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Abstract 

MULTIMODAL INTERACTION IN AMBIENT INTELLIGENCE ENVIRONMENTS 

 USING SPEECH, LOCALIZATION AND ROBOTICS 

 

Georgios Galatas, PhD 

 

The University of Texas at Arlington, 2013 

 

Supervising Professors: Fillia Makedon and Gerasimos Potamianos  

An Ambient Intelligence Environment is meant to sense and respond to the 

presence of people, using its embedded technology. In order to effectively sense the 

activities and intentions of its inhabitants, such an environment needs to utilize 

information captured from multiple sensors and modalities. By doing so, the interaction 

becomes more natural as well as accurate and robust. We have focused on 3 aspects of 

such an environment, using speech, localization and robotics. Speech is one of the most 

natural forms of communication for humans. Therefore, it can be used as one of the main 

information sources for deriving the intentions and needs of a person. In our work, we 

have extended the traditional speech recognition paradigm by introducing 3 dimensional 

visual articulation information for recognizing spoken words. The development of our 

system included the capture of a novel dataset, implementation and extended testing 

under a variety of audio-visual noise types, demonstrating the usefulness of 3D visual 

information for this task. Additionally, person localization and identification is of 

paramount importance in a smart environment, since by knowing each person's location, 

her/is actions can be derived and abnormal patterns can be recognized. Our 

implementation conducts person identification by means of RFID. Furthermore, three 

types of input are combined for multi-person localization, namely, skeletal tracking, audio 
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localization and RFID signal strength. The system was deployed and tested in our 

simulated assistive apartment exhibiting high accuracy. Finally, every domestic 

environment changes dynamically over time, creating the need for altering the position, 

orientation and type of sensors used within it. In our approach, we developed a 

framework of sensor bearing robots with the ability to relocate automatically to 

compensate for such a dynamic environment. Their positioning is done in such a way so 

as to maximize coverage. Navigation is carried out using visual information, and 

autonomous placement uses a decentralized algorithm. 
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Chapter 1  

Introduction 

1.1  Problem and Motivation 

Ambient Intelligence (AmI) describes an environment that is sensitive and 

responsive to the presence of people. An AmI environment (AmIE) improves interaction 

of its occupants with the technology that is embedded within its. The AmIE distributed 

technology facilitates everyday activities and assists people in case of need in a natural 

and effective way while the interconnected infrastructure remains unperceivable. The 

inception of such an environment happened not long before the turn of the century, with 

the goal to integrate a number of devices and technologies for fulfilling this goal, leading 

to the first attempt to create such an environment by MIT [1]. Precursors to this concept 

were human-centered [2], ubiquitous/pervasive computing [3] and context-awareness. 

Human-centered computing is the field of study according to which a human is 

affected by computational processes with the intention to improve her/is quality of life [4]. 

The main axes of emphasis for such systems are: 

- Access to resources through interacting with a seamless computing 

infrastructure that allows for changes to the physical or virtual environment. 

These changes should lead to the improvement of the quality of life of the 

person while being unintrusive and conserving her/is privacy 

- Detection of events and episodes (series of events [5]). This should allow for 

the recognition of abnormalities, as well as emergency detection and risk 

prevention. 

- The ability to recognize and adapt to changes of the environment in an on-

line manner, by utilizing monitoring information from static and mobile 

sensors. 
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In other words, the infrastructure must be: 1) embedded (integrated and 

networked devices), 2) context aware (able to identify people and events), 3) 

personalized: (tailored to the user’s needs), 4) adaptive (change in response to the user) 

and 5) anticipatory [6]. 

An environment can be characterized as context-aware when it has the ability to 

utilize sensors to collect and interpret information that enables sensing an entity or a 

situation [7], [8] . This is a relatively recent concept, and it is based primarily on the 

crucial research fields of location awareness and activity recognition [9]. These problems 

can be approached using different modeling techniques [10]. 

