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Abstract 

ANALYTICAL SOLUTIONS OF STEADY-STATE HEAT CONDUCTION 

IN MULTI-LAYER STACK PACKAGING 

 

Saeed Ghalambor, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Dereje Agonafer 

 Analytical models that can be utilized in modeling the steady-state temperature 

solutions of planar and 3D packaged integrated circuits are discussed. This 

mathematically-driven model will include solutions for uniform and non-uniform footprint 

die stack systems as well as planar flip chip packages. These analytically obtained 

temperature solutions will include the contribution of thermal resistance for both cases as 

well as perfect contact scenarios. The acquired solution will accommodate any kind of 

boundary conditions (first, second and third kind) on the top and bottom surfaces of the 

stack system with the sides being adiabatic. Furthermore, the algorithm developed will 

consider volumetric heat generation as well as heat source at any cross section within 

the model.  

Finally, the diffusion equation for heterogeneous layers is solved using the 

Galerkin-based integral approach. The latest development pertains to the analytical 

solutions of the steady-state heat conduction in stacked dies of an electronic chipset with 

or without TSV (Through Silicon Via) technology. TSVs are used as interconnections 

between different dies in vertical layers. Furthermore, the effect of thermal conductance 

between the constituents of the layers is considered.  
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Chapter 1 

Introduction 

 
The semiconductor industry has consistently followed a trajectory of 

miniaturization that enables design engineers to achieve greater levels of innovation in 

the same or smaller dies. This trajectory has also allowed them to use less real estate by 

stacking the dies vertically. With this architectural achievement come challenges such as 

cooling, as the devices must operate under specified junction temperatures. Therefore, 

the thermal behavior of 3D stack packaging has recently become the center of attention 

in the electronics industry. The accumulation of excessive heat within the stack is a 

challenge that has caused thermal engineers to focus on the issue of extracting this heat 

from the system. Thus, one important aspect of design is the ability to obtain a robust 

analytical temperature solution of the multi-layer stack packages beforehand in order to 

sustain the reliability of the 3D stack packages. This study addresses the analytical 

formulation and governing equations that pertain to such systems by developing a 

Mathematica code to obtain analytical solutions of temperature distribution in multi-layer 

bodies. 

Small, high-speed, and multi-functional computers and other electronic devices 

have been enabled by high integration technologies that have come to reality by the 

miniaturization through the process of scaling which uses a very fine pattern. However, 

an upper limit in the progress of such miniaturization has come into sight. The process of 

miniaturization will be technologically limited due to the increase of leak current which 

generates heat in transistors, and signal delay time caused by wiring. 3D packaging 

technology is one of the technologies expected to make a breakthrough such 

miniaturization on a 2D surface, which will enable high density integration that does not 
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depend on miniaturization on 2D surfaces. By stacking chips vertically, which would 

conventionally be set out on a plane, it will be possible to produce components with the 

same functionality as that of the components produced by conventional methods, but with 

a smaller footprint. A key 3D key technology is electrical packaging technology, which 

means that it is vital to connect the stacked chips electrically. Conventional 3D packaging 

technology uses wire bonding with fine metal lead wires. Recently, novel technologies 

have been developed to replace wire bonding. For example, wireless connection for data 

communication, which will reduce the space needed for wiring, has been proposed [1-4]. 

Another example is through-silicon via packaging technology [5-7] (hereinafter, referred 

to as TSV technology), which uses through-holes in silicon substrate for electrical 

connection. By using TSVs, it is possible to save the space that would be necessary for 

bonding wires and to make wiring lengths shorter. TSV technology is moving further 

ahead of other novel 3D packaging technologies mentioned above towards the 

production of commercially viable components [8, 9]. 

In this research the mathematical modeling for both technologies are discussed.  

One major concern about 3D packaging is the thermal design. As the chips are 

being stacked on top of one another, overall stack package will have highly non-uniform 

heat distribution with higher heat density per foot print. Therefore, one must find ways to 

minimize the thermal resistance from electronic device junction to the ambient air. One 

way to reduce Rja is to reduce Rcs, the contact resistance between the electronic device 

case and the ambient-cooled, finned heat sinks or the liquid-cooled cold plates. Several 

factors impact Rcs, including surface flatness, surface roughness, contact force or 

clamping pressure, surface cleanliness, and interface materials. Many technologies and 

techniques can optimize the thermal path from the electronic device junction to the heat 

sink. It is important to minimize the thermal resistance to maintain the electronic device 
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temperature below its maximum rated value and increase the end product reliability. 

Therefore, the inclusion of thermal contact resistance in the calculation of temperature 

fields becomes crucial. In the first chapter of this research, consideration is given to the 

derivation and development of steady-state heat conduction solutions in multi-layer 

bodies with uniform footprint. The study will reveal the effect of different boundary 

conditions on the top or bottom surfaces of the multi-layer stack, and changes required to 

obtain the temperature solutions in each case is discussed accordingly. 

Chapter 3 will include the effect of thermal resistance in the existing solution 

obtained in chapter 2. 

In chapter 4 and 5 the consideration is given to a multi-layer stack package 

consisting of two different footprints. 

The solutions for steady-state heat conduction of non-uniform footprint will be 

solved using classical approach (Chapter 4) and by means of an iterative inverse 

methodology (Chapter 5). 

Finally, Chapter 5 will consider the determination of steady-state heat conduction 

in heterogeneous material which does not possess closed- form solutions. Chapter 5 is 

dedicated to the TSV technology mentioned earlier with appearance of through silicon 

vias into the silicon dies. The latter study includes the Galerkin-based integral techniques 

to obtain solutions of steady-state heat conduction and consequently, will lead to 

determination of effective thermal conductivity in a Silicon-Copper die layer. 

This study complements work on transient conduction in multi-dimensional 

layered materials by Haji-Sheikh and Beck [10]. One-dimensional orthogonal solutions of 

composite medium were presented in [11] that described the generalized Sturn-Liouville 

procedure for composite and anisotropic domain in transient heat conduction problems. 
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Various mathematical details are in [12,13]. Dowding et al. [14] presented a mixture of 

experimental and numerical study of a two-dimensional, two-layer solution with 

prescribed heat flux over all surfaces. Computation of temperature solution in multi-layer 

stack packages exhibits many features that are not common when computing the 

temperature solutions in homogeneous material due to a mixture of real and imaginary 

eigenvalues. Steady-state solutions complement transient solution, however in some 

cases transient solutions can enhance the accuracy of steady-state solutions [15-17]. 

This study modifies the existing solutions of steady-state heat conduction in two-layer 

bodies [18]. Then, extends the solutions to N-layer for electronic applications and include 

the effect of thermal conductance to the existing solutions. Also, the study further 

investigates the solutions for non-uniform die footprints [19]. Study conducted by A. 

Kaisare et al. [20] uses an iteration technique to obtain the temperature solutions to a 

non-uniform footprint system by guessing the heat flux at the interface of the two –layer 

stack. However, in this research the procedure takes the prescribed heat flux and solves 

the temperature solutions for each layer using inverse techniques and classical series 

solution. There are also numerous publications on multi-layer bodies such as M.M. 

Yovanovich [21] in 1980 that uses finite difference approach and matrices to obtain 

temperature solutions in multi-layer bodies. The procedure of aforementioned method will 

lead to inversion of large matrices and is very CPU intensive compared to the 

methodologies used in this research which is mostly integral-based and closed-form 

solutions. 

Many engineering systems often include heterogeneous materials such as 

composite parts, integrated electronics packages, and other solid bodies with inclusions 

of secondary materials. The secondary material can be a fiber, solder ball, or a layer of a 

different material such as TSVs (Through silicon Via) in electronic packaging.  
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Zuzovski and Brenner [22] compared the work of Rayleigh and Maxwell for 

computation of effective thermal conductivity in an infinite domain with periodically 

arranged spheres. Sangani and Acrivos [23] modified the method of Zuzovski and 

Brenner to solve for effective thermal conductivity of a periodic array with inline and 

staggered arrangement of spheres also in an infinite domain. An accurate computation of 

temperature in a three-dimensional heterogeneous region is generally time consuming 

and cumbersome. For this reason, it is common practice to select average 

thermophysical properties to predict temperature and heat flux in heterogeneous bodies. 

Various properties of the medium are needed to determine the thermal conductivity of a 

heterogeneous medium; these include the statistical distribution of constituents, volume 

fraction, and the microstructure characteristics such as orientation, size, and connectivity 

of individual constituents [24][. Since it is difficult to take into account all available 

information, the common theoretical approach is to define lower and upper bounds for 

effective properties [25]. An extensive survey related to average properties is given by 

Hashin [26]. A study done by Y.M. Lee in 1994 describes the effect of elliptical inclusion 

in a matrix domain for determination of thermal conductivity in multidimensional bodies 

[27]. In this research the effect of cylindrical inclusion (TSVs) into the matrix (Silicon die) 

is considered and the effective thermal conductivity was computed for the composite 

layer. 

Furthermore, the contribution of thermal heat conductance between the 

constituents was considered.  
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Chapter 2 

Mathematical Formulations and Solution Procedure for Thermal Conduction in Multi-

Layer Stack Packages with Uniform Footprint 

 
The study of steady-state temperature solution in a stack of multi-layered 

orthotropic bodies with uniform profiles is the subject of this chapter. A stacked system is 

a body with layers of different materials as shown in Figure 2-1. The exact series solution 

of temperature fields in three multi-dimensional regions receives primary consideration. 

The mathematical formulation in this chapter does not include the contribution of thermal 

contact resistance at the interface between layers. The contribution and addition of 

thermal resistance into the current derivation will be discussed in detail in chapter 3.  

 

  layer j=1 

    x 

  y 

 B. C., 1st, 2nd, or 3rd kind  

 B. C., 1st, 2nd, or 3rd kind  

d1 

b1 

d2 

d3 

j=2 

j=3 

b2 

   b 

 x=a 

  z=c 

  z 
 

Figure 2-1 Schematic of a multi-layer body. 

2.1 Steady State Energy Equation 

The steady state energy equation for orthotropic layer j within a stack of many 

layers is 
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For Nj ,,2,1   

subject to the boundary conditions to be specified. The solution for layer j using the 

method of separation of variables has the form 

 )()()(),,( zZyYxXzyxT jjjj  , in Region j (2-2) 

 For Nj ,,2,1   

To satisfy the compatibility condition at each interface between adjacent layers j 

and j+1, it is required to have 1 jj XX  and 1 jj ZZ . After substitution of jT  

from Eq. (2-2) in Eq. (2-1), the result is 

 

j

j
jx

X

X
k
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,
j

j
jy

Y

Y
k
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 ,

j

j

jz
Z

Z
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 , =0, in Region j (2-3) 

 For Nj ,,2,1   

Preliminary consideration is given to the case of having a non-homogeneous 

boundary condition to be located over an outer surface perpendicular to the y-axis. Two 

cases of having the non-homogeneous boundary condition over y=0 surface and y=b 

surface are presented separately. 

2.2 Non-Homogeneous Boundary Condition Over y=0 Surface.  

It is possible to have boundary conditions of the first, second, or third kind over a 

surface perpendicular to the y-axis. However, only the boundary conditions of the first or 

second kinds are considered for x- and z-directions. Accordingly, the functions jX  and 

jZ , as given in Eq. (2-2), must satisfy the conditions: 

 
2

2211 ////  XXXXXXXX NN  (2-4a) 
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2

2211 ////  ZZZZZZZZ NN  (2-4b) 

where   and  , are eigenvalues for homogeneous boundary conditions in x and z 

directions, respectively. For specified eigenvalues m  and n , the solutions for mX  

and nZ  functions are 

 )sin()cos( 21 xDxDX mmm   (2-5a) 

 )sin()cos( 21 zEzEZ nnn   (2-5b) 

and they are to remain the same for all layers.  

A differential equation for jY  is obtainable after substitution for 

2// mmm XXXX   and 
2// nnn ZZZZ   in Eq. (2-3) to get, 

 0/ 2
,,

2
,  njzjjjymjxk kYYk  (2-6) 

that becomes 

 
2

,
2

,

,2

,

,
mnjn

jy

jz
m

jy

jx

j

j

k

k

k

k

Y

Y



 (2-7) 

It is to be noted that for steady state conduction in isotropic layers mnmnj  , , 

remains the same for all layers. For this case, the homogeneous boundary condition is 

located at bbz N   and the appropriate solution form of jY , as given in [12] and in 

[18], for a specified m  and n , is  

 )](sinh[)](cosh[ ,,,,, ybBybAY jmnjmnjjmnjmnjmnj   (2-8) 

This would provide temperature solutions with the forms  
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 (2-9) 

This solution form presented for jT  leads to a relatively simple method for 

finding the coefficients mnjA ,  and mnjB , . Having the homogeneous boundary 

condition located at bbz N  , the functional form of temperature for the layer j=N is  

 



)()()](sinh[

)](cosh[

,,

,,

11
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 (2-10) 

wherein 0, mnNA  and 1, mnNB  for the boundary condition of the first kind while 

1, mnNA  and 0, mnNB  for the boundary condition of the second kind. For the 

boundary condition of the third kind, the condition mnNmnNNy hYyYk ,,, )/(   at 

by  , after arbitrarily setting 1, mnNA , produces )/( ,, NyNmnN khB  .  

Next, the coefficients mnjA ,  and mnjB ,  for other layers, also become 

deterministic once these parameter are known for the neighboring (j+1)th layer. 

Accordingly, the compatibility condition for heat flux  

 
jj byjjybyjjy yTkyTk


 // 11,, , (2-11a) 

at the interface between layer j and the layer j+1, produces the coefficient 

 )cosh()sinh( 1,1,11,1,1
,,

1,,1
, 







 jmnjmnjjmnjmnj

jymnj

jymnj
mnj dBdA

k

k
B  

  (2-11b) 
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where 1jd  is the thickness of the layer j+1, as shown in Figure 2-1. The other 

compatibility condition 

 jbyjjbyjjy RTTyTk
jj

/)(/ 1, 
  (2-12a) 

provides the coefficient  

 
 )cosh()sinh(

)sinh()cosh(

1,11,,11,1,1

1,11,,11,1,1,









jmnjjyjmnjjmnjmnj

jmnjjyjmnjjmnjmnjmnj

dkRdB

dkRdAA
 (2-12b) 

where jR  is the contact resistance between the layer j and the layer j+1; it assumes a 

zero value if these two bodies are in perfect contact. Beginning with layer N, these two 

recursive relations produce the values of mnjA ,  and mnjB ,  within the temperature 

solution jT , as given by Eq. (2-9), in a descending order for all layers.  

The remaining unknown is the coefficient mnC  to be determined from the non-

homogeneous boundary condition at y=0. As an illustration, for a boundary condition of 

the first kind, when ),(1 zxfT   at y=0, Eq. (2-9) leads to the relation 

  )()()sinh()cosh(),( 1,1,11,1,1

11

zZxXbBbACzxf nmmnmnmnmnmn

nm

 








  

  (2-13) 

and then the orthogonality conditions in x- and z-directions produce 

  nzmxmnmnmnmn

nm

a

x

c

z
mn

NNdBdA

dxdzzZxXzxf

C
,,1,1,11,1,1

00

)sinh()cosh(

)()(),(







 (2-14a) 

where 
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 dxxXN m

a

x

mx
2

0

, )]([


  (2-14b) 

and 

 dxxZN n

c

z

nz
2

0

, )]([


  (2-14c) 

Some modifications are needed when 011   that would make 01,1  . 

For this special case, the modified functional forms of jY  are obtainable beginning with 

 )]/1([ 00,00,00 byBACT NNN   (2-15) 

As before, 000, NA  and 100, NB  for the boundary condition of the first kind, 

100, NA  and 0, mnNB  for the boundary condition of the second kind, while 

1, mnNA  and NyN khbB ,00, / , for the boundary condition of the third kind. Further 

discussions related to this special case are within the next numerical example. 

