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Abstract 

EXPERIMENTAL STUDY OF SEPARATED RAMP-INDUCED SHOCK/BOUNDARY-

LAYER INTERACTION WITH UPSTREAM MICRO-VORTEX GENERATOR AT MACH 

2.5 

Yusi Shih, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Luca Massa 

Shock wave/boundary layer interactions (SBLIs) are important issues for high-

speed vehicles.  SBLIs reduce the performance of aerodynamic surfaces and engine 

inlets, amongst a number of adverse effects.  Micro-vortex generators (MVGs) are a flow 

control method with strong potential to mitigate the effects of SBLI by energizing the 

boundary layer through momentum transfers from the freestream. They have been 

implemented in actual configurations at low speeds.  The present research includes a 

combined experimental and theoretical analysis of the evolution of the perturbation 

downstream the MVG, the formation of vortices, and their interaction with the shock front.  

Experiments were performed with a baseline MVG configuration of 90° trailing 

edge on flat plate, ramp alone, and also with MVG mounted ahead of a 20° ramp.   The 

surface flow visualization and particle image velocimetry (PIV) results are presented; the 

surface flow visualization shows a substantial suppression of SBLIs.  A new method to 

quantify the effectiveness of the MVG on the shock recompression is presented. 

Moreover, the PIV results were used as the initial input values for the simulation work. 

A theoretical analysis of the interaction of the MVG perturbation with the 

boundary layer is performed by assuming linear dynamics of the perturbation. The major 

assumption is that the interaction between MVG perturbation and the shear flow is 
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affected by transient growth as a result of the non-orthogonality of the linearized Navier-

Stokes equations. A new method to perform the projection of the measured perturbation 

on the continuous modes of the boundary layer is presented. The method takes 

advantage of the biorthogonality of the direct and adjoint modes. The implementation of 

such a method using both the Chebyshev polynomials and a shooting algorithm is 

discussed. The results of the theoretical analysis are encouraging and display a similar 

trend as the experiments. 

Both experimental and theoretical results yield perturbation decay not far 

downstream from the MVG: about 72 mm for experiments, and about 95 mm for 

simulation.  The experiments display two distinguishable growths downstream of MVG, 

while the simulation predicted one small growth at the very beginning.  Both works show 

trends that agree well with each other.  
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Chapter 1  

Background 

Attempts at flow separation control arising from adverse pressure gradients 

including those induced by shocks have proceeded for many decades.  One solution for 

preventing subsonic separation is to use vortex generators (VGs).  VGs function by 

entraining energetic freestream fluid from streamwise vortices into the sluggish, 

separated boundary-layer flow.  However, vortex generators protruding into the 

freestream induce profile drag that reduces the overall benefit.  In the 

transonic/supersonic regime, there is an additional penalty due to wave drag.  To 

overcome the shortcomings of conventional vortex generators, the idea of “sub-boundary 

layer vortex generators,” nowadays known as MVGs (MVGs), was proposed first in the 

early 1970s.  The height of a MVG is typically between 10% and 50% of the boundary 

layer.1  These submerged protrusions therefore are expected to produce less drag. 

Besides the low-profile within the boundary layer, the MVG used in present work 

has a skewed tetrahedral geometry.  This geometry produces a CVP (CVP) at its two 

swept trailing edges.6,11  As the CVP goes downstream, a vortex ring or a hairpin vortex 

was observed.19,20  The mechanism to form a such formation is still controversy, but 

some suggested the Kelvin–Helmholtz instability may cause the formation happened.2,3  

In the meantime, MVG keeps producing the CVP, hance eventually there are many of 

vortex ring or hairpin vortex in line and the train of them will be developed.  The train of 

ring or hairpin vortices penetrate a separated shock / boundary layer interaction, creating 

a massive three-dimensional distortion that has been thought to be beneficial in practice, 

e.g., in reducing the size of the separation zone. 

The objective of the present work is to examine quantitatively how the shock-

induced separation is affected by MVG.  We proposed a new developed statistical 
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method and also applied the eigenvalue problem to the linearized Navier-Stokes 

equations to evaluate the effectiveness of MVG downstream perturbation on the 

separation area and how the perturbation evolves.  The primary investigation methods, 

surface flow visualization (SFV) and particle image velocimetry (PIV), will be described in 

the following chapter.  The test configuration in the present work consisted of three MVGs 

mounted ahead of a 20° ramp on a flat test surface.  The experiments were conducted at 

Mach 2.5.  The experimental preparations and the preliminary results will be offered in 

the next few sections. 
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Chapter 2  

Project Description 

2.1 Starting The Tunnel With A High Degree Ramp 

The present work was begun with how to start the tunnel with a ramp of high 

compression, of 16° and above to generate a separation area.  After a series of 

modifications to the test section and the ramp, the tunnel was finally started with a 20° 

ramp with a nominal two-dimensional separation area.  The progress is shown in Figure 1 

and the final ramp configuration is shown schematically in Figure 2.  In Figure 1, SFV 

was applied to different ramp configurations to check if the tunnel started or not. 

The first problem faced was with unstart tunnel with a 25° ramp.  The original 

thought was not to reduce the ramp angle but to increase the space on the top of the 25° 

ramp to allow the starting shock to be swallowed past the ramp constriction and into the 

supersonic diffuser.  Based on this surmise, the entire flat plate (including the 25° ramp) 

was lowered down 50.8 mm by trial and error to increase the clearance to the ceiling to 

152.4 mm.  However this modification a highly wrinkled separation front as can be seen 

in Figure 1a.  A big bulge and a distinct swirl were found in the middle of the separation 

area. 

It was thought that the strong shock from the 25° ramp may induce significant 

interference from the tunnel sidewalls, in other words, causing additional, spurious 

shock/boundary layer interactions.  The large subsonic regions from these spurious 

interactions may feed into the interaction of interest, thereby causing it to be severely 

distorted.  Thus, it was thought that a lower ramp angle 20° may alleviate the distortion.  

The SFV result with the 20° ramp is shown in Figure 1b.  Although the bulge and swirl 

were eliminated, several small swirls were discovered at the separation area. 
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The above result indicated that reducing sidewall interference further was 

necessary.  Accordingly, the span of the ramp was reduced from 152.4 mm to 101.6 mm.    

The SFV result shown in Figure 1c displays a relatively smooth bulge in the middle and 

with the small swirls seen previously in Figure 1b having vanished.  However, the 

separation area was still not deemed to be adequately two-dimensional.  Hence, sharp, 

swept fences that protruded 17.8 mm ahead of the ramp were installed on both ends as 

shown in Figure 1d.  A two-dimensional separation area was almost there. 

In Figure 1e, a longer pair of fences extending 27.9 mm from the ramp was 

mounted for the same purpose.  This was considered to be the final configuration, since a 

33 mm flat separation front was measured from the experiment.  A CAD schematic of the 

ramp with the long fences is shown in Figure 2.  The two-dimensional separation area 

displayed in Figure 1e was located at in the between of the fences and the 20° ramp in 

Figure 2. 
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(a)                                                                (b) 

       
(c)                                                                (d) 

 
(e)  

Figure 1 Surface flow visualizations to check that the tunnel started when ramps with 

large angles were installed and to determine the presence of an acceptable two-

dimensional shock/boundary-layer interaction 
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Figure 2 CAD rendition of the configuration of the two-dimensional separation area 

generator (20° ramp with fences). 

2.2 Boundary-Layer Survey 

The present work was begun with how to start the tunnel with a ramp of high 

compression, of 16° and above to generate a separation area.  After a series of 

modifications to the test section and the ramp, the tunnel was finally started with a 20° 

ramp with a nominal two-dimensional separation area.  The progress is shown in Figure 1 

and the final ramp configuration is shown schematically in Figure 2.  In Figure 1, SFV 

was applied to different ramp configurations to check if the tunnel started or not. 

Particle image velocimetry (PIV) was used to survey the boundary layer.  The 

PIV setup is shown in Figure 3.  The setup in the present work was backward backward-

scattering.  Usually, for streamwise survey, the forward backward-scattering should be 

satisfied for experiments.  However, it was difficult to apply the forward backward-

scattering to present experiment because the separation area is lying in bewteen the 

fences.  Thus, the streamwise field of view of separation area was blocked by fences.  

The initial tries were to adjust the forward backward-scattering to the higher position so 

the field of view will not be blocked by fences.  Nevertheless, the results in the velocity 
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vector calculation were poor due to the strong laser light reflection from the flat plate 

surface.  With backward backward-scattering, there is no such a problem and also the 

field of view of separation area can be seen. 

 

Figure 3 The streamwise survey PIV setup, top view.  The two cameras were aimed into 

the test section (backward backward-scattering), and the laser is on the top of the test 

section.  The green line in the middle is the laser light sheet. 

The survey was carried out along the centerline of the flat plate in streamwise 

direction.  Also, surveys are planned for three spanwise stations, at the incoming flow, at 

the MVG position (50 mm upstream the ramp corner), and at the separation area (within 

20 mm from the ramp corner).  Example schematics of the survey stations are shown in 

Figure 4.   
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(a)                                                                (b) 

Fig. 4. CAD rendition of the PIV test: (a) streamwise and (b) spanwise station on the flat 

plate.  The green is the laser sheet. 

2.3 Micro-Vortex Generators 

MVG, one of the potential flow control methods, has many kind of profiles.
2
  The 

present work used was ramp type MVG.  It was designed symmetrically in streamwise in 

a skewed tetrahedral profile, and has a leading declined angle and two swept-forward 

trailing edges.  Form the top view, the MVG was presented in an isosceles triangle with α 

= 24˚.  From the side view, the MVG has a leading edge angle θ = 8.6˚ with a vertical 

elevation angle at its back.  Schematics are shown in Figure 5.  The height of the MVG in 

the present experiment is 2 mm, representing about 40% of the height of the incoming 

boundary layer (δ≈5 mm).4  The MVG has a chord of 12.95 mm long, and a leading edge 

that is 11.7 mm wide.5,6  The MVGs were made of epoxy using 3D printing at the 

University of Texas at Arlington Research Institute.  Instead of five of MVGs on an insert 

bar like the previous research, the MVGs in the present experiment were made 

individually and were manually attached on the flat plate by silicone adhesive.  The 

arrangement of MVGs on the flat plate is shown in Figure 5.  Three MVGs in an array 
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were placed at 230 mm downstream of the flat plate leading edge and 50 mm upstream 

of the ramp corner.  The center-to-center spacing between the MVGs was 20.5 mm.  

  

(a)                                                           (b) 

  

(c)                                                           (d)  

 

(e) 

Figure 5 The MVGs on the flat plate: (a) side view, and (b) top view.  CAD rendition of a 

single MVG: (c) top view, and (d) side view. (e) The layout of MVGs combined with ramp. 
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2.4 Test Methods And Schedule 

Both SFV and PIV were arranged for the tests on 20° ramp and MVG combined 

with 20° ramp.  Table 1 shows the test methods and schedule. 

Table 1 The test configuration and method 

 
Surface flow visualization Particle image velocimetry 

Flat plate Refer to previous study4 Refer to previous study4 

MVG Refer to previous study4 Refer to previous study4 

20° Ramp Completed Completed 

MVG combined with 20° 

ramp 
Completed 

Completed one station at 5 mm 

downstream of the MVG 
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Chapter 3  

The Flow Model Of A MVG 

3.1 Introduction 

The purpose of this analysis was to develop a model of the supersonic flow past 

an MVG.  The inviscid property and the theory of supersonic base flow will be used in the 

calculation.  This section 3 was divided into three parts.  The first part was modeling of 

flow field around the MVG.  The section part was about the calculations based on the 

model.  In the end, a velocity distribution map by this model was provided. 

3.2 Flow Modeling 

The incoming flow is at Mach 2.5.  This flow produces two Mach cones and an 

oblique shock at the leading edge.  The Mach angle is           that is smaller than the 

24˚ sweep of the sides.  The oblique shock angle is          , based on the two-

dimensional oblique shock wave theory.  The discrepancy between these two angles can 

be seen in Figure 7.  Thus, for continuity in three-dimension, the oblique shock has to 

weaken around the leading edge to merge to the Mach cone (Figure 8).  The three-

dimensionality of the flow introduces velocity gradients. 

 

Figure 7 CAD rendition of the oblique shock and the Mach cones offset. 
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Figure 8 The oblique shock connected smoothly to the two Mach cones. 

The theory of supersonic base flow was then proposed to approach the problem.  

