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Abstract 

INVESTIGATION OF WETTING STATES ON MICROSTRUCTURES AFTER LIQUID 

DROPS CONTACT GROOVE BASE 

 

Mingming Xiang, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Cheng Luo 

Wetting properties of roughness surfaces have attracted a considerable attention 

because of both the scientific insight and the practical applications. One of the most 

intriguing topics of wetting is the so-called Cassie-Baxter and Wenzel transition. 

Recently, theoretical and experimental works have been done to explore this transition on 

microstructure-formed surfaces. One of the criteria that most commonly used to judge 

such transition is whether a liquid drop contacts the base of a roughness groove. It is 

expected that, after the contact, liquid immediately fills the roughness groove, and 

subsequently the wetting state is changed from Cassie-Baxter state to that of Wenzel. 

However, this transition criterion does not always hold true in the case of 

microchannels. Through theoretical and experimental investigations, we show that, when 

an angle criterion is satisfied, there may exist an intermediate wetting state inside a 

microchannel after a water drop contacts the bottom of the microchannel. In this wetting 

state, water does not completely fill the microchannel, and air pockets still exist in its 

bottom corners. Also, the wetting state is stable in the sense that its energy state is lower 

than that of the Wenzel model. In addition to microchannels, the aforementioned 

intermediate state may also exist on a single corner, when the angle criterion is met. 



v 

Moreover, we demonstrate that the angle criterion also applies to the case of 

micropillars with circular or polygonal cross-sections. Finally, based on the results 

achieved in the cases of microchannels and micropillars, we further investigate the 

applicability of the angle criterion to the cases of microballs and lotus leaf surfaces. 
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Chapter 1  

Introduction and Dissertation Overview 

 

1.1 Introduction 

Wetting properties of roughness surfaces have attracted a considerable attention 

due to both the scientific insight and the practical applications, such as self-cleaning, [1,2] 

hydrodynamic friction reduction, [3-5] anti-icing, [6-8] anticorrosion, [9-11] biotechnology, 

[12-14] thermal systems, [15-19] and micro- and nano-devices. [20-22] It is well-known 

that the surface roughness plays an important role on the wetting properties, and 

micropillars and microchannels are often applied as structures to enhance surface 

hydrophobicity. [23, 24, 26, 29, 30, 37, 38, 45-50, 62, 65] 
 
When a water drop is placed 

on a rough surface, there are two possible wetting states: Wenzel [23] (Figure 1.1(a)) or 

Cassie-Baxter [24] (Figure 1.1(b)). In the Wenzel state, the drop completely fills grooves 

between microstructures (e.g., pillars and channels), while in the Cassie-Baxter state air 

is trapped between these microstructures and the drop stays on top of the 

microstructures and trapped air. The Wenzel state favors the creation of a super-wetting 

surface. [27, 28] In contrast, in a Cassie-Baxter state, a liquid drop is easy to roll off from 

a hydrophobic surface, [27] and drag friction of a liquid flow is also reduced on the 

corresponding surface. [28] 

 
  (a)                                              (b) 

Figure 1.1: Wenzel state (a) and Cassie-Baxter state (b). 

Water 

Air 

Air Microstructure 
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The states of wetting are mainly judged indirectly according to the penetration of 

light through a water droplet [45, 46], the trace of dusts left by the evaporation of a water 

droplet [45], the shape change of a water droplet [47], or the change in apparent contact 

angles with the variation of the distance between neighboring pillars [48]. 

One of the most intriguing topics of wetting is the transition from Cassie-Baxter to 

Wenzel state. [29-31]. When a liquid/air interface hangs between pillars, for example, in 

the Cassie-Baxter state, the interface is curved due to the pressure difference across it. 

[36-38]. If the hanging interface cannot remain pinned at the top corner of pillars, then it 

will precede downward into the roughness grooves. Even when a liquid-air interface can 

remain pinned at the corner of pillars, the sag of the curved liquid-air interface may make 

this interface touch the bottom of the roughness groove [36, 37]. The depinning or 

sagging may be caused by external stimuli, such as pressure,[29] vibration,[32] electric 

voltage,[33] or evaporation,[34]. It is expected that, once a liquid-air interface has contact 

with the groove base due to depinning or sagging, liquid immediately fills the roughness 

groove, [27, 28, 45, 49, 50] and subsequently the wetting state is changed to that of 

Wenzel. Accordingly, whether the contact has occurred is employed as a criterion to 

judge the transition between the two wetting states [27, 28, 45, 50].  For simplicity, the 

aforementioned transition criterion is called “contact criterion.”  

However, in our recent pressing tests on (i) ZnO nanowires-covered 

microchannels, (ii) ZnO nanowires-covered micropillars, (iii) hydrophobic microballs and 

(iv) leaf surfaces of three different varieties of lotuses (which are Carolina Queen, 

Chawan Basu, and The President), [53] we found that the transition did not occur when 

the contact happened. Therefore, the objective of this dissertation is to exam the 

applicability of the “contact criterion” on different microstructured surfaces, and to develop 

a new transition criterion when the contact criterion can’t be of value. 
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First, although direct observation of wetting states has been conducted using an 

environmental scanning electron microscope (ESEM) [45, 51] or a goniometer [30], the 

evolution of air/water interfaces suspended between microstructures has not been 

reported in the literature during the transition from Cassie-Baxter to Wenzel states. 

However, this evolution gives the whole picture about the transition process. The 

corresponding information can be used to validate existing transition criteria, and can 

also be applied to aid in the establishment of new criteria. As such, with the aid of an 

optical microscope, we have directly observed the evolution of air/water interfaces 

suspended between microline-formed PDMS surfaces when the water droplets reduced 

their sizes during their evaporation and pressing. 

Second, as a water drop is placed on microchannels, air/water interfaces 

suspended on the microchannels have approximately cylindrical shapes. This makes it 

simple to mathematically model these air/water interfaces. The interfaces between 

neighboring micropillars have more complicated shapes. For easily characterizing the 

air/water interfaces, we first explored the case of microchannels, and derived an angle 

criterion to judge the applicability of the contact criterion, which was subsequently 

validated by experimental tests.   

Third, we further considered the application range of the contact criterion in the 

case of micropillars. Since the approach used in the case of microchannels did not apply 

here, a different method was adopted for the corresponding consideration. Employing this 

method, we also derived an angle inequality, which, to our surprise, is identical to the one 

derived for the case of microchannels. On the other hand, this angle inequality is both 

sufficient and necessary conditions in the case of microchannels, while it is only the 

necessary condition in the case of the micropillars.  

http://en.wikipedia.org/wiki/Goniometer
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Fourth, due to lack of analytical expression of the related air/liquid interfaces in 

the case of micropillars, we consider the case of circular pillars with vertical sidewalls 

using a new approach. This approach does not rely on the explicit expression of the 

interface profile, making it feasible to explore the applicability of the contact criterion. 

Subsequently, we apply the derived theoretical results to interpret some experimental 

results shown in both of our previous work and Verho et al. [52].    

Fifth and finally, in our recent pressing tests on three different lotus varieties: 

Carolina Queen, Chawan Basu and The President, we found that the transition did not 

occur when the contact happened, [53] and thus in this work would like to explore the 

reason behind. The lotus surface may be structured by micropillars, which are covered 

with nanopillars. [27] The lotus micropillars were measured [27] and modeled [54] 

approximately as paraboloids of revolution, which means that these micropillars can be 

considered as circular pillars whose sidewalls have convex shapes in the vertical planes. 

In addition, microparticles are also employed to modify surface wetting.[55-58] It is also 

interesting to know whether the contact criterion applies to the case of microparticles. 

The microparticles may have spherical shapes, which can also be considered as circular 

pillars with convex sidewalls. Thus, we would like to explore the applicability of the 

contact criterion to circular pillars with convex sidewalls. 

 

1.2 Dissertation Outline 

Chapter 1 introduced current researches, motivations and objective of this 

dissertation. Chapter 2 investigated the changes of the air/water interfaces on microline-

formed surfaces when the water droplets reduced their sizes during their evaporation and 

pressing. Chapter 3 explored the application ranges of the contact criterion in the cases 

of microchannels. Chapter 4 further considered the application range of the contact 
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criterion in the case of micropillars. Chapter 5 discussed the contact criterion in the case 

of circular pillars with vertical sidewalls using a new approach. Chapter 6 demonstrated 

the applicability of the contact criterion to circular pillars with convex sidewalls. Finally, 

Chapter 7 summarized and concluded this work. 

Chapters 2-6 have been published in [77, 79, 82, 63, 88], respectively. Since 

some other papers [53, 72, 78, 80, 89] are not directly related to this dissertation subject, 

they are not presented here. 
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Chapter 2  

Transition from Cassie-Baxter to Wenzel States on Microline-formed PDMS Surfaces 

Induced by Evaporation or Pressing of Water Droplets 

 

In this chapter, we directly observed the evolution of air/water interfaces 

suspended between polydimethylsiloxane (PDMS) microlines when water droplets 

reduced their sizes due to evaporation. The inclined angles of the microline sidewalls 

were slightly larger than 90
0
. Two important phenomena were observed regarding the 

transition from Cassie-Baxter to Wenzel States. Based on these two phenomena, the 

equilibrium of a triple line and the uniformity of pressure inside a small water droplet, 

critical values of droplet sizes and Laplace pressure were derived to predict when the 

transition would occur on microlines. In addition, we also directly observed the evolution 

of air/water interfaces on PDMS microlines when a water droplet was slowly pressed 

using a glass slide. The critical values of the droplet sizes derived in the case of 

evaporation applied to this pressing case as well, and had a good match with 

experimental results on the three arrays of PDMS microlines. In addition to the cases of 

evaporation and pressing, the theoretical relationships derived in this work may also 

apply to other cases, in which Laplace pressure is gradually increased inside a liquid 

droplet and half sizes of the droplet are less than the capillary length of the liquid. Finally, 

based on developed transition criteria, a set of criteria were also proposed to design 

microlines for reducing the critical droplet size that triggers the transitions from Cassie-

Baxter to Wenzel States.  
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2.1 Experimental Design 

2.1.1. Experimental Setup 

 Figure 2.1(a) gives experimental setup used to observe the transition from 

Cassie-Baxter state to that of Wenzel when a water droplet gradually evaporated. An 

optical microscope (model: mm0013000m of Metallurgical Microscopes Company) was 

employed to observe the water droplet. The microscope was rotated by 90º with its 

sample stage oriented vertically. A glass slide was glued on the sample stage, and had a 

horizontal orientation. A microline-formed PDMS film was placed on the glass slide. This 

microscope was applied to observe the evolution of the air/water interfaces suspended 

between PDMS microlines when the water droplet evaporated on the PDMS film. The 

viewing direction of the optical microscope was along that of the PDMS microlines.  

 

 
 

Figure 2.1: (a1) Experimental setup for observing cross-sectional profiles of a water 
droplet on a microline-formed PDMS surface during the evaporation of the droplet. 
(a2) Close-up view of the sample stage. (b1) Setup for observing cross-sectional 

profiles of a water droplet on a microline-formed PDMS surface in the case of 
pressing. (b2) Close-up view of the sample stage. 
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Figure 2.1(b) shows experimental setup applied to observe the transition from 

Cassie-Baxter state to that of Wenzel when a water droplet was slowly pressed. The 

optical microscope was also employed in this case to directly observe the evolution of the 

air/water interfaces. A first glass slide was glued on the sample stage of the microscope, 

and had a horizontal orientation. A microline-formed PDMS film was placed on this glass 

slide. After a water droplet was loaded on the PDMS film using a syringe. A second glass 

slide was placed on the droplet. The shapes of the water droplet changed with the 

distance between the two glass slides. To control this distance, a micrometer (model: SPI 

IP54 of Swiss Precision Instruments Incorporate) was further put above the second glass 

slide with its tip against this slide. As such, the distance between the two glass slides 

could be well controlled as the tip of the micrometer moved down with a precision of 1 µm.  

Microlines and micropillars are often applied as structures to enhance surface 

hydrophobicity. The air/water interfaces suspended between neighboring microlines have 

approximately cylindrical shapes, whose cross-sectional profiles are easy to observe 

through side views of the water droplet. The interfaces between neighboring micropillars 

have more complicated shapes. For easily characterizing the interfaces, microlines were 

chosen in this work as the surface structures. 

The pictures of the air/water interfaces observed through the optical microscope 

were taken using Minisee software of ScopeTek Company. The dimensions of these 

interfaces (such as radii of curvature and maximum deflections), as well as their contact 

angles with PDMS microlines, were determined using MB-Ruler software. 

http://www.swissprec.com/
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Figure 2.2: Cross-sectional views of five arrays of PDMS microlines. (a-c) First set of 
three arrays of PDMS microlines, and (d) second set of two arrays of PDMS microlines. 

(a1)-(d1) are SEM images, while (d2) is an optical picture. The angles marked in this 
figure were measured on the originally taken pictures, and had measurement error of 2º.  

The same also applies to Figures 2.3-2.6. 
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2.1.2 Fabrication Process of Microstructure-formed PDMS Films 

Two sets of PDMS microlines were investigated. Their SEM images and 

dimensions are given in Fig. 2.2. The first set includes three types of microlines, 

respectively (Figs. 2.2a-2.2c). They differed much in the distances between two 

neighboring microlines, which are 220 μm, 420 μm and 600 μm, separately. For the sake 

of simplicity, these three arrays of PDMS microlines are called 220-, 420- and 600-μm 

lines, respectively. The sidewalls of all these microlines form angles slightly larger than 

090  with their corresponding substrates (Figs. 2.2(a2), 2.2(b2) and 2.2(c2)). The second 

set includes two arrays of microlines (Fig. 2.2d). The sidewalls of the two arrays of 

microlines have angles of 68º and 55º, respectively, with their corresponding substrates. 

The first set of microlines has relatively large sizes, and was employed to directly observe 

the transition of the two wetting states. The second set of microlines was used to validate 

some theoretical predictions, as will be further addressed in section 2.2.3. The two sets of 

PDMS microlines were generated using a molding approach with either SU-8 or Si 

structures as molds [48, 59].  

All the PDMS microlines considered in this work have flat, smooth sidewalls. The 

inclined angle of a sidewall refers to the angle formed by the sidewall and the bottom 

edge of the microline. The top corners of these microlines are round, whose radii are 

much smaller than both the heights and neighboring distances of the microlines. 
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Figure 2.3: Change of an air/water interface on 220-µm lines when a water droplet of 
volume 5 µl gradually evaporated (see the interface marked with an angle for example): 

(a) stayed at the top corners of two PDMS microlines at the initial state of evaporation, (b) 
crossed the low edges of the top corners, (c) moved down along the gap sidewalls, (d) 

continued to move down along the gap sidewalls, and (e) had contact with the bottom of 
the gap and collapsed. The clear images of air/water interfaces and microlines may 

appear at different focus points of the microscope. The above images were obtained by 
highlighting the profiles of microlines on the clear images of the air/water interfaces. The 

same techniques were also used to generate the images given in Fig. 2.9. The same 
transition phenomena were observed as well on 420- and 600-µm lines. For simplicity, 

the corresponding images are not given here (optical pictures and cross-sectional views).  
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2.2. Evaporation of Water Droplets  

2.2.1. In-situ Observation of Air/Water Interfaces 

Four phenomena were observed on the first set of PDMS microlines regarding 

the evolution of an air/water interface between two neighboring microlines during the 

evaporation of water droplets (see, for example, Fig. 2.3). First, when a water droplet 

gradually shrank, the air/water interface between two neighboring microlines increased its 

deflection but decreased its angles with the sidewalls of these two microlines (see the 

first two images in Fig. 2.3). In the meanwhile, the two edges of this interface were still at 

the top corners of the two microlines. Second, once water passed the top corners of 

these two microlines, it kept moving down and filled the gap between the two microlines 

(see the last three images in Fig. 2.3). Third, as a water droplet shrank, the number of 

microlines on which the droplet sat also decreased. Fourth, the gaps between microlines 

might not be filled simultaneously by water when transition occurred, as seen from Fig. 

2.3. Instead, they were filled one by one. In reality, the pressure may be not ideally 

uniform inside the droplet or the microlines may not be exactly identical. Either cause 

might lead to the occurrence of this filling phenomenon. The first two phenomena are 

specifically addressed in the following sub-sections through theoretical models. 

 

2.2.2. Shape change of air/water interfaces on the top corners of microlines  

As illustrated in Fig. 2.4, let abc denote the cross-sectional profile of the air/water 

interface between two neighboring microlines. Without loss of generalization, the 

following analysis focuses on the three-phase (air/liquid/solid) contact line a located at 

one end of abc. Due to geometric symmetry, the same analysis also applies to the other 

three-phase line c located at the other end of abc. Set 
0  to be the intrinsic contact angle 

of abc with a microline. This angle is defined to be apparent contact angle of a water 
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droplet on a smooth film which has the same surface energy as the microline. 

Accordingly, the surface tensions at a are related by well-known Young-Dupré equation 

[60], which is 

  
0cos    SA SL
,    (2.1) 

where  SL
 and  SA

 denote surface tensions of solid/water and solid/air interfaces, 

respectively. This equation implies that, if the contact angle of abc with a microline is 

larger than, equal to, or smaller than 
0 , then a moves downwards, is stationary or 

moves upwards on the microline.  

                      
Figure 2.4: Schematic of the cross-sectional profile abc of the air/water interface between 

two neighboring microlines when this interface changed its location during the 
evaporation of a water droplet. 

 

Let 
ap  and 

wp  denote atmospheric pressure and pressure inside a water droplet, 

respectively. 
ap  is assumed to be constant during the evaporation. According to Young-

Laplace equation [60], the pressure difference across the surface of the water droplet is: 

1 2

1 1
( )  w ap p
R R

,     (2.2) 

where   represents surface tension of water, 1R  and 2R  are, respectively, radii of the 

maximal and minimal curvatures at a point of the water surface, ( )w ap p  is so-called 
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Laplace pressure, and the mean curvature at this point is one half of 
1 2

1 1
( )
R R

. 
1R  and 

2R  are considered positive if their associated curves on the water surface bend towards 

air. Eq (2.2) gives the relationship between Laplace pressure and the size of the water 

droplet. Assume that half sizes of water droplets are less than the capillary length of 

water (i.e., 2.7 mm). This assumption holds in our case. Small water droplets were used 

in this work, and their volumes ranged from 1 μl to 6 μl. Consequently, the gravity effect 

on the droplets can be neglected [29, 40]. Hence, 
wp  is uniform inside the water droplet. 

Accordingly, by eq (2.2), 
1 2

1 1
( )
R R

 is constant on the surface of the water droplet. At the 

apex of a water droplet, 
1R  is the curvature associated with the curve, which passes 

through the apex along the direction perpendicular to the microlines, while 
2R  is the 

curvature associated with another curve, that passes through the apex along the direction 

of the microlines. As observed in our tests, before the occurrence of transition, both 

curves gradually increase their bending degrees during the evaporation, implying that 

both 
1 2

1 1
( )
R R

 and ( )w ap p  increase with the size reduction of the water droplet.  

