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Abstract
ANALYTICAL SOLUTIONS OF STEADY-STATE HEAT CONDUCTION

IN MULTI-LAYER STACK PACKAGING

Saeed Ghalambor, PhD

The University of Texas at Arlington, 2014

Supervising Professor: Dereje Agonafer

Analytical models that can be utilized in modeling the steady-state temperature
solutions of planar and 3D packaged integrated circuits are discussed. This
mathematically-driven model will include solutions for uniform and non-uniform footprint
die stack systems as well as planar flip chip packages. These analytically obtained
temperature solutions will include the contribution of thermal resistance for both cases as
well as perfect contact scenarios. The acquired solution will accommodate any kind of
boundary conditions (first, second and third kind) on the top and bottom surfaces of the
stack system with the sides being adiabatic. Furthermore, the algorithm developed will
consider volumetric heat generation as well as heat source at any cross section within
the model.

Finally, the diffusion equation for heterogeneous layers is solved using the
Galerkin-based integral approach. The latest development pertains to the analytical
solutions of the steady-state heat conduction in stacked dies of an electronic chipset with
or without TSV (Through Silicon Via) technology. TSVs are used as interconnections
between different dies in vertical layers. Furthermore, the effect of thermal conductance

between the constituents of the layers is considered.
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Chapter 1

Introduction

The semiconductor industry has consistently followed a trajectory of
miniaturization that enables design engineers to achieve greater levels of innovation in
the same or smaller dies. This trajectory has also allowed them to use less real estate by
stacking the dies vertically. With this architectural achievement come challenges such as
cooling, as the devices must operate under specified junction temperatures. Therefore,
the thermal behavior of 3D stack packaging has recently become the center of attention
in the electronics industry. The accumulation of excessive heat within the stack is a
challenge that has caused thermal engineers to focus on the issue of extracting this heat
from the system. Thus, one important aspect of design is the ability to obtain a robust
analytical temperature solution of the multi-layer stack packages beforehand in order to
sustain the reliability of the 3D stack packages. This study addresses the analytical
formulation and governing equations that pertain to such systems by developing a
Mathematica code to obtain analytical solutions of temperature distribution in multi-layer
bodies.

Small, high-speed, and multi-functional computers and other electronic devices
have been enabled by high integration technologies that have come to reality by the
miniaturization through the process of scaling which uses a very fine pattern. However,
an upper limit in the progress of such miniaturization has come into sight. The process of
miniaturization will be technologically limited due to the increase of leak current which
generates heat in transistors, and signal delay time caused by wiring. 3D packaging
technology is one of the technologies expected to make a breakthrough such

miniaturization on a 2D surface, which will enable high density integration that does not



depend on miniaturization on 2D surfaces. By stacking chips vertically, which would
conventionally be set out on a plane, it will be possible to produce components with the
same functionality as that of the components produced by conventional methods, but with
a smaller footprint. A key 3D key technology is electrical packaging technology, which
means that it is vital to connect the stacked chips electrically. Conventional 3D packaging
technology uses wire bonding with fine metal lead wires. Recently, novel technologies
have been developed to replace wire bonding. For example, wireless connection for data
communication, which will reduce the space needed for wiring, has been proposed [1-4].
Another example is through-silicon via packaging technology [5-7] (hereinafter, referred
to as TSV technology), which uses through-holes in silicon substrate for electrical
connection. By using TSVs, it is possible to save the space that would be necessary for
bonding wires and to make wiring lengths shorter. TSV technology is moving further
ahead of other novel 3D packaging technologies mentioned above towards the
production of commercially viable components [8, 9].

In this research the mathematical modeling for both technologies are discussed.

One major concern about 3D packaging is the thermal design. As the chips are
being stacked on top of one another, overall stack package will have highly non-uniform
heat distribution with higher heat density per foot print. Therefore, one must find ways to
minimize the thermal resistance from electronic device junction to the ambient air. One
way to reduce Rj, is to reduce R, the contact resistance between the electronic device
case and the ambient-cooled, finned heat sinks or the liquid-cooled cold plates. Several
factors impact R, including surface flatness, surface roughness, contact force or
clamping pressure, surface cleanliness, and interface materials. Many technologies and
techniques can optimize the thermal path from the electronic device junction to the heat

sink. It is important to minimize the thermal resistance to maintain the electronic device



temperature below its maximum rated value and increase the end product reliability.
Therefore, the inclusion of thermal contact resistance in the calculation of temperature
fields becomes crucial. In the first chapter of this research, consideration is given to the
derivation and development of steady-state heat conduction solutions in multi-layer
bodies with uniform footprint. The study will reveal the effect of different boundary
conditions on the top or bottom surfaces of the multi-layer stack, and changes required to

obtain the temperature solutions in each case is discussed accordingly.

Chapter 3 will include the effect of thermal resistance in the existing solution

obtained in chapter 2.

In chapter 4 and 5 the consideration is given to a multi-layer stack package

consisting of two different footprints.

The solutions for steady-state heat conduction of non-uniform footprint will be
solved using classical approach (Chapter 4) and by means of an iterative inverse

methodology (Chapter 5).

Finally, Chapter 5 will consider the determination of steady-state heat conduction
in heterogeneous material which does not possess closed- form solutions. Chapter 5 is
dedicated to the TSV technology mentioned earlier with appearance of through silicon
vias into the silicon dies. The latter study includes the Galerkin-based integral techniques
to obtain solutions of steady-state heat conduction and consequently, will lead to

determination of effective thermal conductivity in a Silicon-Copper die layer.

This study complements work on transient conduction in multi-dimensional
layered materials by Haji-Sheikh and Beck [10]. One-dimensional orthogonal solutions of
composite medium were presented in [11] that described the generalized Sturn-Liouville

procedure for composite and anisotropic domain in transient heat conduction problems.



Various mathematical details are in [12,13]. Dowding et al. [14] presented a mixture of
experimental and numerical study of a two-dimensional, two-layer solution with
prescribed heat flux over all surfaces. Computation of temperature solution in multi-layer
stack packages exhibits many features that are not common when computing the
temperature solutions in homogeneous material due to a mixture of real and imaginary
eigenvalues. Steady-state solutions complement transient solution, however in some
cases transient solutions can enhance the accuracy of steady-state solutions [15-17].
This study modifies the existing solutions of steady-state heat conduction in two-layer
bodies [18]. Then, extends the solutions to N-layer for electronic applications and include
the effect of thermal conductance to the existing solutions. Also, the study further
investigates the solutions for non-uniform die footprints [19]. Study conducted by A.
Kaisare et al. [20] uses an iteration technique to obtain the temperature solutions to a
non-uniform footprint system by guessing the heat flux at the interface of the two —layer
stack. However, in this research the procedure takes the prescribed heat flux and solves
the temperature solutions for each layer using inverse techniques and classical series
solution. There are also numerous publications on multi-layer bodies such as M.M.
Yovanovich [21] in 1980 that uses finite difference approach and matrices to obtain
temperature solutions in multi-layer bodies. The procedure of aforementioned method will
lead to inversion of large matrices and is very CPU intensive compared to the
methodologies used in this research which is mostly integral-based and closed-form
solutions.

Many engineering systems often include heterogeneous materials such as
composite parts, integrated electronics packages, and other solid bodies with inclusions
of secondary materials. The secondary material can be a fiber, solder ball, or a layer of a

different material such as TSVs (Through silicon Via) in electronic packaging.



Zuzovski and Brenner [22] compared the work of Rayleigh and Maxwell for
computation of effective thermal conductivity in an infinite domain with periodically
arranged spheres. Sangani and Acrivos [23] modified the method of Zuzovski and
Brenner to solve for effective thermal conductivity of a periodic array with inline and
staggered arrangement of spheres also in an infinite domain. An accurate computation of
temperature in a three-dimensional heterogeneous region is generally time consuming
and cumbersome. For this reason, it is common practice to select average
thermophysical properties to predict temperature and heat flux in heterogeneous bodies.
Various properties of the medium are needed to determine the thermal conductivity of a
heterogeneous medium; these include the statistical distribution of constituents, volume
fraction, and the microstructure characteristics such as orientation, size, and connectivity
of individual constituents [24][. Since it is difficult to take into account all available
information, the common theoretical approach is to define lower and upper bounds for
effective properties [25]. An extensive survey related to average properties is given by
Hashin [26]. A study done by Y.M. Lee in 1994 describes the effect of elliptical inclusion
in a matrix domain for determination of thermal conductivity in multidimensional bodies
[27]. In this research the effect of cylindrical inclusion (TSVSs) into the matrix (Silicon die)
is considered and the effective thermal conductivity was computed for the composite
layer.

Furthermore, the contribution of thermal heat conductance between the

constituents was considered.



Chapter 2
Mathematical Formulations and Solution Procedure for Thermal Conduction in Multi-

Layer Stack Packages with Uniform Footprint

The study of steady-state temperature solution in a stack of multi-layered
orthotropic bodies with uniform profiles is the subject of this chapter. A stacked system is
a body with layers of different materials as shown in Figure 2-1. The exact series solution
of temperature fields in three multi-dimensional regions receives primary consideration.
The mathematical formulation in this chapter does not include the contribution of thermal
contact resistance at the interface between layers. The contribution and addition of

thermal resistance into the current derivation will be discussed in detail in chapter 3.

B.C., 1% 2" or 3™ kind

ds

i d

=3 2 o
d. X

b j=2
bz .
b?é layer j=1 .

Z B.C., 1% 2" or 3" kind

Figure 2-1 Schematic of a multi-layer body.
2.1 Steady State Energy Equation
The steady state energy equation for orthotropic layer j within a stack of many

layers is



j oty
87 + ky,j W + kz,j ¥= 0, in Region j (2-1)

Forj=12,---,N

Ky,

subject to the boundary conditions to be specified. The solution for layer j using the

method of separation of variables has the form
Ti(%y,2) =X j(X)Yj(y)Z(z),in Region] (2-2)

Forj=12,---,N

To satisfy the compatibility condition at each interface between adjacent layers j

and j+1, itis required to have X j = X j,q1 and Z; = Z ;. After substitution of T

from Eq. (2-2) in Eq. (2-1), the result is

X" Y! z"
K, i — +k -—J+k.—':0,inRe ion j 2-3
Forj=12,---,N

Preliminary consideration is given to the case of having a non-homogeneous
boundary condition to be located over an outer surface perpendicular to the y-axis. Two
cases of having the non-homogeneous boundary condition over y=0 surface and y=b
surface are presented separately.

2.2 Non-Homogeneous Boundary Condition Over y=0 Surface.
It is possible to have boundary conditions of the first, second, or third kind over a

surface perpendicular to the y-axis. However, only the boundary conditions of the first or

second kinds are considered for x- and z-directions. Accordingly, the functions X j and

Z -

jras given in Eq. (2-2), must satisfy the conditions:

XXy = X5/ Xy == Xp I Xy = X"1X =—p? (2-4a)



2012, =2512,=--=2} 12y =2"1Z =—V? (2-4b)

where 3 and v, are eigenvalues for homogeneous boundary conditions in x and z
directions, respectively. For specified eigenvalues 3, and v, the solutions for X
and Z, functions are
Xm = Dqcos(BmX) + Do sin(By X) (2-5a)
Z, =Ejcos(vyz) + Epsin(vpz) (2-5b)
and they are to remain the same for all layers.

A differential equation for Y j is obtainable after substitution for

X"IX =XMIXy=—P2 and 2"1Z =212, =-v2 inEq. (2-3) to get,

—ky, jBm +Ky YY) —kq jva =0 (2-6)
that becomes
\ 4 k, :
J X,] 2 Z,] 2 2
VR Pm+——"vn=7]mn (2-7)
J Y.l Y.l

Itis to be noted that for steady state conduction in isotropic layers v j mn = Ymn »

remains the same for all layers. For this case, the homogeneous boundary condition is

located at z =by =b and the appropriate solution form of Yj , as givenin [12] and in
[18], for a specified 3, and v, is

Yj.mn = Aj,mn COS[Y j mn (0 — Y)]+ Bj mn SINLY j mn (0 — ¥)] (2-8)

This would provide temperature solutions with the forms



:Z Z Cn { Aj,mn COSh[Y j mn (0 — ¥)]
B

i mnsmh[y, i) =X (0Zo(@) for j=1.2.N

This solution form presented for Tj leads to a relatively simple method for
finding the coefficients Aj,mn and Bj,mn . Having the homogeneous boundary

condition located at Z = by = Db, the functional form of temperature for the layer j=N is

- Z Z Cmn{AN,mn cosh[y y mn(0—Y)]

m=1l n=1

+ By SINN[Y g mn (0= Y)1X 1 (0 Z,0 (2)} (2-10)

wherein Ay mn =0 and By =1 for the boundary condition of the first kind while
An,mn =1 and By mpn =0 for the boundary condition of the second kind. For the
boundary condition of the third kind, the condition —Ky N (OYN,mn /0Y) =hYN mn at
y =Db, after arbitrarily setting Ay ymn =1, produces By mn =h/(ynkyn)-

Next, the coefficients Aj mn and Bj mn for other layers, also become

deterministic once these parameter are known for the neighboring (j+1)th layer.

Accordingly, the compatibility condition for heat flux
ky,;0T; /8y| Ky, 10T j41 /ay|y . (2-11a)
at the interface between layer j and the layer j+1, produces the coefficient

Y+, mnky j+1
—[Aj+l mn Smh(YHl mn J+1) + Bj+l mn COSh(YHl mnd j+l)]

B'mn
J 7 jmnKy,

(2-11b)



where d j+1 is the thickness of the layer j+1, as shown in Figure 2-1. The other
compatibility condition

—ky, 0T} oYy =T =T 1) yoo; ' Ri (2-12a)
provides the coefficient

Aj,mn = Aj+1,mn lCOSh(Y j+Lmn d j+1) +v j+1,mnRj ky,j+1 sinh(y j+L,mn d j+1)J (2-12b)
+ Bj+1,mn [Sinh(y j+L,mn d j+1) +vY j+1,mnRj ky,j+1 cosh(y j+L,mn d j+1)]

where RJ— is the contact resistance between the layer j and the layer j+1; it assumes a

zero value if these two bodies are in perfect contact. Beginning with layer N, these two

recursive relations produce the values of Aj,mn and lemn within the temperature
solution Tj , as given by Eq. (2-9), in a descending order for all layers.
The remaining unknown is the coefficient C,,, to be determined from the non-

homogeneous boundary condition at y=0. As an illustration, for a boundary condition of

the first kind, when Ty = f (X, Z) aty=0, Eq. (2-9) leads to the relation

£062)=3" D" CounlAvmn COSNCY1mn 1)+ By SNy 1 1) X (X021 (2)
m=1 n=1
(2-13)
and then the orthogonality conditions in x- and z-directions produce
c a
j j f (X, 2) X (X)Z,, (2)dxdz
C 2=0 x=0 (2-14a)

me lAl,mn cosh(y1 mn d1)+ By mn Sinh(yq, mn dl)JN xmNzn

where
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a
Nem = | DXm (01 (2-14b)
x=0

and

c
Non = | [Zo(01P 0 (2-140)
=0

z

Some modifications are needed when 3; = v4 =0 that would make 711 =0.
For this special case, the modified functional forms of YJ- are obtainable beginning with
Tn = CoolAn,00 + Bn,ood—y/b)] (2-15)
As before, Ay gg =0 and By gg =1 for the boundary condition of the first kind,
An .00 =1 and By mp =0 for the boundary condition of the second kind, while

An,mn =1 and By gg =hb/ky \ , for the boundary condition of the third kind. Further

discussions related to this special case are within the next numerical example.
2.3 Non-Homogeneous Condition Over y=b Surface
Minor modifications of the previous case are needed when the homogeneous

boundary condition is located at y=0 and the non-homogeneous boundary condition is

located at Y =b. For this case, Eq. (2-9) takes the form

TJ = Z Z Cmn{Aj,mn COSh[yj,mn(y_bj_l)]
m=1 n=1 (2-16)

+ B SINNLY o (Y ~Bj1)]X 1 (02, (2)
While the homogeneous boundary condition at y = by =0 produces the

functional form of temperature for layer 1 as

11



T = Z Z Cmn[Ai,mn COSh(Yl,mny)

m=1l n=1 (2-17)
+ B SINN (110 ) Xim (X024 (2)

since by = 0. Then, the values of coefficients Aj,mn and Bj n, are obtainable in

ascending order from the modified forms of Eq. (2-11b) and Eq. (2-12b) as

ijmnkyvj H
Bj+1,mn = —k[Aj,mn sinh(y j,mnd i )+ Bj,mn cosh(y j,mnd J)]
Y j+1mnKy, j+1 (2-18a)

and

Ajimn = Aj,mn[COSh(Yj,mnd j )+ VijmnRj ky,j Sinh(Yj,mnd j )J
+ Bj,mn[Sinh(Yj,mndj)+Yj,mnRj Ky, j COSh(Yj,mndj)]

(2-18b)
The forms of coefficients Aj mn and B my within function Yy, for j=1 and
2, and for insertion into
Yy = Al,mn COSh(Yl,mn y) +Bl,mn Sinh(Yl,mn y)
Y, = A2,mn COSh[VZ,mn (y- bl)] +BZ,mn sinh[y j.mn (y- bj—l)] )
are in Table 1. Once the coefficients Aj,mn and lemn for the layer N are known, the

coefficient C,,,,, can be determined from the non-homogeneous boundary condition at

y=b. As an illustration, for a boundary condition of the first kind, T;(X,b,z) = f(X,2) at

y=b and then the coefficient C,,, becomes

j .T f(X,2) Xy (X)Z,, (z)dxdz

Cin = 2=0 x=0 : (2-19)
lAN,mn COSh(YN,mnd N )+ BN,mn Slnh(YN ,mnd N )JNm Np

for insertion in Eq. (2-16).
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Numerical Example.

Consideration is given to a body, for which a = 2, b = 3, ¢ = 2, while having
three isotropic layers with by =b, =bg =1, kj = kx.j = ky,j = kz.j , ki =1, ky, =2,
and k; =5, as shown in Figure 2-1. The boundaries atx =0, x =a,z=0,and z = ¢

are insulated while there is a zero temperature at y = b. Over the y = 0 surface, there is
a surface heat flux ¢y within the areas. Next, the aforementioned procedures were used

for determination of temperature field.

