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Abstract 

LINKING ENTITY PROFILES 

Ramesh Venkataraman, MS 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Chengkai Li  

Entity linking allows one to have collections of data from multiple sources as a 

global dataset and then query those data. Entity linking allows us to do knowledge 

discovery on this global dataset which might result in the discovery of some interesting 

facts and information. Microsoft Academic Search (MAS) is a free public search engine 

for academic papers and contains the bibliographic information for papers published in 

journals, conference proceedings and respective citations. As of February 2014, it has 

indexed over 40 million publications and 20 million authors. LinkedIn is a social 

networking service used for professional networking. LinkedIn has an estimated 259 

million users worldwide. Linking the author from MAS to the person from LinkedIn 

produces a bigger dataset. The resulting dataset enables us to find more interesting 

measures about an author such as the author’s educational institutions, previous work 

experiences and social groups.  We are effectively collecting missing pieces of 

information about an author from LinkedIn as part of forming an extensive dataset. In this 

process, we are resolving the ambiguity of multiple persons with the same name as the 

author and classifying them. Our experimental results indicate that we can attain a higher 

precision of 98% if we have a higher threshold of 2.8. 
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Chapter 1  

Introduction 

A single entity is modeled across multiple data sources and it is valuable to link 

entities together. After entity linking, we have more comprehensive information available 

about that entity. The entity linking is known as “Linked Data” which describes a method 

of publishing structured data so that it can be interlinked and become more useful. It 

enables data from different sources to be connected and queried. The adoption of the 

Linked Data best practices has led to the extension of the Web with a global data space 

connecting data from diverse domains such as people, books and scientific publications 

[1]. It is important that we link data from multiple sources to derive some meaningful 

information from this dataset. Discovering the correspondence of an entity across 

different data sources is a crucial prerequisite for many interesting inter-network 

applications such as link recommendation and community analysis using information 

from multiple data sources [2]. 

 However, the process of entity linking has several challenges. The same entity is 

represented in different ways across multiple data sources. For instance, in this work, we 

link an author profile available from Microsoft Academic Search (MAS) with a person’s 

profile from LinkedIn. The first challenge we face is that the author name in MAS is 

represented using first name, middle name and last name, but a person name in LinkedIn 

is represented using just the first name and last name. The second challenge is that the 

author skillset in MAS is a subset of a person’s skillset available from LinkedIn. The third 

challenge we face is that the author profiles from MAS contains duplicate data. The fourth 

challenge is that we will not always have a matching profile in LinkedIn for an author 

profile from MAS and vice-versa. We address the problem in a more generalized manner 

for any two data sources.  
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We have two sets where set � represents the distinct profiles from entity network 

A and the set � represents the distinct profiles from entity network B. Our goal is to find a 

one to one mapping between these 2 sets. To be precise, our expected outcome is a 

partial injective function from � to � (written as �: � �  �). This is partial because we do 

not force the function to map every element of � to an element of �. This is injective 

because we look for a one to one function that preserves distinctness. This is illustrated 

in Figure 1.  

 

Figure 1 – Problem Definition 

Represent the entities from MAS and LinkedIn using a complete bi-partite graph. 

Then, assign an edge weight between the nodes of MAS and LinkedIn and solve the 

problem using maximum weight perfect matching in a bipartite graph [3]. The name, 

organization and skills are the common parameters between MAS and LinkedIn. For an 

author from MAS, we search for various name combinations in LinkedIn. We are able to 

search the name combinations in LinkedIn because it always follows the same pattern for 

any person profile which is www.linkedin.com/pub/dir/firstname/lastname. We use web 

scraping to extract the HTML source of the person’s LinkedIn profile. Then, extract the 

common parameters such as the name, organization and skills from the HTML source 
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page of these LinkedIn profiles and compare them with the name, organization and skills 

available from MAS. Then calculate the edge weight between an author profile in MAS 

and LinkedIn profiles based on the common parameters. After calculating the edge 

weight for all the authors, use a threshold on the edge weight to remove weaker edges 

from the bipartite graph.  After removing the weaker edges, use the Hungarian Algorithm 

[4] to find the maximum weight perfect matching in the bipartite graph.  

The Hungarian Algorithm works only on smaller datasets. We have implemented 

our own algorithm which is a modified version of the greedy approach that executes 

equally well on larger datasets.   

On analysis of our entity network data, we observe that there are duplicate 

records in the data.  The first problem can be viewed as duplicate records detection in the 

entity network data. There is a set of public profiles from the entity network which 

contains duplicate records for the same profile. Eliminate all such duplicate records in the 

entity network so that the list contains only distinct profiles.  

In our MAS data, we have duplicate ids for the same author. We eliminate all the 

duplicate records. For each author, MAS has the details about author name, author’s 

collaborators and the author’s skills. We detect the duplicate entries for an author based 

on these 3 parameters. We assume that a person’s profile in LinkedIn is always distinct 

and no person can have 2 profiles for himself in LinkedIn.  

Human evaluators helped us to evaluate our work. Based on their evaluation, our 

experimental results for duplicate authors’ detection have a higher recall value of 1. The 

evaluation for finding pairs between MAS and LinkedIn shows that a higher threshold 

value results in a better precision rate. We have discussed these algorithms and 

techniques in the following chapters and we have also presented our experimental results 

towards the end.  
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Chapter 2  

Problem Modeling 

As mentioned in Chapter 1, we have 2 entity networks. We use the author data 

from MAS as one data source and profile information from LinkedIn as another data 

source. We can view the problem as a complete bipartite graph where the vertices can 

be partitioned into two subsets �1 and �2. �1 represents the set of distinct MAS authors 

and �2 represents the set of distinct public profiles of persons in LinkedIn.  Each vertex of 

the first set (�1) is joined to each vertex in the second set (�2) by exactly one edge. That 

is, it is a bipartite graph 
�1,  �2,  �
 such that for every two vertices �1 � �1 and �2 �
�2, �1�2 is an edge in �. Thus we can define the complete bipartite graph as ��,� where 

� is the partition size of �1 and � is the partition size of �2.  

In the above complete bipartite graph we find a match �’ such that �’ �
 
�, �, �’
. It is to be noted that there may be vertices  �� �  � that does not form any 

edge with ��  �  � and vice versa. We define the graph �’ in such a way that the edges 

�’ �  
��, ��
 satisfies the below criterion.  

� �� � ��, �� � �, ��  � � 

   � � �� !"#$ %$&% � � 
�� , ��
'( � � )�*, ��+ 
               As per our definition of the match, for our complete bipartite graph �, we will get 

multiple matches. We define the total matches as the number of matches possible in our 

complete bipartite graph. We have illustrated 2 possible matches in Figure 2. We can 

formulate the total matches using mathematical equation. Assuming we have � nodes in 

MAS and � nodes in LinkedIn, the total matches possible for our complete bipartite graph 

can be represented by a mathematical equation as, 
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Total Matches =  ∑ )�� +)�� +�!./0 
�,�
�12  

As per the definition of total matches even for a smaller case when m=2 and n=3 the total 

matches is 9.   

 

Figure 2 – Possible Matches 

From all available matches, we find a single match which has the maximum 

weight. In the next section, we will discuss how we calculate the edge weight. We will 

look into the mathematical formula of edge weight followed by an example. The pseudo 

code on how we calculated the edge weight can be found in Appendix-A, Appendix-B and 

Appendix-C. 

