

LINKING ENTITY PROFILES

by

RAMESH VENKATARAMAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTERS OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2014

Copyright © by

ii

Copyright © by Ramesh Venkataraman 2014

All Rights Reserved

To my parents and brother who made it possible for me.

iv

Acknowledgements

It is with great pleasure that I would like to thank those people without whom it

would have been impossible to complete my thesis. First and foremost, I would like to

thank my supervising professor Dr. Chengkai Li for constantly motivating and

encouraging me and for his invaluable advice during the course of my research work. I

would also like to thank Dr. Li for his concern and his appreciation at several stages of

my thesis work. I would also like to take this opportunity to thank Dr. Li for being

available always and steering me in the right direction.

I wish to thank my committee members Dr. Ramez Elmasri under whom I took 2

database courses (DB1 and DB2) and Professor David Levine under whom I took the

cloud computing course. I would really like to thank these professors for the courses they

taught which helped me learn a lot of new information and also for their acceptance to be

in my committee.

I would also like to thank my current job as Systems Administrator in CSE

department which helped me in many ways. I would really like to thank my manager Bito

Irie for giving me the opportunity to be part of the CSE services team and his valuable

advice during my tough phases.

Finally, I would like to thank my friends Praveen and Nandish who helped me out

in the difficult situations of my thesis work. Their constant motivation and guidance really

helped me in shaping my career as a Master’s student. I would also like to thank my

fellow IDIR lab mates Gensheng, Nafi, Abol and Somu who all helped me when I was

stuck with some problem. Thanks to the members of the Stack Exchange community

sites, especially unix.stackexchange.com for answering many questions in connection

with my thesis work.

 July 14, 2014

v

Abstract

LINKING ENTITY PROFILES

Ramesh Venkataraman, MS

The University of Texas at Arlington, 2014

Supervising Professor: Chengkai Li

Entity linking allows one to have collections of data from multiple sources as a

global dataset and then query those data. Entity linking allows us to do knowledge

discovery on this global dataset which might result in the discovery of some interesting

facts and information. Microsoft Academic Search (MAS) is a free public search engine

for academic papers and contains the bibliographic information for papers published in

journals, conference proceedings and respective citations. As of February 2014, it has

indexed over 40 million publications and 20 million authors. LinkedIn is a social

networking service used for professional networking. LinkedIn has an estimated 259

million users worldwide. Linking the author from MAS to the person from LinkedIn

produces a bigger dataset. The resulting dataset enables us to find more interesting

measures about an author such as the author’s educational institutions, previous work

experiences and social groups. We are effectively collecting missing pieces of

information about an author from LinkedIn as part of forming an extensive dataset. In this

process, we are resolving the ambiguity of multiple persons with the same name as the

author and classifying them. Our experimental results indicate that we can attain a higher

precision of 98% if we have a higher threshold of 2.8.

vi

Table of Contents

Acknowledgements .. iv

Abstract ... v

List of Illustrations ..vii

List of Tables ... viii

Chapter 1 Introduction... 1

Chapter 2 Problem Modeling .. 4

2.1 Mathematical Representation Of Edge Weight Calculation 5

2.2 Example On Calculating Edge Weight ... 9

Chapter 3 Algorithms To Find Match With Maximum Weight ... 13

Chapter 4 Preprocessing Input Data ... 20

Chapter 5 Experiments ... 22

Appendix A Pseudocode on Finding Name Variations ... 27

Appendix B Pseudocode On Determining If The Links Are Valid 30

Appendix C Pseudocode On Calculating The Edge Weight ... 32

Appendix D Example On Calculating Levenshtein Distance .. 38

Appendix E Pseudocode On Hungarian Algorithm ... 40

Appendix F Pseudocode On Duplicate Authors Detection in MAS 52

References .. 54

Biographical Information ... 55

vii

List of Illustrations

Figure 1 – Problem Definition ... 2

Figure 2 – Possible Matches ... 5

Figure 3 – Name Variations and Valid URLs .. 10

Figure 4 – Assigning Edge Weights .. 10

Figure 5 – Applying Thresholds .. 11

Figure 6 – Possible Matches after Threshold ... 11

Figure 7 – Complex Example .. 12

Figure 8 – Possible matches for a complex case ... 12

Figure 9 – Hungarian Algorithm Example ... 13

Figure 10 – Modified Greedy Approach Example ... 18

Figure 11 – Split into 2 files ... 18

Figure 12 – 2 files after processing ... 19

Figure 13 – Sorting the file .. 19

Figure 14 – Duplicate Authors from MAS ... 20

Figure 15 – Duplicate Author Detection Evaluation Page... 23

Figure 16 – Evaluation Page for Linked Data ... 25

viii

List of Tables

Table 1 – MAS Information for an author common with LinkedIn data 6

Table 2 – LinkedIn information of a person common with MAS data 6

Table 3 – Duplicate Author Detection Experiment Results ... 24

Table 4 – Experiment Results for pair detection between MAS and LinkedIn 26

1

Chapter 1

Introduction

A single entity is modeled across multiple data sources and it is valuable to link

entities together. After entity linking, we have more comprehensive information available

about that entity. The entity linking is known as “Linked Data” which describes a method

of publishing structured data so that it can be interlinked and become more useful. It

enables data from different sources to be connected and queried. The adoption of the

Linked Data best practices has led to the extension of the Web with a global data space

connecting data from diverse domains such as people, books and scientific publications

[1]. It is important that we link data from multiple sources to derive some meaningful

information from this dataset. Discovering the correspondence of an entity across

different data sources is a crucial prerequisite for many interesting inter-network

applications such as link recommendation and community analysis using information

from multiple data sources [2].

 However, the process of entity linking has several challenges. The same entity is

represented in different ways across multiple data sources. For instance, in this work, we

link an author profile available from Microsoft Academic Search (MAS) with a person’s

profile from LinkedIn. The first challenge we face is that the author name in MAS is

represented using first name, middle name and last name, but a person name in LinkedIn

is represented using just the first name and last name. The second challenge is that the

author skillset in MAS is a subset of a person’s skillset available from LinkedIn. The third

challenge we face is that the author profiles from MAS contains duplicate data. The fourth

challenge is that we will not always have a matching profile in LinkedIn for an author

profile from MAS and vice-versa. We address the problem in a more generalized manner

for any two data sources.

2

We have two sets where set � represents the distinct profiles from entity network

A and the set � represents the distinct profiles from entity network B. Our goal is to find a

one to one mapping between these 2 sets. To be precise, our expected outcome is a

partial injective function from � to � (written as �: � � �). This is partial because we do

not force the function to map every element of � to an element of �. This is injective

because we look for a one to one function that preserves distinctness. This is illustrated

in Figure 1.

Figure 1 – Problem Definition

Represent the entities from MAS and LinkedIn using a complete bi-partite graph.