Supersonic base flow is a typical subject which involved the interaction of an external 

hyperbolic region with a region where viscous effects are important.
7
  The theory results 

in an expansion fan at the base edge (the vertical elevation at the back of MVG), a 

reattachment shock wave around the reattachment point, and a recirculation region 

behind the base.  Note that the two MVG trailing edges are actually two base planes to 

yield individual reattachment lines (where the reattachment shock originated).  In this 

representation, the oblique shock at leading edge together with the Mach cones at two 

apexes will be able to connect to each other to the reattachment lines to form a smooth 

envelope, shown in Figure 9. 
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(a)                                                            (b) 

Figure 9 Flow model of MVG based on the supersonic base flow theory: (a) side view, 

and (b) top view (the expansion fan not shown). 

Finally, the flow model was determined.  For clear and convenient purposes, the 

near MVG space was divided into four regions, shown in Figure 10.  The four regions are 

(1) the free stream flow before the oblique shock, (2) the flow over the MVG, (3) the flow 

after the expansion fan, and (4) the flow after the reattachment shock.  For simplicity, the 

circulation region (3) was considered without circulation. 

 

(a)                                                            (b) 

Figure 10 The four regions of the flow model of MVG: (a) downstream top view, and (b) 

side view. 
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3.3 Flow Analysis 

A perfect gas is assumed.  Also assume that the total temperature is 300 K in the 

plenum chamber.  First, the free stream velocity    can be determined by the speed of 

sound and the definition of Mach number.  Thus,           . 

Secondly, in region 2, the Mach number    and the velocity    behind the 

oblique shock were calculated.  Based on section 3.2, given       ,       , by Eqs. 

(1), (2), (3), (4), and the quantitative formulations of conical flow, the range of    can be 

estimated as bounded between 2.14 and 2.32 and    is between 30.55˚ and 24.65˚.  

Note that         and           are the values for an infinite two-dimensional ramp, 

and         and           are the values for the semi cone.  In the present work, the 

former will be known as the lower bound case and the latter as the upper bound case.  

Substituting lower and upper bounds into the temperature ratio across the oblique shock 

(5) to calculate   .  By   , speed of sound after the shock can be determined.  With 

speed of sound and known   , the velocity    was solved, thus,              for the 

lower bound, and              for the upper bound.  As a result, we have, after oblique 

shock,    ranging from 530.5 to 552.4 m/s. 
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Next, the flow properties at the two side edges and at the tail corner should be 

determined.  This part of the MVG causes flow turning at an angle over 81.35˚.  The 

Mach number after the expansion fan can be computed by the Prandtl-Meyer expansion 

Eqs. (6), (7), (8). 

        
 

  

                                                                 ( ) 

 (  )  √
   

   
     √

   

   
(  

   )       √  
                                ( ) 

      (      )   (  )                                                     ( ) 

The Mach number    was found over 10.  This Mach number was too large to be 

reasonable.  Also, the expansion fan spread out over 90˚ was believed to be too wide 

(Figure 11). 

 

Figure 11 The angle of expansion fan (shown in green) was over 90˚. 

As claimed at the end of section 3.2, the theory of supersonic base flow was 

considered to be applied at this stage.  According to the theory, the expansion fan will not 

spread out that extreme, and the reattachment shock will appear to be an oblique shock 

(Figure 12).  The author’s challenge was to find the reattachment point, and this theory 

seems to give a reasonable solution.  Once the reattachment point is determined, the 

angles of expansion fan and the reattachment shock can be found.  To find the 

reattachment point, a report ratio 2.5 of the distance D to the base height at Mach 2.46 
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was adopted.
10

  D is the distance from the base to the reattachment point, shown in 

Figure 12.  The statement hinted that the tangent of   should be 0.4, thus 

           21.8˚, see Figure 12.  Therefore, the flow at the tail corner should firstly 

turn through θ = 8.6˚, and then immediately turn downward 21.8˚ to the floor.  It should be 

noted that the reattachment point changes its position with Mach and Reynolds numbers.  

For example, Mach number   , 2.14 and 2.32 are possibly to have different ratio of the 

reattachment distance D to the base height.  Nevertheless, the reattachment point is a 

statistical position of the reattachment shock (shock wave is always slashing around at a 

certain frequency).  Therefore, in this present analysis the ratio was assumed to stay the 

same for both Mach number 2.14 and 2.32.  Now by (6), (7), (8), the Mach number and 

the velocity after the expansion fan can be found at         and               for 

lower bound, and         and              for upper bound.  Besides, the 

expansion fan was calculated spreading out at 42.2˚ for lower bound, and 41.2˚ for upper 

bound, shown in green area in Figure 12. 

 

Figure 12 The supersonic base flow theory combined with inviscid compressible flow 

theory calculation. 
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The above calculation is for the tail corner.  For the calculation of two trailing 

edges, the flow developed on the MVG top surface is similar to the pattern of oil surface 

visualization in the experiments,
11

 and then expand at two trailing edges (Figure 13).  The 

velocity calculations along surface pathway directions were only selected a few at 6˚, 26˚, 

46˚, and 66˚ away from the center line.  The magnitude of velocities at 6˚, 26˚, 46˚, and 

66˚,     , were descended due to the swept trailing edges.   

 

     
     ( )

   (   )
                         ˚   ˚  ˚   ˚    

                     

An important phenomenon was found immediately after applying the idea of 

pattern of oil surface visualization that there is a sonic boundary (a boundary of subsonic 

and supersonic flow) lying in between 26˚-46˚ at the trailing edge.  By the same steps 

and calculations done for tail corner, inputting    and     , the Mach number      and the 

velocity      after the expansion fan can be found, shown in Table 2. 

Table 2 The (a) upper and (b) lower bound of flow velocities and Mach numbers (the 

N/As were not calculated because of the      already at subsonic conditions). 

(a)  

Flow directions j (˚) tail corner 6 26 46 66 

    (m/s) 530.5 431.5 281.7 229.6 215.8 

     2.14 1.74 1.14 0.93 0.87 

  (˚) 8.6 8.59 7.78 6.03 3.54 

     3.63 2.98 2.2 N/A N/A 

    (m/s) 653.15 613.49 538.01 N/A N/A 

Expansion fan(˚) 42.2 45.9 64.2 N/A N/A 

   (˚) 14.27 18.31 29.12 N/A N/A 

 4   2.26 1.88 1.31 N/A N/A 
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 4  (m/s) 493.03 488.03 350.94 N/A N/A 
Table 2 Continued                                       (b) 

Flow directions j (˚) tail corner 6 26 46 66 

    (m/s) 530.5 431.5 281.7 229.6 215.8 

     2.14 1.74 1.14 0.93 0.87 

  (˚) 8.6 8.59 7.78 6.03 3.54 

     3.63 2.98 2.2 N/A N/A 

    (m/s) 653.15 613.49 538.01 N/A N/A 

Expansion fan(˚) 42.2 45.9 64.2 N/A N/A 

   (˚) 14.27 18.31 29.12 N/A N/A 

 4   2.26 1.88 1.31 N/A N/A 

 4  (m/s) 493.03 488.03 350.94 N/A N/A 
 

   

(a)                                     (b)                                          (c) 

Figure 13. Flow development on the MVG surface: (a) the oil surface flow experiments,
11 

(b) the experiment result of the present work, and (c) the selected pathways of flow 

development. 

After flow passed through the expansion fan, it continued to propagate 

downstream to the reattachment point and then flow was deflected an angle of 21.8˚ by 

floor, result in forming a reattachment shock (Figure 12.).  The flow    was slowed down 

to  4 behind the reattachment shock.  Again using the oblique shock relations Eqs. (1), 
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(2), (3), (4), inputting         and   , the Mach number  4 , velocities  4  after the 

reattachment shock, and the shock angle    can be calculated, results also shown in 

Table 2.  It is noted that below  4      , the reattachment shock was detached.  

Therefore, the calculation was assumed of normal shocks in those areas. 

By Table 2 and the velocity calculations completed in present section, finally the 

velocity maps can be plotted.  The maps are shown and discussed in the following 

section. 

3.4 Velocity Maps And Discussion 

Figure 14 displays the velocity maps according to the present flow model.  

Special attention was paid to the yellow circle in this figure.  Although a full velocity 

distribution around this circle could not be obtained, it is reasonable to picture that a 

round shear layer area is formed due to the momentum difference around the circle.  This 

circle continued propagating downstream while it interacts with the surrounding flow may 

cause instability. 
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(a)                                                                 (b) 

   

(c)                                                                 (d) 

   

(e)                                                                   (f) 

Figure 14 The velocity maps around the MVG.  Unit in m/s.  (a), (c), and (e) are lower 

bound. (b), (d), and (f) are upper bound.  (c) and (d) are the MVG back view at 

downstream of the MVG, and the flow direction is point out the paper. 

With flow properties in Table 2 and the velocity maps in Figure 14, the flow model 

proposed in the present section has five outputs to correlate with experiments.  Firstly, 
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the free stream velocity.  The free stream velocity    was calculated by presuming the 

total temperature of 300 K, so any measured    in the experiment can vary and should be 

based on the temperature in the measurement environment.  The second point is the 

oblique shock angle βs and the velocity    after the shock.  Starting from this point the 

calculated velocity was suggested to have upper and lower bound, and the velocity 

measurements were expected to be in this range.  Thirdly, the angle of the expansion fan 

and the velocity    after the expansion were of interest to be compared with the 

measurement one.  Fourthly, the results of experiments should be compared with the 

assumed reattachment line, the reattachment shock angle βr, and the velocity  4 after the 

reattachment shock.  The last point, also the most important point, belongs to the 

spanwise velocity measurement just downstream of the MVG.  As shown in Figure 14, 

the velocity measurements will focus on the yellow round region. 

Nevertheless, some technical issues arise when collecting such velocities data.  

For example, the survey of sonic boundary lain in between 26˚-46˚ at the trailing edge 

(referred to Figure 13).  It will be better if the laser sheet can be aligned with one of the 

MVG trailing edges (Figure 15a).  However, the laser, the cameras and the test section 

arrangement would be very difficult to do so.  Hence, instead of aligning with the trailing 

edge, the laser sheet can be located at several spanwise positions on the MVG to search 

the sonic boundary (Figure 15b).  Besides, the recirculation region near the base, the 

reattachment lines, and the position of the detached reattachment shock could be 

discovered by monitoring the velocity gradient along the spanwise surveys too. 
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(a)                                                                (b) 

Figure 15 The arrangement of the laser sheets: (a) along with the MVG trailing edge, and 

(b) along with the spanwise position. 
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Chapter 4  

Particle Image Velocimetry Experiments 

The PIV employed in the present wor k uses a New Wave Research Solo Model 

120 double-pulsed Nd:YAG laser, two LaVision Image Intensive 3S cameras, and 

LaVision DaVis 7.1 software.  Titanium dioxide particles nominal diameter 20nm was 

used as flow tracing particles.  Usually, the most challenge tasks for PIV measurements 

are ensuring uniform seeding and selection of the interrogation area for velocity vector 

calculations.  These two issues significantly affect the results of the measurements.  In 

the following section 4.1 and 4.2, some details of our setup will be presented.  The 

objective of PIV experiments was to obtain the boundary-la yer velocity profiles.  The 

experiments were arranged on the flow of flat plate, the incoming flow past the 20˚ramp, 

and the flow past the combination of MVGs and the 20° ramp. 

4.1 The Seeding System 

The seeding operation was originally carried out from the plenum chamber, and 

the titanium dioxide particles were assumed to trace the flow faithfully.
4
  The titanium 

dioxide was delivered at 1200 kPa from a small pressurized cyclone to the plenum 

chamber during the test.  The delivery pressure exceeded the stagnation pressure of 550 

kPa. 

Figure 16 shows the seeding situation in the test section.  The seeding was 

observed to be non-uniform and also the seeds were not sufficient near the flat plate 

surface (at the bottom of the images).  Thus, a new seeding method was designed and 

implemented. 
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(a) 

 

(b) 

Figure 16 The situation of free stream seeding in the test section. Image (b) is delayed by 

0.2 s from image (a) them one at a time. 
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The new seeding system was arranged underneath the flat plate.  A 5 mm 

diameter hole on the flat plate surface was made and connected to a tube underneath it.  

This tube was then connected to a hose outside of test section to the seeder, see Figure 

17.  During the tests, the titanium dioxide was introduced from the outside at ambient 

atmosphere pressure to the test section which was at lower pressure (around 53 kPa) to 

the flat plate surface by natural suction.  The results can be seen in Figure 17d. 

   

(a)                                       (b) 

   

(c)                                                                    (d) 

Figure 17 The underneath seeding system: (a) the pipe arrangement on the flip side of 

the flat plate, (b) the seeder (the blue box at the ground) setup at outside of the test 

section, (c) the 5 mm hole introducing titanium dioxide into the test section, and (d) the 

seeding situation during the test (instantaneous image, flow from right to left). 
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The PIV requires dense and uniform seeding in the flow, especially near flat plate 

surface.  A result in Figure 16 was not acceptable because the PIV was not calculating 

any velocity vector due to the poor seeding.  Figure 17d was considered a good result 

since it allowed the software to yield adequate velocity vectors. 