2.1 Mathematical Representation Of Edge Weight Calculation 

The weight definition discussed here is specific to the datasets we used in our 

thesis work. Before defining the edge weight, let us look at the information that is 

common between the MAS and LinkedIn. Table 1 shows some of information available 

from MAS. 
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Table 1 – MAS Information for an author common with LinkedIn data 

Name Organization Skills 

Nicholas Chia University of Illinois Urbana Champaign Microbiology, Oncology 

Kaiwen Xia University of Toronto Mechanical Engineering, 
Geophysics 

 
In Table 1, Name column corresponds to ��3�4. Organization column corresponds to 

�567. Each skill in the Skills column of Table 1 is represented as 89:. Table 2 below 

shows the information available from LinkedIn for persons. In Table 2, the Name column 

corresponds to ��3�4. The Organizations column corresponds to �567. Each skill in the 

Skills column of Table 2 is represented as ;<:. We mention the variables we use to 

represent each column of Table 1 and Table 2 here is because we use these variables 

later when we define the mathematical equations. 

Table 2 – LinkedIn information of a person common with MAS data 

Name Organizations Skills 

Nicholas Chia 

Mayo clinic, Institute for System 
Biology, University of Illinois at Urbana 
Champaign, The Ohio state University, 
Georgetown University  

  

Microbiome, Microbiology, 
Computational Biology and 
12 more skills. 

Kaiwen Xia 
University of Toronto, California Institute 
of Technology, University of Science 
and Technology China 

Rock Mechanics, 
Geophysics, Simulation 
and 15 more skills.  

 

Both Table 1 and Table 2 above list the information that is available in common 

from MAS and LinkedIn. As we see, we have names, organizations and skills as the 

common parameters between the 2 datasets. Therefore, the edge weight is defined as a 

function of the sum of namescore, orgscore and skillscore.  

=��>$% � �&��!#'(� ? '(>!#'(� ? !@�AA!#'(�                                                   (1) 
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Before defining the namescore, let us see the various combinations that we use 

for namescore calculation. MAS follow the pattern as first name, middle name and last 

name to represent an author’s name. LinkedIn just uses first name, last name to 

represent a person. Hence we try various name combinations. The various name 

combinations that we try are as follows.  

If an author has only first name and last name in MAS, then we use 2 name 

variations to search in LinkedIn. The URL patterns that we search in LinkedIn are, 

� www.linkedin.com/pub/dir/firstname/lastname  

� www.linkedin.com/pub/dir/initials of first name./lastname 

For example, if the author name in MAS is Bart Selman, the URL patterns that we search 

in LinkedIn are, 

� www.linkedin.com/pub/dir/bart/selman 

� www.linkedin.com/pub/dir/b./selman 

If an author has first name, middle name and last name in MAS, then we use 5 name 

variations to search in LinkedIn. The URL patterns that we search in LinkedIn are,   

� www.linkedin.com/pub/dir/firstname/lastname 

� www.linkedin.com/pub/dir/firstname.middlename/lastname 

� www.linkedin.com/pub/dir/firstname/middlename.lastname 

� www.linkedin.com/pub/dir/initials of firstname.middlename/lastname 

� www.linkedin.com/pub/dir/initials of firstname./middlename.lastname 

For example, if the author name in MAS is Reid.G.Simmons, the URL patterns that we 

search in LinkedIn are,  

� www.linkedin.com/pub/dir/Reid/Simmons 

� www.linkedin.com/pub/dir/Reid G./Simmons 

� www.linkedin.com/pub/dir/Reid/G.Simmons 
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� www.linkedin.com/pub/dir/R.G./Simmons 

� www.linkedin.com/pub/dir/R./G./Simmons 

This is how we calculate the namescore. The namescore is defined as,  

�&��!#'(� � 1 B CA��9DEFG,<DEFG
|9DEFG|,|<DEFG|
 I )A�� 
��3�4
  ? A�� 
��3�4
+J               (2) 

We use Levenshtein distance [4] for calculating the namescore. Levenshtein 

distance is an edit distance algorithm. Edit distance is a way of quantifying how dissimilar 

two strings are to one another by counting the minimum number of operations required to 

transform one string into the other. The reason for using Levenshtein distance is because 

it is the most common variant generally used for calculating the edit distances. Informally, 

Levenshtein distance between two words is the minimum number of single character 

edits (i.e. insertions, deletions or substitutions) required to change one word to the other.  

Mathematically, the Levenshtein distance between two strings &, K is given 

by A��3,L
 |&|, |K|
, 

A��3,L
�, �
 �  
MNO
NPmax
�, �
                    �� min
�, �
 � 0

��� W A��3,L
� B 1, �
 ? 1A��3,L
�, � B 1
 ? 1A��3,L
� B 1, � B 1
 ? 1
3:XLY

Z'%$�([�!�.  Z                             (3) 

Where 1
3:XLY
 is the indicator function equal to 0 when &� �  K� and 1 otherwise.  

For example, the author name in MAS is NicholasChia and a person name for a 

public profile from LinkedIn is NicholasCSChia. The Levenshtein distance between these 

2 names is calculated as 2. We have provided the calculation of Levenshtein distance in 

Appendix D. However, we normalize the Levenshtein distance. The final value calculated 

for namescore is 0.92 in this example.  

Now, let us see how we define orgscore. We define score between any 2 pair of 

organization as below.  
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!#'(� 
�567, �567
 � A��9]^_,<]^_)`9]^_`,|<]^_|+ I )A�� )�567+  ? A�� )�567+ +                      (4) 

'(>!#'(� � 1 B �&a b�3 � 9]^_,L � <]^_!#'(� 
&, K
c                                                           (5) 

 
We have one organization in MAS but for a person in LinkedIn there are multiple 

organizations (current organization, previous organization, educational institution) for a 

person. We calculate the orgscore in the same way as we calculate the namescore 

except that we calculate the maximum orgscore.  

The skillscore is calculated as below. 

!@�AA!#'(� � 1 B  ∑ d;<: e  89:f I 89:��12                                                              (6) 

Where, 

89: �  b1 �� &"%$'( g'!!�!!�! & !@�AA �� �hi0 '%$�([�!� Z 
;<: �  b1 �� &"%$'( g'!!�!!�! & !@�AA �� A��@�j��0 '%$�([�!� Z 

The reason we use the skills from MAS in denominator is because the skills set 

in MAS is a subset of the skills available in LinkedIn. For example, as we saw in the 

table, the author Nicholas Chia in MAS and the person named Nicholas Chia from 

LinkedIn both have Microbiology as their common skill. In this case we calculate the 

skillscore as 0.5 as we have 2 skills in MAS. 

2.2 Example On Calculating Edge Weight 

For each author from MAS, we find different name combinations for that author 

so that we can search those name combinations in LinkedIn. After obtaining the name 

variations for all the authors from MAS, we check if these links are valid in LinkedIn. By 

valid, we mean if the links actually exist. The valid LinkedIn URLs may correspond to 

either a single public profile page of a person or multiple public profile pages of several 
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persons. The maximum number of URLs for a multiple persons public profile pages is 

restricted to 25. This is illustrated in the Figure 3. The figure shows the name 

combinations we try for an author and the valid LinkedIn URLs for those names.  