 

Figure 1-1: Our vision for a domestic ambient intelligence environment, incorporating 

audiovisual sensors, RFID and robotic platforms. 
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AmI applications face serious challenges concerning data collection, modeling 

and analysis. The main difficulty springs from the multimodal nature of the data captured 

from the diverse human activities. Traditionally, the analysis of the different data has 

been based on numerous methods and techniques, increasing the difficulty of 

conducting, assessing and comparing different experiments and systems. Therefore, 

there is a need to develop appropriate tools that will enable collecting and correlating the 

multitude of human activity data that can be captured in an AmIE by a number of 

sensors. Therefore, the main focus of this work is to develop tools and methods towards 

a smart system that makes communication and interaction between humans and AmIEs 

easier, seamless and intuitive, while enhancing context-awareness. 

1.2  Approach and Contributions 

One of the most natural forms of communication for humans is speech. 

Therefore, a decisive step for improving interaction in an AmI environment is through 

Automatic Speech Recognition (ASR). In our work, we have developed a novel 

multimodal ASR system that in addition to audio, utilizes 3-D visual lip movement 

information captured by the Microsoft Kinect sensor in two languages. Our system goes 

beyond the traditional audio-visual ASR (AVASR) paradigm by being the first to 

incorporate depth information from the Kinect. This novel system utilizes 3 streams of 

information, namely audio, planar video and depth information, and is described in 

Chapter 2. Initially, we present the methodology followed to collect a connected digit 

database using multiple sensors. This database contains two parts, one in English and 

one in Greek, with the former comprised of 4500 digits uttered by 15 speakers and the 

latter, 2200 digits by 6 speakers. At the time captured, this was the only database of its 

kind, utilizing a structured light sensor for AVASR, and the only AV digit corpus for 

speech recognition in Greek. The implementation of the system incorporated the use of 
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the Viola Jones detector as a visual front-end, followed by the use of the extraction of 

appearance based features and a two stage LDA for feature selection. Decision fusion 

Hidden Markov Models were used for data fusion of the audio, video and depth streams. 

We conducted a large number of experiments in both languages. The methodology 

followed deviates from the traditional paradigm by incorporating not only audio noise, but 

also four different types of visual noise to our data, in order to test the system’s 

robustness as well as the potential of 3D lip information to AVASR. Our system exhibited 

high word recognition accuracy (99.02%) when utilizing all three streams. In addition, 

depth information was found to increase recognition performance especially for low to 

medium audio SNR values. Furthermore, the use of the visual modality containing depth 

information in conjunction with decision fusion resulted in an average increase of 22.1% 

when compared to an audio-only recognizer. Thus, our experiments proved the 

usefulness of 3D visual information from the Kinect for the AVASR task in both languages 

and the effectiveness of our system’s design. 

In addition to the communication aspect of an AmI environment, accurate and 

robust location-awareness is of paramount importance for context-awareness. The two 

main facets of location-awareness are person identification and localization. In Chapter 3 

we present the development of a novel system for simultaneous multimodal, multi-person 

identification and localization. Our unintrusive system uses three different modalities in 

order to identify and track multiple people, namely RFID received signal strength, skeletal 

tracking from depth images and sound source localization. The data is captured by 2 

Antennas and 2 Kinect sensors respectively, deployed at the corners of a simulated 

apartment to continuously track and identify its occupants, thus enabling activity 

monitoring. More specifically, skeletal tracking is carried out using the Kinect sensor's 3D 

depth images and sound source localization is conducted utilizing microphone arrays of 2 



5 

such sensors, to deduce accurate location information. At the same time, the video 

information is not captured, making this approach less intrusive than using video 

cameras. RFID is used mainly for discerning between users and also for providing a 

rough estimate of their location by means of the signal strength indicator, enabling 

mapping the location information from the Kinect sensors to the identification events of 

the RFID. Our system was evaluated in a real world scenario involving the simultaneous 

real-time identification and location estimation of 4 individuals. Our goal was to identify 

and map the location of each person in a simulated apartment setting at a detailed level 

that would allow inference of conducted activities. During our experiments, it 

demonstrated high robustness and multi-person localization accuracy exceeding 90% 

using the Kinect, which constituted the most accurate source for person location 

information. The promising results attained, showed the great prospect of using the RFID 

and Kinect sensors jointly to solve the simultaneous identification and localization 

problem. 