Then, assign an edge weight between the nodes of MAS and LinkedIn and solve the

problem using maximum weight perfect matching in a bipartite graph [3]. The name,

organization and skills are the common parameters between MAS and LinkedIn. For an

author from MAS, we search for various name combinations in LinkedIn. We are able to

search the name combinations in LinkedIn because it always follows the same pattern for

any person profile which is www.linkedin.com/pub/dir/firstname/lastname. We use web

scraping to extract the HTML source of the person’s LinkedIn profile. Then, extract the

common parameters such as the name, organization and skills from the HTML source

3

page of these LinkedIn profiles and compare them with the name, organization and skills

available from MAS. Then calculate the edge weight between an author profile in MAS

and LinkedIn profiles based on the common parameters. After calculating the edge

weight for all the authors, use a threshold on the edge weight to remove weaker edges

from the bipartite graph. After removing the weaker edges, use the Hungarian Algorithm

[4] to find the maximum weight perfect matching in the bipartite graph.

The Hungarian Algorithm works only on smaller datasets. We have implemented

our own algorithm which is a modified version of the greedy approach that executes

equally well on larger datasets.

On analysis of our entity network data, we observe that there are duplicate

records in the data. The first problem can be viewed as duplicate records detection in the

entity network data. There is a set of public profiles from the entity network which

contains duplicate records for the same profile. Eliminate all such duplicate records in the

entity network so that the list contains only distinct profiles.

In our MAS data, we have duplicate ids for the same author. We eliminate all the

duplicate records. For each author, MAS has the details about author name, author’s

collaborators and the author’s skills. We detect the duplicate entries for an author based

on these 3 parameters. We assume that a person’s profile in LinkedIn is always distinct

and no person can have 2 profiles for himself in LinkedIn.

Human evaluators helped us to evaluate our work. Based on their evaluation, our

experimental results for duplicate authors’ detection have a higher recall value of 1. The

evaluation for finding pairs between MAS and LinkedIn shows that a higher threshold

value results in a better precision rate. We have discussed these algorithms and

techniques in the following chapters and we have also presented our experimental results

towards the end.

4

Chapter 2

Problem Modeling

As mentioned in Chapter 1, we have 2 entity networks. We use the author data

from MAS as one data source and profile information from LinkedIn as another data

source. We can view the problem as a complete bipartite graph where the vertices can

be partitioned into two subsets �1 and �2. �1 represents the set of distinct MAS authors

and �2 represents the set of distinct public profiles of persons in LinkedIn. Each vertex of

the first set (�1) is joined to each vertex in the second set (�2) by exactly one edge. That

is, it is a bipartite graph
�1, �2, �
 such that for every two vertices �1 � �1 and �2 �
�2, �1�2 is an edge in �. Thus we can define the complete bipartite graph as ��,� where

� is the partition size of �1 and � is the partition size of �2.

In the above complete bipartite graph we find a match �’ such that �’ �

�, �, �’
. It is to be noted that there may be vertices �� � � that does not form any

edge with �� � � and vice versa. We define the graph �’ in such a way that the edges

�’ �
��, ��
 satisfies the below criterion.

� �� � ��, �� � �, �� � �

 � � �� !"#$ %$&% � �
�� , ��
'(� �)�*, ��+
 As per our definition of the match, for our complete bipartite graph �, we will get

multiple matches. We define the total matches as the number of matches possible in our

complete bipartite graph. We have illustrated 2 possible matches in Figure 2. We can

formulate the total matches using mathematical equation. Assuming we have � nodes in

MAS and � nodes in LinkedIn, the total matches possible for our complete bipartite graph

can be represented by a mathematical equation as,

5

Total Matches = ∑)�� +)�� +�!./0
�,�
�12

As per the definition of total matches even for a smaller case when m=2 and n=3 the total

matches is 9.

Figure 2 – Possible Matches

From all available matches, we find a single match which has the maximum

weight. In the next section, we will discuss how we calculate the edge weight. We will

look into the mathematical formula of edge weight followed by an example. The pseudo

code on how we calculated the edge weight can be found in Appendix-A, Appendix-B and

Appendix-C.

2.1 Mathematical Representation Of Edge Weight Calculation

The weight definition discussed here is specific to the datasets we used in our

thesis work. Before defining the edge weight, let us look at the information that is

common between the MAS and LinkedIn. Table 1 shows some of information available

from MAS.

6

Table 1 – MAS Information for an author common with LinkedIn data

Name Organization Skills

Nicholas Chia University of Illinois Urbana Champaign Microbiology, Oncology

Kaiwen Xia University of Toronto Mechanical Engineering,
Geophysics

In Table 1, Name column corresponds to ��3�4. Organization column corresponds to

�567. Each skill in the Skills column of Table 1 is represented as 89:. Table 2 below

shows the information available from LinkedIn for persons. In Table 2, the Name column

corresponds to ��3�4. The Organizations column corresponds to �567. Each skill in the

Skills column of Table 2 is represented as ;<:. We mention the variables we use to

represent each column of Table 1 and Table 2 here is because we use these variables

later when we define the mathematical equations.

Table 2 – LinkedIn information of a person common with MAS data

Name Organizations Skills

Nicholas Chia

Mayo clinic, Institute for System
Biology, University of Illinois at Urbana
Champaign, The Ohio state University,
Georgetown University

Microbiome, Microbiology,
Computational Biology and
12 more skills.

Kaiwen Xia
University of Toronto, California Institute
of Technology, University of Science
and Technology China

Rock Mechanics,
Geophysics, Simulation
and 15 more skills.

Both Table 1 and Table 2 above list the information that is available in common

from MAS and LinkedIn. As we see, we have names, organizations and skills as the

common parameters between the 2 datasets. Therefore, the edge weight is defined as a

function of the sum of namescore, orgscore and skillscore.

=��>$% � �&��!#'(� ? '(>!#'(� ? !@�AA!#'(� (1)

7

Before defining the namescore, let us see the various combinations that we use

for namescore calculation. MAS follow the pattern as first name, middle name and last

name to represent an author’s name. LinkedIn just uses first name, last name to

represent a person. Hence we try various name combinations. The various name

combinations that we try are as follows.

If an author has only first name and last name in MAS, then we use 2 name

variations to search in LinkedIn. The URL patterns that we search in LinkedIn are,

� www.linkedin.com/pub/dir/firstname/lastname

� www.linkedin.com/pub/dir/initials of first name./lastname

For example, if the author name in MAS is Bart Selman, the URL patterns that we search

in LinkedIn are,

� www.linkedin.com/pub/dir/bart/selman

� www.linkedin.com/pub/dir/b./selman

If an author has first name, middle name and last name in MAS, then we use 5 name

variations to search in LinkedIn. The URL patterns that we search in LinkedIn are,

� www.linkedin.com/pub/dir/firstname/lastname

� www.linkedin.com/pub/dir/firstname.middlename/lastname

� www.linkedin.com/pub/dir/firstname/middlename.lastname

� www.linkedin.com/pub/dir/initials of firstname.middlename/lastname

� www.linkedin.com/pub/dir/initials of firstname./middlename.lastname

For example, if the author name in MAS is Reid.G.Simmons, the URL patterns that we

search in LinkedIn are,

� www.linkedin.com/pub/dir/Reid/Simmons

� www.linkedin.com/pub/dir/Reid G./Simmons

� www.linkedin.com/pub/dir/Reid/G.Simmons

8

� www.linkedin.com/pub/dir/R.G./Simmons

� www.linkedin.com/pub/dir/R./G./Simmons

This is how we calculate the namescore. The namescore is defined as,

�&��!#'(� � 1 B CA��9DEFG,<DEFG
|9DEFG|,|<DEFG|
 I)A��
��3�4
 ? A��
��3�4
+J (2)

We use Levenshtein distance [4] for calculating the namescore. Levenshtein

distance is an edit distance algorithm. Edit distance is a way of quantifying how dissimilar

two strings are to one another by counting the minimum number of operations required to

transform one string into the other. The reason for using Levenshtein distance is because

it is the most common variant generally used for calculating the edit distances. Informally,

Levenshtein distance between two words is the minimum number of single character

edits (i.e. insertions, deletions or substitutions) required to change one word to the other.