 

              Figure 3 – Name Variations and Valid URLs 

                  After finding the valid LinkedIn profiles, we need to define the weight over the 

edge that maps the nodes between these 2 sets. We have illustrated it in Figure 4.  

 

Figure 4 – Assigning Edge Weights 
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However, as we can see from the Figure 4 there will be some edges which are 

very weak. To avoid such weak edges, we apply the threshold and select only the edges 

that are greater than the threshold value. In this particular example, we use the threshold 

value as 2. This can be illustrated as in Figure 5.  

 

Figure 5 – Applying Thresholds 

We will get several matches after applying threshold as illustrated in Figure 6.  

 

Figure 6 – Possible Matches after Threshold 

We find the match with maximum possible edge weight. We have discussed the 

algorithm for finding the match with maximum weight in Chapter 3. The final output that 

we expect is the possible Match 1 in Figure 6. Let us consider a complex example as 

illustrated in Figure 7.   
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Figure 7 – Complex Example 

For Figure 7, we can have 2 possible matches as illustrated in Figure 8.   

 

Figure 8 – Possible matches for a complex case 

For possible match1 the sum of edge weights is 4.52 and for possible match 2 the sum of 

edge weight is 4.6. Hence, we choose the possible match 2 as our final output.  
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Chapter 3  

Algorithms To Find Match With Maximum Weight 

We use the Hungarian algorithm [4] to find the match with the maximum weight. 

The pseudo code [6] of the Hungarian algorithm is presented in Appendix E. Let us 

consider the example as illustrated in Figure 9. 

 

Figure 9 – Hungarian Algorithm Example 

For the given figure in the left side of Figure 9, we are concerned with finding the 

maximum weighted bi-partite matching as in the right figure of Figure 9. To find the 

maximum edge weight in a bipartite graph, we can use the Hungarian algorithm as 

below.  

Arrange the information from the bipartite graph in a matrix with the “authors from 

MAS” on the left and the “public profile information from LinkedIn” along the top, with the 

score for each pair in the middle.  The author – public profile information can be 
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represented in a matrix as below. Since we are concerned with finding the maximum 

edge weight, we will first multiply the initial weights by -1.  

                  L1    L2 L3 L4   L5   L6 
 
M1             -2     -2.5   0   0      0      0 
 
M2              0      -2         0          0              0           0 
 
M3              0       0        -2.5      -2.1          -2.2        0 
 
M4              0       0          0          0              0        -2.2            

 

Ensure that the matrix is square by the addition of dummy rows/columns if 

necessary. Conventionally, each element in the dummy row/column is the same as the 

largest number in the matrix. As we can see, the above matrix is not a square matrix. We 

will add row having the maximum value to make the matrix a square matrix.  In our 

example, the maximum value is 0. Hence we will now add 2 more rows with all values as 

0. The matrix would be as below.  

 

                  L1    L2 L3 L4   L5   L6 
 
M1             -2     -2.5   0   0      0      0 
 
M2              0      -2         0          0              0           0 
 
M3              0       0        -2.5      -2.1           -2.2        0 
 
M4              0       0          0          0              0       -2.2   
 
                  0       0          0          0               0           0 
 
                  0       0          0          0               0           0           
 

 

Reduce the rows by subtracting the minimum value of each row from that row. 

For each row, we will subtract the minimum row value from the values and update the 
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matrix. For example, the minimum value in the first row is -2.5. We will subtract -2.5 from 

all the row values in the first row. After doing this step for all the rows the matrix will be 

updated as below. 

                  L1    L2 L3 L4   L5   L6 
 
M1             0.5     0   2.5   2.5      2.5      2.5 
 
M2              2       0         2           2              2           2 
 
M3              2.5   2.5       0          0.4          0.3          2.5 
 
M4             2.2    2.2      2.2        2.2          2.2          0              
 
                  0       0          0          0               0           0 
 
                  0       0          0          0               0           0           
 
 

Reduce the columns by subtracting the minimum value of each column from that 

column. The minimum column value is 0 in all the 6 columns. Therefore, the matrix will 

stay the same as above.  

Cover the zero elements with the minimum number of lines it is possible to cover 

them with. If the number of lines is equal to the number of rows, then we can choose a 

set of zeros so that each row or column has only one selected.   

 

                  L1    L2 L3 L4   L5   L6 
 
M1             0.5     0   2.5   2.5      2.5      2.5 
 
M2              2       0         2           2              2           2 
 
M3              2.5   2.5       0          0.4          0.3          2.5 
 
M4             2.2    2.2      2.2        2.2          2.2          0              
 
                  0       0          0          0               0           0 
 
                  0       0          0          0               0           0           
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Add the minimum uncovered element to every covered element. If an element is 

covered twice, add the minimum element to it twice. 

 
                  L1    L2 L3 L4   L5   L6 
 
M1             0.5     0.5   2.5   2.5      2.5        2.5 
 
M2              2       0.5         2           2              2           2 
 
M3              3      3.5        0.5        0.9           0.8          3 
 
M4             2.7    3.2        2.7        2.7           2.7          0.5              
 
                  0.5      1        0.5         0.5           0.5          0.5 
 
                  0.5      1        0.5         0.5           0.5          0.5           

 

 

Subtract the minimum element from every element in the matrix. Cover the zero 

elements again.  

 

                  L1    L2 L3 L4   L5   L6 
 
M1              0       0      2     2        2        2 
 
M2             1.5     0          1.5        1.5           1.5         1.5 
 
M3             2.5     3           0          0.4           0.3         2.5 
 
M4             2.2    2.7        2.2        2.2           2.2          0              
 
                  0         1         0            0              0            0 
 
                  0       0.5        0            0              0            0           
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Now, from the available matches we will choose a match with the maximum 

weight which in our example corresponds to M1-L1 + M2-L2 + M3-L3 +M4-L6. This is 

already illustrated in the right figure of Figure 9.  

However, for the Hungarian algorithm to execute, we needed to increase the 

heap size in the JVM because the input size was larger. However, if the input size to the 

Hungarian algorithm can be reduced, the execution of the Hungarian algorithm can be 

speeded up. This actually resulted in a much better implementation which is more time 

efficient and memory efficient than the Hungarian algorithm.  

The graph used for Hungarian algorithm can be represented using files. The 

input file contains the columns of authorID, edgeweight and LinkedInURL. The pseudo 

code of the modified greedy algorithm can be summarized as below.  

1. Initially, sort the input file on the authorID column.  

2. The input file is split into 2 files such that the first file contains only the rows having 

unique author IDs (unique.txt) and the second file contains all the rows that are repeated 

(duplicate.txt). 

3. Repeat steps 1 and 2 but this time after sorting the input file on the LinkedInURL 

column.  

4. For the duplicate rows obtained as a result of step 3, check if the authorID already 

exists in unique.txt and remove the line if already exists.  

5. Do a greedy approach to select the maximum weighted sum in duplicate.txt file.   

Let us consider the below example illustrated in Figure 10 to understand how we are 

applying the modified greedy algorithm to our problem. 



 

18 

 

Figure 10 – Modified Greedy Approach Example 

After sorting the input file on authorID column, we are splitting our input file into unique.txt 

and duplicate.txt files as illustrated in Figure 11.   

 

Figure 11 – Split into 2 files 
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We sort the input file on LinkedInURL column. After this step, we have our 2 files as 

illustrated in Figure 12.  