2.3 Non-Homogeneous Condition Over y=b Surface 

Minor modifications of the previous case are needed when the homogeneous 

boundary condition is located at y=0 and the non-homogeneous boundary condition is 

located at by  . For this case, Eq. (2-9) takes the form  

 


)()()](sinh[

)](cosh[

1,,

1,,

11

zZxXbyB

byACT

nmjmnjmnj

jmnjmnjmn

nm

j















 
 (2-16) 

While the homogeneous boundary condition at 00  by  produces the 

functional form of temperature for layer 1 as  
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

 )()()sinh(

)cosh(

,1,1

,1,1

11

1

zZxXyB

yACT

nmmnmn

mnmnmn

nm



 







 (2-17) 

since 00 b . Then, the values of coefficients mnjA ,  and mnjB ,  are obtainable in 

ascending order from the modified forms of Eq. (2-11b) and Eq. (2-12b) as 

 )cosh()sinh( ,,,,
1,,1

,,
,1 jmnjmnjjmnjmnj

jymnj

jymnj
mnj dBdA

k

k
B 









 (2-18a) 

and 

 

 
 )cosh()sinh(

)sinh()cosh(

,,,,,

,,,,,,1

jmnjjyjmnjjmnjmnj

jmnjjyjmnjjmnjmnjmnj

dkRdB

dkRdAA




 (2-18b) 

The forms of coefficients mnjA ,  and mnjB ,  within function mnjY , , for j=1 and 

2, and for insertion into 

 )sinh()cosh( ,1,1,1,11 yByAY mnmnmnmn 

 )](sinh[)](cosh[ 1,,21,2,22  jmnjmnmnmn byBbyAY , 

are in Table 1. Once the coefficients mnjA ,  and mnjB ,  for the layer N are known, the 

coefficient mnC  can be determined from the non-homogeneous boundary condition at 

y=b. As an illustration, for a boundary condition of the first kind, ),(),,(1 zxfzbxT   at 

y=b and then the coefficient mnC  becomes 

 
  nmNmnNmnNNmnNmnN

nm

a

x

c

z
mn

NNdBdA

dxdzzZxXzxf

C
)sinh()cosh(

)()(),(

,,,,

00







 (2-19) 

for insertion in Eq. (2-16). 
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Numerical Example.  

Consideration is given to a body, for which        ,    , while having 

three isotropic layers with 1321  bbb , jzjyjxj kkkk .,.  , 11 k , 22 k , 

and 53 k , as shown in Figure 2-1. The boundaries at    ,    ,    , and     

are insulated while there is a zero temperature at    . Over the     surface, there is 

a surface heat flux 1q  within the areas. Next, the aforementioned procedures were used 

for determination of temperature field.  

Solution: For boundary conditions of the second kind, the eigenvalues are 

amm /)1(   with ,2,1m  and cnn /)1(   with ,2,1n while the 

corresponding eigenfunctions are ]/)1cos[()( axmxX m   and 

]/)1cos[()( cznzZn  . For each isotropic layer, jjzjyjx kkkk  ,,,  and this 

causes Eq. (2-7) to become 

 
222
mnnm

j

j

Y

Y



 (2-20a) 

while Eq. (2-10) reduces to  

 )()()](sinh[

11

3 zZxXybCT nmmnmn

mm

 








 (2-20b) 

since 0,3 mnA  and 1,3 mnB . In the presence of perfect contact between the layers, 

Eq. (2-11b) and Eq. (2-12b) provide the constants )sinh( 3,2 dA mnmn   and 

)cosh()/( 323,2 dkkB mnmn  , which makes 
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

 )()()](sinh[)cosh()/(

)](cosh[)sinh(

2323

23

11

2

zZxXybdkk

ybdCT

nmmnmn

mnmnmn

mm



 







(2-20c) 

Next, when j=1, Eq. (2-11b) yields  

)sinh()cosh()/()cosh()sinh( 232323,1 ddkkddA mnmnmnmnmn   

and Eq. (2-12b) yields  

)]cosh()cosh()/()sinh())[sinh(/( 23232312,1 ddkkddkkB mnmnmnmnmn   

for insertion in equation 

 


 )()()](sinh[

)](cosh[

1,1

1,1

11

1

zZxXybB

ybACT

nmmnmn

mnmnmn

mm



 







 (2-20d) 

Since mnNB ,  was selected arbitrarily, one can replace it to become 

)cosh(/1 3dmn  for numerical determination of temperature. This would replace mnC  to 

become )cosh(/ 3dC mnmn   and the replaced forms of the temperature solutions are:  

 )()(
)cosh(

)](sinh[

311

3 zZxX
d

yb
CT nm

mn

mn
mn

nm



 









, (2-21a) 

 


 )()()](sinh[)/(

)](cosh[)tanh(

223

23

11

2

zZxXybkk

ybdCT

nmmn

mnmnmn

nm



 







, (2-21b) 

while 

)sinh()/()cosh()tanh( 22323,1 dkkddA mnmnmnmn   

and  
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)]cosh()/()sinh())[tanh(/( 2232312,1 dkkddkkB mnmnmnmn  . 

for insertion in Eq. (2-20d). Finally, the coefficient mnC  is computed from the definition of 

input heat flux 

  )()()cosh()sinh( 1,11,11

11

0

1
11

zZxXbBbAkC

y

T
kq

nmmnmnmnmnmnmn

nm

y



























(2-22) 

with ]/)1cos[()( axmxX m   and ]/)1cos[()( cznzZn   whose orthogonality 

conditions provide 

 
  nzmxmnNmnmnmnmn

nm

a

x

c

z
mn

NNdBdAk

dxdzzZxXzxq

C
,,1,,11,11

00

)cosh()sinh(

)()(),(







 (2-23) 

As stated earlier, when m=n=1, the above relations should be modified and they 

become 

)( 311,311,311,3 ybBAY   with 011,3 A  and 111,3 B , 

)( 211,211,211,2 ybBAY   with 32311,2 dbbA   and 2311,2 / kkB   

)( 111,111,111,1 ybBAY   with 232311,1 / kkddA   and )/)(/( 122311,1 kkkkB   

It is to be noted that when the wall heat flux at y=0 is uniform, the temperature 

solution in region 1 takes the form 

)]()/(/[ 1132323111 ybkkkkddCT   

where 311 / kqC  . When the heat flux has a uniform value within 10 1  ax  and 

10 1  cz  while having a zero value elsewhere, the dimensionless surface 
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temperature )/( 11 qdTk  values are computed and they are plotted in Figure 2-2. The 

solutions are numerically well behaved for practical applications. Clearly, when

211  ca , the problem becomes one-dimensional and the computed value of 

dimensionless temperature at location         using a single term is 

7.1)/()0,0,0( 111 bqTk . The series convergence characteristics suggest that more 

terms are needed as the problem becomes three-dimensional; e.g., when    , more 

than 100 terms in each direction is needed to get five accurate digits. As a test case, for 

5.111  ca , 1.0, and 0.5, using 150 terms in x-direction and z-direction produced 

30503.1)/()0,0,0( 111 bqTk , 0.92787, and 0.50700 with error within the last digit, 

respectively. However, the error exponentially decays when y>0. For example, when 

5.111  ca , the computed dimensionless temperature is 

072831194.0)/()0,1,0( 111 bqTk , using 10 terms. The exact value of this temperature 

is 0.07283119526. 

2.4 Volumetric Heat Source at Interior Locations  

In this section, consideration is given to determination of temperature in a multi-

layer body in the presence of volumetric heat source. The boundary conditions on all 

surfaces are homogeneous. The effect of non-homogeneous boundary conditions is in 

the earlier sections. The governing Poisson’s equation in layer j is  

 
2

2

,
x

T
k

j
jx




2

2

,
y

T
k

j
jy



 0),,(

2

2

, 



 zyxg

z

T
k

j
jz  (2-24) 
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where ),,( zyxg j  describes the effect of a volumetric heat source in the layer j. The 

basic steps to acquire a solution are similar to those discussed earlier but with 

modifications presented below.  

It is possible to propose a solution of the form 

 NjzZyYxXCT npjmmn

pnm

j ,,2,1for)()()( ,

111

 












 (2-25) 

where the functions )(xX m , )(xX m , )(xX m  satisfy the differential equations 

 
2/  XX  (2-26a) 

 
2/  jj YY  (2-26b) 

 
2/  ZZ  (2-26c) 

In this application, it is possible to select  j  that remains the same in all 

layers. This makes the )(yY j  function have the same functional form as that in Eq. (2-

26c), except  j  for this application, unconditionally. This makes the )(yY j  function 

the same as that in an earlier section when all layers are isotropic. The functions )(xX  

and )(zZ  remain the same as those presented in an earlier section, see Eqs. (2-5a,b). 

Next, the substitution of jT  from Eq. (2-24) into Eq. (2-25) produces the relation 

 

),,()()()(

)(

,

2
,

2
,

2
,

111

zyxgzZyYxX

kkkC

jnpjm

jzpjymjxmnp

pnm














  (2-27) 

The coefficient mnpC  is obtainable after application of the classical orthogonality 

conditions,  
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dxdydz
kkk

zZyYxXzyxgk

NNN
C

jzpjymjx

nnppjmmjjy

c

z

b

y

N

j

a

x
nzpymx

mnp

j

)(

)()()(),,(

1

2
,

2
,

2
,

,,

0 0
1

0
,,,





    




 (2-28a) 

within 

 





jb

y
mnjmnjy

N

j

mny dyyYkN
0

2
,,1,

1

, )]([  (2-28b) 

while the other norms are obtainable using Eqs. (2-14b, c). 

In proceeding chapters the numerical examples of this type are illustrated. 
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Figure 2-2 The surface temperature at     for example 1 when 111  ca . 
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Chapter 3 

Analytical Thermal Solution in Multi-layer Stack Package with Non-uniform Power 

Distribution and Contact Resistance 

 

The use of one-dimensional orthogonal expansion for thermal conduction in composite 

media is described in [28]. A Sturm-Liouville procedure for solving transient heat 

conduction problems for composite and anisotropic domains is outlined in [29]. Various 

studies of transient conduction in multi-layer bodies are in [30-35]. This research work 

modifies the solution of steady-state conduction in two-layered bodies reported in [36] for 

electronic cooling applications. An iterative solution of temperature field in multi-layer 

bodies with different form factors is in [37, 38]. 

 In this chapter, the mathematical procedures focus on studying steady-state 

temperature solutions in a stack of multi-layered isotropic and orthotropic bodies with 

uniform rectangular profiles. An important feature that is included in the model is a non-

uniform power distribution. A stacked system is a body with many layers of different 

materials, as shown by the three layers in Fig. 3-1. The study primarily considers the 

exact series solution of a temperature field in a three multi-dimensional region. The 

mathematical formulation includes the contribution of thermal contact resistance at the 

interface between layers. This resistance vanishes in the presence of perfect thermal 

contact.  

3.1 Governing Steady State Equations 

The steady state equation selected for this study is the classical Poisson’s 

equation, which becomes the Laplace equation in the absence of a volumetric heat 

source. We consider the solution of the energy equation in a stack of N layers. Then the 

governing equation for the orthotropic layer j within this multi-layer stack is 
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2

2

,
x

T
k

j
jx




2

2

,
y

T
k

j
jy



 j

j
jz g

z

T
k 






2

2

,  = 0 in Region j (3-1) 

For
Nj ,,2,1 

 

where ),,( zyxTT jj   is the temperature in layer j and ),,( zyxgg jj   is the 

volumetric heat source. The solution for layer j using the method of separation of 

variables is 

 )()()(),,( zZyYxXzyxT jjjj  in plate j (3-2) 

for
Nj ,,2,1 

 

For the first case, we select the non-homogeneous boundary condition over an 

outer surface perpendicular to the y-axis at y = 0. Additionally, we modify the acquired 

solution when the non-homogeneous boundary condition is located over the surface at y 

= b. These two solutions apply to the systems when the released power is over an 

external surface. In the presence of released energy within interior locations, we use 

Poisson’s equation in a later section.  

3.2 Non-Homogeneous Boundary Conditions 

First, we select a specified non-homogeneous boundary condition over a surface 

normal to the y-axis at y = 0. An examination of the compatibility conditions between 

adjacent layers j and j+1leads to the required conditions of 1 jj XX  and .1 jj ZZ

Then, the substitution of jT  from Eq. (3-2) into Eq. (3-1) produces the relation 

 

j

j
jx

X

X
k



,
j

j
jy

Y

Y
k


 ,

j

j
jz

Z

Z
k


 ,  = 0 in Region j (3-3) 

for Nj ,,2,1   
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As stated earlier, the plates cannot have the boundary condition of the third kind 

in the x and z directions. Accordingly, the functions jX and jZ , as given in Eq. (3-2), 

must satisfy the following conditions: 

 
2

2211 ////  XXXXXXXX NN  (3-4a) 

and 

 
2

2211 ////  ZZZZZZZZ NN  (3-4b) 

where  and   are the eigenvalues and depend on the types of homogeneous boundary 

conditions in the x and z directions, respectively. Therefore, according to Eq. (3-4a) and 

Eq. (3-4b), for eigenvalues m and n , the solutions for the functions mX  and nZ  are 

 )sin()cos( 21 xDxDX mmm   (3-5a) 

and 

 )sin()cos( 21 zEzEZ nnn   (3-5b) 

The solutions are to remain the same for all layers.  

To obtain the functional form of )(yY j , we substitute

2// mmm XXXX   and 
2// nnn ZZZZ   into Eq. (3-3),which yields the 

relation 

 0/ 2
,,

2
,  njzjjjymjxk kYYk  (3-6) 

This relation becomes 

 
2

,
2

,

,2

,

,
mnjn

jy

jz
m

jy

jx

j

j

k

k

k

k

Y

Y



 (3-7) 
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For the steady-state conduction in isotropic layers, mnmnj  ,  is constant for 

all layers. With the homogeneous boundary condition located at bbz N  , the 

appropriate solution for the function jY , as given in [18], is  

 )](sinh[)](cosh[ ,,,,, ybBybAY jmnjmnjjmnjmnjmnj   (3-8) 

This produces the following temperature solutions: 

 


 NjzZxXybB

ybACT

nmjmnjmnj

jmnjmnjmn

nm

j

,,2,1for)()()](sinh[

)](cosh[

,,

,,

11



 






  (3-9) 

This solution form presented for jT eliminates the need for matrix inversions and 

leads to a relatively simple recursive method for finding the coefficients mnjA ,  and 

mnjB , .  

The next task is to develop a method for determining the coefficients mnjA , and 

mnjB , . The functional form of the temperature solution for layer j = N at its 

homogeneous boundary condition, which is located at bbz N  , is  

 


)()()](sinh[

)](cosh[

,,

,,

11

zZxXybB

ybACT

nmmnmn

mnmnmn

nm

N

NN

NN



 







 (3-10) 

Clearly, this relation leads to the values of 0, mnNA  and 1, mnNB  for the 

boundary condition of the first kind and 1, mnNA and 0, mnNB  for the boundary 

condition of the second kind. Additionally, the use of a homogeneous boundary condition 
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of the third kind leads to the relations mnNmnNNy hYyYk ,,, )/(  at by  . After 

arbitrarily setting 1, mnNA , it produces )/( ,, NyNmnN khB  . Once these two 

coefficients are determined, the coefficients mnjA ,  and mnjB ,  for the other layers 

become deterministic through recursive relations because these parameters are known 

for the neighboring layer of (j+1). Accordingly, the process begins by setting j+1 = N. The 

compatibility condition for heat flux is 

 
jj byjjybyjjy yTkyTk


 // 11,,  (3-11a) 

at the interface between layer j and layer j+1. After the substitution for temperature, it 

produces the coefficient mnjB ,  as 

 )cosh()sinh( 1,1,11,1,1
,,

1,,1
, 







 jmnjmnjjmnjmnj

jymnj

jymnj
mnj dBdA

k

k
B  

  (3-11b) 

where 1jd  is the thickness of layer j+1, as shown in Figure 3-1. The other compatibility 

condition 

 jbyjjbyjjy RTTyTk
jj

/)(/ 1, 
  (3-12a) 

provides the coefficient mnjA ,  as 

 
 )cosh()sinh(

)sinh()cosh(

1,11,,11,1,1

1,11,,11,1,1,








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dkRdAA
 (3-12b) 
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 Figure 3-1 Schematic of a multi-layer body. 