Since the span of the water droplet along the microline direction is much larger 

than the distance between two neighboring microlines, the air/water interface between 

two neighboring microlines is considered to have a cylindrical shape, whose cross-

sectional profile (e.g., abc) is what was observed through the optical microscope. The two 

principal curvatures at a point of abc are, respectively, 0 and
1

R
, where R  denotes the 

radius of curvature. Therefore, at this point, 

    
1 2

1 1 1
 

R R R
.    (2.3) 
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Since 
1 2

1 1
( )
R R

 is constant on the surface of the water droplet, R  should be 

constant along abc. Thus, abc is a circular arc of radius R . Set 
1  to be the angle 

subtended by the tangent to abc at a and the vertical direction. Let h denote the 

deflection of abc at its middle point. It is also the maximum deflection of abc. Set 
0w  to be 

the distance between the two top corners of the gap. Based on eq (2.3) and simple 

geometric analysis, on the top corner of a microline, it is readily derived: 

0
1

1 2

1 1
cos ( )

2
  

w

R R
, 

2
1 2 0

1 2 1 2

1 1 1 1
( ) ( )

4

     
w

h
R R R R

.         (2.4) 

It can be observed from these two relationships that, on the top corner of a microline, 
1  

and h decrease and increase, respectively, with the size reduction of the water droplet 

during the evaporation, which interprets the first phenomenon described in section 2.2.1.  

On the first set of PDMS microlines, 
1 , h and 

1

R
 can be determined according 

to the observed profiles of abc. Therefore, experimentally measured relationships of 
1  

and h with 
1 2

1 1
( )
R R

, which equals 
1

R
 at abc, are compared with the corresponding 

relationships predicted by eq (2.4). As shown in Figs. 2.5 and 2.6, the experimental 

relationships match well with the theoretical relationships, indicating that eq (2.4) may 

give good prediction of 
1  and h based on the value of 

1 2

1 1
( )
R R

 during the evaporation. 
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Figure 2.5: Comparison of eq (2.4)1 with experimental results in 
the cases of evaporation and pressing. 
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Figure 2.6: Comparison of eq (2.4)2 with experimental results in the cases of 
evaporation and pressing. 
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2.2.3 Critical Values of Heights, Drop Sizes and Laplace Pressure  

2.2.3.1. Critical heights of microlines. 

As illustrated in Fig. 2.4, as 
1  gradually decreases, a should change its location 

on the top corner of a microline to ensure that it is in the state of equilibrium. Set   to be 

the angle between the sidewall and bottom of the microline. This angle ranges between 0 

and 
0180 . Let’s consider a special case: put a water droplet only on the top surface of a 

single line and gradually increase the volume of this droplet by adding extra water at its 

center. Then, when the water droplet spreads over the top corner of the line, a is 

stationary on the top corner if 
1  falls in the range 

0 0

0 1 0270 270        ,                                 (2.5) 

which is actually so-called Gibbs inequality condition expressed in terms of 
1  [62].

 
In this 

case, the inequality has the following geometric meaning [62]: when a is in the state of 

equilibrium while changes its location around the top corner of the line from the top edge 

to the low edge of this corner, 
1  decreases from 0

0270   to 0

0270 .    However, in 

our case, a water droplet sat on at least two microlines, and its volume was gradually 

decreased due to evaporation. Therefore, condition (2.5) does not entirely apply to our 

case. During the evaporation, a water droplet normally curves up at its apex before the 

occurrence of evaporation, such as in our tests, indicating that 
1 2

1 1
( )
R R

 is positive. By 

eq (2.3), 
1

R
 is also positive. Consequently, the interface abc should curve down. 

According to the geometry (Fig. 2.4), 
1  should be less than 90

0
. Thus, with the aid of eq 

(2.5), when a is stationary at the top corner, the range of 
1  is 

   0 0

0 1270 90      ,    (2.6) 
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which gives the limits of 
1  in eq (2.4)1. 

             

 
 
 

In view of eq (2.6) and the geometric meaning of  , we have  

0 0

0180 180 .        (2.7) 

Following the same reasoning, conditions (2.6) and (2.7) also apply to the situation when 

a is stationary on the sidewall of a microline. In this work, the value of 
0  was considered 

to be the apparent contact angle on a smooth PDMS film. It was measured to be 
0105 .  By 

eq (2.6), the minimum values of 
1   on 220-, 420- and 600-μm lines are 74

0
, 70

0
  and 69

0
, 

respectively. They are close to experimentally measured results (see, for instance, Fig. 

2.3b), which are 75
0
, 74

0
 and 66

0
 separately. In addition, in view of eq (2.7), we should 

have 0 075 180  . This requirement implies that, if 075  , then a could not be 

stationary on the top corner and sidewall of the corresponding PDMS microline. This 

point was validated on the second set of PDMS microlines, whose values of   are 68
0
 

and 55
0
. Water droplets of volumes in the range of 1 μl to 6 μl were placed on this set of 

Figure 2.7: After water droplets of volumes 5 μl had been placed on the second set of 
PDMS microlines, water immediately filled the gaps between the PDMS microclines, 
whose values of   were (a) 68º and (b) 55º, respectively. The close-up views of the 

corresponding microlines are given in Figs. 2.2(d1) and 2.2(d2), respectively (optical 
pictures and cross-sectional views). 

(a) 

Water-
filled gap 

200 μm 
10 μm 

(b) 

200 μm 
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two arrays of microlines. When any of these droplets was put on either array of PDMS 

microlines, water immediately filled the gap between two neighboring microlines (Fig. 2.7), 

indicating that a could be stationary neither on the top corners nor at the sidewalls of this 

set of microlines. In case 
0 <

090  (i.e., the material of a microline is hydrophilic), it follows 

from eq (2.7) that   should be at least greater than 90
0
. Otherwise, a could not be 

stationary at the top corner and sidewall of the microline. This point was also validated by 

putting droplets of an isopropyl alcohol solution (IPA) (91% IPA and 9% water by volume; 

CVS Pharmacy) on the second set of PDMS microlines. IPA immediately filled the gap 

between two neighboring microlines. The value of 
0  between IPA and PDMS was 

measured to be 34
0
. 

With eq (2.4)1, the particular value of 
1 2

1 1
( )
R R

 for 
1  to equal 0

0270    , i.e., 

for a located at the low edge of the top corner, is:  

   
0

0

1 2 0

2cos(270 )1 1
( )

  
 pa

R R w
.                         (2.8) 

In the above discussions, the gaps between neighboring microlines are 

considered deep.  If the gaps are shallow, then it is possible that abc has direct contact 

with the bottom of a gap when a is still on the top corner of a microline, making the 

transition occur. If a is located at the low edge of the top corner, then it follows from eqs 

(2.4)2 and (2.8) that the critical value of h is 

0

0 0

0

0

[1 sin(270 )]

2cos(270 )

 

 

  


 
cr

w
h ,              (2.9) 

which is also the maximum deflection of abc when a is at the top corner. To avoid the 

contact of abc with the bottom of the gap, the height of the microlines, 
0h , should be 

above this critical value. By eq (2.9), the values of crh  for 220-, 420- and 600-μm lines 
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are 14 μm, 18 μm, and 24 μm, respectively, less than the heights of the corresponding 

lines, which are 130 μm, 190 μm and 250 μm, separately. Hence, as observed from Fig. 

2.3(a), abc did not have contact with the bottom of the gap when a was located at the top 

corner of any of these lines.  

If 
0h <

crh , then, according to simple geometric analysis and with the aid of eq 

(2.3), the critical value of 
1  and 

1 2

1 1
( )
R R

 for the transition to occur are, respectively, 

  0 0
1 4 4 0.5

0 0

2
arccos[ ]

( 4 )
 


cr

h w

w h
, 0

4 4 0.5

1 2 0 0

41 1
( )

( 4 )
 


cr

h

R R w h
.  (2.10) 

These two equations are equivalent in the sense that one equation can be 

derived from the other. The procedure used to derive eq (2.10)2 has been previously 

adopted in [47] and [62] to determine 
1 2

1 1
( ) cr
R R

 in terms of 
0h  for the case that a water 

droplet evaporated on micropillars (when 
0h <

crh ). However, the situation that 
0h >

crh  

was not considered in these two references. 

 

2.2.3.2 Critical values of droplet sizes and Laplace pressure in case 0 0

0180 90     

In the following discussions, we assume that 
0h >

crh . After the water droplet 

continues to evaporate, making the value of 
1 2

1 1
( )
R R

 larger than the particular value 

given in eq (2.8), by eqs (2.4)1 and (2.8), 
1  is smaller than 0

0270    . Consequently, 

the contact angle between abc and the microline is larger than 0 . As implied by eq (2.1), 

the surface tensions at a yield a downward force, making a cross the low edge of the top 

corner.  
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Assume that a is in the state of equilibrium at a point on the sidewall. Let y 

denote the distance between this point and the low edge of the top corner measured 

along the sidewall. According to the geometry (Fig. 2.4), y ranged from 0 to 0

sin

h
. Set w 

to be the width of the gap measured at the location of a. Then, 

   
0 2 cos w w y .              (2.11) 

With 
0w  replaced by w, eq (2.4)1 also applies to this state of equilibrium. In order for a to 

be stationary on the straight sidewall of the gap, in view of the geometry (Fig. 2.4) and eq 

(2.1), 
1  should equal 0

0270    . To make this condition satisfied, invoking eqs (2.4)1 

and (2.8), we have 

0

1 2 1 2

1 1 1 1
( ) ( )   paw w
R R R R

.                       (2.12) 

In case 0 0

0180 90    , which holds only if 0

090   (i.e., the material of the 

microlines is hydrophobic), with the aid of eq (2.11), it follows from eq (2.12) that 

  0

1 2 0 1 2

1 1 1 1
( ) ( )

2 cos
  


pa

w

R R w y R R
.               (2.13) 

This equation indicates that 
1 2

1 1
( )
R R

 increases with y. It is possible that, 

although the condition (2.12) is met, abc has direct contact with the bottom of a gap, 

making the transition occur. Based on geometric analysis, this contact happens when y 

equals a critical value 

0 0

0 0 0
0 0

0 0

cos cos sin(270 ) 1 sin(270 )
.

cos sin 2cos

     

  

     
 cry h w          (2.14) 

This equations shows that 
cry  increases with the increase in 

0h  and the 

decrease in 
0w . Two limits of 

cry  can be found from this equation. As   0

0180 ,  
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0cry . When   090 ,  0 0
0

0

(1 sin )

2cos






 cr

w
y h . 

cry  is also the maximum value of y that 

allows a to be stationary on the sidewall. Accordingly, by eq (2.13), the critical value of 

1 2

1 1
( )
R R

 for a not to be stationary at any point on the sidewall is 

0

1 2 0 1 2

1 1 1 1
( ) ( )

2 cos
  


cr pa

cr

w

R R w y R R
.   (2.15) 

This relationship also gives the ratio between 
1 2

1 1
( ) cr
R R

 and 
1 2

1 1
( ) pa
R R

, which 

is 0

0 2 cos cr

w

w y
. This ratio shows how much change is needed in 

1 2

1 1
( )
R R

 to make the 

transition occur after a crosses the low edge of a top corner. With the aid of eq (2.8), it 

follows from eq (2.15) that 

0

0

1 2 0

2cos(270 )1 1
( )

2 cos
cr

crR R w y

 



 
 


.                                        (2.16) 

This equation indicates that the critical droplet size for the transition to occur 

decreases with the increase in 
0  and the decrease in 

0w .  

By eqs (2.2) and (2.16), the critical value of ( )w ap p  is: 

0

0

0

2 cos(270 )
( )

2 cos
w a cr

cr

p p
w y

  



 
 


.    (2.17) 

This relationship shows that the critical Laplace pressure for the transition to 

occur increases with the increase in 
0  and the decrease in 

0w . Eqs (2.16) and (2.17) 

are suited to predict 
1 2

1 1
( ) cr
R R

 and ( )w a crp p , respectively. They are equivalent in the 

sense that one equation can be derived from the other. 
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Figure 2.8: Theoretical relationships of (a) 
cry  with , (b) 

1 2 1 2

1 1 1 1
( ) / ( ) cr pa
R R R R

 with  , 

and (c) 
1 2

1 1
( ) cr
R R

 with ,  when 75 90     ( 0 105 )    for three arrays of PDMS 

microlines whose widths are given in the figure.  These microlines have the same height 
of 250 µm. 
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In addition, it is noticed that, after 
0 ,h 0w  and 

0  are given, the values of ,cry   

1 2 1 2

1 1 1 1
( ) / ( ) cr pa
R R R R

 and 
1 2

1 1
( ) cr
R R

 vary with . To have a better understanding about 

the corresponding changes, we apply eqs (2.14)-(2.16) to three arrays of PDMS 

microlines, whose values of 
0w  are the same as those of 220-, 420- and 600-μm lines, 

respectively (Fig. 2.8). The arrays of microlines are set to have the same height of 250 

μm. Figure 2.8(a) gives three relationships of 
cry  with   for the three arrays of PDMS 

icrolines, respectively, when   ranges from 75º to 90º. As observed from Fig. 2.8(a), in 

addition to increasing with the decrease in 
0w , 

cry  also increases with the increase in   

on these three arrays of PDMS microlines. This observation implies that the interface abc 

can be stationary deep inside a gap if 
0w  is small and   approaches 90º, i.e., if the gap 

is narrow and the inclined angle of the microline sidewall is close to 90º Figure 2.8(b) 

shows the changes of 
1 2 1 2

1 1 1 1
( ) / ( ) cr pa
R R R R

 with . Two points are observed from this 

figure. First, the ratios increase with the decrease in 
0w  for the three arrays of microlines. 

Second, the ratios increase from the minimum value of 1 to the maximum values of 1.17, 

1.08 and 1.05, respectively, for the three arrays of microlines, when   increases from 75º 

to 82º, and decrease from these maximum values to 1 when   increases from 82º to 90º. 

According to the second point, on any of the three arrays of microlines, when   is 82º, a 

relatively large change is needed in 
1 2

1 1
( )
R R

 to make the transition occur after a crosses 

the low edge of a top corner. However, when   is close to 90º, only a slight change in 

1 2

1 1
( )
R R

 is needed to make the transition happen. Figure 2.8(c) gives the changes of 
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1 2

1 1
( ) cr
R R

 with  . On any of the three arrays of PDMS microlines, the values of  

1 2

1 1
( ) cr
R R

 increase with , making the transition more difficult to occur if   is close to 

90º. 

 

2.2.3.3. Critical values of droplet sizes and Laplace pressure in case 0 090 180   

For the case that 0 090 180  , as seen from eq (2.11), w is equal to or larger 

than 
0w . Also, due to the continuous evaporation of the water droplet, when a is inside 

the gap, the value of 
1 2

1 1
( )
R R

 is larger than that of 
1 2

1 1
( ) cr
R R

. Accordingly, eq (2.12) 

does not hold, and 
1  < 0

0270    . Hence, a is not stationary on the sidewall. Once it 

crosses the low edge of the top corner, it keeps moving down until the water fills the gap, 

which interprets the second phenomenon described in Sub-section 2.3.1. Accordingly, in 

case 0 090 180  , the particular value given in eq (2.8) is also the critical value of 

1 2

1 1
( )
R R

 for a water droplet to have the transition from Cassie-Baxter to Wenzel States. 

That is, 

  
0

0

1 2 0

2cos(270 )1 1
( )

  
 cr

R R w
.     (2.18) 

This equation indicates that the critical droplet size for the transition to occur decreases 

with the decrease in 
0w . For fixed 

0  and 
0w , the value of 

1 2

1 1
( ) cr
R R

 varies with  . For 

PDMS microlines of a fixed 
0w , the largest value of 

1 2

1 1
( ) cr
R R

 is 
0

2

w
, which corresponds 
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to that 0165  . With the help of eqs (2.2) and (2.3), it follows from eq (2.18) that the 

critical value of ( )w ap p  is 

0

0

0

2 cos(270 )
( )

   
 w a crp p

w
.   (2.19) 

This relationship shows that the critical Laplace pressure for the transition to occur 

increases with the decrease in 
0w . For PDMS microlines of a fixed width, the largest 

value of critical Laplace pressure is 
0

2

w
, which also corresponds to that 0165  . 

  Eqs (2.18) and (2.19) are good to predict 
1 2

1 1
( ) cr
R R

 and ( )w a crp p , separately, 

for the case that 0 090 180  , and they are also equivalent. It is difficult to directly 

measure ( )w ap p but relatively easier to determine 
1 2

1 1
( )
R R

 according to the shape of 

abc or the cross-sectional profiles of a water droplet at its apex. In this work, the critical 

values predicted by eq (2.17) were compared with the corresponding values 

experimentally determined on the first set of PDMS microlines. By eq (2.18), the values of 

1 2

1 1
( ) cr
R R

 predicted on 220-, 420- and 600-μm lines are 2.4 mm
-1

, 1.6 mm
-1

, and 1.2 

mm
-1

, respectively. On each array of the microlines, based on eq (2.3), the corresponding 

value of 
1 2

1 1
( ) cr
R R

 was experimentally determined at abc since the profile of abc could 

be directly observed using the optical microscope (see, for example, Fig. 2.3). The values 

of 
1 2

1 1
( ) cr
R R

 found on the 220-, 420- and 600-μm lines are 2.8 mm
-1

, 1.5 mm
-1

 and 1.2 

mm
-1

, respectively. The comparison of the theoretical and experimental results indicates 
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that they match well. Consequently, eq (2.18) can be potentially applied to give good 

prediction of 
1 2

1 1
( ) cr
R R

 when a water droplet evaporates on microlines.  

 

2.2.3.4. Design criteria of microlines 

 The microlines should have liquid-repellent surfaces such that a liquid droplet is 

easy to roll off from these microlines. This implies that 0

0 90  . According to eqs (2.9), 

(2.15) and (2.18), which give the expressions of 
crh , 

1 2

1 1
( ) cr
R R

 in the case of 

0 0

0180 90    , and 
1 2

1 1
( ) cr
R R

 in the case of 0 090 180  , respectively, the 

following criteria are developed to design microlines for reducing the critical size of a 

liquid droplet that triggers the transition from Cassie-Baxter to Wenzel states.  

(i) If 0 090 180  , then by eq (2.18) one should set 0

0270    and 
0w   should 

be as small as possible. Consequently, the value of 
1 2

1 1
( ) cr
R R

 is large, and the 

critical size of a liquid droplet for the occurrence of transition is small. After 
0w  

and   are chosen, 
0h  should be larger than 

crh , which is given in eq (2.9). 

(ii) If 0 0

0180 90    , then by eq (2.16) 
0w   should also be as small as possible. 

can be any allowable value. When 
cry  is large enough (i.e., if 

0h  is selected to be 

large enough as observed from eq (2.14)), for any chosen  , the value of 

1 2

1 1
( ) cr
R R

 is still large. Consequently, the critical droplet size for the occurrence 

of transition is small. In case the largest value of 0h  is fixed by, for example, the 

limitation of fabrication, this largest value should be chosen for 
0h . Naturally, 

0h  
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should also be larger than 
crh . Subsequently, by eq (2.16) one can find the 

optimal value of   that results in the maximum value of 
1 2

1 1
( ) cr
R R

. Furthermore, 

in comparison of this maximum value of 
1 2

1 1
( ) cr
R R

 with that given in Case (i), 

the one can further decide which criteria (i.e., the criteria in either Case (i) or (ii)) 

should be adopted to determine the values of ,  
0w  and 

0h . 