 

Figure 12 – 2 files after processing 

As we can see from the Figure 12, the edge M2-L2 is not present in unique.txt because it 

shares an edge with M1 as well. Now, we select the maximum greedy weight from 

duplicate.txt.   After the above step our 2 files would look as illustrated below in Figure 

13.  

 

Figure 13 – Sorting the file 
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Chapter 4  

Preprocessing Input Data 

We need to pre-process the input data before applying our algorithms. The 

presence of duplicate records is a major data quality concern in large databases [7]. This 

is done because the input data contains duplicate records for the same Author. For 

example, if we look at Figure 14 for 2 authors from MAS, it represents the same author 

but using 2 different ids.  

 

Figure 14 – Duplicate Authors from MAS 

To check for duplicate ids for the same author, we compare all the authors that 

have the exact same name (i.e.) same first name, same middle name and same last 

name. For each author, we have the author’s organization information and the specific 

skill sets of that author available from MAS. We also have the list of co-authors who have 

collaborated with the author. All these fields are highlighted in the Figure 14. We use the 

Levenshtein distance for finding the organization score between 2 authors having same 
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name. We use the Manhattan distance for finding the skills score and the collaborators 

score. The pseudocode that we use to detect the duplicate records in MAS is provided in 

Appendix F.  
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Chapter 5  

Experiments 

We evaluated our work for duplicate author profile detection in MAS and the 

possible profile match between MAS and LinkedIn. The MAS dataset contains only the 

authors who published papers in conferences related to computer science. The total 

authors in the MAS dataset are 696876. The total profiles extracted for these authors 

from LinkedIn are 8218476. The Hungarian algorithm takes k 
�l
 time to finish 

execution. The Hungarian algorithm fails with a java heap memory error for larger 

datasets. If we use the modified greedy approach, the input size could be considerably 

reduced and this input could be used for Hungarian algorithm. We evaluated our work 

based on the measures of precision,recall and f-measure.  For calculating  these 

measures, we got help from some human evaluators. We use the below formula for 

calculating the measures. 

m(�#�!�'� � nm
nm ?   om
                                                                          
p�#&AA � nm
nm ?   oq
                                                                                 

o1 � 2 r m(�#�!�'� r p�#&AA
m(�#�!�'� ?   p�#&AA
                                                                
For duplicate author profile detection in MAS, our algorithm detected 3866 

duplicate author pairs. However, since it is not possible to verify all the 3866 pairs, we 

carried our evaluation work on a smaller number of pairs as below. 

We have an evaluation page for calculating precision which is illustrated in Figure 15. For 

calculating the precision, we got help from 5 human evaluators. All the human evaluators 

evaluated more or less the same number of pages. The true positive (TP) cases occur 

when the evaluators agree with the duplicates detected by our algorithm. The false 
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positive (FP) cases occur when the evaluators do not agree with the duplicates detected 

by our algorithm. When the evaluator opens the page, we present 2 authors randomly 

whom our algorithm has detected as duplicate and ask the evaluators to determine if it is 

true or not. Based on the user responses, we calculate the precision.  

 

  

Figure 15 – Duplicate Author Detection Evaluation Page 

To calculate the recall, we randomly selected some authors and shared the 

author names from MAS to the human evaluators. We asked the human evaluators to 

verify if there are duplicate entries for the shared authors in MAS.  For calculating recall, 

we got help from 2 human evaluators. TP cases are when both the algorithm and 

evaluators agree that the entity is distinct and doesn’t have duplicate. FN cases are when 

the evaluators find duplicates that are not detected by the algorithm. Again, the workload 
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was equally distributed between the 2 human evaluators. Based on the user responses, 

we calculate the recall.  

Based on the evaluators’ response, we present our experiment results as below. 

Table 3 – Duplicate Author Detection Experiment Results 

Precision Recall F1-Score 

79
79 ? 51
 � 0.6076 
68
68 ? 0
 � 1 

0.7559 

 

As the recall value suggests, our algorithm has not left out any author who has 

duplicate profile in MAS. The reason for the higher recall value is because we have 

considered all authors who have exact first name, middle name and last name.  

The second evaluation was on determining whether the pairs detected by our 

algorithm between an author from MAS and a person’s profile in LinkedIn are correct or 

not. We use threshold values to remove the weaker edges. We use three threshold 

values. When we set the threshold value greater than 2.8, our algorithm returns 3020 

pairs. However, if we have a slightly lower threshold value of 2.5 our algorithm returns 

5415 pairs. The total pairs returned by our algorithm are 17648 if we choose our 

threshold value as 2. Again calculating the precision and recall for such large number of 

pairs is not possible and hence we got help from the human evaluators. The precision 

calculation was carried out in the same way as we did earlier for duplicate author 

detection. We designed an evaluation page and asked the human evaluators to evaluate 

our work. The screenshot of our evaluation page is illustrated in Figure 16. For 

calculating precision, we got help from 5 human evaluators whose workload was equally 

distributed. The true positive and false positive values are determined in the same way as 

we did for duplicate author detection in MAS.  
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Figure 16 – Evaluation Page for Linked Data 

For recall calculation, we selected some authors randomly from MAS and 

prepared an excel sheet with a hyperlink to the authors MAS page. After that, we 

explained the evaluators on how to get the LinkedIn URL based on the author’s MAS 

page. We got help from 2 human evaluators and the workload was equally distributed 

among the evaluators.  

 Based on the users’ evaluation results, we have prepared the following table 

which summarizes our experimental results. As we can see, we have tested our 

algorithm for various thresholds which we have specified as the experimental condition in 

the below table.  

 



 

26 

Table 4 – Experiment Results for pair detection between MAS and LinkedIn 

Experiment Condition Precision Recall F1 Score 

Threshold > 2 35
35 ? 16
 � 0.68 
21
21 ? 9
 � 0.7 

0.689 

Threshold > 2.5    45
45 ? 6
 �   0.88 
15
15 ? 10
 � 0.6 

0.713 

Threshold > 2.8 5050 ? 1 � 0.98 
18
18 ? 17
 � 0.51 

0.674 

 

As per our experimental results, it is clearly evident that the higher threshold values will 

have a higher precision rate. 
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Appendix A 

Pseudocode on Finding Name Variations 
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We will first see the pseudo code for different name variations that we use for a 

name in MAS in LinkedIn. This function is implemented using VBA script. We have all the 

author names in our tables. We select the author name and find the name variations for 

this author and insert the possible LinkedIn URL into the table. The LinkedIn URL for any 

person will always follow the same structure (www.linkedin.com/pub/dir/FN/LN).Let us 

now see the pseudo code on how to find the LinkedIn URLs for various name 

combinations.  