Mathematically, the Levenshtein distance between two strings &, K is given

by A��3,L
 |&|, |K|
,

A��3,L
�, �
 �
MNO
NPmax
�, �
 �� min
�, �
 � 0

��� W A��3,L
� B 1, �
 ? 1A��3,L
�, � B 1
 ? 1A��3,L
� B 1, � B 1
 ? 1
3:XLY

Z'%$�([�!�. Z (3)

Where 1
3:XLY
 is the indicator function equal to 0 when &� � K� and 1 otherwise.

For example, the author name in MAS is NicholasChia and a person name for a

public profile from LinkedIn is NicholasCSChia. The Levenshtein distance between these

2 names is calculated as 2. We have provided the calculation of Levenshtein distance in

Appendix D. However, we normalize the Levenshtein distance. The final value calculated

for namescore is 0.92 in this example.

Now, let us see how we define orgscore. We define score between any 2 pair of

organization as below.

9

!#'(�
�567, �567
 � A��9]^_,<]^_)`9]^_`,|<]^_|+ I)A��)�567+ ? A��)�567+ + (4)

'(>!#'(� � 1 B �&a b�3 � 9]^_,L � <]^_!#'(�
&, K
c (5)

We have one organization in MAS but for a person in LinkedIn there are multiple

organizations (current organization, previous organization, educational institution) for a

person. We calculate the orgscore in the same way as we calculate the namescore

except that we calculate the maximum orgscore.

The skillscore is calculated as below.

!@�AA!#'(� � 1 B ∑ d;<: e 89:f I 89:��12 (6)

Where,

89: � b1 �� &"%$'(g'!!�!!�! & !@�AA �� �hi0 '%$�([�!� Z
;<: � b1 �� &"%$'(g'!!�!!�! & !@�AA �� A��@�j��0 '%$�([�!� Z

The reason we use the skills from MAS in denominator is because the skills set

in MAS is a subset of the skills available in LinkedIn. For example, as we saw in the

table, the author Nicholas Chia in MAS and the person named Nicholas Chia from

LinkedIn both have Microbiology as their common skill. In this case we calculate the

skillscore as 0.5 as we have 2 skills in MAS.

2.2 Example On Calculating Edge Weight

For each author from MAS, we find different name combinations for that author

so that we can search those name combinations in LinkedIn. After obtaining the name

variations for all the authors from MAS, we check if these links are valid in LinkedIn. By

valid, we mean if the links actually exist. The valid LinkedIn URLs may correspond to

either a single public profile page of a person or multiple public profile pages of several

10

persons. The maximum number of URLs for a multiple persons public profile pages is

restricted to 25. This is illustrated in the Figure 3. The figure shows the name

combinations we try for an author and the valid LinkedIn URLs for those names.

 Figure 3 – Name Variations and Valid URLs

 After finding the valid LinkedIn profiles, we need to define the weight over the

edge that maps the nodes between these 2 sets. We have illustrated it in Figure 4.

Figure 4 – Assigning Edge Weights

11

However, as we can see from the Figure 4 there will be some edges which are

very weak. To avoid such weak edges, we apply the threshold and select only the edges

that are greater than the threshold value. In this particular example, we use the threshold

value as 2. This can be illustrated as in Figure 5.

Figure 5 – Applying Thresholds

We will get several matches after applying threshold as illustrated in Figure 6.

Figure 6 – Possible Matches after Threshold

We find the match with maximum possible edge weight. We have discussed the

algorithm for finding the match with maximum weight in Chapter 3. The final output that

we expect is the possible Match 1 in Figure 6. Let us consider a complex example as

illustrated in Figure 7.

12

Figure 7 – Complex Example

For Figure 7, we can have 2 possible matches as illustrated in Figure 8.

Figure 8 – Possible matches for a complex case

For possible match1 the sum of edge weights is 4.52 and for possible match 2 the sum of

edge weight is 4.6. Hence, we choose the possible match 2 as our final output.

13

Chapter 3

Algorithms To Find Match With Maximum Weight

We use the Hungarian algorithm [4] to find the match with the maximum weight.

The pseudo code [6] of the Hungarian algorithm is presented in Appendix E. Let us

consider the example as illustrated in Figure 9.

Figure 9 – Hungarian Algorithm Example

For the given figure in the left side of Figure 9, we are concerned with finding the

maximum weighted bi-partite matching as in the right figure of Figure 9. To find the

maximum edge weight in a bipartite graph, we can use the Hungarian algorithm as

below.

Arrange the information from the bipartite graph in a matrix with the “authors from

MAS” on the left and the “public profile information from LinkedIn” along the top, with the

score for each pair in the middle. The author – public profile information can be

14

represented in a matrix as below. Since we are concerned with finding the maximum

edge weight, we will first multiply the initial weights by -1.

 L1 L2 L3 L4 L5 L6

M1 -2 -2.5 0 0 0 0

M2 0 -2 0 0 0 0

M3 0 0 -2.5 -2.1 -2.2 0

M4 0 0 0 0 0 -2.2

Ensure that the matrix is square by the addition of dummy rows/columns if

necessary. Conventionally, each element in the dummy row/column is the same as the

largest number in the matrix. As we can see, the above matrix is not a square matrix. We

will add row having the maximum value to make the matrix a square matrix. In our

example, the maximum value is 0. Hence we will now add 2 more rows with all values as

0. The matrix would be as below.

 L1 L2 L3 L4 L5 L6

M1 -2 -2.5 0 0 0 0

M2 0 -2 0 0 0 0

M3 0 0 -2.5 -2.1 -2.2 0

M4 0 0 0 0 0 -2.2

 0 0 0 0 0 0

 0 0 0 0 0 0

Reduce the rows by subtracting the minimum value of each row from that row.

For each row, we will subtract the minimum row value from the values and update the

15

matrix. For example, the minimum value in the first row is -2.5. We will subtract -2.5 from

all the row values in the first row. After doing this step for all the rows the matrix will be

updated as below.

 L1 L2 L3 L4 L5 L6

M1 0.5 0 2.5 2.5 2.5 2.5

M2 2 0 2 2 2 2

M3 2.5 2.5 0 0.4 0.3 2.5

M4 2.2 2.2 2.2 2.2 2.2 0

 0 0 0 0 0 0

 0 0 0 0 0 0

Reduce the columns by subtracting the minimum value of each column from that

column. The minimum column value is 0 in all the 6 columns. Therefore, the matrix will

stay the same as above.

Cover the zero elements with the minimum number of lines it is possible to cover

them with. If the number of lines is equal to the number of rows, then we can choose a

set of zeros so that each row or column has only one selected.