In order to satisfy the requirement for adaptability in AmI, the entire monitoring 

infrastructure that we have described so far should be able to change dynamically over 

time to account for the changes of the environment. This fact creates the need to alter the 

position, orientation and type of sensors used. In Chapter 4, we present the development 

of a novel system that optimally positions a number of sensor bearing robots with the 

ability to relocate them automatically to compensate for such a dynamic environment 

allowing their use for event recognition and guidance. The existence of more than one 

robot can ensure more effective monitoring capabilities and responsiveness in case of 

need by the user. In such a case, the problem of positioning the robots in the apartment 

is of utmost importance, since a fully automatic and efficient algorithm must be used to 

ensure effective and optimal coverage of the monitored space by the robots' sensors, 
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while taking into account both the layout of the space and the characteristics of the 

sensors. Therefore, we utilized a tool for sensor placement and system monitoring that 

allows for designing the environment layout, defining crucial areas and updating the 

position of the robots dynamically. Placement of the robots is done by means of the 

Extended Max Sum Decentralized Coordination (EMSDC) algorithm, in such a way so as 

to maximize coverage and account for changes in the environment and detected events. 

The operation pipeline for the system would involve the definition of the apartment layout 

and the areas of high importance, creating a “critical area map”. After these regions, as 

well as the number of robots available have been defined, the tool uses the EMSDC 

algorithm to define the number of the robots and position of each one in the different 

areas of the apartment. Our system was based on the prototype assistive-guide robot 

eyeDog, developed initially to provide the visually impaired with autonomous vision-

based navigation and laser-based obstacle avoidance capabilities. The components of 

the robot are the Create robotic platform (iRobot), a net-book, an on-board USB webcam 

and a LIDAR unit. The camera is used as the primary sensor for the navigation task; by 

means of vanishing point estimation. The controller module steers the robot utilizing a 

PID controller, which guarantees that the robot moves following the direction of the path. 

While moving, the robot uses the LIDAR for obstacle avoidance. Most related research 

has focused on vehicle traffic instead of indoors environments, and similar 

implementations utilize and RFID technology for navigation purposes. The novelty of this 

implementation is the use of RANdom SAmple Consensus (RANSAC) with adaptive 

thresholds to estimate the vanishing point of the visual scene as well as the fusion with 

the laser data in order to avoid obstacles while navigating. During the evaluation phase, 

the eyeDog robot proved to successfully navigate on a given path and avoid obstacles. 

Furthermore, our novel framework for optimal assistive robot placement enabled robots 
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incorporating a variety of different sensors to navigate and effectively monitor an 

apartment given its layout, the importance of different rooms and the user’s preferences. 
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Chapter 2  

Multimodal Automatic Speech Recognition 

2.1  Introduction and Related Work 

Human speech constitutes one of the most natural forms of communication; 

therefore, Automatic Speech Recognition (ASR) has been drawing the ever-growing 

interest of the research community. The incorporation of visual information for ASR has 

been utilized as a means for recognition robustness, enabling natural, speech-based 

human-computer interaction. The benefits that spring from this approach are 

straightforward; weaknesses of one modality are offset by the strengths of another, 

resulting in better performance. In this chapter, we investigate the use of 3D visual 

information captured by the MS Kinect for the task of audio visual automatic speech 

recognition in two languages. We present our novel system that utilizes information from 

three streams, namely audio, planar video and depth information. This system employs 

appearance based visual features and LDA for feature selection, as well as decision 

fusion HMMs for statistical ASR. We also demonstrate the data capturing methodology 

used to collect our database using multiple sensors. We have conducted extensive 

experiments on our system in both English and Greek. Our methodology deviates from 

the traditional experimental paradigm by incorporating a variety of audio-visual noises in 

order to test the system's robustness. Our results show that depth information from the 

Kinect benefits lip reading performance and that 3D visual information increases word 

accuracy considerably, in comparison to conventional audio-only ASR in both languages. 