4.2 Selection Of The Interrogation Area 

The interrogation area is not an investigation window of interest, but an 

investigation window for the computer to calculate and determine the size and the 

direction of velocity vectors.  Details can be found in the PIV user manual.  Here, an 

example is offered for reference to understand a good and a bad result. 

Some basic information is needed for the calculation (consider only the x 

direction): the pixel count of the CCD (1376 by 1040), the field of view (set in the present 

experiments to 65 by 45 mm), and the free stream velocity (569 m/s).  The goal is to 

generate velocity vectors in the PIV which requires the generation of a single velocity 

vector in each interrogation area.  The way an interrogation area can generate a velocity 

vector is by detecting the initial spot and the final spot of the group of titanium dioxide 

particles in a given amount of time (in fact, this is the time interval of the double pulse 

laser).  For example, if a titanium dioxide particle was detected initially at the bottom of 

the interrogation area and subsequently detected at the top an upward velocity vector will 

be generated.  If the time interval is, say, 0.9 μs, the particle has traveled Δx 

Δx = 569000 mm/s × (0.9 × 10^-6 s) = 0.513 mm 

Actually, a pixel length is 0.0472 mm (65 mm / 1376 pixel = 0.0472 mm/pixel).  

Therefore, a 32 x 32 pixel interrogation area has sides that are 

0.0472 mm/pixel × 32 pixel = 1.512 mm 

Likewise, a 16 x 16 pixel and an 8 x 8 interrogation area have sides of 0.756 mm 

and 0.378 mm respectively.  Obviously, only the 32 x 32 pixel and the 16 x 16 pixel cases 
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provide sufficient resolution in exceeding Δx.  The 8 x 8 pixel example is bad because the 

particle has already left the interrogation area.  The following Figure 18 displays the 

situation of interrogation areas in the field of view.  In Figure 18c, the velocity vectors are 

chaos and nothing can be seen or be calculated. 

  

(a)                                                (b) 

 

(c) 

Figure 18 The selection of interrogation area: (a) the 32 x 32 case (b) the 16 x 16 case, 

and (c) the 8 x 8 case.  In each case, lots of velocity vectors can be seen.  Every vector 

displays here indicated one individual interrogation area.  The smaller the numbers (such 

as 32 x 32, 16 x 16, and then 8 x 8), the more the interrogation area and vectors have in 

the field of view.  However, 8 x 8 was not a good selection in the situation since it 

displays not too much but chaos. 
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4.3 Results For Flow Past A Flat Plate 

After setting the interrogation area (in the case 32 by 32 case or 16 by 16, either 

one is ok) and calculations performed by DaVis 7.1, the velocity vectors were generated 

and field of views like in Figure 18 can be determined.  The velocity profiles were then 

obtained from those field of views.  The results of the flat plate at x=0 (203 mm 

downstream of the flat plate leading edge) are shown in Figure 19, where (a), (b), and (c) 

displayed the instantaneous profiles.  The boundary-layer velocity profiles in Figure 19 

showed large amounts of drop out due to bad vectors.  After applying time and spacetime 

averaging of 75 images, general form of the boundary layer appears to be captured as 

shown in Figure 19(d) and (e). 
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(a)                                        (b)                                       (c) 

           

(d)                                          (e) 

Figure 19 The raw data boundary-layer velocity profile on the flat plate: (a) a randomly 

chosen instantaneous image. (b) Another instantaneous image after 0.2 seconds. (c) 

Another instantaneous image after 0.4 seconds. (d) The image after time averaging of 75 

images.  Each of the images was 0.2 seconds apart. (e) The image after time averaging 

of 75 images and space averaging of neighborhood area of flow field.  The flow direction 

in all images is from left to right.  Same larger images can be referred in appendix D l. 
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The bottom line in Figure 19 was found roughly to be the position of the flat plate 

surface.  A further investigation to locate the flat plate surface and the boundary layer 

height is yet to be completed. 

The method to define the flat plate surface was by image processing in MATLAB.  

The 800 time zoom-in view of PIV Image, like shown in Figure 20(a) in BMP format, was 

processed by MATLAB to identify the flat plate surface. 
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(a)                                                     (b) 

    

(c)                                                             (d) 

 

(e) 

Figure 20 Defining the flat plate surface: (a) the original image after 800 time zoom-in, (b) 

the image after gray scaling operation, (c) the image after contrast enhancement 

operation, (d) applying the Sobel operation, and (e) the surface was found and defined. 
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To find the flat plate surface (the program can be found in the appendix B l), the 

strategy was first to turn the image into gray scale.  Then contrast enhancement and 

Sobel operation were applied to define the surface boundary.  After these three 

processes, the image showed the lower portion to be all black and the top portion area 

with lots of white spots as in Figure 20(d).  The white spots indicate the location of 

dispersed titanium dioxide particles in the flow field or the bright surface, and the 

blackened lower area should be the flat plate.  Based on this idea, the flat plate surface 

could be defined and found by searching the first non-zero number (the first white spot) 

from the bottom to the top in every column of Figure 20(d).  By applying the MATLAB 

command find and plotting every first non-zero pixel in each column, the flat plate 

surface was presented in Figure 20(e). 

The same strategy was applied to other 56 images (totally 57 images in the same 

experiment run).  Consequently, the surface was found to be at 57 locations (some 

locations may repeat), shown in Figure 21.  It was discovered that the surface were 

vertically fluctuating in the video recording, and now a quantitative way was offered here.  

Moreover, a few data (surfaces) were also seen at the upper side of Figure 21.  Those 

data are not considered at this moment and will be removed.  

  

(a)                                                          (b) 

Figure 21. The fluctuating flat plate surface. 
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If the any specific location on the surface (x axis) is of interest, the spot can be evaluated 

individually in advance.  An example is shown in Figure 21(b), a location at leading edge 

downstream of 203 mm (x=-15.1429 in the field of view in PIV cameras) on the flat plate 

was chosen for analysis.  The distribution of vertical surface movement at x=-15.1429 

was compared to the Gaussian distribution, and the result was shown in Figure 22.  In 

Figure 22, the x axis represents the location of the flat plate surface, and the y axis 

represents the frequency.  Obviously, the mode is not at the mean location. 

 

Figure 22. The comparison of the locations distribution of fluctuated flat plate surface (the 

blue bars) and the Gaussian distribution (the red curve).  The smaller the pixel, the higher 

the location of flat plate surface is. 

Next, attempts were made to obtain the boundary-layer velocity profiles.  At this 

moment, the focus is on the flat plate surface, the boundary layer height will not be 

considered.  Since the flat plate surface was found to fluctuate, the boundary-layer 

velocity profiles plotted were not real profiles unless all the profiles have the same 

reference position.  In order to achieve this, a stitching process was applied to 57 images 
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in a single run.  The stitching processing and the related programming can be referred to 

in Figure 23 (note the changing of y scale in Figure 23 c and d) and appendix B ll.  In the 

process, all the boundary-layer velocity profiles were stitched to the mean position. 

 

(a) Before stitching                                    (b) After stitching 

 

(c) Before stitiching (Zoomed in view) (d) After stitching (Zoomed in view) 

Figure 23 The plot of all boundary-layer velocity profiles from image #20-#76.  Note that 

in (a) and (b), the two images almost identical was because the fluctuation was too small 

(0.0019 mm) to be seen after stitching.  (c) and (d) were the zoom-in case from the same 

boundary-layer profile for reader’s convenience to see the difference. In (c), the blue star 

was closed to y=-24.6076, and in (d), the same blue star was actually stitched down to be 

closed to y=-24.6057.  Therefore, this selected boundary-layer velocity profile has 0.0019 

mm difference higher to the reference (mean) boundary-layer velocity profile.  The flow 

direction is from right to left in all (a), (b), (c), and (d). 

Basically, the strategy was first to take the boundary-layer velocity profiles out 

from the text files of DaVis software at x=-15.1429 and using the mean value as the 

reference to stitch all other flat plate surface locations in the other 56 images.  The results 
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are plotted in Figure 23b, which shows all profiles with the surfaces adjusted to the same 

level.  This stitching operation revealed that the boundary layer velocity profile can have 

an error of up to 10% if the flat plate’s vertical movement is ignored (fluctuation may up to 

0.5 mm and boundary layer is about 5 mm, Table 3). 

Table 3 Vertical fluctuations of the test surface 

Difference from mean value (mm) Counts % of 5 mm BL 

-0.1345 8 2.69 

-0.1799 6 3.598 

-0.2254 5 4.508 

0 3 0 

0.0473 3 0.946 

-0.0436 2 0.872 

0.0928 2 1.856 

0.0019 2 0.038 

0.3201 1 6.402 

0.5473 1 10.946 

-0.0436 1 0.872 

0.2292 1 4.584 

-0.089 1 1.78 

0.2746 1 5.492 

0.1837 1 3.674 

-0.08 1 1.6 
 

4.4 Results For The 20° Ramp 

The boundary-layer velocity profiles of 20° ramp were obtained from velocity 

vector field of views and shown in Figure 24.  In Figure 24, all the images shown were 

averaged from 439 images.  The velocity profiles were taken every 5 mm from 50 mm 

upstream of the ramp corner to 5 mm upstream of the ramp corner. 
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(a)                    (b)                    (c)                   (d)                  (e) 

 

(f)                   (g)                    (h)                   (i)                    (j) 

 

(k) 

Figure 24 The boundary-layer velocity profile on the 20° ramp (439 images averaged): (a) 

50 mm upstream, (b) 45 mm upstream, (c) 40 mm upstream, (d) 35 mm upstream, (e) 30 

mm upstream, (f) 25 mm upstream, (g) 20 mm upstream, (h) 15 mm upstream, (i) 10 mm 

upstream, and (j) 5 mm upstream of the ramp corner.  (k) shows the location of 50 mm.  
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The 0 mm was set at the ramp corner.  The flow direction is from right to left, refer to 

appendix D ll for larger images.  The negative sign in x axis means the flow is from right 

to left, and negative sign in y axis is due to the origin set in the free stream. 

At 50 mm upstream, the profile appears to be that of a turbulent boundary layer. 

However, starting from 45 mm (Figure 24b), the profiles were affected by the strong 

shock/boundary-layer interaction.  The separation bubble begins from 20 mm, which is in 

the Figure 24g.  Although all (g), (h), (i), and (j) were in the separation bubble, only (j) 

was observed to have reverse flow at the very bottom.  The reverse flow velocity 

measured was found to be 50 m/s.  Originally, all (g), (h), (i), and (j) were expected to 

have the reverse flow due to the reason that they are inside the separation bubble.  It is 

thought that the average on 439 images was still not enough to reveal the circulation 

inside the bubble. 

4.5 Discussion 

Attention was paid initially to the seeding issue and the interrogation area setup 

so as to produce good results.  After that, boundary-layer velocity profiles were obtained 

for the flat plate.  In order to define the boundary layer, the flat plate surface and the 

boundary-layer height should be determined.  Section 4.3 details how to define flat plate 

surface, yet the boundary-layer height is still on working.  Also, fluctuation phenomenon 

of the flat plate surface during the tests was discovered unexpectedly, and from our 

defining the surface the fluctuation was found to be O(10%) of the boundary-layer 

thickness.  Hence, all the plotted boundary layer profiles in MATLAB were stitched to the 

same location according to their mean value.  In the last section, the boundary-layer 

velocity profiles were obtained for the 20° ramp measurements.  It was found that the 

profiles were affected from 45 mm upstream of the ramp corner.  The future work will be 

placing the MVGs upstream (50 mm) of the ramp. 
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Chapter 5  

The Experiment On Surface Flow Visualization 

5.1 Introduction 

In the present work, image processing was applied to surface oil flow 

visualization to capture features in the separation footprints of the 20° ramp and of MVGs 

combined with the ramp.  Using image processing, the fuzzy (may due to the 

unsteadiness) but important separation line was revealed. 

5.2 The Method 

5.2.1 The Surface Oil Flow Visualization (SFV) 

Creative use of SFVs by ultraviolet light and different fluorescent paints has 

effectively revealed numerous aspects of the complex flow field.
12

  Figure 25 showed the 

preparation of the surface oil flow visualization.  In the present work, a mixture of 2/6 

fluorescent chalk + 1/6 kerosene + 3/6 silicone oil by volume was suitable.  This mixture 

was not too thin, which leaves no footprint after test, and was also not too thick, whereby 

the paint would be too sticky to spread during the tests.  More silicone oil than kerosene 

was used to reduce evaporation.  Usually with just a little mixture for SFV in the low 

pressure condition in the wind tunnel, the kerosene vaporized very fast.  The full image 

could not form under such a circumstance.  Figure 26 shows a successful flow footprint. 
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(a)                                                                   (b)  

  

(c)                                                                  (d) 

Figure 25 SFV was prepared by ultraviolet light and fluorescent paints: (a) Paints under 

the UV light, (b) preparation for tests, (c) result from a runny mixture, and (d) result from a 

sticky mixture. 

