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Abstract

MODELING, ESTIMATION, AND ANALYSIS OF UNRESOLVED SPACE

OBJECT TRACKING AND IDENTIFICATION

LAURA SUAREZ HENDERSON, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Kamesh Subbarao

The problem of orbit determination along with shape determination is signif-

icant. The orbit determination problem has been tackled for centuries by some of

the greatest mathematicians and physicists. The issue of shape determination of

space objects, although more recent, has also been addressed quite extensively. Nev-

ertheless, these problems remain of great interest in the scientific and engineering

community, and are addressed in this work. The greatest motivation for the tracking

and identification of Earth orbiting objects is the ever-increasing population of space

assets and man-made debris. It is of interest to implement new and better techniques

to track and identify new debris and new orbiting bodies. The precise mathemati-

cal modeling of the space object’s motion, along with the estimation of its position,

velocity, attitude, angular velocity, shape, and size object is presented here.

The first step is the development of mathematical model of the equations of

motion of the orbiting body. The translational equations of motion are based on the

orbiting two-body equations. In addition, rigid-body rotational equations are devel-

oped. This mathematical framework also includes models for perturbations. These
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perturbations are based on phenomena which affect the object as it orbits Earth.

In order to acquire information regarding the object, astrometric and photometric

measurement models are developed. These models emulate stations in the Space

Surveillance Network.

Special consideration is given to the development of the photometric model (i.e.

the light curve model). The light curve measurement has only recently been used for

this application and an extensive analysis of the information it carries is done. This

study involves a sensitivity and observability analysis, which provide insight into the

information contained in the light curve regarding the orientation, spin, shape, and

size of the object. In addition, several mathematical models of the light reflectance

phenomena are implemented in the light curve model. Their performance is evaluated

and compared in order to choose which is the most effective one.

The orbit determination and shape and size estimation is performed by im-

plementing several estimation techniques. The first is the unscented Kalman filter

(UKF). This filter has been shown to be effective in dealing with nonlinear systems

and measurement models, which are inherent in the work presented here. The fil-

ter employs the dynamical model, measurement model, and noisy measurements to

produce estimates of its location, orientation, shape, size, and future intentions. The

second technique is a batch estimation within the UKF. This was implemented to

improve the estimation of the shape and size parameters of the object. This esti-

mates the states via the UKF and the shape/size parameters via a batch estimation

algorithm. The batch algorithm minimizes a cost function to yield an updated es-

timate of the parameters. The third estimation technique uses a bootstrap particle

filter (BPF), which is the first developed functioning particle filter. This filter draws

a large number of samples from the distribution of the state in order to approxi-

mate the probability density function (pdf). In particular, the BPF uses importance

vii



sampling and weights. This filter is effective in dealing with nonlinear systems and

non-Gaussian distributions.

All three estimation techniques are applied to the combined direct and inverse

problem. The UKF and UKF-batch experiments demonstrate the UKF performs

well when dealing with the estimation of all the states and parameters. The UKF-

batch, which implemented the Gauss-Newton algorithm to improve the estimates of

the shape/size parameters, performs better than the other two UKF methods, but at

a high computational cost. The BPF performs well for the estimation of the velocity,

angular velocity, and shape/size parameters. Nevertheless, it is not able to estimate

the position and attitude as well as the UKF schemes. Moreover, the estimation

of the shape/size parameters via the BPF are not as good as the ones yielded by

the UKF. This is attributed to insufficient number of particles given the number of

states and parameters being estimated. It should also be noted that the BPF has

a high computational cost compared to the UKF. The UKF is the method which is

the least computationally expensive and yields good estimates across all states and

parameters.
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Chapter 1

Executive Summary

1.1 Introduction and Motivation

Space is one of the important national assets. Satellites are vital to the econ-

omy, national security, and global connectivity. Space can also be one of our most

unexpected vulnerabilities. Space assets like the International Space Station, GPS

satellites, and private and military communication satellites must all be protected

from accumulating space debris [2–4] and enemy threat. The accumulation of space

debris is becoming critical as new satellites are being placed in orbit, while old defunct

satellites slowly decay. Furthermore, recent collisions have caused dangerous debris

clouds, which pose a great risk for neighboring satellites [3–6].

It is of great importance to address the issue of identifying orbital debris, as well

as, predicting the debris’ location, and the risk it poses to other orbiting bodies. It is

crucial to detect, track, identify, and predict future intentions, actions, and location

of resident space objects at various altitudes with known accuracy and precision. It

is necessary to know the location and trajectory of a space object and to identify its

origin, detect changes in its orbital state, determine its orientation, and predict its

intentions and capabilities. These challenges provide the motivation for this work.

1.2 Background

1.2.1 Orbit Determination and Estimation Techniques

The problem of orbit determination is defined as the process of obtaining the

values of parameters which specify the motion of the orbiting object given a set of
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observations of that body [7–9]. These observations are often obtained from ground-

based tracking systems. The determination of the parameters which describe the

orbit is often performed by means of an estimator. The estimator takes into account

the measurement and process noise and yields a best-fit approximation of the orbit

parameters. Because these parameters are time-varying, they must be updated often.

The process of orbit determination consists of several components. The first

of these components is the mathematical model of the system. In other words, the

system of equations that describe the dynamics and kinematics of the orbiting body,

Earth’s rotation, and perturbation models. The dynamics are described by the orbital

two-body motion. This motion can be parametrized by several different sets such as

classical orbital elements, Keplerian orbital elements, and inertial coordinates, to

name a few. In addition to the dynamics, an important component which affects the

motion of the orbiting body is orbital perturbations. Perturbations are deviations

from the ‘normal’ or ‘idealized’ motion of the object [10]. They are often caused by

the presence of naturally occurring phenomena such as atmospheric drag, aspherical

gravitational field, third-body perturbations, and solar radiation pressure.

The second component of orbit determination is the measurement models.

These models correspond to the measurements used for this particular application.

These measurements give information about the orbiting body’s position, velocity,

attitude, angular velocity, shape, size, and mass. Measurements can be obtained via

observers on Earth such as the Space Surveillance Network. Some of the most common

measurements are range, range rate, azimuth, elevation, and Earth landmark track-

ing. Measurements can also be acquired from other satellites (satellite-to-satellite

tracking) or from vehicle mounted sensors [9].

The third and final component of orbit determination is the estimator. Gauss

first approached this problem in 1795 by using least squares approximation tech-
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niques [9]. Later on, Kalman utilized an estimation filter (i.e. Kalman filter) which is

more accurate, efficient, and numerically stable [7, 9]. Since the development of this

filter, there have been numerous alterations and improvements.

For the purpose of orbit determination, linear and nonlinear techniques have

been employed. The extended Kalman filter (EKF) and the unscented Kalman fil-

ter (UKF) are the most widely used and have both shown to produce reliable re-

sults [11–13]. These two estimators have been used due to their capacity for handling

the nonlinearity of the equations of motion and nonlinear measurement models. Nev-

ertheless, the UKF produces better estimates than the EKF for nonlinear systems

in general. This is due to the fact that the EKF linearizes the nonlinear dynamics

and measurement models of the system to yield estimates. Consequently, this filter

neglects the higher order Taylor series truncation terms [13]. Unlike the EKF, the

UKF relies on the premise that with a fixed number of parameters, approximating

the Gaussian distribution would be better than approximating the nonlinear func-

tions. Furthermore, the UKF has the advantages of having a lower expected error

than the EKF, it can be applied to non-differentiable functions, and it bypasses the

need of the Jacobian matrix derivation [11]. The UKF has been shown to be an effec-

tive filter for the application of orbit determination and other orbiting body related

estimations [11–13].

Another popular filter is the particle filter (PF). The goal of this particular

filter is to reconstruct the posterior probability density function (pdf) of the state

and parameter vector. Particle filters have the ability to handle nonlinear systems

with non-Gaussian statistics, by approximating a continuous distribution via a large

finite number of weighed random samples (particles) in the state space [14]. The

bootstrap particle filter (BPF) is the first operational particle filter developed by

Gordon, Salmond, and Smith [14, 15]. The BPF is a flavor of PF which uses a
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Bayesan approach to construct the pdf of the state and parameter vector based on all

available information. The performance of this filter is superior to that of the EKF.

This is a consequence of the EKF assuming the pdf can be well approximated by a

Gaussian distribution, which can lead filter divergence [15].

Once all the components of the orbit determination problem are combined, the

estimator will use the mathematical models of the dynamics, perturbations, noisy

measurements, along with initial conditions, and any other a priori knowledge re-

garding the orbiting body to produce an estimate of the object’s time-varying states

and parameters. The literature on this type of problem is extensive, as it has been

addressed for several decades. Orbit determination has been used for Viking-Mars

and Voyager-Jupiter missions [9,16], GPS aided aircraft navigation, as well as, aircraft

and missile tracking [9], to name a few applications.

1.2.2 Light Curve Measurements and the Inverse Problem

The estimation of the shape of orbiting bodies has been a topic of interest

for several decades. One of the most commonly used measurements to estimate the

shape of a space object is the light curve measurement. The light curve is the time

history of an object’s observed brightness [12]. This measurement is a major source

of information not only about near-Earth objects but for asteroids [17]. The problem

that arises with the use of light curves is the light curve inversion. Light curves from

space resident objects are ruled by the object’s physical characteristics: attitude,

angular velocity, shape, size, and photometric behavior of the surface, as well as the

geometric arrangement of observation: location of light source, observer, and body.

The light curve inversion problem is defined as finding the best possible fit between an

observed light curve and a synthetic light curve generated by a model [18] without any

a priori knowledge of the shape or size of the orbiting body. The work done in this area

4



over the past decades has established that light curve measurements contain a wealth

of information regarding the mentioned properties of near-Earth asteroids [17–20].

These works have utilized the light curve measurement from asteroids to obtain their

approximate shape and rotational rates. The estimation of the shape of these asteroids

involves recovering information from the light curves such as: a convex representation

of a non-convex original body, sideral period, and pole direction along with a shape

solution, and non-convex description of the original object [17]. This is often done by

minimizing the number of free parameters by placing more constraints on the shape

being evaluated. This can be addressed by modifying a generic tri-axial ellipsoid until

the light curve matches that of the object [17]. Other works have been successful in

demonstrating that the non-trivial shape of the object can be obtained from the use of

acquired and synthetic light curves, by means of fitting the optical light curves [19,20].

In addition to the progress done in estimating the shape of near-Earth aster-

oids, light curves have also been utilized to estimate the attitude and angle variation

of objects orbiting Earth [12,21–24]. This process has been evaluated by implement-

ing a variety of Kalman filters and other estimation techniques. Some of this work

was performed via data fusion of the light curve with the azimuth and elevation

measurements to obtain more accurate estimations [12]. Moreover, other approaches

use known ephemerides of the orbiting objects in combination with optical observa-

tions [22, 24]. Most of these works have shown that the light curve measurement is

a good source of information for the attitude and angle variation of Earth orbiting

objects. Furthermore, light curves have also been used to estimate the shape of some

of these objects [22, 24]. These works have focused on matching the particular light

curve of an existing object with that of a synthetic light curve.
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1.3 Objectives and Contributions

Primary Objectives:

I. Develop a realistic mathematical model of the short-term and long-term evolu-

tion of a resident space object orbiting Earth.

II. Generate a set of synthetic measurements yielded by observers on Earth emu-

lating the Space Surveillance Network.

III. Estimate properties of the unresolved space object and its orbit. More specifi-

cally, its shape and size, attitude, angular velocity, position, and velocity.

IV. Infer object’s future intentions or possible threat to space assets.

The above mentioned objectives are the principal objectives of the work pre-

sented here. Nevertheless, these objectives imply the development and investigation

of several secondary topics. These secondary objectives are listed below.

Secondary Objectives:

V. Analysis of the observability and sensitivity of the light curve measurement

with respect to the shape and size parameters, as well as, attitude and angular

velocity of the resident space object.

VI. Light reflectance mathematical models survey and comparison.

VII. Investigation of the “inverse crime.”

VIII. Investigation of better estimation techniques.

List of Published Works

(a) Objectives I–III:

K. Subbarao and L. Henderson, “Inverse problems in unresolved space object

identification,” in AAS/AIAA Space Flight Mechanics Meeting, no. AAS 11-149,

2011. [25].

(b) Objectives I–III, VIII:

L. S. Henderson, P. Goyal, and K. Subbarao, “Inverse problem formulation cou-
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pled with unscented kalman filtering for state and shape estimation of space

objects,” in AAS/AIAA Space Flight Mechanics Meeting, no. AAS 12-115,

2012. [26].

(c) Objectives I–III, VIII:

P. Goyal, L. Henderson, and K. Subbarao, “A preliminary study in state and

shape estimation for space objects in leo using the unscented kalman filter,”

Adventures on the Interface of Mechanics and Control, pp. 299–325, 2012, in

Honor of Prof. John L. Junkins on the occasion of his being awarded the ICCES

Life-Time Achievement Medal. [27].

(d) Objectives V,VI:

L. S. Henderson, and K. Subbarao, “Sensitivity Analysis of the Lightcurve Mea-

surement Model for Use in Attitude and Shape Estimation of Resident Space

Objects,” in AAS/AIAA Space Flight Mechanics Meeting, no. AAS 13-430,

2013. [28].

(e) Objective VII:

L. S. Henderson, and K. Subbarao, “ ‘Inverse Crime’ and Model Integrity in

Unresolved Space Object Identification,” in AAS/AIAA Space Flight Mechanics

Meeting, no. AAS 14-205, 2014. [29]

The work presented here focuses in the area of low observables. More specifi-

cally, the short-term and long-term evolution of space objects are studied. For any

individual object, a realistic mathematical time evolution model is developed, based

on a system of stochastic nonlinear differential equations. These equations include

perturbation forces due to the Earth’s gravitational pull (including J2), atmospheric

drag, and solar radiation pressure. Other unmodeled effects are lumped together

and represented as stochastic disturbing forces and torques. The atmospheric drag
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and solar radiation pressure models are constructed as functions of the shape/size

parameters of the space object.

In this work, the combination of two distinct problems is addressed: the direct

problem and the inverse problem. The direct problem is orbit determination of the

resident space object. Moreover, it focuses on estimating the orbiting body’s position,

velocity, attitude, and angular velocity given an accurate mathematical model of the

object’s dynamics [11, 30, 31]. The direct problem usually has a priori knowledge

of the object’s initial conditions, size, shape, and mass properties. Along with this

knowledge, the orbit determination problem utilizes measurements such as azimuth,

elevation, or radar. The combination of the modeled dynamics, a priori information,

and noisy measurements are used by a filter to produce estimates of the object’s

states. The inverse problem focuses on estimating the shape, size, and spin rates of

the space object [12,17–19,32,33]. This problem is approached with a priori knowledge

of the object’s orbit. In this case, the measurements used are light curve or CCD

arrays. Similarly to the first problem, a filter or a fitting algorithm is used to find

the properties of the object.

The combined direct and inverse problem to be addressed in this work consists

of determining the shape/size parameters that appear in the system of stochastic

nonlinear differential equations so that an accurate description of the position, ve-

locity, attitude, angular velocity, and shape/size parameters of the object can be ob-

tained [25–27,34]. The parameters that appear in the system of differential equations

characterize the object, which is assumed to be a cuboid. In other words, the param-

eters are the length, width, and height of the object. To estimate these parameters,

the system of equations include the translational dynamics and rigid body rotational

dynamics with varying mass and moment of inertia terms, so that a complete de-

scription of the position and orientation of the object is obtained. The simulated
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measurements will emulate information from the Space Surveillance Network. Light

curve measurements are used to determine shape/size, attitude, and angular velocity,

while elevation and azimuth information is used for position and velocity [35, 36].

A detailed study of the light curve measurement is also presented in this work.

The information contained in this measurement is crucial to evaluate the model’s

effectiveness in characterizing the attitude, angular velocity, and shape parameters

of an object. This evaluation is performed using synthetic measurements generated

for a representative object attitude maneuver. A computer graphics light reflection

model is used to describe how the rays of light from the Sun impinge upon the

object and are then reflected to an observer on Earth [25, 26, 34, 37, 38]. For this

study, several light reflectance functions are evaluated. The best performing models

are chosen for the remaining work. The computer graphics models are based on

work which compares experimentally obtained bidirectional reflectance distribution

functions (BRDFs) with synthetic BRDFs from mathematical models [1]. The work

in reference [1] extensively explores different materials and the behavior of the models

compared to experimental data. These BRDF models are integrated into the light

curve model and are tested via a sensitivity and observability analyses. Numerical

sensitivities (observation matrix) are computed and a detailed study is conducted to

analyze the information present in this measurement regarding the attitude, spin, and

shape/size.

When evaluating the observability of a state variable it is often necessary to

go beyond testing whether it is observable or not; it is often of more importance to

establish the degree of observability that the state variable has. This type of analysis

has been done for linear time-varying systems for the purpose of determining the effi-

ciency of a Kalman filter designed to estimate the state of the system. Reference [39]

expands on the observability analysis of time-varying systems which can be approxi-
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mated as piece-wise constant systems with little loss in accuracy and without any loss

in the behavior of the system. This approximation is possible because the focus of the

observability analysis is the characteristics of the system rather than its time response.

Moreover, references [40] and [41] evaluate the observable degree via a singular value

decomposition (SVD). This method allows the evaluation of the observability degree

of all state variables. The analysis presented in the previously mentioned references

is evaluated for the system in question. The observability analysis will focus mainly

in the object’s orientation and shape/size parameters.

The final secondary objective is the investigation of alternative approaches for

the estimation of the state and parameters of the object. This is done to inquire if

other estimation techniques, besides the UKF, yield better estimates of the states for

this particular application. The first of these attempts involves a UKF-batch esti-

mation implementation. In this scheme the states are estimated via the UKF while

the parameters are estimated via a batch algorithm which minimizes a cost function.