The above design criteria are obtained from the standpoint of reducing the critical 

droplet size. They may not be compatible with other requirements. For example, 
0w  

needs to be large in case the apparent contact angle of a droplet on the microlines is 

expected to be large. However, according to the above design criteria, 
0w  should be 

small. If this is the case, an appropriate value should be chosen for 
0w  such that the 

requirements of critical droplet sizes and apparent contact angles could be both met to a 

certain degree.  
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71 200 μm 73 

66 68 

200 μm 

200 μm 200 μm 

200 μm 

Figure 2.9: Change of an air/water interface on 220-µm lines when a water droplet of 
volume 5 µl was slowly pressed by a glass slide (see the interface marked with an angle 
for example): (a) stayed at the top corners of two PDMS microlines at the initial state of 
pressing, (b) crossed the low edges of the top corner, (c) moved down along the gap 

sidewalls, (d) continued to move down along the gap sidewalls, and (e) had contact with 
the bottom of the gap and collapsed. The same transition phenomena were also 

observed on 420- and 600-µm lines. For simplicity, the correponding images are not 
presented here (optical pictures and cross-sectional views). 
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2.3 Pressing of Water Droplets  

 In Section 2.2.1, the occurrence of transition is essentially due to the increase of 

wp , which is induced by the evaporation of the corresponding water droplet. In addition 

to evaporation, 
wp  may also be gradually increased by slowly pressing a water droplet 

using a rigid plate, causing the occurrence of transition, as previously investigated in [29]. 

We also examine in this pressing case the relationships given in eqs (2.4), (2.6) and 

(2.18). Using the setup shown in Fig. 2.1(b), that is similar to the one used in [29], a water 

droplet was slowly pressed by a glass slide when a micrometer above the glass slide was 

screwed down. As in the case of evaporation, the changes of abc on microlines during a 

pressing process were also captured with the aid of the optical microscope (see, for 

instance, Fig. 2.9). Four phenomena were also observed during the pressing process. 

They are similar to those observed in the case of evaporation except for the third 

phenomenon. When a droplet was deeply pressed, the number of microlines on which 

the droplet sat did not decrease but might increase due to the spreading of this droplet 

along the horizontal directions (Fig. 2.9).   

 The corresponding values of 
1 , h and 

1

R
 were determined in view of the 

observed profiles of abc. Figures 2.5 and 2.6 give the comparison of the experimental 

and theoretical results. The experimentally measured relationships of 
1  and h with 

1 2

1 1
( )
R R

 have a good agreement with the corresponding relationships predicted by eq 

(2.4). By eq (2.6), the minimum values of 
1   on 220-, 420- and 600-μm lines are 74º, 70º 

and 69º, respectively. They are close to experimentally measured results (see, for 

example, Fig. 2.9b), which are 71º, 68º and 66º separately. The values of 
1 2

1 1
( ) cr
R R
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measured on the 220-, 420- and 600-μm lines are 2.9 mm
-1

, 1.5 mm
-1

, and 1.2 mm
-1

, 

respectively, which also have a good match with the corresponding values predicted by 

eq (2.18), which are 2.4 mm
-1

, 1.6 mm
-1

, and 1.2 mm
-1

, separately. Consequently, eq 

(2.18) may also be applied to give good prediction of 
1 2

1 1
( ) cr
R R

 when a water droplet is 

pressed on microlines. Accordingly, the set of criteria developed in the evaporation case 

for designing microlines may apply as well to this pressing case.  

 
 

2.4 Summary and Conclusions 

In this chapter, we directly observed the evolution of air/water interfaces 

suspended between PDMS microlines when water droplets reduced their sizes due to 

evaporation or pressing. The inclined angles of the microline sidewalls were slightly 

larger than 90
0
. Four important phenomena were observed regarding the transition from 

Cassie-Baxter to Wenzel States. Based on these two phenomena, the equilibrium of a 

triple line and the uniformity of pressure inside a small water droplet, critical values of the 

droplet sizes and Laplace pressure were derived to predict when the transition would 

occur on microlines. The predicted values of droplet sizes for the case that the inclined 

angles of these sidewalls are larger than 90
0
 were validated by experimental results on 

three arrays of PDMS microlines in both cases of evaporation and pressing. The derived 

theoretical relationships indicate that air/water interfaces may be stationary on top 

corners and sidewalls of microlines if the inclined angles of the microline sidewalls are 

less than 90
0
. Otherwise, the interfaces can only be stationary at the top corners of the 

microlines. In addition to the cases of evaporation and pressing, the theoretical 

relationships derived in this work may also apply to other cases, in which Laplace 

pressure is gradually increased inside a liquid droplet and half sizes of the droplet are 
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less than the capillary length of the liquid.  Finally, based on developed transition criteria, 

a group of criteria were also proposed to design microlines for reducing the critical droplet 

size that triggers the transitions from Cassie-Baxter to Wenzel States.  
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Chapter 3  

A Stable Intermediate Wetting State after a Water Drop Contacts the Bottom of a 

Microchannel or Is Placed on a Single Corner 

 
In this chapter, we show that this transition criterion does not always hold true in 

the case of microchannels. We first theoretically prove that, when an angle criterion is 

satisfied, there may exist an intermediate wetting state inside a microchannel after a 

water drop contacts the bottom of the microchannel. In this wetting state, water does not 

completely fill the microchannel, and air pockets still exist in its bottom corners. Also, the 

wetting state is stable in the sense that its energy state is lower than that of the Wenzel 

model. According to the angle criterion, such intermediate states may exist, for example, 

in microchannels with vertical sidewalls when contact angles on the inner surfaces of 

these microchannels are larger than 135
0
. In addition to microchannels, the 

aforementioned intermediate state may also exist on a single corner (which is formed by 

a horizontal plate and an inclined plate), when the angle criterion is met. After theoretical 

modeling, we then conduct four types of tests on single corners and microchannels to 

validate the angle criterion. In these tests, once the angle criterion is met, stable 

intermediate states are observed on the corresponding samples. In addition, it is found 

from the two types of tests conducted on microchannels that, once Laplace pressure 

inside a water drop is gradually reduced, such an intermediate wetting state may be 

transited back to the original Cassie-Baxter state. On the other hand, Wenzel state may 

not have such a reversal transition unless an additional force is applied to overcome 

energy barrier between Wenzel and Cassie-Baxter states.  
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3.1 Theoretical Analysis 

3.1.1 Creation of an Equilibrium State inside a Microchannel 

Micropillars and microchannels are often applied as structures to enhance 

surface hydrophobicity. [23, 24, 26, 29, 30, 37, 38, 45-50, 62, 65] As a water drop is 

placed on microchannels, air/water interfaces suspended on the microchannels have 

approximately cylindrical shapes. This makes it simple to mathematically model these 

air/water interfaces. The interfaces between neighboring micropillars have more 

complicated shapes. For easily characterizing the air/water interfaces, microchannels are 

chosen in this work as the surface structures.  

As illustrated in Fig. 3.1(a), let abc denote the cross-sectional profile of the 

air/water interface suspended on the top edges of a microchannel when a water drop is 

placed on a microchannel-formed surface. Set   to be the angle formed by the sidewall 

and bottom of the channel. We have 00 180 .   Let h denote the deflection of abc at its 

middle point b. It is also the maximum deflection of abc. Use ed to represent the bottom 

of the channel. When abc moves inside the microchannel after depinning from the top 

corners due to the evaporation of the water drop or the pressing of this water drop, [37] 

the middle point of abc first contacts the center of ed. This contact may also occur if h is 

larger than the depth of the microchannel. After the contact, water spreads on ed from 

the center towards the bottom corners of the channel, resulting in two air/water interfaces 

inside this channel. Denote the cross-sectional profiles of these two interfaces by ab1 and 

b2c, respectively (Fig. 3.1a). Due to geometric symmetry, let’s only consider ab1, and the 

same analysis also applies to b2c. The length of ab1 gradually decreases when water 

spreads on ed. 
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Figure 3.1:Schematics of the cross-sectional profiles: (a) an equilibrium state after 
water/air interface abc contacts the bottom of a microchannel, (b) a possible equilibrium 
state that is not stable, and (c) an equilibrium state in a single corner that is formed by a 
horizontal plate and an inclined plate after a water drop is placed on this single corner. 
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Static contact angles on the two sidewalls of a microchannel are considered to 

0p be the same, while they may be different from the one on the bottom of the 

microchannel. Set 
1  and 

2 , respectively, to be static contact angles on the sidewalls 

and bottom of a microchannel. Both 
1  and 

2  
are assumed to be greater than 90

0
. That 

is, the inner surfaces of the microchannel are hydrophobic. If the sidewalls and bottom of 

the microchannel are smooth, then 
1  and 

2  
are intrinsic contact angles. Otherwise, 

they are apparent contact angles. According to well-known Young-Dupré equation, [60] 

we have 

1 1 1cos ,    SA SL 2 2 2cos ,    SA SL
   (3.1) 

where represents surface tension of water,
 1 SL  

is surface tension of the interface 

between water and channel bottom, 
1 SA

 denotes surface tension of the interface 

between air and channel bottom, 
2 SL
 is surface tension of the interface between water 

and channel sidewall, and 
2 SA
 denotes surface tension of the interface between air and 

channel sidewall.  

Next, let’s consider the shape of ab1 if it is stationary. Let 
wap , 

1wbp , and 
 
denote 

water pressures at a, b1, and the apex of the water drop, separately. Set 
ap , 

0h , and 
ah  

to be, respectively, atmospheric pressure, height of the water drop, and vertical distance 

between a and b1. Assume that half size of the water drop is less than the capillary length 

of water (i.e., 2.7 mm). This assumption holds in our case. Small water drops are used in 

this work, and their volumes range from 3 μl to 6 μl. Subsequently, after a drop is placed 

on the substrate, the water surface around the apex of the drop is considered to be 

spherical. [29, 45] Let 0R  denote the corresponding radius, which is smaller than 2.7 mm 

accordingly. It was indicated in reference 67 that, gravity effect may not be neglected if a 
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water drop has a microliter volume (particularly for the super-hydrophobic case in which 

gravity has a strong effect, for example, on the measurement of contact angles) since 

gravity distorts the bottom shape of a water drop, and that this effect is negligible when 

the volume of a water drop is in the order of picoliters or smaller. Accordingly, since our 

water drops have microliter volumes, gravity effect is not neglected in this work in 

considering water pressure. On the other hand, we assume that water pressure on ab1 is 

uniform. This assumption is justified below in two cases.   

In the first case, a water drop is just placed on a substrate and does not suffer 

any external forces except gravity, as what was done in references [23, 24, 26, 29, 30, 37, 

38, 45-50, 62, 65]. This is also the case in our tests on single corners (will be detailed in 

Section 3.3). By Young-Laplace equation, [60] we have 0

0

2
  ap p

R
. Subsequently, we 

get   

0

0

2
    wa w w a ap gh gh p

R
,  0

0

2
,


  wb w ap gh p

R            
 (3.2) 

where w
 denotes water density and g is gravitational acceleration. Microstructures that 

are employed to enhance hydrophobicity normally have heights lower than 200 µm (the 

microstructures used in this work have the maximum height of 93 µm, as will be shown in 

Sub-section 3.2.2). [23, 24, 26, 29, 30, 37, 38, 45-50, 62, 65] Set 
0h  to be the maximum 

possible value of 200 µm. Also, let 
0R  have the maximum allowable value of 2.7 mm. We 

find that, although w agh  and 
0

2

R
 

are set to have the maximum and minimum values, 

respectively, w agh
 
is still only 3.6% of 

0

2

R
 ( 72.7   mN/m, g=9.8 N/kg and 310 w

 

kg/m
3 

are used in the calculation). This comparison means that w agh
 
has a negligible 
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effect on 
wap . Consequently, it follows from Eq. (3.2) that 

wap
 
approximately equals 

1wbp . 

Furthermore, since water pressure at any point of ab1 is between  
wap

 
and 

1wbp , water 

pressure on ab1  can be considered uniform and has a constant value of 
1wbp .  

In the second case, a pressing force is applied on the top of a water drop. This is 

actually the case in our pressing tests on microstructure-formed surfaces (will also be 

detailed in Section 3.3). Due to the application of the pressing force on the drop, the 

corresponding 
0p  is larger than 

0

2
( )

 ap

R
. Subsequently, following the same line of 

reasoning as above, water pressure on ab1  can still be considered to be uniform and 

equal to 
1wbp  in this type of tests.   

The two principal curvatures at a point of ab1 are, respectively, 0 and 
1

R
, where 

R  denotes the radius of curvature. According to Young-Laplace equation, [60]




w a

R
p p

, where 
wp

 

represents water pressure at this point of ab1 and ( )w ap p  is 

so-called Laplace pressure.  Since 
wp

 

is uniform on ab1 and equals 
1wbp , by this relation 

R  should be constant along ab1 accordingly. Thus, ab1 is a circular arc of radius R. Let O 

denote the center of ab1. In practice, after a small water drop is placed or pressed on a 

hydrophobic surface, its top portion bends outwards. This implies that R is positive, which 

geometrically means that ab1 bends downwards.  

In summary, in order for ab1 to be stationary, the following two geometric 

conditions have to be satisfied: (i) the contact angles of ab1 at b1 and a should be 
1  and 

2 , respectively, and (ii) ab1 should bend downwards with a circular shape. As observed 

from Fig. 3.1(a), in order to make the second condition met, we should have 



 

40 

00 180  .          (3.3) 

Otherwise, as illustrated in Fig. 3.1(b), the point O would be located outside the left 

bottom corner, and consequently the interface ab1 might bend upwards, which violates 

the second required condition. Since  

0

1 2 360      ,                (3.4) 

the two inequalities in (3.3) imply that 

0

1 2360 ( )    .           (3.5) 

Furthermore, according to simple geometric analysis, we have  

2

1

2 sin sin( )
2 2

sin

 








R

w , 
1

2

2 sin sin( )
2 2

sin

 








R

w .          (3.6) 

It can be observed from these two relationships that both 
1w  and 

2w  decrease with the 

decrease in R. 

 

3.1.2 Stability of the Constructed Wetting State 

In order to make the constructed equilibrium state locally stable, its energy state 

should be lower than that of completely filled case. Otherwise, water continues to spread 

on the bottom of the microchannel until the bottom corners are completely filled. 

Subsequently, the wetting state is changed to that of Wenzel, which is discussed in 

chapter 2. Assume: (i) water spreads on both channel sidewalls and bottom in a quasi-

steady manner (such that the kinetic energy of the water drop can be neglected), and (ii) 

the top portion of the water drop has negligible change in the shape when water spreads 

at the channel bottom (such that the surface energy change in the drop cap could be 

neglected). The second assumption is essentially equivalent to the one made in 

reference 50 during its consideration of the energy barrier between Cassie-Baxter and 
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Wenzel states. Based on these two assumptions, to make the two channel corners 

completely filled from the constructed equilibrium state, external work that needs to be 

done is 

1 1 2 2 1 1 2 22 2 [2 2 ( )],         SL SL SA SAW L w L w R L L w w   (3.7) 

where W represents the work and L denotes the length of the water drop along the 

channel direction. The summation of the first two term on the right-hand side of eq. (3.7) 

denotes the total surface energy that is gained after the two corners are completely filled, 

while the terms inside square brackets represent surface energies of ab1, cb2, aeb and 

cdb2 (corresponding to the equilibrium state) that are lost after the complete filling. With 

the aid of eq. (3.1), it follows from eq. (3.7) that  

1 1 2 22 2 ( cos cos ).       W R L L w w     (3.8) 

In case W is positive, the energy state of the completely filled case is higher than that of 

the equilibrium case. Accordingly, there is an energy barrier that prevents the complete 

filling of the corners. Consequently, the constructed equilibrium state is locally stable, 

making it possible to observe this wetting state after water contacts the base of the 

microchannel. With the aid of eq. (3.6), it follows from eq. (3.8) that W is positive if 

1 2 2 1sin 2sin [cos sin( ) cos sin( )] 0
2 2 2

  
          .              (3.9) 

Ineqs. (3.5) and (3.9) are two conditions that 
1 , 

2  and φ should meet for the existence 

of a stable wetting state after the water drop has contact with the bottom surface of a 

microchannel. 

In addition, following a line of reasoning similar to that used to derive ineqs. (3.5) 

and (3.9), we find that these two inequalities also apply to the case when a water drop is 

placed on a single corner that is formed by a horizontal plate and an inclined plate (Fig. 

3.1c). That is, to have a stable wetting state on this single corner, the two inequalities 
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also have to be met. Ineqs. (3.5) and (3.9) were solved using Matlab. As observed from 

the results plotted in 
1 -

2 - φ rectangular coordinates (Figs. 3.2a-3.2c), the set of points 

(
1 , 

2 ,  ), which meet ineq. (3.5), is actually a sub-set of the one that satisfies ineq. 

(3.9). Accordingly, only ineq. (3.5) is needed to judge the existence of a stable wetting 

state. Consequently, we have arrived at an angle criterion: once 
1 , 

2  and   of a 

microchannel or a single corner satisfy ineq. (3.5), there exists a stable intermediate 

wetting state after a small water drop contacts the bottom of the microchannel or single 

corner in a quasi-steady manner.  

Next, we consider a special case, in which 
1 =

2 =
0 . Let  

0

0 360 .  ct  
    (3.10) 

Then, by ineq. (3.5), for a given  , 
0 ct  

is in fact the critical value for 
0  to satisfy the 

angle criterion. It is also observed from Eq. (3.10) that, as   ranges between 0
0
 and 180

0
, 

0 ct
 decreases with the increase in the value of . When   is 90

0
, 

0 ct
 is 135

0
. That is, a 

stable intermediate state may exist inside a microchannel or on a single corner only if 

0 >135
0
. Due to the ease of fabrication, microchannels that are used to enhance 

hydrophobicity of a surface normally have approximately vertical sidewalls (i.e.,  is 

around 90
0
) and their sidewalls and bottoms are also smooth. On a smooth surface, 

0
 

is normally less than 120
0
 even if this surface is coated with highly water-repellant 

materials, [29] such as Teflon. [68] This may interpret why stable wetting states were not 

observed when water contacted the bottoms of this type of microchannels as discussed 

in chapter 2. 
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Figure 3.2: (a) volume formed by the points that meet ineq. (3.9). (b) volume formed by 
the points that satisfy ineq. (3.5). (c) volume shown in (b) is a subset of the one given in 

(a). 
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Figure 3.3: List of tests: (a) first type of tests, in which θ1 and θ2 are 115° and 160° 

respectively; (b) second type of tests, in which θ0 is either 115° or 160°; (c) third type of 
tests, in which φ is 90° and θ0 is 170°; and (d) fourth type of tests, in which φ and θ0 are 
57° and 170°, respectively. In the first two types of tests, the values of φ are increased 

from 10° up to 150°, and the bottom widths of the channels shown in (c) and (d) are both 
600 µm. 

 

3.2 Experimental Design 

3.2.1. Design of Tests, and Experimental Setup for Observing Wetting States 

 Four types of tests were conducted to validate the angle criterion (Fig. 3.3). The 

first two types of tests were performed to observe wetting states on single corners (Figs. 