5.2.2 Image Processing 

5.2.2.1 Define The “Exp Line” 

An image uploaded into MATLAB is shown in Figure 26.  This image is recgnized 

as pixels in MATLAB.  Each pixel represents colors (RGB), red, green, and blue in three 

numbers and was stored in the assigned matrix B (see appendix C).  Those three 

numbers individually show the RGB intensity.  The command imshow(B) carried out the 

display of the image, and the command impixelinfo demonstrated the RGB numbers of 

each pixel and where the pixels are located, in (x,y), shown at the lower left corner in 
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Figure 26.  Together these two commands showed the colored image.  However, it is 

more precise to process the image in grayscale which only deals with the intensity 

without colors.  Therefore another command rbg2gray was assigned to make the 

grayscale happened (Figure 27). 

Figure 26 The uploaded image in RGB scale. The pixel information is at the lower left. 

 

Figure 27 The grayscale scaling operation. 

Deposited paint at 

the separation front  



 

41 

To find where the “exp line” is located, the attention was focused on the 

separation front where the mixture accumulated.  As shown in Figure 27, the 

accumulation at the separation front is an irregular line which reflected more light than the 

surroundings so it appeared brighter in the image.  However, if the image was zoomed in 

to the yellow rectangular area, shown in Figure 28, the irregular line is seen to be a thick 

area with many pixels on it.  These pixels showed the intensity gradient across the middle 

of Figure 28.  A more precise definition of the “exp line” across the intensity gradient is 

therefore needed. 

 

Figure 28 The zoom-in area with intensity gradient. 

One way to do is to enhance the contrast (the command imadjust) as shown in 

Figure 29.
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Figure 29 The contrast enhanced operation. 

Again, if one checked the zoom-in view in the yellow rectangular area of Figure 

29, it is not difficult to see the intensity gradient area reduced and the edge is found to be 

more distinct (Figure 30). 

 

Figure 30 The pixels shown the intensity gradient area reduced (zoom-in view). 
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Next, the Sobel operator was used for precisely determining the location of the 

“exp line.”  The Sobel operator is a mathematical algorithm commonly used for edge 

detection.  The result is shown in Figure 31 after applying the Sobel operator to the 

command filter2. 

 

Figure 31 The edge sharpened operation. 

Zooming in the same yellow rectangular area in Figure 31 reveals distinct black 

and white parts as shown in Figure 32.  The “exp line” was defined in between these two 

parts. 
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Figure 32 The pixels are now showing the distinct shapes and the “exp line” can be 

defined.  This figure is the zoomed-in view. 

Readers can also refer to appendix C II for the code fragment. 

After the operations above, the “exp line” was defined and can be easily seen.  In other 

words, the “exp line” is now clear and can be used for computation.  In the matrix B, the 

pixels in the black region are represented by 0.  On the other hand, those white pixels are 

represented by 1.  The technique is as follows (appendix C lll):  

1) Using the command find to search the first non-zero pixel at the most upper row in the 

image. 

2) Repeat the same operation for every row in the image. (Totally 398 rows) 

3) Store the results in a vector. (Define the vector b) 

4) Plot vector b against y. (Define y as y axis and b as x axis.) 

Then one will obtain Figure 33.   

The exp 

line 
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Figure 33 The located “exp line. 

Also, the same image processing procedure was applied to the image of 20° 

ramp with three MVGs upstream.  Thus, two “exp lines,” “exp line of 20° ramp” and “exp 

line of 20° ramp with three MVGs upstream” were obtained.  Finally, one is able to define 

the index between a straight line and the “exp lines.”  In fact, three other lines were 

designed and also the index was created to do the comparison. 

5.2.2.2 Define A Few Lines For Comparison 

In present paper, there were totally five lines defined: a straight line, a zigzag 

straight line, two “exp lines,” and an extreme zigzag line, see Figure 34. 
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(a)                       (b)                        (c)                        (d)                        (e) 

Figure 34 The five defined lines: (a) the straight line, (b) the zigzag straight line, (c)  the 

“exp line of 20° ramp,” (d) the “exp line of 20° ramp with three MVGs upstream,” and (e) 

the extreme zigzag line. 

First of all, a straight line can be easily defined by the code as shown in appendix 

C Ⅳ.  Secondly, small fluctuation was applied to the straight line.  The command rand 

was used for this purpose.  The code fragment is reported in appendix C Ⅴ.  For an 

extreme zigzag line, one should assign a vector z.  The numbers in z were designed in 

only 515 and 579 two integers in x axis, and keep repeating these two numbers down 

along y axis rotationally until z has totally 398 digit numbers.  The numbers 515 and 579 

were chosen based on being the same width as the “exp line of 20° ramp.”  This defining 

way would be the most extreme fluctuated case in the 515-579 range that one can get 

limited by pixels.  Again, y axis was set from 74 to 471, for totally range at 398 digit 

numbers.  The reference code fragment is showing in appendix C Ⅵ. 
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5.2.2.3 Define The Index 

Next, the index was defined and was applied to those five lines: The straight line, 

the zigzag straight line, the “exp line of 20° ramp,” the “exp line of 20° ramp with three 

MVGs upstream,” and the extreme zigzag line. 

To define the index, two zigzag samples were designed.  The zigzag sample 

refers how fluctuated a line can be.  The index was defined as: the sum of all x direction 

fluctuations on that line.  The fluctuation means how many pixels different in x direction 

between the y direction neighbor pixels of that line.  For example, in Figure 35a, let the 

vertical 1, 2, 3,…,16, as y axis, the horizontal A, B, C,…, K, as x axis.  The red zigzag 

sample represents a line with fluctuates.  The index for Figure 35a was counted as:  

(E,2) - (F,1) = 1 

(F,3) - (E,2) = 1 

(G,4) - (F,3) = 1 

(F,5) - (G,4) = 1 

(F,6) - (F,5) = 0 

(F,7) - (F,6) = 0 

(G,8) - (F,7) = 1 

(F,9) - (G,8) = 1 

(F,10) - (F,9) = 0 

(F,11) - (F,10) = 0 

(F,12) - (F,11) = 0 

(F,13) - (F,12) = 0 

(E,14) - (F,13) = 1 

(F,15) - (E,14) = 1 

(F,16) - (F,15) = 1 
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Add up all counts, the number is 9, the index was defined as 9 in this case.  The 

other more fluctuated sample was also given as following: (Refer to Figure 35b) 

(E,2) - (F,1) = 1 

(D,3) - (E,2) = 1 

(C,4) - (D,3) = 1 

(B,5) - (C,4) = 1 

(C,6) - (B,5) = 1 

(G,7) - (C,6) = 4 

(H,8) - (G,7) = 1 

(J,9) - (H,8) = 2 

(I,10) - (J,9) = 1 

(H,11) - (I,10) = 1 

(G,12) - (H,11) = 1 

(G,13) - (G,12) = 0 

(G,14) - (G,13) = 0 

(B,15) - (G,14) = 5 

(A,16) - (B,15) = 1 

The total counts are 21.  The index is therefore 21. 
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(a)                                                    (b) 

Figure 35 The zigzag samples with (a) small fluctuates, or (b) large fluctuates. 

Apply the index (counts only from y = 200 to y = 350, between the two red bars, 

because the segment is the straightest one in the “exp line of 20° ramp.”) to those five 

lines, one had Table 4: 

Table 4. The index and scaling of the five lines (this index seems to be sensitive to the 

small fluctuates.) 

Index 0 60 105 132 9536 

Scaling 0 0.63 1.10 1.38 100 
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The code fragment for index is reported in appendix C Ⅶ. 

After defining the index (the counts), the scaling was the next step.  The total 

counts of each case was taken to be linearly scaled from 0 to 100 (Take 9536 of the 

extreme zigzag line case as 100 and 0 of the straight line case as 0 for linear scaling).  

The results were not so expected because the case zigzag straight line is thought to be 

more similar to the straight line than the “exp line of 20° ramp” is, but the results showed 

the opposite way.  Therefore, this index was concluded to be more sensitive to smaller 

fluctuates.  An index is needed to be defined to more sensitive to large fluctuates. 

For an index which is more sensitive to the large fluctuates, the strategy was 

attempting to sum of x direction pixels difference on a line in every other seven elements 

along the negative y direction.  For example, again in Figure 35a: 

(G,8) - (F,1) = 1 

(F,9) - (E,2) = 1 

(F,10) - (F,3) = 0 

(F,11) - (G,4) = 1 

(F,12) - (F,5) = 0 

(F,13) - (F,6) = 0 

(E,14) - (F,7) = 1 

(F,15) - (G,8) = 1 

(G,16) - (F,9) = 1 

The index (total counts) is 6.  And for the more fluctuates example again in 

Figure 35b, 

(H,8) - (F,1) = 2 

(J,9) - (E,2) = 5 

(I,10) - (D,3) = 5 
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(H,11) - (C,4) = 5 

(G,12) - (B,5) = 5 

(G,13) - (C,6) = 4 

(G,14) - (G,7) = 0 

(B,15) - (H,8) = 6 

(A,16) - (J,9) = 9 

The index is 41.  Apply the index to those five lines, one had Table 5: 

Table 5: The index and scaling of the five lines with the index sensitive to the large 

fluctuates 

Index 0 99 108 456 9216 

Scaling 0 1.07 1.17 4.95 100 

  

 

       
 

The code fragment for index is reported in appendix C Ⅷ. 

The improvement can be seen as expected.  The zigzag straight line is more 

similar to the straight line than “exp line of 20° ramp” is.  From the results, one can 

estimate the effect of three MVGs on the separation area, just simply monitoring the 

index.  Nevertheless, this method to estimate the effect of three MVGs on the separation 

area highly depends on its sensitive on large or small fluctuations.  A more reliable 

method to carry out the estimation is needed. 
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The most basic and well-known statistical method, standard deviation, was then 

considered.  By calculating the mean value of all five lines, one can easily obtain the 

standard deviation of these lines, and then do the estimation of how much effect of three 

MVGs on the separation area.  Results showed in Table 6. 

Table 6 standard deviation is to estimate the effect of MVGs on separation area.  The red 

vertical dash lines indicate the mean values of each line, and two black vertical dash lines 

around each mean value are their standard deviations.  The higher the standard 

deviation value, the more the line fluctuates. 

STDEV 0 0.58 2.81 8.58 32.11 

Scaling 0 1.8 8.8 26.7 100 

  

 

       
 

5.3 The Discussion 

In section 5, two indexes were defined to compare how straight or how fluctuated 

the “exp lines” are.  The “exp lines” were compared to other three lines, and two totally 

different results were found.  One result showed the “exp line of 20° ramp” is more similar 

to the straight line than zigzag straight line is.  That was not expected.  Therefore, this 

index was found to be more sensitive to small fluctuations.  The other result based on the 

other index which is more sensitive to large fluctuations showed zigzag straight line is 

more similar to the straight line than the “exp line of 20° ramp” is.  This result was thought 
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to be more reasonable, and has shown the three MVGs have an effect of index = 4.95 on 

the separation area, if the best straight case was index = 0 and the worst straight case 

was index = 100. 

To be more precisely estimating the effect of three MVGs on the separation area, 

the standard deviation was applied.  The standard deviation showed the three MVGs 

have an effect of 26.7 on the separation area, if the best straight case was 0 and the 

worst straight case was 100. 
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Chapter 6  

Transient (Algebraic) Growth Analysis Of MVG Disturbance 

6.1 Introduction 

In order to understand the down-stream evolution (growth or decay) of the 

disturbance caused by MVG, the linearized perturbation growth problem is being 

investigated.  From section 4, we obtained 350 of MVG down-stream boundary layer 

velocity profiles (5 mm down-stream of MVG).  In Figure 36, the disturbed velocity profile 

is shown, after averaging of 350 profiles and operating of MATLAB command polyfit on 

power two and power three. 

  

(a)                                                     (b) 

Figure 36 The disturbed boundary layer velocity profile 5 mm down-stream of MVG. Each 

blue star point is averaged from 350 instantaneous images.  Red curve is the curve fitting 

in MATLAB with (a) power of 2, and (b) power of 3. Both height and velocity are linearly 

scaled as y/boundary-layer thickness and boundary layer velocity/free-stream velocity. 