The joint use of acoustic features and visual information extracted from the 

speaker's mouth, as in the Audio-visual speech recognition (AVASR) paradigm, has been 

investigated in the literature and found to increase ASR accuracy and robustness in the 

presence of acoustic noise [1] - [13].Typically, the incorporated visual information is 
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extracted from planar video data of the speaker’s face, captured in the visible spectrum 

and results in considerable recognition improvements, when combined with noisy audio 

information within a two-stream classifier fusion framework. Nevertheless, in this 

traditional paradigm useful 3D visual speech articulation information from the speaker is 

not utilized. Few only attempts have been made that deviate from this paradigm, 

employing multiple cameras to capture the speaker's face, with an increase though in 

hardware cost and software complexity. 

A crucial requirement for designing an ASR system is the availability of 

appropriate corpora that allow investigating the various aspects of the research problem 

of AVASR. A number of audio-visual datasets exist in the literature. One of the most 

popular ones is CUAVE, which is a database of isolated and connected digits (0-9) in 

English uttered by 36 subjects [14]. Other databases include Tulips1, a 12-subject 

database in English of digits 1-4 [15], DAVID, a database of 31 speakers which includes 

digits, alphabets, and vowel-consonant-vowel (VCV) utterances [16] and XM2VTSDB 

including 295 speakers uttering 2 sequences of digits and a sentence each [17]. There 

are also some databases where stereo-cameras were used to capture the 3D information 

of the speaker’s face. Such a database is AVOZES which includes digits 0-9, VCV, CVC 

utterances and 3 sentences by 20 speakers in Australian English [18], later used in [19] 

for 3D lip tracking. In [20], a Bumblebee stereo-camera is used for collecting the 

WAPUSK20 database that consists of stereoscopic video and 4-channel audio of 20 

speakers uttering 100 sentences in English. Finally, the AV@CAR database is a 

multimodal corpus of in-vehicle videos in Spanish, which provides 6 pictures of each 

subject in order to reconstruct the 3D textured mesh of the speaker’s face [21]. In our 

work, we have followed an alternative approach, aiming to capture 3D visual speech 

information. Therefore, we move beyond the traditional visual stream paradigm, by 
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incorporating facial depth data, captured by a novel multimodal device, the Microsoft 

Kinect [26], [27]. We combine this data with the audio and video streams, thus employing 

facial depth information. Our database is collected using multiple audio and visual 

sensors. Among them, of particular interest is the use of a novel, popular and affordable 

device, the Microsoft Kinect, that operates based on the structured light method [22], 

aiming at capturing 3D information of the speaker’s face. No other such database that 

uses the structured light technique exists for AVASR. In addition to the depth video, the 

corpus also contains traditional color video, from both the Kinect and an HD digital video-

camera. Furthermore, the first AV digit corpus in Greek was captured as part of our 

database. 

Another important aspect of our effort is related to extracting informative features 

from the visual and depth streams. For this purpose, various feature selection and 

transformation techniques have been adopted in the literature. Various schemes have 

been proposed, such as, the use of genetic algorithms for feature selection and principal 

component analysis for feature transformation [23]. Appearance based features, obtained 

from the discrete cosine transform (DCT) of the mouth region-of-interest (ROI), have 

been employed in our approach. A straightforward feature selection method of the 

resulting DCT coefficients is the use of feature energy as a measure of information 

content [24]. According to this technique, features with higher energy values over time 

are more informative, and thus their selection based on energy sorting can be effective. 

The process is further facilitated by the use of linear discriminant analysis (LDA) that has 

been observed to benefit automatic speech recognition performance [25]. In our work, 

LDA is applied both within each frame and across temporally adjacent feature frames to 

capture dynamic speech information. Furthermore, this two-stage LDA is also applied on 
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the depth data, after appropriately mapping the tracked ROI from the traditional video to 

the depth data stream. 

The robustness of our system was investigated in an extended number of 

experiments not only under the mainstream audio noise conditions, but also under much 

less studied visual noise conditions [28], exploring the potential of 3D lip reading 

information to AVASR. In particular, we consider four types of visual noise that can be 

encountered in typical application scenarios of AVASR, such as degraded contrast and 

brightness conditions, as well as Gaussian and block noise resulting from sensor or 

transmission channel failures [29]. We also report experimental results on the two 

different languages of our database, English and Greek. The resulting multisensory, 

multimodal AVASR system has been demonstrated to yield superior performance when 

using the additional modalities for the ASR task across both languages. 