3.3a and 3.3b), while another two types were done to examine wetting situations inside 

microchannels (Figs. 3.3c and 3.3d). These tests, together with their results, will be 

detailed in Section 3.3. 

Figure 3.4(a) gives experimental setup used to observe the wetting state on a 

single corner after a water drop was placed on this corner. An optical microscope (model: 

mm0013000m of Metallurgical Microscopes Company) was employed for this purpose. 

The microscope was rotated by 90
0
 with its sample stage oriented vertically. A triangular 

aluminum block was glued on the sample stage and served as a new sample stage. A 

(a) (b) 

(c) (d) 

    

θ1 

θ2 θ0 

170° 170° 

57° 90° 
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glass slide was glued on this new stage, and had a horizontal orientation. The single 

corner was formed by putting two plates on the glass slide and triangular block, 

respectively. A water drop was placed inside this corner using a syringe. The viewing 

direction of the optical microscope was along the intersecting line of the two plates that 

formed the single corner.  

 
 

 
Figure 3.4: (a) Setup for observing cross-sectional profiles of a water drop on a single 
corner. (b) Experimental setup for observing cross-sectional profiles of a water drop on 

microchannels during the pressing of a water drop. 
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Figure 3.4(b) shows experimental setup applied to observe the wetting states 

inside microchannels when a water drop was slowly pressed. The optical microscope 

was also employed in this case to directly observe the evolution of air/water interfaces 

between microchannels. A microchannel-formed surface was first placed on the glass 

slide. A 5 mm X 5 mm X 10 mm (length X width X height) polydimethylsiloxane (PDMS) 

block that was connected to the arm of a micromanipulator (model: MD4R of World 

Precision Instruments, Sarasota, FL USA) was then employed to hold and press the 

water droplet. The vertical and horizontal movements of this PDMS block were controlled 

by the micromanipulator. A water drop was first loaded on the PDMS block using a 

syringe, and then moved to the top of the microchannels employing the micromanipulator. 

The water drop was slowly pressed against the microchannels when the PDMS block 

was gradually moved down. 

The pictures of the air/water interfaces observed through the optical microscope 

were taken using Minisee software of ScopeTek Company. The contact angles of these 

interfaces with the inner surfaces of single corners and microchannels were determined 

using MB-Ruler software.  

 

  

http://www.swissprec.com/
http://www.swissprec.com/
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Figure 3.5: SEM pictures of microchannel-structured Si surface. (a) The second kind of 

sample, which has evenly distributed pillars. (b) The third kind of sample, which has 
vertical sidewalls. (c) The fourth kind of samples, which has sidewalls with inclined 

degrees of 57
0
. 
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3.2.2. Fabrication of Samples 

Four kinds of samples were used in the four types of tests (Fig. 3.5). The first 

kind was Teflon-coated SU-8 films. When water drops were placed on these films, the 

corresponding contact angles were measured to be 115°±2°, and receding and 

advancing angles were 89°±2° and 120°±2°, respectively. As shown in Figs. 3.5(a), the 

second kind was silicon wafers whose surfaces were covered with evenly distributed SU-

8 pillars that were also coated with Teflon. Each pillar had dimensions of 18 X 18 X 93 

µm
3
 (length X width X height), and the average spacing between two neighboring pillars 

was 26 µm. SU-8 is a negative photoresist. SU-8 pillars were fabricated on a silicon wafer 

using ultra-violet (UV) lithography techniques. [46] The SU-8 pillars were also coated with 

Teflon to make their surfaces hydrophobic. The apparent contact angles on the 

micropillar-incorporated silicon wafers were measured to be 
0160 ±2° (the receding and 

advancing angles were 145°±2° and 167°±2°, respectively). The third kind of samples 

included silicon microchannels, whose bottom widths were 600 µm (Figs. 3.5(b)). These 

wide channels were adopted to have a clear view of air/water interfaces inside a channel. 

Silicon surface is hydrophilic. To make the sidewall and bottom of each channel have 

high contact angles, randomly distributed ZnO nanowires were grown on the inner 

surfaces of every channel using a hydrothermal approach (see reference 69, for example, 

for the detail of this approach). The nanowires had hexagonal cross-sections with an 

average length of 3.6 µm and diameter of 0.36 µm. After the incorporation of these ZnO 

nanowires, the sidewall and bottom of each channel had about the same apparent 

contact angles of 170°±2° (the receding and advancing angles were 160°±2° and 

172°±2°, respectively). The sidewalls of microchannels were perpendicular to their 

corresponding substrates. The fourth kind of samples was the same as the third kind 

except that the sidewalls of the channels in the fourth kind of samples formed angles of 
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57°, instead of 90°, with the bottoms of the channels (Figs. 3.5(c)). The silicon 

microchannels in the third and fourth kinds of samples were also fabricated using UV 

techniques. [70, 71]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

50 

 

 
 

 

Figure 3.6: (a) Comparison of experimental data and theoretical prediction on the first 
type of tests, in which θ2 =160°. (b) Comparison of experimental data and theoretical 

predictions on the second, third and fourth types of tests, in which θ1=θ2=θ0. Triangular 
dots mean that no stable intermediate states were observed, and circular dots imply that 

stable intermediate states were clearly observed. 
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3.3. Experimental Results and Discussions 

As observed from Fig. 3.6, experimental data generated out of the four types of 

tests match well with the predications given by the angle criterion. Figures 3.7 and 3.8 

give representative wetting states observed in these tests. 

 In the first type of tests, a set of single corners was considered (Figs. 3.3a and 

3.7a). The bottom plates of these single corners were the first kind of samples, while the 

inclined plates were the second kind of samples. Consequently, the contact angles on the 

sidewall and the bottom of a single corner were 160° and 115°, respectively. In terms of 

ineq. (3.5), only if  >85°, stable intermediate states exist on the first set of single corners 

(Fig. 3.6a). In our tests, when the values of   were first increased from 10° up to 60° 

with an increment of approximately 10° and then increased to 82° with a smaller 

increment of about 5°, we did not observe any stable intermediate states (Fig. 3.7a). 

However, when  was increased to 87° or above, stable intermediate states were clearly 

observed (Figs. 3.7b and 3.7c). Accordingly, the experimentally measured critical value of 

φ was 83.5° (the average values of 82° and 87°), which was close to the theoretically 

predicted value of 85°.  Thus, the experimental results in this type of tests have a good 

match with those predicted by ineq. (3.5) (Fig. 3.6a). If advanced contact angles on the 

sidewall and bottom of a single corner (167° and 120°) were used in ineq. (3.5), then 

stable intermediate states may exist on the first set of single corners only when  >73°. In 

this case, the experimentally measured critical value of 
 
had a difference of 10.5° from 

the theoretically predicted one, implying that ineq. (3.5) gives a reasonably good 

prediction.      
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Figure 3.7: First type of tests: (a) Wenzel state at  =82°; and stable intermediate states 

at (b)  =87° and (c)  =140°. 
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In the second type of tests, the contact angles on the sidewall and the bottom of 

a single corner were the same (Fig. 3.3b). Two sets of single corners were examined, 

and they were formed by the first two kinds of samples, respectively. Accordingly, the 

values of θ0 were 115° and 160°, separately, on these two sets of single corners. By ineq. 

(3.5), when the value of θ0 was 115°, only if  >
 
130°, stable intermediate wetting states 

exist on the first set of single corners. In our tests, when the values of  were increased 

from 10° to 123°, we did not observe any stable intermediate states. The water drops 

completely filled the corresponding single corners right after water drops had been placed 

on these single corners. However, when  =137° or above, stable intermediate states 

were clearly observed. Consequently, the experimentally measured critical value of 

was 130° (the average values of 123° and 137°), which equaled the theoretically 

predicted value. Thus, the experimental results in this type of tests have a good match 

with those predicted by ineq. (3.5) (Fig. 3.6b). On the other hand, when advanced contact 

angles on the sidewall and bottom of a single corner (both were 120°) were used in ineq. 

(3.5), stable intermediate states may exist only if  >120°. In this case, the experimentally 

measured critical value of φ
 
had a difference of 10° from the theoretically predicted one, 

implying that ineq. (3.5) also gives a reasonably good prediction. The same testing 

results apply to the second set of single corners. By ineq. (3.5), when the value of θ0 was 

160°, only if  >
 
40°, stable intermediate states exist on the second set of single corners. 

In our tests, when the values of   were increased from 15° up to 36°, we did not observe 

any stable intermediate states. However, stable intermediate states were clearly 

observed when φ =45° or above. The experimental results in this type of tests agree well 

with the predictions given by ineq. (3.5) (Fig. 3.6b). In case advanced contact angles on 
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the sidewall and bottom of a single corner (both were 167°) were used in ineq. (3.5), 

stable intermediate states may exist only if  >26°. In this case, the experimentally 

measured critical value of   had a difference of 14° from the theoretically predicted one, 

implying that ineq. (3.5) gives a just fine prediction.  

 
Figure 3.8: Fourth type of tests (the bottom widths of microlines are 600 µm and   is 57°): 

(a) a water drop was pressed against microchannels, (b)-(c) stable intermediate states 
were observed after the water drop had contact with the bottoms of the microchannels, 

(d)-(e) intermediate states were transited back to that of Cassie-Baxter with the reduction 
in applied pressure, and (f) water drop was finally removed from the substrate. 
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In the third and fourth types of tests, the third and fourth kinds of samples were 

examined, respectively (Figs. 3.5c and 3.5d). By ineq. (3.5), the critical values of  in 

these two types of tests were both 20° or 16° if the values of θ0 were chosen to be 170° 

or 172° (advanced angle). In either case, the predicted critical value was smaller than the 

corresponding values of  in the tests, which were 90° and 57°, respectively. Accordingly, 

stable intermediate states should be observed in these two types of tests. In both types of 

tests, water drops were slowly pressed on the samples to observe evolution of air/water 

interfaces inside microchannels using the setup shown in Fig. 3.4(b). Four points were 

observed from the third and fourth types of tests (Fig. 3.8). First, as predicted using the 

angle criterion, after a water drop had touched the bottom of a microchannel, the water 

drop did not collapse and a stable intermediate state was observed (Fig. 3.8b). Second, 

as implied by Eq. (3.6), in these two types of tests, the bottom of a water drop just spread 

on the bottom of a microchannel when the force applied to press the water drop was 

gradually increased (Figs. 3.8b and 3.8c). Third, as the applied force on the water drop 

(or say, Laplace pressure inside the water drop) was gradually reduced, air pockets 

increased their sizes, the water drop moved away from the bottom of the microchannel, 

and the intermediate state was finally transited back to that of Cassie-Baxter (Figs. 3.8d 

and 3.8e). Fourth and finally, the water drop was separated from the microchannels when 

the PDMS block used to press this drop was removed from the substrate (Fig. 3.8f). On 

the other hand, in chapter 2,
 
since the angle criterion was violated, water drops 

completely filled the microchannels after they had been pressed to have contact with the 

bottoms of the microchannels. Furthermore, we did not observe the reversal transition 

from Wenzel to Cassie-Baxter states in the microchannels when applied pressures were 

gradually decreased. This implies that, in addition to reducing applied pressures, an 
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additional force, such as an electrical force, [66] is needed to overcome energy barrier 

between the two wetting states for making this reversal transition occur.   

 

3.4 Summary  

 In this chapter, through theoretical and experimental investigations, we 

demonstrated that, when an angle criterion is satisfied, there may exist an intermediate 

wetting state inside a microchannel or on a single corner after a water drop contacts the 

bottom of a microchannel or is placed on the single corner. In this intermediate state, 

water does not completely fill the microchannels or the single corner, and air pockets still 

exist at the channel corners or on the single corner. Such a wetting state is also stable. 

The angle criterion was first theoretically derived, and then experimentally validated using 

four types of tests conducted on single corners or microchannels. It was also found that, 

when the Laplace pressure inside a water drop is reduced, an intermediate wetting state 

may be transited back to that of Cassie-Baxter. One of the criteria commonly used to 

judge the transition from Cassie-Baxter to Wenzel states is whether a water drop 

contacts the base of a roughness groove. The derived angle criterion may be used to 

modify this transition criterion for the case of microchannels.  
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Chapter 4  

An Angle Inequality for Judging the Transition from Cassie-Baxter to Wenzel States 

When a Water Drop Contacts Bottoms of Grooves between Micropillars 

 

 In chapter 3, we considered the applicability of the contact criterion to the 

microchannels. Through theoretical and experimental investigations, we showed that this 

transition criterion does not always hold in the case of microchannels. When an angle 

inequality is violated, the contact criterion is applicable. Otherwise, the contact criterion is 

not applicable, and there exists a wetting state inside a microchannel after a water drop 

contacts the bottom of the microchannel in a quasi-static manner. This wetting state is 

different from that of Wenzel. As what was done in the previous chapter, it is referred to 

as “intermediate state” here. In an intermediate state, water does not completely fill the 

microchannel, and air pockets still exist in its bottom corners. Also, the wetting state is 

locally stable in the sense that its energy state is lower than that of the Wenzel model.  

 In this chapter, we further consider the application range of the contact criterion 

in the case of micropillars. Since the approach used in chapter 3 to consider such an 

application range in the case of microchannels does not apply here, a different method is 

adopted for the corresponding consideration. Employing this method, we also derive an 

angle inequality, which, to our surprise, is identical to the one derived in chapter 3 for the 

case of microchannels. Subsequently, we validate the angle inequality through pressing 

tests on micropillars.  
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Figure 4.1: (a) Cross-sectional profile of the air/water interface around the bottom corner 
of a micropillar in a possible intermediate state of a water drop when the drop contacts 

the bottoms of the grooves between micropillars. Perspective views of the air/water 
interface around the bottom corner of a micropillar with (a) circular or (b) rectangular 

cross-sections. 
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4.1 Theoretical Analysis 

4.1.1 Conditions to Have an Intermediate State inside Grooves 

As illustrated in Figure 4.1, we consider the wetting on micropillars which have 

polygonal or circular cross-sections. Set 
01  and 

02 , respectively, to be static contact 

angles on the pillar sidewalls and groove bottoms. If the micropillar sidewalls and groove 

bottoms are smooth, then 
01  and 

02
 
are intrinsic contact angles. Otherwise, they are 

apparent contact angles. The values of 
01  and 

02  are affected by surface materials and 

structures, but not influenced by gravity. For example, if the inner surface of a groove is 

coated with ZnO nanowires, which is actually the case in our pressing tests as will be 

detailed in Section 4.2, then the two contact angles are considered to be equal. 

Otherwise, these angles may be different. For instance, in the case of a single corner, 

which is formed by a horizontal plate and an inclined plate, the values of 
01  and 

02
 
are 

different when the surface structures on the two plates are different. Let   denote the 

angle formed by the sidewall and bottom of a groove (Fig. 4.1a). We have    
  

After a water drop is placed on the top of micropillars, it may have contact with 

the bottoms of grooves due to a large deflection of its bottom surface or the depinning of 

its bottom surface from top corners of micropillars. [37, 38, 45, 49, 50] Assume that, after 

the contact, there exists an intermediate state. As illustrated in Fig. 4.1(a), let a1b1 and 

a2b2, respectively, denote the corresponding cross-sectional profiles of a water drop 

around the bottom corner of a micropillar. In case the micropillar has circular cross-

sections, this drop profile has an axisymmetric shape, and a1b1 and a2b2 represent two of 

its meridian curves (Fig. 4.1b). If the micropillar has rectangular cross-sections, then a1b1 

and a2b2 denote the cross-sectional profiles that are obtained after the drop is vertically 

cut along a middle plane of the micropillar (such a middle plane is denoted as the A-A 
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plane in Fig. 4.1c). When the micropillar has triangular cross-sections, a1b1 represents the 

cross-sectional profile of the water drop beside a pillar sidewall. This cross-sectional 

profile is cut by a vertical plane, which is perpendicular to the sidewall and intersects with 

this sidewall at its middle line. For this triangular micropillar, a2b2 denotes such a cross-

sectional profile beside another pillar sidewall. Without loss of generalization, only a1b1 is 

considered in the following analysis, and the same analysis also applies to a2b2.  

Use 
0p  to denote water pressure at the apex of the water drop, and let 

ap
 
be 

atmospheric pressure. 
0( ) ap p  is so-called Laplace pressure at the apex of the drop. 

We assume that 
0( ) ap p  is positive. This assumption is at least true in the following two 

cases. In the first case, a water drop with a microliter volume is just placed on a 

hydrophobic surface and, except gravity, does not suffer any external forces, as what 

was done in references [23-27, 29, 30, 37, 38, 45-50, 62, 64, 65, 67, 72]. Since the drop 

cap curves outwards, by Young-Laplace equation, [60] this implies that 
0( ) ap p  is 

positive. In the second case, a pressing force is applied on the top of a water drop. This 

is actually the case in our pressing tests on micropillar-formed surfaces that will be 

detailed in Section 4.2 Due to the application of the pressing force on the drop, 
0( ) ap p  

is increased in compared with that in the first case and thus is also positive.   

Let w
 and g denote water density and gravitational acceleration, respectively. 

Set h to be the vertical distance between the apex of the water drop and a representative 

point c at a1b1  (Fig. 4.1a). Use 
1R  and 

2R  to represent radii of two principal curvatures of 

the water surface at c. They are considered positive if their associated curves on the 

surface bend towards air. Otherwise, they are negative. Let   denote surface tension of 

water. Accordingly, with the aid of Young-Laplace equation, [60] it is readily shown that, 

at c,  
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1 2

1 1
  A

R R
,    (4.1) 

where  

0( ) / ,    aA p gh p                                      (4.2) 

and 
0( )p gh

 
represents water pressure at c. By Eq. (4.2), A is positive. Let 

 
denote 

the angle formed by the horizontal direction and the tangent to a1b1, and set 
1  and 

2  to 

be the values of   at a1 and b1, respectively (Fig. 4.1a). By simple geometric analysis, we 

have 

1 = o

01180  ,                                              (4.3a) 

2 = o

02 180 .  
                                       

 (4.3b) 

In summary, in order for ab1 to be stationary in an intermediate state, (i) 
1R  and 

2R  

should meet Eq. (4.1), and (ii) 
1  and 

2  should satisfy Eqs. (4.3a) and (4.3b), 

respectively. 

 

4.1.2. Derivation of an Angle Inequality 

In this sub-section, we will derive an angle inequality to modify the contact 

criterion for the case of micropillars which have polygonal or circular cross-sections.  

We first consider the micropillars with polygonal cross-sections. Let’s begin with 

rectangular micropillars. It is known that, when the width of a pillar sidewall is much larger 

than capillary length of water, the capillary profile on this sidewall is considered to have 

an approximately cylindrical shape with uniform cross-sections. [73, 67]
 
However, if this 

width is comparable to or less than capillary length of water, such as in the case of a 

micropillar, then the same consideration is invalid because the two vertical edges of the 

sidewall affect the shape of the capillary profile. On the other hand, the edge effect on a 
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small neighborhood around a1b1 in the case of a rectangular micropillar may be negligible 

if the width of this neighborhood is much smaller than the height and width of a micropillar 

sidewall (Fig. 4.1c). Accordingly, the capillary profile in this neighborhood still has a 

cylindrical shape with uniform cross-sections, which are represented by a1b1. Thus, the 

curvature along the direction perpendicular to a1b1 is zero, and by Eq. (4.1) the curvature 

of a1b1 equals A. Subsequently, we have 

d

ds
>0,                                               (4.4) 

where s represents the arc length from a1 to c along a1b1, and 
d

ds
 denotes the curvature 

of a1b1 at c.  Likewise, following the same line of reasoning, Ineq. (4.4) also holds when 

micropillars have other polygonal cross-sections (such as triangles, pentagons and 

hexagons). 