The growth of a perturbation in the linearized regime of small deviations from the 

mean can be of two kinds: modal and transient
13

. Modal growth refers to the exponential 

growth of the direct modes, i.e. spatially developing wave solutions that can exist on their 
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own.  Modal growth is important in transition studies where the magnitude of the initial 

perturbation is small and a single dominant (Tollmien-Schlichting) wave leads the 

transition process.  Algebraic growth, conversely, refers to the growth of a combination of 

modes each of which decays spatially.  Transient growth occurs because of the non-

normality of the linearized equations (they are not self-adjoint), which implies the non-

orthogonality of the basis for the invariant space of the perturbation.  Transient growth is 

the main growth stage when the initial perturbation is large (as in the case of the MVG 

under consideration).  In this case, the modal growth can be bypassed thanks to the 

much more efficient (albeit valid for short distances) transient growth mechanism.  

The determination of transient growth can be divided in three steps: 

determination of the disturbance equations, integration of the equations in the boundary-

layer and projection of the MVG disturbance on the basis formed by the modes. The first 

step is to define (Reynolds averaging) and solve the eigenvalue problem of disturbance 

field in the free-stream from linearized Navier-Stokes equations.  We will call them 

disturbance equations for simplicity.  The solutions of the disturbance equations are 

typically discrete eigenfunctions, known as Tollmien–Schlichting solutions.  However, 

only discrete eigenfunctions could not form a complete set, mathematically.  Grosch et al. 

suggested that there should be continuous eigenfunctions existed, and they are also 

solutions to the disturbance equations.
14

  In the present work, only the continuous 

eigenfunctions were considered and the frequency was set to be zero because we 

consider the spatial problem, not the temporal one, from our experimental data.  Hence, 

we have no discrete eigenfunctions due to frequency the    .  Next, we solved the 

disturbance equations in the boundary-layer, where the mean properties, such as mean 

velocity, mean temperature and viscosity, vary with y axis.  Each of the solution has both 

polynomials and sinusoidal exponential parts so all of the solutions are regarded as 



 

56 

improper eigenfunctions.
14

  The final step is to project the MVG disturbance onto those 

improper eigenfunctions and find out the coefficients.  With knowing the coefficients, we 

will understand if the MVG disturbance is able to grow up or decay further downstream. 

6.2 The Continuous Eigenfunctions In The Free-Stream 

Assume zero-pressure-gradient along with streamwise, start from linearizing the 

two-dimensional compressible Navier-Stokes equations, the continuity equation, the 

energy equation, and the equation of state, one can obtain linearized equations (9b)- (9e).  
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Following Fedorov and Tumin, (9b)- (9e) can be written for the disturbance vector 

function in matrix-operator form 
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Where the disturbance vector   [  
  

  
       

  

  
]
 

. 

Then by assuming the plane wave   (     ) as small perturbation in free stream, 

and substituting the plane wave into Eq. (10), the nonhomogeneous system of 

disturbance ordinary differential equations can be obtained as Eq. (11) below.  The result 

would have been the same, if Fourier and Laplace transform were applied to Eq. (10) by 

requiring that the plane wave vanishes at infinity. 

 

  
(  

  

  
)  

  

  
                           

  

  
     4          (  ) 

In Eq. (11), the elements in matrix   are function of   and  .  Eq. (11) can also 

be recast into a homogeneous system for standard stability ordinary differential equation 

for two-dimensional compressible boundary-layers, 

  

  
                                                                           (  ) 

The tricky part for recasting Eq. (11) into Eq. (12) happen in x and y momentum 

equations. For x momentum equation, the term     
  

  
 in Eq. (11) has to be substituted 

by continuity equation, Eq. (9a), to make sure there is no y derivative terms on the right 

hand side.  For y momentum equation, turn the term 
 

  
(  

  

  
) into no y derivative terms 

by using twice of the continuity equation, Eq. (9a), and the equation of state, Eq. (9e).  

Also, the term 
  

  
(   ) has to be arranged in   

4  for easier calculations, otherwise it 

adds a difficulty (a y derivative term will be on the right hand side of y momentum 

equation) when that term was arranged in   
4 .  All the matrices shown above,   ,    , 

   ,   ,   ,  4, and   , can be found in Appendix F. 
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The next step is to solve the homogeneous Eq. (12) in the free-stream.  It is a 

standard eigenvalue problem.  As mentioned in the section 6.1, the continuous 

eigenfunctions will be searched for.  Assuming the solution form as    , then   here 

should be pure imaginary number for continuous modes.  The conditions    , applies to 

discrete eigenfunctions.  As an example, the difference between discrete eigenfunction 

and continuous eigenfunction is plotted in Figure 37.  Where at     the magnitude     

is damped out for discrete eigenfunction, known as Tollmien–Schlichting solution, 

oppositely, at    , the magnitude     is bounded for continuous eigenfunction.  The 

Tollmien–Schlichting solution can be represented as a physical wave, but continuous 

eigenfunction is a pure mathematical device only.  The continuous eigenfunction alone 

cannot be represented any physical wave, but the superposed of them can be 

represented a physical perturbation.  Substituting     into Eq. (12), one can obtain the 

eigenvalues   from the characteristic equation    ||     ||   , for    .  These six 

eigenvalues are: 

      √      (    )                                                 (   ) 

   4   √
       

 
 
√(       )

         
 

                               (   ) 

      √
       

 
 
√(       )

         
 

                                   ) 

Where       
4   

 4    
4   

 4    
4   

 4,       
4   

     
4   

     
4   

  ,       
 4, 

      
  . 
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(a)                                                              (b) 

Figure 37 An example of (a) discrete eigenfunction solution, and (b) the continuous 

eigenfunction solution for disturbance equations.  The discrete eigenfunction will 

eventually vanish at infinity in the free-stream, where continuous eigenfunction will be 

bounded. 

By setting     , where   is set to be pure real number, the complex 

wavenumbers   for spatial instability problem were able to be calculated numerically.  

With a given  , one can obtain an  .  A continuous spectrum   is therefore formed by 

varying  .  We found that the larger the value of   is ( ( ) is found proportional to  ), the 

lower the wavelength that     exhibits.  The plot (Re=500, reference from Grosch et al.) 

showing how  ( ) affects the continuous eigenfunction     are displayed in Figure 38. 
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(a)                                                                   (b) 

Figure 38 The variation in wavenumber of the continuous eigenfunction      with (a) 

      and (b)      . 

We expect that there are five branch-cuts in the   complex plane indicating 

where the free-stream perturbation is harmonic (i.e.   is purely imaginary), as shown in 

Figure 39.  The vorticity branch (green start) from      (Eq. 13a), the acoustic branches 

(red cross) from    4 (Eq. 13b), and the enthanpy branches (blue circle) from      (Eq. 

13c).  However, one of the acoustic branches and entropy branches coincide.  Therefore, 

there are, effectively, four branches only.  Figure 39 also shows branches plotted at 

Re=500 and Re=381,470 (typical of our wind tunnel experiments) for  . 
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(a)                                                                  (b) 

Figure 39 The branch plot of   in the complex plan: (a) Re=500, and (b) Re=381,470.   

The vorticity branch (green start) from     , the acoustic branches (red cross) from    4, 

and the enthanpy branches (blue circle) from     .  Each branch has unlimited and 

continuous numbers but only ten of   plotted here. 

6.3 The Eigenfunctions In The Boundary-Layer 

In the present section, the continuous eigenfunctions found in section 6.2 will be 

applied to the disturbance equations and then integrated into the boundary layer. 

As the perturbation penetrates into boundary-layer, it will be affected by the 

gradient velocity profile at normal-wall direction.  In other words, the   ,   , and    are not 

constant anymore in the    matrix in Eq. (12).  To solve Eq. (12), we again consider it as 

an eigenvalue problem.  However, this time we assume a new form of solution and 

impose the free-stream boundary condition to Eq. (12).  The solution form is assumed to 

be    , where   contains the continuous eigenfunction solution part we got from the free-

stream, and multiplying a new variable   .  Thus, the form of   is    
   .  Substituting   

into Eq. (12) and rearranging the equation, we have 

                                                                         (  ) 
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The    term can be absorbed into   .  On the other hand, the boundary condition 

at wall shall be that the magnitude    
    vanishes, and also, at the boundary-layer edge 

is that the magnitude     , where     .  Finally with Eq. (14), it is obvious an 

eigenvalue problem. 

Next, to solve Eq. (14), the Chebyshev polynomial and collocation points method 

is applied.  By expanding the eigenvector    with Chebyshev polynomials,    can be 

found by determining the coefficients in front of each Chebyshev basis.  The Eq. (14) was 

solved numerically by plugging in all the free-stream properties.  In the present work, the 

20000 of collocation points were chosen to match the power two and three of the 

experimental curve modified by MATLAB command polyfit.  Experimental curve can be 

referred in Figure 36. 

Figure 40 shows an investigation how the new eigenvector    
    behaves in the 

boundary-layer, at our experimental Reynolds number (381,470).  We notice that the 

acoustic and entropy disturbance can penetrate into the boundary-layer, but not the 

vorticity one: vorticity signal is sheltered by boundary-layer.  However, in Fedorov and 

Tumin their work, only the acoustic disturbance can penetrate into the boundary-layer but 

other two are sheltered by the boundary-layer.  Moreover, in figure 41, we show that how 

different wavenumbers affect the disturbance in the boundary-layer (Reynolds number 

381,470).  If the   is larger (larger  ) in the free-stream, then the disturbance (here the 

acoustic one for example) shrinks in the boundary-layer: boundary-layer acts  as a low 

pass  filter.  In last Figure (Figure 42), the influence of Reynolds number on the 

disturbance in the boundary-layer is displayed.  The result shows that a higher Reynolds 

number leads to an increase of the disturbance in the boundary-layer: high shear stress 

in boundary-layer amplifies the signal. 
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(a)                                                                 (b) 

 

(c) 

Figure 40       for (a) vorticity branch, (b) acoustic branch, and (c) entropy branch.  

The y axis is normalized by boundary-layer thickness (at around 1) and the x axis is the 

magnitude of     in the free-stream and of    
    in the boundary-layer. In the legend: u 

is the streamwise velocity component, v is the normal component and t is temperature 

perturbation. 
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(a)                                                                  (b) 

 

                       (c) 

Figure 41 The variation in wavenumber along the acoustic branch with (a)      , (b) 

     , and (c)      .  The y axis is normalized by boundary-layer thickness (at around 

1) and the x axis is the magnitude of     in the free-stream and of    
    in the 

boundary-layer.  Note that the scale in y axis is from 0 to 5 boundary-layer thicknesses. 
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(a)                                  (b) 

Figure 42 The influence of Reynolds number on the disturbance in the boundary-layer.  

The acoustic branch is taken for example.  (a)            and (b)       .  The y 

axis is normalized by boundary-layer thickness (at around 1) and the x axis is the 

magnitude of     in the free-stream and of    
    in the boundary-layer.  Note that the 

scale in y axis is from 0 to 5 boundary-layer thickness. 

6.4 Generate The Adjoint System 

At all of the wavenumbers , the vorticity, acoustic, and enthalpy branch cuts 

shown in Figure 39 have their own eigenvectors.  These eigenvectors (modes) are 

regarded as basis (they can form a vector space) and the MVG disturbance from our 

experiment will be projected onto these basis.  By calculating the coefficients of such 

projections, one can estimate how the sum of those modes results in a transient growth 

induced by the combination of fast decaying and slow persistent modes.  Therefore, the 

MVG disturbance growth or decay downstream can be explained in terms of algebraic 

interaction of modes. 

In order to calculate the coefficients, the orthogonality property between basis 

are critical.  However, the matrix    in the homogeneous system Eq. (12) is not a self-

adjoint matrix, thus, its eigenvectors are not orthogonal to each other.  Non-orhtogonal 
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projections are difficult, thus a way to build up an orthogonality property into the basis has 

to be considered. 

A bi-orthogonality condition can be reviewed in several papers.
15, 16, 17

  According 

to Salwen and Grosch (1981), the direct eigenvectors and adjoint eigenvectors from the 

linearized Navier-Stokes equations can be “orthogonal” to each other in some conditions.  

In the present case, it means the dot product of a direct eigenvector, a weight vector, and 

an adjoint eigenvector with different   will be equal to zero.  Oppositely, the dot product 

will be equal to unity when   is the same.  This is called the bi-orthogonality property 

between the direct system and the adjoint system.  To take advantage of the bi-

orthogonality condition, the adjoint eigenvectors must be found first. 

The adjoint eigenvectors should be obtained from the solutions of the adjoint 

system of linearized Navier-Stokes equations.  To find the equations, a mathematical tool 

known as the “Euler-Lagrange identity” is used. The left hand side is  

〈  (
  ̂

  
    ̂)〉    (   ̂)                                                 (  ) 

In Eq. (14), time variantion is not considered.  The Euler-Lagrange identity states 

that the dot product of a direct vector and the adjoint system of equations is equal to the 

divergence of the dot product of the direct and the adjoint vectors.  The expression in 

parentheses on the left hand side of Eq. (14) is found to be the adjoint system of the 

linearized Navier-Stokes equations if the parenthesis equals to zero.  The divergence 

term, also called bilinear concomitant, is set to be zero by choosing a suitable boundary 

condition.  Therefore, the left hand side dot product can be zero. 