 L1 L2 L3 L4 L5 L6

M1 0.5 0 2.5 2.5 2.5 2.5

M2 2 0 2 2 2 2

M3 2.5 2.5 0 0.4 0.3 2.5

M4 2.2 2.2 2.2 2.2 2.2 0

 0 0 0 0 0 0

 0 0 0 0 0 0

16

Add the minimum uncovered element to every covered element. If an element is

covered twice, add the minimum element to it twice.

 L1 L2 L3 L4 L5 L6

M1 0.5 0.5 2.5 2.5 2.5 2.5

M2 2 0.5 2 2 2 2

M3 3 3.5 0.5 0.9 0.8 3

M4 2.7 3.2 2.7 2.7 2.7 0.5

 0.5 1 0.5 0.5 0.5 0.5

 0.5 1 0.5 0.5 0.5 0.5

Subtract the minimum element from every element in the matrix. Cover the zero

elements again.

 L1 L2 L3 L4 L5 L6

M1 0 0 2 2 2 2

M2 1.5 0 1.5 1.5 1.5 1.5

M3 2.5 3 0 0.4 0.3 2.5

M4 2.2 2.7 2.2 2.2 2.2 0

 0 1 0 0 0 0

 0 0.5 0 0 0 0

17

Now, from the available matches we will choose a match with the maximum

weight which in our example corresponds to M1-L1 + M2-L2 + M3-L3 +M4-L6. This is

already illustrated in the right figure of Figure 9.

However, for the Hungarian algorithm to execute, we needed to increase the

heap size in the JVM because the input size was larger. However, if the input size to the

Hungarian algorithm can be reduced, the execution of the Hungarian algorithm can be

speeded up. This actually resulted in a much better implementation which is more time

efficient and memory efficient than the Hungarian algorithm.

The graph used for Hungarian algorithm can be represented using files. The

input file contains the columns of authorID, edgeweight and LinkedInURL. The pseudo

code of the modified greedy algorithm can be summarized as below.

1. Initially, sort the input file on the authorID column.

2. The input file is split into 2 files such that the first file contains only the rows having

unique author IDs (unique.txt) and the second file contains all the rows that are repeated

(duplicate.txt).

3. Repeat steps 1 and 2 but this time after sorting the input file on the LinkedInURL

column.

4. For the duplicate rows obtained as a result of step 3, check if the authorID already

exists in unique.txt and remove the line if already exists.

5. Do a greedy approach to select the maximum weighted sum in duplicate.txt file.

Let us consider the below example illustrated in Figure 10 to understand how we are

applying the modified greedy algorithm to our problem.

18

Figure 10 – Modified Greedy Approach Example

After sorting the input file on authorID column, we are splitting our input file into unique.txt

and duplicate.txt files as illustrated in Figure 11.

Figure 11 – Split into 2 files

19

We sort the input file on LinkedInURL column. After this step, we have our 2 files as

illustrated in Figure 12.

Figure 12 – 2 files after processing

As we can see from the Figure 12, the edge M2-L2 is not present in unique.txt because it

shares an edge with M1 as well. Now, we select the maximum greedy weight from

duplicate.txt. After the above step our 2 files would look as illustrated below in Figure

13.

Figure 13 – Sorting the file

20

Chapter 4

Preprocessing Input Data

We need to pre-process the input data before applying our algorithms. The

presence of duplicate records is a major data quality concern in large databases [7]. This

is done because the input data contains duplicate records for the same Author. For

example, if we look at Figure 14 for 2 authors from MAS, it represents the same author

but using 2 different ids.

Figure 14 – Duplicate Authors from MAS

To check for duplicate ids for the same author, we compare all the authors that

have the exact same name (i.e.) same first name, same middle name and same last

name. For each author, we have the author’s organization information and the specific

skill sets of that author available from MAS. We also have the list of co-authors who have

collaborated with the author. All these fields are highlighted in the Figure 14. We use the

Levenshtein distance for finding the organization score between 2 authors having same

21

name. We use the Manhattan distance for finding the skills score and the collaborators

score. The pseudocode that we use to detect the duplicate records in MAS is provided in

Appendix F.

22

Chapter 5

Experiments

We evaluated our work for duplicate author profile detection in MAS and the

possible profile match between MAS and LinkedIn. The MAS dataset contains only the

authors who published papers in conferences related to computer science. The total

authors in the MAS dataset are 696876. The total profiles extracted for these authors

from LinkedIn are 8218476. The Hungarian algorithm takes k
�l
 time to finish

execution. The Hungarian algorithm fails with a java heap memory error for larger

datasets. If we use the modified greedy approach, the input size could be considerably

reduced and this input could be used for Hungarian algorithm. We evaluated our work

based on the measures of precision,recall and f-measure. For calculating these

measures, we got help from some human evaluators. We use the below formula for

calculating the measures.

m(�#�!�'� � nm
nm ? om

p�#&AA � nm
nm ? oq

o1 � 2 r m(�#�!�'� r p�#&AA
m(�#�!�'� ? p�#&AA

For duplicate author profile detection in MAS, our algorithm detected 3866

duplicate author pairs. However, since it is not possible to verify all the 3866 pairs, we

carried our evaluation work on a smaller number of pairs as below.

We have an evaluation page for calculating precision which is illustrated in Figure 15. For

calculating the precision, we got help from 5 human evaluators. All the human evaluators

evaluated more or less the same number of pages. The true positive (TP) cases occur

when the evaluators agree with the duplicates detected by our algorithm. The false

23

positive (FP) cases occur when the evaluators do not agree with the duplicates detected

by our algorithm. When the evaluator opens the page, we present 2 authors randomly

whom our algorithm has detected as duplicate and ask the evaluators to determine if it is

true or not. Based on the user responses, we calculate the precision.

Figure 15 – Duplicate Author Detection Evaluation Page

To calculate the recall, we randomly selected some authors and shared the

author names from MAS to the human evaluators. We asked the human evaluators to

verify if there are duplicate entries for the shared authors in MAS. For calculating recall,

we got help from 2 human evaluators. TP cases are when both the algorithm and

evaluators agree that the entity is distinct and doesn’t have duplicate. FN cases are when

the evaluators find duplicates that are not detected by the algorithm. Again, the workload

24

was equally distributed between the 2 human evaluators. Based on the user responses,

we calculate the recall.

Based on the evaluators’ response, we present our experiment results as below.

Table 3 – Duplicate Author Detection Experiment Results

Precision Recall F1-Score

79
79 ? 51
 � 0.6076
68
68 ? 0
 � 1

0.7559

As the recall value suggests, our algorithm has not left out any author who has

duplicate profile in MAS. The reason for the higher recall value is because we have

considered all authors who have exact first name, middle name and last name.

The second evaluation was on determining whether the pairs detected by our

algorithm between an author from MAS and a person’s profile in LinkedIn are correct or

not. We use threshold values to remove the weaker edges. We use three threshold

values. When we set the threshold value greater than 2.8, our algorithm returns 3020

pairs. However, if we have a slightly lower threshold value of 2.5 our algorithm returns

5415 pairs. The total pairs returned by our algorithm are 17648 if we choose our

threshold value as 2. Again calculating the precision and recall for such large number of

pairs is not possible and hence we got help from the human evaluators. The precision

calculation was carried out in the same way as we did earlier for duplicate author

detection. We designed an evaluation page and asked the human evaluators to evaluate

our work. The screenshot of our evaluation page is illustrated in Figure 16. For

calculating precision, we got help from 5 human evaluators whose workload was equally

distributed. The true positive and false positive values are determined in the same way as

we did for duplicate author detection in MAS.