Let us then turn attention to a micropillar with circular cross-sections. The 

corresponding capillary profile around this micropillar is axisymmetric. Let d denote the 

intersecting point between the normal to the water surface at point c and the symmetry 

axis of the micropillar (Fig. 4.1a). Use L to represent the length of cd. For such an 

axisymmetric profile, set 
1

1

R  

to be the curvature of a1b1 at point c, and let 
2

1

R
 denote the 

curvature associated with the curve that is located on the water surface while is 

perpendicular to a1b1 at c. [60, 67]
 
In our case, 

2

1

R  

is always negative since its associated 

curve bends towards water. [73] Then 1R  and 2R  at c satisfy the following two relations, 

respectively. [73, 67]:
 

1

1
,




d

R ds
 2  R L .                                          (4.5) 
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Subsequently, it follows from Eq. (4.1) that
 

1
.


 

d
A

ds L
                                               (4.6) 

Because both L and A are positive, this equation implies that Ineq. (4.4) holds as well 

when micropillars have circular cross-sections. 

Ineq. (4.4) means that   increases with increasing s. Accordingly, we have   

1 <
2 .     (4.7) 

With the aid of Eq. (4.3), it follows from Ineq. (4.7) that 

o

01 02360 ( )     .                                                  (4.8) 

In chapter 3, the same inequality was also derived for the cases of microchannels and 

single corners based on the solution to Eqs. (4.1) and (4.3). In this work, since air/water 

interfaces between micropillars have more complicated shapes, we do not directly solve 

these two equations. Instead, as shown above, we derive Ineq. (4.8) based on a 

necessary condition that the solution to the two equations should satisfy. The above 

procedure can also be applied to derive this inequality for the cases of microchannels 

and single corners as well.    

Ineq. (4.8) gives a necessary condition that 
01 , 

02
 
and   have to meet in order 

for a water drop to have an intermediate state after the drop contacts the bottoms of 

grooves. This implies that, once 
01 , 

02
 
and   satisfy Ineq. (4.8), the contact criterion 

may not necessarily be applicable to the corresponding micropillars. However, if this 

inequality is violated, then there does not exist any intermediate states. Consequently, 

after a water drop contacts the bottoms of grooves, it collapses and completely fills these 

grooves.  

 Due to the ease of fabrication, micropillars that are commonly adopted to 

enhance hydrophobicity of a surface have vertical sidewalls (i.e.,   is 90
o
) with circular or 
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rectangular cross-sections. [29, 30, 37, 38, 45, 46, 47, 48, 49, 50, 62, 64, 65, 72]  Their 

sidewalls and bottoms are smooth. On a smooth surface, both 
01  and 

02
 
are normally 

less than 120
o
 even if this surface is coated with highly water-repellent materials, [29] 

such as Teflon. [69] By Ineq. (4.8), when   is 90
o 

and (
01 +

02 )  is less than 270
o
, the 

contact criterion is applicable. Accordingly, on the aforementioned micropillars, Cassie-

Baxter state should be transitioned to that of Wenzel immediately after a water drop has 

contact with the bottoms of their grooves. On the other hand, if (
01 +

02 )>270
o
, then Ineq. 

(4.8) is met. Consequently, it is possible that Cassie-Baxter state may be transitioned to 

an intermediate state, instead of a Wenzel state, after a water drop has contact with the 

bottoms of grooves.  

For the existence of a stable intermediate state, two conditions should be met. 

First, there exists an intermediate state after the contact. Second, there is an energy 

barrier between this intermediate state and that of Wenzel. The consideration of these 

two conditions might give precise bounds of 
01 , 

02
  

and   for the existence of a stable 

intermediate state, which could also be used to identify the exact range that the contact 

criterion is applicable. Other researchers have previously considered stability of Wenzel 

and Cassie-Baxter states, [29, 50, 74] including that of a special Cassie-Baxter state in 

which water/air interfaces get deep inside roughness grooves but do not touch the base 

of these grooves. However, they did not consider the stability of an intermediate state. In 

chapter 3, we did so for the cases of microchannels and single corners, since the 

corresponding air/water interfaces have simple shapes. The derived angle inequality is 

identical to Ineq. (4.8). However, in this chapter, due to lack of analytical expression of 

the air/water interfaces in the case of micropillars, we do not consider the existence of a 

stable intermediate state, and leave the corresponding consideration to a future 
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investigation. Therefore, although Ineq. (4.8) of this chapter is the same as the angle 

inequality derived in chapter 3, different from that in the previous work for microchannels 

and single corners, the satisfaction of Ineq. (4.8) does not guarantee the existence of a 

stable intermediate state after a small water drop slowly contacts the bottoms of grooves 

between micropillars. On the other hand, as in the previous work, once Ineq. (4.8) is 

violated, such a stable intermediate state should not exist.  

  

4.2. Experimental Results and Discussions 

To validate Ineq. (4.8), we did pressing tests on six types of SU-8 micropillars, 

which have circular, triangular, square, hexagonal, T-shaped and star-like cross-sections, 

respectively (Fig. 4.2). The triangular, square and hexagonal pillars represent those 

micropillars that have convex polygonal cross-sections, while the T-shaped and star-like 

micropillars are representatives of those which have concave polygonal cross-sections. 

All the tested SU-8 micropillars have approximately vertical sidewalls (i.e.,   is around 

90
o
). Their heights are in the range of 100 to 110 μm, lateral dimensions of their cross-

sections range from 50 to 150 μm, and spaces between neighboring micropillars are 

relatively large for clearly observing air/water interfaces located between these 

micropillars, which vary from 265 to 645 μm (Fig. 4.2).  
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Figure 4.2: (a) Six types of micropillars, which have (a1) circular, (a2) square, (a3) 

hexagonal, (a4) star-like, (a5) T-shaped, and (a6) triangular cross-sections, respectively. 
First set of circular micropillars, which have pitches of (b1) 390, (b2) 490 and (b3) 590 µm, 
respectively. Representative first and second sets of circular pillars, which were covered 

with (c1) Teflon and (c2) ZnO nanowires. (c3) Close-up view of ZnO nanowires. All 
images are scanning electron microscopy (SEM) images. 
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Each type of micropillars includes two sets of micropillars. The first set of 

micropillars in every type of samples consists of three kinds of micropillars, which have 

identical cross-sections but differ much in the pitches between two neighboring 

micropillars (Fig. 4.2b). For example, in the case of circular micropilars, the pitches are 

390, 490 and 590 μm, separately (Fig. 4.2b). The micropillars in the second set have the 

same dimensions as their counterparts in the first set. The only difference is that, to 

enhance hydrophobicity, the first set of micropillar is coated with Teflon while the second 

set is covered with ZnO nanowires (Figs. 4.2c). In other words, the sidewalls of the first 

set of micropillars are still smooth, but they are coated with a highly repellent material. In 

contrast, the second set of micropillars have rough sidewalls, since their originally smooth 

sidewalls are now covered by nanostructures. SU-8 is a negative photoresist. [75, 76] All 

the SU-8 micropillars were fabricated using ultra-violet lithography, [70, 71] Teflon was 

spin-coated on micropillars, and ZnO nanowires were grown on the surfaces of the 

corresponding micropillars using a hydrothermal approach. [70] The nanowires had 

hexagonal cross-sections with an average length of 3.6 µm and diameter of 0.36 µm. 

In a pressing test, a plate was put on the top of a water drop to slowly press it 

against micropillars. The vertical movements of this plate were controlled by a 

micromanipulator. An optical microscope was rotated by 90o to have a side view of 

air/water interfaces between micropillars. Similar experimental setups have been 

previously used to press water drops on micropillars [29] and microchannels. [77-79] 

Small water drops are used in this work, and their volumes range from 3 μl to 6 μl. Such 

a drop has a spherical cap after it is placed on the substrate. The pictures of the air/water 

interfaces observed through the optical microscope were taken using Minisee software of 

ScopeTek Company. The contact angles of these interfaces with the inner surfaces of 

micropillars were determined using MB-Ruler software.  
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Figure 4.3: In-situ observation of the evolutions of the air/water interfaces during the 
pressing test on (a) a kind of the first set of circular micropillars , and (b) a kind of the 

second set of circular micropillars, These two kinds of micropillars have the same 
dimensions, which are given in Figs. 4.2(a1) and 4.2(b2). 
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The contact angle on an SU-8 film was measured to be about 80°. When water 

drops were placed on Teflon-coated SU-8 films, the corresponding contact angles were 

measured to be 115°±2°, and receding and advancing angles were 89°±2° and 120°±2°, 

respectively. The apparent contact angles on ZnO nanowire-covered SU-8 films were 

measured to be 160°±2° (the receding and advancing angles were 145°±2° and 167°±2°, 

respectively). The values of 
01  and 

02  were assumed to be equal on micropillars due to 

the uniform distributions of Teflon and ZnO nanowires on the substrates. The values of 

01
 
on the two sets of micropillars in each type of samples are considered to be 115

o
 and 

160
o
, respectively. Hence, the sums of 

01 , 
02

 
and   for the two sets of micropillars are 

320
o
 and 410

o
, respectively.  Accordingly, Ineq. (4.8) is violated for the first set of 

micropillars, while it still holds true for the second set. Water drops sat on the top of 

micropillars before they were pressed, indicating the initial wetting state was that of 

Cassie-Baxter. All the testing results are presented in Fig. 4.3.  

Three points were observed through pressing tests on the first set of micropillars 

of each type of samples (Fig. 4.3a). First, as seen, for example, from Figs. 4.3(a), a water 

drop first contacted with the bottoms of the groove right underneath the lowest point of 

the drop surface. In reality, the pressure may be not ideally uniform inside the drop or the 

micropillars may not be exactly identical. Either cause might lead to the occurrence of this 

contact phenomenon. Second, as predicted using Ineq. (4.8), the water drop immediately 

filled grooves when it had contact with the bottoms of the grooves ((a3) in Fig. 4.3). Third, 

only a tiny drop of water was left on the substrate when the pressing plate was removed 

((a6) in Fig. 4.3), implying that the Wenzel state was not completely transformed to that of 

Cassie-Baxter. In the meanwhile, when all the SU-8 micropillars are not covered by any 

coating, the corresponding values of 
01  and 

02  are measured to be 80°±2°. In this case, 
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Ineq. (4.8) is violated. Pressing and releasing phenomena of water drops on these un-

treated micropillars are similar to those on the first set of micropillars (results are not 

shown here). A clear difference is that a relatively large portion of a water drop is left on 

the substrate after the removal of the pressing plate. This difference implies that the 

amount of water which would still stick to a substrate after a pressing test may depend on 

the contact angles of water on the corresponding substrate.    

 On the other hand, the testing results on the second set of micropillars were 

different from those on the first set for each type of samples (Fig. 4.3b). On the second 

set of micropillars in each type of samples, after water drops had contacted the bottoms 

of grooves, intermediate wetting states were observed inside these grooves. In such a 

wetting state, water did not completely fill the grooves, and air pockets existed between 

water drops and bottom corners of these grooves. After water had contact with the base 

of a few grooves, the air pockets in the middle grooves were not visible due to the block 

of water, while air pockets could still be seen around the outside micropillars ((b2) and 

(b3) in Fig. 4.3). Furthermore, the sizes of the air pockets decreased with the increase in 

the applied pressures, implying that there exist energy barriers between the intermediate 

states and that of Wenzel (i.e., the state for which the groove is completely filled by 

water). Consequently, these intermediate states are locally stable. Otherwise, the wetting 

states should be immediately transformed to that of Wenzel when the applied pressure 

was increased. It was also interesting to observe that, along with the reduction in the 

applied pressure, these air pockets gradually increased their sizes. Meanwhile, the 

number of grooves that had contact with the water drop was reduced, and due to this 

reduction the air pockets in the middle grooves re-appeared ((b3) and (b4) in Fig. 4.3). 

Eventually the water drop recovered its Cassie-Baxter wetting state after much reduction 

in the applied pressure ((b5) in Fig. 4.3). Finally, this water drop was removed from its 
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substrate by the pressing plate, and no water residue was observed on the substrate. 

These testing results on the second sets of micropillars indicate: (i) when Ineq. (4.8) is 

met, the contact criterion does not necessarily hold and there may exist a stable 

intermediate state after a water drop contacts the base of a groove, and (ii) this 

intermediate state may be transformed back to that of Cassie-Baxter. The observed 

phenomena were similar to those in the case of microchannels. When Ineq. (4.8) was 

met, microchannels were completely filled by water during the pressing tests. Otherwise, 

stable intermediate wetting states were observed.  

Finally, it is worth mentioning that, in the pressing tests, we did not observe any 

transition from an intermediate state to that of Wenzel on the second set of micropillars. 

Also, water should not fill the gaps between coated ZnO nanowires during these tests, 

since we did not observe strong pinning effect during the reversal transition from the 

intermediate state to that of Cassie-Baxter. On the other hand, the intermediate state 

may still be transformed to that of Wenzel in special cases. For example, on the second 

set of micropillars, when the applied pressure is high enough to make water penetrate 

and fill the valleys between the coated ZnO nanowires, the corresponding value of 
0  

may be reduced, leading to the violation of Ineq. (4.8) and causing the transition from the 

intermediate state to that of Wenzel.    

 
 

4.3 Summary and Conclusions  

In this chapter, we first derive an angle inequality (i.e., Ineq. (4.8)) to examine 

whether the contact criterion is applicable to the case of micropillars with circular or 

polygonal cross-sections. The angle inequality is related to (a) contact angles on the 

inner surfaces of grooves between the micropillars and (b) inclined angles of the groove 

sidewalls. When this angle inequality is violated, the contact criterion holds for the 
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corresponding micropillars. Otherwise, the specific criterion may not be applicable to 

these micropillars. That is, after water contacts the bottoms of roughness grooves, 

Cassie-Baxter state may be transformed to an intermediate state instead. After 

theoretical modeling, we then conduct pressing tests on six types of micropillars. In these 

tests, once the angle inequality violated, the contact criterion holds true, and water fills 

the grooves immediately after it has contact with their bottoms. However, when the angle 

inequality is met, intermediate states are observed on the corresponding samples. 

Furthermore, these intermediate states (i) are stable in the sense that their energy states 

are lower than those of Wenzel models, and (ii) are transformed back to that of Cassie-

Baxter, when applied pressures are reduced while Wenzel states do not necessarily have 

such a reversal transition.  
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Chapter 5  

Existence and Stability of an Intermediate Wetting State on Circular Micropillars 

 

In chapter 4, we considered the case of polygonal and circular pillars, and also 

derived an angle inequality, which is identical to the one derived in the case of 

microchannels. In the case of pillars, this angle inequality is a necessary condition that 

local contact angles and the inclined degree of the pillars should meet for the existence of 

an intermediate state. As in the case of microchannels, once this inequality is violated, 

there should not exist any intermediate state, and the contact criterion is also applicable 

to the case of micropillars. On the other hand, different from that in the case of 

microchannels, the satisfaction of this inequality does not guarantee the existence of a 

stable intermediate state for the case of micropillars. For the existence of a stable 

intermediate state, two conditions should be satisfied. First, there exists an equilibrium 

state after the contact. Second, there is an energy barrier between this equilibrium state 

and that of Wenzel. The consideration of these two conditions may give precise bounds 

of local contact angles and inclined degrees of pillar sidewalls for the existence of a 

stable intermediate state, which could also be used to identify the exact range that the 

contact criterion is applicable. We did so for the case of microchannels, since the 

corresponding air/liquid interfaces have simple shapes. However, we did not consider the 

two conditions in the case of micropillars due to lack of analytical expression of the 

related air/liquid interfaces. Accordingly, although the derived inequality is identical to the 

one for the case of channels, it may not give a precise range that the contact criterion is 

valid.  

In this chapter, using a new approach, we consider the aforementioned two 

conditions for the case of circular pillars with vertical sidewalls. This approach does not 
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rely on the explicit expression of the interface profile, making it feasible to explore the 

applicability of the contact criterion. Subsequently, we apply the derived theoretical 

results to interpret some experimental results shown in both of our previous chapters and 

Verho et al. [52]  

 

 

 
 

Figure 5.1: (a) Cross-sectional profile of the air/liquid interface around the bottom corner 
of a circular micropillar in a possible intermediate state when a liquid drop contacts the 

bottoms of the grooves between the micropillars, and (b) perspective view of the air/liquid 
interface. 

 

(a) 

(b) 
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5.1. Existence of an Equilibrium State inside Grooves 

Assume that there exists an equilibrium state after a liquid drop slowly contacts 

the base of grooves, which are located between circular micropillars with vertical 

sidewalls (Fig. 5.1). The drop profile around the bottom corner of a circular micropillar has 

an axisymmetric shape. Let a1b1 and a2b2 represent two of its meridian curves (Fig. 5.1a). 

a1 and a2 are the triple-phase contact points at the base of the grooves, while b1 and b2 

are those on the pillar sidewall. Without loss of generalization, only a1b1 is considered in 

the following analysis, and the same analysis also applies to a2b2. Kind 
0r  to be the 

radius of the pillar, and let h represent the vertical distance between b1 and the bottom of 

the micropillar. Furthermore, use h0 to denote the height of the pillar. As already 

demonstrated before, if h0 is less than the capillary length of liquid (it is 2.7 mm for water), 

which is actually the case of this work, then the gravity effect on the drop can be 

neglected. Accordingly, by Young-Laplace equation [60], liquid pressure inside the 

bottom portion of a liquid drop is uniform, and  

2 w ap p b ,    (5.1a) 

, w wtp p gH     (5.1b) 

1 2

1 1
2  b

R R
,     (5.1c) 

where 
wp

 

and 
ap

 

denote, respectively, liquid pressure and air pressure at a point of a1b1, 

wtp  represents the liquid pressure at the drop apex, H is the height of the drop, 1R  and 

2R  are, respectively, radii of the maximal and minimal curvatures at this point, and b 

represents mean curvature at the point and is constant on the bottom surface of the drop. 

1R  and 
2R  are considered positive if their associated curves on the liquid surface bend 
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towards air. Further assume that the drop cap has a convex shape. Then, as also 

demonstrated before, it follows from Eq. (5.1c) that b is a positive constant.  

Set up an x-y rectangular coordinate system. x- and y-axes are along horizontal 

and vertical directions, respectively, and the origin is located at a1 (Fig. 5.1a). Set s to be 

the arc length from a1 to a point on a1b1. Let 
 
denote the angle formed by the tangent to 

a1b1 and the horizontal direction at a point on this curve. Set 
1  and 

2  to be the values 

of   at a1 and b1, respectively. Static contact angles on the sidewalls of a micropillar are 

considered to be the same, while they may be different from the one on the bottom of the 

micropillar. Let 
01  and 

02 , respectively, be static contact angles on the pillar sidewalls 

and groove bottoms. If the micropillar sidewalls and groove bottoms are smooth, then 
01  

and 
02

 
are intrinsic contact angles. Otherwise, they are apparent contact angles. 