The parameter jR in Eq. (3-12a) is the contact resistance between layer j and 

layer j+1.The parameter assumes a value of zero if these two layers are in perfect 

contact. Then the process of determining the coefficients mnjA ,  and mnjB ,  begins. 

When j = N-1.Eq. (3-12b), the recursive relations produce the value of mnjA , , and Eq. (-

11b) produces the value of mnjB , in a descending order for all layers. Finally, the 

insertion of mnjA ,  and mnjB ,  into Eq. (3-9) provides the temperature solution jT .  

The remaining unknown in Eq. (3-9) is the coefficient mnC , which is determined 

from the non-homogeneous boundary condition at y = 0. As an illustration, for a boundary 

condition of the first kind, when ),(1 zxfT   at y = 0, Eq. (3-9) leads to the relation 

  )()()sinh()cosh(),( 1,1,11,1,1

11

zZxXbBbACzxf nmmnmnmnmnmn

nm

 








  

 (3-13) 

Then the orthogonality conditions in the x- and z-directions produce 
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NNdBdA

dxdzzZxXzxf

C
,,1,1,11,1,1

00

)sinh()cosh(

)()(),(





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 (3-14a) 

where 

 dxxXN m

a

x

mx
2

0

, )]([


  (3-14b) 

and 

 dxxZN n

c

z

nz
2

0

, )]([


  (3-14c) 

In some applications, modifications become necessary when 011  . For 

this condition, 011,1,1  mn , and a modified functional form of jY becomes 

 )]/1([ 00,00,00 byBACT NNN   (3-15) 

As before, 000, NA  and 100, NB  for the boundary condition of the first kind, 

100, NA  and 0, mnNB  for the boundary condition of the second kind, and 

1, mnNA  and NyN khbB ,00, /  for the boundary condition of the third kind.  

Minor modifications are needed when the homogeneous boundary condition is 

located at y = 0 while the non-homogeneous boundary condition is located at by  . For 

this case, Eq. (3-9) takes the form  
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 (3-16) 
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and the homogeneous boundary condition at 00  by  produces the functional form of 

temperature for layer 1 as  

  )()()sinh()cosh( ,1,1,1,1

11

1 zZxXyByACT nmmnmnmnmnmn

nm

 








 (3-17) 

because 00 b . In this case, the values of coefficients mnjA ,  and mnjB , can be 

obtained in ascending order from the modified forms of Eq. (3-11b) and Eq. (3-12b) as 

 )cosh()sinh( ,,,,
1,,1

,,
,1 jmnjmnjjmnjmnj

jymnj

jymnj
mnj dBdA

k

k
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
  (3-18a) 

and 

 
 )cosh()sinh(

)sinh()cosh(

,,,,,

,,,,,,1

jmnjjyjmnjjmnjmnj

jmnjjyjmnjjmnjmnjmnj

dkRdB

dkRdAA


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 (3-18b) 

Once the coefficients mnjA ,  and mnjB ,  for layer N are known, the coefficient 

mnC  can be determined from the non-homogeneous boundary condition at y = b. As an 

illustration, for a boundary condition of the first kind, ),(),,(1 zxfzbxT   at y = b. Then 

the coefficient mnC  becomes 

  nmNmnNmnNNmnNmnN

nm

a

x

c

z
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NNdBdA

dxdzzZxXzxf

C
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)()(),(
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



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 (3-19) 

and can be inserted into Eq. (3-16). 

3.3 Volumetric Heat Source at Interior Locations  

In this section, we consider the determination of temperature in a multi-layer 

body in the presence of a volumetric heat source. The boundary conditions on all 
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surfaces are homogeneous. Earlier sections described the effects of non-homogeneous 

boundary conditions. The governing Poisson’s equation in the homogeneous layer j is  

 

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







2

2

x

T
k

j
j 2

2

y

T j




 0),,(

2

2












 zyxg

z

T j
 (3-20) 

where ),,( zyxg j  describes the effect of a volumetric heat source in layer j. The basic 

steps to acquiring a solution are similar to those discussed earlier but contain the 

modifications presented below.  

We can propose a solution of the form 

 NjzZyYxXCT npjmmn

pnm

j ,,2,1for)()()( ,

111

 



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





 (3-21) 

where the functions )(xX m , )(, xY pj , and )(xZn  satisfy the differential equations 

 
2/  XX  (3-22a) 

 
2/  jj YY  (3-22b) 

 
2/  ZZ  (3-22c) 

The functions )(xX  and )(zZ  remain the same as those in Eq. (3-5a) and Eq. 

(3-5b). However, in this application,  j , and it remains the same in all layers. This 

causes the function )(yY j  to have the functional form  

 )](sin[)](cos[)( 1,,1,,   jpjpjjpmnjpj byBbyAyY  (3-23) 

The coefficients mnjA ,  and mnjB , can be obtained from the recursive relations  
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and 

 

 
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,,,
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These two relations satisfy the compatibility conditions given in Eq. (3-12a) and 

Eq. (3-11a), respectively. 

Next, the substitution of jT  from Eq. (3-21) into Eq. (3-20) produces the relation 
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  (3-25) 

The coefficient mnpC can be derived by applying classical orthogonality 

conditions. The orthogonality conditions for the x-direction and z-direction are described 

in Eq. (3-14b) and Eq. (3-14c). The orthogonality condition for the y-direction is in 

Appendix A. These orthogonality conditions yield the coefficient mnpC for insertion into 

Eq. (3-21); that is, 

 

dxdydz
zZyYxXzyxg

NNN
C

pm

nnppjmmj

c

z

b

y

N

j

a

x
nzpymx

mnp

j

)(

)()()(),,(

1

222

,

0 0
1

0
,,,





    




 (3-26a) 

where 
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




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y
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N

j
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2
,,1,

1
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The other norms can be obtained using Eq. (3-14b) and Eq.(3-14c). 

Numerical Examples and Discussions 
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Numerical examples are selected to illustrate the application of this methodology 

to select situations in electronic cooling applications.  

Example 1. This example is selected to illustrate the numerical procedures that 

would directly produce the Fourier coefficients through recursive relations. It shows the 

accuracy of this series solution for selected eigenvalues of reasonable size, as described 

in [39, 40]. For this example, we select a five-layer body similar to the three-layer body 

depicted in Figure 3-1. In this body, a = 10 mm, b1 = 0.625 mm, b2 = 0.650 mm, b3 = 

1.275 mm, b4 = 1.3 mm, b5 = 1.925 mm, and c = 10mm. The selected thermal 

conductivities arek1 = 100 W/mK, k2 = 4 W/mK, k3 = 100 W/mK, k4 = 4 W/mK, and k5 = 

100 W/mK. The layers have a convective surface at y = b5 with h = 10,000 W/m
2
K, while 

all other surfaces are insulated. To simplify this presentation, we hypothesize that there 

are two volumetric heat sources: the first one in layer 1 with g1 = 2.5610
8 
W/m

3
 and the 

second one in layer 5 with g5 = 5.7610
8 
W/m

3
. Furthermore, the contact resistance 

within a unit area between layers in one-dimensional space is 
6105 jR  m

2
K/W for 

j = 1 to 4. 

Using the procedures described earlier, we compute the temperature when the 

energy released in layers 1 and 5 are within x = 0 to a/2 and z = 0 to c/2 while y = 0 to b1 

in layer 1 and y = b4 to b5 in layer 5 as shown in Figure 3-2(a). We calculate the 

temperature using five eigenvalues in the x- and z-directions while selecting twenty 

eigenvalues for the y-direction. The acquired temperature values for 

 TzxTzx ),0,(),0,( 11  are plotted in Figure 3-2(b). Additionally, the temperature 

variation TcyaT j )2/,,2/(  is plotted in Figure 3-3. To verify the accuracy of these 

data, we provide a sample for temperature )2/,,2/( cyaT j  at different y locations in 
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Table 3-1 At these locations, it is possible to produce an exact solution. The 

superposition method indicates that these values can also be derived from a one-

dimensional exact solution divided by four. Designating this auxiliary temperature as 


  TyTy jj )()(  , a one-dimensional steady-state solution clearly shows that  
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Volumetric generation 

(a) 

           

 x 

 z 

   1(x,0, z) 

 

(b) 

Figure 3-2 (a) The five-layer 3D stack, and (b) the surface temperature  
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 TzxTzx ),0,(),0,( 11  
as a function of x and z 

 

Figure 3-3 The computed temperature  TcaTca jj )2/,0,2/()2/,0,2/(  for a 

five-layer body in Example 1 and a comparison with 4/)2/,0,2/( caj
 . 

Table 3-1 A comparison of 
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J = 1 0 15.2063 15.2063 
 b1 15.0813 15.0813 

J = 2 b1 14.8813 14.8813 
 b2 14.6313 14.6313 

J = 3 b2 14.4313 14.4313 
 b3 14.1813 14.1813 

J = 4 b3 13.9814 13.9813 
 b4 13.7314 13.7313 

J = 5 b4 13.5312 13.5313 
 b5 13.0 13.0 
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Applying the classical resistant networks produces the following temperature 

values 
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We compute these temperatures at specified locations, and we present the 

values of 4/)(yj
 in Table 3-1 to compare them with the series solutions and selected 

data for 4/)(yj
  values are plotted in Figure 3-3 using circular symbols. The data 

show that a series solution of reasonable size would produce sufficiently accurate results. 

Numerical Example 2. For this example, we consider a 3D package that consists 

of five layers (N = 5). The lateral dimensions are           and             This 

device could be considered a 3D stack package of low density that consists of three 

layers of silicon joined by two layers of thermal interface material (TIM). The silicon layers 

1, 3, and 5 have the same thickness (that is,                            See Figure 

3-4(a). 
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(a) 

 

(b) 

Figure 3-4 (a) The five-layer 3D stack, and (b) the wattage of each volumetric source 

The TIM layers 2 and 4 have a thickness of                      The TIM 

layers have a thermal conductivity of                      whereas the silicon layers 
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have a thermal conductivity of                             The top surface of the 

stack package is exposed to the boundary condition of the third kind, where    

             . Ten functional blocks exist at each layer, and each one dissipates 

differently. However, every layer has the same configuration with respect to volumetric 

heat generation (in this case, the functional blocks). The wattage of each volumetric 

source is depicted in Figure 3-4(b). The ambient temperature is       . We use the 

procedure described in Section 3.2 to acquire analytical solutions and the commercially 

available software ANSYS as a comparison tool to determine the temperature field for the 

given configuration. 

Solution/Discussion for Example 1: 

We perform a steady-state thermal analysis to determine the thermal response 

under applied steady-state loads. In this analysis, temperature and heat flow rates are 

usually the items of interest, although heat flux can be reported as well in ANSYS 

Workbench. 

The general governing thermal equation is as follows: 

         ̇                        

Where t is time and     is the temperature.     is the specific heat (thermal 

capacitance) matrix,     is the conductivity matrix, and     is the heat flow rate vector. 

In steady-state analysis, all time-dependent terms vanish. However, this does not 

mean that non-linearities are ignored. 

For steady-state thermal analysis in ANSYS, the temperature matrix {T} is solved 

without time dependent terms, as shown below; 

[K(T)].{T} = {Q(T)} 
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The thermal conductivity matrix [K] can be constant or temperature-dependent. In 

this case, we have a constant conductivity matrix. Similarly, {Q} can be constant or time-

dependent. 

For a steady-state solution, the coefficient of heat transfer (h) can be input as the 

convective boundary conditions. Fourier’s Law provides the basis for the latter equation. 

That is, heat flows in the solid in the basis of the [K] matrix. Heat flow, heat flux, and 

convection are treated as the boundary conditions on the system {Q}. Note that if we 

need to solve conjugate heat transfer, we should use ANSYS CFD because ANSYS 

Workbench is not capable of solving conjugate problems. 

In our example, we use the data provided as an input. We model the package in 

Pro/E and import it to ANSYS Workbench for thermal analysis. We mesh the model as 

shown in Figure 3-5(a). The resulting temperature contour and total heat flux are shown 

in Figure 3-5(b) and Figure 3-6, respectively. Figure 3-7 shows the analytical temperature 

distribution in the first layer obtained from Mathematica. Figure 3-8 compares the 

analytically and numerically derived temperature solutions for some randomly selected 

points from each layer.  
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(a) 

 

(b) 

Figure 3-5 (a) The mesh of the model, and (b) the temperature contours. 
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Figure 3-6 The total heat flux of the package. 

 

Figure 3-7 The analytically obtained temperature profile for the first layer. 



39 

 

Figure 3-8 Comparison of the numerically and analytically derived temperature solutions. 

Numerical Example 3. In this example, we consider a five-layer stack of silicon 

material, as shown in Figure 3-9. Each layer consists of four functional units. Each unit 

dissipates differently, as depicted in Figure 3-10. The overall dimensions of the stack 

package area              and                                      The 

contact resistance between each layer is emphasized (that is,                    

            The thermal conductivity of each layer is                         

            The top surface of the stack experiences a convection value of    

             , while the four sides of the stack are assumed to be insulated. 
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Figure 3-9 A five-layer stack of silicon material 

Four different functional blocks 

 

Figure 3-10 The four functional units in each layer. 

We apply the procedures described in Section 3.1 to this problem by using Eq. 

(3-24a) and Eq. (3-24b).We also use these procedures to determine the temperature 

field.  

Discussion of Example 3: 

In this example, we use the same procedure used in Example 1.However, we 

also consider the effect of thermal contact resistance in this example. In ANSYS, a 
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professional license user may define a finite thermal contact conductance (   ). When 

two surfaces touch each other, ANSYS will assume perfect thermal contact conductance 

between the joined members unless the user changes the contact settings for the 

problem. The contact region is composed of “Contact” faces on one side and “Target” 

faces on the other side. Heat flow is only allowed between the contact and target 

elements in the contact normal direction. In other words, heat can only flow if the target 

elements are present in the normal direction. Heat spreading between the contact and 

target surfaces takes place because of Fourier’s Law, and ANSYS will use the following 

equation to determine the heat flow between the contact elements 

                          

where         and          are the temperatures of the target and contact nodes, 

respectively. 

In our example, we import the Pro/E model to ANSYS Workbench for steady-

state thermal analysis. After successfully inputting the boundary conditions and heat flow 

rate of each section of the layers, we apply the     values at specified locations (that is, 

between each layer). Note that thermal contact conductance is the inverse of the contact 

resistance per given area. 

The results are shown for the temperature contour and the heat flux in Figure 3-

11 and Figure 3-12, respectively. Figure 3-13 shows the comparison between the 

analytical and numerical results for the selected points along the y-axis through the 

center of the package. Figure 3-14 depicts the temperature profile obtained analytically 

for the first layer, where the maximum temperature occurs. 
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Figure 3-11 The temperature contours of the stack package. 

 

Figure 3-12 The total heat flux of the package. 
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Figure 3-13 The comparison between the analytically and numerically derived results. 
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Figure 3-14 The analytically obtained temperature profile for the first layer. 

