vector types. Wrappers for both

CUDA and OpenCL exist for several languages, including Python [25, 26, 27] and

Java [11, 28, 29].

CLyther [30] is an extension of Python with OpenCL support. CLyther pro-

vides access to OpenCL APIs like PyOpenCL, allows device memory management,

and supports an emulation mode for OpenCL code. Similarly to Firepile, CLyther

23

performs dynamic compilation of a subset of the base language (viz. Python) into

OpenCL kernels.

An alternative for runtime code generation using Scala is to use the Scala com-

piler’s plugin mechanism. The ScalaCL plugin [23] translates Scala code into corre-

sponding kernel code, employing JavaCL wrappers for execution. Originally, ScalaCL

allowed kernels to be written using an embedded DSL for specifying parallel computa-

tion on GPUs. The compiler plugin now identifies Scala loops that can be parallelized

and transforms these to run on the GPU. The ScalaCL feature that performs trans-

lation is restricted to be used only with selected operations of its parallel collection

library, whereas Firepile attempts to translate as much of Scala as possible and allows

users to write root level kernel functions using Scala.

A hybrid compile time/runtime approach is taken by the commercial product

from TidePowerd called GPU.NET [31]. GPU.NET enables GPU acceleration of

.NET languages including C], F], and VB.NET. Methods must be annotated as

kernels and kernel code generation from .NET bytecode (CIL) is performed behind

the scenes and embedded inside assemblies. Memory transfers and scheduling are

all performed in the background and programmers need not have any knowledge of

the GPU architecture. Runtime plugins determine how the final assembly will be

executed on available hardware, or executed on the CPU as a fallback option.

Accelerator [32] is a library for use with multicore CPUs and DX9 GPUs in order

to increase performance of parallel code (array processing) execution. Intended for

use with .NET, Accelerator programs are typically written in F] or C] 4.0, although

using unmanaged C++ remains an option. Like GPU.NET, Accelerator supports

multiple .NET languages.

Aparapi [33] is an API for AMD GPUs that allows the expression of data-

parallel workloads in Java. Aparapi translates a subset of Java into OpenCL code.

24

The subset is restricted to allow only primitive data types and one-dimensional arrays.

In addition, primitive scalar fields are read only, static field support is limited, arrays

cannot be passed as method arguments, nor can their lengths be accessed. Static

methods, method overloading, recursion, and object allocation are all unsupported.

Chafi et al. [34] introduce Delite, a framework for parallelization of DSLs that

can use Scala ASTs as their base. Delite performs parallel optimizations and data

chunking, and allows for translation to C++ for execution on target systems. Delite

includes classes that can be used to specify parallel execution patterns such as Map,

Reduce, ZipWith, and Scan. Kernels can be generated from these classes and an

optimized execution graph that is executed by the Delite runtime.

Functional languages are a natural choice for data-parallel programming on

(or off) GPUs. Nikola [35] is a first-order language for array computations that

is embedded in Haskell and is compiled to CUDA. Low-level details such as data

marshaling, size inference of buffers, management of memory, and loop parallelization

are handled automatically. The quasiquoting feature of GHC [7] is used in translation

to CUDA code and allows CUDA code to be written in as a Haskell program. Nikola

supports both compile-time and run-time code generation.

Lee et al. [36] demonstrate GPU kernels embedded in Haskell as data-parallel

array computations, mixing CPU and GPU computations while taking advantage of

the type system to avoid some of the constraints associated with GPU architectures.

The domain specific language used to write kernels is restricted to what can be com-

piled to CUDA. A run-time compiler GPU.gen translates the DSL into CUDA code

and dynamically links it to the Haskell program using the Haskell plugins library.

There are several dedicated languages for GPUs and other accelerators. CUDA [2]

supports GPU programming through an extension of C++. The Brook language [37]

extends the C with data-parallel constructs for stream programming on GPUs. Ker-

25

nels are mapped to Cg shaders by the source-to-source compiler and the Brook run-

time handles kernel execution. The Liquid Metal system [38, 39] introduces the Lime

programming language and runtime for acceleration designed to be executed across

many architectures, including CPUs and FPGAs. Unlike Firepile, Liquid Metal re-

quires the use of a special purpose language for programming accelerators in order

to be more adaptable to data-parallel programming (functional, stream computing,

bit-level processing, etc).

26

CHAPTER 3

Memory Use Analysis

3.1 Introduction

This chapter describes a static memory use analysis that overcomes one of the

most serious restrictions of OpenCL by allowing programmers to dynamically allocate

memory on a GPU. We implement our memory use analysis on Firepile [4], a library

for GPU programming in Scala. Like other resource consumption analyses [12, 13,

14, 15], our analysis operates at the bytecode level. Information about allocation

points, locations within bytecode where objects and arrays are created, is collected.

Loops containing allocation points are reconstructed into an AST that allows them to

be easily solved for a loop complexity expression, assisting in summing up the total

number of allocations performed at an allocation point. A simple escape analysis

is performed that aids in determining which level of memory should be used for

heap space. Finally, runtime information is substituted for unknown values in our

complexity expression, combined with types sizes and number of thread executions

required for program execution to automatically pre-allocate the suitable amount of

memory as a heap buffer for each allocation point.

Our approach of using static analysis to perform pre-allocation rather than

building a memory allocator for execution on the GPU itself has the advantage of

avoiding significant management and synchronization overhead. While advances in

performance have been made over the standard memory allocator included in recent

versions of CUDA [40], keeping sections of code intended for execution on a GPU

device as simple as possible is necessary for achieving the maximum performance

27

benefit that such an accelerator can provide while keeping the chance of introducing

difficult to catch bugs at a minimum.

3.1.1 GPU Challenges

We will begin by sketching the architecture of a GPU and how one is pro-

grammed in order to give an overview of the challenges faced when programming for

these devices. For this discussion we are using NVIDIAs latest hardware architecture,

Fermi [10] and the OpenCL programming model [1]; however, many of the same issues

occur with other GPU architectures and other GPU programming models.