Furthermore, by geometric analysis, at a1 and b1, we have, respectively, 
 

o

1 01180                      (5.2a) 

o

2 02 90 .       (5.2b) 

Both 
01  and 

02
 
are considered to be greater than 90

o
, i.e., the surfaces of the 

micropillars and grooves are lyophobic. Subsequently, it follows from Eqs. (5.2a) and 

(5.2b) that 

o

10 90 ,  o                  (5.3a) 

o

20 90 .  o     (5.3b) 

In the case of circular micropillars, Eq. (5.1c) can be re-written in terms of   and s as
 

sin
2 ,

 
 



d
b

ds w x
                                          (5.4) 

where w denotes the distance between a1 and the central axis of the micropillar (Fig. 

5.1a). Eqs. (5.2a) and (5.2b) are also two boundary conditions for Eq. (5.4). In summary, 
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in order to have an equilibrium state, i.e., to make a1 stationary, there should exist a 

solution to Eqs. (5.4) and (5.2) under the condition that b>0.  

 Equation (5.4) can be further re-written as 

[( )sin ]
2 ( ),


 

d w x
b w x

dx
                                   (5.5) 

where cos
dx

ds
 was used in deriving this equation from Eq. (5.4). With the aid of Eq. 

2(b), it follows from Eq. (5.5) that 

sin ( ),
( )

   


c
b w x

w x
    (5.6) 

where c is a constant and has the following expression:     

 
2

0 2 0sin . c r br     

 (5.7) 

With the assistance of Eqs. (5.2a) and (5.7), it follows from Eq. (5.6) that 

     0 2 1

2 2

0

sin sin
.

 




r w
b

w r
    (5.8) 

By Eqs. (5.8), (5.2a) and (5.2b), the requirement that b>0 results in  

    2 1

0

sin sin . 
w

r
             (5.9)   

Given that Ineq. (5.9) is met, it follows from Eq. (5.8) that w is related to 
0 ,r  

1 , 

2 , and b by 

2 2 2

1 0 2 0 1sin 4 sin 4 sin
.

2

    


r b r b
w

b
   (5.10) 

In addition, since 
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tan ,
dy

dx     

 

(5.11) 

with the assistance of Eq. (5.6), it follows from Eq. (5.11) that 

2

2 2 4 2

( )
.

(1 )( ) [ ( ) ]
2

 


    

dy c b w x

dx bc
w x b w x c

              (5.12) 

Let xp and yp represent x and y coordinates of a representative point p on a1b1, where xp 

ranges from 0 to (w-
0r ). In view of Eq. (5.12), yp is given below: 

2

0
2 2 4 2

( )
( ) .

(1 )( ) [ ( ) ]
2

 


    


px

p p

c b w x
y x dx

bc
w x b w x c

              (5.13) 

This equation gives a solution to Eqs. (5.4) and (5.2). Its right-hand side is an elliptical 

integral, which can be numerically integrated. Once 
1 , 

2 , w and 
0r

 

are given, Eq. (5.8) 

gives a unique value to b. Subsequently, a unique value of yp can be obtained from Eq. 

(5.13). Thus, Eq. (5.13) is also a unique solution to Eqs. (5.4) and (5.2). The value of h 

can also be determined by solving Eq. (5.13). It equals the value of yp when 
0 px w r , 

and is considered to be less than h0. 

According to the above consideration, for given 
1 , 

2 , w and 
0r , Ineq. (5.9) is 

both sufficient and necessary conditions for having a solution to Eqs (5.4) and (5.2). Next, 

as done in chapter 3 and chapter 4, we also derive another necessary condition that only 

involves 1  and 2 .  

Substitution of Eq. (5.6) into Eq. (5.4) leads to 

    
2

.
( )


 



d c
b

ds w x
    (5.14) 

Since both c and b are positive, by Eq. (5.14) we have  



 

79 

  0.



d

ds
     (5.15) 

This inequality implies that   increases with increasing s. Hence, we have   

2 1,      (5.16) 

which is a necessary condition for the existence of a solution to Eqs. (5.4) and (5.2), and 

which is also identical to the one derived in chapter 4 for the case of polygonal and 

circular pillars.  

 

Figure 5.2: Schematics of (a) reduction of air gap around the bottom corner of a pillar with 
the increase in liquid pressure and (b) a possible configuration that SI intersects with SII. 

 

 

5.2 Local Stability of the Intermediate State  

 In order to make the constructed equilibrium state locally stable, its energy state 

should be lower than that of completely filled case. Otherwise, liquid continues to spread 

on the groove base until the bottom corners of micropillars are completely filled. 

Subsequently, the wetting state is changed to that of Wenzel, which is the case of our 

previous work in chapter 2. 

 Next, we consider the local stability of the constructed equilibrium state. 

Differentiation of Eq. (5.10) with respect to b leads to  

(b) (a) 
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0 2
1

1 1

2 2 2 2

1 0 2 0

2 sin
sin

sin sin
(1 ).

2 sin 4 sin 4




 

 



 
 

r b

dw

db b r b r b
  (5.17) 

It can be readily shown that, if Ineq. (5.16) holds true, then 

0,
dw

db
      (5.18) 

and vice versa. This inequality indicates that w decreases with the increasing b. 

Furthermore, based on Leibniz rule [81], it follows from Eq. (5.13) that 0.
dh

dw
This 

implies that h also decreases with the increasing b. As demonstrated below, in addition to 

the two end points, other points on a1b1 should also move towards the bottom corner of 

the pillar with the increase in b (Fig. 5.2a). Let 
Iw  and 

IIw

 

denote the corresponding 

values of w when b is increased from 
Ib  to 

IIb . Accordingly, we have 
Iw >

IIw . Use 
Is  

and 
IIs

 

to represent a1b1 in these two cases respectively. Set 
Ih  and 

IIh  to be the 

heights of 
Is  and 

IIs , separately. Suppose 
Is  and 

IIs

 

have some intersecting points. 

According to geometric analysis, under the conditions that 
Iw >

IIw

 

and 
Ih >

IIh , 
Is  and 

IIs

 

should intersect at least at two points (Fig. 5.2b). Let q represent one of these 

intersecting points. Use d to denote the distance between q and the central axis of the 

pillar. Let qI
 stand for the angle formed by the tangent to 

Is  and the horizontal direction 

at q. Set qII
 to be the one subtended by the tangent to 

IIs  and the horizontal direction at 

the same point. Subsequently, according to geometric analysis, we have qI
<qII

 (Fig. 

5.2b). On the other hand, by Eq. (5.6), we have 
2 2

0 2 0sin ( )
sin




 
 I

qI

r b r d

d
and 

2 2

0 2 0sin ( )
sin




 
 II

qII

r b r d

d
. Since Ib  < IIb  and d> 0r , we get sin sin . qI qII
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Accordingly, qI
>qII

, which contradicts with the previous result that qI
<qII

. Therefore, 

there is no intersecting points between 
Is  and 

IIs . These results imply: (i) the air gap 

around the bottom corner of a micropillar decreases with the increase in liquid pressure, 

and (ii) an additional force is needed to increase liquid pressure for reducing this air gap. 

Thus, if Ineq. (5.16) is met, then the intermediate state has a lower energy state than the 

Wenzel model, and vice versa. In this sense, Ineq. (5.16) is both sufficient and necessary 

conditions to make the intermediate state locally stable. 

 

5.3 An Inequality to Meet 

According to the consideration in the previous two sections, for the existence of a 

locally stable intermediate state, Ineqs. (5.9) and (5.16) should both be met. With the aid 

of Ineqs. (5.3a) and (5.3b), it is readily shown that, once Ineq. (5.9) is satisfied, Ineq. 

(5.16) is met. On the other hand, when Ineq. (5.16) holds true, there always exists a w1, 

which satisfies the following relation: 

2 1

1 0

sin
1.

sin




 

w

r
    (5.19) 

This result ensures that, if w falls between r0 and w1, then Ineq. (5.9) is also met, implying 

that there always exists a region close to the bottom corner of the pillar, in which there 

exists a locally stable intermediate state. 

The air gap around the bottom of a pillar may still be connected to the outside 

environment, for instance, through the gaps between nanosturctures that may be coated 

on the micropillars. In such a case, the pressure inside air gap still equals the 

atmospheric pressure. In case the air gap around the bottom of a pillar is completely 

isolated from the outside, the pressure in the air gap may increase when the air gap 

around a pillar is compressed by the liquid drop, while the air pressure on the drop top 
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remains the same. By eq. (5.1a), this means that actually a higher liquid pressure is 

needed to further compress the air gap. This also implies that air pressures around the 

liquid drop may be different. Subsequently, for a small drop, whose half size is less than 

the capillary length of the liquid and thus whose gravity effect is neglected, by Eq. (5.1a) 

again, the mean curvature around this drop may vary, since the liquid pressure inside the 

drop is uniform. Therefore, for a liquid drop to be stationary (i.e. at equilibrium), instead of 

examining the mean curvature, our concern is whether the liquid pressure is balanced 

inside this drop. 

Two related points can be obtained based on the stability consideration in the 

previous section. First, for a given w in this region, the corresponding value of b is 

determined using Eq. (5.8). When 
wp , calculated using Eq. (5.1a) and this value of b, is 

larger than the one calculated employing Eq. (5.1b), which is the liquid pressure at the 

bottom portion of the drop, to maintain the pressure balance inside the drop, a1 moves 

back towards the center of the groove or the liquid drop loses contact with the bottom of 

the groove. Second, if the former value of 
wp  is less than the latter one, then a1 

continues to move towards the corner of the pillar until the two values of 
wp  are equal. In 

summary, the satisfaction of Ineq. (5.16) guarantees the existence of a locally stable 

intermediate state after a liquid drop contacts the base of grooves.  

 With the aid of Eqs. 5.2(a) and 5.2(b), Ineq. (5.16) can be re-written in terms of 

01  and 02  as 

      0

01 02( ) 270 .       (5.20) 

This inequality is identical to the one derived in our previous work for the case that 

circular pillars have vertical sidewalls. Ineq. (5.20) was derived in the previous work as a 

necessary condition for the existence of an intermediate state, while it is also a sufficient 
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condition as shown in this work. Consequently, we have arrived at an angle criterion: 

once 
01  and 

02  of circular micropillars with vertical sidewalls satisfy Ineq. (5.20), there 

exists a locally stable intermediate wetting state after a liquid drop contacts the base of 

grooves in a quasi-static manner. This angle criterion is similar to the one that we have 

previously derived for the case of microchannels. [82]  
 

  A set of values of 
01  and 

02  may be experimentally measured, depending on 

the volume of a liquid drop [73, 83].
 
These sets of values vary between receding and 

advancing angles. Accordingly, the minimum requirement in designing circular pillars for 

having a locally stable intermediate state is that the advancing angles on the pillar 

sidewalls and groove bottom should meet Ineq. (5.20). For the sake of security, it is 

better to have the receding angles, which are the minimum possible values of 
01  and 

02  that satisfy this inequality.  

 

5.4. Experimental Validation 

5.4.1. Existing Results 

 In chapter 4, we did the pressing tests on six kinds of SU-8 circular micropillars, 

which all have approximately vertical sidewalls while vary in the pitches or in the local 

contact angles. On three kinds of these micropillars, groove surfaces were smooth. On a 

smooth surface, contact angle
 
is normally less than 120

0
 even if this surface is coated 

with highly water-repellant materials [29], such as Teflon. Hence, Ineq. (5.20) was 

violated, and  water drops collapsed after their contact with the grooves. However, on 

another three kinds of micropillars, Ineq. (5.20) was met, since the surfaces of the 

grooves located between the micropillars were covered with ZnO nanowires, which made 

both 
01  and 

02  above 135
o
. Consequently, intermediate states were found. 
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In Verho et al [52], two kinds of Si circular micropillars with identical dimensions 

(diameter 10 μm, height 5 or 10 μm, and pitch 20 μm) were examined. The first kind was 

coated with a hydrophobic fluoroalkylsilane monolayer, which had advancing and 

receding angles of 118°±2° and 102°±2°, respectively, on flat surfaces [52]. The second 

kind of micropillars were coated with silicone nanofilaments, which made advancing and 

receding angles become 170°±2° and 145°±2°, separately, on flat surfaces. Accordingly, 

Ineq. (5.20) was violated on the first kind of micropillars, while it was met on the second 

kind. Hence, intermediate states existed on the second kind of micropillars, while only 

Wenzel states existed on the first kind when water contacted the base of grooves, which 

were actually the experimental results reported in Verho et al. [52]     
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Figure 5.3: (a) Perspective views of SU-8 micropillars. Representative first and second 
kinds of circular pillars, which were covered with (b) Teflon and (c1) ZnO nanowires, 
respectively. (c2) Close-up and (c3) side views of ZnO nanowires. All are scanning 

electron microscopy (SEM) images.  
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5.4.2. New Tests  

Experiments are also done in this work to have in-situ observation of how a1 

moves on the bottom of a groove when water pressure is increased or decreased. In 

other words, we desire to examine whether, as predicted in Section 5.3, a1 moves 

towards or away from the bottom corner of a pillar with the increase or decrease in the 

water pressure when Ineq. (5.20) is met. For this purpose, two of the six kinds of SU-8 

circular micropillars, which have been previously examined in chapter 4, are adopted in 

this work (Fig. 5.3). These two kinds have the largest pitch of 600 μm, which makes it 

relatively easy to observe the movement of a1 on the bottom of the gap. They also have 

the same radii of 130 μm. On the other hand, to enhance hydrophobicity, the first kind of 

micropillar is coated with Teflon (Fig. 5.3b), while the second kind is covered with ZnO 

nanowires, which have hexagonal cross-sections with an average length of 2.8 µm and 

diameters of 0.15 to 0.36 µm (Fig. 5.3c). The advancing angles are adopted as the 

values of 
01  and 

02 . In the case of the first kind of micropillars, the values of 
01  and 

02  are 119°±2° and 119°±2°, respectively, while they are 169°±2° and 169°±2°, 

separately. Accordingly, the values of 
01  and 

02
 
for the first kind of micropillars meet 

Ineq. (5.20), while those for the second kind do not satisfy this inequality. 

  Through only side views, due to block of water, it was not clear whether water 

completely filled the middle grooves after the drops had contacted the bottoms of these 

grooves. To solve this problem, similar to what was done in Verho et al, [52] we also take 

top views of the pressed water drops in this work. Thus, two types of pressing tests are 

conducted on each kind of SU-8 micropillars. In the first type (Fig. 5.4a), an optical 

microscope (mm001300m of Metallurgical microscope Company) is rotated by 90
o
 to 

have a side view of air/water interfaces between micropillars, and a polydimethylsiloxane 

(PDMS) plate (5×5×10 mm
3
) is put on the top of a water drop to slowly press it against 
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micropillars. The vertical movements of this plate are controlled by a micromanipulator 

(M3301R of World Precision Instruments) with a precision of 100 µm. In the second type 

of pressing tests (Fig. 5.4b), a Teflon-coated glass slide (25×25×1 mm
3
) is placed on a 

water drop, and the optical microscope is used to observe the air/water interface from the 

top. Thinner glass slides (25×25×0.2 mm
3
) are stacked together to serve as the 

supporters of the Teflon-coated glass slide. This glass slide can be lowered down or lifted 

up with a precision of 200 µm (which is the thickness of a thinner glass slide) to increase 

or decrease the applied pressure on the water drop by removing or adding thinner glass 

slides in the supporters. Small water drops are used in the pressing tests, and their 

volumes range from 6 to 9 μl. Such a drop has a spherical cap after it is placed on the 

substrate.  

 
Figure 5.4: Setups for (a) first and (b) second types of pressing tests to obtain side and 

top views of pressing results, respectively. 
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  An important point was observed through pressing tests on the first kind of 

micropillars (Fig. 5.5). After water drop had contacted the bottom of a groove, it collapsed, 

and water completely covered the bottom corners of the outside pillars underneath this 

water drop. Also, the increase or decrease in the applied pressure caused the increase or 

decrease in the number of the pillars covered by the water drop. The air gaps 

surrounding middle pillars could be clearly identified through top views according to the 

light reflection (see, for example, Figs. 5.5(b1) and 5.6(b)). The bottom corners of the 

outside pillars underneath the drop were completely covered by water according to the 

side view (Fig. 5.5(a2)), while the bottom corners of the middle pillars were completely 

covered by water based on the top view (Fig. 5.5(b2)). In addition, part of the water drop 

was left on the substrate when the pressing plate was removed (Figs. 5.5(a3) and 

5.5(b3)), implying that Wenzel state was not completely transited back to that of Cassie-

Baxter. 

 

 

 

 

 

 

 

 

 

 

 

 



 

89 

 

 

 

 

 

Figure 5.5: Pressing test results on the first kind of micropillars. In order to get a better 
understanding of these results, (a) side and (b) top views are placed together, while they 
were taken in the first and second pressing tests, respectively. The corresponding area of 

top views is boxed in (a1). (a1) and (b1) Before and (a2) and (b2) after the contact of 
water with the base of grooves. (a3) and (b3) Water residue on the sample after the 

pressing slide has been removed. The scale bars represent 420 µm. 
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Figure 5.6: (a) and (b) side and top views of pressing test results on the second kind of 

micropillars. The corresponding area of top views is boxed in (a1). (a1)-(a4) and (b1)-(b4) 
Increase, and (a5)-(a7) and (b5)-(b7) reduce applied pressure. The scale bars represent 

420 µm. 
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  On the other hand, different results were observed on the second kind of 

micropillars (Fig. 5.6). After water had contact with the base of a few grooves, the air 

pockets could be observed around the outside micropillars through side views (Figs. 

5.6(a2)-5.6(a4)). Furthermore, through top views, we could clearly see that air pockets 

around the middle pillars increased or decreased the sizes with the decrease or increase 

in water pressure (Figs. 5.6(b2)-5.6(b4)), which were invisible in the side views due to the 

block of water. Eventually, the water drop recovered its Cassie-Baxter wetting state after 

much reduction in the applied pressure (Figs. 5.6(a5) and 5.6(b5)). Finally, this water 

drop was removed from its substrate by the pressing plate or slide, and no water residue 

was observed on the substrate (Figs. 5.6(a6) and 5.6(b6)). In addition, as marked in Fig. 

5.6b, during the processes of increasing and reducing the applied pressure, the air 

pocket had an approximately circular contact area with the base of grooves, partially 

supporting our previous assumption that the liquid/air profile has an axisymmetric shape. 

  Two points can be summarized from the pressing results on the two kinds of 

micropillars. First, as predicted using Ineq. (5.20), intermediate states exist on the second 

kind of micropillars, but not on the first kind. Second, the experimental results on the 

second kind of micropillars clearly demonstrate that, as predicted in Section 5.3, a1 

moves towards or away from the bottom corner of a pillar with the increase or decrease 

in the water pressure when Ineq. (5.20) is met.  