 
Figure 2-1 The Microsoft Kinect device indicating the location of the various 

sensors, IR emitter and tilt motor 

2.2  Data Acquisition Hardware and Setup 

Multiple devices were used during the data collection process in order to capture 

the different types of data. More specifically we used a High Definition video-camera, an 

external voice recorder, and the MS Kinect. 
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Figure 2-2: The PrimeSensor device reference design, showing the distance 

measurement configuration, color image sensor and audio input [30]. 

2.2.1  Microsoft Kinect 

The Microsoft Kinect (shown in Figure 2-1 ) is a novel device developed mainly 

for gesture recognition. It is based on the PrimeSensor device design [30] shown in 

Figure 2-2 and in addition to VGA resolution video (640x480 pixels), it can also capture 

depth images of the same resolution. In order to capture depth images a laser, an IR 

camera, and the structured light methodology are used (Figure 2-3). This technique 

works as follows; first, the laser beam passes through a grating, where it is split into 

many different beams The beams are then reflected from an object in the device's field of 

view (FOV) and captured by an infra-red sensor, making it possible to calculate the 
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distance of the object using triangulation [22]. The effective range of the depth camera 

hardware of the first generation Kinect is 2.3-20ft. Thus a minimum distance between the 

sensor and the speaker must be maintained at all times, since too short of a distance can 

prohibit distance measurements from being captured. In our experimental setup, the 

video and depth streams were 640x480 pixel, 24-bit RGB at 20fps and 640x480 pixel, 11-

bit at 20 fps respectively. Since at the time of the data collection there existed no 

interface for the Kinect's microphones through USB, we used a high quality external 

voice recorder for capturing audio. 

 

Figure 2-3: The structured light methodology for distance estimation through triangulation 

[22]. 
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2.2.2  Other Devices Used 

In addition to the Kinect, we used a Zoom H4 voice recorder and a Cannon Vixia 

HF100 HD camera. The voice recorder incorporated a pseudo X/Y condenser 

microphone setup which exhibits nearly uniform directionality and relatively flat frequency 

response. Its specifications allowed capturing 24-bit 96Khz sound in 2 external tracks but 

for our experiments we captured sound in stereo 16-bit 44.1Khz PCM format, which is 

more than adequate for voice signals. The digital video-camera captured HD 1080p video 

at 29.97 fps in MPEG TS format. 

2.2.3  Setup 

All three devices were used to collect audio and video data. The Kinect sensor 

has two cameras, one IR camera for measuring the distance and an RGB camera, that 

are 1 inch apart. In order to minimize lateral disparity, we rotated the whole device by 90 

degrees. Furthermore a calibration pattern (chessboard) was captured from various 

angles which could be used for calculating precisely the correspondences between the 

RGB and the depth image. The Kinect was placed at approximately 2.95 ft. from the 

speaker's mouth, because of the range restrictions of the depth sensor. The HD camera 

was placed as near as possible to the Kinect’s axis, in order to capture images as much 

as possible with the same angle as the Kinect. The voice recorder was placed between 

the other two devices facing the speaker. A monitor behind the devices prompted the 

speaker to utter specific number sequences. The position of the monitor ensured that the 

subject was facing the cameras while speaking. The whole capturing and prompting 

process was automated and controlled using appropriate Perl scripts. The devices and 

setup can be seen in Figure 2-4. 
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Figure 2-4: The data collection process displaying the devices (top) and 

configuration (bottom). 



16 

 

Figure 2-5: An overview of the architecture of our multimodal AVASR system with details 

on the visual front-end and feature extraction. 

2.3  Theory and System Architecture 

Our system is composed of the following modules: 1) the visual front-end, 

implementing the region-of-interest detection, 2) the feature extraction and transformation 

module and 3) the statistical ASR module for model training and testing on features fused 
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across all data streams. A system overview is depicted in Figure 2-5. The modules are 

described in more detail in the following sections. 

 

a. 

 

b.   c.   d. 

Figure 2-6: Visual front-end and feature extraction. Examples for a. tracking, b. extracted 

ROI, c. 2-D DCT image and d. inverse DCT image. 