A Fermi GPU may contain up to 512 cores divided over 16 streaming multipro-

cessors (SM), each with 32 scalar processors. Threads are executed in groups of 32

called warps. All threads in a warp are executed using SIMD instructions on a single

SM; that is, all threads execute the same instruction simultaneously. OpenCL ab-

stracts threads and groups of threads into work items and work groups, respectively.

The number of work items in a work group need not match the number of hard-

ware threads in a warp, although a mismatch can introduce a significant performance

penalty through underutilized resources.

Work items (threads) running on the GPU have access to multiple types of

memory. In addition to private, per-thread memory, all threads in a warp running on

the same SM have access to shared, per-SM memory. Correspondingly, in OpenCL

all work items in a work group have access to shared, local memory. Finally, all work

items running on the GPU have access to global GPU memory. Typical memory sizes

are 64 KB for local memory and 256 MB up to 6 GB for global memory. Communica-

tion between threads is limited under this architecture. Threads running on the same

SM can communicate through per-block local memory memory. Threads running on

different SMs could communicate through global memory, however, global memory

28

1 def foo(k: Int) = {

2 for (group <- space.groups) {

3 val n = k * k

4 val A = new Array[Float](n)

5
6 for (item <- group.items) {

7 for (i <- 0 to n) {

8 val B = new Array[Float](n + i) // k*k + k*k

9
10 for (j <- 0 to n + i)

11 B(j) = math.sqrt(item.globalId).toFloat

12
13 A(i) = B(i)

14 }

15 }

16 }

17 }

Figure 3.1. Example of two array allocations, one within a loop..

provides no synchronization guarantees: a write performed by a thread running on

one SM will not be visible to a thread running at a different SM. OpenCL program-

mers must allocate data to work items and work groups prior to execution beginning

on the GPU with all of these restrictions in mind.

3.1.2 Motivating Example

Figure 3.1 shows a Scala method containing a work item code block that allo-

cates data dynamically. Two arrays of floating point numbers are allocated, one of

which is contained within a loop body.

The goal of this work is to locate memory allocations and the size of memory

needed for those allocations within code that is intended for translation and exe-

cution on the GPU device. To do this the analysis must calculate the number of

allocations for object and arrays, even if those allocations take place in loops or if ar-

29

rays are created using values that are not known until runtime. It is also necessary to

make decisions about where memory can be reused and at what level of the memory

hierarchy is best to provide heap space for allocations.

To allocate array A we must track the origin of the array size expression n. The

analysis will determine that the value of n comes from k*k. Following the origination

of k it is found to be an unknown value at compile time. A symbolic expression repre-

senting the bound of the array will be generated and runtime values for k substituted

to evaluate the expression k*k for a concrete array bound. An array of float type

using the concrete array bound as its size will be supplied to the kernel by Firepile

at runtime. Firepile finds that array A is declared inside of the work group loop but

outside of the work item loop, it will be allocated once per work group as an array in

local memory space.

Array B provides a more interesting example of array allocation since the allo-

cation takes places inside of a loop body within the work item. As with array A, the

array size expression is extracted and origin of variables is tracked. The value for n

comes from k*k but the value for i comes from the upper bound of the loop since it

is the loop iteration variable. Solving for the amount of memory required by array

B will involve finding the complexity of the loop from 0 to n (or 0 to k*k) as well as

the upper bound on n+i (or k*k + k*k). Since the array allocation of size k*k + k*k

is nested within the loop from 0 to k*k, the number of allocations would typically

be considered to be (k*k)*(k*k+k*k). However, since B does not escape the loop,

memory will be reused over loop iterations resulting in heap space being allocated for

only one array of size k*k+k*k.

30

Bytecode	

new	 malloc	

Code	 tree	 crea0on	

OpenCL	 C	
Kernel	

Malloc	
genera0on	

Tree	
transla0on	

C	 Trees	 Scala	 Trees	 	
+	 Malloc	

Scala	 Trees	
malloc	

Complexity	
Expression	

Co
m
pl
ex
ity

	 A
na
ly
si
s	

Run0me	 Data	

GPU	

Heap	 Space	
Calcula0on	

Allocated	
Heap	
Buffers	

Kernel	
Queuing	

Analysis	 and	 Transla,on	

Kernel	 Execu,on	

Code	 genera0on	

Figure 3.2. Phases of memory analysis and translation..

3.2 Approach

An overview of our approach can be seen in Figure 3.2. Memory analysis and

translation is shown above the dotted line and later phases that occur just before

kernel execution are shown below. Code tree generation and translation are performed

primarily by the Firepile library with the addition of the memory allocation (malloc)

generation phase.

Code tree generation recovers a tree representation (Scala code trees) of original

Scala work item code from bytecode. Instructions involving dynamic data allocation

(allocation points) are replaced with calls to a generated memory allocation function

producing a tree representation that includes new calls to the generated function. A

tree translation phase takes the Scala code trees with newly added memory allocation

31

function calls and produces a C-like AST suitable for generation of kernel code in the

C99 language subset known as OpenCL C. Kernel code is then passed to the device

driver of a GPU device supporting OpenCL. The kernel is compiled by the driver and

execution can be queued using the OpenCL API.

The goal of complexity analysis in our approach is to collect loops and array

allocations from bytecode and generate a symbolic complexity expression that can

later be evaluated for the number of allocations performed at an allocation point. We

use ABC [41] to compute symbolic expressions for loop bounds and synthetic loops for

array allocations. Synthetic loops are nested inside of the representation of an outer

loop when array allocations are contained within a loop. This allows the resulting

symbolic complexity expression to easily capture the number of data elements required

to store multiple allocations of an array. Symbolic complexity expressions are a

parametric representation of the upper bound on the number of executions for given

loop or nested loops. Unknown variables in the symbolic complexity expression are

left to be substituted for runtime values. The following is an example of a symbolic

expression after evaluating the loop containing allocation of array B in Figure [?]:

(k*k) * (k*k + k*k)

Note that this example symbolic expression does not take into consideration

that space used for array allocation can be reused over loop iterations. Our algorithm

would recognize this fact in the code example shown and eliminate the term for the

outer loop leaving the array size expression (k*k + k*k).