Solution: For boundary conditions of the second kind, the eigenvalues are
B =(M-Dn/a with m=12,--- and v, = (n—1)n/c with N =1, 2, while the
corresponding eigenfunctions are X, (X) = cos[(m—-1)nx/a] and
Z,,(z) = cos[(n—1)nz/c]. For each isotropic layer, K, ; =k, ; =k, j =K; and this

causes Eq. (2-7) to become

%
L =Ba +Va =Y (2-20a)
Yj
while Eq. (2-10) reduces to
Ts=Y. D Consinh[ymn (0 - )X ()2, (2) (2-20b)
m=1 m=1

since Agmn =0 and Bg ,y =1. In the presence of perfect contact between the layers,
Eg. (2-11b) and Eq. (2-12b) provide the constants A = sinh(yp,d3) and

B2 mn = (K3 /ky)cosh(yy,nd3) . which makes
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T, =il il Crnn {8INN(Y iy d3) COSALY g (b — Y]
m=1 m=
+ (k3 /kp) C0Sh (Y d3) Sinh[y g (B2 = V)P X 1 (X)Z (2)
Next, when j=1, Eq. (2-11b) yields
Ay mn =Sin(y mp d3) cosh(y yndy) + (k3 / k) cosh(y mads) sinh(y ,nd5)
and Eq. (2-12b) yields

Bimn = (Ka k) [sinh(y n d3) sinh(yndy) + (K3 /ky) cosh(y ,d3) cosh(y mndy)]

(2-20c)

for insertion in equation

T = Z Z Cmn{Al,mnCOSh[Ymn(bl -yl
m=1 m=1 (2-20d)
+ By Sinh Ty g (01~ YIX 1 ()2 2)
Since By was selected arbitrarily, one can replace it to become

1/cosh(ymnds) for numerical determination of temperature. This would replace C,,, to

become C,, / cosh(y ,,,d3) and the replaced forms of the temperature solutions are:

SRR sinh[y (0 — y)]
T,=» > C X (X)Z,(2), (2-212)
3 m:]_ n:]_ mn COSh(Ymnd3) m "

T, = z Z Cmn{tanh(YmndB)COSh[Ymn(bZ -yl
m=1l n=1

+ (kg /Ko) Sinh[y i (b = V)X 1 (X) 2, (2)

(2-21b)

while

Amn = tanh(y mnds) cosh(y mnd,) + (kg /ky) sinh(y p,dy)

and
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Bl,mn = (ko /kp)[tanh(y mnds) sinh(y,,d;) + (k3 /Ky ) cosh(y mndy)].

for insertion in Eq. (2-20d). Finally, the coefficient C,,,, is computed from the definition of

y=0 (2-22)

Crnky {Al,mnSinh(Ymnbl) + Bl,mnCOSh(Ymn bl)}’YmnX m(X)Z,(2)

input heat flux

0
0y = _kl(

m=1L n

g

M 2|

Il
LN

with X, (X) = cos[(m—-1)nx/a] and Z,(z) = cos[(n —1)nz/c] whose orthogonality

conditions provide

.(i .T a(x, z) X (X)Z, (2)dxdz

Con = 2=0 x=0 (2-23)
Ymnkll_Al,mn sinh(y pndy)+ By mn cosh(y ,mndl)JN xmNzn

As stated earlier, when m=n=1, the above relations should be modified and they

become
Y311 =Ag11+B311(03 —y) with Agyy =0 and Byyy=1,
Y211 =Ao11+Bp11(02 —y) with Ayyy =bg —b, =d3 and By13=k3/k;
Y111 = A1 +Bras (b —y) with Ajgq =dz +dyka/ky and Bygg= (kg /k;)(Ky /ky)

It is to be noted that when the wall heat flux at y=0 is uniform, the temperature

solution in region 1 takes the form
Ty =Cyyld3 +dakg /Ky + (kg Tk )(by — y)]
where Cq; = q/k3. When the heat flux has a uniform value within 0 < X <a; =1 and

0 <z <¢; =1 while having a zero value elsewhere, the dimensionless surface

15



temperature K;T /(qd;) values are computed and they are plotted in Figure 2-2. The
solutions are numerically well behaved for practical applications. Clearly, when

8, =C; = 2, the problem becomes one-dimensional and the computed value of
dimensionless temperature at location (0, 0, 0) using a single term is
k;T(0,0,0)/(g4b;) =1.7. The series convergence characteristics suggest that more

terms are needed as the problem becomes three-dimensional; e.g., when y = 0, more

than 100 terms in each direction is needed to get five accurate digits. As a test case, for

a; =¢; =1.5, 1.0, and 0.5, using 150 terms in x-direction and z-direction produced
k.T(0,0,0)/(q,b,) =1.30503, 0.92787, and 0.50700 with error within the last digit,

respectively. However, the error exponentially decays when y>0. For example, when

a; =C; =1.5, the computed dimensionless temperature is

k;T(0,,0)/(gyb;) =0.072831194, using 10 terms. The exact value of this temperature

is 0.07283119526.
2.4 Volumetric Heat Source at Interior Locations
In this section, consideration is given to determination of temperature in a multi-
layer body in the presence of volumetric heat source. The boundary conditions on all
surfaces are homogeneous. The effect of non-homogeneous boundary conditions is in
the earlier sections. The governing Poisson’s equation in layer j is
0°T, 0°T, 0T

Ky i —= +ky i ——= +K -—j+g(x,y,z)=0 (2-24)
X, 8X2 Y, J 8y2 Z,) 622
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where gj(x, Y, Z) describes the effect of a volumetric heat source in the layer j. The

basic steps to acquire a solution are similar to those discussed earlier but with
modifications presented below.

It is possible to propose a solution of the form

Ti=> D> D ConXm (Y p()Zp(2) for j=1,2,---,\N  (2-25)
m=l n=l p=l

where the functions X,,,(X), X, (X), X,,(X) satisfy the differential equations

X" X =—B2 (2-26a)
YIIY; =—y° (2-26b)
Z"1Z =—v? (2-26¢)

In this application, it is possible to select Y=Y that remains the same in all
layers. This makes the Yj (y) function have the same functional form as that in Eq. (2-

26¢), except v j =y for this application, unconditionally. This makes the Yj (y) function

the same as that in an earlier section when all layers are isotropic. The functions X (X)
and Z(z) remain the same as those presented in an earlier section, see Egs. (2-5a,b).

Next, the substitution of TJ— from Eq. (2-24) into Eq. (2-25) produces the relation

T M8

Crnp Ky 1B +Ky 175 +K; iv2)
lnz:; %‘1 mnpA=x, jEm VA RNY Z,) (2-27)

XX (Y j,p(V)Zn(2)=9;(xY,2)

3

The coefficient Cmnp is obtainable after application of the classical orthogonality

conditions,
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(2-28a)

z
n(Vn2) dxdydz

2 2
ivp +kz,jV )

Y.l

2
m

0 Iz
ky,jgj(xv Y Z)Xm(BmX)Yj,p(Ypy)Z
(kx,jB +k

(2-28Db)

[Yl,mn (v j.mn y)]2 dy

ky,j

0

bj
y:

> |

while the other norms are obtainable using Eqgs. (2-14b,

within

C).

In proceeding chapters the numerical examples of this type are illustrated.
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Figure 2-2 The surface temperature at y = 0 for example 1 whena; =C; = 1.
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Chapter 3
Analytical Thermal Solution in Multi-layer Stack Package with Non-uniform Power

Distribution and Contact Resistance

The use of one-dimensional orthogonal expansion for thermal conduction in composite
media is described in [28]. A Sturm-Liouville procedure for solving transient heat
conduction problems for composite and anisotropic domains is outlined in [29]. Various
studies of transient conduction in multi-layer bodies are in [30-35]. This research work
modifies the solution of steady-state conduction in two-layered bodies reported in [36] for
electronic cooling applications. An iterative solution of temperature field in multi-layer

bodies with different form factors is in [37, 38].

In this chapter, the mathematical procedures focus on studying steady-state
temperature solutions in a stack of multi-layered isotropic and orthotropic bodies with
uniform rectangular profiles. An important feature that is included in the model is a non-
uniform power distribution. A stacked system is a body with many layers of different
materials, as shown by the three layers in Fig. 3-1. The study primarily considers the
exact series solution of a temperature field in a three multi-dimensional region. The
mathematical formulation includes the contribution of thermal contact resistance at the
interface between layers. This resistance vanishes in the presence of perfect thermal
contact.

3.1 Governing Steady State Equations

The steady state equation selected for this study is the classical Poisson’s
equation, which becomes the Laplace equation in the absence of a volumetric heat
source. We consider the solution of the energy equation in a stack of N layers. Then the

governing equation for the orthotropic layer j within this multi-layer stack is
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0°T; 0°T, 02T,
a7+kyljy+kzyj—+gj=0inRegionj (3-1)

0z°
1,2 N

kx,j
Forj =

whereT; =T;(X,Y,2) is the temperature in layerjand g; = g;(X,Y,2) is the

volumetric heat source. The solution for layer j using the method of separation of

variables is
Tij(x,y,2) =X j(X)Yj(y)Zj(2)in plate j (3-2)

forj =1 2"“’ N

For the first case, we select the non-homogeneous boundary condition over an
outer surface perpendicular to the y-axis at y = 0. Additionally, we modify the acquired
solution when the non-homogeneous boundary condition is located over the surface aty
= b. These two solutions apply to the systems when the released power is over an
external surface. In the presence of released energy within interior locations, we use
Poisson’s equation in a later section.

3.2 Non-Homogeneous Boundary Conditions
First, we select a specified non-homogeneous boundary condition over a surface

normal to the y-axis at y = 0. An examination of the compatibility conditions between

adjacent layers j and j+1leads to the required conditions of Xj =X j+1 and Zj = Zj+1.
Then, the substitution of Tj from Eq. (3-2) into Eq. (3-1) produces the relation

YL 7
Ky i — +K -—+kzljZ—:OinRegionj (3-3)
' J J

for j=12,- N
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As stated earlier, the plates cannot have the boundary condition of the third kind
in the x and z directions. Accordingly, the functions X j and Zj , as given in Eq. (3-2),
must satisfy the following conditions:
X{IXy=X51 Xy == X/ Xy = X"/ X =2 (3-4a)
and
2012, =2512,=--=2} 12y =2"1Z =—V? (3-4b)
whereB and v are the eigenvalues and depend on the types of homogeneous boundary
conditions in the x and z directions, respectively. Therefore, according to Eq. (3-4a) and
Eq. (3-4b), for eigenvalues [3,,and v, , the solutions for the functions X, and Z, are
X = Dy cos(ByX) + Do sin(By,X) (3-5a)
and
Z, =Ejcos(vpz)+ Eopsin(v,z) (3-5b)
The solutions are to remain the same for all layers.

To obtain the functional form of Y (Y) , we substitute

X"IX =X IXy=—P2 and 2""/Z =2/ 1Z, =—v? into Eq. (3-3),which yields the

relation
2 " 2
_kX,ij+ky,ij /Yj—kz,jvn—O (3-6)
This relation becomes
YV Ky k, :
J X, ] 2 Z,)] 2 2
Y. Tk Pm+——"vn=7]mn (3-7)
J 2y y:)
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For the steady-state conduction in isotropic layers, Y j jn = Ymn is constant for
all layers. With the homogeneous boundary condition located at z =by =b, the

appropriate solution for the function Yj , as given in [18], is

Yij,mn = Aj,mn COSh[Y j mn (0 = Y)]+ Bj mn Sinh[y j mn (b — ¥)] (3-8)

This produces the following temperature solutions:

Tj = Z Z Cmn{Aj,mn COSh[Yj,mn(bj -yl
=1 n=1 (3-9)

m
+ lemnsinh[yj,mn(bj - y)]}Xm(x)Zn(z) for j=1,2,---,N
This solution form presented for Tj eliminates the need for matrix inversions and
leads to a relatively simple recursive method for finding the coefficients Aj,mn and
Bj,mn :
The next task is to develop a method for determining the coefficients Aj,mn and
Bj,mn . The functional form of the temperature solution for layer j = N at its

homogeneous boundary condition, which is located at z =by =D, is

Ty = Z Z Cmn{AN,mn COSh[YN,mn(b -yl
m=1 n=1 (3-10)
+ By SILY (0 = YIX i (02 (2)}
Clearly, this relation leads to the values of Ay mn =0 and By mn =1 for the

boundary condition of the first kind and Ay nn =1and By yn =0 for the boundary

condition of the second kind. Additionally, the use of a homogeneous boundary condition
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of the third kind leads to the relations —Ky N (OYN,mn /0Y) =hYN mnat Y = b. Atter
arbitrarily setting Ay mn =1, it produces By ynn =h/(ynKy N ). Once these two

coefficients are determined, the coefficients Aj,mn and Bj,mn for the other layers

become deterministic through recursive relations because these parameters are known
for the neighboring layer of (j+1). Accordingly, the process begins by setting j+1 = N. The

compatibility condition for heat flux is
kvaaTJ' /8y| y=bj - ky,j+16Tj+1 /OY| y=b; (3-11a)

at the interface between layer j and layer j+1. After the substitution for temperature, it

produces the coefficient B j,mn as

_ Yj+1,mnky,j+l [A

Bj,mn j+1,mn sinh(y j+1L,mn d j+1) + Bj+1,mn cosh(y j+L,mn d j+1)]

¥jmnKy,j
(3-11b)
where d j+1 is the thickness of layer j+1, as shown in Figure 3-1. The other compatibility

condition
_ky,JaTj /8y| y=b; = (rj _Tj+1)‘ y=b; /Rj (3-12a)
provides the coefficient A j,mn as

Aj,mn = Aj+1,mnlCOSh(Y j+1,mnd j+1) +Yj+1,mnRj ky,jJrlsinh(Vj+1,mnd j+1)J

. (3-12b)
+ Bj+1,mn [Smh(y j+L,mn d j+1) +v j+1,mnRj ky, j+H cosh(y j+L,mn d j+1)]
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]

B. C., 1%, 2"9 or 3™ kind

A j=3

b )
' 2"131_5 layer j=1

A

z B. C., 1%, 2" or 3™ kind

|
X=a

ds
d2

-
d1 X
Z=C

Figure 3-1 Schematic of a multi-layer body.

The parameter R j in Eqg. (3-12a) is the contact resistance between layer j and

layer j+1.The parameter assumes a value of zero if these two layers are in perfect

contact. Then the process of determining the coefficients Aj,mn and Bj,mn begins.

When j = N-1.Eq. (3-12b), the recursive relations produce the value of Aj,mnv and Eq. (-

11b) produces the value of Bj’mnin a descending order for all layers. Finally, the

insertion of Aj,mn and Bj,mn into Eq. (3-9) provides the temperature solutionTj .

The remaining unknown in Eq. (3-9) is the coefficient C,,,, which is determined

from the non-homogeneous boundary condition at y = 0. As an illustration, for a boundary

condition of the first kind, when Ty = f(X,Z) aty =0, Eq. (3-9) leads to the relation

o0 o0

f(x,2)= z Z Cmn[Al,mn COSh(Yl,mnb1)+ B1,mn Sinh(Yl,mnbl)]Xm (X)Z,(2)

m=1l n=L

(3-13)

Then the orthogonality conditions in the x- and z-directions produce
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c a
I .[ f (X, 2) X (X)Z), (2)dxdz

Cron = 2=0 x=0 p (3-14a)
lAl,mn cosh(y1 mn d1)+ By mn SiNN(y1 mn dl)JN xmNzn

where
a
_ 2
Nm = | DX (012 (3-14b)
x=0

and

C
Non = | [Zn (017 dx (3-140)
z=0

In some applications, modifications become necessary when Bl =Vy= 0. For

this condition, Y1 mn =7v111 = 0, and a modified functional form of YJ- becomes
Tn =CoolAn,00 + Bn,oo@—y/b)] (3-15)

As before, Ay oo =0 and By oo =1 for the boundary condition of the first kind,
An 00 =1 and By mpn =0 for the boundary condition of the second kind, and
An.mn =1 and By gg =hb/ky \ for the boundary condition of the third kind.

Minor modifications are needed when the homogeneous boundary condition is
located at y = 0 while the non-homogeneous boundary condition is located at Y = b. For
this case, Eq. (3-9) takes the form

T=3 S ContAjmn COShLY j mn (Y ~bjp)]
m=

1 n=l (3-16)

B SINNLY (Y = B)1X 1 (0Z,, ()}
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and the homogeneous boundary condition at y = by =0 produces the functional form of

temperature for layer 1 as

Ti=2" > ConnlAvmn 00N 1m0 )+ B S an X (024 ) @17)
m=l n=1
because by = 0. In this case, the values of coefficients Aj mn and Bjj mn can be

obtained in ascending order from the modified forms of Eq. (3-11b) and Eq. (3-12b) as

Y jmnKy,j :
Bj+1,mn = kaJ[Aj,mn sinh(y j,mnd i )+ Bj,mn cosh(y j,mnd J)] (3-18a)
JHLmn™y, j+1

and

Ajizmn = Ajmn lCOSh(Y j,mnd j )+ j.mnR ky,j sinh(y j,mnd j )J (3-185)
+ Bj,mn[Sinh(Yj,mndj)+Yj,mnRj Ky, j cosh(y j mnd; )]
Once the coefficients Aj,mn and Bj,mn for layer N are known, the coefficient
Cn can be determined from the non-homogeneous boundary condition aty = b. As an

illustration, for a boundary condition of the first kind, T;(X,b, z) = f(X,Z) aty =b. Then

the coefficient C,,,,, becomes

]i j.f(x’z)xm(x)zn(Z)dxdz

Cin = 2=0 x=0 : (3-19)
lAN,mn COSh(YN,mnd N )+ BN,mn Slnh(YN,mnd N )JN mNp

and can be inserted into Eq. (3-16).
3.3 Volumetric Heat Source at Interior Locations
In this section, we consider the determination of temperature in a multi-layer

body in the presence of a volumetric heat source. The boundary conditions on all
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surfaces are homogeneous. Earlier sections described the effects of non-homogeneous
boundary conditions. The governing Poisson’s equation in the homogeneous layer j is
0°T; 0°T; 8°T,

>t —— +—— |+9(xy.2)=0 (3-20)
oX oy 0z

K

where g ; (X,Y,2) describes the effect of a volumetric heat source in layer j. The basic
steps to acquiring a solution are similar to those discussed earlier but contain the
modifications presented below.