25

Figure 16 – Evaluation Page for Linked Data

For recall calculation, we selected some authors randomly from MAS and

prepared an excel sheet with a hyperlink to the authors MAS page. After that, we

explained the evaluators on how to get the LinkedIn URL based on the author’s MAS

page. We got help from 2 human evaluators and the workload was equally distributed

among the evaluators.

 Based on the users’ evaluation results, we have prepared the following table

which summarizes our experimental results. As we can see, we have tested our

algorithm for various thresholds which we have specified as the experimental condition in

the below table.

26

Table 4 – Experiment Results for pair detection between MAS and LinkedIn

Experiment Condition Precision Recall F1 Score

Threshold > 2 35
35 ? 16
 � 0.68
21
21 ? 9
 � 0.7

0.689

Threshold > 2.5 45
45 ? 6
 � 0.88
15
15 ? 10
 � 0.6

0.713

Threshold > 2.8 5050 ? 1 � 0.98
18
18 ? 17
 � 0.51

0.674

As per our experimental results, it is clearly evident that the higher threshold values will

have a higher precision rate.

27

Appendix A

Pseudocode on Finding Name Variations

28

We will first see the pseudo code for different name variations that we use for a

name in MAS in LinkedIn. This function is implemented using VBA script. We have all the

author names in our tables. We select the author name and find the name variations for

this author and insert the possible LinkedIn URL into the table. The LinkedIn URL for any

person will always follow the same structure (www.linkedin.com/pub/dir/FN/LN).Let us

now see the pseudo code on how to find the LinkedIn URLs for various name

combinations.

'This function finds all the LinkedIn URLs for a na me from MAS.
'This pseudocode is implemented using VBA script.
Function LinkedInURLsFind ()
 'Initialize the variables used.
 Dim AuthorFN , AuthorLN , AuthorID , AuthorMN,Ln ;
 Ln="http://www.linkedin.com/pub/dir/" ;
 sql ="SELECT id, first_name,last_name,middle_name FROM A uthor” ;
 'Store the mysql values into the local variables.
 Do Until obj.EOF
 AuthorID = obj.Fields (0). Value ;
 AuthorFN = obj.Fields (1). Value ;
 AuthorLN = obj.Fields (2). Value ;
 AuthorMN = obj.Fields (3). Value ;
 'If no middle name is present, we are constructing 2 URLs.
 If Len (AuthorMN) = 0 Then
 Dim AuthorInitials , LinkedIn_URL1 , LinkedIn_URL2 ;
 AuthorInitials = left (AuthorFN , 1);
 AuthorInitials = AuthorInitials & "." ;
 LinkedIn_URL1 = "Ln" & AuthorFN & "/" & AuthorLN ;
 LinkedIn_URL2 = "Ln" & AuthorInitials & "/" & AuthorLN ;
 sql = "INSERT INTO Author_LinkedIn (AuthorID,
 AuthorFN, AuthorMN, AuthorLN, LinkedIn _URL1)" ;
 'This if loop is to ensure that the author first na me
 is not the same as initials. If they are the same, no
 need to insert author initials.
 If AuthorInitials <> AuthorFN Then
 sql = "INSERT INTO Author_LinkedIn(AuthorID,
 AuthorFN, AuthorMN, AuthorMN,Linked In_URL2)" ;
 End If

 Else
 'Initialize variables for authors who have middle n ames.

 Dim Author_FN , Author_LN , AuthorMNInitials ,
 AuthorFMcombined , LinkedIn_URL5 , LinkedIn_URL3 ,
 LinkedIn_URL4 ;

29

 'This variable has the FN and MN combined.
 Author_FN = AuthorFN & " " & AuthorMN ;
 'This variable has the MN and LN combined.
 Author_LN = AuthorMN & " " & AuthorLN ;
 'This variable gets the initials for MN.
 AuthorMNInitials = left (AuthorMN , 1);
 AuthorMNInitials = AuthorMNInitials & "." ;
 'This variable gets the initials for the FN.
 AuthorInitials = left (AuthorFN , 1);
 AuthorInitials = AuthorInitials & "." ;
 'This variable has FN and MN initials combined.
 AuthorFMcombined = AuthorInitials + AuthorMNInitials ;
 'URL constructed with FN and LN.
 LinkedIn_URL1 = "Ln" & AuthorFN & "/" & AuthorLN ;
 'URL constructed with {FN,MN} and LN.
 LinkedIn_URL2 = "Ln" & Author_FN & "/" & AuthorLN ;
 'URL constructed with FN and {MN,LN}.
 LinkedIn_URL3 = "Ln" & AuthorFN & "/" & Author_LN ;
 'URL constructed with FN initials and {MN,LN}.
 LinkedIn_URL4 = "Ln" & AuthorInitials & "/" & Author_LN ;
 'URL constructed with {initials of FN & MN },LN
 LinkedIn_URL5 = "Ln" & AuthorFMcombined & "/" & AuthorLN ;
 sql = "INSERT INTO Author_LinkedIn (AuthorID,
 AuthorFN, AuthorMN, AuthorLN, Linked In_URL1)" ;
 sql = "INSERT INTO Author_LinkedIn (AuthorID,
 AuthorFN, AuthorMN, AuthorLN, Linked In_URL2)" ;
 sql = "INSERT INTO Author_LinkedIn(AuthorID,
 AuthorFN, AuthorMN,AuthorLN, LinkedI n_URL3)" ;
 If AuthorInitials <> AuthorFN Then
 sql = "INSERT INTO Author_LinkedIn(AuthorID,
 AuthorFN, AuthorMN, AuthorLN, Link edIn_URL4)" ;
 End If
 sql = "INSERT INTO Author_LinkedIn(AuthorID, AuthorFN,
 AuthorMN, AuthorLN, LinkedIn_URL5)" ;
 End If
 obj.MoveNext ;
 Loop
End Function

30

Appendix B

Pseudocode On Determining If The Links Are Valid

31

After finding the possible LinkedIn URLs for an author, we are checking if the link

is valid. By valid, we mean if it actually exists. We use the below pseudo code to check if

the URL is valid. We implemented the below pseudo code using bash shell script.

#Check if the links are valid.
#By valid, we mean to check if the links actually e xist.
#We check if URL exists and update the value back i n our table.
#We used bash script to implement this pseudocode.

#We are selecting the URLs from table.

url =(mysql "SELECT LinkedIn_URL from Author_LinkedIn");

while read url ;
do
 #The variable checkurl is used to check if the URL exists.
 #curl is used to check if the page actually exists.
 checkurl =$(curl -s --head "$url" | head -n 1 |grep HTTP/1.[0 1][23]..") ;
 #Check if the variable is null. If null, there is n o URL that exists.
 if [-z "$var"]
 then
 Update LinkedIn_URL_exists =- 1 where LinkedIn_URL ="$checkurl" ;
 else
 Update LinkedIn_URL_exists =1 where LinkedIn_URL ="$checkurl" ;
 fi
done

32

Appendix C

Pseudocode On Calculating The Edge Weight

33

Now, we have all the valid LinkedIn URLs available. We need to calculate the

edge weight. The initial function which we use to select the values from database can be

presented as below.