'This function finds all the LinkedIn URLs for a na me from MAS. 
'This pseudocode is implemented using VBA script.  
Function  LinkedInURLsFind ()  
  'Initialize the variables used. 
  Dim AuthorFN ,  AuthorLN ,  AuthorID ,  AuthorMN,Ln ; 
  Ln="http://www.linkedin.com/pub/dir/" ;  
  sql ="SELECT id, first_name,last_name,middle_name FROM A uthor” ;  
  'Store the mysql values into the local variables. 
  Do Until  obj.EOF 
    AuthorID = obj.Fields ( 0). Value ;  
    AuthorFN = obj.Fields ( 1). Value ;  
    AuthorLN = obj.Fields ( 2). Value ;  
    AuthorMN = obj.Fields ( 3). Value ;  
    'If no middle name is present, we are constructing 2 URLs.  
    If  Len ( AuthorMN )  = 0 Then  
      Dim AuthorInitials ,  LinkedIn_URL1 ,  LinkedIn_URL2 ;  
      AuthorInitials = left ( AuthorFN ,  1);  
      AuthorInitials = AuthorInitials & "." ;  
      LinkedIn_URL1 = "Ln" & AuthorFN & "/"  & AuthorLN ;  
      LinkedIn_URL2 = "Ln"  & AuthorInitials &  "/"  & AuthorLN ;  
      sql = "INSERT INTO Author_LinkedIn (AuthorID,  
             AuthorFN, AuthorMN, AuthorLN, LinkedIn _URL1)" ;  
      'This if loop is to ensure that the author first na me    
       is not the same as initials. If they are the  same, no  
       need to insert author initials.  
       If  AuthorInitials <> AuthorFN Then 
         sql = "INSERT INTO Author_LinkedIn(AuthorID,  
                AuthorFN, AuthorMN, AuthorMN,Linked In_URL2)" ;  
       End If  
     
    Else  
    'Initialize variables for authors who have middle n ames.  
      
      Dim Author_FN ,  Author_LN ,  AuthorMNInitials ,         
          AuthorFMcombined , LinkedIn_URL5 ,  LinkedIn_URL3 ,   
          LinkedIn_URL4 ;  



 

29 

      'This variable has the FN and MN combined.  
       Author_FN = AuthorFN & " "  & AuthorMN ;  
      'This variable has the MN and LN combined.  
       Author_LN = AuthorMN & " "  & AuthorLN ;  
      'This variable gets the initials for MN.  
       AuthorMNInitials = left ( AuthorMN ,  1);  
       AuthorMNInitials = AuthorMNInitials & "." ;  
       'This variable gets the initials for the FN.  
       AuthorInitials = left ( AuthorFN ,  1);  
       AuthorInitials = AuthorInitials & "." ;  
       'This variable has FN and MN initials combined.  
       AuthorFMcombined = AuthorInitials + AuthorMNInitials ;  
       'URL constructed with FN and LN.  
       LinkedIn_URL1 = "Ln"  & AuthorFN & "/"  & AuthorLN ;  
       'URL constructed with {FN,MN} and LN. 
       LinkedIn_URL2 = "Ln"  & Author_FN & "/"  & AuthorLN ;  
       'URL constructed with FN and {MN,LN}. 
        LinkedIn_URL3 = "Ln"  & AuthorFN & "/"  &  Author_LN ;  
       'URL constructed with FN initials and {MN,LN}. 
        LinkedIn_URL4 = "Ln"  & AuthorInitials & "/"  & Author_LN ;  
       'URL constructed with {initials of FN & MN },LN 
        LinkedIn_URL5 = "Ln"  & AuthorFMcombined & "/"  & AuthorLN ;  
        sql = "INSERT INTO Author_LinkedIn (AuthorID,  
               AuthorFN, AuthorMN, AuthorLN, Linked In_URL1)" ;  
        sql = "INSERT INTO Author_LinkedIn (AuthorID,  
               AuthorFN, AuthorMN, AuthorLN, Linked In_URL2)" ;  
        sql = "INSERT INTO Author_LinkedIn(AuthorID,  
               AuthorFN, AuthorMN,AuthorLN, LinkedI n_URL3)" ;  
        If  AuthorInitials <> AuthorFN Then 
          sql = "INSERT INTO Author_LinkedIn(AuthorID,  
                 AuthorFN, AuthorMN, AuthorLN, Link edIn_URL4)" ;  
        End If  
        sql = "INSERT INTO Author_LinkedIn(AuthorID, AuthorFN,  
               AuthorMN, AuthorLN, LinkedIn_URL5)" ;  
      End If  
    obj.MoveNext ;  
  Loop  
End Function  
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Appendix B 

Pseudocode On Determining If The Links Are Valid 
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After finding the possible LinkedIn URLs for an author, we are checking if the link 

is valid. By valid, we mean if it actually exists. We use the below pseudo code to check if 

the URL is valid. We implemented the below pseudo code using bash shell script.  

################################################### ##############  
#Check if the links are valid.  
#By valid, we mean to check if the links actually e xist.  
#We check if URL exists and update the value back i n our table.  
#We used bash script to implement this pseudocode.  
################################################### ##############  
 
#We are selecting the URLs from table.  
 
url =( mysql "SELECT LinkedIn_URL from Author_LinkedIn" );  
 
while  read  url ;  
do    
  #The variable checkurl is used to check if the URL exists.  
  #curl is used to check if the page actually exists.   
  checkurl =$(curl -s --head "$url" | head -n 1 |grep HTTP/1.[0 1][23]..") ;  
  #Check if the variable is null. If null, there is n o URL that exists.  
    if  [  -z  "$var"  ]  
    then  
      Update LinkedIn_URL_exists =- 1 where LinkedIn_URL ="$checkurl" ;  
    else  
        Update LinkedIn_URL_exists =1 where LinkedIn_URL ="$checkurl" ;  
    fi  
done  
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Appendix C 

Pseudocode On Calculating The Edge Weight 
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Now, we have all the valid LinkedIn URLs available. We need to calculate the 

edge weight. The initial function which we use to select the values from database can be 

presented as below.  

#*****THE MAIN EXECUTION OF THE SCRIPT STARTS HERE* ******** 
 
sql =( "select authorid, authorname, authororg, Author_Lin kedIn_URL from  
      Author_LinkedIn where LinkedIn_URL_Exists=1" )  > Results.txt ;  
#The pagination class is not present in the html so urce of single  
 profile page.  
#pagination class is present in html source of mult iple profiles which  
 can be upto 25 (max).   
 
while  IFS is not null 
do  
    page ="$(curl ""$Author_LinkedIn_URL"" | grep " div  
            class =\"pagination\" ")" ;  
    #Single profile page and so we are calling the func tion.  
     
    if  [  -z  "$page"  ]  
    then  
        Extract_Skills_Organization_LinkedIn "$AuthorID"   
        "$Author_LinkedIn_URL"  "$AuthorOrg"  "$AuthorName" ;   
    #Multiple profile page and so we will extract each URL and then call  
     the function.  
     
    else  
        curl "$Author_LinkedIn_URL"  |  grep  "<a href=.*title="  |  grep  - v  
        Directory |  grep  - v class = > Multiple_Profiles.txt ;  
        while  read  -r line ;   
        do  
            Extract_Skills_Organization_LinkedIn "$AuthorID"  $line   
            "$AuthorOrg"  "$AuthorFN"  "$AuthorMN"  "$AuthorLN" ;  
        done  < <(  awk - F\" '{print $2}'  Multiple_Profiles.txt );  
    fi  
done  < Results.txt 
 
 

  

In the main script, we have made a call to Extract_Skills_Organization_LinkedIn () 

function. The pseudo code for it can be presented as below. 