We can propose a solution of the form

Ti=2,
m=

1 n=

[Ms

> ComXm (Y p(V)Zp(2) for j=1,2,- N (3-21)
p=1

[N

where the functions X, (X), Yj p (X),and Z,(x) satisfy the differential equations

X" X =—p? (3-22a)
TR (3-22b)
Z"1Z =—v? (3-22¢)

The functions X (X) and Z(Z) remain the same as those in Eq. (3-5a) and Eq.

(3-5b). However, in this application, Yi=v, and it remains the same in all layers. This
causes the function Y (y) to have the functional form

Yip(Y)=Ajmncosly(y—bj_)]+Bj psinly; n(y—bjs)] (3-23)

The coefficients Aj,mn and Bj,mn can be obtained from the recursive relations

¥ jmnKj :
Bj+1,mn Z&[_ Aj,mnsm(Yj,mndj)"‘ Bj,mn COS(Yj,mndj)] (3-243)

Yj+1,mnkj+l
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and

Aj+1,mn = Aj,mn[COS(Yj,mndj)_anRj I(j Sir‘(?’j,mndj)J

. (3-24b)
+ Bj,mn[3|n(Yj,mndj)+anRj kj CoS(Yj,mnd j )]

These two relations satisfy the compatibility conditions given in Eqg. (3-12a) and

Eqg. (3-11a), respectively.
Next, the substitution of TJ— from Eq. (3-21) into Eq. (3-20) produces the relation

Z Z Z Cmnpkj(Brzn +Y% +V2)

m=l n=l p=1 (3-25)
XX ()Y p(V)Zn(2)=9j(xY,2)

The coefficient Cmnpcan be derived by applying classical orthogonality

conditions. The orthogonality conditions for the x-direction and z-direction are described

in Eq. (3-14b) and Eg. (3-14c). The orthogonality condition for the y-direction is in

Appendix A. These orthogonality conditions yield the coefficient Cmnpfor insertion into

Eqg. (3-21); that is,

L N .
Cmnp = N. N Nz,n J:izo jzio JZ_; jyjo

Xm ty,p

(3-26a)
gj(xy, Z)XmSBmX)ZYj'p(ZYpy)zn(an) iy
(Bm TYp tV )
where
N b; ,
Ny,mn :Z J.yzoky,j[Yl,mn(Yj,mnY)] dy (3-26b)
=L

The other norms can be obtained using Eq. (3-14b) and Eq.(3-14c).

Numerical Examples and Discussions
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Numerical examples are selected to illustrate the application of this methodology
to select situations in electronic cooling applications.

Example 1. This example is selected to illustrate the numerical procedures that
would directly produce the Fourier coefficients through recursive relations. It shows the
accuracy of this series solution for selected eigenvalues of reasonable size, as described
in [39, 40]. For this example, we select a five-layer body similar to the three-layer body
depicted in Figure 3-1. In this body, a = 10 mm, b; = 0.625 mm, b, = 0.650 mm, b; =
1.275 mm, b, = 1.3 mm, bs = 1.925 mm, and ¢ = 10mm. The selected thermal
conductivities arek; = 100 W/m K, k, = 4 W/m K, ks = 100 W/mK, k; =4 W/mK, and ks =
100 W/m K. The layers have a convective surface at'y = bs with h = 10,000 W/m? K, while
all other surfaces are insulated. To simplify this presentation, we hypothesize that there
are two volumetric heat sources: the first one in layer 1 with g; = 2.56x10° W/m® and the

second one in layer 5 with gs = 5.76x10® W/m®. Furthermore, the contact resistance
within a unit area between layers in one-dimensional space is RJ- =5x107° m>K/W for

j=1to 4.

Using the procedures described earlier, we compute the temperature when the
energy released in layers 1 and 5 are within x =0 to a/2 and z = 0 to ¢/2 whiley =0 to by
in layer 1 and y = b, to bs in layer 5 as shown in Figure 3-2(a). We calculate the
temperature using five eigenvalues in the x- and z-directions while selecting twenty

eigenvalues for the y-direction. The acquired temperature values for

6,(x,0,z) =T,(x,0,2) —T, are plotted in Figure 3-2(b). Additionally, the temperature
variation T; (a/2,y,c/2)—T, is plotted in Figure 3-3. To verify the accuracy of these

data, we provide a sample for temperature T j (al2,y,c/2) atdifferent y locations in
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Table 3-1 At these locations, it is possible to produce an exact solution. The
superposition method indicates that these values can also be derived from a one-

dimensional exact solution divided by four. Designating this auxiliary temperature as
0; (y)= T; (y)—T,, , aone-dimensional steady-state solution clearly shows that

e;(y) :T5>!< -Ty

_ Gt +9sds_ gs[dZ —(y—bs)®] _ gadilds —(y —by)]
h 2ks kg

Then the temperature when 'y = b4 is

2
0% (bs) = 9101 ;gsds N 92555 N glildS
5 5
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Figure 3-2 (a) The five-layer 3D stack, and (b) the surface temperature

Volumetric generation
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0,(x,0,2) =T;(x,0,2) - T, as a function of x and z
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‘;—‘—“7‘\ :
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Figure 3-3 The computed temperature 0;(a/2,0,c/2)=T;(a/2,0,c/2)-T, fora

five-layer body in Example 1 and a comparison with 6"} (a/2,0,c/2)/4.

a c
Table 3-1 A comparison of 0 j (E’ Y, E) with the results from the exact solution using

%
05(y)/4.
Layer j Location y 1 .
0l 2.y,5| | $05()
2 72 4
J=1 0 15.2063 15.2063
b, 15.0813 15.0813
J=2 b, 14.8813 14.8813
b, 14.6313 14.6313
J=3 b, 14.4313 14.4313
bs 14.1813 14.1813
J=4 bs 13.9814 13.9813
b, 13.7314 13.7313
J=5 b, 13.5312 13.5313
bs 13.0 13.0
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Applying the classical resistant networks produces the following temperature

values
02 (bs) = 05 (bg) + 9101Ry,
01 (by) =04(0g) + gldl(k_4+ R3 +k—3+ Ry +k—2+ le,
4 3 2
Finally, we obtain

2 2
07 () =01 (o) + 20 1—(%}

We compute these temperatures at specified locations, and we present the

values of 0% / 4in Table 3-1 to compare them with the series solutions and selected
jly

data for E)ﬂj (y)/4 values are plotted in Figure 3-3 using circular symbols. The data

show that a series solution of reasonable size would produce sufficiently accurate results.
Numerical Example 2. For this example, we consider a 3D package that consists
of five layers (N = 5). The lateral dimensions are a = 10 (mm) and b = 10 (mm). This
device could be considered a 3D stack package of low density that consists of three
layers of silicon joined by two layers of thermal interface material (TIM). The silicon layers
1, 3, and 5 have the same thickness (thatis, d1 = d2 = d3 = 0.625 (mm). See Figure

3-4(a).
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Figure 3-4 (a) The five-layer 3D stack, and (b) the wattage of each volumetric source

The TIM layers 2 and 4 have a thickness of d2 = d4 = 0.05 (mm). The TIM

layers have a thermal conductivity of k2 = k4 = 4 (W /m.K), whereas the silicon layers
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have a thermal conductivity of k1 = k3 = k5 = 100 (W /m.K). The top surface of the
stack package is exposed to the boundary condition of the third kind, where h =
10000(W /m?K). Ten functional blocks exist at each layer, and each one dissipates
differently. However, every layer has the same configuration with respect to volumetric
heat generation (in this case, the functional blocks). The wattage of each volumetric
source is depicted in Figure 3-4(b). The ambient temperature is T,, = 23°C. We use the
procedure described in Section 3.2 to acquire analytical solutions and the commercially
available software ANSYS as a comparison tool to determine the temperature field for the
given configuration.

Solution/Discussion for Example 1:

We perform a steady-state thermal analysis to determine the thermal response
under applied steady-state loads. In this analysis, temperature and heat flow rates are
usually the items of interest, although heat flux can be reported as well in ANSYS
Workbench.

The general governing thermal equation is as follows:

[C(D]AT} + [K(D)]AT} = (Q(t,T)}

Where tis time and {T} is the temperature. [C] is the specific heat (thermal
capacitance) matrix, [K] is the conductivity matrix, and {Q} is the heat flow rate vector.

In steady-state analysis, all time-dependent terms vanish. However, this does not
mean that non-linearities are ignored.

For steady-state thermal analysis in ANSYS, the temperature matrix {T} is solved

without time dependent terms, as shown below;

KM1{T} ={Q(M)}
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The thermal conductivity matrix [K] can be constant or temperature-dependent. In
this case, we have a constant conductivity matrix. Similarly, {Q} can be constant or time-
dependent.

For a steady-state solution, the coefficient of heat transfer (h) can be input as the
convective boundary conditions. Fourier's Law provides the basis for the latter equation.
That is, heat flows in the solid in the basis of the [K] matrix. Heat flow, heat flux, and
convection are treated as the boundary conditions on the system {Q}. Note that if we
need to solve conjugate heat transfer, we should use ANSYS CFD because ANSYS
Workbench is not capable of solving conjugate problems.

In our example, we use the data provided as an input. We model the package in
Pro/E and import it to ANSYS Workbench for thermal analysis. We mesh the model as
shown in Figure 3-5(a). The resulting temperature contour and total heat flux are shown
in Figure 3-5(b) and Figure 3-6, respectively. Figure 3-7 shows the analytical temperature
distribution in the first layer obtained from Mathematica. Figure 3-8 compares the
analytically and numerically derived temperature solutions for some randomly selected

points from each layer.
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(b)

Figure 3-5 (a) The mesh of the model, and (b) the temperature contours.
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Figure 3-6 The total heat flux of the package.
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Figure 3-7 The analytically obtained temperature profile for the first layer.
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Figure 3-8 Comparison of the numerically and analytically derived temperature solutions.

Numerical Example 3. In this example, we consider a five-layer stack of silicon
material, as shown in Figure 3-9. Each layer consists of four functional units. Each unit
dissipates differently, as depicted in Figure 3-10. The overall dimensions of the stack
package area= b = 10(mm) anddl = d2 = d3 = d4 = d5 = 0.625 (mm). The
contact resistance between each layer is emphasized (thatis, R1 = R2 = R3 = R4 =
2 (K/Wmm?). The thermal conductivity of each layeris k1 = k2 = k3 = k4 = k5 =
100(W /mK). The top surface of the stack experiences a convection value of h =

10000(W /m?K), while the four sides of the stack are assumed to be insulated.
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Figure 3-9 A five-layer stack of silicon material
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Figure 3-10 The four functional units in each layer.

We apply the procedures described in Section 3.1 to this problem by using Eq.

(3-24a) and Eq. (3-24b).We also use these procedures to determine the temperature

Discussion of Example 3:

In this example, we use the same procedure used in Example 1.However, we

also consider the effect of thermal contact resistance in this example. In ANSYS, a
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professional license user may define a finite thermal contact conductance (TCC). When
two surfaces touch each other, ANSYS will assume perfect thermal contact conductance
between the joined members unless the user changes the contact settings for the
problem. The contact region is composed of “Contact” faces on one side and “Target”
faces on the other side. Heat flow is only allowed between the contact and target
elements in the contact normal direction. In other words, heat can only flow if the target
elements are present in the normal direction. Heat spreading between the contact and
target surfaces takes place because of Fourier's Law, and ANSYS will use the following
equation to determine the heat flow between the contact elements

q = TCC[Ttarget — Teontact]
where Tyqrger @Nd Teoneacr @re the temperatures of the target and contact nodes,
respectively.

In our example, we import the Pro/E model to ANSYS Workbench for steady-
state thermal analysis. After successfully inputting the boundary conditions and heat flow
rate of each section of the layers, we apply the TCC values at specified locations (that is,
between each layer). Note that thermal contact conductance is the inverse of the contact
resistance per given area.

The results are shown for the temperature contour and the heat flux in Figure 3-
11 and Figure 3-12, respectively. Figure 3-13 shows the comparison between the
analytical and numerical results for the selected points along the y-axis through the
center of the package. Figure 3-14 depicts the temperature profile obtained analytically

for the first layer, where the maximum temperature occurs.
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Figure 3-11 The temperature contours of the stack package.
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Figure 3-12 The total heat flux of the package.
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Figure 3-13 The comparison between the analytically and numerically derived results.
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Figure 3-14 The analytically obtained temperature profile for the first layer.
3.4 Conclusion

The reported analytical solution covers a wide range of applications in electronic
cooling especially in the first level packaging. The analytically derived temperature field
can provide an accurate solution for the purpose of verifying a numerically acquired
solution. In the second example, without the presence of any contact resistance, the
numerical and analytical solutions were well matched (see Figure 3-8). The maximum
temperature obtained from ANSYS in Figure 3-5(b) is 134.93°C, and the one from the
analytical solution in Figure 3-7 is 134.89°C.

In the third example, which involves thermal contact resistance, the numerical
and analytical solutions are in good agreement. The small deviation is expected because
the finite element is an approximation, not an exact solution. The maximum temperature
obtained analytically in Figure 3-14 is 90.7°C; while the maximum obtained from ANSYS,
shown in Figure 3-11, is approximately 90.43°C. Both approaches show that the
minimum temperature is 72°C. In the first example, the analytical solution matched with
the exact solution and verified the high accuracy of the analytical method developed in
this presentation. Moreover, the analytical solutions converge with an order of magnitude

faster than the computational approach.
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Chapter 4
Determination of Steady State Temperature in a Two-layer Body with Different Form

Factors

The determination of temperature in multi-layer bodies has been the subject of
numerous studies and analytical solutions are well established [41-44]. A multi-layer body
consists of plates having different thicknesses but with uniform platform areas. Also, the
rectangular plates of different platform areas can be attached to each other in many
engineering applications. These systems appear in different engineering applications
such as in electronic cooling devices and they often do not accept closed-form analytical
solutions. Information related to the use of layered materials in electronic cooling
applications is in [45-49]. The study of related spread resistant is available in the
literature and related information is in [50-53].

The mathematical procedure for the system under investigation also leads
toward an integral equation to be solved by an inverse technique [54], which may have
an analytical solution for special cases. The function specification method has often been
used to solve heat conduction problems and the related methodologies are in [55-57].
Other estimation techniques are available in the literature; e.g., using a surface element
technique [58], an iterative procedure [59], etc.

This presents a function-specification procedure that leads to a closed-form
solution. In this study, we examine two parallel rectangular plates with different platform
areas attached to each other, as shown in Figure 4-1(a). The system depicted in Figure
4-1(a) consists of two plates, one with thickness b and the other with thickness d. Plate 1

receives locally variable heat flux input at y=b while plate 2 serves as a heat spreader

which rejects the energy received at 1=d to the environment from the surface located
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at n = 0. Analytically obtained closed-form series solutions are presented for these two

plates in contact. These solutions exhibit special convergence behaviors, as discussed in
this presentation. The two analytical solutions are: one for Layer 1 and the other for Layer
2. These two solutions accept the imposed compatibility conditions at the contact surface
where y=0. The two solutions, for Layers 1 and 2, are acquired analytically by functionally

specifying the heat flux leaving Layer 1 at y=0 and entering Layer 2 at n=d .

4.1 Mathematical Relations
This is to study the behavior of a temperature field within a two-layer body when
each layer has a different size. The schematic of the region and the coordinate systems
is in Figure 4-1(a). The governing equations for steady state conduction must satisfy the

Laplace equation

2
0°T;

ox? 8y2 0z°

(4-1)
with j=1 in region 1 and j=2 in region 2. This system has insulated boundaries in x- and z-
directions. The subsequent mathematical presentations include solutions for two- and

three-dimensional temperature fields.
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Figure 4-1 Schematic of two-layer bodies: (a) in three-dimensional apace with

coordinates (X, Y, z) and (§,m,c), (b) in two-dimensional space with coordinates (X, Y)

and (§,m).

Next, the temperature solutions for Layer 1 and for Layer 2 are in separate
sections. As stated earlier, these two solutions must satisfy the imposed boundary

conditions and the compatibility conditions between the two layers.
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4.2 Temperature Solution in Layer 1
The temperature in Layer 1, designated as Ty (X, YY), must satisfy the Laplace
equation

8%, 0%, o'y
2 + 2 + 2
oX oy 01

0 (4-2)

with boundary conditions:

BC1,2) qOy.2)=0q(@,y 2)=0

(BC3,4) (X y.0) = (x y,a;) =0

(BC 5) To(%,2) —T1(x,0,2) = Rg; (x,0, 2)

(BC6)  qu(x,hb,2)=0ay(x2)

where the interface temperature, Ty (X, z) =T, (X,0, z) is the unknown surface

temperature. The parameter R in (BC 5) accounts for the effect of thermal contact
resistant between these two layers. This problem has two non-homogeneous boundary
conditions; therefore, it is to be decomposed into two problems

Ti(X,y,2) =T, (X, ¥,2) + T, (X, Y, Z) each having five homogeneous boundary
conditions and a single non-homogeneous boundary condition. The first problem requires

the solution of equation

+ + =0 (4-3)

with boundary conditions:
(BC1,2) 05(0,y,2)=0,(a4,Y,2)=0

(BC 3, 4) qa (Xv y,O) = qa (X’ Y, a2) =0
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(BC5) T,(%,0,2) =—Rq,4(x,0,2)

(BC 6) d,(x,b,2) =q,,(x,2)
This is a classical steady-state problem [60] and a solution that satisfies the

differential equation and the homogeneous boundary conditions (BC 1-4), and (BC 6) is

Ta(X¥,2) =Coo(y +Rk)) + D > Cpon (1= 8¢ 1men) cOS(NMx/ 81) cOS(Nmz/ ay)
m=0 n=0

x[sinh(y mnY) + RK1y mn €OSh(y mn ¥)1
(4-4a)

where 8¢ . is the Kronecker delta indicating 8¢ y.x =1 when m+n =0 while
Oo.m+x =0 when m+n = 0. Then, the use of non-homogeneous boundary condition
(BC 6), followed by the application of orthogonality condition, would produces the relation

T, (X, Y,2) = (y+Rk1]j J qW( Z)ddeJrZ: z cos(mnx/ay)

7=0 x=0 m=0 n=0

xcos(nnz/az)[ [S'”h(vmnv)+Rkwmncosh(v,_my)] j
NmNn¥mn[COSh(Y mab) + Rky v mn Sinh(y mab)]

(4-4b)

a 7
x (1-3, m+n)j I q"" )cos(mnx/al)cos(nnz/az)dxdz
z=0 x=0 1

1/2

where v,q = [(mn/ al)2 + (nm/ az)z] . After determination of temperature field, the

heat flux at y=0 surface is obtainable from the relation
o0 o0
0a(%0,2) =Dgg+ D D (1= min) Dy COS(Mnx/ &) cos(nmz/ a,)
m=0 n=0

(4-5a)

with
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aQ q

I Iqw(x,z)dxdz (4-5b)

X7 720 x=0

1

Doo =

when m=0 and n=0, while

D 1
" N Np[eosh(y mnb) + Rky sinh(y nb)]
a a (4-5c)

xj IqW(x,z)cos(mﬂx/al)cos(nnz/az)dxdz
z=0 x=0

when m >0 orn > 0. These coefficients have known quantities since g, (X) is the
prescribed heat flux distribution over y=b surface.