This approach is used to improve the estimation of the shape/size parameters. In

addition to this approach, a particle filter is also implemented. This particular filter,

referred to as the bootstrap particle filter (BPF), reconstructs the posterior proba-

bility density function (pdf) of the state and parameter vector. The BPF makes no

assumption regarding the system’s linearity or statistics. This is of benefit, as the

dynamics of the space object are nonlinear and the statistics have been assumed to

be Gaussian for the implementation of the UKF.
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Chapter 2

Problem Formulation

Given a time series of astrometric and photometric measurements from the

Space Surveillance Network as explicit and implicit functions of position, velocity,

attitude, angular velocity, and resident space object’s shape and size, in addition to

governing equations for the system dynamics and appropriate measurement models

the combined direct and inverse problem is addressed:

• Direct Problem [11, 30, 31]

Estimate the resident space object’s position, velocity, attitude, and angular

velocity. The initial conditions, shape, size, and mass of the object are known.

• Inverse Problem [12, 17–19, 32, 33]

Determine the resident space object’s shape, size, and spin rate. The orbit of

the object is known.

• Combined Direct + Inverse Problem [25, 26, 34]

Estimate the resident space object’s position, velocity, angular velocity, atti-

tude, and shape and size.

2.1 Combined Direct and Inverse Problem

Let x be the vector with entries consisting of the positions, velocities, angular

displacements, and angular velocities of a resident space object. The corresponding

nonlinear differential equations governing the time evolution of x are,

ẋ = f(x,p, t) (2.1)
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Given the previous expression, the direct problem is to determine x(t) when all the

system parameters and initial conditions are known. The inverse problem for a single

space object here deals with the estimation of the orbit state, object attitude, angular

velocity, and shape parameters (dimensions) at some epoch based on measurements

from sensors such as radar or optical sensor arrays. The problem is then posed as,

min
∑

j ‖ym(j)− ŷ(j)‖2

subject to ˙̂x(t) = f(x̂, p̂, t)

˙̂p(t) = g(p̂) (2.2)

where ˙̂x(t) = f(x̂, p̂, t) is the same as the model in Equation (2.1). ym(j) is the

vector of measurements or the available data and ŷ(j) is the predicted output at

the jth sample instant. The solution approach adopted in this case involves the

development of an analogous dynamical system model that estimates the system

states and provides estimates for the orbit states and the parameters. For the above,

the proposed approach in solving the combined direct and inverse problem consists

of three steps:

1. Obtaining the expected value of the orbit as a function of time

2. Analyzing the time dependence of the covariance for the orbit

3. Estimating the system parameters and related error terms.

All of this is accomplished within an estimation algorithm framework.

It is of importance to estimate the physical parameters together with the spin

rates of the objects, as they are key indicators of the nature of the object. For example,

objects that are determined to have constant angular rates, regular geometries, and

are estimated to be in closed orbits with perigee larger than radius of the Earth can

be classified as Earth orbiting satellites. Additionally, if the angular rates are not

constant but bounded and everything else remains the same, as with the earlier case,
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they can classified as being defunct satellites that contribute to space debris. For the

most part, these already form a large portion of the US Space Catalog.

2.2 Governing Equations of Motion

The governing equations of motion for combined translation and rotation for

the space object are given by a system of nonlinear ordinary differential equations as

shown in Equation (2.3).

ṙ = v

v̇ = − µ

|r|3r + aJ2 − α(p)|vrel|vrel + a(p)SRP + Γ

ġ = A(g)ω

I(p)ω̇ = −[ω̃]I(p)ω + τSRP + τgg + γ (2.3)

2.2.1 Translational Dynamics

The dynamics of an object orbiting Earth can be described by the two-body

equation of motion. These equations are derived from Newton’s law of universal

gravitation, Newton’s laws of motions, along with Kepler’s laws. In addition to the

two-body motion, perturbation effects and unmodeled stochastic effects have been

included.

ṙ = v (2.4)

v̇ = − µ

|r|3r + aJ2 − α(p)|vrel|vrel + a(p)SRP + Γ (2.5)

The first equation is the derivative of the object’s position r with respect to

time, which by definition is the object’s velocity v.

The second equation is the derivative of velocity with respect to time, acceler-

ation. In this equation all accelerations acting on the body due to external forces are
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included. The first term − µ
|r|3

r accounts for the (deterministic) acceleration due to

the Earth’s gravitational pull. This term contains Earth’s gravitational constant µ

(3.896 × 105 km3/s2). The second term aJ2, captures the effects of the acceleration

due to higher order gravity effects. This acceleration is a result of the Earth not being

a perfect sphere, and consequently having an aspherical gravitational potential. The

model used to represent this effect is zonal harmonics. J2 is the strongest perturba-

tion due to Earth’s shape, and it accounts for most of the difference between a perfect

spherical gravitational field [10]. The third term α(p), describes the effect of atmo-

spheric drag. This term is a function of the projected area of the object perpendicular

to the direction of the velocity. The dependence on the area is in turn a dependence

on the shape and size parameters p. It is also a function of atmospheric density, and

the coefficient of drag. The term vrel = v − ωE × r is the relative velocity, where

ωE is the angular velocity of the Earth. The fifth term aSRP, is the acceleration due

to solar radiation pressure (SRP). Similarly to drag, SRP is a non-conservative force.

It develops as a consequence of the pressure felt by the object due the incoming ra-

diation from the Sun [10]. This term is also a function of the shape/size parameters

as the pressure exerted on the object depends on the cross-sectional area exposed

to the Sun [10]. The final term Γ is the (stochastic) acceleration due to composite

unmodeled forces.

2.2.2 Rigid Body Rotational Kinematics

The resident space object is considered to be a rigid body. To model the at-

titude of the object Modified Rodrigues Parameters (MRPs) are used [42]. The use

of these parameters allows for almost non-singular, bounded, minimal attitude rep-

resentation. These three attitude parameters are stereographic projections of the

Euler-Rodrigues symmetric parameters sphere [43]. For this application we use the
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positive form of the parameters as shown in Equation (2.10). For an uncontrolled

tumbling object, g and ω denote the orientation and the angular velocity vectors of

the object respectively. Here A(g) is a matrix consisting of functions that depend

nonlinearly on the orientation g.

ġ = A(g)ω (2.6)

The initial condition is given using a quaternion q, parametrization which is

then is transformed to MRPs, g. Equations (2.7) through (2.9) show the quaternion

parametrization. The conversion to MRPs can be done using Equation (2.10) [44].

Note that the vector portion of the quaternion is ̺ and the scalar part is q4. The

vector portion is listed before the scalar portion.

q ≡



̺

q4


 (2.7)

̺ = [q1 q2 q3]
T = ê sin

(ν
2

)
(2.8)

q4 = cos
(ν
2

)
(2.9)

gi =
qi

1 + q4
i = 1, 2, 3 (2.10)

The attitude matrix can be written as a function of the MRP as shown in Equa-

tion (2.11).

AB
E(g) = I3×3 −

4
(
1− gTg

)

(1 + gTg)2
[g×] + 8

(1 + gTg)2
[g×]2 (2.11)

[g×] =




0 −g3 g2

g3 0 −g1
−g2 g1 0




(2.12)

Finally, the MRPs attitude kinematics are given by Equation (2.13).

ġ =
1

2

[
I3×3

(
1− gTg

2

)
+ [g×] + ggT

]
ω (2.13)
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2.2.3 Rigid Body Rotational Dynamics

The rotational dynamics describe the change in angular velocity with respect

to time. This equation includes terms which account for torques caused by pertur-

bations. It also takes into account the moment of inertia I(p) as a function of the

shape/size parameters of the object. For the purpose of this work, the density of the

object is assumed constant.

I(p)ω̇ = −[ω×]I(p)ω + τSRP + τgg + γ (2.14)

[ω̃] is the skew-symmetric vector cross product operator of the angular velocity. The

perturbation effects considered for the translational motion are the same considered

here. The term τgg is the external torque due to the gravity gradient. τSRP is the

external torque due to solar radiation pressure. The final term is the stochastic

acceleration due to composite unmodeled torques. It is assumed that the object does

not have any control torques acting on it.

2.3 Measurement Models

There are three measurements used for the estimation of all states and pa-

rameters. The astrometric measurements are azimuth and elevation angles. The

photometric measurement is the light curve.

2.3.1 Astrometric Measurement

It is assumed the observer on Earth has capacity of measuring azimuth Θ and

elevation Φ angles. These measurements are defined from the relative position of

the object with respect to the observer in the Up-East-North frame defined in the

following section. The following expressions will be used to obtain the measurements.

Θ = tan−1

(
ρe
ρn

)
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Φ = sin−1

(
ρu
||ρ||

)

2.3.2 Light Curve Measurement

This measurement model is based on a reflectance distribution function. It

takes into account each of the object’s faces, along with the position of the observer,

and the Sun. This model can be tuned for the type of surface the object is made

of. The final measurement describes the amount of sunlight reflected from the object

toward the observer.

mapp = −mapp,sun − 2.5log10

∣∣∣∣∣

6∑

i

Fobs,i

Csun,vis

∣∣∣∣∣

2.4 Coordinate Frames

2.4.1 Earth Centered Inertial Frame

Figure 2.1. Earth Centered Inertial Frame.

The Earth centered inertial (ECI) frame has it’s origin at the center of the

Earth. The Î Ĵ-plane lies on the equatorial plane. The Î axis points to the vernal

equinox, the K̂ goes through the north pole, and the Ĵ completes the triad. Although

17



the equinox and equatorial plane do move over time [10], they are considered to be

static for the purpose of this application. The ECI frame is shown in Figure 2.1. This

frame is represented as [Î ĴK̂]. Vectors represented in this frame have a subscript E.

2.4.2 Body Fixed Frame

Figure 2.2. Body Fixed Frame.

The body fixed frame has its origin at the geometrical center of the space object

as shown in Figure 2.2. Because the object is considered to have a constant density,

the geometric center coincides with the center of mass. The shape/size parameters

are defined so that the width (W ) is along the xB axis, the length L is along the yB

axis, and the height H lies along the the zB axis. Vectors represented in this frame

have a subscript B.

2.4.3 Up-East-North Frame

The Up-East-North (UEN) frame is defined by the geometry of the location of

an observer on Earth. The position vector of the observer is R, with θ as the sidereal

time and λ the as the latitude of the observer. The up direction û points in the
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Figure 2.3. Up-East-North Frame.

direction of the position vector. The other two directions point to the local north n̂

and local east ê directions. Figure 2.3 shows the ECI frame and UEN frame.
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Chapter 3

Perturbation Models

3.1 Drag Acceleration

Equation (3.1) is used to describe the drag experienced by the resident space

object as it orbits the Earth. The ballistic coefficient (BC) is set up as a function

of the area projected on a plane perpendicular to the body’s velocity vector. As the

object tumbles, this area will change and so will the ballistic coefficient. The model

used is an exponential atmospheric model [10]. This model assumes a spherically

symmetrical distribution of particles where the density varies exponentially according

to Equation (3.3). The superscript E refers to the vectors referenced to the ECI frame.

aE
drag = −

1

2

ρatm‖vE
rel‖

BC
vE
rel (3.1)

BC =
m

CDAp
(3.2)

ρatm = ρatm,0exp

[
−hellp − h0

H

]
(3.3)

In the previous equation, ρatm refers to the atmospheric density, BC is the

ballistic coefficient, Ap is the projected area, m is the mass of the object, CD is the

drag coefficient, ρatm,0 is the reference density, hellp is the altitude of the object from

the surface of the Earth, and h0 is the reference altitude. The exponential model

is used for density as in Reference [10]. Note, it is assumed the object’s density

and the drag coefficient are constant, while Ap and m are computed based on the

instantaneous estimates of the object dimensions.
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3.2 Aspherical Gravitational Field Acceleration

For most applications, the assumption that Earth is a sphere is sufficient. For

a more comprehensive model, it is necessary to account for the accelerations due to

the non-spherical nature of Earth. An aspherical-potential function must be derived

in order to determine the gravitational attraction on the space object. In this case, a

simplification of the accelerations along each of the axis is used. The disturbing func-

tion R2 is shown in Equation (3.4), where J2 indicates that this approximation is using

the second order zonal harmonics (J2 = 0.0010826269). Furthermore, µ is Earth’s

gravitational parameter, RE is Earth’s mean equatorial radius (RE = 6, 378 km), r is

the norm of position vector of the object measured from the center of the Earth r,

and φgc is the latitude of the object.

R2 = −
3J2µ

2r

(
RE

r

)(
sin2(φgc)−

1

3

)
(3.4)

Using sin(φgc) = rk/r where rk is the component of r along the z-axis, the following

expression can be obtained.

R2 = −
3J2µR

2
E

2r3

(
r2K
r2

)
+
J2µR

2
E

2r3
(3.5)

Now Equation (3.5) can be differentiated with respect to each of the components of r

to obtain the corresponding accelerations. As an example, Equation (3.6) shows the

partial derivative of R2 with respect to the component about the x-axis rI :

∂R2

∂rI
= −3J2µR

2
E rI

2r5

(
−5r

2
K + 1

r2

)
(3.6)

Following the same procedure Equations (3.8) and (3.9) can be obtained for compo-

nents rJ and rK respectively. This yields all three accelerations for this model [10].

aI = −
3J2µR

2
ErI

2r5

(
1− 5r2K

r2

)
(3.7)
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aJ = −
3J2µR

2
ErJ

2r5

(
1− 5r2K

r2

)
(3.8)

aK = −3J2µR
2
ErK

2r5

(
3− 5r2K

r2

)
(3.9)

3.3 Solar Radiation Pressure Acceleration

Solar radiation pressure is a nonconservative disturbance, much like drag. This

model will arrive at an expression for the acceleration due to this disturbance. The

force exerted on the object is a function of the object’s visible area from the Sun.

Furthermore, the pressure experienced by the object is the force divided by the inci-

dent area exposed to the Sun. The first factor to be considered is the intensity of the

energy of the Sun’s incoming radiation. The following expression gives the solar flux

(W/m2) which varies over a year [10]. Because the simulation is short, compared to

the time it takes Earth to complete a rotation about the Sun, the solar flux is set to

be SF = 1353 W/m2.

SF =
1358

1.004 + 0.0334 cos(Daphelion)
(3.10)

In the above expression Daphelion is 2π times the days from the time the Earth is at

aphelion denoted as a fraction of the whole year. The change in momentum or the

solar pressure per unit area is shown below where c is the speed of light.

pSR =
SF

c
(3.11)

Most surfaces reflect some portion of the incoming radiation and absorb the

other portion. Rabs is used to determine the percentage of absorption, Rdiff is used to

denote the percentage of diffused light and finally Rspecular is the percentage of specular

light for a surface Af which has incident solar radiation. The normal to the surface

makes an incidence angle with the Sun-object line of φinc as shown on Figure 3.1. The
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reflective angle φref is equal to the incident angle. Assuming a Lambertian diffusion,

the following expressions can be used to describe the diffusive and specular radiation

forces [10]. As seen in Figure 3.1 ŝ points in the direction of the Sun and n̂ points in

the direction normal to the facet.

Fa = −pSRRabsAf cos(φinc)ŝ (3.12)

Frs = −2pSRRspecAf cos
2(φinc)n̂ (3.13)

Frd = −pSRRdiffAf cos(φinc)

(
2

3
n̂+ ŝ

)
(3.14)

The total acceleration contribution from all the facets of the object is given by Equa-

tion (3.15). If φinc for a particular facet does not lie between [−π/2, π/2], then

contribution of that facet to the net acceleration produced is assumed to be zero.

aSRP = −
6∑

i=1

pSRAi cos(φinc)

m

[
2

(
Rdiff

3
+Rspec cos(φinc)

)
n̂+ (1− Rspec) ŝ

]
(3.15)

Figure 3.1. Solar Radiation Model Geometry.

3.4 Solar Radiation Pressure Torque

The force due to the solar radiation pressure acting on each face of the space

object can be calculated by taking the vector sum of forces defined in Equations
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(3.12)–(3.14). The net force is assumed to be acting on the center of the facet and so

the torque produced is calculated using rc×F, where rc is the vector from the center

of the space object to the center of the facet. Equation (3.16) shows the expression

used to calculate the net torque due to solar radiation pressure.

τSRP =

6∑

i=1

rc,i × Fi (3.16)

τE
SRP can be obtained by using the direction cosine matrix from from the body fixed

frame to the ECI frame.

3.5 Gravity Gradient Torque

The orbiting object will not experience the same gravitational attraction on

all points of its body. In order to account for this phenomena, a gravity gradient

torque model has been introduced. Portions that are closer to Earth will experience

a stronger attraction compared to the portions of the object that are further away. To

calculate the net gravity gradient torque Equation (3.17) is used [45]. The size of the

object considered for this study is quite small for this to be significant. Nevertheless,

these models are included for modeling the true data and for possible applications

wherein these torques are not negligible.

τgg =

∫

B

rb × dFg (3.17)

For the above equation rb is the position vector of the infinitesimal body element with

respect to the center of mass of the space object. dFg is the infinitesimal gravitational

force experienced by the body element and can be calculated using Equation (3.18).

Me is the mass of the Earth, dm is the body element mass, and r is the inertial
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relative position vector from the center of the Earth to the space object’s center of

mass.

dFg = −
G Me

|r|3 rdm (3.18)

Substituting Equation (3.18) into (3.17) the following expression can be obtained.

τgg = G Me Rc ×
∫

B

r

|r3|dm (3.19)

This equation can be generalized as shown in Equation (3.20). This formulation uses

the truncation of the binomial series as an approximation, where Rc is the inertial

position vector relative to the center of the Earth and I(p) is the inertia matrix.