ABC was chosen as the library to compute symbolic expressions due to its

ability to handle the kind of loops that regularly appear in GPU code. ABC also

provides a convenient means of interfacing with its solver through the use of Loop

Language Trees (LLTs). Loop Language Trees will be described in Section 3.3.1.

32

At the time of kernel execution, runtime values are provided for variables in the

symbolic complexity expression. The expression is evaluated and combined with data

sizes for the type of variable being allocated. Since all work items (threads required

to complete the data-parallel task) execute the same kernel, the number of work items

is included to arrive at the final heap buffer size. Heap buffer allocation requests are

performed on the host to make the needed memory available to the kernel during

execution.

3.3 Implementation

Our memory use analysis is implemented as an extension to the Firepile library

for Scala programming of GPUs. Using a forward flow analysis, information about

points of memory allocations and loops contained within the bytecode of a work item

are collected into a Loop Language Tree (LLT) representation during the complexity

analysis phase. Loop Language Trees are described in Section 3.3.1. LLTs can be

solved resulting in complexity expressions. Complexity expressions are later used for

calculating total memory use. Firepile is used to produce memory allocation functions

and runtime information is retrieved in order to evaluate complexity expressions for

the size of device buffers to be used as heap space during execution.

3.3.1 Loop Language Trees

Loop Language Trees are an AST representation used to describe loops ex-

tracted from bytecode. LLTs provide a means for describing loops containing loop

variable initialization, loop condition, loop variable increment, as well as a loop body

section. The loop body section is used to include other loops that are nested within

the outer loop. An example of the LLT representation for the inner loop found on

line 10 of Figure 3.1 is shown:

33

1 ForLoop(Assign(i, 0),

2 LessThan(i, n),

3 Assign(i, i + 1),

4 ForLoop(Assign(j, 0),

5 LessThan(j, n + i),

6 Assign(j, j + 1)))

Variables i, j, and n are IntVar nodes that represent integer loop variables.

IntVar and IntVal (used for integer constants) are nodes of type AExpr, used to

represent arithmetic expressions. A mathematical operation such as addition shown

above is converted into an AExpr node such as Sum. Boolean expressions like LessThan

are nodes of type BExpr. Loop language tree nodes are described in Figure ??

Loop language trees constructed from bytecode are passed to the solver to find

the loop complexity expression for the given loop.

3.3.2 Complexity Analysis Algorithm

allocations: allocation_point --> ABC_complexity

heapBuffer: allocation_point --> (memory_region, heap_size)

The algorithm, shown in Figure ?? starts by examining nodes that contain an

instruction to allocate dynamic memory, known as allocation points. The first set of

allocation points collected are the simple case where allocations do not occur inside

of a loop. collectNonLoopAPs takes the body of the work item code and returns a

list of these allocation points. If the allocation point is found to be creating a new

array through an array creation instruction, a loop representation is generated to

calculate an array bound. The loop representation is created by using a generated

loop variable, a conditional expression based on the size expression extracted from the

34

Tree node Description

ForLoop(init,cond,inc,body) Loop representation con-
taining loop variable ini-
tialization, loop condition,
variable increment, and
loop body.

IntVar(name) Definition of an integer
value represented by name.

IntVal(const) Constant integer value.
Sum(e1,e2) Addition operation on

arithmetic expression
nodes e1 and e2.

Sub(e1,e2) Subtraction operation
on arithmetic expression
nodes e1 and e2.

Mult(e1,e2) Multiplication operation
on arithmetic expression
nodes e1 and e2.

Div(e1,e2) Division operation on
arithmetic expression
nodes e1 and e2.

IntDiv(e1,e2) Integer division operation
on arithmetic expression
nodes e1 and e2.

LessEqual(e1,e2) Less than or equal to com-
parison of nodes e1 and
e2.

LessThan(e1,e2) Less than comparison of
nodes e1 and e2.

GreaterEqual(e1,e2) Greater than or equal to
comparison of nodes e1

and e2.
GreaterThan(e1,e2) Greather than comparison

of nodes e1 and e2.
Equals(e1,e2) Equivalence of nodes e1

and e2.

Figure 3.3. Loop language tree nodes.

array allocation, and a loop increment of 1 on the generated variable. Once the loop

representation for the single fake loop has been generated, it is passed to the solver

and a symbolic complexity expression for the loop is returned. If the allocation point

is not creating an array but instead a single class instance, the number of instances

at this time is considered to be simply 1 and does not require the generation of a

35

loop. A map of allocations is maintained that uses the allocation point as a key and

the complexity expression as a value.

Next, the algorithm iterates over a set of outer loops that has been collected

from the body of work item code. Loops are recognized using a method similar to

that described in [42]. For each of these loops the loop variable initialization, loop

condition, increment expression, and loop body are extracted. All allocation points

are also collected from the loop body. A new LLT is constructed for each allocation

point. The scope of a variable (Loop, Method, Returned) holding the allocated space

is retrieved from a map that has been populated by a simple escape analysis prior to

algorithm execution. If it is found that the allocation point assigns to a variable with

Loop scope, an LLT that will result in only a single loop iteration is created since

the new variable is overwritten for each loop execution. Otherwise, the new LLT is

populated with the information extracted from the loop and the body of the loop

is further checked for nested loops by calling collectNestedLoops. If the current

allocation point involves creation of an array within the loop, an LLT is generated for

the array as described previously and appended as the innermost loop. Once again,

the LLT is passed to the solver which returns a complexity expression and is then

stored by allocation point key into the allocations map.