The second problem is to solve for Ty, (X, Y, z) , which also satisfies the Laplace
equation

0Ty 0%Ty  0°Ty _
2 2 2
OX oy 0z

0 (4-6)

with boundary conditions:

(BC12) 0y(0.y,2)=0p(a1,y,2)=0

(BC3.4) 0p(X ¥,.0)=0ph(X,y,82) =0

(BC5) To(X,2) =Ty (X,0,2) = Rgy (x,0, 2)

(BC 6) gy (x,b,z) =0

where the interface temperature, T (X, z), is the unknown surface condition, to be

determined from the forthcoming T, (&,m, &) solution for inclusion into the compatibility

condition (BC 5) at y=0. The separation of variables technique, using the homogeneous

boundary conditions, provides the relation
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To(%,¥,:2)=Coo+ ¥, > Cron(l=8gmin)
m=0 n=0 (4-72)

x cos(mmnx/a;) cos(nmz / a,) coshly ,n (b — y)]

Once Ty (X, ) is specified, the non-homogeneous boundary condition (BC 5)

produces the temperature solution T, (X, Y, Z) as,

a; a 0

Tb(x,y,z):$ I J.To(x,z)dxdz+ Z Z (1-30,m+n)

z=0x=0 m=0 n=0
y cos(mnx /aq) cos(nmz / ay)cosh[ymn (b —y)] 4-7b)
N m N [cosh(ymnb) + Rkyymn Sinh(y mnb)]
ar» a1

X j ITO(x, z) cos(mnx/aq) cos(nnz/ ay )d xdz
z=0x=0

and then the heat flux at y=0 surface becomes

dp (X,0,2) = z Z Brmn (1_80,m+n)cos(mnXJCOS[%J
m=0 n=0

(4-8a)
A az
wherein
B — Ymn tanh(ymnb)
™ NNy [L+ RKyy mn tanh(y mnb)]
ar a1 (4'8b)
x I ITo(x,z)cos(mnx/al)cos(nnz/az)dxdz
z=0x=0

while Bgg = 0. Then, the specified heat flux over y =0 surface, denoted as being the

primary unknown within the relation qq (X, z) = 0;(x,0, z), leads to the relation
Jo(X,2) =0,(X,0,2) +q,(X,0,2) . Itis to be noted that g, (X,0, z) is deterministic

once the function Ty (X, z) is known. Therefore, one needs to produce the temperature
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solution T (&,m,&) in Layer 2 and then the temperature solution T, (&,1,C) in Layer 2
would yield the function Ty (X, ).

4.3 Temperature Solution in Layer 2

For convenience of this presentation, a new set of coordinates is selected using
E=g,+X,m=Yy+d and = €, + X, as shown in Figure 4-1(a). The temperature
solution in the second layer also satisfies the Laplace equation

o°T, 08°T, o°T,
> Tt T
ac” o A

0 (4-9)

where T, =T, (&,1, ) must satisfy the boundary conditions
(BC1,2) Gp(0n,6)=02(c,n,C) =0
(BC3,4) 2(5M,0)=02(En,C2) =0

(BC 5) T, (&, C)/aﬂL]:O =(h/ky) T,(£,0,0)
(BC 6) — k0T, (€,m, Q)/an|n:OI =0, (,d,£), in which

02(&,d,C) =qg(E—&1,8—¢5).
The heat flux 4, (&,d, &) has a finite value within the contact area; otherwise, it

has a zero value. Similar problems with partial heating have received consideration in
transient heat conduction applications [61]. The solution begins by using the classical

separation technique using the homogeneous boundary conditions (BC 1-5).
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T2 (&,8) =Coo(n+ka /h)

+ ) Con@-8om +n)cos[m—néjcos(%j (4-10a)
m=0 n=0

C C2

X {cosh(xmnn) + " h

Sinh(kmnn)}
27vmn

The application of the non-homogeneous boundary condition (BC 6) results in a

closed form temperature solution as

Co—gpC1—¢1

— ’d,
T2(En0) = j %dgdg (m+ky/h)
€92 €1

SR (1_80 m+n)
+ ———————cos(mn&/cq)cos(nrl /cy)

Nmn

cosh(h M) + k;sinh(}»mnn)} (4-10b)

2Ymn

Amn sinh[mndj + n cosh[mndJ
C Ko C

C2—gpC1—81

X I J wcos(mm’;/cl)cos(nng/cz)dﬁdc
2

X

€2 €1

Then, the temperature over the contact surface becomes
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C2-€2081
oeo=| [ [ ~25%9 g iy m)

CiCok
- 1C2K2

+i i WCos(mnélcl)cos(an/cz)

m=0 n=0 NmNn

cosh(Amnd) +

1

sinh(. mnd)} (4-11)

2vmn

Amn sinh(mndj + n cosh(mndj
C Ko C

X

Co—€2C1—€1
[ %@d) cos(mn& / ¢1) cos(nmt / ¢ )dEdc,
2

€2 &
4.3 Function Specification Method

Numerous investigators have used the function specification method in the past.

This procedure leads to a methodology for direct determination of g (X, z) and
To (X, ) for this application. The following formulations are devoted to determination of
the heat flux g (X, z) over the contact area. The relation

do(X,2) =0,(X,0,2) +q,(X,0,z) suggests having a specified functional form for

do (X, 2); thatis

e8] o0

Qo(X,2) =D > Ayqcos(mnx/ay)cos(nnz/ay) (4-12)
m=0 n=0

wherein A, coefficients are the unknowns to be determined. Using Eq. (4-5a), the

function ¢, (X,0, z) has a deterministic form

0a(x,0,2) = Z Z D cos(mnx / aq) cos(nnz/ay) (4-13)
m=0 n=0
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since the coefficients, D,,,, have known values, as given by Equations (4-5b) and (4-5c)
respectively. Furthermore, Equations (4-8a) and (4-8b) describe the functional form of
dy (X,0, 2) . Therefore, it can be stated that g (X, z) =0,(X,0,2) +q,(X,0,2) and,

after substitution of their functional forms, one obtains:

D By cos(mnx/ ;) cos(nmz/ a,)

[M]s

D > Ay cos(mnx/ay)cos(nnz/ay) -

m=0 n=0 m=0 n=0
o0 o0
=Y > Dy cos(mnx/a;)cos(nnz/a,)
m=0 n=0
(4-14a)
Then, according to the orthogonality condition, this equation requires to have
Amn —Bmn = Dmn- (4-14b)

Physically, the integration of gy (x,0, ) , as given by Eq. (4-8a), over the contact

area

D

2

)

represents the total heat flux that must be equal to zero since all other surfaces are

> >

m=0 n=0

Bmn cos(mnx/a;)cos(nnz/a,)dxdz = Bygaya,  (4-14c)

o 2

insulated and there is no volumetric heat source. Therefore, the coefficient Byg =0 and
this makes Ayg = Dgg and Ay has a known value, as given by Eq. (4-5b).

These relations suggest that the determination of the unknown coefficients A,

require the solution of N simultaneous equations. First, consideration is given to a two-
dimensional system, depicted in Figure 4-1(b), and a numerical example. Then, the

solution for three-dimensional problems is applied to a numerical example.

55



4.4 Two-Dimensional Systems
Consider a two-dimensional case wherein a =d;, C=C;, €=¢4, a, =Cy, and
g, = 0. Next, after needed simplification, the parameter D,, has known values and
each B, depends on all A, parameters, which produces N equations for N unknowns;

where, N is an arbitrarily selected number of eigenvalues for a desired accuracy.
Accordingly, one can select a modified form of Eq. (8b) in two-dimensional space to get

a
B = [ T, (x)cos(mnx/a)dx (4-15)

( 21Ky j mtanh(mnb/a)  x=0

a2

wherein the function Ty (X), as given by Eq. (4-11), takes the following form

R nm(X + ) ol —qo(E—¢) nmé
To(X) _2§ @, COS(TJ I 0k2 cos( . )dg (4-16a)

where

sl
O, =|—+—| whenn=0 (4-16b)
c Bi

and

nnd Bi . nmd
cosh(j + smh(j
c nmw C

q q when n>0 (4-16c¢)
(nn)sinh(nnJ + Bi cosh(mj

O, =

c C

After substitution for g (X), as given by Eq. (4-12) in Eq. (4-16a), the function

To (X) takes the form
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e+a

To(x):;—zi D, cos(w)i Aj j cos( :éjcos(J G ))dg (4-17)
2 n=0 j=0 €

Now, one can define a new parameter Pnj as

P = j' cos( - Jcos(ln(g_ )j de

€

. e+a
_ \P(“_ﬂi gy gj
C a _
E=¢

(4-18a)

where the integral in this equation takes the forms

nnt  jnt a when n=j=0
T[T’? ; ej = &cos(;nn/c) B csm[nnie —-28&)/c] when nfc=j/a (4-18b)
nm

Otherwise,

\P(nng jmE 8} _sin[gjn/a+ (nn/c— jr/a)g]
c  a 2(n/c— jn/a)
_sinfgjn/a—(nrn/c+ ju/a)E]
2(nm/c+ jn/a)

(4-18c)

This equation describes three separate solutions. Therefore, modified and
simpler forms of this equation are needed when N = j =0 and when n/c = j/a. This

leads to the temperature solution at the contact surface as

To(0="" Z @, oS (”“(’;”)jz APy

k n=0
(4-19)
_22 A Z ® COS(nn(X+8)j y
kz j=0 n=0 ¢

and then the coefficient B, as given in Eq (4-15) becomes
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— 4ntmk = -
B =%tanh(m—“bjz A D @4PyHmn (4-20)
a“ks a Jioo o

wherein the function H,,, is determined and it becomes

a
H mn = I COS( m;EX]COS[ nTE()((:-l- g)j dx

0

(4-21a)
a
_ \P(@,@,_ej
a ¢ 0
and
- a when n=j=0
Y| ——=,——,—€ | = xcos(emn/a) asin[mn(e+2x)/a]
a ¢ + when m/a=n/c
2 4mn
(4-21b)
Otherwise,
‘P( mng nng _ej _sin[enm/c+ (nm/c—mn/a)Xx]
a ¢ 2(nn/c—mmn/a)
(4-21c)

N sin[ent/c+ (nmt/c+ mmn/a)x]
2(ne/c+mmn/a)

Similar to Eq. (4-18a,b), the form of this equation is modified when m=n=0
and when n/c =m/a. Accordingly, the form of constants B, as given by Eq. (4-20),

reduces to take the following form
o0
B = BmjA (4-22a)
j=0

where,
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4mmk, mnb |~
2 tanh( " JZ @, Py Hin (4-22b)
2 n=0

ij ==

and it is analytically deterministic for N unknown coefficients. Additionally, the reduced

form of Eq. (4-5c¢) yields the coefficient D,,, for this application as

Dy = 1 I gy (X)dx when m=0 (4-23a)
a x=0
and
a
Dy, = _2 I Aw () cos(mn?da) dx when m> (4-23b)
a ¢ _[cosh(nrmtb/a)+ Rk, sinh(nrtb/a)]

As stated earlier Ay = D and it has a known value. Then, selecting a finite
number of terms, N, the coefficients Aj for this two-dimensional case are needed to get

the surface heat flux gq(X) as,

N
do(X) =D Ay cos(mmx/a;)
n=0

N (4-24)
=Dy + Y. Ay cos(mnx/a;)
n=1
Next, Eq. (4-14b) for this two-dimensional case takes the form
N
m —Z ijAj = Dm (4-25&)
and after setting Ay = Dy, it becomes
N
An = BmjAj =D +BmoDo (4-25D)

=L
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As a test case, when N=4, this equation for m=1, 2, 3, and 4 leads to four

equations with four unknowns,

AL = (B11AL +B12Ag +B13As = Dy + DgByp Whenm=1
Ay —(B21AL +B22Ar +B23As = Dy + DBy When m =2
Az = (B31A +PaoAr +B3zAg = D3 + DoBzg Whenm=3
Ay = (Ba1AL +PBa2PAr +BazA3 =Dy + DoByg wWhenm=4

(4-26a)

In this illustration, these equations for determination of A, coefficients have a

matrix form,
1 00 Of |B1x Bz Bz Bua || A Dy B1o
01 00 A D
_|Bar B2z Baz Basa|| A2 |_| D2 +Dy P20 (4-26b)
0 0 1 0| |Bss B3z Baz Baa||As Ds B30
0 0 0 1] [Bar PBao PBas Bas])As] [Ds Pao

The above equation takes the abbreviated form
(N-[B)-[AI=[D]+ Dq [Bd] (4-27)

where [1] is the identity matrix. Following a matrix inversion, a vector representing the

unknown coefficients becomes
[AI=([11-[B])™"(ID]+ Dy [Bd]) (4-28)
Once the vector [A] is known, the heat flux and then temperature values become

deterministic. The value of ,(X) is readily available by using Eq. (4-12) while the value
of T,(X) is obtainable from Eq. (19). Then, Eq. (7b) provides the temperature T, (X, Y)
for the computation of T,(X,y) =T, (X, ¥) +T,(X, y) and Eq. (4-10) yield the temperature
T,(&,n) in Layer 2, by using

qO(a_S) when 83&S8+a
0 when E<e and E>e+a

q2(§,d)={
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Further details related to the method of determination of vector [A] are included in

the following numerical example. Also, the data exhibit the convergence behaviors of
T.(x,y) and T,(&,77) functions.

Numerical example 1. Consideration is given to a two-layer body with different

form factors place so that € = (C —a)/ 2. Having b as the characteristic length, the other
dimension of Layer 1 is a = 2D . The heat flux g, is considered to be a constant
between x=a/4 to a/2 and between x=3a/4 to a. The second layer, as depicted in Figure
4-1(a), has dimensions C =5b and, d = b ; this makes ¢ =(c—a)/2=3b/2. By
assuming kl to have an arbitrarily selected value, the other properties are being selected
so that K, = 4Kk, and the Biot number is Bi =hc/k, =20. This will permit the
examination of this numerical procedure and the accuracy of temperature values.
Solution. First, Equation (4-28) provides the coefficients A, for insertion in Eq.
(4-12) in order to determine the specified heat flux, gq(X) . A sample of computed heat

flux, qq(X)/Q,, ., values is in Table 4-1 and a plot is in Figure 4-2. Also, the heat flux

contribution gy, (X,0) is plotted in the same figure and shows similar convergence. The
acquired heat flux data for N = 200 and N = 500, plotted in Figure 4-2, clearly show the
behaviors of these qq(X)/q,, and g, (x,0)/q,, functions. Although the data agree well

graphically, their deviations are relatively large near x = 0 and x = a. This is

demonstrated in Figure 4-3 that contains the differences within the computed values. The

do(x)/q,, datawhen N = 200 are subtracted from those for N = 500 and the difference

is plotted as a solid line in Figure 4-3. The process is repeated subtracting data for

N = 100 and they are also subtracted from those for N = 500; the results are plotted as a
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dot-dash line in Figure 4-3. These plotted data clearly show that the error in surface heat
flux is of the order of 1/N and it reduces as N increases. Furthermore, Figure 4-3 clearly

shows relatively larger deviations near x = 0 and x = a.

Table 4-1 Computed specified function gq(X)/d,, along the contact surface at y=0.

Qo (X)/ Aw
x/b N=20 N=50 N=100 N=200 N=500
0.0 -0.58636 -0.67738 -0.76256 -0.86345 -1.02422
0.1 -0.45023 -0.44204 -0.44838 -0.44719 -0.44410
0.2 -0.41035 -0.42336 -0.42402 -0.42207 -0.42069
0.3 -0.40362 -0.40688 -0.41590 -0.41710 -0.41519
0.4 -0.42430 -0.42369 -0.42146 -0.42016 -0.41925
0.5 -0.42735 -0.42503 -0.42573 -0.42734 -0.42568
0.6 -0.44030 -0.43500 -0.43767 -0.43657 -0.43581
0.7 -0.43677 -0.44224 -0.44478 -0.44654 -0.44496
0.8 -0.45541 -0.45932 -0.45755 -0.45652 -0.45581
0.9 -0.46182 -0.46311 -0.46451 -0.46631 -0.46476
1.0 -0.48324 -0.47429 -0.47712 -0.47610 -0.47539
11 -0.48235 -0.48367 -0.48458 -0.48635 -0.48479
1.2 -0.49626 -0.50052 -0.49865 -0.49758 -0.49684
1.3 -0.49943 -0.50473 -0.50851 -0.51018 -0.50856
1.4 -0.52768 -0.52307 -0.52551 -0.52430 -0.52346
1.5 -0.54119 -0.53759 -0.53845 -0.53989 -0.53813
1.6 -0.56149 -0.56108 -0.55846 -0.55694 -0.55588
1.7 -0.55977 -0.56252 -0.57518 -0.57602 -0.5739
1.8 -0.58299 -0.60294 -0.60250 -0.60004 -0.5983
1.9 -0.64900 -0.63517 -0.64532 -0.64282 -0.63901
2.0 -0.82659 -0.94851 -1.06315 -1.19950 -1.41767
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Figure 4-2 The computed specified function ¢ (X) using 200, and 500 eigenvalues.
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Figure 4-3 The computed deviation as the number of eigenvalues changes.
Figure 4-4 is prepared to show the computed heat flux over = d surface that

contains the temperature values along the contacting surfaces. The plotted temperature

63



data are extremely well behaved. A sample of acquired data is tabulated for different N

values in Table 4-2. They clearly show that small differences, of the order of 1/ N 2
Figure 4-5 shows the computed dimensionless temperature along y=b surface. As in the
previous case, these plotted data are well behaved and a sample of acquired data is in

Table 4-3. These data also clearly show that their deviations reduce as N increases and it

is of the order of 1/ N 2.