τE
gg =

3 G Me Rc

R5
c

× I(p)Rc (3.20)
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Chapter 4

Measurement Models

4.1 Astrometric Measurements

Figure 4.1. Geometry of Earth, Observer, and Object.

For this model, a radar site is deemed as the observer. This observer can

measure range, azimuth, and elevation of the space object. Figure 4.1 shows the

associated geometry and terminology used for this model. The slant range is ρ, the

radius vector of the object is r, the radius vector of the observer is R, the right
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ascension and the declination of the body are ζ and δ respectively, the sidereal time

of the observer is θ, the latitude of the observer is λ, and the east longitude from

the observer to the object is φ [46]. The fundamental range observation is given by

Equation (4.1) [46].

ρ = r−R (4.1)

For the ECI frame ρ is given by the following expression, where ‖R‖ is the norm of

the observer position and [x y z].

ρE =




x− ‖R‖ cosλ cos θ

y − ‖R‖ cosλ sin θ

z − ‖R‖ sinλ




(4.2)

The range vector is represented in the Up-East-North frame by rotating the range

vector represented in the ECI frame through the sidereal time and latitude angles as

shown below.



ρu

ρe

ρn



=




cosλ 0 sinλ

0 1 0

− sin λ 0 cos λ







cos θ sin θ 0

− sin θ cos θ 0

0 0 1



ρE (4.3)

The measurements the observer can obtain are azimuth Θ and elevation Φ angles.

The following expressions will be used to model the measurements.

Θ = tan−1

(
ρe
ρn

)
(4.4)

Φ = sin−1

(
ρu
||ρ||

)
(4.5)

For the problem being addressed, only one optical sensor is used and only the azimuth

and elevation measurements are considered.
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Figure 4.2. Resident Space Object Model with Light Curve Model Vectors.

4.2 Light Curve Measurement

This model was constructed using a bidirectional reflectance distribution func-

tion (BRDF). This function is used to model the light distribution from a surface

under incident light. As its name indicates, it is a function of two directions: first

is the direction towards the light source and the second is towards the direction of

the observer. This function can be tuned for specific types of materials the observer

believes the orbiting body is composed of. Further analysis and selection of the re-

flectance model will be done in the chapter 6. Reflectance models will yield two

components of light: the specular component ρspec and the diffusive component ρdiff .

The first component describes the light that is focused in a specific direction (mirror-

like). The second component describes the light that is diffused or scattered equally

in all directions (Lambertian).

ρtotal = ρspec + ρdiff (4.6)

A simplified model for flat surfaces will be used to develop the light curve observation

model, where the total observed brightness of the object is the summation of the

28



brightness of each facet. Figure 4.2 illustrates a six facet model with vectors shown

on the top facet. The shape model used for this work is composed by a finite number

of facets. Each of these facets has a set of corresponding unit vectors uB
n , u

B
u , and

uB
v . The unit vector uB

n is normal to the facet while uB
u and uB

v are in the plane of

the facet. These vectors are expressed in the body frame and therefore do not change

since the object is considered to be a rigid body. The following rotation matrix can

be used to express the vectors in the ECI frame. It is necessary to rotate these vectors

to the ECI frame so they can be used in the light curve model.

uE
i = A(gE

B)u
B
i , i = u, v, n (4.7)

A(gE
B) is the attitude matrix obtained from MRPs. In addition to these basis vectors,

there are three unit vectors that must be considered for each of the body’s facets.

The first vector is the unit vector pointing in the direction of the Sun uE
sun. The

second is uE
obs which points from the object to the observer. Third, the vector uE

h

is the normalized half-angle vector between uE
sun and uE

obs. The last element of the

shape model is the area of each of the facets denoted Ai. The shape and size of the

orbiting object is defined once the number of facets is chosen, the set of six vectors,

and the corresponding area for each facet has been obtained.

To calculate the apparent magnitude of the object, the fraction of visible sun-

light impinging on the object must be calculated in combination with the total BRDF.

This is a result of sunlight reflecting from the object’s facets in the direction of the

line-of-sight to the observer. The power per square meter affecting it caused by vis-

ible light striking the facets is Csun,vis = 455 W/m2 [37]. The dot product shown

in Equation (4.8) is added to account for the visibility of the reflection towards the

observer. If the angle between the observer’s direction and the surface normal or the
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angle between the Sun direction and the surface normal are greater than π then there

is no light reflected in the direction of the observer and Fsun will be zero [37].

Fsun = Csun,vis ρtotal u
E
n · uE

sun (4.8)

The fraction of sunlight affecting the body that is then reflected can be calculated

using Equation (4.9). Where R is the position vector of the observer and Ai is the

area of the facet.

Fobs,i =
Fsun Ai u

E
n · uE

obs

||R||2
(4.9)

Now the apparent magnitude for each facet can be calculated. The apparent magni-

tude of the Sun is -26.7. Finally, the apparent magnitude of the object is taken to be

the summation of the apparent magnitudes of all the facets.

mapp = −mapp,sun − 2.5 log10

∣∣∣∣∣

6∑

i

Fobs,i

Csun,vis

∣∣∣∣∣ (4.10)
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Chapter 5

The Unscented Kalman Filter

The Unscented Kalman Filter was chosen as one of the estimation schemes

because the expected error is lower than the Extended Kalman Filter (EKF) and it

avoids the derivation of Jacobian matrices. The UKF works based on the notion that

with a fixed number of parameters the Gaussian distribution can be estimated with

more ease than with arbitrary nonlinear functions. The states to be approximated

are position, velocity, rotation rate, and orientation. The parameters to be estimated

are the object dimensions. The state for the UKF is shown in Equation (5.1).

xT =
[
rT vT ωB/E

T gT pT
]

(5.1)

where the shape/size parameters are defined as p = [L W H ]T , (length, width, and

height) the dimensions of the object. The system model will incorporate the orbital

and attitude dynamics together with the model for the parameters p. Additionally,

w(t) is a Gaussian white noise process term with zero mean and Q(t) is the covari-

ance [46]

ẋ(t) = f(x,p, t) +G(t)w(t) (5.2)

For a discrete-time nonlinear system model the equation are is given as:

xk+1 = f(xk,wk,uk, k) (5.3)

ỹk = h(xk,uk,vk, k) (5.4)

where the measurement is ỹk and the measurement noise is vk which has a zero mean

Gaussian process with covariance Rk.

31



The propagation of this filter uses sigma points. These points are selected to

be along the principal axis directions of the Gaussian state distribution. For a given

n× n state error-covariance matrix Pk, a set of 2n symmetric points is created:

σk ←− 2n columns from± γ

√
Pk (5.5)

The first point is taken to the the estimation of the state while the rest of the sigma

points are taken to be the positive and negative summations of the square root of the

covariance, weighted by the parameter γ given by Equation (5.9), where L is the size

of the vector x̂k.

χk(0) = x̂k (5.6)

χk(i) = σk(i) + x̂k (5.7)

Pk = P+
k (5.8)

γ =
√
L+ λ (5.9)

λ = α2 (L+ κ)− L (5.10)

The composite scaling parameter λ is given by Equation (5.10). The spread of the

sigma points is determined by α, which is set to be a small positive number (1×10−4 ≤

α ≤ 1). The parameter κ is used to apply the knowledge about higher moments for

the given distribution [46]. β is used to include prior knowledge of the distribution.

For a Gaussian distribution β = 2. The weights are used to calculate the predicted

mean and predicted covariance in Equation (5.14) and (5.15) respectively.

Wmean
0 =

λ

L+ λ
(5.11)

W cov
0 =

λ

L+ λ
+ (1− α2 + β) (5.12)

Wmean
i =W cov

i =
1

2(L+ λ)
, i = 1, 2, . . . , 2L (5.13)
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The predicted mean of the state estimate is found using the weights shown in Equa-

tions (5.11)–(5.13), where the values of the sigma points are weighted and summed.

x̂−
k+1 =

2L∑

i=0

Wmean
i χx

k+1(i) (5.14)

Similarly, the predicted covariance is obtained by taking the difference of each calcu-

lated sigma point and the estimated value of the state at k + 1. The weighted sum

of these values yields the predicted covariance.

P−
k+1 =

2L∑

i=0

W cov
i

[
χx

k+1(i)− x̂−
k+1

] [
χx

k+1(i)− x̂−
k+1

]T
+ ΓQk+1Γ

T (5.15)

The mean observation is given by the following expression, where the measurements

obtained for each of the sigma points γk+1 are obtained via the measurement models,

and are summed and weighted.

ŷ−
k+1 =

2L∑

i=0

Wmean
i γk+1(i) (5.16)

γk+1(i) = h (χk+1(i), k + 1) (5.17)

The output covariance P yy is given by Equation (5.18). This covariance is obtained

by obtaining the error between the mean observation and the measurement obtained

from each sigma point. Similarly to the previous covariances, the difference is also

weighted.

P yy
k+1 =

2L∑

i=0

W cov
i

[
γk+1(i)− ŷ−

k+1

] [
γk+1(i)− ŷ−

k+1

]T
(5.18)

The innovation υ is defined as the difference between the mean observation and the

acquired measurement. The innovations covariance defined as the output covariance

plus the measurement noise covariance.

υk+1 ≡ ỹk+1 − ŷ−
k+1 (5.19)

P vv
k+1 = P yy

k+1 +Rk+1 (5.20)
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The cross-correlation covariance P xy is calculated by the weighted difference between

each sigma point and the estimated state, and the measurement from each sigma

point and the mean observation.

P xy
k+1 =

2L∑

i=0

W cov
i

[
χx

k+1(i)− x̂−
k+1

] [
γk+1(i)− ŷ−

k+1

]T
(5.21)

Now the Kalman gain can be computed using the cross-correlation covariance and

the innovations covariance.

Kk+1 = P xy
k+1(P

vv
k+1)

−1 (5.22)

Finally, the state and error covariance updates can be obtained as shown Equa-

tion (5.23) and (5.24).

x̂+
k+1 = x̂−

k+1 +Kk+1υk+1 (5.23)

P+
k+1 = P−

k+1 +Kk+1P
vv
k+1K

T
k+1 (5.24)

The process of the UKF is depicted in Figure 5.1. The process begins with an

initial guess of the state and covariance. Then the sigma point are generated from

the covariance. The sigma points are then propagated using the dynamic model and

measurements are obtained using the measurement models. In addition, the estimated

states are also propagated and the corresponding measurements are obtained. The

mean observation and output covariance, innovation covariance, and cross correlation

covariance are calculated by using an acquired measurement. This then allows the

calculation of the predicted mean and predicted covariance. Finally, the Kalman gain

is calculated, yielding the updated state and covariance. The process is repeated after

all measurements are obtained or the filter converges.
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Chapter 6

Observability and Sensitivity Analysis

6.1 Position and Velocity

For the purpose of this work, the radar measurement has been neglected. This

makes for the estimation of an ‘unresolved’ object. Nevertheless, the astrometric

data, azimuth and elevation, provide enough information to estimate its position and

velocity. The orbit determination via these two measurements is referred to as angles-

only orbit determination. This type of problem has been addressed for hundreds of

years and the literature on it is extensive. To give a few historical references, the

first documented attempt was done by Laplace in 1780. He implemented the now

termed Laplace’s Method, to estimate the position and velocity vectors of comets

and minor planets [10,47]. Another method for angles-only observation was developed

by Gauss [9]. This method assumes the object’s position vectors, at three different

epochs, all lie on the same plane. A newer implementation of orbit determination

with angles-only would be via a Kalman filter [47]. The availability of high accuracy

angle measurements and improved methods for estimation have produced accurate

orbit determination. These methods have been implemented with real and synthetic

data by several authors, and has proven to be successful [47–49].

Because of the work and advances in this particular area, the observability and

sensitivity of the position and velocity with respect to the azimuth and elevation mea-

surements will not be performed. It has been established for a long period of time, by

numerous authors, and with several techniques, that these astrometric measurements

contain sufficient information to produce accurate estimates of the position and veloc-
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ity. Consequently, the efforts of this study will focus on the light curve measurement,

attitude, angular velocity states and shape/size parameters.

6.2 Attitude, Angular Velocity, Shape and Size

The light curve model is one of the essential components in the estimation of

the shape/size parameters, attitude, and angular velocity of the resident space ob-

ject. Therefore, the level of information carried in this measurement is key. The

mathematical models used to represent the light reflections from the object are bor-

rowed from computer graphics models. These models can be adapted to represent the

amount of light from the Sun reflected by the object and received by an observer on

Earth. These light reflection functions used in computer graphics, range from the very

complex to the simplistic, physically accurate, or created for computational speed.

Therefore, a detailed examination of these models and their properties is necessary

to determine which one will best suit the application of estimating parameters and

states of a space object. This chapter presents the work done to address this.

First, a comparison of the BRDFs will be presented in common nomenclature

along with performance comparisons performed in the area of computer graphics

rendering. Furthermore, all BRDFs are be applied to the space object problem via

the light curve model and a sensitivity and observability analysis is performed. The

sensitivity analysis determines if the measurement contains information regarding

the attitude, angular velocity, and shape/size parameters. The observability analysis

determines whether the states and parameters are observable from the light curve

measurement, and if so, to what degree.
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6.3 Bidirectional Reflectance Distribution Function Comparison and Analysis

This section will present the light reflection functions being considered. Seven

models are analyzed: Ward [50], Ward-Dür [51], Blinn-Phong [52], Lafortune et

al. [53], Cook-Torrance [54], He et al. [55], and Ashikhmin-Shirley [38]. The models

are presented in the next section with common nomenclature for easy comparison.

Reference [1] evaluates these models in terms of their ability to fit measured BRDFs.

These authors have utilized a high-resolution data set of one hundred isotropic ma-

terials and four anisotropic materials and have computed the best approximation for

each of the mentioned models. The results for all materials and all models is presented

in reference [1]. The results suggest that the Cook-Torrance, Ashikhmin-Shirley, and

He models perform well for the isotropic materials. Another characteristic noted on

the investigation, is the way in which the specular lobe is represented. One formula-

tion uses the dot product between the half-angle vector and the facet normal, while

the other, uses the dot product between the viewer and the mirror reflection of the

light vector. The models using the first dot product have a smaller error when com-

pared with the measured BRDFs, while the models that use the second dot product

are visually inaccurate when rendering an image. Although image rendering is not

part of the work presented here, accurate reflection of light is of importance. Finally,

it should be noted that the Ashikhmin-Shirley was deemed as the best model for

isotropic materials [1].

Table 6.1 contains the main characteristics of each of those models. The first

aspect is the specular lobe representation. This can either be done using the dot prod-

uct between the half-angle vector and the facet normal, while the other uses the dot

product between the unit vector pointing to the observer and the direction of mirror

reflection of the unit vector pointing light source. The second characteristic shows

whether the model can handle isotropic and/or anisotropic materials. Isotropic ma-
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terials reflect light in the same matter regardless of direction. Anisotropic materials,

on the other hand, have different reflectivity properties depending on the direction

in which light is striking the surface. The third characteristic is if the model ac-

counts for the polarization of light. The fourth aspect is the way in which the surface

roughness is quantified. Some models utilize a simplification parameters, while others

use the Fresnel factor or an approximation of the Fresnel factor (Ashikhmin-Shirley).

The last attribute is whether the model accounts for conservation of energy, i.e. the

amount of energy impinging upon the object is the same that is being absorbed and

reflected back.

Table 6.1. BRDF Characteristics Comparison

Model
Specular Lobe Materials Light Surface Roughness Energy

uh·un uobs ·usun Isotrop. Aniso. Pol. Simplif.
Param.

Fresnel
Factor

Conserv.

Wa x x x x
Wa-Dü x x x x
Bl-Ph x x
La x x x
Co-To x x x x x
He x x x x
As-Sh x x x x x

The light reflection models will be integrated as shown in section 4.2. Each

model will yield a specular ρspec and diffusive ρdiff component of reflected light.

Furthermore, the materials selected for the object will be chosen from the work in

reference [1], as each model contains different parameters to describe materials and

their properties. The investigation by these authors was geared towards computer

rendering; therefore, each of the models contain information regarding color spectrum.

This means each color channel: red, green, and blue, will have values for specular
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and diffuse amounts of light. As only the amount of light is considered, these values

will be summed to obtain s singular value for ‘white’ light. Finally, all models will

have the same diffuse component model as shown in Equation (6.1). ρd is the factor

for diffusive light; it is material dependent and describes the amount of light that

is diffusive. This model is referred as Lambertian and is the most commonly used.

This model essentially distributes the amount of light that is diffusive in all directions

equally; Unless the observer is behind the facet being evaluated, and therefore cannot

see the light being reflected (i.e. negative dot product), in which case the value would

be zero [52]. Table 6.2 contains the nomenclature used to describe all seven models.

ρdiff = ρd max (0,un · usun) (6.1)

Table 6.2. Common Notation for BRDF Model Comparison

Notation Definition
un unit vector normal to facet

uobs, (uobs,x, uobs,y, uobs,z) unit vector pointing towards the observer
usun, (usun,x, usun,y, usun,z) unit vector pointing towards the Sun

ur mirror reflection of usun

uh half vector between uobs and usun

δlobe angle between un and uh

ρspec specular component of light
ρdiff diffuse component of light
ρs specular reflectance of material
ρd diffuse reflectance of material

p0, p1, p2 model specific parameters
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6.3.1 Ward Model (1992, abbr. Wa)

This model was first presented by Ward in [50]. According to the author,

the aim of this mathematical model was to provide a simple yet physically accurate

model that would reflect measured data accurately. For the sake of simplicity, the

Ward model does not explicitly contain any information regarding the wavelength

or polarization of light. Furthermore, the author has used a single normalization

factor which has replaced the Fesnel coefficient, geometrical attenuation factors, and

arbitrary constants used in other models. These factors account for the assumptions

taken regarding the statistics of a surface height function. This particular model

also yields correct energy balance, due to the normalization [50]. Equation (6.2)

shows the specular component developed by Ward, where α is the standard deviation

(RMS) of the surface slope. Tables A.1-A.3 in Appendix A contain the values for

each corresponding material and are listed as p0 = α.