 

 



 

34 

#************************************************** **************  
#This function accepts 6 input parameters.  
#param1 - AuthorID  
#param2 - AuthorURL  
#param3 - Author organization in MAS  
#param4 - Author First Name  
#param5 - Author Middle Name  
#param6 - Author Last Name  
#************************************************** **************  
 
Extract_Skills_Organization_LinkedIn ()  
{  
  #Dump the HTML source page into foo.txt file.  
  curl "" $2""  -s |   w3m - dump -T text / html > foo.txt ;  
  #I extract the name from LinkedIn.  
  LinkedIn_Name =$(sed -n '6p' foo.txt | sed -e 's/ //g') ;  
  MSAS_Name="$4""$5""$6" ;  
  #I am converting the names from MAS and LinkedIn to  lower cases.  
  LinkedIn_Name_Levenish =$(echo "$LinkedIn_Name" | awk '{print tolower($0)}' ) ;  
  MSAS_Name_Levenish =$(echo "$MSAS_Name" | awk '{print tolower($0)}') ;  
  #Lenvenshtein algorithm implementation for the Name  score.  
  #I call the Levenshtein_Match () function to calcul ate the name score.  
  #I use length of names to normalize the values.  
  name_score =$( Levenshtein_Match "$LinkedIn_Name" "$MSAS_Name" 
"${#LinkedIn_Name_Length}" "${#MSAS_Name_Length}" ) ;  
  #I am subtracting the score from 1 so that higher v alue corresponds to better 
match.  
  name_score_value =$(bc <<< "scale=5; 1 - $name_score") ;  
  #Extracting the skills from the main HTML file.  
  awk 'f;/Skills & Expertise/{f=1}'  foo.txt > foo1.txt ;  
  #This option checks if the file is non-empty. If th e file is empty, there is 
no skills assosciated.  
  if  [  -s  foo1.txt ]  
  then  
    while  read  line ;  
    do  
      echo  $line  >> skills ;  
    done ;  
  else  
    break ;  
  fi  
  sql_result =( "SELECT MAS_Skill for author" );  
  cat  sql_result >> skills ;  
  #Manhattan distance implementation for skills score .  
  #common skills between MAS and LinkedIn.  
  common_skills =$(sort skills | uniq -d | wc -l) ;  
  #Total skills count.  
  total_skills =$(sort skills | wc -l) ;  
  nr_skills_score =$(( $total_skills  -  $common_skills * 2));  
  dr_skills_score =$(( $total_skills  -  $common_skills ));  
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  skills_score =$(bc <<< "scale=5; $nr_skills_score/$dr_skills_scor e") ;  
  #Same approach as name score as higher value in DB means better.  
  skills_score_value =$(bc <<< "scale=5; 1 - $skills_score") ;  
  #Extracting organization information from LinkedIn.   
 
  #The organization section starts here.  
  #If no MAS organization is found, there is no need to calculate the 
org_score.  
  if  [  "$3"  == "Not found"  ]   
  then  
    organization_score =1;  
  else  
    #Extract information from the main HTML file.  
    sed  -n -e '/Overview/,/Connections/ p'  foo.txt |  grep  "^ "  |  sed  's/^[ 
]\+//g'  > organization_updated.txt ;  
    local  LinkedIn_Organization_Array =();  
    while  read  -r line ;   
    do  
      #I put all the LinkedIn organizations into an array .  
      LinkedIn_Organization_Array+ =(  "$line"  );  
    done  < <(  perl  - pe 's/.+? at //'  organization_updated.txt );  
  #I am calling the Levenshtein algorithm from Organi zation_Exists () function.  
  #The reason is I need to return the highest score f or Levenshtein algorithm.  
  #We are checking an author's organization against L inkedIn current 
organization,  
  #past work, past educational institutions.  
  organization_score =$( Organization_Exists "$3" LinkedIn_Organization_A rray[@] 
) ;  
  fi  
  organization_score_value =$(bc <<< "scale=5; 1 - $organization_score") ;  
}  
 

 

We are checking the MAS organization against all the available LinkedIn organizations 

such as the current organization, past organization, educational institutions.   
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#************************************************** **************  
#This is the function that checks if the MAS org an d LinkedIn org match.  
#For each organization in LinkedIn, I use the leven shtein distance algorithm.  
#From the values returned, I select the minimum val ue.  
#Selecting the minimum value is to make sure that t he 2 strings are closely 
matched.  
#************************************************** **************  
#This function accepts 2 parameters.  
#Param1 - MAS Organization  
#Param2 - Organizations from LinkedIn in an array.  
#By organizations in LinkedIn, we mean the current,  past and educational 
institutions.  
#************************************************** **************  
 
Organization_Exists ()   
{  
  declare  -a argAry1 =( "${!2}" );  
  local  e ;  
  local  Organization_MSAS_LinkedIn =();  
  for  e in  "${argAry1[@]}" ;   
  do  
    tmp_org =$( Levenshtein_Match "$1" "$e" "${#1}" "${#e}" ) ;  
    Organization_MSAS_LinkedIn+ =( "$tmp_org" );  
  done  
  Organization_Score =1;  
  len =${#Organization_MSAS_LinkedIn[@]} ;  
  i =0;  
  while  [  $i  - lt $len  ]  
  do  
    val =`echo "${Organization_MSAS_LinkedIn[$i]}" ` ;  
    if  [  $(echo "$Organization_Score < $val"|bc)  - eq 0 ];  
    then  
      Organization_Score =$val ;  
    fi  
    let  i++ ;  
  done  
  #This is important as this acts as the return state ment.  
  echo  "$Organization_Score" ;  
}  
 

 

We are using the Levenshtein algorithm to find the edit distance between two strings. The 

pseudo code for the implementation of Levenshtein algorithm can be presented as below.  
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#************************************************** **************  
#Levenshtein distance is used to find the edit dist ance between 2 strings.  
#I am using this algorithm to find the name score a nd the organization score.  
#I have used the mathematical formula lev dist/(sum  of lengths of 2 strings).  
#The above formula is to normalize the value before  putting it in the database.  
#This function takes 4 parameters. The 2 strings to  be searched  
#and the lengths of 2 strings.  
#This function will be used to update the name scor e  
#and the organization score.  
#************************************************** **************  
#However, I have made it accept 4 input parameters.  
#Param1 - MAS Name/Organization  
#Param2 - LinkedIn Name/Organization  
#Param3 - MAS Name/Organization length  
#Param4 - LinkedIn Name/Organization length  
#************************************************** **************  
 
Levenshtein_Match ()  {  
ret =$(awk ' 
        function min(x, y) { 
        return x < y ? x : y 
        } 
        function lev(s,t) { 
        m = length(s) 
        n = length(t) 
        for(i=0;i<=m;i++) d[i,0] = i 
        for(j=0;j<=n;j++) d[0,j] = j 
        for(i=1;i<=m;i++) { 
        for(j=1;j<=n;j++) { 
        c = substr(s,i,1) != substr(t,j,1) 
          d[i,j] = min(d[i-1,j]+1,min(d[i,j-1]+1,d[ i-1,j-1]+c)) 
        } 
      } 
      return d[m,n]; 
    } 
     BEGIN {print lev(ARGV[1], ARGV[2]) / ( ARGV[3]  + ARGV[4] ); exit}' "$1" 
"$2" "$3" "$4") ;  
     #This return is important as this acts as the retur n statement.  
     echo  "$ret" ;  
}  
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Appendix D 

Example On Calculating Levenshtein Distance 
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There are several calculators available online to see how the Levenshtein edit 

distance is calculated between 2 strings. We used the calculator from 

http://odur.let.rug.nl/kleiweg/lev/. 
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Appendix E 

Pseudocode On Hungarian Algorithm 
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The pseudocode [7] of Hungarian algorithm is given as below.  