0.15 1 ] T T

- [—e— N=500 1
F | == N=200 1
- —=—- N=100

Elb

Figure 4-4 The dimensionless temperature along the contacting surfaces.
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Table 4-2 Computed values of k;T,(&,d)/(q,,b) by different number of terms in series.

kT2 (&, d) /(q,,b)
&b N=20 N=50 N=100 N=200 N=500
0.0 0.016724 0.016371 0.016446 0.016433 0.016429
0.2 0.016723 0.016909 0.016985 0.016972 0.016968
0.4 0.018782 0.018565 0.018645 0.018631 0.018626
0.6 0.021565 0.021472 0.021559 0.021544 0.021539
0.8 0.025749 0.025884 0.025984 0.025967 0.025961
1.0 0.032837 0.032253 0.032379 0.032357 0.032349
1.2 0.040837 0.041449 0.041635 0.041602 0.041590
14 0.057640 0.055780 0.056186 0.056106 0.056077
1.6 0.080519 0.081871 0.081443 0.081525 0.081553
1.8 0.094779 0.094373 0.094217 0.094247 0.094256
2.0 0.102977 0.103570 0.103475 0.103494 0.103500
2.2 0.110863 0.110671 0.110598 0.110614 0.110618
2.4 0.115619 0.115826 0.115760 0.115774 0.115779
2.6 0.118780 0.119019 0.118949 0.118964 0.118969
2.8 0.120336 0.120101 0.120016 0.120034 0.120039
3.0 0.117805 0.118537 0.118416 0.118440 0.118448
3.2 0.113623 0.113080 0.112871 0.112910 0.112923
3.4 0.098965 0.100854 0.100263 0.100376 0.100415
3.6 0.069896 0.067244 0.067830 0.067716 0.067674
3.8 0.048582 0.049482 0.049753 0.049705 0.049689
4.0 0.039238 0.038337 0.038522 0.038490 0.038479
4.2 0.030459 0.030697 0.030845 0.030819 0.030811
4.4 0.025598 0.025432 0.025560 0.025538 0.025531
4.6 0.022294 0.021973 0.022091 0.022070 0.022064
4.8 0.019714 0.020006 0.020118 0.020099 0.020092
5.0 0.019918 0.019367 0.019477 0.019458 0.019452

65



0.9r T T T
08f .
07F ]
b o6l ]
05F .
- —e— N=500] -
0.4) == N=200
i ——-—- N=100] |
0.3 L L L I L L I L L I L L L L ]
0.0 05 1.0 15 2.0

x/b

Figure 4-5 The dimensionless temperature over the heated surface of the first layer.
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Table 4-3 Computed temperature at the heated locations where y=b.

KT () /(D)
x/b N=20 N=50 N=100 N=200 N=500
0.0 0.37506 0.37719 0.37704 0.37713 0.37712
0.1 0.38347 0.38168 0.38174 0.38167 0.38168
0.2 0.39351 0.39568 0.39571 0.39581 0.39581
0.3 0.42379 0.42119 0.42148 0.42139 0.42139
0.4 0.45974 0.46355 0.46318 0.46339 0.46336
0.5 0.54937 0.5482 0.54834 0.54830 0.54831
0.6 0.63185 0.63069 0.63103 0.63092 0.63097
0.7 0.66566 0.66600 0.66566 0.66564 0.66567
0.8 0.67624 0.67758 0.67728 0.67731 0.67733
0.9 0.66834 0.66595 0.66643 0.66628 0.66633
1.0 0.60840 0.60851 0.60852 0.60853 0.60853
1.1 0.54836 0.55096 0.55051 0.55066 0.55063
1.2 0.54015 0.53902 0.53935 0.53933 0.53932
1.3 0.55022 0.55011 0.55048 0.55051 0.55049
14 0.58340 0.58479 0.58449 0.58460 0.58457
1.5 0.66516 0.66658 0.66647 0.66653 0.66653
1.6 0.75406 0.75051 0.75092 0.75072 0.75076
1.7 0.78934 0.79222 0.79196 0.79206 0.79208
1.8 0.81907 0.81719 0.81720 0.81711 0.81713
1.9 0.82876 0.83084 0.83083 0.83090 0.83092
2.0 0.83705 0.83522 0.83541 0.83533 0.83535

Numerical example 2. In this example, consideration is given to a similar two-
layer body as in the previous example, having 8 =a, =a and C; =Cy =C. However,

the form factors are rectangular in shape and temperature has a three-dimensional

solution. To acquire a three-dimensional condition, the heat sources are located as given
in Example 1 except for the z-direction. Accordingly, the heating sites are extended from
z =0 — a to become within Z=a/8 to z=7a/8. Furthermore, a contact resistance

R=2b/k, is added to the interface condition.
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Solution. As in the 2-D case, the insertion of Ty (X, z) from Eq. (4-19) into Eq.

(4-8a,b) provides N equations for N unknowns. The selected parameters are the same as
those in Example 1 except the applied heat flux makes the temperature solution a 3-D

problem. Using 100 eigenvalues for each direction, the size of matrix becomes very

large. For this reason this example is used to test the acquisition of A, coefficients by

an iterative technique, as presented in [4-19]. The test was successful and it provided a

rapid solution. It begins by setting B,, = 0 and using the relation A, = By + D
to calculate A,,. Next, using Eq. (4-11) and Eq. (4-8b) provides a new set of By, for
insertion in the relation A, = By, + Dy, for a new set of A, values. Table 4-4

shows the first 15 A, coefficients from a relatively large number of computed values,

when the indices m and n change between 0 and 50. Only three to five iterations can
produce satisfactory solutions while seven and 10 iterations show accurate results. As an
illustration, the computed temperature data are plotted in Figure 4-6. To show the
accuracy of the acquired data, the temperature values along a line going from the point
(0, b,a/2) to the point (a, b, a/2) are presented in Table 4-5. The computed data show
very rapid convergence and only a few iteration produces highly accurate results. The
last column in Table 4-5 contains numerically acquired data using ANSYS. The
temperature data obtained numerically are in excellent agreement with those computed
analytically, in column 6 of Table 4-5. Two contour plots of the temperature data are
depicted in Figure 4-7(a,b) while the corresponding heat flux data are graphically

presented in Figure 4-8.
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Table 4-4 Computed A, coefficients of heat flux Qg (x,2) by an iterative technique.

Amn
m n Dmn 1 Iteration 3 Iterations 5 Iterations 7 Iterations 10 Iterations
0 0 -0.375 -0.375 -0.375 -0.375 -0.375 -0.375
1 0| 0.0203074 0.0197024 0.0196291 0.0196283 0.0196283 0.0196283
2 0 0| -0.0033979 -0.0038378 -0.0038438 -0.0038438 -0.0038438
3 0 | 0.0006623 0.0007220 0.00072753 0.00072756 0.00072756 0.00072756
4 0 0| -0.0013315 -0.0015258 -0.0015290 -0.0015291 -0.0015291
0 210.0026746 | -0.0007841 -0.0012319 -0.0012379 -0.0012380 -0.001238
1 2| -0.000883 | -0.0007580 -0.0007450 -0.0007449 -0.0007449 -0.0007449
2 2 0 0.0006584 0.00072288 0.00072319 0.00072319 0.00072319
3 2 -0.00013 | -0.0001416 -0.0001423 -0.0001423 -0.0001423 -0.0001423
4 2 0 0.0002309 0.00025664 0.00025685 0.00025685 0.00025685
0 4| 4.382E-05 | -0.0012836 -0.0014773 -0.0014806 -0.0014806 -0.0014806
1 4| -1.85E-05 3.047E-05 0.00003585 3.5898E-05 3.5899E-05 3.5899E-05
2 4 0 0.0002255 0.00025065 0.00025086 0.00025086 0.00025086
3 4| -7.58E-06 -1.271E-05 -1.313E-05 -1.313E-05 -1.313E-05 -1.313E-05
4 4 0 9.741E-05 0.00011029 0.00011046 0.00011046 0.00011046
T1(X,b,2) 12
qwb/kq

Figure 4-6 Computed temperature values over y=b surface as a function of x/b and z/b

when Rk,/b=2, for Example 2.
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Table 4-5 Computed k;T; /q,,b along aline wheny=band z=a/2.

KyTy / Gyb

x/b lea/qu 1 Iteration | 2 lterations | 3 Iterations | 5 lterations | ANSYS

0 1.01191 1.01181 1.01180 1.01180 1.01180 1.0118
0.2 1.02970 1.02961 1.02959 1.02959 1.02959 1.0296
0.4 1.09589 1.09579 1.09578 1.09577 1.09577 1.0957
0.6 1.26145 1.26135 1.26134 1.26134 1.26134 1.2614
0.8 1.30748 1.30738 1.30736 1.30736 1.30736 1.3072
1.0 1.23849 1.23839 1.23837 1.23837 1.23837 1.2385
1.2 1.16946 1.16935 1.16934 1.16934 1.16934 1.1693
1.4 1.21538 1.21527 1.21526 1.21526 1.21526 1.2152
1.6 1.38081 1.38070 1.38069 1.38068 1.38068 1.3807
1.8 1.44688 1.44677 1.44676 1.44675 1.44675 1.4466
2.0 1.46463 1.46452 1.46451 1.46451 1.46451 1.4646
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Temperature Distribution Contour using ANSYS Workbench

B: Steady-State Thermal (ANSYS)
Temperature

Type: Temperature
Unit: °C

Time: 1

2/14/2012 10:31 PM

1.4646 Max
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1.1393

0.97672

0.8141
0.65148
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@)

B: Steady-State Thermal [ANSYS]
Temperature

Type: Temperature
Unit: *C

Time: L

2/14/2012 10:3L PR

1.4646 Max
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0.001002 Min

(b)

Figure 4-7 (a) Temperature distribution contour using ANSYS workbench (top view), and

(b) temperature distribution contour using ANSYS workbench (isometric view).
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Figure 4-8 Graphical presentation of the total heat flux in W/mm2.

4.5 Comments and Discussions

An examination of Eq. (4-5c) shows the convergence behavior of g, (X,0) that
contributes to the specified function gq(X) . It shows that Eq. (4-5a) converges very fast

since the term 2/[acosh(nrnth/a)] reduces exponentially. As an illustration, for a/b=2,

this quantity takes the value of 3.0 %10~" when n=10 and it further reduces to become
1.2x107%% when n=15; therefore, its convergence is not a major issue. Accordingly, the
changes observed the values of gy (X) are mainly due to the uncertainty in
determination Ty, (X, y) that is related to the function Ty (&) =T, (&,d).

The concept of this function specification method has been used for developing a

numerical solution. This study presents a technique for analytical determination of the

specified coefficients. If one selects the functional form of gy (X), as emerged from the
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solution of T; (X, ¥) =T, (X, yY) + T, (X, y) , itis possible to analytically determine the

coefficients A,, in Eq. (4-12). This task is accomplished using Eq. (4-22) and the
computed temperature values are presented in Tables 4-2 and 4-3. The tabulated values
of T,(&,d) in Table 4-2 and T;(X,b) in Table 4-3 show expected behaviors and it is

possible to acquire reasonably accurate solutions for practical applications.

This presents a verification tool that allows the exact values of the coefficients to
be obtained iteratively for related applications. It permits a view of the convergence
behavior of the iterative technique that can be used for three-dimensional cases. This
procedure is reasonably simple if the matrix is of a reasonable size. This is the primary
reason for selecting a two-dimensional multi-layer system.

If this matrix is very large, an iterative procedure is a reasonably fast technique
for determination of these coefficients. The process of determining the coefficients can be

modified by developing an iterative procedure. The iterative procedure begins be

selecting estimated values of B, ; e. g., by setting B, =0. Since D, coefficients have
known values, Eq. (4-14b) provides A, for insertion in Eq. (4-20) in order to get new

values for By,. This process can be repeated by inserting this new B,,. The first iteration
begins by placing B,, into Eq. (4-14b) to get a new A,, and repeat the process by using

Eq. (4-20) for determination of a new set of B,, values. This process is to be repeated for

second, third, and other iterations. Often, about six iterations can produce results with
reasonable accuracy. Observing the behaviors of the numerically acquired data shows

that one can accelerate the convergence procedure by using a relaxation factor o and

selecting the new set A, as
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Al = A=) A 4 +©(Dp +By) (4-26)

Preliminary test shows that having ©®=~0.85 can reduce the number or iteration

by about 40% for a predetermined accuracy.
4.6. Conclusion

The analytically obtainable temperature field can provide an accurate solution for
the purpose of verification of a numerically acquired solution. This analytical procedure is
reasonably fast if the matrix size is not very large. For matrices of large size, the A,
coefficients within Eq. (4-12) are obtainable rapidly by an iterative technique with a high
degree of accuracy. This procedure was tested successfully within the previous example.
The iteratively determined coefficients become a reasonably fast procedure when the
conduction is three-dimensional. Also, the same procedure is applicable to a system

when two multi-layer blocks replace both layers, in Figure 4-1(a,b).
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Chapter 5
Inverse Estimation of Temperature between Plates of Different Footprints by an Iterative

Approach

In this chapter, consideration is given to a simplified model mainly to study the
performance of iterative analytical/numerical solutions to non-uniform footprints problems.
The analytical procedure leads to an integral equation. Then, the heat flux and
temperature at the interface are computed using an iterative inverse methodology. To
verify the accuracy, selected data are compared to numerically determined values.
Although the presented computational procedure is for a two-dimensional solution, the
methodology equally applies to three-dimensional problems.

The adequate cooling improves the performance as it improves the speed of data
execution. Numerical and theoretical studies as to determination of thermal performance
are available in the literature. The related information and adequate citation of the related
literature are in [62-66]. The analytical determination of temperature field in a two-layer
system, as shown in Figure 5-1, is the objective of this work. This type of system can
appear in different engineering application such as in electronic cooling devices. Plate 1,
in Figure 5-1 can be viewed as a die with non-uniform power distribution. Plate 2 can be
viewed as a heat spreader connected to a heat sink. Numerical studies of the related
problems are in Kaisare et al. [67] which also contains details related to these types of
devices.

The objective of this study is to examine a suitable inverse procedure for a
relatively accurate determination of the temperature field in a multi-layer domain as
shown in Figure 5-1. In practice, each of Layers 1 and 2 may contain two or more layers.

However, for convenience of the presentation of this inverse methodology, Layer 1 and 2
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are selected to be single layers as depicted in Figure 5-1. Additionally, the mathematical
steps are presented for a two-dimensional case. The extension to three-dimensional case
requires a minor modification, although the equations become a bit lengthy. In general,
the mathematical procedure leads toward an integral equation to be solved by an inverse
technique. Classical description of various inverse technigues is well documented in [68-
71]. As an illustration, function specification and other techniques have been used to
solve transient and steady-state inverse heat conduction problems by many investigators,
e.g., see [72-77]. In this presentation, an iterative inverse procedure is selected for
estimation of the temperature field and this becomes equivalent to the function
specification method.
5.1 Mathematical Relations

This is to study the behavior of the temperature field within a two-layer body
when each layer has a different size. The schematic of the region and the coordinate
systems are in Figure 5-1. The governing equations for steady-state heat conduction

satisfy the Laplace equations

asz aZTj aZTJ-
82+82+62:O (5-1)
X y z

with j=1 in reginl and j=2 in region 2. In subsequent analyses, the function TJ- represents
the reduced temperature so that Tj =8 —8,,; where TJ- is the physical temperature

and 0, is the temperature of surroundings. Consideration is given to insulated boundary

conditions in x- and z-directions. Therefore, for convenience of properly demonstrating
this presentation, a two-dimensional case is selected within the subsequent mathematical

presentations.
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kkk%kkk‘:»%

Figure 5-1 Schematic of a two-layer body and the coordinates.

Clearly, there are two temperature solutions: one for Layer 1 and the second one
for Layer 2. These two solutions must satisfy the boundary conditions and the
compatibility conditions between the two layers.

5.2 Temperature Solution in Layer 1
The temperature in Layer 1, designated as T (X, Y), must satisfy the Laplace

equation

2 2
oM 0T

0 (5-2)
ox%  oy?

with boundary conditions:
(BC1,2 q(0y)=q(ay)=0

(BC3) T1(x,0) =Tp(x)

BC4)  q(x,b)=0qy(x)
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This problem has two non-homogeneous boundary conditions; therefore, it is to
be decomposed into two problems by selecting T; (X, y) =T4 (X, Y)+ Ty (X, y) . Then,
each of these problems has three homogeneous boundary conditions and a single non-

homogeneous boundary condition.