ρspec =
ρs√

(un · usun)(un · usun)

exp [− tan2 δlobe/α
2]

4πα2
(6.2)

6.3.2 Ward-Dür Model (2004, abbr. Wa-Dü)

This model is very similar to the Ward model. The author has re-assessed a

new normalization for the bidirectional reflection distribution function proposed by

Ward [56]. This model produces higher peaks in the direction of the half-vector. The

author points out this is closer to measured BRDFs. The values for the materials are

listed as p0 = α on tables A.1-A.3 in Appendix A.

ρspec =
ρs

(un · usun)(un · usun)

exp [− tan2 δlobe/α
2]

4πα2
(6.3)
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6.3.3 Blinn-Phong Model (1977, abbr. Bl-Ph)

This model is based on experimental measurements on how light reflects from

real surfaces. This model introduced the concept of maximum highlight direction.

The model uses the fact that more light is reflected in the direction making an equal

angle of incidence with the reflectance direction. The light reflected in this direction

is termed as specular. The model defines this direction as uh. Other models have

adopted this concept, often calling it the half-angle vector between the incoming light

vector and viewer vector. The cosine of the angle between uh and un, denoted as δlobe,

is used as a measure of the distance a particular surface is away from the maximum

specular direction [52]. The sharpness of the highlight is then adjusted by raising the

cosine of the angle to some power n. This value is provided according to the material

in Tables A.1-A.3 as p0 = n in Appendix A.

uh =
usun + uobs

|usun + uobs|
(6.4)

ρspec = ρs
n+ 2

2π
cosn δlobe (6.5)

6.3.4 Lafortune et al. Model (1997, abbr. La)

The model described in reference [53] uses functions with nonlinear parameters

to represent the light reflectance model. This model is based on the cosine lobe model

shown in Equation (6.5). The model shown in Equation (6.6) uses the generalized

cosine lobe model by means of creating a matrix transformation along with a nor-

malization factor. This allows the use of nine different parameters that can be used

to tune the model [53]. These parameters are limited by physical restrictions and
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simplify to the equation shown below. The parameters are shown in Tables A.1-A.3

as p0 = Cxy, p1 = Cz, and p2 = n in Appendix A.

ρspec = ρs [Cxy(usun,xuobs,x + usun,yuobs,y) + Czusun,zuobs,z]
n n + 2

2π [max(|Cz|, |Cxy|)]n
(6.6)

6.3.5 Cook-Torrance Model (1981, abbr. Co-To)

This model is based on geometrical optics. It defines the reflection of light

by relating the brightness of an object to the intensity and size of the light source

which is illuminating it. Additionally, it can predict the directional distribution and

spectral composition of the reflected light. This is possible by describing the spectral

composition of the light source, as well as, the wavelength-selective reflection of the

surface. Similarly to the Blinn-Phong model, it uses the half-angle vector for the

direction of the specular light. The intensity of the light is defined by the use of

a solid angle, which is the projected area of the light source divided by the square

of the distance to the light source (constant for distant sources) [54]. Furthermore,

this model describes the distribution function of the directions of the faces in D, and

the amount by which the facets shadow and mask one another in G [52]. Finally,

this model introduces the Fresnel factor. This factor gives the fraction of light that

is incident on a facet which is being reflected as opposed to absorbed. This factor

is a function of the angle of incidence on the facet and the index of refraction on

the surface. The Fresnel equation for unpolarized light is shown in Equation (6.8),

43



where n is the index of refraction. The parameters in Tables A.1-A.3 can be found

as p0 = F0 and p1 = m in Appendix A.

ρspec =
ρs
π

DG

(un · usun)(un · usun)
Fresnel(F0, (uobs · uh)) (6.7)

G = min

{
1,

2(un · uh)(un · uobs)

(uobs · uh)
,
2(un · uh)(un · usun)

(uobs · uh)

}

D =
1

m2 cos4 δlobe
exp− [tan δlobe/m]2

Fresnel(F0, (uobs · uh)) =
1

2

(
g − c
g + c

)2
[
1 +

(c(g + c)− 1)2

(c(g − c) + 1)2

]
(6.8)

n =
1 +
√
F0

1−√F0

c = usun · uh

g =
√
n2 + c2 − 1

6.3.6 He et al. Model (1991, abbr. He)

The authors of this model based it on physical optics. Unlike other models, this

one includes a component for specular, directional diffuse, and uniform diffuse. This

model also includes information regarding the polarization, wavelength, incidence

angle, roughness parameters, and surface refractive index. The specular component

is due to the specular reflection by the mean surface, while the directional diffuse is

due to the diffraction scattering by the surface roughness. In the Equation (6.14)

below n is the index of refraction, |F |2 is the Fresnel reflectivity for unpolarized

light at the bisecting angle φb, S is the shadowing/masking factor, g is the surface

roughness function, θr is the angle of reflection, θi is the angle of incidence, and σ is
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the standard deviation of the surface height [1, 55]. The parameters for this model

are listed in Tables A.1-A.3 as p0 = τ , p1 = σ, and p2 = n in Appendix A.

Λ(θ) =
1

2

[
2σ√

πτ cot θ
− erfc

(
τ cot θ

2σ

)]
(6.9)

S(θ) =

[
1− 1

2
erfc

(
τ cot θ

2σ

)]
1

Λ(θ) + 1
(6.10)

S = S(θi)S(θr) (6.11)

g =

[
2πσ

λ
((un · usum) + (un · ur))

]2
(6.12)

φh = arccos

( |usun − ur|
2

)
(6.13)

φb = arcsin

(
sinφh

n

)
(6.14)

|F |2 =
1

2

sin2 (φh − φb)

sin2(φh + φb)

(
1− cos2(φh + φb)

cos2(φh − φb)

)
(6.15)

ρs = |F |2e−gS (6.16)

ρspec =
ρs

cos(θi)
(6.17)

6.3.7 Ashikhmin-Shirley Model (2000, abbr. As-Sh)

This model is inspired by the Ward model [50], along with other popular models.

This model obeys the energy conservation laws and allows the analysis of anisotropic

materials. Similarly to other models, it uses the Fresnel behavior, but uses an ap-

proximation rather than the equations used in the previous models. As the creation

of this model was motivated by practical applications, it has a simplistic appearance

when compared to other models. The parameters are listed as p0 = F0 and p1 = n in

Tables A.1-A.3 in Appendix A.

ρspec =
n+ 1

8π

(un · uh)
n

(uobs · uh)max ((un · usun), (un · uobs))
Fresnel(ρs, (uobs · uh)) (6.18)

Fresnel(ρs, (uobs · uh)) = ρs + (1− ρs) (1− (uobs · uh))
5 (6.19)
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6.3.8 Material Selection

The material selection was done based the experimental work in reference [1].

This study covers a wide range of materials. These materials are categorized by the

way in which they reflect light. Isotropic materials are those which reflect light in the

same matter regardless of direction. Anisotropic materials on the other hand have

different reflectivity properties based on the direction in which light is striking the

material. Two of the materials chosen for the object are isotropic: black oxidized steel

and black plastic. The third material is anisotropic: brushed aluminum. These ma-

terials would have a similar reflectivity behavior to that of a man-made space object.

Most man-made objects orbiting Earth contain aluminum, solar panel structures, and

composites. Unfortunately, composites and solar panels were not part of the exper-

imental work performed in the previously mentioned work. Consequently, materials

with similar reflectivity properties the above mentioned were chosen. The isotropic

materials are black oxidized steel and black plastic. Tables A.1-A.3 in Appendix A

show the parameters obtained experimentally for the chosen materials for all models.

6.4 Sensitivity Analysis

The sensitivity analysis will be carried out using the numerically computed Ja-

cobian of the measurements with respect to the system state vector and the UKF

derived observer matrix. For this analysis, the only measurement considered is the

light curve magnitude, ỹ = mapp + v, where v ∼ N (0, σ2
m) (σ2

m is the measurement

error variance). Furthermore, a reduced state vector is considered as x = [gTωTpT ]T

with only the attitude (MRP), angular velocity, and vector of parameters that char-

acterizes the shape and size. For the purpose of this study, the object’s rotational

motion will be simulated assuming the translational position and velocity fixed at
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some representative epoch. For a non-rotating Earth, this will translate to measuring

the object brightness and its variation only due to the attitude changes while every-

thing else that could affect the light curve has been kept fixed (i.e. no translation

or perturbation effects). This enables to clearly study the amount of attitude and

shape/size information present in the light curve.

Given the notion that the true state is sufficiently close to the estimated state,

the dynamics of the system can be well approximated by a linearization using a

first-order Taylor series expansion. The nonlinear governing equations of motion and

measurement models are shown in Equation (6.20). The linearization is done about

a nominal state x̄k, where the measurement is ỹk.

xk+1 = f(xk, k)

ỹk = h(xk, k) (6.20)

The first order expansions of f(xk, k) and h(xk, k) about the nominal state are as

follows:

f(xk, k) =̃ f(x̄k, k) +
∂f

∂x

∣∣∣∣
x̄k

(xk − x̄k) (6.21)

h(xk, k) =̃ h(x̄k, k) +
∂h

∂x

∣∣∣∣
x̄k

(xk − x̄k) (6.22)

The system Jacobian F(x̄k, k) is obtained numerically. The measurement Jacobian

H(x̄k, k) (also denoted the observation matrix) is obtained as described in the subse-

quent sections.

F(x̄k, k) ≡
∂f

∂x

∣∣∣∣
x̄k

(6.23)

H(x̄k, k) ≡
∂h

∂x

∣∣∣∣
x̄k

(6.24)
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6.4.1 Numerical Observation Matrix

It can be seen from the light curve model described in section 4.2 that an

analytical calculation of the observation matrix is impractical. Rather a numerical

approximation is utilized to obtain the measurement Jacobian with respect to the

state variables. The numerical Jacobian is computed by perturbing the state vector,

one component at a time, to obtain one row of the measurement Jacobian matrix.

∂ỹk
∂xi
≈ ỹ(xk +∆xi)− ỹ(xk)

∆xi
i = 1, 2, . . . , n (6.25)

where x = [x1, x2, . . . xn]. Then the numerical Jacobian can be defined as

HN(xk) ≡
[
∂ỹk
∂x1

∂ỹk
∂x2

. . .
∂ỹk
∂xn

]
(6.26)

6.4.2 Unscented Kalman Filter Derived Observation Matrix

The observation matrix can also be inferred from the the unscented Kalman

filter (UKF) formulation as shown in chapter 5. Using the cross-covariance matrix

between the states xk and the measurement ỹk and the state covariance matrix as

defined in the UKF derivation in Equation (5.21),

Pxy = E
{
xkỹ

T
k

}
(6.27)

where E {} denotes the expectation operator. For a linear system the measurements

can be modeled as ỹk = Hxk so that

Pxy = E
{
xk(Hxk)

T
}

= E
{
xkx

T
k

}
HT

= PkH
T (6.28)

where E {H(x̄k, k)} = H(x̄k, k) and E
{
xkx

T
k

}
= Pk. Thus the observation matrix

can be inferred from the UKF formulation as

HUKF (xk) ≡
(
P−1

k Pxy

)T
(6.29)
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To study the filter performance, as well as, the observability of the states, the

observation matrices obtained via the numerical approximation and the UKF are

compared.

6.4.3 Error Analysis and Observability Gramian

To study the filter performance as well as the observability of the states, the

observation matrices obtained via the numerical approximation and the UKF are

compared. In order to better asses the sensitivity results the error parameter shown

in the equation below will be used to determine whether the UKF derived observation

matrix and the numerically derived Jacobian carry the same information. If ǫ is close

to one, this means the values for both matrices are the same. As the value decreases

the information the matrices carry differs.

ǫ =
HNUMHT

UKF

‖HNUM‖‖HUKF‖
(6.30)

In addition to the error parameter, the observability Gramian is utilized to

asses the information carried by the numerical and UKF observation matrix. The

observability Gramian for a linear system is defined as shown in Equation (6.31).

It is assumed that at each discrete point in time tk, the measurement matrix is

approximated by the observation matrix, C(tk) ≈ H(tk). Moreover, A(t) is taken to

be the system Jacobian F defined in Equation (6.23). Consequently, the Gramian for

the numerical observation matrix is denoted WNUM and the Gramian for the UKF

observation matrix is denoted WUKF . The rank of the Gramian indicates how many

states and parameters are observable.

W (0, tf) =

∫ tf

0

expA(t)T tC(t)TC(t) expA(t)t dt (6.31)
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6.5 Observability Analysis

This analysis will focus on the observability of the MRPs (g) and the shape/size

parameters (p) with respect to light curve measurement. To apply the methodology

outlined in references [39, 41] we first linearize the system dynamics to obtain the

system Jacobian as shown in Equation (6.21)-(6.24). δxk = xk−x̄k and δyk = yk−ȳk

are defined as small perturbations for the state and measurement respectively. A

segment of time j is defined, where n measurements are collected. x̄k denotes the

nominal state, which is considered to be the estimated state at time k.

δxk+1 = F(x̄k)δxk

δỹj,k = H(x̄k)δxk (6.32)

The obtained measurements can be expressed as a function of δx1 as follows

δỹj,1 = H(x̄1)δx1

δỹj,2 = H(x̄2)F(x̄1)δx1

δỹj,3 = H(x̄3)F(x̄2)F(x̄1)δx1

...

δỹj,n = H(x̄n)F(x̄n−1)F(x̄n−2) . . .F(x̄1)δx1 (6.33)

This can be written in matrix form as

Ỹj = Qjδx1 (6.34)
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where Ỹj =
[
δỹT

j,1, δỹ
T
j,2, . . . δỹ

T
j,n

]T
and

Qj =




H(x̄1)

H(x̄2)F(x̄1)

H(x̄3)F(x̄2)F(x̄1)

...

H(x̄n)F(x̄n−1)F(x̄n−2) . . .F(x̄1)




(6.35)

Now the single value decomposition (SVD) can be performed on the observability

matrix Qj during the time segment j to asses the degree of observability of the state

variables [40]. The SVD of the observability matrix is as follows:

Qj = UΣVT =
r∑

i=1

uisiv
T
i (6.36)

where for any given Qj ∈ ℜp×q whose rank is r and p ≥ q where the left singular

vector matrix is Up×p = [u1,u2, . . .up], the right singular vector matrix is Vq×q =

[v1,v2, . . .vq], and the singular value matrix is Σ = diag(S, 0), S = [s1, s2, . . . , sr],

s1 ≥ s2 ≥ . . . , sr. These singular values are related to the system’s initial states.

When the observation vector Ỹj has a constant norm, the initial state vector x̄1 of

the given time segment is located in an ellipsoid in r-dimensions with equation as

shown below:

|Ỹj|
2
=

r∑

i=1

(
siv

T
i δx1ui

)2
(6.37)

The length of each of the n axes of the ellipsoid is 1/si. Consequently, a large singular

value would indicate a smaller ellipsoid. In other words, the initial state variable has

a small numeric area and a high observability. A small singular value indicates a large

ellipsoid and a state variable with low observability. Furthermore, a singular value

of zero indicates the state variable is unobservable. Figure 6.1 depicts the ellipsoid

for a three dimensional vector, where the second variable has a small singular value
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and consequently a larger axis and a smaller observability. On the contrary, the

second variable with axis 1/s1 has a larger singular value, a smaller axis, and larger

observability.

The observability degree of a state variable is defined as the singular value

related to that state variable. The singular value of a state variable is the one that

makes the state variable maximum. As in reference [40], if one of the components

of the state vector related to the singular value is larger than the other components,

this particular singular value is the observability degree of the state variable on the

corresponding component of the state vector. The state vector related to the singular

value si is shown below.

xs,i =
uT
i Ỹjv

T
i

si
(6.38)

Figure 6.1. Depiction of Observability Degree for a Three Dimensional Vector.

6.6 Sensitivity and Observability Results

Two cases were performed for the observability and sensitivity analyses. Case

1 begins with the object body frame and the ECI frame aligned, as the object rotates

about the x-axis only, the observer can only see the face in the yz-plane. Case 2 on

the other hand, begins with the object tilted, where three faces are visible to the

52



observer. Both cases have the same initial position, velocity, and angular velocity for

the resident space object. The dimensions of the object are the same for both cases.

Table 6.3 below show the chosen initial conditions.

Table 6.3. Initial Conditions for Sensitivity and Observability Analysis

State/Parameter (unit) Initial Value

Position r0 (km) [6737 0 0]T

Velocity v0 (km/s) [0 7.4293 1.9907]T

Angular Velocity ω (rad/s) [0.00524 0 0]T

Attitude

(Case 1) q0 [0 0 0 1]T

[φ0 θ0 ψ0] (deg) [0 0 0]T

(Case 2) q0 [0.23929 0.18930 0.03813 0.95154]T

[φ0 θ0 ψ0] (deg) [30 20 10]T

Shape/Size p0 (m) [5 3 4]T

Each of the BRDF models were implemented into the light curve model. In

addition, both cases were produced for each reflectance model. This was done to

evaluate the individual performance of each of the models on a low observability case

1 and a higher observability case 2.