#*****THE MAIN EXECUTION OF THE SCRIPT STARTS HERE* ********

sql =("select authorid, authorname, authororg, Author_Lin kedIn_URL from
 Author_LinkedIn where LinkedIn_URL_Exists=1") > Results.txt ;
#The pagination class is not present in the html so urce of single
 profile page.
#pagination class is present in html source of mult iple profiles which
 can be upto 25 (max).

while IFS is not null
do
 page ="$(curl ""$Author_LinkedIn_URL"" | grep " div
 class =\"pagination\" ")" ;
 #Single profile page and so we are calling the func tion.

 if [-z "$page"]
 then
 Extract_Skills_Organization_LinkedIn "$AuthorID"
 "$Author_LinkedIn_URL" "$AuthorOrg" "$AuthorName" ;
 #Multiple profile page and so we will extract each URL and then call
 the function.

 else
 curl "$Author_LinkedIn_URL" | grep "<a href=.*title=" | grep - v
 Directory | grep - v class = > Multiple_Profiles.txt ;
 while read -r line ;
 do
 Extract_Skills_Organization_LinkedIn "$AuthorID" $line
 "$AuthorOrg" "$AuthorFN" "$AuthorMN" "$AuthorLN" ;
 done < <(awk - F\" '{print $2}' Multiple_Profiles.txt);
 fi
done < Results.txt

In the main script, we have made a call to Extract_Skills_Organization_LinkedIn ()

function. The pseudo code for it can be presented as below.

34

#** **************
#This function accepts 6 input parameters.
#param1 - AuthorID
#param2 - AuthorURL
#param3 - Author organization in MAS
#param4 - Author First Name
#param5 - Author Middle Name
#param6 - Author Last Name
#** **************

Extract_Skills_Organization_LinkedIn ()
{
 #Dump the HTML source page into foo.txt file.
 curl "" $2"" -s | w3m - dump -T text / html > foo.txt ;
 #I extract the name from LinkedIn.
 LinkedIn_Name =$(sed -n '6p' foo.txt | sed -e 's/ //g') ;
 MSAS_Name="$4""$5""$6" ;
 #I am converting the names from MAS and LinkedIn to lower cases.
 LinkedIn_Name_Levenish =$(echo "$LinkedIn_Name" | awk '{print tolower($0)}') ;
 MSAS_Name_Levenish =$(echo "$MSAS_Name" | awk '{print tolower($0)}') ;
 #Lenvenshtein algorithm implementation for the Name score.
 #I call the Levenshtein_Match () function to calcul ate the name score.
 #I use length of names to normalize the values.
 name_score =$(Levenshtein_Match "$LinkedIn_Name" "$MSAS_Name"
"${#LinkedIn_Name_Length}" "${#MSAS_Name_Length}") ;
 #I am subtracting the score from 1 so that higher v alue corresponds to better
match.
 name_score_value =$(bc <<< "scale=5; 1 - $name_score") ;
 #Extracting the skills from the main HTML file.
 awk 'f;/Skills & Expertise/{f=1}' foo.txt > foo1.txt ;
 #This option checks if the file is non-empty. If th e file is empty, there is
no skills assosciated.
 if [-s foo1.txt]
 then
 while read line ;
 do
 echo $line >> skills ;
 done ;
 else
 break ;
 fi
 sql_result =("SELECT MAS_Skill for author");
 cat sql_result >> skills ;
 #Manhattan distance implementation for skills score .
 #common skills between MAS and LinkedIn.
 common_skills =$(sort skills | uniq -d | wc -l) ;
 #Total skills count.
 total_skills =$(sort skills | wc -l) ;
 nr_skills_score =$(($total_skills - $common_skills * 2));
 dr_skills_score =$(($total_skills - $common_skills));

35

 skills_score =$(bc <<< "scale=5; $nr_skills_score/$dr_skills_scor e") ;
 #Same approach as name score as higher value in DB means better.
 skills_score_value =$(bc <<< "scale=5; 1 - $skills_score") ;
 #Extracting organization information from LinkedIn.

 #The organization section starts here.
 #If no MAS organization is found, there is no need to calculate the
org_score.
 if ["$3" == "Not found"]
 then
 organization_score =1;
 else
 #Extract information from the main HTML file.
 sed -n -e '/Overview/,/Connections/ p' foo.txt | grep "^ " | sed 's/^[
]\+//g' > organization_updated.txt ;
 local LinkedIn_Organization_Array =();
 while read -r line ;
 do
 #I put all the LinkedIn organizations into an array .
 LinkedIn_Organization_Array+ =("$line");
 done < <(perl - pe 's/.+? at //' organization_updated.txt);
 #I am calling the Levenshtein algorithm from Organi zation_Exists () function.
 #The reason is I need to return the highest score f or Levenshtein algorithm.
 #We are checking an author's organization against L inkedIn current
organization,
 #past work, past educational institutions.
 organization_score =$(Organization_Exists "$3" LinkedIn_Organization_A rray[@]
) ;
 fi
 organization_score_value =$(bc <<< "scale=5; 1 - $organization_score") ;
}

We are checking the MAS organization against all the available LinkedIn organizations

such as the current organization, past organization, educational institutions.

36

#** **************
#This is the function that checks if the MAS org an d LinkedIn org match.
#For each organization in LinkedIn, I use the leven shtein distance algorithm.
#From the values returned, I select the minimum val ue.
#Selecting the minimum value is to make sure that t he 2 strings are closely
matched.
#** **************
#This function accepts 2 parameters.
#Param1 - MAS Organization
#Param2 - Organizations from LinkedIn in an array.
#By organizations in LinkedIn, we mean the current, past and educational
institutions.
#** **************

Organization_Exists ()
{
 declare -a argAry1 =("${!2}");
 local e ;
 local Organization_MSAS_LinkedIn =();
 for e in "${argAry1[@]}" ;
 do
 tmp_org =$(Levenshtein_Match "$1" "$e" "${#1}" "${#e}") ;
 Organization_MSAS_LinkedIn+ =("$tmp_org");
 done
 Organization_Score =1;
 len =${#Organization_MSAS_LinkedIn[@]} ;
 i =0;
 while [$i - lt $len]
 do
 val =`echo "${Organization_MSAS_LinkedIn[$i]}" ` ;
 if [$(echo "$Organization_Score < $val"|bc) - eq 0];
 then
 Organization_Score =$val ;
 fi
 let i++ ;
 done
 #This is important as this acts as the return state ment.
 echo "$Organization_Score" ;
}

We are using the Levenshtein algorithm to find the edit distance between two strings. The

pseudo code for the implementation of Levenshtein algorithm can be presented as below.