3.4 Conclusion 

The reported analytical solution covers a wide range of applications in electronic 

cooling especially in the first level packaging. The analytically derived temperature field 

can provide an accurate solution for the purpose of verifying a numerically acquired 

solution. In the second example, without the presence of any contact resistance, the 

numerical and analytical solutions were well matched (see Figure 3-8). The maximum 

temperature obtained from ANSYS in Figure 3-5(b) is 134.93⁰C, and the one from the 

analytical solution in Figure 3-7 is 134.89⁰C.  

In the third example, which involves thermal contact resistance, the numerical 

and analytical solutions are in good agreement. The small deviation is expected because 

the finite element is an approximation, not an exact solution. The maximum temperature 

obtained analytically in Figure 3-14 is 90.7⁰C; while the maximum obtained from ANSYS, 

shown in Figure 3-11, is approximately 90.43⁰C. Both approaches show that the 

minimum temperature is 72⁰C. In the first example, the analytical solution matched with 

the exact solution and verified the high accuracy of the analytical method developed in 

this presentation. Moreover, the analytical solutions converge with an order of magnitude 

faster than the computational approach.  
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Chapter 4 

Determination of Steady State Temperature in a Two-layer Body with Different Form 

Factors 

 
The determination of temperature in multi-layer bodies has been the subject of 

numerous studies and analytical solutions are well established [41-44]. A multi-layer body 

consists of plates having different thicknesses but with uniform platform areas. Also, the 

rectangular plates of different platform areas can be attached to each other in many 

engineering applications. These systems appear in different engineering applications 

such as in electronic cooling devices and they often do not accept closed-form analytical 

solutions. Information related to the use of layered materials in electronic cooling 

applications is in [45-49]. The study of related spread resistant is available in the 

literature and related information is in [50-53]. 

The mathematical procedure for the system under investigation also leads 

toward an integral equation to be solved by an inverse technique [54], which may have 

an analytical solution for special cases. The function specification method has often been 

used to solve heat conduction problems and the related methodologies are in [55-57]. 

Other estimation techniques are available in the literature; e.g., using a surface element 

technique [58], an iterative procedure [59], etc. 

This presents a function-specification procedure that leads to a closed-form 

solution. In this study, we examine two parallel rectangular plates with different platform 

areas attached to each other, as shown in Figure 4-1(a). The system depicted in Figure 

4-1(a) consists of two plates, one with thickness b and the other with thickness d. Plate 1 

receives locally variable heat flux input at y=b while plate 2 serves as a heat spreader 

which rejects the energy received at d  to the environment from the surface located 
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at 0 . Analytically obtained closed-form series solutions are presented for these two 

plates in contact. These solutions exhibit special convergence behaviors, as discussed in 

this presentation. The two analytical solutions are: one for Layer 1 and the other for Layer 

2. These two solutions accept the imposed compatibility conditions at the contact surface 

where y=0. The two solutions, for Layers 1 and 2, are acquired analytically by functionally 

specifying the heat flux leaving Layer 1 at y=0 and entering Layer 2 at d . 

4.1 Mathematical Relations 

This is to study the behavior of a temperature field within a two-layer body when 

each layer has a different size. The schematic of the region and the coordinate systems 

is in Figure 4-1(a). The governing equations for steady state conduction must satisfy the 

Laplace equation  
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  (4-1) 

with j=1 in region 1 and j=2 in region 2. This system has insulated boundaries in x- and z-

directions. The subsequent mathematical presentations include solutions for two- and 

three-dimensional temperature fields.  
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Figure 4-1 Schematic of two-layer bodies: (a) in three-dimensional apace with 

coordinates ),,( zyx  and ),,(  , (b) in two-dimensional space with coordinates ),( yx  

and ),(  .  

Next, the temperature solutions for Layer 1 and for Layer 2 are in separate 

sections. As stated earlier, these two solutions must satisfy the imposed boundary 

conditions and the compatibility conditions between the two layers.  
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4.2 Temperature Solution in Layer 1  

The temperature in Layer 1, designated as ),(1 yxT , must satisfy the Laplace 

equation 
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  (4-2) 

with boundary conditions:  

(BC 1, 2) 0),,(),,0( 111  zyaqzyq  

(BC 3, 4) 0),,()0,,( 211  ayxqyxq  

(BC 5) ),0,(),0,(),( 110 zxRqzxTzxT   

(BC 6) ),(),,(1 zxqzbxq w  

where the interface temperature, ),0,(),( 20 zxTzxT   is the unknown surface 

temperature. The parameter R in (BC 5) accounts for the effect of thermal contact 

resistant between these two layers. This problem has two non-homogeneous boundary 

conditions; therefore, it is to be decomposed into two problems 

),,(),,(),,(1 zyxTzyxTzyxT ba   each having five homogeneous boundary 

conditions and a single non-homogeneous boundary condition. The first problem requires 

the solution of equation  
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  (4-3) 

with boundary conditions: 

(BC 1, 2) 0),,(),,0( 1  zyaqzyq aa  

(BC 3, 4) 0),,()0,,( 2  ayxqyxq aa  
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(BC 5) ),0,(),0,( zxRqzxT aa   

(BC 6) ),(),,( zxqzbxq wa   

This is a classical steady-state problem [60] and a solution that satisfies the 

differential equation and the homogeneous boundary conditions (BC 1-4), and (BC 6) is  
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where nm ,0  is the Kronecker delta indicating 1,0  xm  when 0 nm  while 

0,0  xm  when 0 nm . Then, the use of non-homogeneous boundary condition 

(BC 6), followed by the application of orthogonality condition, would produces the relation 
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where 
2/12

2
2

1 ])/()/[( anammn  . After determination of temperature field, the 

heat flux at y=0 surface is obtainable from the relation 
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with 
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when m=0 and n=0, while  
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when 0m  or 0n . These coefficients have known quantities since )(xqw  is the 

prescribed heat flux distribution over y=b surface. 

The second problem is to solve for ),,( zyxTb , which also satisfies the Laplace 

equation 
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with boundary conditions: 

(BC 1, 2) 0),,(),,0( 1  zyaqzyq bb  

(BC 3, 4) 0),,()0,,( 2  ayxqyxq bb  

(BC 5) ),0,(),0,(),(0 zxRqzxTzxT bb   

(BC 6) 0),,( zbxqb  

where the interface temperature, ),(0 zxT , is the unknown surface condition, to be 

determined from the forthcoming ),,(2 T  solution for inclusion into the compatibility 

condition (BC 5) at y=0. The separation of variables technique, using the homogeneous 

boundary conditions, provides the relation 
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Once ),(0 zxT  is specified, the non-homogeneous boundary condition (BC 5) 

produces the temperature solution ),,( zyxTb  as, 
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and then the heat flux at y=0 surface becomes 
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wherein 
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while 000 B . Then, the specified heat flux over 0y  surface, denoted as being the 

primary unknown within the relation ),0,(),( 10 zxqzxq  , leads to the relation 

),0,(),0,(),(0 zxqzxqzxq ba  . It is to be noted that ),0,( zxqb  is deterministic 

once the function ),(0 zxT  is known. Therefore, one needs to produce the temperature 
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solution ),,(2 T  in Layer 2 and then the temperature solution ),,(2 T  in Layer 2 

would yield the function ),(0 zxT .  

4.3 Temperature Solution in Layer 2  

For convenience of this presentation, a new set of coordinates is selected using 

xx  , dy   and xz  , as shown in Figure 4-1(a). The temperature 

solution in the second layer also satisfies the Laplace equation 
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where ),,(22  TT  must satisfy the boundary conditions 

(BC 1, 2) 0),,(),,0( 122  cqq  

(BC 3, 4) 0),,()0,,( 222  cqq  

(BC 5) ),0,()/(/),,( 2202 
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TkhT  

(BC 6) ),,(/),,( 222 


dqTk
d

, in which 

),(),,( 2102  qdq .  

The heat flux ),,(2  dq  has a finite value within the contact area; otherwise, it 

has a zero value. Similar problems with partial heating have received consideration in 

transient heat conduction applications [61]. The solution begins by using the classical 

separation technique using the homogeneous boundary conditions (BC 1-5).  
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The application of the non-homogeneous boundary condition (BC 6) results in a 

closed form temperature solution as  
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Then, the temperature over the contact surface becomes  
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4.3 Function Specification Method 

Numerous investigators have used the function specification method in the past. 

This procedure leads to a methodology for direct determination of ),(0 zxq  and 

),(0 zxT  for this application. The following formulations are devoted to determination of 

the heat flux ),(0 zxq  over the contact area. The relation 

),0,(),0,(),(0 zxqzxqzxq ba   suggests having a specified functional form for 

),(0 zxq ; that is 
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wherein mnA  coefficients are the unknowns to be determined. Using Eq. (4-5a), the 

function ),0,( zxqa  has a deterministic form  
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since the coefficients, mnD , have known values, as given by Equations (4-5b) and (4-5c) 

respectively. Furthermore, Equations (4-8a) and (4-8b) describe the functional form of 

),0,( zxqb . Therefore, it can be stated that ),0,(),0,(),(0 zxqzxqzxq ba   and, 

after substitution of their functional forms, one obtains: 
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  (4-14a) 

Then, according to the orthogonality condition, this equation requires to have 

 mnmnmn DBA  .  (4-14b) 

Physically, the integration of ),0,( zxqb , as given by Eq. (4-8a), over the contact 

area  
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 (4-14c) 

represents the total heat flux that must be equal to zero since all other surfaces are 

insulated and there is no volumetric heat source. Therefore, the coefficient 000 B  and 

this makes 0000 DA   and 00A  has a known value, as given by Eq. (4-5b).  

These relations suggest that the determination of the unknown coefficients mnA  

require the solution of N simultaneous equations. First, consideration is given to a two-

dimensional system, depicted in Figure 4-1(b), and a numerical example. Then, the 

solution for three-dimensional problems is applied to a numerical example.  
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4.4 Two-Dimensional Systems 

Consider a two-dimensional case wherein 1aa  , 1cc  , 1 , 22 ca  , and 

02  . Next, after needed simplification, the parameter mD  has known values and 

each mB  depends on all mA  parameters, which produces N equations for N unknowns; 

where, N is an arbitrarily selected number of eigenvalues for a desired accuracy. 

Accordingly, one can select a modified form of Eq. (8b) in two-dimensional space to get 
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wherein the function )(0 xT , as given by Eq. (4-11), takes the following form 
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where 
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After substitution for )(0 xq , as given by Eq. (4-12) in Eq. (4-16a), the function 

)(0 xT  takes the form 
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Now, one can define a new parameter njP  as  
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where the integral in this equation takes the forms 
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Otherwise, 
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This equation describes three separate solutions. Therefore, modified and 

simpler forms of this equation are needed when 0 jn  and when ajcn //  . This 

leads to the temperature solution at the contact surface as 
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and then the coefficient mB  as given in Eq (4-15) becomes 
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wherein the function mnH  is determined and it becomes 
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Otherwise, 
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Similar to Eq. (4-18a,b), the form of this equation is modified when 0 nm  

and when amcn //  . Accordingly, the form of constants mB , as given by Eq. (4-20), 

reduces to take the following form 

 jmj

j
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 (4-22a) 

where, 



59 

 mnnjn

n

mj HP
a

bm

ka

mk








 
 



02
2

1 tanh
4

 (4-22b) 

and it is analytically deterministic for N unknown coefficients. Additionally, the reduced 

form of Eq. (4-5c) yields the coefficient mD  for this application as 
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As stated earlier 00 DA   and it has a known value. Then, selecting a finite 

number of terms, N, the coefficients jA  for this two-dimensional case are needed to get 

the surface heat flux )(0 xq  as, 
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Next, Eq. (4-14b) for this two-dimensional case takes the form 
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and after setting 00 DA  , it becomes 
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As a test case, when N=4, this equation for m=1, 2, 3, and 4 leads to four 

equations with four unknowns, 
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In this illustration, these equations for determination of mA  coefficients have a 

matrix form,  
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The above equation takes the abbreviated form 

 ([I][B])[A]=[D]+ 0D [B0]  (4-27) 

where [I] is the identity matrix. Following a matrix inversion, a vector representing the 

unknown coefficients becomes 

 [A]=([I][B])1([D]+ 0D [B0])  (4-28) 

Once the vector [A] is known, the heat flux and then temperature values become 

deterministic. The value of )(0 xq  is readily available by using Eq. (4-12) while the value 

of )(0 xT  is obtainable from Eq. (19). Then, Eq. (7b) provides the temperature ),( yxTb  

for the computation of ),(),(),(1 yxTyxTyxT ba   and Eq. (4-10) yield the temperature 

),(2 T  in Layer 2, by using  
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Further details related to the method of determination of vector [A] are included in 

the following numerical example. Also, the data exhibit the convergence behaviors of 

),(1 yxT  and ),(2 T  functions.  

Numerical example 1. Consideration is given to a two-layer body with different 

form factors place so that 2/)( ac  . Having b as the characteristic length, the other 

dimension of Layer 1 is ba 2 . The heat flux wq  is considered to be a constant 

between x=a/4 to a/2 and between x=3a/4 to a. The second layer, as depicted in Figure 

4-1(a), has dimensions bc 5  and, bd  ; this makes 2/32/)( bac  . By 

assuming 1k  to have an arbitrarily selected value, the other properties are being selected 

so that 12 4kk   and the Biot number is 20/ 2  khcBi . This will permit the 

examination of this numerical procedure and the accuracy of temperature values.  

Solution. First, Equation (4-28) provides the coefficients nA  for insertion in Eq. 

(4-12) in order to determine the specified heat flux, )(0 xq . A sample of computed heat 

flux, wqxq /)(0 , values is in Table 4-1 and a plot is in Figure 4-2. Also, the heat flux 

contribution )0,(xqb  is plotted in the same figure and shows similar convergence. The 

acquired heat flux data for       and      , plotted in Figure 4-2, clearly show the 

behaviors of these wqxq /)(0  and wb qxq /)0,(  functions. Although the data agree well 

graphically, their deviations are relatively large near     and    . This is 

demonstrated in Figure 4-3 that contains the differences within the computed values. The 

wqxq /)(0  data when       are subtracted from those for       and the difference 

is plotted as a solid line in Figure 4-3. The process is repeated subtracting data for 

      and they are also subtracted from those for      ; the results are plotted as a 
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dot-dash line in Figure 4-3. These plotted data clearly show that the error in surface heat 

flux is of the order of     and it reduces as N increases. Furthermore, Figure 4-3 clearly 

shows relatively larger deviations near     and    .  

Table 4-1 Computed specified function wqxq /)(0  along the contact surface at y=0. 

   wqxq /)(0    

x/b N=20 N=50 N=100 N=200 N=500 

0.0 -0.58636 -0.67738 -0.76256 -0.86345 -1.02422 

0.1 -0.45023 -0.44204 -0.44838 -0.44719 -0.44410 

0.2 -0.41035 -0.42336 -0.42402 -0.42207 -0.42069 

0.3 -0.40362 -0.40688 -0.41590 -0.41710 -0.41519 

0.4 -0.42430 -0.42369 -0.42146 -0.42016 -0.41925 

0.5 -0.42735 -0.42503 -0.42573 -0.42734 -0.42568 

0.6 -0.44030 -0.43500 -0.43767 -0.43657 -0.43581 

0.7 -0.43677 -0.44224 -0.44478 -0.44654 -0.44496 

0.8 -0.45541 -0.45932 -0.45755 -0.45652 -0.45581 

0.9 -0.46182 -0.46311 -0.46451 -0.46631 -0.46476 

1.0 -0.48324 -0.47429 -0.47712 -0.47610 -0.47539 

1.1 -0.48235 -0.48367 -0.48458 -0.48635 -0.48479 

1.2 -0.49626 -0.50052 -0.49865 -0.49758 -0.49684 

1.3 -0.49943 -0.50473 -0.50851 -0.51018 -0.50856 

1.4 -0.52768 -0.52307 -0.52551 -0.52430 -0.52346 

1.5 -0.54119 -0.53759 -0.53845 -0.53989 -0.53813 

1.6 -0.56149 -0.56108 -0.55846 -0.55694 -0.55588 

1.7 -0.55977 -0.56252 -0.57518 -0.57602 -0.5739 

1.8 -0.58299 -0.60294 -0.60250 -0.60004 -0.5983 

1.9 -0.64900 -0.63517 -0.64532 -0.64282 -0.63901 

2.0 -0.82659 -0.94851 -1.06315 -1.19950 -1.41767 
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Figure 4-2 The computed specified function )(0 xq  using 200, and 500 eigenvalues. 