 

procedure  munkres is   
   Row,Col : is array(1..n) of integer;                 -- maintains 
record of which row/columns are covered.    
  stepnum : integer;                                                     -- covered = 
1, non-covered = 0  
  done : boolean;  

  function  step1(stepnum: in out  integer) is   
    :   
  function  step2(stepnum: in out  integer) is   
    :   
  function  step3(stepnum: in out  integer) is   
    :  

begin   
  done:=false;   
  stepnum:=1;   
  while  not (done) loop   
    case  stepnum is   
      when 1 => step1(stepnum);   
      when 2 => step2(stepnum);   
      when 3 => step3(stepnum);   
      when 4 => step4(stepnum);   
      when 5 => step5(stepnum);   
      when 6 => step6(stepnum);   
      when others  => done:=true;   
    end case ;   
  end loop ;   
end  munkres;  
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In each pass of the loop the step procedure called sets the value of stepnum for 

the next pass.  When the algorithm is finished the value of stepnum is set to some value 

outside the range 1..6 so that done will be set to true and the program will end.  In the 

completed program the tagged (starred) zeros flag the row/column pairs that have been 

assigned to each other.  We will discuss the implementation of a procedure for each step 

of Munkres' Algorithm below. We will assume that the cost matrix C(i,j) has already been 

loaded with the first index referring to the row number and the second index referring to 

the column number. 

Step 1: 

For each row of the matrix, find the smallest element and subtract it from every element 

in its row.  Go to Step 2. We can define a local variable called minval that is used to hold 

the smallest value in a row.  Notice that there are two loops over the index j appearing 

inside an outer loop over the index i. The first inner loop over the index j searches a row 

for the minval.  Once minval has been found this value is subtracted from each element 

of that row in the second inner loop over j.  The value of step is set to 2 just 

before stepone ends. 

 procedure  stepone(step : in out  integer) is   
    minval : integer;   
  begin   
    for  i in  1..n loop  

      minval:=C(i,1);   
      for  j in  2..n loop   
        if  minval>C(i,j) then   
          minval:=C(i,j);   
        end if ;   
      end loop ;  

      for  j in  1..n loop   
        C(i,j):=C(i,j)-minval;   
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      end loop ;  

    end loop ;   
    step:=2;   
  end  stepone;  
 

Step 2 

Find a zero (Z) in the resulting matrix.  If there is no starred zero in its row or column, star 

Z. Repeat for each element in the matrix. Go to Step 3.  In this step, we introduce the 

mask matrix M, which in the same dimensions as the cost matrix and is used to star and 

prime zeros of the cost matrix.  If M(i,j)=1 then C(i,j) is a starred zero,  If M(i,j)=2 then 

C(i,j) is a primed zero.  We also define two vectors R_cov and C_cov that are used to 

"cover" the rows and columns of the cost matrix C.  In the nested loop (over indices i and 

j) we check to see if C(i,j) is a zero value and if its column or row is not already covered.  

If not then we star this zero (i.e. set M(i,j)=1) and cover its row and column (i.e. set 

R_cov(i)=1 and C_cov(j)=1).  Before we go on to Step 3, we uncover all rows and 

columns so that we can use the cover vectors to help us count the number of starred 

zeros.   

procedure  steptwo(step: in out integer) is   
  begin  

    for  i in  1..n loop   
      for  j in  1..n loop   
        if  C(i,j)=0 and  C_cov(j)=0 and  R_cov(i)=0 then   
          M(i,j):=1;   
          C_cov(j):=1;   
          R_cov(i):=1;   
        end if ;   
      end loop ;   
    end loop ;  
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    for  i in  1..n loop   
      C_cov(i):=0;   
      R_cov(i):=0;   
    end loop ;   
    step:=3;  

  end steptwo;  
 

Step 3 

Cover each column containing a starred zero.  If K columns are covered, the starred 

zeroes describe a complete set of unique assignments.  In this case, Go to DONE, 

otherwise, Go to Step 4. Once we have searched the entire cost matrix, we count the 

number of independent zeroes found.  If we have found (and starred) K independent 

zeroes then we are done.  If not we proceed to Step 4. 

Procedure  stepthree(step : in out  integer) is   
    count : integer;   
  begin   
    for  i in  1..n loop   
      for  j in  1..n loop   
        if  M(i,j)=1 then   
          C_cov(j):=1;   
        end if ;   
      end loop ;   
    end loop ;   
    count:=0;   
    for  j in  1..n loop   
      count:=count + C_cov(j);   
    end loop ;   
    if  count>=n then   
      step:=7;   
    else   
      step:=4;   
    end if ;   
  end  stepthree;  
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Step 4 

Find a no covered zero and prime it.  If there is no starred zero in the row containing this 

primed zero, Go to Step 5.  Otherwise, cover this row and uncover the column containing 

the starred zero. Continue in this manner until there are no uncovered zeroes left. Save 

the smallest uncovered value and Go to Step 6. In this step, statements such as "find a 

noncovered zero" are clearly distinct operations that deserve their own functional blocks.  

We have decomposed this step into a main procedure and three subprograms (2 

procedures and a boolean function). 

 procedure  stepfour(step : in out  integer) is   
    row,col  : integer;   
    done     : boolean;  

    procedure  find_a_zero(row,col : out  integer) is   
      i,j : integer;   
      done: boolean;   
    begin   
      row:=0;   
      col:=0;   
      i:=1;   
      done:=false;   
      loop   
        j:=1;   
        loop   
         if  C(i,j)=0 and  R_cov(i)=0 and  C_cov(j)=0 then   
            row:=i;   
            col:=j;   
            done:=true;   
         end if ;   
          j:=j+1;   
         exit when  j>n;   
        end loop ;   
        i:=i+1;   
        if  i>n then  done:=true; end if ;   
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        exit when  done;   
      end loop ;   
    end  find_a_zero;  

    function  star_in_row(row : integer) return  boolean is   
     tbool : boolean;   
    begin   
      tbool:=false;   
      for  j in  1..n loop   
        if  M(row,j)=1 then   
          tbool:=true;   
        end if ;   
      end loop ;   
      return  tbool;   
    end  star_in_row;  

    procedure  find_star_in_row(row, col : in out  integer) is   
    begin   
      col:=0;   
      for  j in  1..n loop   
        if  M(row,j)=1 then   
          col:=j;   
        end if ;   
      end loop ;   
    end  find_star_in_row;  

  begin   
    done:=false;   
    while not (done) loop   
      find_a_zero(row,col);   
      if  row=0 then   
        done:=true;   
        step:=6;   
      else   
        M(row,col):=2;   
        if  star_in_row(row) then   
          find_star_in_row(row,col);   
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          R_cov(row):=1;   
          C_cov(col):=0;   
        else   
          done:=true;   
          step:=5;   
          Z0_r:=row;   
          Z0_c:=col;   
        end if ;   
      end if ;   
    end loop ;   
  end  stepfour;  
 

Step 5 

Construct a series of alternating primed and starred zeros as follows.  Let Z0 represent 

the uncovered primed zero found in Step 4.  Let Z1 denote the starred zero in the column 

of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there will always be one).  