37

#** **************
#Levenshtein distance is used to find the edit dist ance between 2 strings.
#I am using this algorithm to find the name score a nd the organization score.
#I have used the mathematical formula lev dist/(sum of lengths of 2 strings).
#The above formula is to normalize the value before putting it in the database.
#This function takes 4 parameters. The 2 strings to be searched
#and the lengths of 2 strings.
#This function will be used to update the name scor e
#and the organization score.
#** **************
#However, I have made it accept 4 input parameters.
#Param1 - MAS Name/Organization
#Param2 - LinkedIn Name/Organization
#Param3 - MAS Name/Organization length
#Param4 - LinkedIn Name/Organization length
#** **************

Levenshtein_Match () {
ret =$(awk '
 function min(x, y) {
 return x < y ? x : y
 }
 function lev(s,t) {
 m = length(s)
 n = length(t)
 for(i=0;i<=m;i++) d[i,0] = i
 for(j=0;j<=n;j++) d[0,j] = j
 for(i=1;i<=m;i++) {
 for(j=1;j<=n;j++) {
 c = substr(s,i,1) != substr(t,j,1)
 d[i,j] = min(d[i-1,j]+1,min(d[i,j-1]+1,d[i-1,j-1]+c))
 }
 }
 return d[m,n];
 }
 BEGIN {print lev(ARGV[1], ARGV[2]) / (ARGV[3] + ARGV[4]); exit}' "$1"
"$2" "$3" "$4") ;
 #This return is important as this acts as the retur n statement.
 echo "$ret" ;
}

38

Appendix D

Example On Calculating Levenshtein Distance

39

There are several calculators available online to see how the Levenshtein edit

distance is calculated between 2 strings. We used the calculator from

http://odur.let.rug.nl/kleiweg/lev/.

40

Appendix E

Pseudocode On Hungarian Algorithm

41

The pseudocode [7] of Hungarian algorithm is given as below.

procedure munkres is
 Row,Col : is array(1..n) of integer; -- maintains
record of which row/columns are covered.
 stepnum : integer; -- covered =
1, non-covered = 0
 done : boolean;

 function step1(stepnum: in out integer) is
 :
 function step2(stepnum: in out integer) is
 :
 function step3(stepnum: in out integer) is
 :

begin
 done:=false;
 stepnum:=1;
 while not (done) loop
 case stepnum is
 when 1 => step1(stepnum);
 when 2 => step2(stepnum);
 when 3 => step3(stepnum);
 when 4 => step4(stepnum);
 when 5 => step5(stepnum);
 when 6 => step6(stepnum);
 when others => done:=true;
 end case ;
 end loop ;
end munkres;

42

In each pass of the loop the step procedure called sets the value of stepnum for

the next pass. When the algorithm is finished the value of stepnum is set to some value

outside the range 1..6 so that done will be set to true and the program will end. In the

completed program the tagged (starred) zeros flag the row/column pairs that have been

assigned to each other. We will discuss the implementation of a procedure for each step

of Munkres' Algorithm below. We will assume that the cost matrix C(i,j) has already been

loaded with the first index referring to the row number and the second index referring to

the column number.

Step 1:

For each row of the matrix, find the smallest element and subtract it from every element

in its row. Go to Step 2. We can define a local variable called minval that is used to hold

the smallest value in a row. Notice that there are two loops over the index j appearing

inside an outer loop over the index i. The first inner loop over the index j searches a row

for the minval. Once minval has been found this value is subtracted from each element

of that row in the second inner loop over j. The value of step is set to 2 just

before stepone ends.

 procedure stepone(step : in out integer) is
 minval : integer;
 begin
 for i in 1..n loop

 minval:=C(i,1);
 for j in 2..n loop
 if minval>C(i,j) then
 minval:=C(i,j);
 end if ;
 end loop ;

 for j in 1..n loop
 C(i,j):=C(i,j)-minval;

43

 end loop ;

 end loop ;
 step:=2;
 end stepone;

Step 2

Find a zero (Z) in the resulting matrix. If there is no starred zero in its row or column, star

Z. Repeat for each element in the matrix. Go to Step 3. In this step, we introduce the

mask matrix M, which in the same dimensions as the cost matrix and is used to star and

prime zeros of the cost matrix. If M(i,j)=1 then C(i,j) is a starred zero, If M(i,j)=2 then

C(i,j) is a primed zero. We also define two vectors R_cov and C_cov that are used to

"cover" the rows and columns of the cost matrix C. In the nested loop (over indices i and

j) we check to see if C(i,j) is a zero value and if its column or row is not already covered.

If not then we star this zero (i.e. set M(i,j)=1) and cover its row and column (i.e. set

R_cov(i)=1 and C_cov(j)=1). Before we go on to Step 3, we uncover all rows and

columns so that we can use the cover vectors to help us count the number of starred

zeros.

procedure steptwo(step: in out integer) is
 begin

 for i in 1..n loop
 for j in 1..n loop
 if C(i,j)=0 and C_cov(j)=0 and R_cov(i)=0 then
 M(i,j):=1;
 C_cov(j):=1;
 R_cov(i):=1;
 end if ;
 end loop ;
 end loop ;

44

 for i in 1..n loop
 C_cov(i):=0;
 R_cov(i):=0;
 end loop ;
 step:=3;

 end steptwo;

Step 3

Cover each column containing a starred zero. If K columns are covered, the starred

zeroes describe a complete set of unique assignments. In this case, Go to DONE,

otherwise, Go to Step 4. Once we have searched the entire cost matrix, we count the

number of independent zeroes found. If we have found (and starred) K independent

zeroes then we are done. If not we proceed to Step 4.

Procedure stepthree(step : in out integer) is
 count : integer;
 begin
 for i in 1..n loop
 for j in 1..n loop
 if M(i,j)=1 then
 C_cov(j):=1;
 end if ;
 end loop ;
 end loop ;
 count:=0;
 for j in 1..n loop
 count:=count + C_cov(j);
 end loop ;
 if count>=n then
 step:=7;
 else
 step:=4;
 end if ;
 end stepthree;

45

Step 4

Find a no covered zero and prime it. If there is no starred zero in the row containing this

primed zero, Go to Step 5. Otherwise, cover this row and uncover the column containing

the starred zero. Continue in this manner until there are no uncovered zeroes left. Save

the smallest uncovered value and Go to Step 6. In this step, statements such as "find a

noncovered zero" are clearly distinct operations that deserve their own functional blocks.

We have decomposed this step into a main procedure and three subprograms (2

procedures and a boolean function).

 procedure stepfour(step : in out integer) is
 row,col : integer;
 done : boolean;

 procedure find_a_zero(row,col : out integer) is
 i,j : integer;
 done: boolean;
 begin
 row:=0;
 col:=0;
 i:=1;
 done:=false;
 loop
 j:=1;
 loop
 if C(i,j)=0 and R_cov(i)=0 and C_cov(j)=0 then
 row:=i;
 col:=j;
 done:=true;
 end if ;
 j:=j+1;
 exit when j>n;
 end loop ;
 i:=i+1;
 if i>n then done:=true; end if ;

46

 exit when done;
 end loop ;
 end find_a_zero;

 function star_in_row(row : integer) return boolean is
 tbool : boolean;
 begin
 tbool:=false;
 for j in 1..n loop
 if M(row,j)=1 then
 tbool:=true;
 end if ;
 end loop ;
 return tbool;
 end star_in_row;

 procedure find_star_in_row(row, col : in out integer) is
 begin
 col:=0;
 for j in 1..n loop
 if M(row,j)=1 then
 col:=j;
 end if ;
 end loop ;
 end find_star_in_row;

 begin
 done:=false;
 while not (done) loop
 find_a_zero(row,col);
 if row=0 then
 done:=true;
 step:=6;
 else
 M(row,col):=2;
 if star_in_row(row) then
 find_star_in_row(row,col);

47

 R_cov(row):=1;
 C_cov(col):=0;
 else
 done:=true;
 step:=5;
 Z0_r:=row;
 Z0_c:=col;
 end if ;
 end if ;
 end loop ;
 end stepfour;

Step 5

Construct a series of alternating primed and starred zeros as follows. Let Z0 represent

the uncovered primed zero found in Step 4. Let Z1 denote the starred zero in the column

of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there will always be one).