Figure 6.2 shows a comparison of the specular component for all the models

for case 1. Because the observer can only see one face of the object, the specular

component is zero, as only diffusive light is visible. Figure 6.4 shows the diffusive

component for all models for case 1. The behavior of this component is very similar

for all cases. This is expected, as the same model was used for the diffusive component,

only the material parameters changed from one model to another. Figure 6.6 shows

the resulting light curve magnitude. The light curve for all the models remains close
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to constant. This is a consequence of the object’s visibility remaining constant as it

is observed.

Results for the second case are shown in Figures 6.3, 6.5, and 6.7. The specu-

lar component exhibits higher peaks as the object rotates. The Cook-Torrance and

Ashikhmin-Shirley models exhibit large peaks, while Ward-Düer and Ward exhibit

small peaks. The He model exhibits a square wave, rather than a smooth curve.

Lafortune and Blinn-Phong exhibit very little change. The diffuse component is very

similar to the first case. This is to be expected, as the value of this component does

not depend upon the geometry of the observation. Moreover, the light curve mag-

nitude for the second case shows defined peaks for those models which also showed

peaks in the specular component. The light curve exhibits a smoother behavior for

the models which did not produce specular peaks.
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Figure 6.2. Specular Component of Light for Case 1.
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Figure 6.3. Specular Component of Light for Case 2.
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Figure 6.4. Diffuse Component of Light for Case 1.
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Figure 6.5. Diffuse Component of Light for Case 2.
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Figure 6.6. Magnitude of Light for Case 1.
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Figure 6.7. Magnitude of Light for Case 2.

The sensitivity analysis is performed by calculating the numerically computed

Jacobian, denoted HNUM , and the UKF derived observation matrix, denoted HUKF .

These matrices will show whether a measurement is sensitive to the change of a state.

It will also show whether the numerical Jacobian and the UKF observation matrix

carry the same information. For this analysis the sensitivity of the light curve will be

analyzed with respect to the angular velocity, attitude, and shape/size parameters.

This analysis was performed for the cases mentioned in the previous section and for

each of the models presented in Appendix A.

Figures A.1, A.6, A.11, A.16, A.21, A.26, and A.31 in Appendix A, compare

the obtained observation matrices for the angular velocity state for both cases. For

brevity, only results for Ward and Cook-Torrance are shown in this section in Fig-

ures 6.8 and 6.11 for both cases. These figures show the sensitivity of the angular

velocity with respect to the light curve measurement. It can be seen that the numer-

57



ical Jacobian produces no sensitivity to the angular velocity state. Nevertheless, the

UKF derived observation matrix is highly sensitive to this state. The same behavior

is observed for the other models as shown in the above mentioned figures. This is a

clear indication that the information regarding this state does not improve with any of

the models. Consequently, it is safe to assume that this measurement does not carry

any information regarding angular velocity, as the values for HNUM remain zero for

all cases. Nevertheless, the HUKF values clearly show there is some information. This

can only be a consequence of the information the UKF obtains from the rotational

dynamics model. This reinforces the notion that there is no information about the

angular velocity regardless of the position of the object or reflectance model.

The error parameter results for the attitude and shape/size parameter are shown

in Figure 6.14 and 6.15. The observation matrix results for these states and pa-

rameters for all models are shown in Appendix A in Figures A.2, A.7, A.12, A.17,

A.22, A.27, and A.32 for the attitude and in Figures A.3, A.8, A.13, A.18, A.23,

A.28, and A.33 for the shape/size parameters. The the results for the Ward and

Cook-Torrance are shown in this section. As shown in Figure 6.9 and 6.10, the Ward

model shows little information for case 1 for the attitude and shape/size for HNUM or

HUKF . On the contrary, there is significantly more information carried in the HNUM

and slightly more information in HUKF for case 2. This behavior is observed in the

Ward-Dür, Cook-Torrance, Ashikhmin-Shirley, and He models. Nevertheless, the er-

ror parameter for these models shows that less than 60% of the points coincide for

the two observation matrices. This is an indication that the error parameter should

not be taken as a measurement of ‘quality’ of information but rather whether the

information is the same for both matrices. Another example of this behavior are the

results for the Lafortune model. This model shows little information for the attitude

or shape/size parameter for either case and either matrix. However, the error pa-
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rameter shows that the observation matrices coincide in their values (which are both

close to zero for both cases as shown in Figures A.17 and A.18). The behavior of the

Blinn-Phong is very similar to the Lafortune model as shown in Figure A.12 and A.13.

It should be noted that the error parameter should only be used as an aid when ana-

lyzing the data of the observation matrices. In addition, the models that have shown

to carry the most information for case 2 are the Cook-Torrance, He, and Ashikhmin-

Shirley as shown in Figures A.22, A.27, and A.32 for the attitude and Figures A.23,

A.28, and A.33 for the shape/size parameters.
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Figure 6.8. Ward Model Angular Velocity Sensitivity.
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Figure 6.9. Ward Model Attitude Sensitivity.
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Figure 6.10. Ward Model Shape/Size Parameters Sensitivity.
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Figure 6.11. Cook-Torrance Model Angular Velocity Sensitivity.
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Figure 6.12. Cook-Torrance Model Attitude Sensitivity.
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Figure 6.13. Cook-Torrance Model Shape/Size Parameters Sensitivity.
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Figure 6.14. Error Parameter for Attitude.
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Figure 6.15. Error Parameter for Shape/Size Parameter.
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The Gramian was calculated for both the numerical and UKF observation ma-

trices for all cases. Only the results for the Ward and Cook-Torrance are shown in

this section, the plots for the rest of the models are shown in Appendix A in Fig-

ures A.4, A.9, A.14, A.19, A.24, A.29, and A.34 for the numerical based Gramian and

Figures A.5, A.10, A.15, A.20, A.25, A.30, and A.35 for the UKF based Gramian.

These plots show the Gramian, along with, the attitude MPRs and the light curve

measurement. The x-axis shows the number of rotations of the object during the

simulation.

The results of the Ward model for case 1 are shown in Figures 6.16 and 6.17.

The Gramian maintains a rank of 2 regardless of the values for the attitude and

the light curve. This indicates that there are only two states and/or parameters are

observable for this case. Conversely, the Gramian changes from rank 2 to 3 for case 2.

This jump happens when the information in the attitude and the information in the

light curve change, close to the end of the first rotation and the third, where the peaks

of the MRPs and the light curve coincide. Moreover, the results are nearly identical

between the numerical and UKF matrices, except for some bouncing between rank 2

and 3 before the third rotation for case 2. HNUM has more of these jumps, which can

be attributed to the numerical computation of this matrix. The higher rank for case

2 is consistent with the observer having a better view of the object as it rotates and

the light curve being richer in information compared to case 2. Moreover, the results

for the Cook-Torrance are nearly identical to those of the Ward model as shown in

Figures 6.20 and 6.23. The same is true for the remaining model results as shown in

Appendix A.
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Figure 6.16. Ward Model Numerical based Gramian for Case 1.
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Figure 6.17. Ward Model UKF based Gramian for Case 1.
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Figure 6.18. Ward Model Numerical based Gramian for Case 2.
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Figure 6.19. Ward Model UKF based Gramian for Case 2.
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Figure 6.20. Cook-Torrance Model Numerical based Gramian for Case 1.
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Figure 6.21. Cook-Torrance Model UKF based Gramian for Case 1.
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Figure 6.22. Cook-Torrance Model Numerical based Gramian for Case 2.
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Figure 6.23. Cook-Torrance Model UKF based Gramian for Case 2.
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For the observability analysis the same two cases mentioned at the beginning

of this section are used. Both the attitude and shape/size parameters have been eval-

uated to obtain an observability degree as described in previous section. Given the

results of the sensitivity analysis, which determined there is no information regarding

the angular velocity in the light curve measurement, no observability analysis is per-

formed for this state. Table 6.5 and 6.4 summarize the obtained observability degree

for both cases and all states. Figures 6.24–6.27 show these same values in bar plots.

The logarithmic scale has been used so that the greatly varying values are well dis-

played. The greater the value of the observability, the state or parameter is regarded

as being more observable. If the observability degree for a state or parameter shows

a zero, it is not observable.

The observability of the attitude for the first case, shows similar behavior for

all models as seen in Figure 6.24. With only one of the MRP states having a large

observability. This result is to be expected, as the observer has a limited view of the

object as it orbits. The observer can only see one face of the object, and therefore

determining attitude is very difficult. The observability of the shape/size for case 1

shows that for most models, only two parameters are visible as shown in Figure 6.26.

The He model stands out as it has slightly larger observability values. Nevertheless,

these values are significantly small, meaning the observability degree of these states

is very low for all cases.

The observability values for the attitude for case 2 are significantly larger for all

models and all three attitude parameters as shown in Figure 6.25. All models show

a higher observability for all three attitude states. It should be noted that the Ward,

Ward-Dür, Cook-Torrance, and Ashikhmin-Shirley models show the largest observ-

ability for all three states. The He model, although it shows a large observability

for one state, has almost no observability for the last attitude parameter. Moreover,
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the observability values for the shape/size parameters also improve for the second

case. Only the Ward-Dür, Lafortune, Cook-Torrance, and He show observability for

all three shape/size parameters. Nevertheless, the Cook-Torrance and Ward model

show that the observability is larger when compared to the other models.

Table 6.4. Observability Results for Case 1

Model g1 g2 g3 L W H
Wa 10.416 0.65339 0.084212 0.018936 0.082608 0
Wa-Dü 7.1035 1.1373 0.054290 0.0054239 0.085041 0
Bl-Ph 19.359 0.19628 0.019130 0.0056528 0 0
La. 7.1111 0.12140 0.026330 0.016973 0 0
Co-To 13.742 0.27325 0.036670 0.0061527 0 0
He. 8.2358 0.20290 0.048711 0.021404 0.025973 0
As-Sh 13.691 0.32947 0.047498 0.0056414 0 0

Table 6.5. Observability Results for Case 2

Model g1 g2 g3 L W H
Wa 914.53 90.462 8.0650 0.62753 0.51546 0
Wa-Dü 403.52 7.2345 4.1746 0.18034 0.065995 0.057633
Bl-Ph 20.009 0.30492 0.048960 0.061122 0.021422 0
La. 16.135 0.087610 0.062459 0.047921 0.052074 0.00021999
Co-To 134.44 3.7042 2.0685 0.20721 0.092301 0.0056346
He 6503.9 29.258 0.079639 0.19235 0.013681 0.024759
As-Sh 1833.0 9.8100 3.5378 0.26654 0.42050 0
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Figure 6.24. Observability Degree of Attitude States for Case 1.
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Figure 6.25. Observability Degree of Attitude States for Case 2.
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Figure 6.26. Observability Degree of Shape/Size Parameters for Case 1.
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Figure 6.27. Observability Degree of Shape/Size Parameters for Case 2.
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6.7 Discussion and Model Selection

Given the results for the observability and sensitivity, it can be concluded that

for the purpose of this study, not all models perform equally, and careful consideration

should be placed in selecting a model. The Ward and Ward-Dür models performed

average in the observability analysis. Nevertheless, the sensitivity analysis showed

that the observation matrices are not sensitive to the change in the attitude and

shape/size parameters. The Blinn-Phong and Lafortune models performed poorly

across both analyses and both cases. It was shown that the observation matrices

carry no information for the attitude or shape/size. The Cook-Torrance, He, and

Ashikhmin-Shirley performed well in the sensitivity for both cases and both models.

Moreover, these models did well in the observability study. Given these results the

Cook-Torrance, He, and Ashikhmin-Shirley are the models that perform the best for

this particular application. Given these results the Cook-Torrance and Ashikhmin-

Shirley are compared in the following sections and are selected as the primary models

for the remainder of this work.

6.8 Light Reflectance Model Comparison

Both the Cook-Torrance and Ashikhmin-Shirley light reflectance models uses

different mathematical expressions to describe each of the physical phenomena affect-

ing the reflection of light off a surface. Nevertheless, both models contain components

which describe the same physical phenomena. Moreover, both light reflectance models

can be expressed using the common notation as defined on Equation (6.39). Table 6.6

shows a comparison of each of these components for both of the models.

ρspec = cFGD (6.39)
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The components are defined as follows: c is a constant, F represents the Fresnel

function or its approximation, G is the geometrical attenuation factor, and D is the

facet slope distribution function. The constant contains information regarding the

reflectivity of the specified material of the surface. The Fresnel function describes the

way in which light is reflected from a smooth facet. G accounts for the shadowing or

masking effects of one facet onto another. Finally, D describes the facets which are

oriented in the direction of the half-angle vector uh.

From Table 6.6 it can be seen that both the Ashikhmin-Shirley and Cook-

Torrance use significantly different mathematical models to describe each of the char-

acteristics of the light reflection model. The first evident difference is observed in

the constant c. The Ashikhmin-Shirley model in the original publication uses a func-

tion of ‘phong-like’ exponents to quantify the reflectivity qualities of the specified

material [38]. The version of this component used in reference [1], which is being

used in this work, is modified and instead uses the refraction index of the material.

In the Cook-Torrance model, the denominator is the qualification of the percentage

of specular reflectance the specified material has. Both these components are then

scaled by π. In addition, the Ashikhmin-Shirley model further scales the constant

by 8. The second notable difference is the Fresnel function. The Ashikhmin-Shirley

model uses a 5th order polynomial to approximate the original function, while the

Cook-Torrance model uses the original function. The Fresnel function uses the index

of refraction and the angle between the light and the half-angle vector to obtain a 7th

order polynomial to describe the quantity of light reflected and absorbed. Because

the Cook-Torrance model uses a higher fidelity function it is expected it will yield

more accurate results. Furthermore, the geometrical attenuation factor G somewhat

differs between the two models. This function is used to determine whether the ge-

ometry of the facet’s position is interfering with the amount of light that is actually
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Table 6.6. Light Reflectance Model Comparison

Ashikhmin-Shirley Cook-Torrance

c
n + 1

8π

index of refraction corresponding to
specified material scaled by 8π. In orig-
inal publication denominator is a func-
tion of ‘phong-like’ exponents [1].

ρs
π

specular reflectance of specified mate-
rial scaled by π

F

F0 + (1− F0) (1− (uobs · uh))
5

approximation of Fresnel function with
5th order polynomial of uobs · uh

1

2

(
g − c
g + c

)2
[
1 +

(c(g + c)− 1)2

(c(g − c) + 1)2

]

Fresnel function for un-polarized inci-
dent light

G
b

max {(un · uobs), (un · usun)}

b =
(un · uh)

(uobs · uh)

function of inverse of maximum angle
between normal and observer or normal
and light

amin

{
(uobs · uh)

2(un · uh)
, (un · uobs),

(un · usun)}

a =
2(un · uh)

(uobs · uh)(un · uobs)(un · usun)

function of minimum of angle between
normal and observer, normal and light,
or function of angle between observer
and normal and half angle

D
(un · uh)

n−1

angle between normal and half-angle
vector to the power of the index of re-
fraction minus one [1]. In original pub-
lication n = nu cos

2 φ+nu sin
2 φ, where

φ is the angle between the projection
of uh onto the plane perpendicular to
N , and nu and nv are ‘phong-like’ ex-
ponents [1].

exp
{
− [(tan δ)/m]2

}

m2 cos4 δ

exponential function with information
about facet slope m and angle between
un and uh δ
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striking them. The final component, is the facet slope distribution D. This particular

component is significantly different for both models. The Ashikhmin-Shirley model

uses a polynomial of the angle between the normal and the half-angle vector, while

Cook-Torrance uses a exponential of this angle in combination with the root mean

square facet slope m.
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Chapter 7

Inverse Problem

The inverse problem is defined as determining the resident space object’s shape,

size, attitude, and spin rate when the orbit of the object is known. As previously

stated, one of the most commonly used measurements to estimate the shape and

spin of a space object is the light curve measurement. This measurement is a major

source of information, not only for near-Earth objects but also for asteroids [17] and

man-made orbiting objects (See references. 22, 24, 34, 37, 25, and 26). Most of the

mentioned works have shown that the light curve measurement is a reliable source of

information for the attitude and angle variation of Earth orbiting objects. In addition,

light curves have also been used to estimate the shape of some of these objects [22,24].

The problem that arises with the use of light curves to estimate the shape

and spin of the object is the light curve inversion. The light curve inversion prob-

lem is defined as finding the best possible fit between an observed light curve and a

synthetic light curve generated by a model [18], without any a priori knowledge of

the shape or size of the orbiting body. As shown in the previous chapter, these syn-

thetic measurements are produced by a mathematical model that aims to describe the

physical phenomena given a particular observation. These synthetic measurements

are then used to estimate the states and parameters of a given object. Thus, model

integrity (the choice of an appropriate mathematical representation of the observed

data) is critical to the success of the observability of states and parameters in the

measurements. However, it is in the choice of the measurement model to generate

the synthetic data and use of the same model in the inversion process (estimation),
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where the “inverse crime” is committed [57, 58]. The following section expands on

this concept.

7.1 Inverse Crime

Simply stated, the “inverse crime” is an expression that denotes the act of

using the same model to generate and later invert synthetic data [57]. In doing

so, the inverse problem is presented in such a way where it becomes less ill-posed

than it actually is, consequently leading to solutions which can be unrealistically

optimistic [59]. The authors of reference [58] warn against committing the inverse

crime as to avoid a “trivial inversion” [57, 58]. Furthermore, they state that it is of

great importance that the synthetic data does not have a “connection” to the inverse

solver models. The goal of this section is to investigate the consequences of the inverse

crime in the context of light curve inversion for unresolved space object identification

and tracking. This will be achieved by using two distinct models for the light curve,

one for the synthetic measurement creation and another for the inversion.