 
Figure 4-3 The computed deviation as the number of eigenvalues changes. 
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data are extremely well behaved. A sample of acquired data is tabulated for different N 

values in Table 4-2. They clearly show that small differences, of the order of 
2/1 N . 

Figure 4-5 shows the computed dimensionless temperature along y=b surface. As in the 

previous case, these plotted data are well behaved and a sample of acquired data is in 

Table 4-3. These data also clearly show that their deviations reduce as N increases and it 

is of the order of 
2/1 N . 

 
Figure 4-4 The dimensionless temperature along the contacting surfaces. 
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Table 4-2 Computed values of )/(),(
1 2 b

w
qdTk   by different number of terms in series.  

   )/(),(
1 2 b

w
qdTk     

/b N=20 N=50 N=100 N=200 N=500 

0.0 0.016724 0.016371 0.016446 0.016433 0.016429 

0.2 0.016723 0.016909 0.016985 0.016972 0.016968 

0.4 0.018782 0.018565 0.018645 0.018631 0.018626 

0.6 0.021565 0.021472 0.021559 0.021544 0.021539 

0.8 0.025749 0.025884 0.025984 0.025967 0.025961 

1.0 0.032837 0.032253 0.032379 0.032357 0.032349 

1.2 0.040837 0.041449 0.041635 0.041602 0.041590 

1.4 0.057640 0.055780 0.056186 0.056106 0.056077 

1.6 0.080519 0.081871 0.081443 0.081525 0.081553 

1.8 0.094779 0.094373 0.094217 0.094247 0.094256 

2.0 0.102977 0.103570 0.103475 0.103494 0.103500 

2.2 0.110863 0.110671 0.110598 0.110614 0.110618 

2.4 0.115619 0.115826 0.115760 0.115774 0.115779 

2.6 0.118780 0.119019 0.118949 0.118964 0.118969 

2.8 0.120336 0.120101 0.120016 0.120034 0.120039 

3.0 0.117805 0.118537 0.118416 0.118440 0.118448 

3.2 0.113623 0.113080 0.112871 0.112910 0.112923 

3.4 0.098965 0.100854 0.100263 0.100376 0.100415 

3.6 0.069896 0.067244 0.067830 0.067716 0.067674 

3.8 0.048582 0.049482 0.049753 0.049705 0.049689 

4.0 0.039238 0.038337 0.038522 0.038490 0.038479 

4.2 0.030459 0.030697 0.030845 0.030819 0.030811 

4.4 0.025598 0.025432 0.025560 0.025538 0.025531 

4.6 0.022294 0.021973 0.022091 0.022070 0.022064 

4.8 0.019714 0.020006 0.020118 0.020099 0.020092 

5.0 0.019918 0.019367 0.019477 0.019458 0.019452 
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Figure 4-5 The dimensionless temperature over the heated surface of the first layer. 

  

0.0 0.5 1.0 1.5 2.0

x / b 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N = 500

N = 200

N = 100

bq

bxTk

w

),(11



67 

Table 4-3 Computed temperature at the heated locations where y=b. 

   
)/()(

1 1 b
w

qxTk  
  

x/b N=20 N=50 N=100 N=200 N=500 

0.0 0.37506 0.37719 0.37704 0.37713 0.37712 

0.1 0.38347 0.38168 0.38174 0.38167 0.38168 

0.2 0.39351 0.39568 0.39571 0.39581 0.39581 

0.3 0.42379 0.42119 0.42148 0.42139 0.42139 

0.4 0.45974 0.46355 0.46318 0.46339 0.46336 

0.5 0.54937 0.5482 0.54834 0.54830 0.54831 

0.6 0.63185 0.63069 0.63103 0.63092 0.63097 

0.7 0.66566 0.66600 0.66566 0.66564 0.66567 

0.8 0.67624 0.67758 0.67728 0.67731 0.67733 

0.9 0.66834 0.66595 0.66643 0.66628 0.66633 

1.0 0.60840 0.60851 0.60852 0.60853 0.60853 

1.1 0.54836 0.55096 0.55051 0.55066 0.55063 

1.2 0.54015 0.53902 0.53935 0.53933 0.53932 

1.3 0.55022 0.55011 0.55048 0.55051 0.55049 

1.4 0.58340 0.58479 0.58449 0.58460 0.58457 

1.5 0.66516 0.66658 0.66647 0.66653 0.66653 

1.6 0.75406 0.75051 0.75092 0.75072 0.75076 

1.7 0.78934 0.79222 0.79196 0.79206 0.79208 

1.8 0.81907 0.81719 0.81720 0.81711 0.81713 

1.9 0.82876 0.83084 0.83083 0.83090 0.83092 

2.0 0.83705 0.83522 0.83541 0.83533 0.83535 

 
Numerical example 2. In this example, consideration is given to a similar two-

layer body as in the previous example, having aaa  21  and ccc  21 . However, 

the form factors are rectangular in shape and temperature has a three-dimensional 

solution. To acquire a three-dimensional condition, the heat sources are located as given 

in Example 1 except for the z-direction. Accordingly, the heating sites are extended from 

az  0  to become within 8/az   to 8/7az  . Furthermore, a contact resistance 

R=2b/k1 is added to the interface condition.  
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Solution. As in the 2-D case, the insertion of ),(0 zxT  from Eq. (4-19) into Eq. 

(4-8a,b) provides N equations for N unknowns. The selected parameters are the same as 

those in Example 1 except the applied heat flux makes the temperature solution a 3-D 

problem. Using 100 eigenvalues for each direction, the size of matrix becomes very 

large. For this reason this example is used to test the acquisition of mnA  coefficients by 

an iterative technique, as presented in [4-19]. The test was successful and it provided a 

rapid solution. It begins by setting 0mnB  and using the relation mnmnnm DBA   

to calculate mnA . Next, using Eq. (4-11) and Eq. (4-8b) provides a new set of mnB  for 

insertion in the relation mnmnnm DBA   for a new set of mnA  values. Table 4-4 

shows the first 15 mnA  coefficients from a relatively large number of computed values, 

when the indices m and n change between 0 and 50. Only three to five iterations can 

produce satisfactory solutions while seven and 10 iterations show accurate results. As an 

illustration, the computed temperature data are plotted in Figure 4-6. To show the 

accuracy of the acquired data, the temperature values along a line going from the point 

(       ) to the point (       ) are presented in Table 4-5. The computed data show 

very rapid convergence and only a few iteration produces highly accurate results. The 

last column in Table 4-5 contains numerically acquired data using ANSYS. The 

temperature data obtained numerically are in excellent agreement with those computed 

analytically, in column 6 of Table 4-5. Two contour plots of the temperature data are 

depicted in Figure 4-7(a,b) while the corresponding heat flux data are graphically 

presented in Figure 4-8. 
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Table 4-4 Computed Amn coefficients of heat flux ),(0 zxq  by an iterative technique. 

     Amn   

m n Dmn 1 Iteration 3 Iterations 5 Iterations 7 Iterations 10 Iterations 

0 0 -0.375 -0.375 -0.375 -0.375 -0.375 -0.375 

1 0 0.0203074 0.0197024 0.0196291 0.0196283 0.0196283 0.0196283 

2 0 0 -0.0033979 -0.0038378 -0.0038438 -0.0038438 -0.0038438 

3 0 0.0006623 0.0007220 0.00072753 0.00072756 0.00072756 0.00072756 

4 0 0 -0.0013315 -0.0015258 -0.0015290 -0.0015291 -0.0015291 

0 2 0.0026746 -0.0007841 -0.0012319 -0.0012379 -0.0012380 -0.001238 

1 2 -0.000883 -0.0007580 -0.0007450 -0.0007449 -0.0007449 -0.0007449 

2 2 0 0.0006584 0.00072288 0.00072319 0.00072319 0.00072319 

3 2 -0.00013 -0.0001416 -0.0001423 -0.0001423 -0.0001423 -0.0001423 

4 2 0 0.0002309 0.00025664 0.00025685 0.00025685 0.00025685 

0 4 4.382E-05 -0.0012836 -0.0014773 -0.0014806 -0.0014806 -0.0014806 

1 4 -1.85E-05 3.047E-05 0.00003585 3.5898E-05 3.5899E-05 3.5899E-05 

2 4 0 0.0002255 0.00025065 0.00025086 0.00025086 0.00025086 

3 4 -7.58E-06 -1.271E-05 -1.313E-05 -1.313E-05 -1.313E-05 -1.313E-05 

4 4 0 9.741E-05 0.00011029 0.00011046 0.00011046 0.00011046 
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Figure 4-6 Computed temperature values over y=b surface as a function of x/b and z/b 

when Rk1/b=2, for Example 2. 



70 

Table 4-5 Computed bqTk w/11  along a line when y=b and 2/az  . 

    bqTk w/11    

x/b bqTk wa /1  1 Iteration 2 Iterations 3 Iterations 5 Iterations ANSYS 

0 1.01191 1.01181 1.01180 1.01180 1.01180 1.0118 

0.2 1.02970 1.02961 1.02959 1.02959 1.02959 1.0296 

0.4 1.09589 1.09579 1.09578 1.09577 1.09577 1.0957 

0.6 1.26145 1.26135 1.26134 1.26134 1.26134 1.2614 

0.8 1.30748 1.30738 1.30736 1.30736 1.30736 1.3072 

1.0 1.23849 1.23839 1.23837 1.23837 1.23837 1.2385 

1.2 1.16946 1.16935 1.16934 1.16934 1.16934 1.1693 

1.4 1.21538 1.21527 1.21526 1.21526 1.21526 1.2152 

1.6 1.38081 1.38070 1.38069 1.38068 1.38068 1.3807 

1.8 1.44688 1.44677 1.44676 1.44675 1.44675 1.4466 

2.0 1.46463 1.46452 1.46451 1.46451 1.46451 1.4646 
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Temperature Distribution Contour using ANSYS Workbench 

 
(a) 

 
(b) 

Figure 4-7 (a) Temperature distribution contour using ANSYS workbench (top view), and 

(b) temperature distribution contour using ANSYS workbench (isometric view). 



72 

 
Figure 4-8 Graphical presentation of the total heat flux in W/mm

2. 

4.5 Comments and Discussions 

An examination of Eq. (4-5c) shows the convergence behavior of )0,(xqa  that 

contributes to the specified function )(0 xq . It shows that Eq. (4-5a) converges very fast 

since the term )]/cosh(/[2 abna   reduces exponentially. As an illustration, for a/b=2, 

this quantity takes the value of 
7100.3   when n=10 and it further reduces to become 

10102.1   when n=15; therefore, its convergence is not a major issue. Accordingly, the 

changes observed the values of )(0 xq  are mainly due to the uncertainty in 

determination ),( yxTb  that is related to the function ),()( 20 dTT  .  

The concept of this function specification method has been used for developing a 

numerical solution. This study presents a technique for analytical determination of the 

specified coefficients. If one selects the functional form of )(0 xq , as emerged from the 
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solution of ),(),(),(1 yxTyxTyxT ba  , it is possible to analytically determine the 

coefficients nA  in Eq. (4-12). This task is accomplished using Eq. (4-22) and the 

computed temperature values are presented in Tables 4-2 and 4-3. The tabulated values 

of ),(2 dT   in Table 4-2 and ),(1 bxT  in Table 4-3 show expected behaviors and it is 

possible to acquire reasonably accurate solutions for practical applications.  

This presents a verification tool that allows the exact values of the coefficients to 

be obtained iteratively for related applications. It permits a view of the convergence 

behavior of the iterative technique that can be used for three-dimensional cases. This 

procedure is reasonably simple if the matrix is of a reasonable size. This is the primary 

reason for selecting a two-dimensional multi-layer system.  

If this matrix is very large, an iterative procedure is a reasonably fast technique 

for determination of these coefficients. The process of determining the coefficients can be 

modified by developing an iterative procedure. The iterative procedure begins be 

selecting estimated values of nB ; e. g., by setting 0nB . Since nD  coefficients have 

known values, Eq. (4-14b) provides nA  for insertion in Eq. (4-20) in order to get new 

values for nB . This process can be repeated by inserting this new nB . The first iteration 

begins by placing nB  into Eq. (4-14b) to get a new nA  and repeat the process by using 

Eq. (4-20) for determination of a new set of nB  values. This process is to be repeated for 

second, third, and other iterations. Often, about six iterations can produce results with 

reasonable accuracy. Observing the behaviors of the numerically acquired data shows 

that one can accelerate the convergence procedure by using a relaxation factor  and 

selecting the new set nA  as 
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 )()1(
oldnew nnnn BDAA   (4-26)  

Preliminary test shows that having =~0.85 can reduce the number or iteration 

by about 40% for a predetermined accuracy.  

4.6. Conclusion 

The analytically obtainable temperature field can provide an accurate solution for 

the purpose of verification of a numerically acquired solution. This analytical procedure is 

reasonably fast if the matrix size is not very large. For matrices of large size, the nA  

coefficients within Eq. (4-12) are obtainable rapidly by an iterative technique with a high 

degree of accuracy. This procedure was tested successfully within the previous example. 

The iteratively determined coefficients become a reasonably fast procedure when the 

conduction is three-dimensional. Also, the same procedure is applicable to a system 

when two multi-layer blocks replace both layers, in Figure 4-1(a,b).  
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Chapter 5 

Inverse Estimation of Temperature between Plates of Different Footprints by an Iterative 

Approach 

 
In this chapter, consideration is given to a simplified model mainly to study the 

performance of iterative analytical/numerical solutions to non-uniform footprints problems. 

The analytical procedure leads to an integral equation. Then, the heat flux and 

temperature at the interface are computed using an iterative inverse methodology. To 

verify the accuracy, selected data are compared to numerically determined values. 

Although the presented computational procedure is for a two-dimensional solution, the 

methodology equally applies to three-dimensional problems. 

The adequate cooling improves the performance as it improves the speed of data 

execution. Numerical and theoretical studies as to determination of thermal performance 

are available in the literature. The related information and adequate citation of the related 

literature are in [62-66]. The analytical determination of temperature field in a two-layer 

system, as shown in Figure 5-1, is the objective of this work. This type of system can 

appear in different engineering application such as in electronic cooling devices. Plate 1, 

in Figure 5-1 can be viewed as a die with non-uniform power distribution. Plate 2 can be 

viewed as a heat spreader connected to a heat sink. Numerical studies of the related 

problems are in Kaisare et al. [67] which also contains details related to these types of 

devices. 

The objective of this study is to examine a suitable inverse procedure for a 

relatively accurate determination of the temperature field in a multi-layer domain as 

shown in Figure 5-1. In practice, each of Layers 1 and 2 may contain two or more layers. 

However, for convenience of the presentation of this inverse methodology, Layer 1 and 2 
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are selected to be single layers as depicted in Figure 5-1. Additionally, the mathematical 

steps are presented for a two-dimensional case. The extension to three-dimensional case 

requires a minor modification, although the equations become a bit lengthy. In general, 

the mathematical procedure leads toward an integral equation to be solved by an inverse 

technique. Classical description of various inverse techniques is well documented in [68-

71]. As an illustration, function specification and other techniques have been used to 

solve transient and steady-state inverse heat conduction problems by many investigators, 

e.g., see [72-77]. In this presentation, an iterative inverse procedure is selected for 

estimation of the temperature field and this becomes equivalent to the function 

specification method.  