3.3.3 Calculating Memory Use

To calculate memory use, the size of each memory region is computed by sum-

ming up the sizes at each allocation point as shown in Figure 3.5. Heap size is

calculated by finding the product of an evaluated complexity expression, the total

number of global work items, and the size of storage required for a data type. The

complexity expression is evaluated by substituting captured runtime values of vari-

ables. It is assumed that all memory regions will be global unless it is found that an

36

allocations <- {} // Map (Allocation Point [Soot Unit] -> Complexity Expression)

loops <- collectLoops(body)

nonLoopAPs <- collectNonLoopAPs(body)

function collectNestedLoops(body)

loops <- collectLoops(body)

LLTs <- Nil

if loops.length > 0

foreach L in loops

(loopVarInit, condition, incrementExpr, body) <- L

LLT <- new LoopLanguageTree

LLT(init, cond, inc, body) <- (loopVarInit, incrementExpr, incrementExpr, collectNestedLoops(body))

LLTs += LLT

return LLTs

else

return Nil

foreach AP in nonLoopAPs

if AP contains NewArrayExpr

generatedLoopVar <- 0

arraySizeExpr <- LessThan(0,sizeExpression(AP))

generatedInc <- Sum(generatedLoopVar, 1)

LLT <- new LoopLanguageTree

LLT(init, cont, inc, body) <- (generatedLoopVar, arraySizeExpr, generatedInc, Nil)

allocations += (AP -> solveABC(LLT))

else

allocations += (AP -> 1)

foreach L in loops

(loopVarInit, condition, incrementExpr, body) <- L

allocationPoints <- collectAllocPoints(body)

foreach AP in allocationPoints

LLT <- new LoopLanguageTree

if scopes(AP) == Loop

LLT(init, cond, inc, body) <- (loopVarInit, LessThan(init,Sum(init,1)), inc, collectNestedLoops(body))

else

LLT(init, cond, inc, body) <- (loopVarInit, condition, incrementExpr, collectNestedLoops(body))

if AP contains NewArrayExpr

generatedLoopVar <- 0

arraySizeExpr <- LessThan(generatedLoopVar,sizeExpression(AP))

generatedInc <- Sum(generatedLoopVar, 1)

innerLoop <- new LoopLanguageTree

innerLoop(init, cont, inc, body) <- (generatedLoopVar, arraySizeExpr, generatedInc, Nil)

LLT(body) <- LLT(body) += innerLoop

allocations += (AP -> solveABC(LLT))

Figure 3.4. Complexity Analysis Algorithm.

allocation point has been marked with Method scope and that heap space required

for the allocation fits within the hardwares amount of local memory. Local variables

or arrays that are declared inside of the work item but are declared outside of a

loop are marked as MethodScope and become candidates for storage in faster local

memory. If a variable is declared inside of a loop, it is marked as LoopScope and

37

scopes <- escapeAnalysis(body) // Map (Allocation Point -> (Scope [Loop,Method,Returned]))

heapBuffers <- {} // Map (Allocation Point -> (Memory Region, Size))

foreach (AP, complexityExpr) in allocations

heapSize <- solveSubsRuntimeVals(complexityExpr) * device.globalWorkItems * typeSize(AP)

memRegion <- Global

if scopes(AP) == Method && heapSize < device.localMemSize

memRegion <- Local

heapBuffers += (AP -> (memRegion, heapSize))

Figure 3.5. Memory Use Algorithm.

can be assigned to the fastest memory region available and says that the memory

will be reused across loop iterations. Tracking whether or not a variable belongs to

LoopScope is performed through examination of the context in which it was created.

Allocation points are associated with tuples containing the memory region and heap

size for a buffer through a heapBuffer map. This map is later used for marking the

memory regions for kernel parameters and allocation of space on the device.

3.3.4 Malloc Generation

A memory allocation function is generated for each allocation instruction en-

countered during the code tree creation phase. Allocation functions are generated

from two code tree templates: one for objects and another for arrays. Functions are

generated for each allocation point and are named based on the allocation point iden-

tifier, malloc <ID>. The template for creation of code trees for the required functions

has placeholders to substitute information for generation of the function name, data

type, and array length in the case of arrays. Malloc functions take a pointer to the

heap space associated with the allocation point as a parameter and return a pointer

to the section of heap space reserved for that call by the current work item.

Unique global IDs assigned by OpenCL for work items during execution are

retrieved and used to index into the heap space array passed to the malloc function.

38

Use of global IDs avoids the need to maintain and synchronize an offset into the heap

space for each call by each thread. The function call performs a simple calculation

for the offset into a heap by multiplying work item ID by the size of data elements,

setting a pointer to the beginning of a section of the heap be returned by the function

call.

Each allocation instruction in the code tree is replaced with a call to its corre-

sponding malloc function. A pointer to the heap space held by the kernel environment

is passed to malloc since the pointer to memory must be passed down from the top

level kernel function. Any other information required by malloc such as the size of

data needed by the allocation is contained in the generated function for the associated

allocation point.

3.3.5 Heap Buffers and Runtime

Heap buffer space allocated on the device is passed as pointers marked with the

required memory region similar to standard kernel array parameters. This pointer to

heap memory is added to the kernel environment structure by the kernel function so

the caller of malloc can pass it at the allocation point. Buffers on the GPU device must

be allocated prior to kernel execution. Once the symbolic expression for the number

of instances created at an allocation point and region has been found, runtime values

of any remaining variables that exist in the symbolic expression are substituted and

the expression is evaluated. Firepiles marshalling system is used to determine the

size in bytes of memory required to hold the representation for an instance of the

type being allocated. Final buffer sizes are the product of the evaluated symbolic

expression for number of instances, type size, and number of global work items. The

host then makes a request for device buffer allocations and sets the arguments to the

kernel prior to queuing the kernel for execution.

39

3.4 Evaluation

Our algorithm is evaluated by walking through a calculation of the expected

memory that would be required by the example listing in Figure 3.1 as well as an

abbreviated ray tracing example kernel shown in Figure 3.6.

We begin with the motivating example assuming a runtime value of 10 for pa-

rameter k and for simplicity a total number of 128 work items. A constant WORK ITEMS

will be used to denote the number of work items for this example execution.