The first problem requires the solution of equation

2 2
%1, T,

=0 (5-3)
ox? 8y2

with boundary conditions:

(BC12) 0a(0y)=0a(ay)=0
(BC3)  T,(x0)=0

(BC 4) 0a (X,0) =dy (%)

This is a classical steady-state heat conduction problem. A solution that satisfies

the differential equation and the homogeneous boundary conditions 1, 2, and 3 is
o0

T(x,y)=Agy+ Y, A,cos(nmx/a)sinh(ny/a) (5-4)
n=1

Next, using the fourth boundary condition (BC 4), one obtains a relation

Gw (X) = —kq [T (X, y)/ oY1y

- (5-5)
=—ky| Ag+ ) A, cos(nmx/a)(nr/ a) cosh(nmb/ a)
n=1
Then, an application of the orthogonality condition produces
17—
= | W gy 5-6a
AR (5-6a)

x=0

and
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_ 2 J ~Aw () cos(nnx/a)dx when n>0  (5-6b)
necosh(nmb/a) ) | kg

and the temperature solution becomes

a 0 )
y [ —qw(X) cos(nnx/a)sinh(nmy / a)
Ta(x,y)== | ———dx+2
a(.y) a -[ ky - nz_: ( nrcosh(nnb/a)
(5-7)

a
x J' Mcos(nnx/a)dx
x=0 kl

After determination of temperature field, the heat flux at y=0 surface, defined as

da (X,0) = —k9T5 (X, ¥)/ 0y |y—q , becomes

qa (X,O) =

[
>

T 0 (X)dx
=0

(5-8)

—Z (cos(nnx/a) J _[ g, (X) cos(nnx/a)d x

cosh(nwb/a)

The second problem is to solve for T, (X, y) that satisfies the Laplace equation

82Tb asz

=0 (5-9)
ox? 6 y

with boundary conditions:

(BC1,2) gy y)=ap(ay)=0
(BC3)  Ty(x0)=To(x)

(BC 4) gy (X,b)=0

A solution that satisfies the differential equation and the non-homogeneous

boundary conditions 1, 2, and 4 is
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(5-10)

To(X )= ByXp(x)

n=0

cosh[y, (b—y)]
cosh(y,b)

The function X, (x) satisfies the condition X '(X)/ X (X) = —yﬁ and the

boundary conditions at x=0 and x=a. Next, the non-homogeneous boundary condition

(BC 3), at y=0 obtainable from the temperature solution in the Layer 2, has the form
o0
To(¥) =Y CyXpn(X) (5-11)
n=0

The needed interface temperature, Ty (X) , is obtainable by using the

compatibility condition with Layer 2. It is expected that the temperature X 2n (x)
acquired from the temperature solution for Layer 2 will not satisfy the conditions (BC 1, 2)
for Ty, (X, y) solution. Therefore, modifications are needed when X2,n (x) does not
satisfy the insulated boundary conditions at x=0 and x=a. In this case, it is necessary to
select X, (X) =cos(nmx/ X) in Eq. (5-10) and then an application of the orthogonality
condition produces the constants
1 a
By = 2 I Ty (x)dx, when n=0 (5-12a)
x=0

and

a
Bn :é I Ty (x)cos(nnx/a)dx, when n >0 (5-12b)
x=0

After appropriate substitutions, the temperature solution takes the form
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2 i cos(nnx/a) cosh[nm(b - y)/a]

To(X)dXx +—
0() +a cosh(nnb/a)

1
(X y)=—
a 0 n=1

X

|| C—y

(5-13)

a
X jTO(x)cos(nnx/a)dx
x=0

It is to be noted that the heat flux vector in x-y plane has a zero value at (X, y)=(0,

0) and at (x, y)=(a, 0) locations. This also suggests that the functional form for Ty (X),

acquired from the solution of temperature field in Layer 2, is to be recalculated in

accordance with Egs. (5-12a,b). Next, the heat flux at y=0 surface, using the Fourier

equation is Qp (X,0) = K0Ty (X, ¥)/ 0y |y—q, and it becomes

0 a
qb(x,0)=2n—2l,<12 ncos(nmx/a)tanh(nrtb/a) j To(x)cos(nnx/a)d x (5-14)
a

n=1 x=0
The function ¢, (x,0) is the unknown to be determined by using the functional
form of Ty (X) acquired from the temperature solution within Layer 2. Therefore, the
function q, (x,0) is the primary unknown for determination of the heat flux across the
contacting surface at X =0, since gg(X) =, (x,0) + g, (X,0) while g, (x,0) has a
known value. Having the function qq(X), the functional form of Ty (X) could be
estimated from the temperature solution T, (&,m) in Layer 2. Furthermore, once the

functional Ty (X) as given by Eq. (5-11) is available, Eq. (5-13) would serve as a

transformation.
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5.3 Temperature Solution in Layer 2

For convenience of this presentation, a new set of coordinates is selected using
E=e+Xxand n=Yy+d while e=(c—a)/2, as shown in Figure 5-1. The

temperature solution in the second layer also satisfies the Laplace equation

2 2
0T, , 0T _

0 (5-15)
oe2  on?

where T, =T, (&,m) must satisfy the boundary conditions
(BC1,2) 02(0m)=a2(cm)=0

(BC 3) at, (Eﬂl)/aﬂ|n:0 =(h/ky) T,(E M)

(BC 4) —k0T5 (&) /aﬂ|n:d =02 (&) whichis g, (&,d) =do(E—¢).

The solution begins by using the classical separation technigue that produces
o0
. mr
To(&M)=Co|Bi| X |+1]+ > C,, cos mns
C mel c
mm Bi . (m
x| cosh| 20 | 4 =% gjnh| —20
c mm c
where Bi =hc/Kj,. The fourth boundary condition, (BC 4), leads to the relation
Bi
n=d ¢

_ (5-1
~k, > Cpy cos(m—ﬁ){[mjsinh(m—ndj + Ecosh(m—ndﬂ
o c c c c c

Next, the orthogonality condition leads to the values of C,; that s,

(5-16)

dTL(En)

q2(&,d) =k, on

7a)
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1 ¢ gy(6d)
Co=— dg (5-17b)
0 Nov([ Kk,

with Ny = Bi and, when m>0,

2 I —qg(i )cos(mnéjda (5-17¢)
0

N, c

where N, is the dimensionless norm equal to

Ny = (mn)sinh(m—ndj +Bi cosh(m—mj
c c

After substitution for C,, the solution for temperature in Layer 2 is

TZ@'”):[I qzk(f’d)da](g Buj”z N_COS(m:aj

€ m=1 m
{cosh[mmj Bi smh(mmﬂ J_‘S —q,(§.d) COS(mnajda
C mm C " k,

where (,(&,d) =0 when 0<&<¢ and e+a<§<cC; otherwise, 4, (&, d) =

(5-18)

do(X) =0do(E—¢).

The determination of the unknown temperature over the contact surface, as

given by Eq. (5-18) lead to the relation

—qp(E—¢) 1 > 1
To(X) = {J‘ 0(: i](c Blj+22 N cos(mn(i+x)j

€ 2 m=1 m

x{cosh(mgdj %smh(mzdﬂj‘ %S—S) cos(mgg)dﬁ

(5-19)
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wherein the unknown function qq (€ —€) = (g (X) is obtainable from Eq.( 5-8) and Eq.

(5-14), since (g (X) =0, (X,0)+ 9, (X,0), as

a cosh(nzb/a)

qo(x)=§ j qW(x)dx+Ei (ij 0y (X) cos(nmx/a)d x
=0 n=1 x=0

X (5-20)

[ee] a
+—2n§1 Z ncos(nnx/a)tanh(nmb/a) I To(x)cos(nmx/a)d x
n=1 O

5.4 lterative Inverse Solution

There are two integral equations for determination of the unknowns T (X) and

o (X) . The substitution of gy (&—¢€) = Qg (X) from Eg. (5-20) into Eq. (5-19) leads to a
single integral equation that can be solved iteratively in order to acquire numerical values

for To (X) . Alternatively, the substitution of T (X) from Eq. (5-19) into Eq. (5-20) would

lead to an alternative integral equation wherein the surface heat flux qq(X) is the
unknown, to be determined. The next numerical example is selected to illustrate the
inverse methodology employed for determination temperature |(X) over the contact

area.
Numerical example. The objective is to test the convergence behavior of this

iterative solution using the computed temperature values. In dimensionless space for a
special case, Layer 1 is selected so that @ = 2b and having b as the characteristic
length for both layers. The applied heat flux is ¢, and it is selected as a constant at two
different sites: one from x = a/4 to a/2 and the other from x = 3a/4 to a. The dimensions
of the second layer, as depicted in Figure 1, are ¢ =5b and, d = b ; therefore, the

spacing parameter becomes € = (C—a)/2 =3b/2. Furthermore, a thermal conductivity
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Ko =4k, and a Biot number Bi =hc/k, =20 are selected mainly to test this

numerical procedure and the accuracy of temperature solutions.

For this case, the process begins by providing an initial estimate for

do (X) = g, (x,0) in accordance with Eq. (5-8). Then, Eq. (5-19) provides the first

estimated values for Ty (X) . The second step begins be expanding T (X) into a

secondary Fourier series solution that satisfies the homogeneous boundary conditions at

x =0and X=a for Layer 1. Next, the value g, (x,0), from Eq. (5-15), is to be used in
order to get a new heat flux at y=0 from the relation gy (X) =g, (x,0) +q,(X,0), as the
onset for the first iteration. This new ¢ (X) serves as a new heat flux input for Layer 2

and to repeat the process to determine a new T (X) solution. The initial values of

kiTo(X)/q,b assuming g, (x,0) = 0 are determined and the data are plotted in Figure

5-2. They are compared with the computed dimensionless temperature data from this first
iteration, also plotted in Figure 5-2. The process is repeated for a second through a fourth
iteration. The acquired data, plotted in Figures 5-3, compares the results from the first
and the second iterations. There is reasonably good agreement, and this agreement

improves when the third and fourth iterations are compared in Figure 5-4. Additionally,
Figure 5-5 shows the deviation of k;Ty(x)/q,b for a given iteration from the previously

determined values. This plotted data show that there is a relatively larger deviation
between the initial guess and the first iteration, while the difference between data from
the fourth and the third iteration is very small. A sample of numerical data plotted in
Figure 5-2 is in Table 5-1. Column 9 in Table 5-1 shows small differences between the
third and the fourth iterations and attests to a reasonably good convergence rate. It is to

be noted that 31 eigenvalues (including zero) were used for determination of data
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presented in this example. The process was repeated for larger numbers of eigenvalues

and they all show similar behavior due to the number of iterations.

0.14 T T T T

0.12

0.10

0.04

0.08F

—o—Fourth iteration data

002 s

== Third iteration data

0.00 — ‘

Figure 5-2 A comparison of computed T (X) values after the 1st iteration with the initial

guess.
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Table 5-1 Computed values of k T (x)/(q,,b) for the first four iterations.

Initial Diff. 1st Diff. 2nd Diff. 3rd Diff. 4th
Xk To (X) [ kAT (kg To (X) [ kg ATo (x)kq To (%) | kg ATo (0K To (X) kAT () Ky To (X)

dwb awb  qyub aub  qyub awb  qub awb  qyub

0.0 | 0.01586 0.0005 0.01637 -1E-04  0.01627 2E-05 0.01629 -4E-06  0.01629
0.2 | 0.01649 0.0007 0.01718 -1E-04  0.01707 2E-05 0.01709 -3E-06  0.01708
0.4 | 0.01803 0.0007 0.01870 -1E-04  0.01859 2E-05 0.01861 -4E-06  0.01861
0.6 | 0.02083 0.0007 0.02156 -1E-04  0.02143 3E-05 0.02146 -5E-06  0.02145
0.8 | 0.02522 0.0011 0.02631 -2E-04  0.02614 3E-05 0.02617 -5E-06  0.02616
1.0 | 0.03113 0.0012  0.03229 -2E-04  0.03208 4E-05 0.03212 -8E-06  0.03212

1.2 | 0.04022 0.0018  0.04202 -3E-04 0.04171 6E-05 0.04177 -1E-05 0.04176
1.4 | 0.05383 0.0031 0.05696 -5E-04  0.05649 8E-05 0.05657 -1E-05 0.05655
1.6 | 0.07764 0.0046  0.08223 -9E-04  0.08135 0.0002 0.08152 -4E-05  0.08149
1.8 | 0.09251 0.0018 0.09428 -4E-04  0.09389 9E-05 0.09398 -2E-05  0.09396
2.0 | 0.10401 -3E-04  0.10367 2E-05 0.10368 3E-06  0.10369 -2E-06  0.10369

2.2 | 0.11218 -0.002  0.11009 0.0004 0.11052 -9E-05 0.11043 2E-05 0.11045
2.4 | 0.11860 -0.003  0.11525 0.0007 0.11592 -1E-04  0.11578 3E-05 0.11581
2.6 | 0.12241 -0.004 0.11830 0.0008 0.11912 -2E-04  0.11895 4E-05 0.11899
2.8 | 0.12335 -0.004 0.11915 0.0009 0.12000 -2E-04  0.11982 4E-05 0.11986
3.0 | 0.12178 -0.004 0.11813 0.0007  0.11879 -1E-04  0.11866 3E-05 0.11869

3.2 | 0.11439 -0.002  0.11223 0.0004 0.11258 -6E-05 0.11252 1E-05 0.11253
3.4 | 0.09919 0.0015 0.10066 -4E-04  0.10023 0.0001  0.10034 -3E-05 0.10031
3.6 | 0.06713 0.0014 0.06851 -2E-04  0.06828 4E-05 0.06833 -9E-06  0.06832
3.8 | 0.04961 0.0004 0.05006 -1E-04  0.04994 3E-05 0.04997 -6E-06  0.04996
4.0 | 0.03803 0.0001  0.03816 -4E-05  0.03812 1E-05 0.03813 -3E-06  0.03813

4.2 | 0.03087 0.0003 0.03116 -6E-05 0.03110 1E-05 0.03111 -2E-06  0.03111
4.4 | 0.02538 5E-05 0.02543 -3E-05 0.02540 9E-06 0.02541 -2E-06  0.02541
4.6 | 0.02195 1E-04 0.02205 -2E-05  0.02202 6E-06  0.02203 -2E-06  0.02203
4.8 | 0.02015 0.0002  0.02030 -3E-05 0.02026 7E-06  0.02027 -1E-06  0.02027
5.0 | 0.01925 -6E-06  0.01925 -1E-05  0.01924 6E-06  0.01924 -2E-06  0.01924
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Figure 5-3 A comparison of computed Ty (X) values after the 1st iteration and after the

2nd iteration.
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Figure 5-4 A comparison of the computed T (X) values from 3rd and 4th iterations.
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Figure 5-5 The deviations of T (X) from the previously determined values, for each

iteration.

The determination of temperature data at y=b, where the heaters are located, is
important to the design and manufacturing of the devices where temperature assumes its
maximum values. Table 5-2 is prepared to show the computed temperature values at y=b
for all four sets of iterations. It is remarkable that the data for the first iteration are well
behaved and they agree with subsequent iterations. Column 6 of Table 5-2 contains the
numerically acquired data using ANSYS. The CFD model was developed so that it was
not mesh sensitive. The data in Column 6 agree reasonably well with those in Column 7
of Table 5-2, which contains a set of computed temperatures using 500 eigenvalues
followed by a sufficient number of iterations. The data in Column 7 should represent the
exact values since they are accurate to all digits appearing in Table 5-2. These data
show mixed agreements with those from the fourth iteration and the CFD data. The last
column in Table 5-2 contains the percent deviation between the data in columns 5 and 6

of this table. Figure 5-6 shows the plotted temperature values for the fourth iteration and
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the CFD data, as presented in Table 5-2. This figure illustrate that 30 eigenvalues provide

data that they agree well with the numerically acquired information.
Table 5-2 Computed values of T (x,b) and their comparison /(q,,b) with numerically

determined values

ki T1(x,b) /(qyb) Percent
x/b 1st Set 2nd Set | 3rd Set 4th Set by CFD Exact difference

00| 037734 | 037719 | 037721 037721 037715 | 037712 0.015
01| 038183 | 0.38165| 0.38167 | 0.38167 | 0.38170 | 0.38168 0.008
02| 039575 | 0.39551 | 0.39555 | 0.39554 | 0.39583 | 0.39581 0.074
03| 042113 | 042078 | 0.42083 | 0.42082 | 0.42141 | 0.42139 0.140
04 | 046353 | 046304 | 046312 | 046310 | 0.46350 | 0.46336 0.085
05| 054857 | 0054791 | 0.54803 | 0.54800 | 0.54893 | 0.54831 0.169
06| 063165| 0.63081 | 063096 | 0.63093 | 0.63093 | 0.63097 8E-04
0.7 | 066731 | 0.66629 | 0.66647 | 0.66644 | 0.66575 | 0.66567 0.104
08| 067889 | 0.67770 | 067792 | 067787 | 0.67740 | 0.67733 0.069
09| 066717 | 0.66581 | 0.66606 | 0.66601 | 0.66629 | 0.66633 0.041
10| 0.60971 | 0.60821 | 0.60849 | 0.60843 | 0.60915 | 0.60853 0.117
11| 055212 | 055051 | 0.55081 | 0.55075| 0.55079 | 0.55063 0.007
12| 054002 | 0.53833 | 0.53863 | 0.53858 | 0.53936 | 0.53932 0.146
13| 055101 | 0.54927 | 0.54958 | 0.54952 | 0.55052 | 0.55049 0.183
14| 058592 | 0.58414 | 0.58446 | 0.58440 | 0.58472 | 0.58457 0.055
15| 0.66815 | 0.66636 | 0.66668 | 0.66662 | 0.66717 | 0.66653 0.083
16| 075232 | 0.75054 | 0.75085 | 0.75079 | 0.75073 | 0.75076 0.008
17| 079392 | 079217 | 0.79247 | 0.79241 | 0-79217 | 079208 0.031
18| 081866 | 0.81692 | 0.81722 | 081716 | 081721 | 0.81713 0.006
19| 083217 | 0.83044 | 0.83074 | 0.83068 | 0.83100 | 0.83092 0.039
20| 083651 | 0.83479 | 0.83508 | 0.83503 | 0.83543 | 0.83535 0.048
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Figure 5-6 The temperature distribution over the heated surface as described by four

successive iterations.
Figure 5-7 shows the plotted temperature values for the fourth iteration and the
ANSYS data, as presented in Table 5-2. This figure illustrates that 30 eigenvalues provide

data that agree well with the numerically acquired information.