5.1 Mathematical Relations 

This is to study the behavior of the temperature field within a two-layer body 

when each layer has a different size. The schematic of the region and the coordinate 

systems are in Figure 5-1. The governing equations for steady-state heat conduction 

satisfy the Laplace equations  

 0
2

2

2

2

2

2
















z

T

y

T

x

T jjj
  (5-1) 

with j=1 in regin1 and j=2 in region 2. In subsequent analyses, the function jT  represents 

the reduced temperature so that  jjT ; where jT  is the physical temperature 

and   is the temperature of surroundings. Consideration is given to insulated boundary 

conditions in x- and z-directions. Therefore, for convenience of properly demonstrating 

this presentation, a two-dimensional case is selected within the subsequent mathematical 

presentations. 
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      

   
 Layer 1 

 Layer 2 
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   b 

   c 

  d 

    
     

   qw 

   h 
 

Figure 5-1 Schematic of a two-layer body and the coordinates. 

Clearly, there are two temperature solutions: one for Layer 1 and the second one 

for Layer 2. These two solutions must satisfy the boundary conditions and the 

compatibility conditions between the two layers.  

5.2 Temperature Solution in Layer 1  

The temperature in Layer 1, designated as ),(1 yxT , must satisfy the Laplace 

equation 

 0
2

1
2

2

1
2











y

T

x

T
  (5-2) 

with boundary conditions: 

(BC 1, 2) 0),(),0(  yaqyq  

(BC 3) )()0,( 01 xTxT   

(BC 4) )(),( xqbxq w  
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This problem has two non-homogeneous boundary conditions; therefore, it is to 

be decomposed into two problems by selecting ),(),(),(1 yxTyxTyxT ba  . Then, 

each of these problems has three homogeneous boundary conditions and a single non-

homogeneous boundary condition.  

The first problem requires the solution of equation  

 0
2

2

2

2











y

T

x

T aa
  (5-3) 

with boundary conditions: 

(BC 1, 2) 0),(),0(  yaqyq aa  

(BC 3) 0)0,( xTa  

(BC 4) )(),( xqbxq wa   

This is a classical steady-state heat conduction problem. A solution that satisfies 

the differential equation and the homogeneous boundary conditions 1, 2, and 3 is  

)/sinh()/cos(),(

1

0 aynaxnAyAyxT n

n

 




 (5-4) 

Next, using the fourth boundary condition (BC 4), one obtains a relation 
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 (5-5) 

Then, an application of the orthogonality condition produces 
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  (5-6a) 

and  
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and the temperature solution becomes 
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After determination of temperature field, the heat flux at y=0 surface, defined as 

01 |/),()0,(  yaa yyxTkxq , becomes 
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 (5-8) 

The second problem is to solve for ),( yxTb  that satisfies the Laplace equation 

 0
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



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
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T
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T bb
 (5-9) 

with boundary conditions: 

(BC 1, 2) 0),(),0(  yaqyq bb  

(BC 3) )()0,( 0 xTxTb   

(BC 4) 0),( bxqb  

A solution that satisfies the differential equation and the non-homogeneous 

boundary conditions 1, 2, and 4 is  
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The function )(xX n  satisfies the condition 
2)(/)( nn xXxX   and the 

boundary conditions at x=0 and x=a. Next, the non-homogeneous boundary condition 

(BC 3), at y=0 obtainable from the temperature solution in the Layer 2, has the form 

 )()( ,2

0

0 xXCxT nn

n






  (5-11) 

The needed interface temperature, )(0 xT , is obtainable by using the 

compatibility condition with Layer 2. It is expected that the temperature )(,2 xX n  

acquired from the temperature solution for Layer 2 will not satisfy the conditions (BC 1, 2) 

for ),( yxTb  solution. Therefore, modifications are needed when )(,2 xX n  does not 

satisfy the insulated boundary conditions at x=0 and x=a. In this case, it is necessary to 

select )/cos()( xxnxX n   in Eq. (5-10) and then an application of the orthogonality 

condition produces the constants 
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and  
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, when 0n  (5-12b) 

After appropriate substitutions, the temperature solution takes the form 
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It is to be noted that the heat flux vector in x-y plane has a zero value at (x, y)=(0, 

0) and at (x, y)=(a, 0) locations. This also suggests that the functional form for )(0 xT , 

acquired from the solution of temperature field in Layer 2, is to be recalculated in 

accordance with Eqs. (5-12a,b). Next, the heat flux at y=0 surface, using the Fourier 

equation is 01 |/),()0,(  ybb yyxTkxq , and it becomes 
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 (5-14) 

The function )0,(xqb  is the unknown to be determined by using the functional 

form of )(0 xT  acquired from the temperature solution within Layer 2. Therefore, the 

function )0,(xqb  is the primary unknown for determination of the heat flux across the 

contacting surface at 0x , since )0,()0,()(0 xqxqxq ba   while )0,(xqa  has a 

known value. Having the function )(0 xq , the functional form of )(0 xT  could be 

estimated from the temperature solution ),(2 T  in Layer 2. Furthermore, once the 

functional )(0 xT  as given by Eq. (5-11) is available, Eq. (5-13) would serve as a 

transformation. 
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5.3 Temperature Solution in Layer 2  

For convenience of this presentation, a new set of coordinates is selected using 

x  and dy   while 2/)( ac  , as shown in Figure 5-1. The 

temperature solution in the second layer also satisfies the Laplace equation 
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where ),(22  TT  must satisfy the boundary conditions 
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 which is )(),( 02  qdq .  

The solution begins by using the classical separation technique that produces 
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where 2/ khcBi  . The fourth boundary condition, (BC 4), leads to the relation  
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Next, the orthogonality condition leads to the values of mC ; that is, 
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with BiN 0  and, when 0m , 
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where mN  is the dimensionless norm equal to 
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After substitution for mC , the solution for temperature in Layer 2 is  
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where 0),(2  dq  when 0  and ca  ; otherwise,  ),(2 dq

)()( 00  qxq .  

The determination of the unknown temperature over the contact surface, as 

given by Eq. (5-18) lead to the relation  
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wherein the unknown function )()( 00 xqq   is obtainable from Eq.( 5-8) and Eq. 

(5-14), since )0,()0,()(0 xqxqxq ba  , as 
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 (5-20) 

5.4 Iterative Inverse Solution 

There are two integral equations for determination of the unknowns )(0 xT  and 

)(0 xq . The substitution of )()( 00 xqq   from Eq. (5-20) into Eq. (5-19) leads to a 

single integral equation that can be solved iteratively in order to acquire numerical values 

for )(0 xT . Alternatively, the substitution of )(0 xT  from Eq. (5-19) into Eq. (5-20) would 

lead to an alternative integral equation wherein the surface heat flux )(0 xq  is the 

unknown, to be determined. The next numerical example is selected to illustrate the 

inverse methodology employed for determination temperature )(0 xq  over the contact 

area. 

Numerical example. The objective is to test the convergence behavior of this 

iterative solution using the computed temperature values. In dimensionless space for a 

special case, Layer 1 is selected so that ba 2  and having b as the characteristic 

length for both layers. The applied heat flux is wq  and it is selected as a constant at two 

different sites: one from       to     and the other from        to a. The dimensions 

of the second layer, as depicted in Figure 1, are bc 5  and, bd  ; therefore, the 

spacing parameter becomes 2/32/)( bac  . Furthermore, a thermal conductivity 
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12 4kk   and a Biot number 20/ 2  khcBi  are selected mainly to test this 

numerical procedure and the accuracy of temperature solutions.  

For this case, the process begins by providing an initial estimate for 

)0,()(0 xqxq a  in accordance with Eq. (5-8). Then, Eq. (5-19) provides the first 

estimated values for )(0 xT . The second step begins be expanding )(0 xT  into a 

secondary Fourier series solution that satisfies the homogeneous boundary conditions at 

    and ax   for Layer 1. Next, the value )0,(xqb , from Eq. (5-15), is to be used in 

order to get a new heat flux at y=0 from the relation )0,()0,()(0 xqxqxq ba  , as the 

onset for the first iteration. This new )(0 xq  serves as a new heat flux input for Layer 2 

and to repeat the process to determine a new )(0 xT  solution. The initial values of 

bqxTk w/)(01  assuming 0)0,( xqb  are determined and the data are plotted in Figure 

5-2. They are compared with the computed dimensionless temperature data from this first 

iteration, also plotted in Figure 5-2. The process is repeated for a second through a fourth 

iteration. The acquired data, plotted in Figures 5-3, compares the results from the first 

and the second iterations. There is reasonably good agreement, and this agreement 

improves when the third and fourth iterations are compared in Figure 5-4. Additionally, 

Figure 5-5 shows the deviation of bqxTk w/)(01  for a given iteration from the previously 

determined values. This plotted data show that there is a relatively larger deviation 

between the initial guess and the first iteration, while the difference between data from 

the fourth and the third iteration is very small. A sample of numerical data plotted in 

Figure 5-2 is in Table 5-1. Column 9 in Table 5-1 shows small differences between the 

third and the fourth iterations and attests to a reasonably good convergence rate. It is to 

be noted that 31 eigenvalues (including zero) were used for determination of data 
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presented in this example. The process was repeated for larger numbers of eigenvalues 

and they all show similar behavior due to the number of iterations. 

 

Figure 5-2 A comparison of computed )(0 xT  values after the 1st iteration with the initial 

guess. 
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Table 5-1 Computed values of )/()(01 bqxTk w  for the first four iterations.  

 Initial Diff. 1st Diff. 2nd Diff. 3rd Diff. 4th 

x/b 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

bqw

xTk )(
1 0

 

0.0 0.01586 0.0005 0.01637 -1E-04 0.01627 2E-05 0.01629 -4E-06 0.01629 

0.2 0.01649 0.0007 0.01718 -1E-04 0.01707 2E-05 0.01709 -3E-06 0.01708 

0.4 0.01803 0.0007 0.01870 -1E-04 0.01859 2E-05 0.01861 -4E-06 0.01861 

0.6 0.02083 0.0007 0.02156 -1E-04 0.02143 3E-05 0.02146 -5E-06 0.02145 

0.8 0.02522 0.0011 0.02631 -2E-04 0.02614 3E-05 0.02617 -5E-06 0.02616 

1.0 0.03113 0.0012 0.03229 -2E-04 0.03208 4E-05 0.03212 -8E-06 0.03212 

1.2 0.04022 0.0018 0.04202 -3E-04 0.04171 6E-05 0.04177 -1E-05 0.04176 

1.4 0.05383 0.0031 0.05696 -5E-04 0.05649 8E-05 0.05657 -1E-05 0.05655 

1.6 0.07764 0.0046 0.08223 -9E-04 0.08135 0.0002 0.08152 -4E-05 0.08149 

1.8 0.09251 0.0018 0.09428 -4E-04 0.09389 9E-05 0.09398 -2E-05 0.09396 

2.0 0.10401 -3E-04 0.10367 2E-05 0.10368 3E-06 0.10369 -2E-06 0.10369 

2.2 0.11218 -0.002 0.11009 0.0004 0.11052 -9E-05 0.11043 2E-05 0.11045 

2.4 0.11860 -0.003 0.11525 0.0007 0.11592 -1E-04 0.11578 3E-05 0.11581 

2.6 0.12241 -0.004 0.11830 0.0008 0.11912 -2E-04 0.11895 4E-05 0.11899 

2.8 0.12335 -0.004 0.11915 0.0009 0.12000 -2E-04 0.11982 4E-05 0.11986 

3.0 0.12178 -0.004 0.11813 0.0007 0.11879 -1E-04 0.11866 3E-05 0.11869 

3.2 0.11439 -0.002 0.11223 0.0004 0.11258 -6E-05 0.11252 1E-05 0.11253 

3.4 0.09919 0.0015 0.10066 -4E-04 0.10023 0.0001 0.10034 -3E-05 0.10031 

3.6 0.06713 0.0014 0.06851 -2E-04 0.06828 4E-05 0.06833 -9E-06 0.06832 

3.8 0.04961 0.0004 0.05006 -1E-04 0.04994 3E-05 0.04997 -6E-06 0.04996 

4.0 0.03803 0.0001 0.03816 -4E-05 0.03812 1E-05 0.03813 -3E-06 0.03813 

4.2 0.03087 0.0003 0.03116 -6E-05 0.03110 1E-05 0.03111 -2E-06 0.03111 

4.4 0.02538 5E-05 0.02543 -3E-05 0.02540 9E-06 0.02541 -2E-06 0.02541 

4.6 0.02195 1E-04 0.02205 -2E-05 0.02202 6E-06 0.02203 -2E-06 0.02203 

4.8 0.02015 0.0002 0.02030 -3E-05 0.02026 7E-06 0.02027 -1E-06 0.02027 

5.0 0.01925 -6E-06 0.01925 -1E-05 0.01924 6E-06 0.01924 -2E-06 0.01924 
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Figure 5-3 A comparison of computed )(0 xT  values after the 1st iteration and after the 

2nd iteration. 

 

Figure 5-4 A comparison of the computed )(0 xT  values from 3rd and 4th iterations. 
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Figure 5-5 The deviations of )(0 xT  from the previously determined values, for each 

iteration. 

The determination of temperature data at y=b, where the heaters are located, is 

important to the design and manufacturing of the devices where temperature assumes its 

maximum values. Table 5-2 is prepared to show the computed temperature values at y=b 

for all four sets of iterations. It is remarkable that the data for the first iteration are well 

behaved and they agree with subsequent iterations.  Column 6 of Table 5-2 contains the 

numerically acquired data using ANSYS. The CFD model was developed so that it was 

not mesh sensitive. The data in Column 6 agree reasonably well with those in Column 7 

of Table 5-2, which contains a set of computed temperatures using 500 eigenvalues 

followed by a sufficient number of iterations. The data in Column 7 should represent the 

exact values since they are accurate to all digits appearing in Table 5-2. These data 

show mixed agreements with those from the fourth iteration and the CFD data. The last 

column in Table 5-2 contains the percent deviation between the data in columns 5 and 6 

of this table. Figure 5-6 shows the plotted temperature values for the fourth iteration and 
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the CFD data, as presented in Table 5-2. This figure illustrate that 30 eigenvalues provide 

data that they agree well with the numerically acquired information. 

Table 5-2 Computed values of ),( bxT  and their comparison )/( bqw with numerically 

determined values 

   ),(11 bxTk  )/( bqw   
 Percent 

x/b 1st Set 2nd Set 3rd Set 4th Set by CFD  Exact difference 

0.0 0.37734 0.37719 0.37721 0.37721 0.37715 0.37712 0.015 
0.1 0.38183 0.38165 0.38167 0.38167 0.38170 0.38168 0.008 
0.2 0.39575 0.39551 0.39555 0.39554 0.39583 0.39581 0.074 
0.3 0.42113 0.42078 0.42083 0.42082 0.42141 0.42139 0.140 
0.4 0.46353 0.46304 0.46312 0.46310 0.46350 0.46336 0.085 
0.5 0.54857 0.54791 0.54803 0.54800 0.54893 0.54831 0.169 

0.6 0.63165 0.63081 0.63096 0.63093 0.63093 0.63097 8E-04 
0.7 0.66731 0.66629 0.66647 0.66644 0.66575 0.66567 0.104 
0.8 0.67889 0.67770 0.67792 0.67787 0.67740 0.67733 0.069 
0.9 0.66717 0.66581 0.66606 0.66601 0.66629 0.66633 0.041 
1.0 0.60971 0.60821 0.60849 0.60843 0.60915 0.60853 0.117 

1.1 0.55212 0.55051 0.55081 0.55075 0.55079 0.55063 0.007 
1.2 0.54002 0.53833 0.53863 0.53858 0.53936 0.53932 0.146 
1.3 0.55101 0.54927 0.54958 0.54952 0.55052 0.55049 0.183 
1.4 0.58592 0.58414 0.58446 0.58440 0.58472 0.58457 0.055 
1.5 0.66815 0.66636 0.66668 0.66662 0.66717 0.66653 0.083 

1.6 0.75232 0.75054 0.75085 0.75079 0.75073 0.75076 0.008 

1.7 0.79392 0.79217 0.79247 0.79241 0.79217 0.79208 0.031 
1.8 0.81866 0.81692 0.81722 0.81716 0.81721 0.81713 0.006 
1.9 0.83217 0.83044 0.83074 0.83068 0.83100 0.83092 0.039 
2.0 0.83651 0.83479 0.83508 0.83503 0.83543 0.83535 0.048 
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Figure 5-6 The temperature distribution over the heated surface as described by four 

successive iterations. 