The value for n becomes 100:

n = k ∗ k → n = 10 ∗ 10→ n = 100

Next, on line 4 a Array[Float] is created of size 100 and assigned to A. The

amount of memory expected for the array A is:

n ∗WORK ITEMS ∗ sizeof(Float)→ 100 ∗ 128 ∗ 4→ 51200

On line 8 B is created of type Array[Float] contained in a loop on line 7 with

an upper bound of n since it starts at 0. Note that the variable B is rewritten every

loop iteration so it is not neccessary to include the outer loop in the calculation other

than using it to find an upper bound on i. We have already determined the value of

n, we will include it in the calculation now by substituting it for i:

(n + i) ∗WORK ITEMS ∗ sizeof(Float)

→ (n + n) ∗WORK ITEMS ∗ sizeof(Float)

→ (100 + 100) ∗ 128 ∗ 4

→ 102400

40

1 sealed case class Vector(x: Float, y: Float, z: Float)

2 sealed case class Ray(start: Vector, dir: Vector)

3
4 def rayTrace(scene: Scene, rgb: Array[Int], screenHeight: Int,

screenWidth: Int)(implicit dev: Device) {

5 val space = dev.defaultPaddedPartition(screenHeight)

6
7 val camera = scene.camera

8
9 space.spawn {

10 for (group <- space.groups) {

11 for (item <- group.items) {

12 val y = item.globalId

13 val stride = y * screenWidth

14
15 for (x <- 0 until screenWidth) {

16 rgb[x + stride] = trace(new Ray(camera.pos, getPoint(x, y,

camera)), scene, 0)

17 }

18 }

19 }

20 }

21
22 }

Figure 3.6. Abbreviated ray tracing kernel showing new Ray objects being allocated
inside a loop.

Next we will examine the ray tracing example in Figure 3.6.

3.5 Related Work

Work related to Firepile’s dynamic memory allocation features can be split into

two categories: GPU memory allocation and memory use analysis. These categories

are discussed in the following subsections.

41

3.5.1 GPU Memory Allocation

The first known memory allocator for use inside of kernel functions targeting

GPU devices comes from [43]. Their work introduces a scalable, lock-free memory

allocator designed for use with the NVIDIA CUDA architecture. The goal of XMalloc

is high-throughput access to a shared memory pool by a highly multithreaded program

implemented on data-parallel architectures such as GPUs. As with most efficient

GPU programming, an emphasis is made on making the best use of memory traffic

and avoiding contention. Memory block metadata is stored in block headers that

are atomically modified to avoid the need for locking. Free lists are maintained as

lock-free FIFOs using minimal memory operations to enqueue and dequeue items. A

hierarchical memory pool is used to aggregate parallel memory requests into larger

requests in order to increase throughput to the allocator, these larger memory chunks

are then redistributed to the requesters. Our memory allocator avoids the need for

such a strategy since heap space is determined prior to kernel execution and heaps

are divided into sections accessed by associated threads. The programmer calls an

initialization function that sets up a section of global GPU memory to act as heap

space. Requests to allocate memory are made through a malloc function and memory

can be deallocated using free.

NVIDIA has added support for dynamic memory allocation inside GPU ker-

nels [2] since the introduction of CUDA 3.2. Later work [40] by the XMalloc authors

focuses on the use of their technique to outperform CUDAs memory allocator through

allocation coalescing and efficient queues. Firepile is implemented using the portable

OpenCL standard supported by all major graphics device manufacturers including

NVIDIA, AMD, and Intel allowing it target a wider range of devices. OpenCL does

not currently support dynamic memory allocation.

42

Hong [44] implements a lightweight memory allocator to support the interme-

diate results created by their MapReduce framework for GPUs. A large block of

global device memory is used for heap space. The maximum size of heap space al-

located can be determined fairly easily due to the fact that memory usage patterns

are fixed in MapReduce applications. A free space pointer into the global buffer is

maintained and incremented by CUDAs atomicAdd() operation. Each warp, a group

of 32 threads scheduled together, has a buffer block. Organizing memory into buffer

blocks assigned to warps allows for more coalesced memory accesses. Information re-

quired for maintaining buffer blocks is kept in faster local memory to reduce overhead

of allocation.

Another Map Reduce framework designed for GPUs described by [45] takes a

less sophisticated approach by allowing programmers to annotate CUDA code with

comments specifying dynamic allocations for arrays and what runtime variables are

used to determine sizes.

Ramamurthy [46] instruments benchmarks to obtain the maximum memory

needed to create linked list and hash tree data structures dynamically on a GPU. Data

structures are stored in pre-allocated arrays on a per-type basis. Each array has a

counter variable that is incremented atomically for each dynamic memory allocation

request to ensure every thread received a unique position in the arrays. Counters

are reset each iteration allowing heap space to be reused. Firepiles dynamic memory

allocation avoids the need for maintaining counters by using unique global thread IDs

to index into heap space arrays. Similar to [46], we reuse memory by determining

when a variable is being reallocated by consecutive loop iterations.

43

3.5.2 Memory Use Analysis

In general, heap space analysis has the goal of finding bounds on heap space

consumption of programs. [12] describes a static heap space analysis that operates at

the byte code level, the same level that Firepile analysis and translation is performed,

and generates heap space cost relations producing heap consumption from a program

as a function of data size. Escape analysis is used to take into account space that

is de-allocated by the garbage collector, producing improved cost relations. Control

flow graphs (CFGs) are built from analyzing the structure of Java bytecode pro-

grams. An intermediate representation of the CFGs is constructed and information

about changes in size of data structures between blocks is inferred. Cost relations are

generated from the intermediate representation and information collected about size

changes, resulting in a set of heap space cost equations and size relations correspond-

ing to method entries or blocks in the control flow graph. Finally, cost equations are

simplified to obtain an upper bound in closed form for the cost relations.