  Due to lack of simple expression of the air/liquid interface, we don not estimate 

the energy barrier that separates the intermediate state and the Wenzel model. On the 

other hand, as commented in chapter 4, when the applied pressure is high enough to 

make water penetrate and fill the valleys between the coated ZnO wires on the second 

kind of micropillars, the corresponding values of 
01  and 

02  may be reduced, leading to 
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the violation of Ineq (5.20) and causing the transition from the intermediate state to that of 

Wenzel. 

   

5.5 Summary and Conclusions 

In this chapter, we derive an angle inequality, which is Ineq. (5.20), to examine 

whether the contact criterion is applicable to the case of circular micropillars, and also to 

understand why the coverage of nanostructures on the corresponding groove surfaces 

may result in an intermediate wetting state after a liquid drop contacts the groove bottom. 

We directly observed the evolution of air/water interfaces around micropillars through the 

front and top views when applying pressure on the water drop. By considering the 

existence and stability of an equilibrium state, we demonstrate: (i) when this angle 

inequality is met due to the increase of local contact angles by, for example, 

nanostructures, there exists a locally stable intermediate state after a water drop slowly 

contacts the base of grooves and the contact criterion does not hold for the 

corresponding micropillars, and (ii) if the inequality is violated, then such an intermediate 

state does not exist and the contact criterion holds true.  
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Chapter 6  

Wetting States on Circular Micropillars with Convex Sidewalls after Liquids Contact 

Groove Base 

 

In this chapter we consider the applicability of the contact criterion to circular 

micropillars with convex sidewalls, and derive an angle inequality for judging transition 

from Cassie−Baxter to Wenzel States. We also consider the transition on spherical 

microparticles, as well as that on circular micropillars with straight sidewalls. Finally, we 

validate the angle inequality through pressing tests on three lotus varieties and spherical 

microballs.  

 

6.1 Introduction 

Depending on the dimensions of roughness structures and Young contact angle, 

the Cassie-Baxter state may have a higher or lower energy level than the Wenzel model. 

[29, 50, 74] Obviously, there is an energy barrier to surpass for the Cassie-Baxter state to 

change to that of Wenzel, when the former state has a lower energy level. Moreover, 

even if the Cassie-Baxter state has a higher energy level, an energy barrier may still exist. 

[50, 74] The energy barrier may be increased, for example, by creating smaller structures 

on the sidewalls of roughness structures to make the Cassie-Baxter state more difficult to 

be transitioned to that of Wenzel. [84] Once such transition happens, it is irreversible due 

to the existence of a much higher energy barrier, [74] unless the energy barrier can be 

overcome by an additional force, such as an electrical force. [66]  

In addition, although this work is mainly related to Cassie-Baxter and Wenzel 

states, it is worth pointing out that, in addition to these two states, another wetting state is 

also reported: [85, 86] Cassie impregnating state. This wetting state is similar to that of 
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Wenzel, while it includes a thin liquid film which fills the roughness structures around the 

liquid drop. In special cases, its energy level may be even lower than those of both 

Cassie-Baxter and Wenzel models. [85, 86]  

 

 

   
 

 

The lotus surface may be structured by micropillars, which are covered with 

nanopillars. [27] The lotus micropillars were measured [27]
 

and modeled [54] 

approximately as paraboloids of revolution (Fig. 6.1a), which means that these 

micropillars can be considered as circular pillars whose sidewalls have convex shapes in 

the vertical planes. In addition, microparticles are also employed to modify surface 

(c) 

(b) 

(a) 

Micropillar 

Substrate 

Figure 6.1: Cross-sectional profiles of (a) lotus micropillars in the form of 
paraboloids with revolution, (b) spherical microparticles, and (c) circular 

micropillars with straight sidewalls. 
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wetting. [55-58] It is also interesting to know whether the contact criterion applies to the 

case of microparticles. The microparticles may have spherical shapes, which can also be 

considered as circular pillars with convex sidewalls (Fig. 6.1b). Thus, in this chapter, we 

would like to explore the applicability of the contact criterion to circular pillars with convex 

sidewalls. Furthermore, when the slopes of the convex sidewalls are constant, the 

circular micropillars with convex sidewalls are reduced to those with straight sidewalls 

(Fig. 6.1c). Accordingly, the circular micropillars with either vertically or obliquely straight 

walls may be considered as a special type of those with convex sidewalls. Thus, in this 

chapter, we also explore the applicability of the contact criterion to the case that 

micropillars have straight sidewalls. 

Let 
0  denote the maximum angle that is formed by the tangent to the micropillar 

sidewall with the horizontal plane (Fig. 6.2). Based on the value of 
0 , there exist two 

situations, in which o o

00 90   and o o

090 180  , respectively. In this chapter, for the 

micropillars with convex sidewalls, the first situation is explored with no need seeking 

analytical expressions of air/liquid interfaces, while the second one is considered based 

on approximate expressions of such interfaces.  
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6.2 Theoretical Modeling in the Situation o

0 90   

In this section, we first explore in Sub-sections 6.2.1 to 6.2.3 the case of 

micropillars with convex sidewalls, and then consider in Sub-section 6.2.4 the case of 

micropillars with straight sidewalls. 

 
 
Figure 6.2: Cross-sectional profile of the air/liquid interfaces around the bottom corners of 
circular micropillars with convex sidewalls, when a liquid drop contacts the bottoms of the 

grooves between the micropillars and forms an intermediate wetting state. 
 

6.2.1. Existence of an Intermediate State for Micropillars with Convex Sidewalls 

We assume that there exists an intermediate wetting state after a liquid drop 

contacts the base of grooves, which are located between circular micropillars with convex 

sidewalls, in a quasi-static manner (Fig. 6.2). The sidewalls are considered to bend 

towards air and have a general convex shape. The drop profile around the bottom corner 

of a circular micropillar has an axisymmetric shape. Let a1b1 and a2b2 represent two of its 

meridian curves (Fig. 6.2). a1 and a2 are the triple-phase contact points at the base of the 

grooves, while b1 and b2 are those on the pillar sidewall. Without loss of generalization, 

only a1b1 is considered in the following analysis, and the same analysis also applies to 
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a2b2. Let de denotes the bottom of the pillar. Let   denote the angle formed at b1 by the 

tangent to the sidewall with the horizontal plane.   gradually increases when b1 moves 

down on the sidewall, and we have o o

00 180 .     Use r to denote the lateral distance 

between b1 and the central axis of the pillar, let r0 represent the lateral distance between d 

and the central axis of the pillar, and set h0 to denote the height of the pillar. As already 

demonstrated before, if h0 is less than the capillary length of the liquid (2.7 mm for water), 

which is actually the case of this work, then the gravity effect on the bottom portion of a 

liquid drop can be neglected. Accordingly, by Young-Laplace equation, [60] liquid 

pressure inside the bottom portion of a liquid drop is uniform, and  

2 w ap p b ,         (6.1a) 

 w wtp p gh ,         (6.1b) 

1 2

1 1
2  b

R R
,          (6.1c) 

where 
wp

 

and 
ap

 

denote, respectively, liquid pressure and air pressure at a point of a1b1, 

wtp  represents the liquid pressure at the drop apex, h is the height of the drop, 
1R  and 

2R  

are, respectively, radii of the maximal and minimal curvatures at this point, and b 

represents mean curvature at the point and is constant on the bottom surface of the drop. 

1R  and 
2R  are considered positive if their associated curves on the liquid surface bend 

towards air. Further assume that the drop cap has a convex shape. Then, as also 

demonstrated before,
 
it follows from Eq. (6.1c) that b is a positive constant.  

Set up an x-y rectangular coordinate system. x- and y-axes are along horizontal 

and vertical directions, respectively, and the origin is located at a1 (Fig. 6.2). Set s to be 

the arc length from a1 to a point on a1b1. Let 
 
denote the angle formed by the tangent to 

a1b1 and the horizontal direction at a point on this curve. Set 
1  and 

2  to be the values 
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of   at a1 and b1, respectively. Equilibrium contact angles [87] on the sidewalls of a 

micropillar are considered to be the same, while they may be different from the one on 

the bottom of the micropillar. Let 
01  and 

02 , respectively, be equilibrium contact angles 

on the pillar sidewalls and groove bottoms. If the micropillar sidewalls and groove 

bottoms are smooth, then 
01  and 

02
 
are Young contact angles. Otherwise, they are 

apparent contact angles. By geometric analysis, at a1 and b1, we have, respectively, 
 

o

1 01=180  ,                         (6.2a) 

o

2 02= 180 .            (6.2b) 

It follows from Eqs. (6.2a) and (6.2b) that 

o

10 180 ,  o                       (6.3a) 

o

290 180 .   o                        (6.3b) 

In the case of circular micropillars with either straight or convex sidewalls, Eq. 

(6.1c) can be re-written in terms of   and s as
 

sin
2 ,

 
 



d
b

ds w x
                                               (6.4) 

where w denotes the distance between a1 and the central axis of the micropillar (Fig. 6.2). 

Eqs. (6.2a) and (6.2b) are also two boundary conditions for Eq. (6.4). In summary, in 

order to have an equilibrium state, i.e., to make a1 stationary, there should exist a solution 

to Eqs. (6.4) and (6.2) under the condition that b>0.  

 Equation (6.4) can be further re-written as 

     2 1

2 2

sin - sin
.

-

 


r w
b

w r
               (6.5) 

Once 
01 , 

02 , r,  and the equation of the sidewall profile

 

are given, there exists a unique 

solution to Eqs. (6.4) and (6.2).  
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By Eq. (6.5), the requirement that b>0 results in two possible sufficient conditions 

for having the solution to Eqs. (6.4) and (6.2). First, if w>r, then 

     2 1sin sin . 
w

r
              (6.6)   

Second, if w<r, then 

     2 1sin sin . 
w

r
                          (6.7)   

In addition, according to the result of chapter 4, the following inequality is also a 

necessary condition to have a solution to Eqs. (6.4) and (6.2): 

2 1.                          (6.8) 

 

6.2.2. Local Stability of the Intermediate State for Micropillars with Convex Sidewalls 

 In order to make the constructed intermediate state locally stable, there should 

exist an energy barrier between this wetting state and that of Wenzel. [50, 74] Otherwise, 

liquid continues to spread on the groove base until the bottom corners of micropillars are 

completely filled. Subsequently, the wetting state is changed to that of Wenzel. In the 

case of microchannels, a simple analytical expression was obtained for the 

corresponding air/liquid interface in the intermediate state. Based on this analytical 

expression, we directly compared the energy level of the intermediate state with that of 

the Wenzel state to judge the existence of the energy barrier. [79] However, we are not 

using this approach here for the case of micropillars, due to lack of a simple analytical 

expression of the air/liquid interface in the intermediate state. Instead, as detailed below, 

we adopt another method to consider local stability of the constructed intermediate state, 

and this method does not necessarily reply on the explicit expression of the air/liquid 

interface. 
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Figure 6.3: Consideration of local stability when both a1 and b1 move towards the bottom 

corner of the micropillar with convex sidewalls, if (a) φ0  ≤ 90° or (b) φ0 > 90°. Arrows 
denote the moving directions of a1 or b1. 

 

 If the air gap reduces its size only when liquid pressure is increased, then it 

implies that an additional force is needed to increase liquid pressure for changing the 

constructed intermediate state to that of Wenzel. Accordingly, the two wetting states are 

separated by an energy barrier, indicating that the constructed intermediate state is 

locally stable. It is observed from Eqs. (6.5) and (6.2b) that b is related to w, r and  . 

Accordingly, the differential of b can be expressed in terms of dw, dr and d  as 

   .


  
  
  

b b b
db dw dr d

w r
                (6.9) 

When o

0 90 ,   as the air gap reduces its size, both a1 and b1 should move towards d. 

Accordingly, we have (Fig. 6.3a): dw<0, dr>0 and 0. d  By Eq. (6.5), if  

      2 1sin sin ,      (6.10) 
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then 0,





b

w
 0,





b

r
 and 0.








b
 Subsequently, it follows from Eq. (6.9) that db>0, 

implying that the corresponding air gap only reduces its size with the increase in liquid 

pressure. Hence, under the situation that o

0 90  , if Ineq. (6.10) is met, then the 

constructed intermediate state is locally stable. Accordingly, this inequality provides a 

sufficient condition to judge the local stability of the constructed intermediate state. 

Furthermore, if Ineq. (6.10) is met, it is readily shown that Ineq. (6.7) cannot hold true.  

 Under the situation that o

0 90  , when both a1 and b1  move towards d, we have 

(Fig. 6.3b): dw<0, dr<0 and 0. d  Furthermore, by Eq. (6.5), if Ineq. (6.10) is satisfied, 

then 0,





b

w
 0,





b

r
 and 0.








b
 Substitution of these inequalities into Ineq. (6.9) does 

not arrive at the conclusion that db>0. As will be detailed in Section 6.3, an alternative 

approach to determine whether we have db>0 is to directly differentiate an explicit 

expression of b. 

 

6.2.3 An Inequality to Meet 

According to the consideration in the previous two sub-sections, there should 

exist a locally stable intermediate state, if Ineqs. (6.6) and (6.10) are all met and  

o

0 90 .      (6.11) 

In addition, we should also have w > r, which, as observed from Fig. 6.3(a), 

actually holds true when Ineq. (6.11) is met. When Ineq. (6.10) holds true, there always 

exist a w1 and a 
1r , which satisfy the following two relations: 

1 0 1 0,  w r r      (6.12a) 

2 1

1 1

sin
1.

sin




 

w

r
    (6.12b) 
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Ineq. (6.12b) ensures that, if w falls between 
0r  and w1, together with that r falls 

between r1 and 
0r , then Ineq. (6.6) is also met, implying that there always exists a region 

around the bottom corner of the pillar, in which there exists a locally stable intermediate 

state. Two related points can be further obtained based on the stability consideration in 

the previous sub-section. First, for given w and r in this region, the corresponding value of 

b is determined using Eq. (6.5). If 
wp , calculated using Eq. (6.1a) and this value of b, is 

larger than the one calculated employing Eq. (6.1b), which is the liquid pressure at the 

bottom portion of the drop, then a1 and b1 should move away from the bottom corner of 

the pillar to maintain the pressure balance inside the drop. Second, when the former 

value of 
wp is less than the latter one, a1 and b1 continue to move towards the corner of 

the pillar until the two values of 
wp  are equal. Accordingly, Ineq. (6.10) is a sufficient 

condition for having a locally stable intermediate state after a liquid drop contacts the 

base of grooves. Furthermore, with the aid of Ineqs. (6.11), (6.2b) and (6.3a), it is readily 

shown that Ineqs. (6.10) and (6.8)  are equivalent, implying that Ineq. (6.10) is also a 

necessary condition for the existence of a locally stable intermediate state.    

By Eqs. 6.2(a) and 6.2(b), Ineq. (6.8) can be re-written in terms of 
01 , 

02  and 

as 

     o

01 02360 ( )     .   (6.13) 

Based on the above discussions, Ineq. (6.13) is both sufficient and necessary 

conditions for the existence of a locally stable intermediate state after a liquid drop 

contacts the base of grooves in a quasi-static manner. This inequality has also been 

previously derived as both sufficient and necessary conditions for the case of 

microchannels. [79] It is also a necessary condition for the existence of a locally stable 

intermediate state in the case of micropillars with straight sidewalls. [82] 
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6.2.4 Existence and Local Stability of an Equilibrium State inside Grooves for Micropillars 

with Straight Sidewalls 

For the case of circular pillars with straight sidewalls (Fig. 6.1a), following the line 

of reasoning used in Sub-sections 6.2.1-6.2.3 and noting that   is constant now, we find: 

(i) 0 d ; and (ii) once Ineq. (6.13) is met, together with that   o90 , there may also 

exist a locally stable intermediate wetting state after a liquid drop contacts the base of 

grooves in a quasi-static manner. 

 

6.3 Theorectical Modeling in the Situation o

0 90   

The results derived in Sub-section 6.2.1 also apply to the situation that  

o

0 90  ,    (6.14) 

since the derivation in that sub-section does not specify the value of 
0 . However, as 

indicated in Sub-section 6.2.2, the approach employed to consider the local stability for 

the situation that o

0 90  does not directly apply to that o

0 90  . Accordingly, for the 

latter situation, we desire to use an alternative approach to consider the local stability. 

That is, find an explicit expression of b to determine whether db>0. For this purpose, we 

need to get the expression of the air/liquid interface, as well as that of micropillar 

sidewalls. Due to the lack of theoretical expression of the air/liquid interface, as what was 

done before in considering small axi-symmetric air/liquid profiles, [73, 83] the cross-

sectional profile of the air/liquid interface is approximated as a circular arc. Based on this 

approximation, spherical microparticles are specifically considered, which have known 

sidewall profiles and which are also a type of micropillars with convex sidewalls. 

Micropillars with straight sidewalls are considered as well, since their sidewall profiles can 

be analytically defined.  
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6.3.1. Spherical Microparticles 

 For spherical microparticles, by geometric analysis, we have approximate 

expressions of b and w:   

01

1 0

sin sin( )
2 2

(cos cos )

 


 






b
r

,                                                (6.15a) 

02
1 0

1

01

sin( )
(cos cos ) 2[cos ] sin ,

sin
sin( )

2




 
 

 




  



r
w r           (6.15b) 

where 
1r  denotes the radius of a spherical microparticle, and 

0

01 02 360       .                                          (6.16)  

By Eq. (6.15a), it is readily shown that if 00  , i.e., if Ineq. (6.13) is satisfied, 

then the requirement that b>0 is met. It can also be seen from Eqs. (6.15a) and (6.15b) 

that both b and w are functions of   only. Accordingly, it follows from Eqs. (6.15a) and 

(6.15b) that, if Ineq. (6.13) holds true, then  

0



db

d
,                                                   (6.17a) 

0



dw

d
.                                                   (6.17b) 

According to geometric analysis, b1 moves towards the bottom corner of the 

spherical microparticle with the increase in  . Ineq. (6.17b) indicates that a1 also moves 

towards this corner with the increase in  , and Ineq. (6.17a) implies that b increases with 

the increasing  . Accordingly, b should increase when both a1 and b1 move towards the 

bottom corner of the spherical microparticle. In other words, liquid pressure needs to be 

increased to reduce the air gap. Thus, if Ineq. (6.13) is met, then the intermediate state is 

also locally stable. In summary, Ineq. (6.13) is also both sufficient and necessary 
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conditions for the existence of a locally stable intermediate state in the case of spherical 

microparticles.  

 

6.3.2 Circular Micropillars with Straight Sidewalls 

Let 
0w  denote the distance between b1 and the bottom corner of a circular 

micropillar with straight sidewalls. According to geometric analysis, b can be expressed 

as either w or 
0w  as:  

                                 
02sin sin( )

2 2

sin

 






b
w

,                                            (6.18a) 

01

0

sin sin( )
2 2 .

sin

 






b
w

                                               (18b) 

According to these two inequalities, it is readily shown that, if Ineq. (6.13) holds 

true, then b>0 and  

0
db

dw
,                                                          (6.19a) 

0

0
db

dw
.                                                         (6.19b) 

Ineqs. (6.19a) and (6.19b) imply that b increases when both a1 and b1 move 

towards the bottom corner of the micropillar. As what was discussed in the previous sub-

section, this result indicates that Ineq. (6.13) is both sufficient and necessary conditions 

as well for the possible existence of a locally stable intermediate state in the case of 

circular micropillars with straight sidewalls.  