To derive the Euler-Lagrange identity, integration by parts should be applied to 

the direct system of the linearized Navier-Stokes equations.  Suppose, first, that we have 
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the dot product〈 ̂ (
  

  
    )〉, thus, the continuity, x momentum, y momentum, and 

energy equations become  
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The equation of state, Eq. (9e) is used here for expressing the density variable 

appearing in the continuity equation Eq. (9ab) into pressure and temperature variables.  
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The sum of all four equations makes a new long equation that represents the dot product 

of 〈 ̂ (
  

  
    )〉 , which is then expressed as 

∬ { ̂[              ]   ̂[              ]   ̂[              ]  
   

 ̂[          ]}      .  The goal is to turn 〈 ̂ (
  

  
    )〉 into Euler-Lagrange identity, 

Eq. (14) by integration by parts.  Take as an example the very first term, i.e., 

∬  ̂[              ]    
   

, that is Eq. (9bb): 

 

∬ ̂  
   

  

  

  
    

 ∫  ̂        

 

∬ ̂  
   

 
   

  
     ∬ ̂ 

   

  

   
  

    

 ∬ 

   

    

  ̂

  
                                                                                                 (    ) 

The first term on right hand side is the bilinear concomitant (the divergence term), which 

is the term   (   ̂) in Eq. (14). It is zero because there is no perturbation, such as    ,  , 

and  , at the wall and the boundary layer edge.  This is a consequence of the boundary 

conditions for boundary layer flow.  Then, the second and third terms are neglected 

because they are free stream properties with respect to x derivatives.  The only term left 

is the last one, representing 〈  (
  ̂

  
    ̂)〉  in Eq. (14), with 

  ̂

  
          

          ̂  
  ̂

  
 in this example.  After collecting all the   terms in all four equations, 

including the last term in Eq. (14.1), an expression is formed in a square bracket 

multiplied by  .  By the same procedure, the variables  ,  , and   are factored out 
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forming three other equations, one per each variable.  The long equation is expressed 

here in a symbolic form, ∬ { [                                                 ]  
   

 [                                                 ]  

 [                                                ]  

 [                                            ]}      .  Usually along the lines that 

the integral can be satisfied for any arbitrary choice of domain only if the integrand is 

equal to zeroSince this long equation in the curly bracket is equal to zero (only 0 can be 

integrated equal to 0) and  ,  ,  , and   are all non-zero numbers, the only chance to 

obtain the adjoint system is for each individual expression in the square brackets to be 

zero.  Therefore, in these four square brackets, the first expression is defined as the full 

adjoint x momentum equation, the second expression is defined as the full adjoint y 

momentum equation, the third one as the full adjoint continuity equation, and the fourth 

one as the full adjoint energy equation.  After dropping the terms related to x derivatives 

of free stream properties, the four adjoint linearized Navier-Stokes equations are 

presented in a parallel form in the following section. 

6.5 The Adjoint Linearized Navier-Stokes Equations And Their Solutions 

The adjoint linearized Navier-Stokes system is composed of four equations; Eq. 

(15a) is the adjoint continuity equation, Eq. (15b) is the adjoint x momentum equation, Eq. 

(15c) is the adjoint y momentum equation, and, finally, Eq. (15d) is the adjoint energy 

equation. 
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The set equations (15) can be translated in the matrix-vector form shown in Eq. 

(16) 

 

  
(  

  ̂

  
)  

  ̂

  
     ̂    

  ̂

  
   

   ̂

    
  4

   ̂

   
                       (  ) 

where the disturbance vector is  ̂  [ ̂  
  ̂

  
  ̂  ̂  ̂  

  ̂

  
]
 

.  Applying the plane wave 

solution method turns Eq. (16) into Eq. (17), 

 

  
(  

  ̂

  
)  

  ̂

  
     ̂       ̂      

  ̂

  
     4 ̂                    (  ) 

With the same operations as in section 6.2, the nonhomogeneous adjoint system 

of disturbance (i.e., ordinary differential Eq. (17)) is recasted into the homogeneous one 

given in Eq. (18). 
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  ̂

  
    

  ̂                                                             (  ) 

The method for recasting Eq. (17) into Eq. (18) in x and y momentum equations 

are similar to what was explained in section 6.2.  Additional details regarding the 

implementation are shown below.  Since the elements in the disturbance vector  ̂ have 

been arranged as ̂  [ ̂  
  ̂

  
  ̂  ̂  ̂  

  ̂

  
]
 

, the x momentum equation, Eq. (15b), should be 

placed in the second column on both sides of Eq. (18).  Along with this logic, the 

continuity, y momentum, and energy equations should be inserted in the third, fourth, and 

the last columns in both sides of Eq. (18).  First notice that in the second column, the 

element 
  ̂

  
 should be on the left hand side of Eq. (18), therefore in Eq. (17), the term 

   ̂

   
 

was moved to the left hand side and all other terms were collected on the right hand side.  

Now the x momentum equation looks like                    

  
   ̂

   
      

  ̂

  
   

  ̂

  

 
 

  
{  

 

  
( 

  ̂

  
  

  ̂

  
)  

   
  

  ̂

  

 
 

  
[   

  ̂

  
  (   )     ̂

   

  
]}                                                            (    ) 

After expanding, applying the plane wave solutions, sorting out those 

components  ̂, 
  ̂

  
,  ̂,  ̂,  ̂, 

  ̂

  
, and dividing by   , Eq. (15ba) becomes: 
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Eq. (15 bb) is of the same form as Eq. (17) (at the second column in Eq. (18)), 

where on the left hand side    is zero, and on the right hand side    ,   ,   , and  4 are 

the first, second, third, and fourth square brackets.  Now, in order to remove the y 

derivative term    (   )
  ̂

  
 (here it is     

  ̂

  
), the continuity equation 

  ̂

  
 

  [   ̂    
  ̂

  
    ̂  

    

  
  ̂      ̂    

  ̂

  
]  (this is after expanding, applying the 

plane wave solutions, and sorting out those components), was multiplied by    (   ) 

and substituting for the term    (   )
  ̂

  
:   
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 [   ̂  
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After collecting all  ̂ terms together, all 
  ̂

  
 terms together, all  ̂ terms together, 

etc., it becomes:  

 

  
(
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Finally, Eq. (15bd) is at the second column of the form Eq. (18). 

Moreover, at the fourth column, the term 
  ̂

  
 is identified on the left hand side of 

Eq. (18), thus, the y momentum equation is to be implemented in this column.  Therefore, 

in Eq. (17), the terms 
  ̂

  
 and 

 

  
(
   

    

  ̂

  
) are moved to the left hand side, the term   

  ̂

  
 is 

moved to the right hand side, and all other terms remain on the right hand side.  Now the 

y momentum equation looks like 
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Expanding, applying the plane wave solutions, and sorting out the components  ̂, 

  ̂

  
,  ̂,  ̂,  ̂, 

  ̂

  
, Eq. (15ca) becomes: 
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Eq. (15 cb) is of the same form as Eq. (17) (see, the fourth column), where on 

the left hand side    has the element  
   

    
, and on the right hand side    ,   ,   , and 

 4 contented elements in the first, second, third, and fourth parentheses.  At this moment, 

remove the second order y derivative term  
 

  
(
   

    

  ̂

  
) (which is the term 

 

  
(  

  ̂

  
)) 

away from Eq. (15cb) turns Eq. (15cb) into Eq. (18).  With this idea, again the continuity 

equation 
  ̂

  
   [   ̂    

  ̂

  
    ̂  

    

  
  ̂      ̂    

  ̂

  
] is applied and substituting 

into this term  
 

  
(
   

    

  ̂

  
). 
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Performing the derivative of y on the first term of Eq. (15cc), rearranging, and 

collecting all  ̂ terms together, all 
  ̂

  
 terms together, all  ̂ terms together, etc., leads to 
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Finally, Eq. (15cd) is at the fourth column of the form Eq. (18). 

Meanwhile, the energy equation is relatively simple.  One can easily expand and 

arrange Eq. (15d) into the matrix-vector form of Eq. (17), and collect all  ̂ terms together, 

all 
  ̂

  
 terms together, all  ̂ terms together, etc. to gain Eq. (18) (note the term 

  ̂

  
 is in the 

sixth column): 
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Finally the leading order of the adjoint system of linearized Navier-Stokes 

equations is shown in Eq. (18).  With it the adjoint eigenvectors  ̂ can be calculated by 

following the same method used in section 6.4.  All the adjoint matrices,   ,    ,    ,   , 

  ,  4, and   , can be found in Appendix F. 

6.6 Bi-Orthogonality Fabrication 

Since the eigenvectors  ̂  are available now, the bi-orthogonality between the 

direct   and adjoint  ̂ eigenvectors can be defined. 

Bi-orthogonality is essentially a kind of dot product.  Therefore, the goal is to 

derive a dot product which equals to zero for the direct   and adjoint  ̂ eigenvectors, 

when their wavenumbers   are different.  In the first step, the matrix    in the direct 

system, Eq. (12), should be sorted out into three matrices    ,    , and     

characterized by being without   terms, with   terms, and with   terms.  Thus: 

  

  
 (              )                                                    (  ) 

 

Then, multiplying the adjoint eigenvector  ̂ from the left and integrating from 0 to 

infinity with respect to y 

∫  ̂
  

  
  

 

 

 ∫( ̂      ̂       ̂      )   

 

 

                        (  ) 
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And if the spatial wave number of the adjoint mode differs from the direct analog, 

say   , Eq. (20) becomes Eq. (21): 

∫  ̂
  

  
  

 

 

 ∫( ̂      ̂        ̂       )  

 

 

                       (  ) 

Subtracting Eq. (20) from Eq. (21), those terms without   and    are cancelled 

with each other.  The terms left are 

(    )∫  ̂      

 

 

 (      )∫  ̂        

 

 

                        (  ) 

Dividing Eq. (22) by (    )   

∫  ̂      

 

 

 (    )∫  ̂        

 

 

                                 (   ) 

Obviously, if (    ) can be made to be revomed, then ∫  ̂(       )   
 

 
  .  

This can be the bi-orthogonality condition, with         as a weight function.   

Unfortunately, it is found that   appears not only at the nominator, but also at 

denominator in the matrix    (   can be found in Appendix F).  Therefore, another way to 

sort out without   terms, with   terms, and with   terms is needed.The other method to 

achieve the bi-orthogonality was adopted from Denissen.
15

  His bi-orthogonality is 

 (    )∫  ̂       

 

 

 {
           

                
                           (  ) 

where  ̂  contains four more elements than  ̂   does.  Thus, the augment 

eigenvectors  ̂  is  ̂   [ ̂  
  ̂

  
  ̂  ̂  ̂  

  ̂

  
 
  ̂

  
 
  ̂

  
 
  ̂

  
 
  ̂

  
]
 

.  The same situation, the direct 

eigenvectors    has these four more elements than    does.  It is 

   [  
  

  
       

  

  
 
  

  
 
  

  
 
  

  
 
  

  
]
 

.  Up to this point, the author had found out that the   

happened in the denominator is due to the compressible problem and the way that we 
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are following Fedorov to recast the direct system into ODEs.  Notice, the   and its related 

terms in the denominator in the matrix   have been removed due to the high Reynolds 

number in the experiment (         ).  In the future, a clever way to avoid the   in the 

denominator needs to be investigated for compressible problem. 

In the beginning of section 6.4, we were planning to project the MVG disturbance 

from our experiment onto the eigenvectors of Eq. (12), and calculate the coefficients of 

such projections.  By using bi-orthogonality defined at Eq. (23), the coefficients can be 

efficiently deteremined.  The projections of the MVG disturbance    on the eigenvectors 

   of Eq. (12) is expressed as 

   ∑                                                                       (  )

  4

 

In other words, the MVG disturbance    can be sum of vorticity eigenvectors 

(   ), acoustic eigenvectors (   ), entropy eigenvectors (   ), and entropy- acoustic 

eigenvectors (   ) along with their branch cuts   of eigenvalues  .  Since there are six 

solutions (refer to Eq. (13)) from the linearized Navier-Stokes equations, the summation 

should be    .  However, as shown in Figure 39, there is only one vorticity branch, and 

also one branch of entropy and acoustic are exactly the same so there are only four 

branches left.  The MVG disturbance    can only be expanded by these four 

eigenvectors. 