Another low-level approach that operates on assembly-level programs is pro-

posed by [47]. A Presburger solver captures symbolic memory requirements and

fixpoint analysis serves the analysis of loops and recursion. Also operating at a byte-

code or assembly-level, [15] discusses a general resource usage analysis to infer upper

bounds on the cost of user-defined resources through annotations to Java code. User-

defined resources can include things such as the number of SMS packets sent by a

mobile phone application or cost can be defined in terms of memory consumption,

which is of interest to our work.

Static memory use analysis is used in verification of memory consumption poli-

cies for devices with limited resources such as smart cards, mobile phones, and other

embedded devices [14, 13, 48]. [13] depends on code annotations to verify memory

consumption of bytecode but includes an annotation assistant to aid in the creation

44

of annotations. [14] addresses the problem of providing an analyzer that can exe-

cute on a Java Card. [48] discusses the application of static analysis to compute

an upper bound on dynamically allocated memory by synthesizing non-linear formu-

las and estimating memory use as a function of parameters to methods. This work

is not specific to Java based languages but instead focuses on object-oriented pro-

gramming in general and use of object-oriented languages with automatic dynamic

memory management in real time and embedded systems.

45

CHAPTER 4

EXPERIMENTAL EVALUATION AND CONCLUSION

This chapter discusses experimental evaluation of Firepile and concludes the

discussion with directions of future research that build on our work.

4.1 Experimental results

To evaluate the performance of Firepile, examples from the NVIDIA OpenCL

SDK1 were ported to Scala to use the library. The original examples are implemented

in C++ with kernel code in the OpenCL subset of C with no optimizations beyond

what is demonstrated in the example code added. The chosen examples are sum-

marized in Figure 4.1. In addition to Reduce (similar to the code in Figure 1.2),

Black-Scholes, matrix–vector multiplication (MVM), the discrete cosine transform

(DCT8x8), and matrix transpose were ported. All benchmarks were run with four of

the same problem sizes for each benchmark. Command-line options for problems sizes

were added to the C++ versions when needed. For all benchmarks except MVM,

problem sizes increase exponentially; the problem size for MVM increases linearly.

The benchmarks were chosen to not exceed the capabilities of the current Firepile

implementation. For instance, benchmarks with OpenCL vector operations were not

ported since Firepile does not yet support these operations.

We compared Firepile against two C++ versions of each benchmark. In addition

to the NVIDIA implementation of the benchmark, we constructed a hybrid version by

replacing the NVIDIA kernel code with the Firepile-generated kernel. All other code,

1http://developer.nvidia.com/opencl-sdk-code-samples.

46

Benchmark Sizes

Reduce 220, 221, 222, 223

Black-Scholes 2M, 4M, 8M, 16M
Matrix–vector multiplication (MVM) 12.1M, 13.2M, 14.3M, 15.4M
Discrete cosine transform (DCT8x8) 218, 219, 220, 221

Matrix-transpose 216, 218, 220, 222

Figure 4.1. Summary of benchmarks run for Firepile and C++.

including the code to copy data to and from the GPU is identical to the original

C++ version. This hybrid version is used to determine if performance differences

between Firepile and the NVIDIA code can be attributed to the kernel translation or

to differences in device initialization or data movement.

The three versions of each benchmark were run with the same data values and

range of problem sizes. Experiments were performed on a system with a 3.0GHz Intel

Core 2 Quad Q9650 CPU, 8GB RAM, and an NVIDIA GeForce 9800GT graphics

card with 512MB of video memory, running Windows 7 Professional 64-bit. Firepile

was compiled and run with Scala 2.9.0 and Java 1.6.0 24b07 using the HotSpot VM.

For each problem size and configuration tested, the benchmark was executed 30

times and the results averaged. To reduce interference from the JIT compiler, each

kernel execution consisted of a warm-up run followed by 16 repetitions. Warm-up

runs were not included in the reported times. Results are shown in Figure 4.2. The

hybrid configuration for Black-Scholes for a data size of 16M crashed the graphics

card driver on our test system and times were not collected.

Firepile performance compares favorably to the NVIDIA implementation. For

most benchmarks, run times for all three configurations were within 15%. The execu-

tion times for the hybrid configuration were between the times for the NVIDIA and

Firepile configurations, as expected. With most benchmarks the NVIDIA C++ code

outperformed Firepile, again as expected. The Firepile version of the Reduce bench-

47

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

2^20	 2^21	 2^22	 2^23	

(a) Reduce

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

2M	 4M	 8M	 16M	

(b) Black-Scholes

0	

20	

40	

60	

80	

100	

120	

140	

12.1M	 13.2M	 14.3M	 15.4M	

(c) Matrix–vector
multiplication

0	

5	

10	

15	

20	

25	

30	

2^16	 2^18	 2^20	 2^22	

(d) DCT8x8

0	

10	

20	

30	

40	

50	

60	

2^16	 2^18	 2^20	 2^22	

(e) Matrix transpose

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%!!!!!!" '!!!!!!" (!!!!!!" $)!!!!!!"

*+,-,."

*+,-,./0,123,42"5,6"

0,123,42"

NVIDIA C++

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%!!!!!!" '!!!!!!" (!!!!!!" $)!!!!!!"

*+,-,."

*+,-,./0,123,42"5,6"

0,123,42"

Hybrid C++/Firepile kernel

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%!!!!!!" '!!!!!!" (!!!!!!" $)!!!!!!"

*+,-,."

*+,-,./0,123,42"5,6"

0,123,42"Firepile

Figure 4.2. Total execution times in ms of each benchmark for different problem sizes.
.

mark performed as well as the NVIDIA and hybrid versions. The Firepile version of

MVM was faster than the NVIDIA and hybrid versions. Firepile did not perform as

well on DCT8x8, with execution times nearly double the NVIDIA version.

Execution time differences can be attributed to a variety of factors. First, there

are differences between the generated kernel and the hand-written kernel. While the

algorithms used were the same, Firepile generated kernels introduce additional tempo-

rary variables and use goto statements rather than structured control flow statements.