7.1.1 Numerical Setup

In order to fully investigate the inverse crime, four cases were developed as

shown in Table 7.3. Each of the presented light curve models were used to produce

the synthetic measurements and/or for the UKF measurement model. These cases use

identical initial conditions, UKF set-up, and equations of motion. Initial conditions

are shown on Table 7.1. Table 7.2 shows the initial state and covariance error for

the UKF. Measurements were created using zero-mean white noise process error with

standard deviation of 0.1 magnitude for the light curve measurement. The time

between measurements was set to be 10 seconds. The work presented here is the

result of 100 averaged runs for each case.
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Table 7.1. Initial Conditions for Inverse Crime

State/Parameter Initial Value (unit)
Position r0 [4764 4764 0]T (km)
Velocity v0 [−5.25 5.25 1.99]T (km/s)
Angular Velocity ω [0 0.0262 0]T (rad/s)

Attitude q0 [0.239 0.189 0.038 0.951]T

[φ0 θ0 ψ0] [30 20 10]T (deg)

Shape/Size p0 [5 3 4]T (m)

Table 7.2. Initial Error and Error Covariance for Inverse Crime

State/Parameter Initial Error (unit) Error Covariance (unit)
Position r0 1 (km) 12 (km2)
Velocity v0 0.001 (km/s) 0.0012 (km2/s2)
Angular Velocity ω 60 (deg/hr) 602 (deg2/hr2)
Attitude [φ0 θ0 ψ0] 0.15 (deg) 0.152 (deg2)
Shape/Size p0 0.1 (m) 0.12 (m2)

Table 7.3. Model Combinations

Case No.
Synthetic UKF

Type
Measurement Model Measurement Model

1 Ashikhmin-Shirley Cook-Torrance No Inverse Crime
2 Cook-Torrance Ashikhmin-Shirley No Inverse Crime
3 Ashikhmin-Shirley Ashikhmin-Shirley Inverse Crime
4 Cook-Torrance Cook-Torrance Inverse Crime

7.1.2 Results and Discussion

The following figures show the results for all four cases. The cases are denoted

by the model used to produce the synthetic measurements first and the UKF measure-

ment model second. The first case shown in Figure 7.1 used the Ashikhmin-Shirley

BRDF model for the creation of the synthetic measurements and the Cook-Torrance

BRDF model for the UKF measurement model. A comparison of the two BRDF

models is shown in section 6.8. Figure 7.1 shows the mean and standard deviation
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of the error between the light curve produced by the synthetic measurement model

and the UKF measurement model. The light curve error and standard deviation is

smallest for the cases in which the inverse crime is committed (case 3 and 4). For

case 4, the higher fidelity model (Co-To) was used for the production of the synthetic

measurements as well as the estimation measurement model. Case 3, for which the

lower fidelity model (As-Sh) is used for both models, shows a slightly larger error

mean and standard deviation than case 4. For the cases where the inverse crime is

not committed the error is much higher. Moreover, case 1 where the higher fidelity

model is used for the estimation while the lower fidelity model is used for the synthetic

measurements, shows a larger error and standard deviation when compared to case 2

for which the lower fidelity model is used in the estimation. Case 4 where the light

curve is both produced and inverted using the same model, yields much better results

than if a lower fidelity model is used to perform the estimation (case 2). The same

is true when case 1 and case 3 are compared. This is an indication that the “inverse

crime” does indeed affect the results of the estimation for the problem of light curve

inversion.

Figure 7.2 shows the estimated shape/size parameter errors for each of the cases.

Similarly to the previous figure, the best results are obtained in case 3 and 4, where

the inverse crime is committed. For case 2, when the low fidelity As-Sh model is used

for the inversion of measurements produced by the Co-To model, the results are less

than desirable. This is a consequence of loss of information due to the lower fidelity

model being used for the estimation. The results in case 4, where the Co-To model

is used for both estimation and measurements, the results are significantly better

than those of case 2. If one extrapolates these results to an experiment performed

with ‘real’ measurements, case 2 illustrates the closest scenario: the measurements

are generated by a the ‘highest’ fidelity model (a.k.a. nature), while a lower fidelity
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Figure 7.1. Light Curve Error Comparison.

model (mathematical approximation) is used to describe the phenomena. It can be

clearly seen that if one does not consider this when performing experiments with

synthetic data, results might be misleadingly optimistic, as case 4 shows.

The effective use of the light curve measurement to acquire information regard-

ing unresolved space objects has been shown by several authors in many different

publications. The investigation shown in this section aimed to examine the problem

that arises when the same model is used for the creation of the synthetic light curve

and the light curve inversion, otherwise known as the “inverse crime”. Four cases

were investigated where two models were used to create the synthetic data and/or

to perform the estimation of the shape parameters and states of an unresolved space

object. The results showed that for this particular application the “inverse crime”

indeed has an effect on the estimation of these shape parameters. When using a high
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Figure 7.2. Shape/Size Parameter Estimation Error Comparison.

fidelity model for both the measurement creation and inversion the results of the

estimation errors are significantly smaller than when using a lower fidelity model for

the estimation, or for the measurement creation. Moreover, if a lower fidelity model

is used for the measurement creation and a higher fidelity model is used for the es-

timation, the errors improve over the reverse case, as expected. This investigation

focused on a specific application, nevertheless it might serve as a cautionary voice as

to avoid the “inverse crime” when performing experiments which require synthetic

data that will later be inverted to extract information. The comparison results have

shown that the Cook-Torrance model is a higher fidelity model, as it contains the

full Fresnel function, and a more complex geometrical attenuation component and

slope distribution component when compared to those of the As-Sh model. Conse-

quently, the Cook-Torrance has a higher capacity of capturing behavior which the
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Ashikhmin-Shirley model might loose. This in turn affects the choice of which model

is used to produce synthetic measurements and which model is used to solve the light

curve inversion problem via the UKF. The next section will show a comparison of the

estimation results of case 1 vs. 4 (i.e. no inverse crime vs. inverse crime).

7.2 Inverse Problem Solution via Unscented Kalman Filter

7.2.1 Numerical Setup

The solution to the inverse problem is presented here. The unscented Kalman

filter as presented in chapter 5 is utilized. The solution of the inverse problem focuses

on the estimation of the angular velocity, attitude, and shape/size parameters. A

reduced state defined as x = [ωT gT pT ]T . The initial conditions, initial state error,

and initial covariance are shown in Table 7.4. Measurements were created using zero-

mean white noise process error with standard deviation of 0.1 magnitude for the light

curve measurement. The time between measurements was set to be 10 seconds. The

two sets results shown here will compare the effects of the inverse crime. For the

first scenario the Cook-Torrance model is used to produce the measurements, while

the Ashikhmin-Shirley model is used for the estimation. The second scenario uses

the Cook-Torrance for both the synthetic measurement creation and the estimation

measurement model. The results shown here are the result of one hundred averaged

runs.

7.2.2 Results

Figure 7.3–7.6 show the true position, velocity, angular velocity, and attitude of

the object. The orbit is assumed to be known for the inverse problem, and therefore

the position and velocity are not estimated. Figure 7.7 and 7.8 show the perturbation

accelerations and torques experienced by the object as it orbits. Perturbations due
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Table 7.4. Initial Conditions for Inverse Problem

State/Parameter Initial Value (unit)
Position r0 [4764 4764 0]T (km)
Velocity v0 [−5.25 5.25 1.99]T (km/s)
Angular Velocity ω0 [0 0.0262 0]T (rad/s)

Attitude q0 [0.239 0.189 0.038 0.951]T

[φ0 θ0 ψ0] [30 20 10]T (deg)

Shape/Size p0 [5 3 4]T (m)

Table 7.5. Initial Error and Error Covariance for Inverse Problem

State/Parameter Initial Error (unit) Error Covariance (unit)
Angular Velocity ω0 60 (deg/hr) 602 (deg2/hr2)
Attitude [φ0 θ0 ψ0] 0.15 (deg) 0.152 (deg2)
Shape/Size p0 0.1 (m) 0.12 (m2)

to drag, aspherical Earth, solar radiation pressure, and gravity gradient are shown.
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Figure 7.3. Inverse Problem True Object Position.
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Figure 7.4. Inverse Problem True Object Velocity.
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86



0 200 400 600 800 1000 1200 1400

−0.5
0

0.5

x 10
−10  Acceleration due to Drag  (km/s 2)

a D

0 200 400 600 800 1000 1200 1400
−2

0

2
x 10

−5  Acceleration due to J
2

a J 2

0 200 400 600 800 1000 1200 1400
−1

−0.5

0
x 10

−12

Time (s)

a S
R

P

 Acceleration due to SRP

 

 

a
x

a
y

a
z

Figure 7.7. Inverse Problem Perturbation Accelerations.
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87



The estimation of the angular velocity for both cases is shown in Figure 7.9. It

can clearly be seen that the inverse crime solution results in a far better estimation

of this state. The jump in the error for the no-inverse crime case can be attributed to

the difference between the light curve measurements at 800 seconds in Figure 7.14.

Similarly, the estimation of the attitude shown in Figures 7.10 and 7.11 demonstrates

the effect of the inverse crime: The error for the MRP in the Co-To As-Sh case

increases with each phase change of the states, while the Co-To Co-To case decreases.

This reflects with increasing errors for the Euler angles for the first case, while the

second case shows decreasing errors and 3σ bounds. Figures 7.12 and 7.13 show the

estimation error of the shape/size parameters. The first shows the error along with

3σ bounds. The bounds decrease for all three states, the error for the width leaves the

three sigma bounds but then returns. A jump in all three estimations can be observed,

similarly to the estimation of the angular velocity. On the contrary, the errors for

the inverse crime case remain bounded and decrease for all three parameters. As

previously mentioned, the estimated light curve and synthetic light curve also have

discrepancies at this same time as shown in Figure 7.14 for the no inverse crime case,

while the error remains negligible for the inverse crime. This is further evidence that

the inverse crime has significant influence on the estimation of the angular velocity,

attitude, and shape/size for a resident space object.
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Figure 7.9. Inverse Problem Estimation Angular Velocity.
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Figure 7.10. Inverse Problem Estimation of Attitude (MRPs).
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Figure 7.11. Inverse Problem Estimation of Attitude (Euler Angles).
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Figure 7.12. Inverse Problem Estimation of Shape/Size Parameters.
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Figure 7.13. Inverse Problem Estimation of Shape/Size Parameter (no 3σ bounds).
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Figure 7.14. Inverse Problem Acquired vs. Estimated Light Curve Measurement.
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Chapter 8

Joint Estimation via Unscented Kalman Filter

This chapter introduces the first solution approach to the combined direct and

inverse problem. The estimation is referred to as ‘joint’ estimation of the states all

states and parameters. Two approaches have been implemented for the estimation

of the object’s states and parameters involving the unscented Kalman filter (UKF).

The first is a joint estimation where all states and parameters are simultaneously

estimated using a UKF. The second approach estimates the states by means of the

UKF and stores these values until a fixed batch size criterion is met. Then these

estimated state values are passed to the batch estimation algorithm which produces

a new updated value for the parameters by reducing a cost function. This is done

until all the measurements are used.

The batch estimation has been implemented in an effort to improve the estima-

tion of the shape/size parameters. As it was shown in the observability and sensitivity

analysis, the shape/size parameters are observable from the light curve measurement.

Nevertheless, this observability is good only for one of the parameters in the low

observability case and two parameters are observable for the high observability case.

The remaining parameter(s) have a low observability. In addition, the light curve

measurement is also used to aid in the estimation of the attitude. This leads to the

estimation of three states and three parameters from one measurement. Therefore,

it is the objective of the batch estimation to aid in the process of the estimation of

the parameters. Results for both the UKF estimation and UKF-batch estimations
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will be shown and discussed in this chapter. The UKF is implemented as shown in

chapter 5. The following section expands on the UKF-batch implementation.

8.1 UKF-Batch Estimation

For the batch estimation of the object parameters, the maximum likelihood

estimation approach is used. This method minimizes the following cost function:

J(p̂) =
1

2

N∑

k=1

(ỹk − ŷk)
T (ỹk − ŷk) (8.1)

where ŷk is the estimated value of the measurement y at the time tk and N is the

total number of measurements in a particular batch. For an iteration number i, the

estimate of p at i+ 1 is p̂ obtained from the ith estimate by

p̂i+1 = p̂i −
[
∇2

p̂J(p̂)
]−1

[∇p̂J(p̂)] (8.2)

where the gradients are obtained using the following expressions.

[∇p̂J(p̂)] = −
N∑

k=1

[∇p̂ŷk]
T (ỹk − ŷk) (8.3)

[
∇2

p̂J(p̂)
]
≈

N∑

k=1

[∇p̂ŷk]
T [∇p̂ŷk] (8.4)

As shown in Figure 8.1, the UKF begins with an initial guess for the states

and parameters. The UKF estimates both states and parameters until the number

of measurements equals a predetermined batch size N . Next, the estimated values

of the states and the parameters from the UKF is passed to the Batch loop. The

parameters are iterated until either the cost function meets a specified tolerance or

until a fixed number of iterations is met. The value of the parameters is then passed

back to the UKF to continue the estimation process. For this study, this is done until

all measurements are used.
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Figure 8.1. UKF-Batch Estimation Algorithm.
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Two approaches were adopted for the update phase in the Batch loop. The first

uses the Levenberg-Marquardt update as shown in Equation (8.5). The parameter η

is heuristically chosen. η is taken to be large for the initial iteration and is reduced

by a specified factor (f) on each iteration. Z is a diagonal matrix with entries equal

to the diagonal elements of ∇2
p̂J(p̂) and ε is a scaling factor [46].

p̂i+1 = p̂i − ε
[
∇2

p̂J(p̂) + ηZ
]−1

[∇p̂J(p̂)] (8.5)

ηk+1 =
ηk
f

(8.6)

The second approach uses a modified Gauss-Newton algorithm, where a scaling factor

ε is used as shown in Equation (8.7).

p̂i+1 = p̂i − ε
[
∇2

p̂J(p̂)
]−1

[∇p̂J(p̂)] (8.7)

8.2 Numerical Setup

Both the UKF estimation and UKF-batch estimation experiments have the

same experimental setup. For both cases, one hundred averaged runs have been

executed. The results presented here are the mean of those 100 experiments. The

object is selected to be at an attitude that will provide good observability as it

orbits. As it was shown in the chapter 6, an initial condition which leads to the

observer having visibility of all faces provides better observability for the attitude

state and shape/size parameters. These true values are also used to produce synthetic

measurements for azimuth, elevation, and light curve.

The initial conditions for the experiment are shown in Table 8.1. The estima-

tor initial conditions were set as shown in Table 8.2. The synthetic measurements

were created using zero-mean white noise error process with standard deviation of

2 arcseconds for elevation and azimuth. The light curve measurement has an error
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process with standard deviation of 0.1 magnitude. The measurements were acquired

every 10 seconds. The synthetic light curve measurements were created using the

Ashikhmin-Shirley model. This model is also used for the UKF measurement model.

Table 8.1. Initial Conditions for UKF and UKF-Batch Joint Estimation

State/Parameter Initial Value (unit)

Position r0 [4764.48 4764.48 0]T (km)

Velocity v0 [−5.2533 5.2533 1.9906]T (km/s)

Angular Velocity ω [0 0.00262 0]T (rad/s)

Attitude q0 [0.23929 0.18930 0.03813 0.95154]T

[φ0 θ0 ψ0] [30 20 10]T (deg)

Shape/Size p0 [5 3 4]T (m)

Table 8.2. Initial Error and Error Covariance for UKF and UKF-Batch Joint Esti-
mation

State/Parameter Initial Error (unit) Error Covariance (unit)
Position r0 1 (km) 12 (km2)
Velocity v0 0.001 (km/s) 0.0012 (km2/s2)
Angular Velocity ω 20 (deg/hr) 202 (deg2/hr2)
Attitude [φ0 θ0 ψ0] 5 (deg) 52 (deg2)
Shape/Size p0 0.1 (m) 0.12 (m2)

8.3 Results and Discussion

Figures 8.3–8.6 show the true states over time. The object is in a lower Earth

orbit (LEO) with an inclination of 15 degrees. It is first observed South-West of the

observer as it crosses over the Equatorial plane into the North-East portion of the
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sky as shown in Figure 8.2. As the object orbits, it has an initial angular velocity

along its y-axis. The object is affected by acceleration perturbations as shown in

Figure 8.7, and torque perturbations as shown in Figure 8.8. Figure 8.6 shows the

angular velocity changes due to these perturbations.
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Figure 8.2. UKF Joint Estimation True Object Position.
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Figure 8.3. UKF Joint Estimation True Object Position.
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Figure 8.4. UKF Joint Estimation True Object Velocity.

98



0 200 400 600 800 1000 1200 1400
0

100

200
 Euler Angles (deg)

φ

0 200 400 600 800 1000 1200 1400
−100

0

100

θ

0 200 400 600 800 1000 1200 1400
−200

0

200

Time (s)

ψ

Figure 8.5. UKF Joint Estimation True Object Euler Angles.
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Figure 8.6. UKF Joint Estimation True Object Angular Velocity.
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Figure 8.7. UKF Joint Estimation Perturbation Accelerations.
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Figure 8.8. UKF Joint Estimation Perturbation Torques.
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8.3.1 UKF Estimation Results

The estimation of the states and parameters was done via the UKF as de-

scribed in chapter 5. Figure 8.9 shows the estimation of the position. The position

of the space object is estimated within the first 600 seconds and the sigma bounds

reduce significantly. The behavior of the velocity estimation is similar as shown in

Figure 8.10. As stated many times, the estimation of the position and velocity based

on the astrometric measurements has been done many times and is once again shown

here.