Now, by applying the bi-orthogonality to Eq. (24), the only term left on the right 

hand side is the term with the same  .  So it results that, 

∫  ̂      

 

 

  ∫( ̂    )

 

 

                                       (  ) 

Therefore, the amplitude of the projection   can be calculated as: 
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〈 ̂     〉

     
                                                                  (   

However, the vector  ̂  and    are still in the dimension of 1 10 and 10 1 and 

matrix   in 10 10.  The system should be shifted back to  ̂  1 6 and so.  According to 

Denissen
15

, the following equation works 

  
〈 ̂  

   

  
  〉

     
                                                           (   ) 

To calculate the coefficient   in the Eq. (26i), we should input the information of 

  , 
   

  
, and  ̂ .  The denominator, i.e.,        is set to 1 in the present work.  Next, 

consider the MVG disturbance vector    [  
  

  
       

  

  
 ]
 

.  The first and third elements 

  and   are from the PIV experiments: the measured streamwise/wall normal velocity 

minus the averaged streamwise/wall normal velocity.  The operation to the   and   is 

shown in Figure 43. 

  

Figure 43 The deviation velocity profile   and   from the boundary layer velocity profile 5 

mm down-stream of MVG center line.  Each blue star point is averaged from 350 

instantaneous images.  The red curve is MATLAB polyfit with power of 3.  Both height 

and velocity are linearly scaled as y/boundary-layer thickness and boundary layer 

velocity/free-stream velocity. 
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Then, by Morkovin's strong Reynolds analogy, the element   can be defined.  

The pressure perturbation   element is assumed to be 1 in the present work.  With all six 

elements known, the MVG disturbance vector    is determined.  The matrix 
   

  
 in Eq. 

(26i) is calculated from the direct system of Eq. (12).  The final step to calculate the 

projection coefficients is to find out the adjoint eigenvectors  ̂.  The following method 

(shooting method) was used to generate  ̂ in the present work. 

Different than in the free stream, in boundary layer the    matrix in Eq. (18), 

  ̂

  
     ̂, is a function of y.  This equation is the standard form of first order linear 

differential equation         with      and    .  To solve such an equation, the 

Chebyshev polynomials method and shooting method are commonly used.  The 

Chebyshev polynomials method has been used in the section 6.3, so here only the 

shooting method is described. 

Before using the shooting method, the matrix    must be prepared.  The terms 

that cause the    matrix to vary along y in the boundary layer are all the free stream 

properties   ,   , and   , and their first order derivatives  
   

  
, 
   

  
, 
   

  
, and 

   

  
.  Oppositely, 

all   ,   , and    equal to 1, and their first order derivatives equal to 0 in the free stream.  

In section 6.1 (Figure 36), we have already defined the boundary layer velocity profile 

  ( ), which is function of y.  By using the MATLAB commands syms and diff, the first 

order derivative 
   

  
 can be determined.  Then, by Morkovin's strong Reynolds analogy 

and MATLAB commend syms and diff, we can define 
   

  
 from   ( ).  The last two terms 

   

  
 and 

   

  
 were defined from Sutherland's formula and also MATLAB commend syms 

and diff.  These first order y derivative terms can be found in Appendix F.  Now 



 

81 

substituting all of them into the    matrix and the shooting method can be started.  First 

of all, it is assumed a solution of the form    
    , where 

   
     {

         
                                             

                 (  ) 

to meet the asymptotic conditions in the free stream.  Also, and the boundary 

conditions are assumed to be          , because of zero perturbations at the 

wall, and 
  

  
 

  

  
  , due to the variation could be largest at the wall.  With the solution 

form and the boundary conditions, we can “shoot” the solution. 

The shooting method is essentially for initial value problem.  Hence, in the 

present work, the boundary conditions are regarded to be the initial conditions to solve 

the problem.  Moreover, Eq. (18), 
  ̂

  
     ̂ , is a first order system, so the Euler’s 

method was approached the problem.  The Euler’s method reads 

                                                                           (  ) 

The initial conditions should be placed in the term   , and the assumed solution 

form inserted in the term   .  The term    is the time step: it can be chosen to be dense 

or thin.  The denser the time step, the more accurate the solution can be determined.  

With the iterations of Eq. (28),      will be piled up and form the solution 

 ̂  [     
  

     
                

  

     
].  

 Once the vector  ̂ , the matrix 
   

  
, and the vector   , are determined by 

integrating from wall y = 0 up to infinity in the free stream (y = 10 in the present work) 

along y, we can determine the amplitude of the projection   of each mode.  The results 

are shown in the next section. 
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6.7 Results And Discussion 

The first result is in the following, Figure 44.  It shows the projection coefficient   

of all four eigenvectors (the vorticity, acoustic, entropy, and entropy-acoustic) when 

wavenumbers are low (     ).  

 

(a)                                                       (b) 

Figure 44 The coefficient   of the vorticity (green), acoustic (red), entropy (cyan), and 

entropy-acoustic (black) eigenvectors in the complex plane when      : (a) is 10
3
 times 

zoomed out of (b). 

At low wavenumber, the acoustic coefficient is the same magnitude but a phase 

degree   ahead to the entropy-acoustic coefficient.  Therefore, it is possible that the 

acoustic signal can be observed earlier than the entropy-acoustic signal in experiments.  

Also, the acoustic signal appears earlier than vorticity and entropy signals almost at 
 

 
  

and its amplitude is much larger than them.  Moreover, if we calculate the percentage 

numbers of all four coefficients, in this case we have the vorticity coefficient magnitude of 

√(      )  (          )      , acoustic coefficient magnitude of          4 , 

entropy coefficient magnitude of      , and entropy-acoustic coefficient magnitude of 

         4, the percentage numbers are almost 0 for the vorticity, almost 0 for the 
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entropy, however, both 50% for acoustic and entropy-acoustic.  This means the energy 

are all stored in the acoustic and entropy-acoustic modes, and these two modes equally 

split the energy. 

Next, we would like to see how the coefficient and energy storing response to the 

wavenumber.  We selected another four larger wavenumbers (                     ) 

along the branch cuts to be examined.  As a reminder, the variable   is used to 

parameterize the wavenumber  , as mentioned in the section 6.2.  For readers’ 

convenience, the plot of branch cuts of the direct system is displayed again here. 

 

Figure 39 The plot of branch cuts of   in the complex plan: Re=381,470.   The vorticity 

branch (green start) from     , the acoustic branches (red cross) from    4, and the 

enthanpy branches (blue circle) from     .  Each branch has unlimited continuous of   but 

we only plotted ten in this figure. 

The coefficients   of all four eigenvectors in four different wavenumbers are 

plotted at below: 
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(a)                                                           (b) 

 

(c)                                                                (d) 

 

(e)                                                                  (f) 

 

(g)                                                                 (h) 

Figure 45 The coefficients   of the vorticity (green), acoustic (red), entropy (cyan), and 

entropy-acoustic (black) eigenvectors in the complex plane at                      : (a), 

(c), (e), and (g) are 10
4
, 10

5
, 10

4
, and 10

3
 times zoomed out of (b), (d), (f) and (h). 
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In Figure 45a, c, e, and g, the phase angle and amplitude of the acoustic signal is 

always ahead and the same as the entropy-acoustic signal.  However, as the 

wavenumber become larger, the entropy-acoustic signal begins to delay more than   to 

acoustic signal.  Physically, this may indicate that the entropy-acoustic signal appears 

later than the acoustic signal for small scale fluctuations.  On the other hand, In Figure 

45b, d, f, and h, we can see the amplitude of the voritcity and entropy signals in both 

cases are much smaller than the acoustic and entropy-acoustic signals.  Also, the 

voritcity and entropy signals change significantly in their phase angle.  At low 

wavenumber, they feature a delay of about 
 

 
  from the acoustic signal, but they are 

running over the entropy-acoustic signal and catching up to the acoustic signal when the 

wavenumber becomes larger.  This may imply that the voritcity and entropy signals 

appear later than the acoustic and entropy-acoustic signals at large scale. Conversely, 

their signals appear earlier than the entropy-acoustic signal and running after the 

acoustic signal at small scale. 

Besides, the energy storage (amplitude of the coefficient  ) in each mode is of 

interest.  This quantity is tabulated in Table 7. 

Table 7 the energy storage in vorticity, acoustic, entropy, and entropy-acoustic modes 

with varying the parameter   

  vorticity acoustic entropy entropy-acoustic 

0.2 0 0.5 0 0.5 

0.3 0 0.5 0 0.5 

1.7 0 0.5 0 0.5 

5.7 0 0.5001 0 0.4999 

100 0 0.5013 0 0.4980 

 



 

86 

From Table 7, the energy storage in each mode is very stable, almost no change 

with varying of  .  In fact,       is a very large wavenumber.  By reviewing Figure 38, 

from       to      , the fluctuation has been significantly increased, not even      .  

The example       is just to show how stable the energy is stored in each mode, in 

percentage speaking. 

For the second result, the growth of the MVG perturbation downstream of its 

trailing edge is analyzed by considering the combined evolution of the vorticity, the 

acoustic, the entropy, and the entropy-acoustic eigenvectors in the boundary layer.  

Since the coefficient  ( )  of each eigenvector has been found, by following the 

downstream perturbation equation
15

 and assume only one wavenumber varying,  , any 

perturbation can be estimated as: 

  ∑ ∫  ( )  ( ) 
     

                               

                                 (   

We checked the height y=0.125 in the boundary layer, and integrate the four 

branches individually along their branch cuts. The results below showed of any 

perturbation evolution along the MVG downstream: 

(1) When Eq. (29) is integrated from       to       (low wavenumber) 

(2) When Eq. (29) is integrated from       to      (medium wavenumber) 

(3) When Eq. (29) is integrated from      to       (high wavenumber) 
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(a) 

 

(b) 

 

(c) 

Figure 46 The MVG perturbation evolution (at y=0.125) downstream of the MVG, in the 

streamwise direction: At (a) low wavenumber, (b) medium wavenumber, and (c) high 
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wavenumber.  The x axis is in the unit of boundary layer thickness.  1 boundary layer 

thickness is 5 mm.  The MVG is at x=0. 

Two observations arise naturally from Figure 46: first, the decaying nature 

downstream.  The simulation shows all the integration with respect to   decaying 

downstream, at all scales.  Second, the relationship between decaying rate and the scale 

sizes: the smaller scales (case 3) are found to decay much faster than the large scales 

(case 1). 

Furthermore, when evaluating how all four modes interact to affect the MVG 

perturbation (see results in Figure 47), two observations can be made.  First, the acoustic 

mode is found to be dominating in amplitude among all modes.  The other three modes, 

the vorticity, entropy, and entropy-acoustic modes have relatively much smaller influence 

on the MVG perturbation.  Second, the amplitudes of all modes were found to be either 

reducing or staying the same when the perturbation evolves from 5.5 mm to 6 mm 

downstream of the MVG; oppositely, the MVG amplitude is growing here.  The situation is 

shown in Figure 47a and its amplified view in Figure 47b.  Also, the vector compositions 

(for the situation at 5.5 mm and 6 mm) in the complex plane are shown in Figure 47c and 

47d.  The MVG amplitude growth is determined by the vector compositions of all these 

four modes.  This analysis explains why it is possible to have the modes (component 

vectors) reduce their amplitude, but, after vector compositions, the MVG perturbation 

(composited vector) is growing. 
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(a)                                                          (b) 

 

(c)                                                           (d) 

Figure 47 The interaction of vorticity, acoustic, entropy, and entropy-acoustic modes and 

its outcome in the MVG perturbation: (a) all four modes evolution at the MVG 

downstream, (b) zoom-in view to show the MVG perturbation is growing from 5.5 mm to 6 

mm but the acoustic mode actually decaying in this region, and how the MVG 

perturbation formed by all four modes in the complex plane at (c) 5.5 mm and (d) 6 mm. 

Finally, consider the comparison of the simulation and experiment result. The 

experimental velocity data from PIV are only available for one spanwise station, that is, 5 

mm downstream of the MVG.  Those measurements have been used as initial value 

inputs for the present simulation.  The goal is to use the linearized Navier-Stokes 
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equation and those inputs (the streamwise and wall-normal velocity) to estimate the MVG 

perturbation at downstream locations.  Since the PIV data are not available for further 

downstream, the pressure data
18

 are used for comparison. 

The simulation result shows the MVG perturbation in perturbed velocity, hence, it 

is best to have experimental results in perturbed velocity as well.  In order to turn the 

pressure data into the velocity one, a self-derived strong Reynolds analogy (SRA) has 

been applied.  One of the SRA rule is turning the density data into velocity one, if the 

pressure fluctuation is constant: 

  

 ̅
 (   ) ̅     

 
  

 ̅
                                                           (  ) 

If a calorically perfect gas is assumed, substituting the definition of speed of 

sound   √
  

 
 into Eq. (30) the following relation is obtained: 

  

 ̅
 (   ) ̅     

 
  

 ̅
                                                         (   ) 

Eq. (30i) relates the pressure perturbation and velocity perturbation using, as 

coefficients, the experimentally evaluated mean flow.  Now input the local Mach number 

and mean streamwise velocity (both are experimentally at the flat plate surface so it 

should satisfy the simulation work at y=0.125), the derived experimentally perturbed 

velocity is shown in Figure 48 below. 