Continue until the series terminates at a primed zero that has no starred zero in its 

column.  Unstar each starred zero of the series, star each primed zero of the series, 

erase all primes and uncover every line in the matrix.  Return to Step 3.  You may notice 

that Step 5 seems vaguely familiar.  We decompose the operations of this step into a 

main procedure and five relatively simple subprograms. 

 procedure  stepfive(step : in out integer) is   
    count : integer;   
    done  : boolean;   

    r,c   : integer;  

  procedure  find_star_in_col(c : in  integer; r : in 

out  integer) is   
  begin   
    r:=0;   
    for  i in  1..n loop   
      if  M(i,c)=1 then   
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        r:=i;   
      end if ;   
    end loop ;   
  end  find_star_in_col;  

  procedure  find_prime_in_row(r : in  integer; c : in 

out  integer) is   
  begin   
    for  j in  1..n loop   
      if  M(r,j)=2 then   
        c:=j;   
      end if ;   
    end loop ;   
  end  find_prime_in_row;  

  procedure  convert_path is   
  begin   
    for  i in  1..count loop   
      if  M(path(i,1),path(i,2))=1 then   
        M(path(i,1),path(i,2)):=0;   
      else   
        M(path(i,1),path(i,2)):=1;   
      end if ;   
    end loop ;   
  end  convert_path;  

  procedure  clear_covers is   
  begin   
    for  i in  1..n loop   
      R_cov(i):=0;   
      C_cov(i):=0;   
    end loop ;   
  end  clear_covers;  

  procedure  erase_primes is   
  begin   
    for  i in  1..n loop   
      for  j in  1..n loop   
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        if  M(i,j)=2 then   
          M(i,j):=0;   
        end if ;   
      end loop ;   
    end loop ;   
  end  erase_primes;  

  begin   
    count:=1;   
    path(count,1):=z0_r;   
    path(count,2):=z0_c;   
    done:=false;   
    while  not (done) loop   
      find_star_in_col(path(count,2),r);   
      if  r>0 then   
        count:=count+1;   
        path(count,1):=r;   
        path(count,2):=path(count-1,2);   
      else   
        done:=true;   
      end if ;   
      if  not (done) then   
        find_prime_in_row(path(count,1),c);   
        count:=count+1;   
        path(count,1):=path(count-1,1);   
        path(count,2):=c;   
      end if ;   
    end loop ;   
    convert_path;   
    clear_covers;   
    erase_primes;   
    step:=3;   
  end stepfive;  
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Step 6 

Add the value found in Step 4 to every element of each covered row, and subtract it from 

every element of each uncovered column.  Return to Step 4 without altering any stars, 

primes, or covered lines. Notice that this step uses the smallest uncovered value in the 

cost matrix to modify the matrix.  Even though this step refers to the value being found in 

Step 4 it is more convenient to wait until you reach Step 6 before searching for this 

value.  It may seem that since the values in the cost matrix are being altered, we would 

lose sight of the original problem.  However, we are only changing certain values that 

have already been tested and found not to be elements of the minimal assignment.  Also 

we are only changing the values by an amount equal to the smallest value in the cost 

matrix, so we will not jump over the optimal (i.e. minimal assignment) with this change. 

procedure  stepsix(step : in out  integer) is   
    minval : integer;  

    procedure  find_smallest(minval : out  integer) is   
    begin   
      minval:=integer'last;   
      for  i in  1..n loop   
        for  j in  1..n loop   
         if  R_cov(i)=0 and  C_cov(j)=0 then   
           if  minval>C(i,j) then   
              minval:=C(i,j);   
           end if ;   
         end if ;   
        end loop ;   
      end loop ;   
    end  find_smallest;  

  begin   
    find_smallest(minval);   
    for  i in  1..n loop   
      for  j in  1..n loop   
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        if  R_cov(i)=1 then   
          C(i,j):=C(i,j)+minval;   
        end if ;   
        if  C_cov(j)=0 then   
          C(i,j):=C(i,j)-minval;   
        end if ;   
      end loop ;   
    end loop ;   
    step:=4;   
  end  stepsix;   
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Appendix F 

Pseudocode On Duplicate Authors Detection in MAS 
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# Algorithm: DuplicateRecordsDetection(L) 
# L is the set of authors from MAS. 
# Initialize the 2 sets used.  
unique_authorids <-  {};  
duplicate_authorids [] <-  {};  
# Get only authors having same name more than once in MAS. 
Duplist <-  getDuplicateAuthors ( L);  
#Iterate over each subset of authors with same name .   

foreach subset s � Duplist 
{  
    foreach pair a1 , a2 in s 
    {  
            score =findscore ( a1 , a2)  
            if  score >= z then 
            {  
                if  a1 is not in unique_authorids then 
                    unique_authorids <-  { a1};  
                    duplicate_authorids[a1] <-  { a2};                 
            }  
            else  
            {  
                if  a1 , a2 not in unique_authorids then  
                    unique_authorids <-  { a1 , a2};  
            }  
    }  
}  
#function to return only authors with same name mor e than once.  
getDuplicateAuthors ( L)  
{  
    duplicate_entries <-  { mysql_query "select authors group by 
authorname having count(authorname) > 1" };  
    return  duplicate_entries; 
}  
#This function calculates the score between 2 autho rs.  
#We use levenshtein distance for organization score .  
#We use manhattan distance for skills score and col laborators 
score.  
findscore ( a1 , a2)  
{  
    return  ( org_score + skills_score + collaborators_score );  
}  
 
 
 
 



 

54 

References 

[1] Bizer, Christian, Tom Heath, and Tim Berners-Lee. "Linked data-the story so 

far." International journal on semantic web and information systems 5.3 (2009): 1-22. 

[2] Kong, Xiangnan, Jiawei Zhang, and Philip S. Yu. "Inferring anchor links across 

multiple heterogeneous social networks." Proceedings of the 22nd ACM international 

conference on Conference on information & knowledge management. ACM, 2013. 

[3] Frank, András. "On Kuhn's Hungarian method—a tribute from Hungary." Naval 

Research Logistics (NRL) 52.1 (2005): 2-5. 

[4] Kuhn, Harold W. "The Hungarian method for the assignment problem." Naval 

research logistics quarterly 2.1‐2 (1955): 83-97. 

[5] Levenshtein, Vladimir I. "Binary codes capable of correcting deletions, insertions and 

reversals." Soviet physics doklady. Vol. 10. 1966. 

[6] Hassanzadeh, Oktie, et al. "Framework for evaluating clustering algorithms in 

duplicate detection." Proceedings of the VLDB Endowment 2.1 (2009): 1282-1293.  

[7] [Online] Pseudocode on Hungarian Algorithm 

http://csclab.murraystate.edu/bob.pilgrim/445/munkres_old.html 

 

 

 

 

 

 

 

 

 



 

55 

Biographical Information 

Ramesh Venkataraman received his B.Tech degree from SASTRA University, India. After 

finishing his B.Tech, he worked for Infosys Technologies Ltd, India for 3.8 years. He 

joined the University of Texas at Arlington in the fall of 2012. His current interest lies in 

Systems Engineering and he wishes to be a development and operations (DevOps) 

Engineer in the near future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