Figure 5-7 shows the plotted temperature values for the fourth iteration and the 

ANSYS data, as presented in Table 5-2. This figure illustrates that 30 eigenvalues provide 

data that agree well with the numerically acquired information. 

 
Figure 5-7 Temperature distribution over the heated surface after the 4th iteration for 

different Bi and the numerically computed data by ANSYS for Bi=20. 
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5.5 Comments and Discussions 

This iterative procedure begins by properly selecting a function )(0 xq . This 

function is to be used in order to determine ),(2 dT   using Eq. (5-19) and then obtain 

)(0 xT  from Eqs. (5-11) and (5-12a,b). No iteration becomes necessary if the function 

)0,(xqb obtained from Eq. (5-14) is the same as the original heat flux function )(0 xq . 

The first iteration begins if these two quantities are different using the relation 

)0,()0,()(0 xqxqxq ba  , as it emerged from the solution of 

),(),(),(1 yxTyxTyxT ba  . The data acquired and presented in Table 5-1 show 

that, for a fixed number of terms in the series solution, only a few iterations are needed in 

order to get a relatively accurate solution. An alternative test shows that using a 

relaxation factor =0.82 to 0.88 and selecting the new )(0 xq  as 

 )]0,()0,([)()1()(
old0new0 xqxqxqxq ba   (5-21)  

can improve the convergence rate.  

The prepared computer program permits one to increase the number of iterations 

until a solution is obtained with a desired convergence for a fixed number of terms, N. 

Then, the temperature is computed with a high number of iterations using N=30 terms. 

Selecting the data obtained from this solution as the reference values, the convergence 

due to the number of iterations was tested. With a relaxation factor of =1, the data over 

y=b surface converged with deviations below 
7105   after 6 iterations. However, with a 

relaxation factor of  0.85, only 4 iterations were needed in order to get alternative 

numerical results with deviations less than 
7105.1  .  
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5.6 Conclusion 

The information presented earlier attests that the objectives of this study were 

accomplished. It was demonstrated that only a few iterations were needed to achieve 

satisfactory convergence and faster convergence was realized with a properly selected 

relaxation factor. Furthermore, the convergence related to the number of eigenvalues 

was tested and it is a classical Fourier series issue.  

This tested inverse procedure is equally applicable to three-dimensional cases as 

the inclusion of z-axes can be accommodated with ease, similar to that for the x-axes. 

Furthermore, this opens a path for future application of this inverse methodology to multi-

layer bodies that are commonly used in electronic cooling applications. As an illustration, 

each of the two layers in Figure 5-1 is to be replaced by a block of layers with uniform 

footprints. The methodology for determination of temperature in each block is in [78].   
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Chapter 6 

Determination of Effective Thermal Conductivity in Heterogenous Material (TSV 

Technology) 

 
A key 3D packaging technology is electrical packaging technology, which means 

that it is vital to connecting stacked chips electrically. Conventional 3D packaging 

technology uses wire bonding with metal lead wires. Recently, novel technologies have 

been developed to replace wire bonding. Through silicon via interconnects are emerging 

to serve a wide range of 3D packaging applications and 3D IC architectures that demand 

higher levels of performance and silicon integration with lower power consumption. As an 

illustration a comparison of wire bonding and TSV technologies can be depicted in Figure 

6-1. 

 

 

 

 

  

 

  

Figure 6-1 Comparison of conventional and TSV technology in 3D packaging 

Predicting the temperature solutions of heterogeneous materials has been the 

subject of extensive research in the electronic packaging industry. 
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With analytical solutions being almost impossible to obtain for such open-ended 

problems, and numerical techniques being computationally expensive, semi-analytical 

methods are highly valuable to both chip makers and design engineers. There have been 

numerous publications on how to obtain the analytical or numerical solutions of steady 

state or transient heat conduction in homogeneous multilayer bodies. 

With recent evolution in 3D stack packaging technology and introduction of 

TSVs, one cannot rely on previous work alone. The addition of TSVs in the silicon die 

matrix imposes new challenges. To start off, thermal stresses caused by CTE (coefficient 

of thermal expansion) mismatch. During the operation, chips generate non-uniform heat 

dissipation which in turn produces excessive forces in TSV connection and finally results 

in reliability degradation and failure. Thus, the study of heat conduction and obtaining the 

temperature solution for such systems are the subject of investigation in this chapter. In 

microelectronic devices, materials used often have different thermophysical and 

mechanical properties. However, there are many situations when the assumption of 

isotropy in a single layer is used mainly to simplify the thermal analyses. For example, if 

there are many layers and all layers actively participate in the heat transfer process, an 

approximate computation of the temperature distribution may be based on average 

thermophysical properties. However, this assumption may not be valid, especially when 

there are substantial differences between the physical properties of the constituents of 

the model under investigation.  

The objective of this work is to provide an effective thermal conductivity (Keff) for 

the matrix of silicon die and TSV inclusions. Once Keff is calculated, the temperature 

solutions of steady-state heat conduction in conjunction with previous work (chapters 1-5) 

become deterministic. Galerkin-based numerical approximation is used for determination 

of effective coefficient of thermal conductivity. 
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For a multidimensional body the numerical evaluation of the effective thermal 

conductivity is difficult. Therefore, the 2D analysis of the system in question will be 

studied first. Then with the use of parallel resistance theory in heat transfer, the system in 

a 3D domain can be modeled and analyzed. 

6.1 Galerkin Approximation Method 

The Ritz variational principle in the form of the B.G. Galerkin method usually 

provides approximate solutions to various engineering problems. A relatively high degree 

of accuracy in numerical results is the interesting characteristic of these methods. Often, 

the accuracy of the solution far exceeds the application demand. The method of B. G. 

Galerkin, simply referred to as the Galerkin method, is used for fundamental problems in 

solid mechanics, fluid mechanics, and heat transfer. Generally, ordinary and partial 

differential equations describe physical phenomena such as transfer of heat, wave 

motion, stress distribution in solids, etc. The finite element method and Galerkin-type 

solutions provide capabilities to solve these differential equations in complex-shaped 

bodies when the exact solution either is not available or is too cumbersome for practical 

applications. In other words, the numerical solutions deal effectively with simple or 

difficult problems and have been widely used in recent technological advancement.  

Variational calculus is a powerful mathematical tool with important applications. It 

is basic to the finite element method and Galerkin-type solution techniques. The Galerkin 

method provides closed-form solutions. The finite element method is a discretized form of 

the Galerkin method that produces numerical values at preselected nodal points. The 

goal is to show the application of the Galerkin method to selected engineering 

applications such as the TSV system in electronic packaging as described earlier.  

In this chapter, the Galerkin-based integral (GBI) method is extended to solve a 

heterogeneous system. The purpose is to fill the gap that currently exists, to 
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accommodate a difficult conduction problem that is mathematically challenging and 

cumbersome, and to solve those for which the use of discretization methods are very 

time-consuming. 

The developed procedure could be readily applied to both heterogeneous as well 

as homogenous medium. The major difference lies between how to select the basis 

functions for each model to satisfy imposed natural and homogeneous boundary 

conditions associated with each case  

6.2 Galerkin Mathematical Form 

The Galerkin method is a broad generalization of the Ritz method and is used 

primarily for the approximate solution of variational and boundary value problems, 

including problems that do not reduce to variational problems. The basic idea behind the 

Galerkin method is as follows. Suppose the requirement to find a solution, defined in 

some domain D, of the differential equation 

         (6-1) 

(here, L is a differential operator, for example, an operator in two variables) where the 

solution satisfies at the boundary S of D the homogeneous boundary conditions 

      (6-2) 

If the function u is a solution of equation (6-1) in D, then L[u] is identically equal 

to zero in this domain and, consequently, is orthogonal to any function in D. The 

approximate solution of equation (6-1) is sought in the form 

          ∑          
 
    (6-3) 

where         (i = 1, 2, …, n) are linearly independent functions that satisfy the boundary 

conditions (6-2) and are the first n functions of some system of functions  
 
       

 
 
       …,         that is complete in the given domain. The constant coefficients 
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   are chosen so that L[un] is orthogonal in D to the first n functions of the system 

         

  ∬     
 

 
                 ∬   ∑     

 
   

  

 
                    (6-4) 

             

The Galerkin method is used in solving a broad class of problems. Its most 

general formulation is given in terms of functional analysis for the solution of equations of 

the form Au - f = 0, where A is a linear operator defined on a linear space that is dense in 

some Hilbert space H, u is the unknown, and f is a specified element of H. The method 

came into use after it was described in a paper by B. G. Galerkin in 1915. The advantage 

of this method is the higher accuracy and faster computation time in comparison with 

discretized numerical methods. Although the method of analysis is the same as the 

Galerkin finite element method, unlike the standard finite element method, it maintains 

the continuity of heat flux throughout the domain.  

6.3 Mathematical Procedure 

Prior to any derivation, it is essential to understand the concept of effective 

thermal conductivity (Keff). Consider a solid layer of silicon bulk material that consists of 

many cylindrical copper interconnects, namely TSVs. If one of the surfaces of the silicon 

layer is subjected to a Dirichlet boundary condition, the other end of the solid block will 

receive the same amount of energy based on thermodynamics. The consideration is 

given to an equivalent homogeneous solid material that is identical in shape to the 

original body and subjected to the same boundary conditions. Under steady-state 

conditions the heat exchange between the modeled body and its surroundings is same 

as the actual body. Thus, the equivalent thermal conductivity of the modeled body will be 

the one we seek as it represents the overall thermal conductivity of the solid with 

inclusions. For one-dimensional heat transfer, when one surface is subjected to a 
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constant temperature and opposite side of the block is maintained at some fixed 

temperature, the following relation will hold, 

           
    
 
    ⁄

 (6-5) 

where      is the difference in temperature across the actual body and the equivalent 

solid. Similarly, qin  and qout remain the same for both the actual body and equivalent solid 

and they are equal to average heat flux, | qave |. This definition for the effective thermal 

conductivity, keff, will be used throughout this paper.  

In order to obtain a temperature and heat flux solution, it is necessary to solve 

the diffusion equation given below known as a Laplace equation over the entire domain 

of matrix and inclusion. 

           (6-6) 

The external surfaces of the body could take any type of the boundary condition. 

The assumption is that the thermal conductivity is independent of the temperature and 

therefore, a Galerkin-based integral method could be applied to obtain an accurate 

closed-form solution. A Galerkin solution that uses heat-flux conserving basis functions 

(Haji-Sheikh, 1988) conserves the continuity of temperature and heat flux across the 

phase boundaries. Moreover, it can deal accurately with a temperature jump in the 

presence of an imperfect contact.  

The Galerkin method uses a set of basis functions that are usually non-

orthogonal and chosen in a manner to satisfy the homogeneous boundary conditions. 

There are many methods proposed as to how to select the basis functions required for 

each case; however, there is not an exact way to describe the procedure. The method of 

selecting the basis functions for boundary conditions of the first kind is available in many 

literatures (Kantorovich and Krylov, 1960; Ozisik, 1980; Haji-Sheikh, 1987). In 1992, Beck 



100 

et al. came up with a method of selecting these basis functions for different types of 

boundary conditions. However, the obtained basis functions needs to be modified to 

accommodate the presence of inclusion in the main domain at the boundary of the two 

constituents and to account for the compatibility condition between the inclusion and 

matrix at the boundaries. Once the basis functions are developed, the Galerkin method is 

applied and the matrix produced by Galerkin method will be deterministic. The derivation 

of getting such a matrix is shown by (Beck et al., 1992) and leads to, 

      ∫   
 

 
  (    )   (6-7) 

      ∫      
 

 
   (6-8) 

Once     and     are known the matrix can be solved for unknown coefficients. 

          are described in numerical examples in future sections. Depending on the 

number of the terms, we will have N equations and N unknown.  

        (6-9) 

          (6-10) 

There are two steps to determine the basis functions. The first step is in the 

homogeneous domain, where there is no inclusion. The basis function denoted by      , 

implies to main domain and described as 

          (6-11) 

The next step is very important, that is to modify the basis function obtained to 

accommodate the presence of inclusion bounded by the surfaces       using the 

relationship described by (Beck, et al. 1992) it will lead to the following relations,  

          (6-12) 

                    (6-13) 
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where the function      is the modified basis function sought and will be used in the 

inclusion domain. One could see that if              , then the boundary condition 

at the interface of the inclusion and matrix is satisfied since           . 

In order to comply with the interface condition between the inclusion and the 

matrix, the use of the compatibility condition must be regarded, that is 

    
     

   
   

     

   
 (6-14) 

The jump condition is defined as, 

            (
  

 
)  

     

   
  (6-15) 

In the absence of thermal conductance      and the substitution of    into the 

compatibility condition, equation (6-15) described above yields, 

             
 (
  
  
  )

     

   
      

 
   
   

      

 (6-16) 

             
 (
  
  
  )               

              
 (6-17) 

The derivation for equation (6-16) and (6-17) is presented in Appendix B. The 

equation (6-17) is used when there is no resistance between the constituents in the 

model; however, the effect of thermal contact conductance should not be omitted and can 

be implemented using the interfacial jump condition defined as follows by rearranging 

equation (6-15), 

    
     

   
              (6-18) 

Next, the values obtained for     and     will be substituted in the above 

equation. Simplifying the equation and regarding that      at the interface of inclusion 

and matrix, it will yield 
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     (
  

 
)           |      (6-19) 

Thus, the   can be computed using the following equation 

     
(
  
  
  )                

              
 (6-20) 

Now, with Eqs. (6-19) and (6-20) in hand,   and   are defined and one can 

obtain the basis functions for inclusions. Once the basis functions are all calculated, the 

temperature solution can be obtained. For cylindrical inclusion, the denominator of the 

above equation is a constant and not a function. However, for odd-shape geometry the 

denominator of equation (6-20) could be a function. 

Subsequently, the average mean heat flux can be calculated and the effective 

thermal conductivity will be deterministic using the following equation for one-dimensional 

conduction 

           
  

  
 (6-21) 

6.3.1 Numerical Example: 

Consider a TSV copper being embedded into a Silicon matrix as shown in Figure 

6-2. 
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 (a) (b) 

Figure 6-2(a) Copper embedded in a silicon matrix, and (b) copper embedded in a silicon 

matrix (side view) 

As was mentioned before, we are seeking solutions to the Laplace equation, 

       
            (6-22) 

 

Using the transformation of T to satisfy the non-homogeneous boundary 

condition at x=a where the boundary condition of the first kind is prescribed to obtain the 

temperature solution, results in  

       
 

 
 in the main domain and, (6-23) 

          in the inclusion (6-24) 

Therefore, 

              for the main domain (6-25) 

                    for the inclusion (6-26) 

Now, multiplying the above equation and integrating over the domain will lead to 

the following relation, 
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Since, the consideration is given to a 2D analysis, we obtain the following, 

  ∑    

 

   

 

  (6-28) 

Thus, 

∑   
 
 [∫   

 

 
(      )      ∫   

 

 
(      )     ]     ∫  

  

 
          

 (6-29) 

Therefore, by inspection one could rewrite the above equation in matrix form as 

follows, 

              (6-30) 

where, the matrix element [A] is defined as, 

      ∫   
 

 
(      )      ∫   

 

 
(      )       (6-31) 

and the [ψ] defined as, 

         ∫  
  

 
          (6-32) 

therefore, the coefficient matrix [C] will become deterministic. 