 

91 

 

Figure 48 The comparison between the simulation and experiment work of MVG 

downstream perturbation evolution.  The MVG trailing edge is at 0 mm.  For simulation 

work, the data starts at 5 mm.  For experimental work, and the pressure sensors are 

placed first at 2 mm and then every 5 mm downstream until 72 mm, totally 15 sensors.  

The shock wave and boundary layer interaction area is at 30-50 mm in the present work.  

The pressure measurements were done only on the flat plate with one MVG, without any 

shock wave and boundary layer interaction. 

In Figure 48, the experimental data seems to have a decaying trend.  However, 

the decay is not as smooth as the simulation analog.   In Figure 47b, we have seen a 

very small perturbation increase at 6 mm, and this is the only increased evolution 

downstream of MVG in the simulation work.  In the experiment, there is a small rise at 6 

mm too, and at least two larger rises, at 22 mm and 42 mm, were observed. It is not clear 

at this point if the experimental growth is affected by measurement error given the large 

distance between data points. 
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Chapter 7  

Conclusion And Future Work 

Both experimental and theoretical results yield perturbation decay not far 

downstream from the MVG: about 72 mm for experiments, and about 95 mm for 

simulation.  The experiments display two distinguishable growths downstream of MVG, 

while the simulation predicted one small growth at the very beginning.  Both works show 

trends that agree well with each other. 

In the present experimental work, there is only PIV data at one station 

downstream of the MVG.  A larger number of PIV stations will allow for a better 

comparison with experiments in the future.  Therefore, the full streamwise, spanwise, and 

wall-normal properties can be obtained from PIV for to verify and validate the simulations.  

Experiments were performed also with 20° ramp.  In section 4, the detailed turbulent 

boundary layer profiles were provided every 5 mm upstream of the SBLIs region.  It is 

found that the profiles are distorted when closer to the SBLIs, and also a reverse profile 

was seen in the SBLIs.  If more experiments can be run, more data for averaging can be 

obtained.  Usually, the larger the averaging sample, the more precise trend is achieved.  

Also, along with considering only MVG or only ramp, the MVG combined ramp will be 

investigated in future analyses.  Note that this was already done in surface flow 

visualization (section 5), but not yet using PIV.  In section 5, the results and discussion 

about MVG combined ramp has shown how the MVG downstream vortices affect the 

shock wave and boundary layer interaction, in a statistical way.  If the PIV work can be 

done with the MVG combined ramp case, it will be very interesting to see how the 

vortices interact with the separation bubble, in detail.  Meanwhile, the data can be input to 

the linearized Navier-Stokes equations for simulation work. 
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For simulation work, we plan to extend the direct system to three-dimensions.  

The spanwise wavenumber was assumed constant in this paper.  In the future for three-

dimensiona simulationsl, the evolution of MVG downstream perturbation will be affected 

by spanwise wavenumber as well.  Also, the physics of the adjoint system will be 

investigated in the future.  The adjoint was only used as a mathematical tool to derive a 

bi-orthogonal projection in the present research  Notice that the use of the bi-

orthogonality relationship in the compressible regime required a clever trick to eliminate 

the streamwise wavenumber from the denominator.  The proposed approach assumes 

that the streamwise wavenumber can be neglected in the denominator, since the other 

term has a large Reynolds number (381470) factor as determined from the experimental 

work.  Future research will focus on other ways to fabricate the bi-orthogonality without 

neglecting the streamwise wavenumber in the denominator of the residual function of the 

shooting method. 

Finally, the study of separated ramp-induced shock wave boundary layer 

interaction with upstream MVG at Mach 2.5 is an interesting research topic.  It will be 

beneficial in the future if the experimental and simulation work can be compared, for all 

cases: MVG alone, ramp, and MVG combined ramp.  A comprehensive study along 

these lines can be very practical and also academic at the same time. 
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Appendix A 

The Schlieren Optics Result 
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(a) 

 

(b) 

The Schlieren optics result of oblique shock wave generators during the test: (a) unstart, 

and (b) start. 

.
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Appendix B 

MATLAB Program for Image Processing (PIV part) 
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Ⅰ The code fragment of defining the flat plate surface. 

 

[B]=imread('directory'); % Set B as the matrix 
gry=rgb2gray(B); % Turn RGB scale to the gray scale 
gry1=imadjust(gry,[5/255 170/255],[0 1]); % The contrast enhancement 
h=[ -1 -2 -1; 0 0 0; 1 2 1 ]; % The Sobel operator 
A=filter2(h,gry1); % Setup edge detection 
A(797:886,:)=0;%Remove the bottom margin 
imshow(A); % Show the image 
impixelinfo % Show the pixel information 
%following code was looking for the first non-zero pixel in all 741 column 
for i=2:741;%i=1 is the black side line>>remove 
eval(['A' num2str(i) '=find(A(end:-1:1,i)>0,1)']);%A(clonum,row) 
end 
b=[A2:A741]; % y axis. Note that b=[A2 A3 ... A741] 
x=2:741; % x axis 
plot(x,b) 

 

Ⅱ The code fragment of boundary layer velocity profiles stitching. 

 

c=zeros(57,741); %this is for the storage of velocity vectors from 57 images 
%%%%%%%% this part is the extend code from the part in Figure 10 
%%%%%%%% 
for k=20:76;    [B]=imread(['directory\Window_B000',num2str(k),'.bmp']); 
gry=rgb2gray(B); 
gry1=imadjust(gry,[5/255 170/255],[0 1]); 
h=[ -1 -2 -1; 0 0 0; 1 2 1 ]; 
A=filter2(h,gry1); 
A(780:886,:)=0;%Remove the bottom margin 

for i=1:741;%(i=1 is the black side line>>remove):Not in this case 
    eval(['A' num2str(i) '=find(A(end:-1:1,i)>0,1)']);%A(clonum,row) 
    end 
b=[A1 A2…A741]; %plot(x,b);%This cause the image up side down and right side 
left 
b1=-((b-770)*(-24.5-(-16))/(29-770)+24.5);% turn pixel to mm. it makes up side 
down back to normal 
x=1:741; 
x1=-((707-x)*(-19-(-11))/(707-7)+19);%turn pixel to mm. it makes right side left 
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back to normal 
j=k-19; 
c(j,:)=b; 
plot(x1,b1) 
hold on 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vary=c(:,363); %seeking the y variations @x=-15.1429mm(x=363pixel, check this 
everytime because x might be changed due to how you export data from 
DaVis);This can aslo check which surfaces are way too low  
vary(find(vary<300))=[]; %reject the exposure pictures and far away surface 
locations out @x=-15.1429mm 
M=mean(vary); 
diff=vary-M; 
diffinmm=0.5*diff/44; 
diffinmm_fit_to_index_j=[-0.2254 -0.1345 -0.1345 -0.1799 -0.0436 0.3201 
0.5473 -0.1799  0 0.0928 0.0473 0 -0.1799 -0.1345 -0.1345 0.0928 -0.1345 -
0.1345 0.0473 0.0019 -0.1345 0.0019 -0.0436 -0.1799 -0.2254 0.2292 -0.1345 -
0.2254 -0.1799 0.0473 -0.0436 -0.2254 -0.2254 -0.089 0.2746 0 -0.1799 0.1837 -
0.089 0.0928 0 -0.3617 0 0 0.0019 0.1383 0.1383 0 0.3655 0.0928 -0.1799 0 0 -
0.089 0.0473 0.5928 0.8655]; % The stitching reference for each fluctuation (unit 
in mm) 
%imported from the txt 
B=zeros(21228,57); 
C=zeros(21228,57); 
S=zeros(1,57); 
for 
k=[20,21,22,23,24,25,26,27,29,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,
47,48,49,50,51,52,53,54,56,57,58,59,61,64,65,66,68,69,70,73,74,75,76]; 
[E]=load(['directory\B000',num2str(k),'.txt']); 
j=k-19; 
j(find(j<0))=[]; 
B(:,j)=E(:,2); 
C(:,j)=E(:,3); 
    for i=1:115 
    y(i)=B(i*183+74,j)+diffinmm_fit_to_index_j(j);%@x=-15.1429mm(after 
stitching) 
    BLV(i)=C(i*183+74,j);%@x=-15.1429mm 
    end 
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plot(BLV,y,'*') 
S(1,j)=C(18923,j); %extract velocity @y=-20.5726 from #25-#44 
hold on 
end 
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Appendix C 

MATLAB Program for Image Processing (SFV part) 
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Ⅰ The commands which upload a image and show the image information 

[B]=imread('directory');% Set B as the matrix 
imshow(B);% Show the image 
impixelinfo % Show the pixel information 

 

Ⅱ The demonstration in the code fragment for gray scaling, contrast enhancement, and 

Sobel edge detection  
 

[B]=imread('directory');% Set B as the matrix 
gry=rgb2gray(B);% Turn RGB scale to the gray scale 
gry1=imadjust(gry,[75/255 170/255],[0 1]);% The contrast enhancement 
h=[ -1 -2 -1; 0 0 0; 1 2 1 ];% The Sobel operator 
A=filter2(h,gry1);% Setup edge detection 

 

Ⅲ The demonstration in the code fragment 

 

% Look for the first non-zero pixel in row 74 to 471 
for i=74:471 
eval(['A' num2str(i) '=find(A(i,:),1)']); 
end 
b=A471:A74; % x axis. Note that b=[A471 A470 ... A74] 
y=74:471;% y axis 
plot(b,y) % plot 

 

Ⅳ The code of a straight line 

b=578;% The x axis 
y=74:471;% The y axis 
plot(b,y)% Plot 

 

Ⅴ The code of straight line with zigzag. 

 

A=rand(398,1);% Apply the random flctuations 
y=74:471;% The y axis 
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B=2*A+578;% Amplify and shift the random fluctuations to around the location of “exp 
lines” 
plot(B,y)% Plot the straight line with zigzag 

 

Ⅵ The code of a chainsaw line 

z=[515 579 515 579 515 579 … 515 579];% The x axis. Two numbers 515 and 579 take 
turns added to z until z has 398 digit numbers 
y=74:471;% The y axis 
plot(z,y)% Plot the chainsaw line 

 
 

Ⅶ The code fragment for defining the zigzag index which is sensitive to the small 

fluctuates. 

for j=1:150;% Repeat the loop 150 times (350-200=150) 
Q(j)=abs(B(j+1)-B(j));% The pixels (fluctuates) difference between the neighbor 
elements of the line. 
end;U=sum(Q)% Sum of all fluctuates 

 
 

Ⅷ The code fragment for defining the zigzag index which is sensitive to the large 

fluctuates 

for j=1:391;% Repeat the loop 391 times (Caution: Not 398.) 
Q(j)=abs(B(j+7)-B(j));% The pixels (fluctuates) difference between every other 7 
neighbor elements of the line. 
end;U=sum(Q);% Sum of all fluctuates 
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Appendix D 

Boundary Layer Velocity Profile from PIV 
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Ⅰ The boundary layer velocity profile on the flat plate (flow is from left to right) 

(a) A randomly chosen instantaneous image.
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(b) Another instantaneous image after 0.2 seconds. 
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(c) Another instantaneous image after 0.4 seconds. 
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(d) The image after time averaging of 75 images.  Each of the images was 0.2 seconds apart. 

 



 

108 

(e) The image after time averaging of 75 images and space averaging of a certain area of flow 

field. 
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Ⅱ The boundary layer velocity profile on the 20° ramp (439 images averaged, and flow 

is form right to left). 

(a) 50 mm upstream of the ramp corner 
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(a) 45 mm upstream of the ramp corner 
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(c) 40 mm upstream of the ramp corner 
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(d) 35 mm upstream of the ramp corner 
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(e) 30 mm upstream of the ramp corner 
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(f) 25 mm upstream of the ramp corner 
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(g) 20 mm upstream of the ramp corner 
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(h) 15 mm upstream of the ramp corner 
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(i) 10 mm upstream of the ramp corner 
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(j) 5 mm upstream of the ramp corner 
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Appendix E 

Pro-E drawings 
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Ⅰ The engineering drawing of the MVG 

 

Ⅱ The engineering drawing of 20° ramp 
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Ⅲ The engineering drawing of long fence pair 
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Appendix F 

Matrices and Terms of the Linearized Navier-Stokes Direct and Adjoint Equations 
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Ⅰ Related matrices in section 6.2 (the direct eigenfunctions) 
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Ⅱ Related matrices in section 6.5 (the adjoint eigenfunctions) 
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Ⅲ The boundary layer properties   ,   , and    and their derivatives in matrix    in section 6.6.1 
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