According to the considerations in this and previous sections, we have arrived at 

a criterion for the existence of an intermediate state: there exists a locally stable 
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intermediate wetting state after a liquid drop contacts the base of grooves in a quasi-

static manner, if and only if 
01 , 

02  and   satisfy:  

(i) both Ineqs. (6.13) and (6.11) in the case of circular micropillars with convex 

sidewalls, or 

(ii) Ineq. (6.13) in the case of spherical microparticles or circular micropillars with 

straight sidewalls. 

Although only circular micropillars with convex sidewalls or straight sidewalls are 

considered, their consideration could also be extended, for example, to circular 

micropillars with concave sidewalls. Following the same line of reasoning as used in Sub-

sections 6.2.1-6.2.3, it is readily shown that, when both Ineqs. (6.13) and (6.14) are met, 

there should exist locally stable intermediate states in case of circular micropillars with 

concave sidewalls. Furthermore, using similar reasoning as applied in Sub-sections 6.3.1 

and 6.3.2, the cases of other circular pillars with specified sidewalls, such as raspberry-

like microparticles, may also be examined.     

A set of values of 
01  and 

02  may be experimentally measured, depending on 

the volume of a water drop. [83] This set of values varies between receding and 

advancing angles. Accordingly, the minimum requirement in designing circular pillars for 

having a locally stable intermediate state is that the advancing angles on the pillar 

sidewalls and groove bottom should meet Ineq. (6.13), which is adopted in this work to 

examine whether this inequality is satisfied. For the sake of security, it is better to have 

the receding angles, which are the minimum possible values of 
01  and 

02 , satisfy this 

inequality. 
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Figure 6.4: Nanopillars and small micropillars on the leaf surfaces of (a) Chawen Basu 
and (b) Carolina Queen, respectively. All are images of SEM. 

 

6.4. Experimental Setup  

The two points in the criterion are validated, respectively, by two types of 

experiments. The first type of experiments is performed on three lotus varieties: The 

President, Carolina Queen, and Chawan Basu (all were purchased from a local flower 

store and they are usually sold as pond plants), and the second type is on spherical 

microballs (Bal-tec Company, CA), which have identical diameters of 500 µm. Each type 

of experiments includes two tests. As will be addressed in detail later, the derived 

criterion is met in the first test, while it does not hold in the second test. Subsequently, the 

two tests in each type of experiments are conducted to examine whether the 

corresponding theoretical predictions are true. To be more specific, after a liquid contacts 
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the groove bottom, the expected equilibrium state is the intermediate state in the first test, 

while it is Wenzel state in the second test of each type of experiments.  

Isopropyl alcohol (IPA) and water drops are, respectively, used in the first and 

second tests of the first type of experiments. In either test, all the three lotuses are 

examined. In the second type of experiments, the values of 
0  in both tests are 150, 

and only water drops are used.  

Carolina Queen and Chawan Basu lotuses both have two-level surface 

structures (Fig. 6.4). Small micropillars are densely distributed on a lotus surface, and 

they are covered by nanopillars. The heights, base diameters, pitches, and bottom 

inclined degrees of the small micropillars for Carolina Queen are in the ranges of 9 to 15 

μm, 7 to 19 μm, 7 to 58 μm and 53 to 90, separately. They are in the ranges of 7 to 16 

μm, 6 to 19 μm, 8 to 51 μm and 53 to 90, respectively, in the case of Chawan Basu, 

similar to their counterparts of Carolina Queen. Accordingly, Ineq. (6.11) is met in both 

cases of Carolina Queen and Chawan Basu. The majority of small micropillars in either 

lotus can be considered to be circular micropillars with slightly convex sidewalls. As 

marked in Fig. 6.4(a2), some small micropillars may have bent sidewalls: the top portion 

of such a small micropillar bends towards one direction, while the bottom portion, which is 

directly related to the existence of the intermediate wetting state, can still be considered 

as a circular pillar with slightly convex sidewalls. Furthermore, since 
0  for either lotus is 

not larger than 90, it is good enough to use the first point in the derived criterion to judge 

the existence of an intermediate wetting state with no need knowing the exact sidewall 

profiles of the small micropillars. Thus, we did not specifically examine whether the small 

micropillars on the leaf surfaces of the two lotus varieties have the paraboloidic shapes of 

revolution, as previously reported in the case of other lotus varieties. [27]  

 

(a) (b) 
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Figure 6.5: (a) Perspective, (b) front view and (c) close-up views of a large micropillar on 
The President. (d) Close-up view of small micropillars. All are SEM images. 
 

We have recently reported that The President lotus has three-level surface 

structures (Fig. 6.5), and also compared its wetting properties with those of Carolina 

Queen and Chawan Basu. [53] In addition to small micropillars and nanopillars, it also 

has large micropillars (Fig. 6.5). The large micropillars are sparsely distributed throughout 

the whole leaf surface. Their cross-sections have approximately circular shapes, while 

their sidewalls are covered with six curved microwires, which extend from the middle of a 

sidewall to the top of each large micropillar (Figs. 6.5b and 6.5c. The bottom portion of a 

pillar sidewall is covered with small micropillars. Such small micropillars are also densely 

distributed on the valleys between large micropillars (Fig. 6.5a). Meanwhile, both large 

and small micropillars, as well as the valleys between the small micropillars, are also 
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covered by randomly oriented nanopillars (Fig. 6.5d). The heights, base diameters, 

pitches and bottom inclined degrees of the large micropillars are in the ranges of 42 to 89 

μm, 17 to 40 μm, 204 to 928 μm and 42 to 90, respectively. Therefore, Ineq. (6.11) is 

also met in the case of The President. The microwires on the sidewall of a large 

micropillar are slightly curved (Fig. 6.5b). Their straight lengths are about half of the pillar 

height, and both their thicknesses and widths are approximately equal to the top radius of 

the corresponding pillar. The shapes, dimensions, and pitches of the nanopillars and 

small micropillars on The President are about the same as their counterparts in the cases 

of Carolina Queen and Chawan Basu. The heights of the nanopillars on all three types of 

lotus vary from 500 to 1200 nm, while their diameters range from 140 to 240 nm. As in 

the cases of Carolina Queen and Chawan Basu for small micropillars, the large 

micropillars of The President are also considered as circular pillars with slightly curved 

sidewalls.  

Both types of experiments are pressing tests. A needle is used in the first test of 

the first type of experiments to press a liquid drop, while a Polydimethylsiloxane (PDMS) 

block is adopted in the other tests for the pressing purpose. The vertical movements of 

this block are controlled by a micromanipulator (M3301R of World Precision Instruments, 

FL, USA). To make liquid drops contact the groove bottoms in an approximately quasi-

static manner, the vertical speeds of both the needle and block are controlled to be 

around 10 μm/s. An optical microscope (mm0013000m of Metallurgical Microscopes 

Company) is rotated by 90
o
 to have a side view of air/liquid interfaces between 

micropillars. Similar experimental setups have been previously used to press liquid drops 

on micropillars [29, 82] and microchannels. [77, 79] Small water and IPA drops are used 

in this work, and their volumes range from 2 to 6 μl. The pictures of the air/liquid 

interfaces observed through the optical microscope are taken using Minisee software of 
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ScopeTek Company. The contact angles of these interfaces with the inner surfaces of 

micropillars are determined using MB-Ruler software of Dance Patterns Company.   

 

6.5 Experimental Results and Discussions  

6.5.1 The First Type of Experiments 

In the first type of experiments on Carolina Queen and Chawan Basu, due to 

small gaps between micropillars on lotus leaves, we could not directly identify the 

appearance or disappearance of air gaps on the leaf surfaces through the optical 

microscope, while we could do so in the case of The President because of the existence 

of large micropillars. Thus, the corresponding phenomena were interpreted according to 

the observation on the leaf surface of The President.  

In the first test of the first type of experiments, an IPA drop was placed against 

each lotus surface. Once the IPA drop contacted the lotus surface, the surface was 

completely wetted, and a thin IPA film was formed in this surface (Fig. 6.6). It was seen 

clearly in the case of The President that the grooves between the large micropillars were 

covered by the IPA (Fig. 6.6(c3)). A lotus surface is considered to be coated with wax. 

[27, 62] The contact, receding and advancing angles were measured to be 13°, 7° and 

18°, respectively, when a drop of IPA was placed on a film of a candle wax. The angle 

measurement had an error of about 2º. These angles were used as the intrinsic angles of 

the wax on the lotus leaf with respect to IPA. According to Wenzel’s equation [23] and the 

dimensions of micropillars, it was expected that in the first test on each lotus, the contact, 

receding and advancing angles were close to 0º for all the three lotuses. Thus, Ineq. 

(6.13) should be violated for either lotus in the first test, which may explain why Wenzel 

states were observed on the three lotuses during the pressing tests.  
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Figure 6.6: The first test of the first type of experiments: An IPA drop was placed and 
pressed against the leaf surfaces of (a) Carolina Queen, (b) Chawan Basu and (c) The 
President, respectively. (a1)-(c1) Placement of IPA drops. (a2)-(c2) Contact of the IPA 

drops with the substrates. (a3)-(c3) The complete wetting of IPA residue on the 
corresponding substrate after the needle has been removed from this substrate. The 

scale bars represent 500 µm. 
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Figure 6.7: The second test of the first type of experiments: A water drop was placed and 
pressed against the leaf surfaces of (a) Carolina Queen, (b) Chawan Basu and (c) The 

President, respectively. The scale bars represent 450 µm. 
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Water drops were used in the second test. The contact, receding and advancing 

angles on the surface of Carolina Queen were 168º, 159º and 169º, respectively. They 

were 168º, 160º and 168º, separately, in the case of Chawan Basu, and were 171º, 164º 

and 171º, respectively, on the surface of The President. As shown in Fig. 6.7, two 

phenomena observed in this test were different from those in the first test. First, no liquid 

residue was observed after the pressing plate was removed, implying that liquid did not 

completely fill the grooves during the pressing process, resulting in the generation of 

intermediate states. Second, intermediate states were directly observed in the case of 

The President due to the existence of large micropillars on this lotus surface. During the 

test on The President, after water drops had contacted the bottoms of grooves, 

intermediate wetting states were observed inside these grooves. In such a wetting state, 

water did not completely fill the grooves, and air pockets existed between water drops 

and bottom corners of these grooves. After water had contact with the base of a few 

grooves, the air pockets in the middle grooves were not visible due to the block of water, 

while air pockets could still be seen around the outside micropillars ((c2), (c3) and (c5) in 

Fig. 6.7). Furthermore, the sizes of the air pockets decreased with the increase in the 

applied pressures, implying that there exist energy barriers between the intermediate 

states and that of Wenzel (i.e., the state for which the groove is completely filled by 

water). Consequently, these intermediate states are stable. Otherwise, the wetting states 

should be immediately transformed to that of Wenzel when the applied pressure was 

increased. It was also interesting to observe that, along with the reduction in the applied 

pressure, these air pockets gradually increased their sizes. Meanwhile, the number of 

grooves that had contact with the water drop was reduced, and due to this reduction the 

air pockets in the middle of grooves re-appeared ((c5) in Fig. 6.7). Eventually the water 
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drop recovered its Cassie-Baxter wetting state after much reduction in the applied 

pressure ((c6) in Fig. 6.7).  

We have also previously performed experiments on artificial circular micropillars 

with vertical straight walls. [82] The observed experimental phenomena are similar as 

those in the first type of experiments. They can be justified as well using the first point of 

the derived criterion. 

 

6.5.2 The Second Type of Experiments 

A microball and an SU-8 substrate were adopted in the first test of the second 

type of experiments. The contact, receding and advancing angles on the surface of the 

microball were measured to be 86º, 59º and 96º, respectively, and they were 69º, 16º and 

75º on the SU-8 substrate. When either receding or advancing angles of the microball 

and SU-8 substrate are used in Ineq. (6.13), this inequality is violated. Accordingly, there 

should not exist any intermediate states after water contacts the SU-8 substrate. This 

point was validated in the corresponding pressing tests. As shown in Fig. 6.8(a), the 

water drop immediately covered the bottom portion of the microball when it had contact 

with the SU-8 substrate ((a4) in Fig. 6.8). Furthermore, as in the first test of the first type 

of experiments, a portion of the water drop was left on the SU-8 substrate when the 

pressing plate was removed ((a6) in Fig. 6.8), implying that the wetting state did not 

transition back to the Cassie state. Due to the blocking of water, it was not clear whether 

the bottom corner of the microball was completely filled by water after the occurrence of 

the contact (Fig. 6.8(a3)). To solve this problem, a water drop was placed beside the 

microball instead. As observed from Fig. 6.9(a), after the contact with the substrate, water 

immediately filled the bottom corner of the microball, which provides a clear evidence that 

the wetting state was that of Wenzel.  
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Figure 6.8: The first (a) and the second (b) tests of the second type of experiments: (a) 

microball and SU-8 substrate, and (b) Teflon-coated microball and nanowire-coated 
silicon substrate. The scale bars represent 500 µm. 
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Figure 6.9: Pressing of a droplet on the side of the microball. (a) SU-8 substrate and 

microball. (b) Nanowire-coated substrate and Teflon- coated microball. The scale bars 
represent 500 µm. 
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In the second test of the second type of experiments, the microball and the SU-8 

substrate were coated with Teflon and ZnO nanowires, respectively, to change the values 

of  01 and  02. The contact, receding and advancing angles were, respectively, 115º, 94º 

and 121º on the Teflon-coated microball, while they were 170º, 160º and 172º on the 

nanowire-coated SU-8 substrate. When either receding or advancing angles of the 

microball and nanowire-covered substrate were used in Ineq. (6.13), this inequality was 

met. Thus, according to the second point in the derived criterion, there should exist an 

intermediate state after water contacts the nanowire-coated substrate. This point was 

also validated in the corresponding pressing test (Fig. 6.8b). The observed phenomena 

were similar to what was observed on The President in the second test of the first type of 

experiments. On the other hand, due to the blocking of water, it was also not clear 

whether there existed air gaps around the bottom corner of the microball. Accordingly, a 

water drop was placed beside the microball as well. As shown in Fig. 6.9(b), air gaps did 

exist around the bottom corner of this microball, resulting in an intermediate wetting state 

after the contact had occurred.  
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6.6 Summary and Conclusions 

In this chapter, we consider the conditions for the existence of a locally stable 

intermediate wetting state after a liquid drop contacts the base of grooves located 

between circular micropillars with convex or straight sidewalls in a quasi-static manner. 

Through theoretical derivation, we show that there may exist a locally stable intermediate 

wetting state after a liquid drop contacts the base of grooves in a quasi-static manner, (i) 

if and only if 
01 , 

02  and   satisfy Ineqs. (6.13) and (6.11) in the case of circular 

micropillars with convex sidewalls, or (ii) if and only if these angles meet Ineq. (6.13) in 

the cases of spherical microparticles and circular micropillars with straight sidewalls. 

These theoretical results are validated through pressing tests on three lotus varieties and 

spherical microballs.  
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Chapter 7  

Summary and Conclusions 

 
In summary, this dissertation aims to explore the application range of the contact 

criterion in different cases. 

First, in chapter 2, we directly observed the evolution of air/water interfaces 

suspended between PDMS microlines when water droplets reduced their sizes due to 

evaporation. According to experimental results, two important phenomena were observed 

regarding the transition from Cassie-Baxter to Wenzel States. Based on this observation, 

we derived critical values of droplet sizes and Laplace pressure to predict when the 

transition would occur on microlines, and compared the predicted values of the droplet 

sizes with experimental results on three arrays of PDMS microlines. We also conducted 

in-situ observation of the evolution of air/water interfaces when water droplets were 

slowly pressed using a glass slide on the three arrays of PDMS microlines. The critical 

values of the droplet sizes derived in the case of evaporation also applied to this pressing 

case. 

Second, in chapter 3, through theoretical and experimental investigations of the 

contact criterion, we found that, when an angle criterion is met, an intermediate wetting 

state may be formed after a water drop contacts the bottom of a microchannel or after it 

is placed on a single corner. In this wetting state, the microchannel or single corner is not 

completely filled by water, and air pocket still exists at the bottom of the structure. Since 

such a wetting model appears only in the transition process between Cassie-Baxter and 

Wenzel states, it is called an intermediate state here. This intermediate state is also 

stable in the sense that its energy state is lower than that of the Wenzel model. 

Third, in chapter 4, we further considered the case of polygonal and circular 

pillars, and also derived an angle inequality, which is identical to the one derived in the 
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case of microchannels that discussed in chapter 3. In the case of pillars, this angle 

inequality is a necessary condition that local contact angles and the inclined degree of 

the pillars should meet for the existence of an intermediate state. As in the case of 

microchannels, once this inequality is violated, there should not exist any intermediate 

state, and the contact criterion is also applicable to the case of micropillars. On the other 

hand, different from that in the case of microchannels, the satisfaction of this inequality 

does not guarantee the existence of a stable intermediate state for the case of 

micropillars. For the existence of a stable intermediate state, two conditions should be 

satisfied. First, there exists an equilibrium state after the contact. Second, there is an 

energy barrier between this equilibrium state and that of Wenzel. The consideration of 

these two conditions may give precise bounds of local contact angles and inclined 

degrees of pillar sidewalls for the existence of a stable intermediate state, which could 

also be used to identify the exact range that the contact criterion is applicable. We did so 

for the case of microchannels in chapter 3, since the corresponding air/liquid interfaces 

have simple shapes. However, we did not consider the two conditions in the case of 

micropillars that discussed in chapter 4 due to lack of analytical expression of the related 

air/liquid interfaces. Accordingly, although the derived inequality is identical to the one for 

the case of channels, it may not give a precise range that the contact criterion is valid. 

Fifth, in chapter 5, using a new approach, we consider the aforementioned two 

conditions for existing an intermediate state in the case of circular pillars with vertical 

sidewalls. This approach does not rely on the explicit expression of the interface profile, 

making it feasible to explore the applicability of the contact criterion. we demonstrate: (i) 

when this angle inequality is met due to the increase of local contact angles by, for 

example, nanostructures, there exists a locally stable intermediate state after a water 

drop slowly contacts the base of grooves and the contact criterion does not hold for the 
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corresponding micropillars, and (ii) if the inequality is violated, then such an intermediate 

state does not exist and the contact criterion holds true. 

Sixth and finally, according to our pressing tests on three different lotus varieties, 

we also found that the transition did not occur when the contact happened. The lotus 

micropillars were approximately as paraboloids of revolution, which means that these 

micropillars can be considered as circular pillars whose sidewalls have convex shapes in 

the vertical planes. Thus, we also explored the applicability of the contact criterion to 

circular pillars with convex sidewalls. Through theoretical derivation and experimental 

validation, we show that there may exist a locally stable intermediate wetting state after a 

liquid drop contacts the base of grooves in a quasi-static manner, (i) if and only if 
01 , 

02  

and   satisfy Ineqs. (6.13) and (6.11) in the case of circular micropillars with convex 

sidewalls, or (ii) if and only if these angles meet Ineq. (6.13) in the cases of spherical 

microparticles and circular micropillars with straight sidewalls. 
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