Fourth iteration
o ANSYS solution

2.0

15

kTy(%b)
—0ub

LI B ! LA BN

0.0 0.5 1.0 15
x/b
Figure 5-7 Temperature distribution over the heated surface after the 4th iteration for

N
o

different Bi and the numerically computed data by ANSYS for Bi=20.
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5.5 Comments and Discussions

This iterative procedure begins by properly selecting a function gq(X) . This

function is to be used in order to determine T, (&,d) using Eq. (5-19) and then obtain
To(x) from Egs. (5-11) and (5-12a,b). No iteration becomes necessary if the function

Jp (X,0) obtained from Eq. (5-14) is the same as the original heat flux function g (X) .
The first iteration begins if these two quantities are different using the relation

do (X) =054 (x,0) + 0, (x,0), as it emerged from the solution of

T1(X Y) =T, (X, ¥) +Tp (X, y) . The data acquired and presented in Table 5-1 show
that, for a fixed number of terms in the series solution, only a few iterations are needed in
order to get a relatively accurate solution. An alternative test shows that using a

relaxation factor ®=0.82 to 0.88 and selecting the new y(X) as

Ao (¥ 1y = A= )00 (X)) g + @[0a (x,0) +ap (x,0)] (5-21)
can improve the convergence rate.
The prepared computer program permits one to increase the number of iterations
until a solution is obtained with a desired convergence for a fixed number of terms, N.
Then, the temperature is computed with a high number of iterations using N=30 terms.
Selecting the data obtained from this solution as the reference values, the convergence

due to the number of iterations was tested. With a relaxation factor of w=1, the data over

y=b surface converged with deviations below 5 %107 after 6 iterations. However, with a

relaxation factor of ® =0.85, only 4 iterations were needed in order to get alternative

numerical results with deviations less than 1.5x107" .
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5.6 Conclusion

The information presented earlier attests that the objectives of this study were
accomplished. It was demonstrated that only a few iterations were needed to achieve
satisfactory convergence and faster convergence was realized with a properly selected
relaxation factor. Furthermore, the convergence related to the number of eigenvalues
was tested and it is a classical Fourier series issue.

This tested inverse procedure is equally applicable to three-dimensional cases as
the inclusion of z-axes can be accommodated with ease, similar to that for the x-axes.
Furthermore, this opens a path for future application of this inverse methodology to multi-
layer bodies that are commonly used in electronic cooling applications. As an illustration,
each of the two layers in Figure 5-1 is to be replaced by a block of layers with uniform

footprints. The methodology for determination of temperature in each block is in [78].

93



Chapter 6
Determination of Effective Thermal Conductivity in Heterogenous Material (TSV

Technology)

A key 3D packaging technology is electrical packaging technology, which means
that it is vital to connecting stacked chips electrically. Conventional 3D packaging
technology uses wire bonding with metal lead wires. Recently, novel technologies have
been developed to replace wire bonding. Through silicon via interconnects are emerging
to serve a wide range of 3D packaging applications and 3D IC architectures that demand
higher levels of performance and silicon integration with lower power consumption. As an

illustration a comparison of wire bonding and TSV technologies can be depicted in Figure

6-1.
Conventional 3D packaging Advanced 3D packaging
Technology Technology
Wire bonding TSV interconnect

N _
N\

Figure 6-1 Comparison of conventional and TSV technology in 3D packaging

Predicting the temperature solutions of heterogeneous materials has been the

subject of extensive research in the electronic packaging industry.
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With analytical solutions being almost impossible to obtain for such open-ended
problems, and numerical techniques being computationally expensive, semi-analytical
methods are highly valuable to both chip makers and design engineers. There have been
numerous publications on how to obtain the analytical or numerical solutions of steady
state or transient heat conduction in homogeneous multilayer bodies.

With recent evolution in 3D stack packaging technology and introduction of
TSVs, one cannot rely on previous work alone. The addition of TSVs in the silicon die
matrix imposes new challenges. To start off, thermal stresses caused by CTE (coefficient
of thermal expansion) mismatch. During the operation, chips generate non-uniform heat
dissipation which in turn produces excessive forces in TSV connection and finally results
in reliability degradation and failure. Thus, the study of heat conduction and obtaining the
temperature solution for such systems are the subject of investigation in this chapter. In
microelectronic devices, materials used often have different thermophysical and
mechanical properties. However, there are many situations when the assumption of
isotropy in a single layer is used mainly to simplify the thermal analyses. For example, if
there are many layers and all layers actively participate in the heat transfer process, an
approximate computation of the temperature distribution may be based on average
thermophysical properties. However, this assumption may not be valid, especially when
there are substantial differences between the physical properties of the constituents of
the model under investigation.

The objective of this work is to provide an effective thermal conductivity (Keg) for
the matrix of silicon die and TSV inclusions. Once K is calculated, the temperature
solutions of steady-state heat conduction in conjunction with previous work (chapters 1-5)
become deterministic. Galerkin-based numerical approximation is used for determination

of effective coefficient of thermal conductivity.
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For a multidimensional body the numerical evaluation of the effective thermal
conductivity is difficult. Therefore, the 2D analysis of the system in question will be
studied first. Then with the use of parallel resistance theory in heat transfer, the system in
a 3D domain can be modeled and analyzed.

6.1 Galerkin Approximation Method

The Ritz variational principle in the form of the B.G. Galerkin method usually
provides approximate solutions to various engineering problems. A relatively high degree
of accuracy in numerical results is the interesting characteristic of these methods. Often,
the accuracy of the solution far exceeds the application demand. The method of B. G.
Galerkin, simply referred to as the Galerkin method, is used for fundamental problems in
solid mechanics, fluid mechanics, and heat transfer. Generally, ordinary and partial
differential equations describe physical phenomena such as transfer of heat, wave
motion, stress distribution in solids, etc. The finite element method and Galerkin-type
solutions provide capabilities to solve these differential equations in complex-shaped
bodies when the exact solution either is not available or is too cumbersome for practical
applications. In other words, the numerical solutions deal effectively with simple or
difficult problems and have been widely used in recent technological advancement.

Variational calculus is a powerful mathematical tool with important applications. It
is basic to the finite element method and Galerkin-type solution techniques. The Galerkin
method provides closed-form solutions. The finite element method is a discretized form of
the Galerkin method that produces numerical values at preselected nodal points. The
goal is to show the application of the Galerkin method to selected engineering
applications such as the TSV system in electronic packaging as described earlier.

In this chapter, the Galerkin-based integral (GBI) method is extended to solve a

heterogeneous system. The purpose is to fill the gap that currently exists, to
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accommodate a difficult conduction problem that is mathematically challenging and
cumbersome, and to solve those for which the use of discretization methods are very
time-consuming.

The developed procedure could be readily applied to both heterogeneous as well
as homogenous medium. The major difference lies between how to select the basis
functions for each model to satisfy imposed natural and homogeneous boundary
conditions associated with each case

6.2 Galerkin Mathematical Form

The Galerkin method is a broad generalization of the Ritz method and is used
primarily for the approximate solution of variational and boundary value problems,
including problems that do not reduce to variational problems. The basic idea behind the
Galerkin method is as follows. Suppose the requirement to find a solution, defined in
some domain D, of the differential equation

LIU]=0 (6-1)
(here, L is a differential operator, for example, an operator in two variables) where the
solution satisfies at the boundary S of D the homogeneous boundary conditions

U=0 (6-2)

If the function u is a solution of equation (6-1) in D, then L[u] is identically equal
to zero in this domain and, consequently, is orthogonal to any function in D. The

approximate solution of equation (6-1) is sought in the form

Uy (x,y) = Xizg aihi(x,y) (6-3)
where Y.(x,y) (i=1, 2, ..., n) are linearly independent functions that satisfy the boundary
conditions (6-2) and are the first n functions of some system of functions ¥, (x,y),

Y,(xy), ..., ¥, (x,y) that is complete in the given domain. The constant coefficients
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a; are chosen so that L[u,] is orthogonal in D to the first n functions of the system
'l’l-(X, )

11, Llun Ge )i, v)dxdy = [f, LISE- s axthe (e »)]hi (x,y)dxdy = 0 (6-4)

The Galerkin method is used in solving a broad class of problems. Its most
general formulation is given in terms of functional analysis for the solution of equations of
the form Au - f = 0, where A is a linear operator defined on a linear space that is dense in
some Hilbert space H, u is the unknown, and f is a specified element of H. The method
came into use after it was described in a paper by B. G. Galerkin in 1915. The advantage
of this method is the higher accuracy and faster computation time in comparison with
discretized numerical methods. Although the method of analysis is the same as the
Galerkin finite element method, unlike the standard finite element method, it maintains
the continuity of heat flux throughout the domain.

6.3 Mathematical Procedure

Prior to any derivation, it is essential to understand the concept of effective
thermal conductivity (Ke¢). Consider a solid layer of silicon bulk material that consists of
many cylindrical copper interconnects, namely TSVs. If one of the surfaces of the silicon
layer is subjected to a Dirichlet boundary condition, the other end of the solid block will
receive the same amount of energy based on thermodynamics. The consideration is
given to an equivalent homogeneous solid material that is identical in shape to the
original body and subjected to the same boundary conditions. Under steady-state
conditions the heat exchange between the modeled body and its surroundings is same
as the actual body. Thus, the equivalent thermal conductivity of the modeled body will be
the one we seek as it represents the overall thermal conductivity of the solid with

inclusions. For one-dimensional heat transfer, when one surface is subjected to a
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constant temperature and opposite side of the block is maintained at some fixed

temperature, the following relation will hold,

|AT|

Qout = Tﬁ (6-5)

qQin =

where |AT | is the difference in temperature across the actual body and the equivalent
solid. Similarly, g, and go. remain the same for both the actual body and equivalent solid
and they are equal to average heat flux, | gave |- This definition for the effective thermal
conductivity, Keg, Will be used throughout this paper.

In order to obtain a temperature and heat flux solution, it is necessary to solve
the diffusion equation given below known as a Laplace equation over the entire domain
of matrix and inclusion.

V.(KVT) =0 (6-6)

The external surfaces of the body could take any type of the boundary condition.
The assumption is that the thermal conductivity is independent of the temperature and
therefore, a Galerkin-based integral method could be applied to obtain an accurate
closed-form solution. A Galerkin solution that uses heat-flux conserving basis functions
(Haji-Sheikh, 1988) conserves the continuity of temperature and heat flux across the
phase boundaries. Moreover, it can deal accurately with a temperature jump in the
presence of an imperfect contact.

The Galerkin method uses a set of basis functions that are usually non-
orthogonal and chosen in a manner to satisfy the homogeneous boundary conditions.
There are many methods proposed as to how to select the basis functions required for
each case; however, there is not an exact way to describe the procedure. The method of
selecting the basis functions for boundary conditions of the first kind is available in many

literatures (Kantorovich and Krylov, 1960; Ozisik, 1980; Haji-Sheikh, 1987). In 1992, Beck
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et al. came up with a method of selecting these basis functions for different types of
boundary conditions. However, the obtained basis functions needs to be modified to
accommodate the presence of inclusion in the main domain at the boundary of the two
constituents and to account for the compatibility condition between the inclusion and
matrix at the boundaries. Once the basis functions are developed, the Galerkin method is
applied and the matrix produced by Galerkin method will be deterministic. The derivation

of getting such a matrix is shown by (Beck et al., 1992) and leads to,
a;; = [, f; V.(KVf;)dv (6-7)
b = J, fifjdv (6-8)
Once a;; and b;; are known the matrix can be solved for unknown coefficients.
fi and f; are described in numerical examples in future sections. Depending on the
number of the terms, we will have N equations and N unknown.
AC=vyY (6-9)
C=A"1vy (6-10)
There are two steps to determine the basis functions. The first step is in the
homogeneous domain, where there is no inclusion. The basis function denoted by f, ; ,
implies to main domain and described as
fj = fj_m (6-11)
The next step is very important, that is to modify the basis function obtained to
accommodate the presence of inclusion bounded by the surfaces @, = 0 using the

relationship described by (Beck, et al. 1992) it will lead to the following relations,
fi=Fje (6-12)

fie =fim +Ue+ @H, (6-13)
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where the function f; . is the modified basis function sought and will be used in the
inclusion domain. One could see that if U, = 0, and @, = 0, then the boundary condition
at the interface of the inclusion and matrix is satisfied since f; , = fj. -

In order to comply with the interface condition between the inclusion and the
matrix, the use of the compatibility condition must be regarded, that is

afj,m afj,e

Km one = fe one (6-14)
The jump condition is defined as,
Km\ ,9fjm
fre = fim = (&) G2 (6-15)

In the absence of thermal conductance U, = 0 and the substitution of f; into the

compatibility condition, equation (6-15) described above yields,

af
(1) L8y,
[Hel g,y = — —ge—— (6-16)
(m) Pe=0

[(F2-1)VF jm-5el 0

(Hel 0. = ~—“orvomy o (6-17)

The derivation for equation (6-16) and (6-17) is presented in Appendix B. The
equation (6-17) is used when there is no resistance between the constituents in the
model; however, the effect of thermal contact conductance should not be omitted and can
be implemented using the interfacial jump condition defined as follows by rearranging
equation (6-15),

(3f jm
Kmn 61}19 = C(f}',m - fj,e) (6-18)

Next, the values obtained for f,,; and fe; will be substituted in the above

equation. Simplifying the equation and regarding that @, = 0 at the interface of inclusion

and matrix, it will yield
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K
U == (%) (0f;m/0m)\ 0,0 (6-19)
Thus, the H,can be computed using the following equation

(’;—'Z—l)w 1 mVO—VU,V0,
(V0e.VDe) De=0

H, = (6-20)

Now, with Egs. (6-19) and (6-20) in hand, U and H,are defined and one can

obtain the basis functions for inclusions. Once the basis functions are all calculated, the
temperature solution can be obtained. For cylindrical inclusion, the denominator of the
above equation is a constant and not a function. However, for odd-shape geometry the
denominator of equation (6-20) could be a function.

Subsequently, the average mean heat flux can be calculated and the effective
thermal conductivity will be deterministic using the following equation for one-dimensional

conduction

ar
Qav = _Keffa (6-21)

6.3.1 Numerical Example:

Consider a TSV copper being embedded into a Silicon matrix as shown in Figure

6-2.
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Adiabatic Surfaces

«—  Silicon

— Copper TSV

L.

(a) (b)
Figure 6-2(a) Copper embedded in a silicon matrix, and (b) copper embedded in a silicon
matrix (side view)

As was mentioned before, we are seeking solutions to the Laplace equation,

V2T =0
V.(KVT) =0 (6-22)

Using the transformation of T to satisfy the non-homogeneous boundary

condition at x=a where the boundary condition of the first kind is prescribed to obtain the

temperature solution, results in

O, =T+ g in the main domain and, (6-23)
8, =T + f, in the inclusion (6-24)
Therefore,
V. (K,,V6,,) = 0 for the main domain (6-25)
V. (K. V0, + K,Vf,) = 0 for the inclusion (6-26)

Now, multiplying the above equation and integrating over the domain will lead to

the following relation,

103



(6-27)
jv (K.VE)f dV+jv (K.V ) fdV =— KIfeJ V2f.dV @

Slnce the consideration is glven to a 2D analysis, we obtaln the following,

mfm

"MZ

(6-28)
Thus,
Y Cn [, Kim (V2. finj ) frnidA + [, K (V2 foj ) ferdA] = =K, [, V7 fo;feidA
(6-29)
Therefore, by inspection one could rewrite the above equation in matrix form as

follows,
[C][A] =[] (6-30)
where, the matrix element [A] is defined as,
ai; = [ K (V2 fonj ) finidA + [ Ke (V2. foj) feidA (6-31)
and the [y] defined as,
[W] = =K, [, V? fejfeidA (6-32)
therefore, the coefficient matrix [C] will become deterministic.

[C] = [A]*[¥] (6-33)
For illustration purposes, for a three-term solution we obtain a 3X3 matrix as

depicted below,
L[, VAV + 2 [, f V2 ,dV + 3 [, i V2 fadV = [ (DfidV
cl [, LVPAAV +c2 [ VAV +c3 [, f, VP f3dV = fv(%)fzdv (6-24)

cl fo3 V2fidV + c2 fvfs V2fodV + c3 fo3 V2 fydV = fv(%)ﬁdv
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clayq + c2a4, + c3a43 =P,
clay, + c2a,, + c3ay; =P, (6-35)
claz, + c2as, + c3azz = P53

Where [, fi V2 fodV = [, fou1 Vfin2dV + [, fer VP ferdV (6-36)

6.4 Determination of Basis Function for a Silicon Matrix:

Basis functions for localized domains, or heterogeneous materials, are discussed
in previous the previous section (6.3). Kantrorovich and Krylov (1960) defined basis
functions as a set of linear independent functions that satisfy the homogeneous boundary
conditions. There are literature sources that present basis functions for orthogonal bodies
and include works by Kantrorovich and Krylov (1960), Carslaw and Jaeger (1959), Shih
(1984), Beck et al. (1992), and Cotta (1993). The most complete basis functions is in
Beck et al. (1992), in which basis functions in Cartesian, cylindrical, and spherical
coordinate systems are presented. Lee and Haji-Sheikh (1991) and Beck et al. (1992)
have presented procedures for defining basis functions in nonorthogonal bodies.

The procedure for finding basis functions is not unique and any properly defined
set of basis functions are acceptable as long as they satisfy the homogenous boundary
conditions. The basis functions presented will include the basis functions that satisfy the

boundary conditions of the first kind (prescribed temperature, f; = 0), the second kind

of i of;
(prescribed heat flux, % = 0), or the third kind (convection, — % = hfj).

Computation of effective thermal conductivity K, r¢ requires the global basis
functions of the first kind, since we have prescribed temperature on the top surface of the
matrix as shown in Figure 6-1(a).

When a multi-dimensional body has a regular shape, the basis function

describing that body is a product of one-dimensional basis functions. To obtain a
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reasonably accurate solution for irregular multi-dimensional bodies, the number of basis
functions is usually greater than 2. Numerical matrix operation becomes necessary when
dealing with complex multi-dimensional problem.

The method in which the basis functions are selected for the boundary conditions
of the first kind is available in literature (Kantrorovich and Krylov 1960; Carslaw and
Jaeger 1959; Ozisik, 1980; Haji-Sheikh and Mashena, 1987).

If a region is bounded by N surfaces, ¢, $,, 3, .... Oy, then the first member of

the set of the basis functions is
fl(r) = @1 @2 @3 QN (6-37)

Each subsequent member of the set of basis functions is obtained by multiplying
f1(r) by an element of a complete set, for example, in a Cartesian coordinate system
fo(r) = fi(r)x
fs(r) = i)y
fa(r) = fi(r)x? (6-38)
fs(r) = fi(r)xy
fo() = fi(r)y?
Each basis function is required to vanish only over the exterior boundaries.
Some, but not all, basis functions may become zero at the interior point. This can be
ensured if f; () is not zero within the region. This method produces accurate results
except in a domain with inside corners. Whenever all basis functions vanish at the interior
point, the region can be subdivided into many different subregions. The basis functions
are constructed for each subregion and matched at the common boundary of each
subregion (Kantrorovich and Krylov 1960). Lee and Haji-Sheikh (1991) showed

procedures for selecting such basis functions for domains with inside corners.
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In our model as shown in Figure 6-1(a) we have T=1 at top and T=0 at the
bottom. Remember that the sides are all adiabatic. The basis function for the model

excluding the inclusion was chosen as,

f=[1- (S Q) G- (@)-B)eroe 6w

It was mentioned that the basis functions obtained for a matrix without inclusion
must be modified to allow compatibility between the constituents in the model. The use of
equation (6-9) allows the computation of basis functions for the inclusion.