Although the attitude states used in the UKF were Quaternions and MRPs,

the estimation has been shown in MRPs and Euler angles to ease the interpretation

of the results as shown in Figures 8.11 and 8.12. These figures show the attitude is

well behaved, as the object tumbles and goes through change in angular velocity, the

MRPs attitude error leaves the 3σ bounds but quickly returns. In addition to the

change in angular velocity, attitude parametrization contains singularities and this

can lead to a change in phase for the MRPs. Nevertheless, once the UKF adapts

to the change in behavior, the sigma bounds grow and later reduce, along with the

error. Figures 8.12 shows the true and estimated Euler angles, where the estimated

angles track the true values very close. The angular velocity estimates well, and the

3σ bounds reduce around 400 seconds into the simulation.

Finally, the estimation of the shape/size parameters is shown in Figure 8.14.

Figure 8.15 shows the same result as 8.14 without 3σ bounds to give a more detailed

evolution of the estimation of the parameters. The estimation stays well bounded

through out the simulation. The initial error for the parameters was 20 centimeters,

it is shown here to be reduced close to 2 centimeters for length, 2 centimeters for

width, and 3 centimeters for height. This is a great reduction in the error for the

shape/size parameters.

101



0 200 400 600 800 1000 1200 1400
−5

0

5

R
x

 Position Error (km)

0 200 400 600 800 1000 1200 1400
−5

0

5

R
y

0 200 400 600 800 1000 1200 1400
−5

0

5

Time (s)

R
z

 

 

 Error  −3σ  +3σ

Figure 8.9. UKF Joint Estimation of Position.

0 200 400 600 800 1000 1200 1400
−5

0

5
x 10

−3

V
x

 Velocity Error (km/s)

0 200 400 600 800 1000 1200 1400
−5

0

5
x 10

−3

V
y

0 200 400 600 800 1000 1200 1400
−5

0

5
x 10

−3

Time (s)

V
z

 

 

 Error  −3σ  +3σ

Figure 8.10. UKF Joint Estimation of Velocity.
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Figure 8.11. UKF Joint Estimation of Attitude (MRPs).
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Figure 8.12. UKF Joint Estimation of Attitude (Euler Angles).
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Figure 8.13. UKF Joint Estimation of Angular Velocity.
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Figure 8.14. UKF Joint Estimation of Shape/Size Parameters.
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Figure 8.15. UKF Joint Estimation of Shape/Size Parameter (no 3σ bounds).
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8.3.2 UKF-Batch Estimation Results

The results for both the Levenberg-Marquardt (LM) and Gauss-Newton (GN)

cost function approaches are shown in this section. The estimation procedure for the

position, velocity, attitude, and angular velocity is the same for the UKF-batch esti-

mation, as it is for the UKF estimation. The estimation of the position, velocity, an-

gular velocity, and attitude be seen in Figures 8.16-8.20 for the Levenberg-Marquardt

and Figures 8.23-8.27 for the Gauss-Newton approach. These results show that the

estimation of these sates is very similar to the UKF estimation results. The position

and velocity are estimated quickly and the errors stay bounded by the shrinking sigma

bounds. The same behavior is observed for the angular velocity in the UKF-batch as

the UKF estimation. The attitude estimation for both cases has similar results with

the errors spiking out of the bounds and later returning for the MRPs and tracks well

for the Euler angles.

The estimation of the shape/size parameters is also improves for the UKF-batch

schemes. The Levenberg-Marquardt batch estimation and Gauss-Newton yielded a

final error almost 4 centimeters for length, 0.6 centimeters for width, and 1.2 cen-

timeters for height. This is an excellent estimation of the shape/size parameters. In

addition to the error plots in Figure 8.21 and 8.28, the cost function reduction for

each measurement batch has been shown in figures 8.22 and 8.29 for both approaches.

Both these figures show the reduction of the cost for 30 iterations.

8.3.3 Discussion and Comparison

Table 8.3 shows a comparison of the shape/size final estimation error for all three

experiments. This is the average error over the last 10 seconds of the estimation for

100 averaged runs. These results indicate that the estimation of the parameters was

somewhat close for the three methods. The error is more evenly distributed for the
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GN method, while the LM method has a large value for the length and small values

for the width and height. This value was almost twice as much as the error obtained

by both the batch estimations. The cost of obtaining this improvement is significant

as the computational time for the batch estimation is substantially larger than the

joint estimation.

Table 8.3. Shape/Size Parameter Final UKF Estimation Error (cm) Comparison

p UKF UKF-Batch LM UKF-Batch GN

Length 2.14 4.70 1.13
Width 2.02 0.618 1.06
Height 3.17 1.24 1.27
Norm 4.32 4.89 1.99
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Figure 8.16. UKF Levenberg Marquardt Batch Estimation of Position.
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Figure 8.17. UKF Levenberg Marquardt Batch Estimation of Velocity.
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Figure 8.18. UKF Levenberg Marquardt Batch Estimation of Attitude (MRPs).
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Figure 8.19. UKF Levenberg Marquardt Batch Estimation of Attitude (Euler Angles).
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Figure 8.20. UKF Levenberg Marquardt Batch Estimation of Angular Velocity.
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Figure 8.21. UKF Levenberg Marquardt Batch Estimation of Shape/Size Parameters.

110



0 5 10 15 20 25 30
1.66

1.68

1.7

B
at

ch
 1

 Cost function for Sample Batches

0 5 10 15 20 25 30
0.325

0.33

0.335

B
at

ch
 2

0 5 10 15 20 25 30
0.2314

0.2316

0.2318

0.232

Time (s)

B
at

ch
 3

Figure 8.22. UKF Levenberg Marquardt Batch Cost.
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Figure 8.23. UKF Gauss Newton Batch Estimation of Position.
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Figure 8.24. UKF Gauss Newton Batch Estimation of Velocity.
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Figure 8.25. UKF Gauss Newton Batch Estimation of Attitude (MRPs).
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Figure 8.26. UKF Gauss Newton Batch Estimation of Attitude (Euler Angles).
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Figure 8.27. UKF Gauss Newton Batch Estimation of Angular Velocity.
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Figure 8.28. UKF Gauss Newton Batch Estimation of Shape/Size Parameters.
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Figure 8.29. UKF Gauss Newton Batch Cost.
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Chapter 9

Joint Estimation via Bootstrap Particle Filter

This chapter introduces the second solution approach to the combined direct

and inverse problem. The bootstrap particle filter (BPF) uses Bayesian estimation is

to construct the probability density function (pdf) of the state based on all available

information [15]. It uses a recursive algorithm where the required density of the state

and parameter vector is represented with a set of random samples. These samples

are updated and propagated by the filter. This particular filter is not restricted to

systems which are nonlinear or with non-Gaussian distributions [15].

The same general description of the discrete-time nonlinear system used in chap-

ter 5 in Equation (5.3) and (5.4) as shown below. Similarly, w(t) is a Gaussian white

noise process term with zero mean and Q(t) is the covariance, where the measurement

is ỹk and the measurement noise is vk which has a zero mean Gaussian noise with

covariance Rk. The distributions of the mutually independent x0, wk, and vk, are

denoted p(x0), p(wk), and p(vk) respectively. All three distributions are assumed to

be known [14, 15].

xk+1 = f(xk,wk,uk, k)

ỹk = h(xk,uk,vk, k)

Based on the Bayesian approach, the central idea of this algorithm is to build the

posterior density function p(xk+1|Ỹk+1), where Ỹk+1 = {ỹ0, ỹ1, . . . , ỹk+1} is the set

of acquired measurement from time t0 up to and including time tk+1. This pdf can

be found recursively by two steps: prediction and update. It is assumed that the pdf
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p(xk−1|Ỹk−1) at the previous time tk−1 is known. It is possible then, to find the prior

pdf of the state at time tk by means of the system model.

p(xk|Ỹk−1) =

∫
p(xk|xk−1)p(xk−1|Ỹk−1)dxk−1 (9.1)

where p(xk|xk−1) is the probabilistic model of the state evolution. It is a Markov

model and is defined by the system equations and the known statistics of wk−1

p(xk|xk−1) =

∫
p(xk|xk−1,wk−1)p(wk−1|xk−1)dwk−1 (9.2)

It is assumed that p(wk−1|xk−1) = p(xk−1), so that the following expression is ob-

tained, where δ(.) is the Dirac delta function. The delta function results because if

xk−1 and wk−1 are known, then xk can be obtained by Equation (5.3).

p(xk|xk−1) =

∫
δ (xk − fk−1(xk−1,wk))× p(wk−1)dwk−1 (9.3)

When a measurement ỹk is received at time tk, then it can be used to update the

prior by means of Bayes rule. Equation (9.4) is the the update equation, where the

measurement yk modifies the previously predicted prior to obtain the posterior state.

p(xk|Ỹk−1) =
p(yk|xk)p(xk|Ỹk−1)

p(yk|Ỹk−1)
(9.4)

The normalizing denominator is given by Equation (9.5) and the conditional pdf

p(xk|yk) is defined by the measurement model and the known statistics of vk.

p(yk|xk) =

∫
δ (yk − hk(xk,vk)p(vk)dvk) (9.5)

9.1 Bootstrap Recursive Algorithm

The recursive prediction and update steps presented above have very few ana-

lytic solutions. The Kalman filter for instance provides a solution for a linear system
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with Gaussian process and measurement noise of know variance [15]. The BPF pro-

vides an approximate solution based on Monte Carlo methods. This approximation

uses a set or random samples to represent each probability density function. For a

given set of random samples x
(j)
k−1 drawn from p(x), j = 1, . . . , N , the distribution

can be approximated as shown in Equation (9.6).

p(x) ≈ 1

N

N∑

j=1

δ
(
x− x(j)

)
(9.6)

An arbitrary integral, or expectation, with respect to the pdf p(x) can be approxi-

mated by Equation (9.7).
∫

f(x)p(x)dx ≈
N∑

j=1

f(x(j)) (9.7)

Because perfect Monte Carlo sampling assumes the samples to be drawn directly

from the distribution p(x), and this is seldom possible, the BPF uses a technique

known as importance sampling. Importance sampling draws x
(j)
k−1, j = 1, . . . , N

samples from an importance pdf q(x). Each sample is weighed by a corresponding

importance weight w(j). These weights simultaneously satisfy the relations shown in

Equation (9.8) to account for the discrepancy between the importance function q (x)

and the target distribution p (x).

w(j) ∝ p
(
x(j)

)

q (x(j))
N∑

j=1

w(j) = 1 (9.8)

The importance integral is approximated as shown in Equation (9.9)
∫

f(x)p(x)dx ≈
N∑

j=1

w(j)f(x(j)) (9.9)

The importance function is assumed to be of the form shown in Equation (9.10),

where X
(j)
k =

{
x
(j)
0 ,x

(j)
1 , . . .x

(j)
k

}
is the set of vectors up to an including tk.

q(X
(j)
k+1|Ỹk+1) = q(X

(j)
k |Ỹk)q(x

(j)
k+1|X

(j)
k+1, Ỹk+1) (9.10)
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The particles at time tk+1 are drawn from the importance density function

q(x
(j)
k+1|X

(j)
k+1, Ỹk+1). The importance weights on x

(j)
k+1 are evaluated using Bayes’

rule [14]

p(X
(j)
k+1|Ỹk+1) =

p(ỹk+1|X(j)
k+1, Ỹk) p(X̃

(j)
k+1|Ỹk)

p(ỹk+1|Ỹk)

∝ p(ỹk+1|x(j)
k+1) p(x

(j)
k+1|x

(j)
k ) p(X

(j)
k |Ỹk) (9.11)

Consequently, the weights at tk+1 are obtained from substituting Equation (9.11) into

(9.8), to obtain the expression shown in Equation (9.12), where q(x
(j)
k+1|X

(j)
k , Ỹk+1) =

q(x
(j)
k+1|x

(j)
k , ỹk+1) for a Markov process.

w
(j)
k+1 = w

(j)
k

p(ỹk+1|x(j)
k+1) p(x

(j)
k+1|x

(j)
k )

q(x
(j)
k+1|X

(j)
k , Ỹk+1)

(9.12)

The importance function in the BPF is chosen to be the prior p(xk+1|x(j)
k ), which

is independent of the previous particle trajectories before tk and the measurements.

As a result, the importance weight relation shown in Equation (9.12) reduces to

w
(j)
k+1 ∝ w

(j)
k p(ỹ|x(j)

k+1) (9.13)

9.1.1 Prediction Step

The prediction step takes the particles at time tk and propagates them via the

dynamics model, where N samples w
(j)
k of the process noise are drawn according to

p(wk), denoted w
(j)
k ∼ p(wk), j = 1, . . . , N . In this step, the particle’s importance

weights remain unchanged.

x
(j)
k+1 = f(x

(j)
k ,w

(j)
k ,uk, k) (9.14)
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9.1.2 Update Step

The update step consists of obtaining the new importance weights for each

particle from the likelihood function, where ← denotes the replacement.

w
(j)
k+1 = w

(j)
k p

(
ỹk+1|x(j)

k+1

)
(9.15)

w
(j)
k+1 ←

w
(j)
k+1∑N

j=1w
(j)
k+1

(9.16)

The likelihood function depends on the particular application, for this work the like-

lihood is shown in Equation (9.19), where

e
(j)
k+1 ≡ ỹk+1 − h(x̂

(j)
k+1) (9.17)

P
e(j)
k+1 ≡ E

{
e
(j)
k+1(e

(j)
k+1)

T
}

(9.18)

p
(
ỹk+1|x(j)

k+1

)
=

1

det
[
2πNP

e(j)
k+1

]1/2 exp
[
1

2
(e

(j)
k+1)

T
(
P

e(j)
k+1

)−1

e
(j)
k+1

]
(9.19)

The mean and covariance at time tk are then defined as shown in the equations bellow

x̂k ≈
N∑

j=1

w
(j)
k x

(j)
k (9.20)

Pk ≈
N∑

j=1

w
(j)
k x̃

(j)
k x̃

(j)T
k (9.21)

where x̃
(j)
k = x

(j)
k − x̂k.

9.1.3 Resampling

For an importance function of the form shown Equation (9.9) the variance of

the importance weights in sequential importance sampling will only increase over

time. This will lead to all but one particle to have negligible weight. Moreover, the

previously mentioned prediction and update steps are part of a sequential importance

sampling algorithm. Consequently, a resampling step can be introduced to address
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the degeneration of the particle’s importance weights. This step will discard the

particles that have negligible weight. Often a roughening step is also included, which

increases the particle diversity. It should be noted that these steps are not necessary

for the filter to converge, but do improve the BPF performance.

For applying resampling on every cycle Equation (9.4) reduces to Equation (9.22)

w
(j)
k+1 = p(ỹ|x(j)

k+1) (9.22)

The purpose of this step is to prevent the effective sample size Neff from being too

small. The effective sample size is defined as shown in Equation (9.23)

Neff =
1

∑N
j=1(w

(j)
k+1)

2
(9.23)

This step is implemented by drawingN samples (with replacement) from
{
x
(j)
k+1, w

(j)
k+1

}

to yield N equally weighed particles,
{
x
(j)
k+1, 1/N

}
, where the number of particles

remains unchanged. There are many resampling approaches, for this application sys-

tematic resampling is utilized as developed in reference [14]. Systematic resampling

uses a cumulative sum element of the weights z
(i)
k+1 as shown below.

z
(i)
k+1 =

i∑

j=1

w
(
k+1j) (9.24)

This method draws a single uniform sample vk+1 from an interval (0, 1], where u
(j)
k+1

is computed for j = 1, 2, . . .N

u
(j)
k+1 =

(j − 1) + vk+1

N
(9.25)
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Then for i = 1 the following steps are performed for j = 1, 2, . . .N to create the

resampled particles [14].

if u
(j)
k+1 ≤ z

(i)
k+1 then

x
(j)
k+1 ← x

(i)
k+1 j ← j + 1

else

i← i+ 1

end

9.2 Numerical Setup

The initial conditions for the simulated true values are shown Table 9.1. These

initial conditions are the same as the ones used for the UKF experiments. The object

is selected to be at an attitude that will provide good observability as it orbits. As

it was shown in chapter 6, an initial condition which leads to the observer having

visibility of all faces provides better observability. In a similar fashion to the UKF

experiments, these true values are also used to produce synthetic measurements for

azimuth, elevation, and light curve.

The initial conditions for the experiment are shown in Table 9.1. The estimator

initial conditions were set as shown in Table 9.2, note that these values are slightly

larger than those used for the UKF experiment. The synthetic measurements were

created using zero-mean white noise error process with standard deviation of 2 arc-

seconds for elevation and azimuth. The light curve measurement has an error process

with standard deviation of 0.1 magnitude. The measurements were acquired every 10

seconds. The synthetic measurements were created using the Cook-Torrance BRDF.