Continue until the series terminates at a primed zero that has no starred zero in its

column. Unstar each starred zero of the series, star each primed zero of the series,

erase all primes and uncover every line in the matrix. Return to Step 3. You may notice

that Step 5 seems vaguely familiar. We decompose the operations of this step into a

main procedure and five relatively simple subprograms.

 procedure stepfive(step : in out integer) is
 count : integer;
 done : boolean;

 r,c : integer;

 procedure find_star_in_col(c : in integer; r : in

out integer) is
 begin
 r:=0;
 for i in 1..n loop
 if M(i,c)=1 then

48

 r:=i;
 end if ;
 end loop ;
 end find_star_in_col;

 procedure find_prime_in_row(r : in integer; c : in

out integer) is
 begin
 for j in 1..n loop
 if M(r,j)=2 then
 c:=j;
 end if ;
 end loop ;
 end find_prime_in_row;

 procedure convert_path is
 begin
 for i in 1..count loop
 if M(path(i,1),path(i,2))=1 then
 M(path(i,1),path(i,2)):=0;
 else
 M(path(i,1),path(i,2)):=1;
 end if ;
 end loop ;
 end convert_path;

 procedure clear_covers is
 begin
 for i in 1..n loop
 R_cov(i):=0;
 C_cov(i):=0;
 end loop ;
 end clear_covers;

 procedure erase_primes is
 begin
 for i in 1..n loop
 for j in 1..n loop

49

 if M(i,j)=2 then
 M(i,j):=0;
 end if ;
 end loop ;
 end loop ;
 end erase_primes;

 begin
 count:=1;
 path(count,1):=z0_r;
 path(count,2):=z0_c;
 done:=false;
 while not (done) loop
 find_star_in_col(path(count,2),r);
 if r>0 then
 count:=count+1;
 path(count,1):=r;
 path(count,2):=path(count-1,2);
 else
 done:=true;
 end if ;
 if not (done) then
 find_prime_in_row(path(count,1),c);
 count:=count+1;
 path(count,1):=path(count-1,1);
 path(count,2):=c;
 end if ;
 end loop ;
 convert_path;
 clear_covers;
 erase_primes;
 step:=3;
 end stepfive;

50

Step 6

Add the value found in Step 4 to every element of each covered row, and subtract it from

every element of each uncovered column. Return to Step 4 without altering any stars,

primes, or covered lines. Notice that this step uses the smallest uncovered value in the

cost matrix to modify the matrix. Even though this step refers to the value being found in

Step 4 it is more convenient to wait until you reach Step 6 before searching for this

value. It may seem that since the values in the cost matrix are being altered, we would

lose sight of the original problem. However, we are only changing certain values that

have already been tested and found not to be elements of the minimal assignment. Also

we are only changing the values by an amount equal to the smallest value in the cost

matrix, so we will not jump over the optimal (i.e. minimal assignment) with this change.

procedure stepsix(step : in out integer) is
 minval : integer;

 procedure find_smallest(minval : out integer) is
 begin
 minval:=integer'last;
 for i in 1..n loop
 for j in 1..n loop
 if R_cov(i)=0 and C_cov(j)=0 then
 if minval>C(i,j) then
 minval:=C(i,j);
 end if ;
 end if ;
 end loop ;
 end loop ;
 end find_smallest;

 begin
 find_smallest(minval);
 for i in 1..n loop
 for j in 1..n loop

51

 if R_cov(i)=1 then
 C(i,j):=C(i,j)+minval;
 end if ;
 if C_cov(j)=0 then
 C(i,j):=C(i,j)-minval;
 end if ;
 end loop ;
 end loop ;
 step:=4;
 end stepsix;

52

Appendix F

Pseudocode On Duplicate Authors Detection in MAS

53

Algorithm: DuplicateRecordsDetection(L)
L is the set of authors from MAS.
Initialize the 2 sets used.
unique_authorids <- {};
duplicate_authorids [] <- {};
Get only authors having same name more than once in MAS.
Duplist <- getDuplicateAuthors (L);
#Iterate over each subset of authors with same name .

foreach subset s � Duplist
{
 foreach pair a1 , a2 in s
 {
 score =findscore (a1 , a2)
 if score >= z then
 {
 if a1 is not in unique_authorids then
 unique_authorids <- { a1};
 duplicate_authorids[a1] <- { a2};
 }
 else
 {
 if a1 , a2 not in unique_authorids then
 unique_authorids <- { a1 , a2};
 }
 }
}
#function to return only authors with same name mor e than once.
getDuplicateAuthors (L)
{
 duplicate_entries <- { mysql_query "select authors group by
authorname having count(authorname) > 1" };
 return duplicate_entries;
}
#This function calculates the score between 2 autho rs.
#We use levenshtein distance for organization score .
#We use manhattan distance for skills score and col laborators
score.
findscore (a1 , a2)
{
 return (org_score + skills_score + collaborators_score);
}

54

References

[1] Bizer, Christian, Tom Heath, and Tim Berners-Lee. "Linked data-the story so

far." International journal on semantic web and information systems 5.3 (2009): 1-22.

[2] Kong, Xiangnan, Jiawei Zhang, and Philip S. Yu. "Inferring anchor links across

multiple heterogeneous social networks." Proceedings of the 22nd ACM international

conference on Conference on information & knowledge management. ACM, 2013.

[3] Frank, András. "On Kuhn's Hungarian method—a tribute from Hungary." Naval

Research Logistics (NRL) 52.1 (2005): 2-5.

[4] Kuhn, Harold W. "The Hungarian method for the assignment problem." Naval

research logistics quarterly 2.1‐2 (1955): 83-97.

[5] Levenshtein, Vladimir I. "Binary codes capable of correcting deletions, insertions and

reversals." Soviet physics doklady. Vol. 10. 1966.

[6] Hassanzadeh, Oktie, et al. "Framework for evaluating clustering algorithms in

duplicate detection." Proceedings of the VLDB Endowment 2.1 (2009): 1282-1293.

[7] [Online] Pseudocode on Hungarian Algorithm

http://csclab.murraystate.edu/bob.pilgrim/445/munkres_old.html

55

Biographical Information

Ramesh Venkataraman received his B.Tech degree from SASTRA University, India. After

finishing his B.Tech, he worked for Infosys Technologies Ltd, India for 3.8 years. He

joined the University of Texas at Arlington in the fall of 2012. His current interest lies in

Systems Engineering and he wishes to be a development and operations (DevOps)

Engineer in the near future.