Upon successful computation of effective thermal conductivity in x and y
direction, one needs to determine the effective thermal conductivity in a lateral direction.
In the following section, the determination of effective thermal conductivity in z direction
will be discussed.

6.5 Determination of Effective Thermal Conductivity in a Lateral Direction

Once the effective thermal conductivity in 2-D is known, in order to develop a 3-D
model the effective thermal conductivity in a lateral direction should also be determined.
The analytical calculation of the effective thermal conductivity in 3-D is very difficult and
time-consuming. In this research, the goal is to simplify the analysis and use the parallel
resistors theorem of heat transfer to find the effective thermal conductivity in Z-direction.

In order to comprehend the analogy, consider the figure shown below,
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A
Gin > Qout
An

T=1°C T = 0°C

A\ 4
A

®
Figure 6-3 (a) Isometric view of TSV and silicon, (b) side view of the TSV and silicon, and
(c) parallel network resistance diagram; (d, e, f) schematic and boundary conditions on

the model
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Here A, and A are the areas of the silicon main domain and copper TSV
respectively.
If the parallel resistance theory is applied as shown in Figure 6-3(b), one could

drive the total resistance by means of equations (6-24, 6-25).

1 1 1 1
ERFRE R (6-40)
Ry Rz Ri  Rtotal
RiR
Rtotal 2R21+i21 (6'41)

Consider a cylindrical copper embedded into a silicon matrix as shown in Figure
6-3(d) and Figure 6-3(e); they are subjected to the temperature conditions depicted in
Figure 6-3(f). The effective thermal conductivity in a lateral direction is the unknown.
Based on the methodology described above, essentially, the effective thermal
conductivity would be based on volume proportion and the analytical results are
compared with FEM analysis and depicted in Table (6-1). The temperature and heat flux
using ANSYS are shown in Figure (6-4) and Figure (6-5) respectively.

Table 6-1 Comparison of effective thermal conductivity between analytical and FEA

kCopper 400 (W/m K)

kSilicon 180 (W/m K)

Analytical (kesr) | 320 (W/m. %)

Numerical (kesr) | 320 (W/m. %)

%Error 0%
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B: Steady-State Thermal
Temperature
Type: Temperature
Unit: *C

Tirnes 1

12142014 2:28 AM

B: Steady-State Thermal
Temperature 3

Type: Temperature

Unit: °C

Time: 1

T/21/2014 2:32 AN

1 Max
0.88389
0.77778
0.66667
055536
0.44444
033333
022222
011111
0 Min

1Max
088880
077778
0.66667
0,55536
0.44444
033333
022222
011111
0 Min

Figure 6-4 Temperature contour for copper and silicon

In the following section of this study, the analytical solution for the effective
thermal conductivity of the TSV system is obtained and compared with FEA analysis of
the same model using ANSYS Workbench as a tool for verification purpose. Keep in
mind that the actual diameter of a TSV is around 1 — 5(ym). However, for better
visualization purpose, the diameters of the TSVs are chosen much larger than their
actual size.

6.6 Numerical Examples of TSV Systems

6.6.1 Setting a Benchmark for Our Analysis in the Forthcoming Examples

Consider a single copper inclusion in a silicon matrix with perfect contact as
shown in Figure 6-1(a).

The copper and silicon have the thermal conductivity of 400(%) and 180 (%)
respectively.

The block dimensions are a = 2(mm) and b = 1(mm).

The copper inclusion has radius of r = 0.5(mm). The initial height is

h; = 1(mm).
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The top surface of the silicon matrix is subjected to a constant temperature
T = 1°C while the bottom surface is maintained at T = 0°C.

Solution;

After successful determination of basis function as described previously, the
basis function was carefully chosen to satisfy the homogenous boundary conditions
imposed by external surfaces of the model. That is the temperatures at x=a has to be
T|y=, = 1 and the temperature at x=0, is T|,-, = 0.

Applying the Galerkin procedure as described earlier, the effective thermal
conductivity of the matrix and inclusion is found to be K,.rs = 208.920 (%) .

The same model was analyzed using FEA techniques and results in an effective
thermal conductivity of K.¢r = 208.902 (%). Note that the average heat flux was used in
FEA for determination of K.¢. Table 6-2 shows the results using both techniques, while

Figure 6-5 shows results from ANSYS.
Table 6-2 Comparison of effective thermal conductivity between analytical and FEA

without resistance

Number of 1 2 3 4 5 6 7

Terms (Jmax)

Kerr (W k) 218.950 | 209.523 | 209.426 | 209.100 | 208.964 | 208.958 | 208.920
FEA(Grid 208.902 | 208.902 | 208.902 | 208.902 | 208.902 | 208.902 | 208.902
independent)

#elements~1.2
Million

%Error 0.0086%
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B: Steady-State Thermal
Tatal Heat Flux 5

Type: Total Heat Flux
Urit: W/mm?

Time: 1

12172014 233 AM

B: Steady-State Thermal
Tatal Heat Flux 4

Type: Total Heat Flux
Urit: Wirmm®

Time: 1
1212014 134 AM

0.9 Max ! IMax
2 Min
! 0.9 Min

Figure 6-5 Heat flux contour for copper and silicon

B: Steady-State Thermal
Total Heat Flux Termperature
Type: Total Heat Flux Type: Ternperature
Unit: Wifrmm? Unit °C

Tirne: 1 Time: L
TALLA2014 5:36 A T/11/2014 241 AN

0.11314 Max 1 Max
0.11137 0.35889
0.1096 0.77778

B: Steady-State Thermal

0.10783 ’ 0.6666T
0. 10606 1.55556
0.10428% ’ 0.44444
0.10252 033333
0,10075 022222
00984977 01t
0.097207 Min 0 Min

B: Steady-5tate Thermal
Total Heat Flux 2

Type: Total Heat Flux
Units Wéfrenen
Tirne: 1

11142014 5:42 AW

0.13601 Max
0.12751
0.11901
0.11051
0.10202
0.093518
0.08502
0.076522
0.068024
0.059526 Min

Figure 6-6 Heat flux contour and temperature distribution for perfect contact
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6.6.2 Contribution of Thermal Resistance

In the next example, the contribution of thermal resistance was considered and
for demonstration purpose the resistance of R=100 mm?-K/ W applied between TSV and
Copper. See Table 6-2 and Figure 6-5 for the results.
Table 6-3 Comparison of effective thermal conductivity between analytical and FEA with

resistance

Number of Terms 2 3 4 5 6 7
(Jmax)

Kerr(-2) , Analytical | 159.035 | 131.902 [ 126.040 | 124.642 [ 124.051 [ 123.69 Y
m.K

Keff(ﬂ)f EEA 123.701 | 123.701 123.701 | 123.701 123.701 123.701 v
m.K.

(Grid independent)
#elements~1.2Millio

n

%Error 0.00889%

B: Steady-State Thermal B: Steady-State Thermal
Total Heat Flux 2 Temperature

Type: Total Heat Flux Type: Temperature

Unit: W/rmm? Unit: °C

Time: 1 Time: 1

7/13/2014 10:08 PM T/3/2014 10:06 PRA

0.15312 Max 1 Max
0.13655 0.66889
0.11999 0.77778
0.10342 0.66667
0.086848 0.55556
0.07028 0.44444
0053711 0.33333
0.037143 0.22222
0.020574 0.11111
0.0040058 Min 0 Min
B: Steady-State Thermal
Total Heat Flux
Type: Total Heat Flux
Unit: Wfmm?
Time: 1
L3204 833 PM
0.075728 Max
0.072351
0.068973
0.065595
0.062218
0.05884
0.055462
0.052085
0.048707
0.045329 Min

Figure 6-7 Heat flux contour and temperature distribution with contact resistance
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Consideration is given to a layer of matrix that consists of many inclusions as
shown in Figure 6-6 and the effective thermal conductivity is the unknown sought for.
This could be considered a die layer with TSV interconnects and subjected to a known
temperature boundary conditions. Thermal conductivity of silicon and copper is the same
as the one discussed in the first example. However, in this example the diameters of
TSVs’ are variable and ranging from 0.006(mm) to 0.192(mm). This exercise was carried
out with or without contact resistance. The results are depicted in Figures 6-7(a, b, c) and
Figures 6-8(a, b, c) for perfect contact and with contact resistance respectively. The
contact resistance of R=100 mm?-K/ W used when computing the case with thermal
resistance. Also, the results for variation in TSV’s diameter versus effective thermal

conductivity for both cases can be seen on Figure 6-9 and Figure 6-10.

TSVs
Silicon

Figure 6-8 A Silicon die layer with TSV inclusions
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B: Steady-State Thermal
Termperature

Type: Temperature

Unit: C

Tierve: 1

TS5/ Z014 3:32 Ak

B: Steady-State Thermal
Total Heat Flux

Type: Total Heat Flux
Unit: Wi

Tirme: 1

TA15/2014 2:30 AbA

1 Max 0.017818 Max
0.B2889 0.016904
07778 0.015389
068667 0.015075
055556 0.014161
0.d4444 0.013247
033333 0.012332
022222 0.011418
[BARAE 0.010504

0 Min

0.0095893 Min

(b)

8 & L
teady Ste Thsad >

Teabetfla? & |
Type: Total Heat e

Ut Wirer® l”\
T )

%
TSR hs ' 7 m
Q014551 Max =Y - y |
o . ]
HUY - ) P

et :
L

(©)
Figure 6-9 Temperature contour for multiple TSVs embedded in silicon without contact
resistance, (b) total heat flux contour for multiple TSVs embedded in silicon without
contact resistance, and (c) total heat flux contour at the bottom wall without contact

resistance
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B: Steady-State Thermal
Temperature

Type: Ternpersture

Unit: "C

Time: 1

TALS/2014 3:44 A0

1 Max

0.38889
07178
066667
0.55556
0.44444
0.33323
0.22222
0111t
0 Min

B: Steady-State Thermal
Taotal Heat Flux

Type: Total Heat Flux
Unit: Wirmm™

Tirmme: 1

TALSA2014 3:46 AW

0.019043 Max
ooLTETE

DLOLET LG
0015554
0014392
001323
0012068
0010906

0.0D9F 444
O.0OBSH2S Min

(@) (b)

B: Steady-State Thermal

Total Heat Flux 2 o |
Type: Total Heat Flux

Unit: Wfmm®

Time: 1

771572014 3:52 AM -

0.014756 Max

0.014616 o -~ =
0.014476 - - -
0.014336 = »

0.014196 =
0.014056
0.013916
0.013776
0.013636
0.013496 Min (©)

Figure 6-10 (a): Temperature contour for multiple TSVs embedded in silicon with contact

resistance, (b) total heat flux contour for multiple TSVs embedded in silicon with contact

resistance, and (c): total heat flux contour at the bottom wall with contact resistance

Table 6-4 Analytical and FEA comparison of K¢ with perfect contact

Number of Terms 7
(\]max)
Kurr(-s) , Analytical | 189.128

Kerr (2), FEA 189.385

(Grid independent)
#elements~1.2Million
%Error 0.13%
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Table 6-5 Analytical and FEA comparison of K¢ with contact resistance

Number of Terms 7

Umax)

Keff(%) , Analytical 187.087
ul 187.271

Kerr (ﬁ), FEA

(Grid independent)
#elements~1.2Million
%Error 0.098%

TSV Diameter vs. K without contact resistance
183.5 -

183 -

182.5 -

Kff( ) 182 - == Analytical
e === FEA
m-K" 1g15

181 -
180.5 -

180 -

179.5 T T T 1
0 0.02 0.04 0.06 0.08
TSV Diameter(mm)

Figure 6-11 Variation of TSV’s diameter vs. K¢ for perfect contact in the silicon layer
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Effective Thermal Conductivity Vs. TSV Diameter
including Thermal Conductance
300 -
250 -
w 200 —A—FEA
Keff(ﬁ)
150 - == Analytical
100 -
50 -
O T T T 1
0 0.5 1 15 2
TSV Diameter (mm)

Figure 6-12 Variation of TSV’s diameter vs. K¢ with contact resistance in silicon layer
6.7 Comments/Discussions:

The analysis shows the effectiveness of the analytically obtained results is in
good agreement with Finite Element Analysis. The Galerkin-based integral approximation
is very accurate and fast-converging compared to FEA. Depending on the accuracy
required for specific application, the convergence of fewer terms is fairly quick and in a
matter of minutes. The numerical integrations are generally slow to solve, however, it was

noticed for the smaller number of terms J,x<8 that the convergence is very quick.
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Changes in the analytical results are in the 4™ and 5" decimal places for greater number
of terms.

The results from Figure 6-9 and Figure 6-10 reveals that as the diameter of the
TSVs gets larger, their impact in overall heat transfer would be higher. However, for
actual size of the TSVs in the 1-5um range, the effect of thermal impact to overall
temperature distribution is negligible, particularly if the contact resistance is relatively

small.
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Chapter 7

Conclusions and Comments

Analytical methods for finding temperature solutions of steady-state heat
conduction in multi-layer bodies for 3D electronic packaging were presented. Problems of
this type are encountered in many engineering disciplines and different industries. As
cooling problems related to device protection have emerged in many electronic devices,
these analytical heat conduction solutions become an important verification tool for
numerically-based solutions for thermal design engineers. Analytical solutions can
provide insight into the behavior of temperature and heat flux distribution in many
engineering fields from mechanical and aerospace to civil engineering. An accurate
steady-state temperature solution in multi-layer bodies is an invaluable tool for
determination of heat spreaders in electronic cooling applications. This includes isotropic
or orthotropic multi-layer, with or without contact conductance. Steady-state solutions can
provide relatively accurate results away from boundary conditions and it can improve
computation time for transient problems by imposing the non-homogeneous boundary
conditions from transient to steady-state solution.

During the course of this study, the semi-analytical or analytical solutions were
validated with the FEM solutions to check for consistency in the solution profiles. It
was also observed that the analytical and the purely numerical solutions were in
excellent agreement with each other. So, a question that surfaces is why use a semi-
analytical method, when a reasonable solution can be obtained using FEM? Firstly, for
a heterogeneous system that contains multiple inclusions, purely numerical methods can
turn out to be a computationally-expensive enterprise. In addition, if the heterogeneous

medium contains very small inclusions, finite element meshing can be a bottleneck.
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However, the semi-analytical approach can be conveniently extended to solve multiple
inclusion problems as well as limiting cases, wherein the size of the inclusions is
infinitesimally small. For example, it was observed that for very small diameter TSVs, the
number of mesh increased by 40 times in comparison to a larger one. This could be very
time consuming when one uses an FEA approach.

The ease of variations in the Galerkin-based functions is such that many
configurations can be evaluated in a relatively short time frame. The effective
thermophysical properties can be changed readily without grid-independent evaluation to
ensure the stability criteria, as one must do when employing finite element method.

As was mentioned earlier, many industries other than electronics can benefit
from this mathematically developed procedure. This procedure can be used in fluid
applications by minor modification to allow for fluid to take place as opposed to solid. The
application for this could be in fluid cooling channels in the aerospace industry for the
protection of composite material skin of high-temperature, high-speed air vehicles, or
infrared signal suppression on military vehicles and many more.

The material presented in this research paves the way for solving far more
complex geometries and boundary conditions than is possible utilizing the finite element
method, in a shorter time frame, and without the high computational costs associated
with the FEA. These methods are also effectively translatable to other applications,

increasing their utility.
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Appendix A

Derivation of Orthogonality Condition in the Lateral Direction
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The development of the orthogonality condition begins with the relations

2Ky (9o () = 3{ ,() aYm(y)} (A1)
Y
and
oY,
—2 Ky (Y)Va (Y) = W{ ,() a;”} 2)

After multiplying the first relation by Y, (y) and the second relation by Yy, (Y),

we subtract the resulting equations and integrate both sides over y from O to b:

jb (2 = v ky (Y)Y (N)Yn (y)d
y=0 Yn—7Ym) y(Y) m(Y)Yn (y)dy
ST (y)

EN el
oy
;y)}} y (A3)

After integrating the right side, we can write this equation as

_Yj,m(Y){

b2 2
J, o 0A=YRYKy(Ym(M¥n(y)dy

N
-y {,m(y){”( )%(y)} Yimly ){,ym “ﬂ}

j=1

(A4)

bj1
Clearly, because of the external boundary conditions, the right side vanishes
whenj=1and y =by = 0. Additionally, it vanishes when j=N and y =by =b.

Moreover, one can show that these quantities on the right side have the same values

over the contact surfaces but have the opposite signs.
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For layer j, using the compatibility conditions for the upper limit, we can write the

following term as

{YJ’“(V){kJ.y(Y)WJé—n;(W} _Yj,m(y){kj,y()’) aYJa";(y)}}
y=bj
:YLn(bj)[Yjﬂ'm(bj) _Yj’m(bj)]/ Rj _YLm(bj)[Yj+1,n(bj) —Yj,n(bj)]/ Rj
- [Yj,n(bj)Yjﬂ,m(bj) —Yj,m(bj)YjJrl'n(bj)]/ R

(A5)

This process is repeated for the lower limit for layer j+1 to obtain

N ivm(Y) Njsan(¥)

y=bj
=YY je2m®) =Y mOPV R} =Y it m®)Y a1 07) =Y.V R;
= ¥in )Y 2m®)) ~ Ym0 )Y i1n GRS

(A6)

These two values are the same but have opposite signs at y = bj within the

orthogonality relation. Therefore, the orthogonality for the y-direction is

(GB=13)[ Ky ¥m ()Y (¥)dy =0 (A7)

This can be written as

b.
i fk()Y- (Y)V; ~(y)dy = 0 whenm=n
: y N jmY)Tn Y)Yy = N, when m=n
lebj—l

(A8)

where
bj

N
Nm=" [ ky@YjmPdy (a9
=1 bj—l
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Appendix B

Derivation of Auxiliary Function H
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fejz fmj +U+9Q.H
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For inclusion

jump condition
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