In addition, placement and alignment of data differs from the C++ versions. In par-

ticular, arrays in the C++ version do not have a length field. The C++ versions of

the code can also make use of pointer arithmetic, while Firepile generated kernels do

not. The NVIDIA version of Matrix-transpose performed consistently better across

all problem sizes. We attribute this difference to the heavy use of pointer arithmetic

for data access into global arrays. The Black-Scholes benchmark generated the high-

48

est number of temporary variables of the benchmarks tested and performed slower

than the NVIDIA example as expected. Additional temporaries can increase the

memory footprint of a kernel by requiring it to use more private memory. A larger

footprint can then reduce parallelism since the GPU can support only a fixed amount

of private memory per SM.

There are also differences in data movement between the configurations. Be-

cause Firepile arrays have a length field, this additional data is copied to the GPU

when the kernel is invoked. Array lengths are copied to the GPU in the hybrid con-

figuration as well. For MVM, Firepile was 15% faster than both the NVIDIA and

hybrid configurations, indicating that data copying times were faster. In contrast,

the Firepile version of DCT8x8 was consistently slower than the other configurations.

Additional optimizations we have planned for later versions of the library should

help to close the performance gap with the native versions of the kernels, while main-

taining Firepile’s ease of use.

4.2 Conclusion

General-purpose computing on GPUs remains a difficult task. GPUs have a

restricted programming model, disallowing features such as dynamic memory man-

agement and virtual methods. The Firepile library supports a richer programming

model, allowing kernels to be written in Scala and perform dynamic memory alloca-

tion. Performance of Firepile kernels is comparable to the performance of native C

code.

49

4.3 Future work

Future plans for Firepile are to support more features of Scala and to explore

GPU-specific optimizations in the context of OO languages. We wish to support more

complex scenarios where multiple kernels are executed with minimal data movement

between the host and GPU. We also plan to explore the use of run-time generated code

trees to implement other domain-specific extensions of Scala. Furthermore, it is our

intention to leverage forms of automatic parallelization through runtime identification

of code portions that are suitable candidates for conversion into kernels and can

benefit from execution on an accelerator device. The memory use analysis framework

can be extended to support alternate, less conservative and possibly more efficient

estimation schemes. We also intend to explore the extension of these techniques to

other accelerator devices beyond GPUs as well as other JVM-based languages.

50

REFERENCES

[1] A. Munshi and Khronos OpenCL Working Group, “The OpenCL specification,”

2009.

[2] NVIDIA, “Compute unified device architecture programming

guide,” http://developer.download.nvidia.com/compute/cuda/1 0/

NVIDIA CUDA Programming Guide 1.0.pdf, 2008.

[3] ——, “NVIDIA OpenCL best practices guide, version 1.0,”

http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/

papers/NVIDIA OpenCL BestPracticesGuide.pdf, 2009.

[4] N. Nystrom, D. White, and K. Das, “Firepile: run-time compilation for gpus in

scala,” in GPCE, 2011, pp. 107–116.

[5] G. L. Steele, Jr. and R. P. Gabriel, “The evolution of Lisp,” in HOPL-II: The

second ACM SIGPLAN conference on History of programming languages. New

York, NY, USA: ACM, 1993, pp. 231–270.

[6] A. Bawden, “Quasiquotation in Lisp,” in Partial Evaluation and Semantic-Based

Program Manipulation, 1999, pp. 4–12.

[7] G. B. Mainland, “Why it’s nice to be quoted: Quasiquoting for Haskell,” in

Proceedings of the 2007 ACM symposium on Haskell (Haskell ’07), 2007.

[8] W. Taha and T. Sheard, “Multi-stage programming with explicit annotations,”

in Proceedings of the ACM-SIGPLAN Symposium on Partial Evaluation and

semantic based program manipulations (PEPM), 1997, pp. 203–217.

[9] W. Taha, “A gentle introduction to multi-stage programming,” in Domain-

Specific Program Generation, 2003, pp. 30–50.

51

[10] NVIDIA, “NVIDIA’s next generation CUDA compute architecture:

Fermi,” http://www.nvidia.com/content/PDF/fermi white papers/

NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2010.

[11] O. Chafik, “JavaCL: Java wrappers for OpenCL,”

http://code.google.com/p/javacl, 2011.

[12] E. Albert, S. Genaim, and M. Gómez-Zamalloa, “Heap space analysis for

Java bytecode,” in Proc. 6th International Symposium on Memory Management

(ISMM). ACM, Oct. 2007, pp. 105–116.

[13] G. Barthe, M. Pavlova, and G. Schneider, “Precise analysis of memory con-

sumption using program logics,” in Proc. 3rd IEEE International Conference

on Software Engineering and Formal Methods (SEFM). IEEE, Sept. 2005, pp.

86–95.

[14] P. Giambiagi and G. Schneider, “Memory consumption analysis of java smart

cards,” 2005.

[15] J. Navas, M. Méndez-Lojo, and M. V. Hermenegildo, “User-definable resource

usage bounds analysis for java bytecode,” Electronic Notes in Theoretical Com-

puter Science, vol. 253, no. 5, pp. 65–82, 2009.

[16] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Vijay Sundare-

san, “Soot: A Java bytecode optimization framework,” in Proceedings of the

1999 conference of the Centre for Advanced Studies on Collaborative research

(CASCON), 1999.

[17] M. Odersky et al., “The Scala language specification,” 2006–2011. [Online].

Available: www.scala-lang.org/docu/files/ScalaReference.pdf

[18] R. Kelsey, W. Clinger, and J. R. (editors), “Revised5 report on the algorithmic

language Scheme,” ACM SIGPLAN Notices, vol. 33, no. 9, pp. 26–76, Oct. 1998.

[Online]. Available: http://www.schemers.org/Documents/Standards/R5RS

52

[19] ECMA, “Standard ECMA-334: C] language specification (4th edi-

tion),” http://www.ecma-international.org/publications/standards/

Ecma-334.htm, June 2006.

[20] J. Rudolph and P. Thiemann, “Mnemonics: type-safe bytecode generation at run

time,” in Proceedings of the 2010 ACM SIGPLAN workshop on Partial evaluation

and program manipulation (PEPM), 2010, pp. 15–24.