This same model was used for the estimator measurement model. The results shown

were obtained using 800 particles and resampling at each cycle, and are the averaged

results of 10 runs.
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Table 9.1. Initial Conditions for BPF Joint Estimation

State/Parameter Initial Value (unit)

Position r0 [4764.48 4764.48 0]T (km)

Velocity v0 [−5.2533 5.2533 1.9906]T (km/s)

Angular Velocity ω0 [0 0.00262 0]T (rad/s)

Attitude q0 [0.23929 0.18930 0.03813 0.95154]T

[φ0 θ0 ψ0] [30 20 10]T (deg)

Shape/Size p0 [5 3 4]T (m)

Table 9.2. Initial Error and Error Covariance for BPF Joint Estimation

State/Parameter Initial Error (unit) Error Covariance (unit)
Position r0 10 (km) 102 (km2)
Velocity v0 0.1 (km/s) 0.12 (km2/s2)
Angular Velocity ω0 60 (deg/hr) 602 (deg2/hr2)
Attitude [φ0 θ0 ψ0] 5 (deg) 52 (deg2)
Shape/Size p0 0.2 (m) 0.22 (m2)

Figures 9.1–9.4 show the values for the true position, velocity, attitude, and

angular velocity. Similarly to the UKF joint estimation, the perturbation effects for

drag, solar radiation pressure, gravity gradient, and aspherical Earth were included

as shown in Figures 9.5 and 9.6.
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Figure 9.1. BPF Joint Estimation True Object Position.
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Figure 9.2. BPF Joint Estimation True Object Velocity.
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Figure 9.3. BPF Joint Estimation True Object Euler Angles.
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Figure 9.4. BPF Joint Estimation True Object Angular Velocity.
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Figure 9.5. BPF Joint Estimation Perturbation Accelerations.
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Figure 9.6. BPF Joint Estimation Perturbation Torques.
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9.3 Results and Discussion

The BPF was used to estimate the states and parameters for the combined

direct and inverse problem. Figure 9.7 shows the estimation of the position. The

3σ bounds for this state are very large, although the state error for the y and z

components remains somewhat small. It should be noted that the estimation of the

x position component is poor. On the contrary, the estimation of the velocity for

all three components is quite good as shown in Figure 9.8, although the error in the

x component touches the 3σ bound it reduces. The bounds grow and reduce with

the change in error, but remain bounded. The angular velocity estimation show in

Figure 9.9 for MRPs and starts with very small errors of all three parameters but the

errors begin to grow every time the MRPs change phase. A similar behavior is seen

in Figure 9.10 for Euler angles, where the errors grow after the 800 seconds. This

is particularly clear for the yawing angle ψ where the tracking is out of sync and

the errors grow quickly. Nevertheless, the estimation of the angular velocity is very

good, the errors remain small and bounded through the entire simulation. Finally,

the estimation of the shape/size parameters is good for the length and height where

it remains below 5 centimeters for the entire simulation. The width parameter settles

at a value of 20 centimeters. Although the results for the position and attitude are

are not as good as the ones obtained from the UKF experiments, the BPF is able

to estimate the velocity and angular velocity very well. Moreover, two of the object

parameters are estimated well. The weights some sample times have been sown in

Figure 9.14, to show the effect of resampling. Where the weights are well distributed

over all the particles.

Table 9.3 shows the estimation error for all joint estimation approaches: UKF,

UKF-bach, and BPF. It can clearly be seen that the UKF-batch with Gauss-Newton

algorithm performs the best for the estimation of all the the shape/size parameters.
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Figure 9.7. BPF Joint Estimation of Position.
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Figure 9.8. BPF Joint Estimation of Velocity.
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Figure 9.9. BPF Joint Estimation of Attitude (MPRs).

Nevertheless, this is a computationally expensive approach. Moreover, the BPF is able

to estimate one of the parameters very well, but fails to have that same performance

with the other two. The performance of this filter could be greatly improved with a

larger number of particles, as the number of states is large. The performance could be

further improved with the added step of roughening, to increase particle diversity. The

BPF, similarly to the UKF-batch, is a computationally expensive algorithm. Given

the computational price paid to achieve the results yielded by the BPF, it might

not be a wise choice as an estimator for this application. The UKF estimates all

three parameters with reasonable errors. This approach is the least computationally

expensive.

The estimation of the other states is comparable for the UKF and UKF-Batch

estimation, where the position, velocity, angular velocity, and attitude are well es-

timated by all three approaches. On the other hand, it is not able to estimate the
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Figure 9.10. BPF Joint Estimation of Attitude (Euler Angles).

Table 9.3. Shape/Size Parameter Final Estimation Error (cm) Summary

p UKF UKF-Batch LM UKF-Batch GN BPF

Length 2.14 4.69 1.12 0.417
Width 2.02 0.61 1.05 7.49
Height 3.16 1.23 1.26 5.88
Norm 4.32 4.89 1.99 9.53

position and attitude as closely as the UKF based approaches. For this particu-

lar application, the UKF has a good performance across all states and parameters

and is the least computationally expensive, making it the preferable approach. If

computational power is not an issue, the UKF-Batch with the Gauss-Newton cost

minimization should be the preferred approach. It should be noted that for all of

these experiments the ‘inverse crime’ is committed. As it was shown in the results for
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Figure 9.11. BPF Joint Estimation of Angular Velocity.
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Figure 9.12. BPF Joint Estimation of Shape/Size Parameters.
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Figure 9.13. BPF Joint Estimation of Shape/Size Parameter (no 3σ bounds).
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Figure 9.14. BPF Joint Estimation Importance Weights.
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chapter 7, if a different model is chosen for the synthetic measurements the results

will worsen for all experiments.
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Chapter 10

Summary and Closing Remarks

This work has shown a comprehensive solution to the combined inverse and

direct problem for the estimation of states, shape, and size of a resident space object.

Particular detail was given to the modeling of the dynamics, perturbation models,

and the measurement models. Sensitivity and observability analyses were performed

for the light curve measurement with respect to the angular velocity, attitude, and

shape/size parameters. Moreover, three different estimation technique experiments

were performed.

A detailed description of the dynamics and kinematics of the resident space

object was developed. This model included perturbations due to atmospheric drag,

solar radiation pressure, gravity gradient, and aspherical Earth. These models were

included as functions of the shape/size parameters of the object in the form of surface

area, mass, and inertia matrix.

An extensive study of the light reflection model used in the light curve model

was done. This allowed the selection of a well suited BRDF model for the purpose

of solving the inverse problem. This light reflectance analysis dealt with a sensitiv-

ity and observability analysis. These studies also yielded insight into the light curve

measurement and the information it contains. Given the results obtained, it was es-

tablished that the light curve measurement does not contain information about the

angular velocity state. Moreover, it was concluded that information regarding this

state is estimated based on the dynamical model given to the estimation algorithm.

The attitude and the shape/size parameters sensitivity and observability was also
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studied. It was shown that the light curve measurement contains significant infor-

mation regarding these states and parameters. Nevertheless, the information in this

measurement can be greatly affected by the geometry of the observation, as well as,

the modeling of the BRDF. The initial conditions, which determine the geometry of

the observation, can cause portions of the object to be hidden from the observer on

Earth. If part of the object is obscured to the viewer, the information regarding these

states and parameters is limited. On the contrary, if the initial conditions allows a

full view of the object, the light curve is rich in information and the estimation of

these states and parameters will improve significantly.

The first set experiments addressed the inverse problem, where the angular

velocity, attitude, and shape/size parameters are estimated while the position and

velocity of the object are known (i.e. the orbit is known). The solution to this problem

also involved the investigation of the ‘inverse crime’ (model integrity), where the same

light curve model is used to produce the synthetic measurements and estimation

measurement model. This study yielded results that clearly show that if the so called

‘inverse crime’ is committed, the estimation of the mentioned states and parameters

will be significantly better than if two distinct models are used. Consequently, if

the same model is used for the synthetic measurements and light curve inversion the

problem will be less ill posed and the results will be more optimistic than what is to

be expected by using ‘real’ measurements.

The second set of experiments dealt with the estimation of the object’s states

and parameters for the combined direct and inverse problem using two estimation

algorithms: the unscented Kalman filter and the bootstrap particle filter. The UKF

filter has the capability of dealing with nonlinear dynamic models and measurement

models. Three experiments were performed for the estimation. The first was a joint

estimation of all states and parameters by the UKF. The second and third exper-
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iments implemented the UKF along with a batch estimation loop. The shape/size

parameters were fed to a batch estimation loop which reduced a cost function. The

cost reduction was performed using two different methods: Levenberg-Marquardt and

Gauss-Newton. It was shown that the Gauss-Newton method based batch estima-

tion experiments yielded better results for the shape/size parameters than the other

two UKF methods. This result indicates the Gauss-Newton batch estimation is a

better estimation tool than the UKF alone. Nevertheless, it should be noted this

methodology is significantly more computationally expensive than the UKF.

The second estimation approach for the combined problem was the BPF. This

filter uses a set of random samples to represent the probability density function of

the states. Similarly, to the UKF and UKF-Batch this filter was able to estimate the

velocity and angular velocity very well. Nevertheless, it was not able to perform as

well in the estimation of the position and attitude. Moreover, the estimation of one of

the shape/size parameters was better than the estimate of the UKF and UKF-Batch

but the other two shape/size parameters were worse. This can be attributed to the

number of particles used. Increasing the number of particles could significantly im-

prove the filter performance. Although this may increase the computational cost, the

process can be easily parallelized to mitigate the effect of a large particle population.

This filter was implemented to present an alternative nonlinear estimation technique.

Further study and improvement of this scheme is left for future work.

The work presented here has demonstrated that the combined direct and inverse

problem can be efficiently solved by various estimation techniques. Although the

information regarding the attitude and shape/size parameters contained in the light

curve can be limited, the estimation algorithms presented here are capable of reaching

good estimation values for these states and parameters. Furthermore, it should be
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noted that the geometry of the observation, as well as, the light curve model integrity

greatly affect the estimation of the attitude and shape/size.

Finally, future work should focus on the development of more efficient and phys-

ically accurate light curve models. As previously mentioned, the current models are

based on computer graphics rendering. Better light curve models could significantly

improve upon the results of the inverse problem. This is especially true when dealing

with acquired light curves. In addition, further research should be done regarding the

statistics of this system. The solutions for the inverse and direct problem up to now

have assumed that the statistics of the system are Gaussian. Nevertheless, this could

be a gross simplification.
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APPENDIX A

Light Curve BRDF Analysis Tables and Plots
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A.1 Light Curve Material Data

The tables below contain the material parameters obtained by reference [1]. The

diffuse red, green, and blue are dr, dg, and db respectively. The specular components

are denoted sr, sg, and sb. The model specific parameters are listed as p0, p1 and p2.

Table A.1. Brushed Aluminium Experimental Data Model Parameters [1]

Model dr dg db sr sg sb p0 p1 p2
Wa 0.0357 0.0304 0.0251 0.0708 0.0537 0.026 0.00845 0 0
Wa-Dü 0.0418 0.0356 0.0272 0.0461 0.0344 0.017 0.00785 0 0
Bl-Ph 0.0335 0.028 0.0244 0.0243 0.0187 0.00893 2.43e4 0 0
La 0.0335 0.0287 0.024 0.0759 0.0576 0.0281 -0.577 0.577 7.51e3
Co-To 0.0418 0.0356 0.0273 0.0799 0.06 0.0294 0.59 0.00776 0
He 0.0326 0.028 0.0241 0.0912 0.0693 0.0332 33.1 0.146 14.4
As-Sh 0.0429 0.0363 0.0277 0.0454 0.0341 0.0167 0.999 3.41e4 0

Table A.2. Black Oxidized Steel Experimental Data Model Parameters [1]

Model dr dg db sr sg sb p0 p1 p2
Wa 0.0108 0.00876 0.00596 0.0369 0.0298 0.0194 0.198 0 0
Wa-Dü 0.00929 0.00768 0.00534 0.0265 0.0213 0.0137 0.181 0 0
Bl-Ph 0.0192 0.0156 0.0104 0.00692 0.00559 0.00365 62 0 0
La 0.0264 0.0215 0.0143 0.324 0.257 0.165 -0.608 0.51 72.5
Co-To 0.0186 0.0152 0.0102 0.229 0.182 0.117 0.035 0.19 0
He 0.0194 0.0159 0.0106 0.949 0.757 0.488 4.05 0.481 1.17
As-Sh 0.0165 0.0136 0.00918 0.299 0.237 0.153 0.0488 43.9 0
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Table A.3. Black Plastic Experimental Data Model Parameters [1]

Model dr dg db sr sg sb p0 p1 p2
Wa 0.00357 0.00288 0.00204 0.0315 0.0259 0.0175 0.331 0 0
Wa-Dü 0.00373 0.00309 0.00221 0.0204 0.0166 0.0112 0.32 0 0
Bl-Ph 0.0173 0.0142 0.00972 0.0014 0.00114 0.000769 192 0 0
La 0.0122 0.01 0.00692 0.11 0.0894 0.0601 -0.638 0.431 14.1
Co-To 0.00601 0.005 0.00352 0.0939 0.0765 0.0515 0.136 0.325 0
He 0.00635 0.00528 0.00371 0.127 0.103 0.0693 11.9 1.73 2.03
As-Sh 7.2e-5 8.58e-5 0.000196 0.0325 0.0266 0.018 0.903 13.6 0
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A.2 Sensitivity Plots

The plots in this section correspond to the numerical and UKF observation

matrices as derived in section 6.4 for the BRDF models described in section 6.3.

For each of these models a comparison of the observation matrix obtained via the

numerical JacobianHNUM and the UKF based observation matrixHUKF is shown for

the angular velocity, attitude, and shape/size. In addition, plots for the numerically

and UKF based Gramian are shown. Each of these plots are shown for the low

observability case 1 and high observability case 2, as described in section 6.6.

A.2.1 Ward Model
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Figure A.1. Ward Model Angular Velocity Sensitivity.
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Figure A.2. Ward Model Attitude Sensitivity.
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Figure A.3. Ward Model Shape/Size Parameters Sensitivity.
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Figure A.4. Ward Model Numerical based Gramian.
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Figure A.5. Ward Model UKF based Gramian.
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A.2.2 Ward-Dür Model
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Figure A.6. Ward-Dür Model Angular Velocity Sensitivity.
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Figure A.7. Ward-Dür Model Attitude Sensitivity.
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Figure A.8. Ward-Dür Model Shape/Size Parameters Sensitivity.
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Figure A.9. Ward-Dür Model Numerical based Gramian.
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Figure A.10. Ward-Dür Model UKF based Gramian.
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A.2.3 Blinn-Phong Model
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Figure A.11. Blinn-Phong Model Angular Velocity Sensitivity.
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Figure A.12. Blinn-Phong Model Attitude Sensitivity.
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Figure A.13. Blinn-Phong Model Shape/Size Parameters Sensitivity.
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Figure A.14. Blinn-Phong Model Numerical Based Gramian.
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Figure A.15. Blinn-Phong Model UKF based Gramian.
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A.2.4 Lafortune et al. Model
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Figure A.16. Lafortune et al. Model Angular Velocity Sensitivity.
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Figure A.17. Lafortune et al. Model Attitude Sensitivity.
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Figure A.18. Lafortune et al. Model Shape/Size Parameters Sensitivity.
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Figure A.19. Lafortune et al. Model Numerical based Gramian.

0 0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

W
N

U
M

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
−1000

0

1000

M
R

P
s

W
NUM   

g
1

g
2

g
3

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

W
N

U
M

0 0.5 1 1.5 2 2.5 3 3.5 4
−12.8

−12.7

−12.6

−12.5

−12.4

−12.3

−12.2

−12.1

−12

−11.9

−11.8

Li
gh

t C
ur

ve

(a) Case 1

0 0.5 1 1.5 2 2.5 3 3.5 4

2
2.5

3

W
N

U
M

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

0

10

M
R

P
s

W
NUM   

g
1

g
2

g
3

0 0.5 1 1.5 2 2.5 3 3.5 4

2

2.5

3

W
N

U
M

0 0.5 1 1.5 2 2.5 3 3.5 4
−13

−12

−11

Li
gh

t C
ur

ve

(b) Case 2

Figure A.20. Lafortune et al. Model UKF based Gramian.
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A.2.5 Cook-Torrance Model
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Figure A.21. Cook-Torrance Model Angular Velocity Sensitivity.
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Figure A.22. Cook-Torrance Model Attitude Sensitivity.
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Figure A.23. Cook-Torrance Model Shape/Size Parameters Sensitivity.
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Figure A.24. Cook-Torrance Model Numerical based Gramian.
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Figure A.25. Cook-Torrance Model UKF based Gramian.
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A.2.6 He Model
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Figure A.26. He Model Angular Velocity Sensitivity.
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Figure A.27. He Model Attitude Sensitivity.
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Figure A.28. He Model Shape/Size Parameters Sensitivity.

156



0 0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

W
N

U
M

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
−1000

0

1000

M
R

P
s

W
NUM   

g
1

g
2

g
3

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

W
N

U
M

0 0.5 1 1.5 2 2.5 3 3.5 4
−12.4

−12.3

−12.2

−12.1

−12

−11.9

−11.8

−11.7

−11.6

−11.5

−11.4

Li
gh

t C
ur

ve

(a) Case 1

0 0.5 1 1.5 2 2.5 3 3.5 4

2
2.5

3

W
N

U
M

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

0

10

M
R

P
s

W
NUM   

g
1

g
2

g
3

0 0.5 1 1.5 2 2.5 3 3.5 4

2
2.2
2.4
2.6
2.8

3

W
N

U
M

0 0.5 1 1.5 2 2.5 3 3.5 4
−14

−12

−10

−8

−6

−4

Li
gh

t C
ur

ve
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Figure A.29. He Model Numerical based Gramian.

0 0.5 1 1.5 2 2.5 3 3.5 4
1

2

W
U

K
F

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
−1000

0

1000

M
R

P
s

W
UKF   

g
1

g
2

g
3

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

W
U

K
F

0 0.5 1 1.5 2 2.5 3 3.5 4
−12.4

−12.3

−12.2

−12.1

−12

−11.9

−11.8

−11.7

−11.6

−11.5

−11.4

Li
gh

t C
ur

ve

(a) Case 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

W
U

K
F

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

0

10

M
R

P
s

W
UKF   

g
1

g
2

g
3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

W
U

K
F

0 0.5 1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

Li
gh

t C
ur

ve

(b) Case 2

Figure A.30. He Model UKF based Gramian.
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A.2.7 Ashikhmin-Shirley Model
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Figure A.31. Ashikhmin-Shirley Model Angular Velocity Sensitivity.
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Figure A.32. Ashikhmin-Shirley Model Attitude Sensitivity.
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Figure A.33. Ashikhmin-Shirley Model Shape/Size Parameters Sensitivity.
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Figure A.34. Ashikhmin-Shirley Model Numerical based Gramian.
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Figure A.35. Ashikhmin-Shirley Model UKF based Gramian.
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