                (6-33) 

For illustration purposes, for a three-term solution we obtain a 3X3 matrix as 

depicted below, 
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                       (6-35) 

                     

Where ∫   
 

 
       ∫    

 

  
        ∫    

 

  
         (6-36) 

6.4 Determination of Basis Function for a Silicon Matrix: 

Basis functions for localized domains, or heterogeneous materials, are discussed 

in previous the previous section (6.3). Kantrorovich and Krylov (1960) defined basis 

functions as a set of linear independent functions that satisfy the homogeneous boundary 

conditions. There are literature sources that present basis functions for orthogonal bodies 

and include works by Kantrorovich and Krylov (1960), Carslaw and Jaeger (1959), Shih 

(1984), Beck et al. (1992), and Cotta (1993). The most complete basis functions is in 

Beck et al. (1992), in which basis functions in Cartesian, cylindrical, and spherical 

coordinate systems are presented. Lee and Haji-Sheikh (1991) and Beck et al. (1992) 

have presented procedures for defining basis functions in nonorthogonal bodies. 

The procedure for finding basis functions is not unique and any properly defined 

set of basis functions are acceptable as long as they satisfy the homogenous boundary 

conditions. The basis functions presented will include the basis functions that satisfy the 

boundary conditions of the first kind (prescribed temperature,      ), the second kind 

(prescribed heat flux, 
   

  
  ), or the third kind (convection,   

   

  
    ). 

Computation of effective thermal conductivity      requires the global basis 

functions of the first kind, since we have prescribed temperature on the top surface of the 

matrix as shown in Figure 6-1(a). 

When a multi-dimensional body has a regular shape, the basis function 

describing that body is a product of one-dimensional basis functions. To obtain a 
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reasonably accurate solution for irregular multi-dimensional bodies, the number of basis 

functions is usually greater than 2. Numerical matrix operation becomes necessary when 

dealing with complex multi-dimensional problem. 

The method in which the basis functions are selected for the boundary conditions 

of the first kind is available in literature (Kantrorovich and Krylov 1960; Carslaw and 

Jaeger 1959; Ozisik, 1980; Haji-Sheikh and Mashena, 1987). 

If a region is bounded by N surfaces, ϕ1, ϕ2, ϕ3, …. ϕN , then the first member of 

the set of the basis functions is 

                         (6-37) 

Each subsequent member of the set of basis functions is obtained by multiplying 

      by an element of a complete set, for example, in a Cartesian coordinate system 

               

               

              
   (6-38) 

                

              
  

Each basis function is required to vanish only over the exterior boundaries. 

Some, but not all, basis functions may become zero at the interior point. This can be 

ensured if       is not zero within the region. This method produces accurate results 

except in a domain with inside corners. Whenever all basis functions vanish at the interior 

point, the region can be subdivided into many different subregions. The basis functions 

are constructed for each subregion and matched at the common boundary of each 

subregion (Kantrorovich and Krylov 1960). Lee and Haji-Sheikh (1991) showed 

procedures for selecting such basis functions for domains with inside corners.  
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In our model as shown in Figure 6-1(a) we have T=1 at top and T=0 at the 

bottom. Remember that the sides are all adiabatic. The basis function for the model 

excluding the inclusion was chosen as, 

      [  (
 

   
)] (
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(
 

 
 
   

   
) ((

 

 

 
) –

   

   
)  

 

 
   

 

 
   

 

 
    (6-39) 

It was mentioned that the basis functions obtained for a matrix without inclusion 

must be modified to allow compatibility between the constituents in the model. The use of 

equation (6-9) allows the computation of basis functions for the inclusion. 

Upon successful computation of effective thermal conductivity in x and y 

direction, one needs to determine the effective thermal conductivity in a lateral direction. 

In the following section, the determination of effective thermal conductivity in z direction 

will be discussed. 

6.5 Determination of Effective Thermal Conductivity in a Lateral Direction 

Once the effective thermal conductivity in 2-D is known, in order to develop a 3-D 

model the effective thermal conductivity in a lateral direction should also be determined. 

The analytical calculation of the effective thermal conductivity in 3-D is very difficult and 

time-consuming. In this research, the goal is to simplify the analysis and use the parallel 

resistors theorem of heat transfer to find the effective thermal conductivity in Z-direction. 

In order to comprehend the analogy, consider the figure shown below, 
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 (a) (b) 

 

(c) 

   

 (d) (e) 

 

 

 

 

 

 (f) 

Figure 6-3 (a) Isometric view of TSV and silicon, (b) side view of the TSV and silicon, and 

(c) parallel network resistance diagram; (d, e, f) schematic and boundary conditions on 

the model 

2mm

mm

m 

2mm

mm

m 

R=0.9mm 

t=0.2mm 
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Here Am and Ae are the areas of the silicon main domain and copper TSV 

respectively. 

If the parallel resistance theory is applied as shown in Figure 6-3(b), one could 

drive the total resistance by means of equations (6-24, 6-25). 

  

 

  
 

 

  
 

 

  
 

 

      
       (6-40) 

         
    

      
 (6-41) 

Consider a cylindrical copper embedded into a silicon matrix as shown in Figure 

6-3(d) and Figure 6-3(e); they are subjected to the temperature conditions depicted in 

Figure 6-3(f). The effective thermal conductivity in a lateral direction is the unknown. 

Based on the methodology described above, essentially, the effective thermal 

conductivity would be based on volume proportion and the analytical results are 

compared with FEM analysis and depicted in Table (6-1). The temperature and heat flux 

using ANSYS are shown in Figure (6-4) and Figure (6-5) respectively. 

Table 6-1 Comparison of effective thermal conductivity between analytical and FEA 

                 ⁄   

                  ⁄   

                           ⁄   

                          ⁄   
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Figure 6-4 Temperature contour for copper and silicon 

In the following section of this study, the analytical solution for the effective 

thermal conductivity of the TSV system is obtained and compared with FEA analysis of 

the same model using ANSYS Workbench as a tool for verification purpose. Keep in 

mind that the actual diameter of a TSV is around        . However, for better 

visualization purpose, the diameters of the TSVs are chosen much larger than their 

actual size. 

6.6 Numerical Examples of TSV Systems 

6.6.1 Setting a Benchmark for Our Analysis in the Forthcoming Examples 

Consider a single copper inclusion in a silicon matrix with perfect contact as 

shown in Figure 6-1(a). 

The copper and silicon have the thermal conductivity of     
 

   
  and    (

 

   
) 

respectively. 

The block dimensions are         and           

The copper inclusion has radius of          . The initial height is  

         . 
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The top surface of the silicon matrix is subjected to a constant temperature 

     while the bottom surface is maintained at     .  

Solution; 

After successful determination of basis function as described previously, the 

basis function was carefully chosen to satisfy the homogenous boundary conditions 

imposed by external surfaces of the model. That is the temperatures at x=a has to be 

      
    and the temperature at x=0, is       

   . 

Applying the Galerkin procedure as described earlier, the effective thermal 

conductivity of the matrix and inclusion is found to be               
 

  
  . 

The same model was analyzed using FEA techniques and results in an effective 

thermal conductivity of               
 

  
 . Note that the average heat flux was used in 

FEA for determination of     . Table 6-2 shows the results using both techniques, while 

Figure 6-5 shows results from ANSYS. 

Table 6-2 Comparison of effective thermal conductivity between analytical and FEA 

without resistance 

Number of 

Terms (Jmax) 

1 2 3 4 5 6 7 

     W⁄m.k  218.950 209.523 209.426 209.100 208.964 208.958 208.920 

FEA(Grid 

independent) 

#elements~1.2

Million 

208.902 208.902 208.902 208.902 208.902 208.902 208.902 

%Error       0.0086% 
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Figure 6-5 Heat flux contour for copper and silicon 

 

 

Figure 6-6 Heat flux contour and temperature distribution for perfect contact 
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6.6.2 Contribution of Thermal Resistance 

In the next example, the contribution of thermal resistance was considered and 

for demonstration purpose the resistance of R=100 mm
2
-K/ W applied between TSV and 

Copper. See Table 6-2 and Figure 6-5 for the results.  

Table 6-3 Comparison of effective thermal conductivity between analytical and FEA with 

resistance 

Number of Terms 

(Jmax) 

2 3 4 5 6 7 

     
 

   
  , Analytical 159.035 131.902 126.040 124.642 124.051 123.69  

    (
 

   
)    FEA 

(Grid independent) 

#elements~1.2Millio

n 

123.701 123.701 123.701 123.701 123.701 123.701  

%Error      0.00889% 

 

 

Figure 6-7 Heat flux contour and temperature distribution with contact resistance 
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Consideration is given to a layer of matrix that consists of many inclusions as 

shown in Figure 6-6 and the effective thermal conductivity is the unknown sought for. 

This could be considered a die layer with TSV interconnects and subjected to a known 

temperature boundary conditions. Thermal conductivity of silicon and copper is the same 

as the one discussed in the first example. However, in this example the diameters of 

TSVs’ are variable and ranging from 0.006(mm) to 0.192(mm). This exercise was carried 

out with or without contact resistance. The results are depicted in Figures 6-7(a, b, c) and 

Figures 6-8(a, b, c) for perfect contact and with contact resistance respectively. The 

contact resistance of R=100 mm
2
-K/ W used when computing the case with thermal 

resistance. Also, the results for variation in TSV’s diameter versus effective thermal 

conductivity for both cases can be seen on Figure 6-9 and Figure 6-10. 

 

Figure 6-8 A Silicon die layer with TSV inclusions 
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(a)  (b) 

 (c) 

Figure 6-9 Temperature contour for multiple TSVs embedded in silicon without contact 

resistance, (b) total heat flux contour for multiple TSVs embedded in silicon without 

contact resistance, and (c) total heat flux contour at the bottom wall without contact 

resistance 
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(a) (b) 

 (c) 

Figure 6-10 (a): Temperature contour for multiple TSVs embedded in silicon with contact 

resistance, (b) total heat flux contour for multiple TSVs embedded in silicon with contact 

resistance, and (c): total heat flux contour at the bottom wall with contact resistance 

Table 6-4 Analytical and FEA comparison of Keff with perfect contact 

Number of Terms 

(Jmax) 

7 

     
 

   
  , Analytical 189.128 

    (
 

   
)    FEA 

(Grid independent) 

#elements~1.2Million 

189.385 

%Error 0.13% 
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Table 6-5 Analytical and FEA comparison of Keff with contact resistance 

Number of Terms 

       

7 

     
 

   
  , Analytical 187.087 

    (
 

   
)    FEA 

(Grid independent) 

#elements~1.2Million 

187.271 

%Error 0.098% 

 

 

Figure 6-11 Variation of TSV’s diameter vs. Keff for perfect contact in the silicon layer 
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Figure 6-12 Variation of TSV’s diameter vs. Keff with contact resistance in silicon layer 

6.7 Comments/Discussions: 

The analysis shows the effectiveness of the analytically obtained results is in 

good agreement with Finite Element Analysis. The Galerkin-based integral approximation 

is very accurate and fast-converging compared to FEA. Depending on the accuracy 

required for specific application, the convergence of fewer terms is fairly quick and in a 

matter of minutes. The numerical integrations are generally slow to solve, however, it was 

noticed for the smaller number of terms Jmax<8 that the convergence is very quick. 
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Changes in the analytical results are in the 4
th
 and 5

th
 decimal places for greater number 

of terms.  

The results from Figure 6-9 and Figure 6-10 reveals that as the diameter of the 

TSVs gets larger, their impact in overall heat transfer would be higher. However, for 

actual size of the TSVs in the 1-5   range, the effect of thermal impact to overall 

temperature distribution is negligible, particularly if the contact resistance is relatively 

small. 
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Chapter 7 

Conclusions and Comments 

 

Analytical methods for finding temperature solutions of steady-state heat 

conduction in multi-layer bodies for 3D electronic packaging were presented. Problems of 

this type are encountered in many engineering disciplines and different industries. As 

cooling problems related to device protection have emerged in many electronic devices, 

these analytical heat conduction solutions become an important verification tool for 

numerically-based solutions for thermal design engineers. Analytical solutions can 

provide insight into the behavior of temperature and heat flux distribution in many 

engineering fields from mechanical and aerospace to civil engineering. An accurate 

steady-state temperature solution in multi-layer bodies is an invaluable tool for 

determination of heat spreaders in electronic cooling applications. This includes isotropic 

or orthotropic multi-layer, with or without contact conductance. Steady-state solutions can 

provide relatively accurate results away from boundary conditions and it can improve 

computation time for transient problems by imposing the non-homogeneous boundary 

conditions from transient to steady-state solution. 

During the course of this study, the semi-analytical or analytical solutions were 

validated with the FEM solutions to check for consistency in the solution profiles. It 

was also observed that the analytical and the purely numerical solutions were in 

excellent agreement with each other. So, a question that surfaces is why use a semi-

analytical method, when a reasonable solution can be obtained using FEM? Firstly, for 

a heterogeneous system that contains multiple inclusions, purely numerical methods can 

turn out to be a computationally-expensive enterprise. In addition, if the heterogeneous 

medium contains very small inclusions, finite element meshing can be a bottleneck. 
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However, the semi-analytical approach can be conveniently extended to solve multiple 

inclusion problems as well as limiting cases, wherein the size of the inclusions is 

infinitesimally small. For example, it was observed that for very small diameter TSVs, the 

number of mesh increased by 40 times in comparison to a larger one. This could be very 

time consuming when one uses an FEA approach. 

The ease of variations in the Galerkin-based functions is such that many 

configurations can be evaluated in a relatively short time frame. The effective 

thermophysical properties can be changed readily without grid-independent evaluation to 

ensure the stability criteria, as one must do when employing finite element method.  

As was mentioned earlier, many industries other than electronics can benefit 

from this mathematically developed procedure. This procedure can be used in fluid 

applications by minor modification to allow for fluid to take place as opposed to solid. The 

application for this could be in fluid cooling channels in the aerospace industry for the 

protection of composite material skin of high-temperature, high-speed air vehicles, or 

infrared signal suppression on military vehicles and many more. 

The material presented in this research paves the way for solving far more 

complex geometries and boundary conditions than is possible utilizing the finite element 

method, in a shorter time frame, and without the high computational costs associated 

with the FEA. These methods are also effectively translatable to other applications, 

increasing their utility. 
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Appendix A 

Derivation of Orthogonality Condition in the Lateral Direction 
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The development of the orthogonality condition begins with the relations 
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After multiplying the first relation by )(yYn  and the second relation by )(yYm , 

we subtract the resulting equations and integrate both sides over y from 0 to b: 
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After integrating the right side, we can write this equation as 
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Clearly, because of the external boundary conditions, the right side vanishes 

when j = 1 and 00  by . Additionally, it vanishes when j = N and bby N  . 

Moreover, one can show that these quantities on the right side have the same values 

over the contact surfaces but have the opposite signs.  
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For layer j, using the compatibility conditions for the upper limit, we can write the 

following term as 
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This process is repeated for the lower limit for layer j+1 to obtain 
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These two values are the same but have opposite signs at jby   within the 

orthogonality relation. Therefore, the orthogonality for the y-direction is  
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This can be written as  
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Appendix B 

Derivation of Auxiliary Function H 
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