[21] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification,

3rd ed. Addison Wesley, 2005, iSBN 0321246780.

[22] G. Korland, N. Shavit, and P. Felber, “Noninvasive concurrency with Java

STM,” in Third Workshop on Programmability Issues for Multi-Core Computers

(MULTIPROG-3), Jan. 2010.

[23] O. Chafik, “ScalaCL: Faster Scala: optimizing compiler plugin + GPU-based

collections (OpenCL),” http://code.google.com/p/scalacl, 2011.

[24] M. Garcia, A. Izmaylova, and S. Schupp, “Extending Scala with database query

capability,” Journal of Object Technology, July 2010.

[25] “PyOpenCL: Python programming environment for OpenCL,”

http://mathema.tician.de/software/pyopencl, 2011.

[26] A. Klöckner, N. Pinto, Y. Lee, B. C. Catanzaro, P. Ivanov, and A. Fasih,

“PyCUDA: GPU run-time code generation for high-performance computing,”

http://arxiv.org/abs/0911.3456, 2009, in submission.

[27] C. Lejdfors and L. Ohlsson, “Implementing an embedded gpu language by com-

bining translation and generation,” in Proceedings of the 2006 ACM symposium

on Applied computing (SAC ’06), 2006, pp. 1610–1614.

[28] “JOCL: Java bindings for OpenCL,” http://www.jocl.org, 2011.

[29] Y. Yan, M. Grossman, and V. Sarkar, “JCUDA: A programmer-friendly interface

for accelerating Java programs with CUDA,” in Proceedings of the 15th Inter-

53

national Euro-Par Conference on Parallel Processing (Euro-Par ’09), 2009, pp.

887–899.

[30] “Clyther: Python language extension for OpenCL,”

http://clyther.sourceforge.net, 2011.

[31] “GPU.NET: Library for developing GPU-accelerated applications with .NET,”

http://www.tidepowerd.com/product, 2011.

[32] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using data parallelism to

program GPUs for general-purpose uses,” in Proceedings of the 15th International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), Oct. 2006.

[33] “Aparapi: Java API for expressing GPU bound data parallel algorithms,”

http://developer.amd.com/zones/java/aparapi/Pages/default.aspx,

2011.

[34] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Oder-

sky, and K. Olukotun, “Language virtualization for heterogeneous parallel com-

puting,” in Onward! ’10: Proceedings of the ACM International Conference on

Object Oriented Programming Systems Languages and Applications, Oct. 2010.

[35] G. Mainland and G. Morrisett, “Nikola: embedding compiled GPU functions in

Haskell,” in Proceedings of the third ACM symposium on Haskell (Haskell ’10),

2010, pp. 67–78.

[36] S. Lee, V. Grover, M. M. T. Chakravarty, and G. Keller, “GPU kernels as data-

parallel array computations in Haskell,” in Workshop on Exploiting Parallelism

using GPUs and other Hardware-Assisted Methods (EPHAM), 2009.

[37] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-

rahan, “Brook for GPUs: stream computing on graphics hardware,” in ACM

SIGGRAPH 2004 Papers (SIGGRAPH ’04), 2004, pp. 777–786.

54

[38] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah, “Liquid metal: Object-

oriented programming across the hardware/software boundary,” in Proceedings

of the 22nd European Conference on Object-Oriented Programming (ECOOP

2008), ser. Lecture Notes in Computer Science, vol. 5142, 2008, pp. 76–103.

[39] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: a Java-compatible

and synthesizable language for heterogeneous architectures,” in Proceedings of

the 25th ACM Conference on Object-Oriented Programming Systems, Languages

and Applications (OOPSLA 2010), 2010, pp. 89–108.

[40] X. Huang, C. Rodrigues, S. Jones, I. Buck, and W.-m. Hwu, “Scalable SIMD-

parallel memory allocation for many-core machines,” The Journal of Supercom-

puting, pp. 1–13, 2011.

[41] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács, “Abc: Algebraic bound

computation for loops,” in LPAR (Dakar), 2010, pp. 103–118.

[42] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Princiles, Techniques, and

Tools. Addison-Wesley, 1986.

[43] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. mei W. Hwu, “XMalloc: A

scalable lock-free dynamic memory allocator for many-core machines,” in Proc.

10th IEEE International Conference on Computer and Information Technology

(CIT). IEEE, July 2010, pp. 1134–1139.

[44] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin, “Mapcg: Writing parallel

program portable between CPU and GPU,” in Proc. 19th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT). ACM,

Sept. 2010, pp. 217–226.

[45] B. Catanzaro, N. Sundaram, and K. Keutzer, “A map reduce framework for

programming graphics processors,” in Proc. 3rd Workshop on Software Tools for

MultiCore Systems (STMCS), 2008.

55

[46] A. Ramamurthy, “Towards scalar synchronization in SIMT architectures,” Mas-

ter’s thesis, The University Of British Columbia, Sept. 2011.

[47] W.-N. Chin, H. H. Nguyen, C. Popeea, and S. Qin, “Analysing memory resource

bounds for low-level programs,” in Proc. 7th International Symposium on Mem-

ory Management (ISMM). ACM, June 2008, pp. 151–160.

[48] V. A. Braberman, D. Garbervetsky, and S. Yovine, “A static analysis for syn-

thesizing parametric specifications of dynamic memory consumption,” Journal

of Object Technology, vol. 5, no. 5, pp. 31–58, June 2006.

56

BIOGRAPHICAL STATEMENT

Derek White is currently a Ph.D. student in Computer Science and Engineering

at the University of Texas at Arlington working with Dr. Ishfaq Ahmad. He is one

of the first recipients of a Graduate Assistance in Areas of National Need (GAANN)

Fellowship at the University of Texas at Arlington. He received a B.S. in Computer

Science from Louisiana State University in Shreveport in 2007 and has been a graduate

student at the University of Texas at Arlington since August 2008 researching software

engineering, program analysis, high-performance computing, and green computing.

57