2.3.1  Visual Front-End 

The visual front-end can be divided in two parts: i) Face detection and mouth 

localization, and ii) Visual feature extraction. 
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The Viola-Jones detector is used in order to achieve robust and real-time face 

detection. The Viola-Jones algorithm employs AdaBoost, a binary classifier that uses 

cascades of weak classifiers to boost its performance [31], [32]. This detector is utilized 

twice, in our implementation.  Initially, the face in each frame of the video sequence is 

detected and subsequently the mouth portion of the face is detected. By conducting this 

nested detection for the mouth, the number of false positives in the image is decreased, 

while preserving the performance at a high level. In addition, the coordinates of the 

bounding box of the mouth are filtered, to make sure that false detections and abrupt 

movements do not hamper the mouth tracking process. This is achieved by finding the 

median of the coordinates of the bounding box in a 10 frame window. The resulting 

coordinates were also used for locating the mouth region in the depth images, by 

adjusting the coordinates according to the disparity of the two sensors. The final ROI is 

obtained by resizing the respective mouth bounding box to 64x64 pixels. An example of 

this process is depicted in Figure 2-6 a and b. 

2.3.2  Feature Extraction 

The next step after the ROI extraction is to express useful information of the lip 

movement with appropriate features, adequately capturing the speech information 

present in the lip movements. Such features can either focus on the contour of the mouth 

and face (shape-based) [33], or extract information from the whole mouth region 

(appearance-based) [28]. We opted for the latter, using the coefficients of the upper-left 

corner of the Discrete Cosine Transform (DCT) from each video and depth frame [24]. 

We considered the coefficients in the upper-left corner because they have higher energy 

values and thus capture more lip movement information. In addition, we take into account 

only the even coefficients of the DCT, similarly to [34]. This compensates for variations in 

head pose. The number of coefficients we extracted with the aforementioned 
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methodology was 45 for every frame. The resulting coefficients of the ROI as well as the 

inverse transform are shown in Figure 2-6c and d respectively.  

 

Figure 2-7: The feature extraction and selection pipeline utilizing a two-stage LDA used in 

our system for the visual and depth data streams. 

A two-stage LDA based approach depicted in Figure 2-7 was implemented in 

order to improve feature selection, similarly to [25]. In more detail, at the first stage, we 

applied LDA on the 45 features of each frame (“intra-frame”) selecting d<45 features with 

the highest eigenvalues. At the second stage, we concatenated j neighboring feature 

vectors at each side of the vector of the current frame, in order to capture dynamic visual 

speech information. We then applied LDA (“inter-frame”) to the concatenated vector of 

dimension (2j+1)d, selecting a smaller number of features i with the highest eigenvalues. 
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Finally, we calculated their first and second order temporal derivatives, appending them 

to the feature vector, thus yielding features of dimensionality 3i. For the planar visual data 

stream, values d=10, j=3 and i=10 were chosen, whereas for the depth data stream 

values d=15, j=6 and i=10 were preferred. In both cases, the final features were of 

dimension 3i=30. 

The Hidden Markov Model Toolkit (HTK) [35] was used for the audio feature 

extraction, in order to extract the well known Mel-frequency cepstrum coefficients 

(MFCC) as features, along with their first and second derivatives on windowed speech 

segments of 25 ms duration and 10 ms overlap. The resulting feature vector comprises of 

39 elements. As a final step we need to ensure identical feature extraction rates. 

However, the visual feature rate is the same as the frame rate of the video, namely 20 

Hz, whereas the audio feature rate is 100Hz. Therefore, the visual features are 

interpolated temporally so as to reach the same frame rate as the audio features. 

2.3.3  Statistical ASR 

 Hidden Markov models (HMMs) are broadly used in ASR applications for 

modeling speech. The Baum-Welch algorithm is used for training the models and the 

Viterbi algorithm for recognition. In our experiments, we compared the performance of 

two types of models, baseline single-stream HMMs (i.e. feature fusion) and state-

synchronous multi-stream HMMs (two- and tri-stream HMMs, i.e. decision fusion). This 

type of model realizes a decision-fusion approach, by computing the state emission 

(class conditional) probability as a product of the observation likelihoods of every stream, 

raised to a specific exponent λ, as shown in the following equation: 
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This exponent is bound to the reliability of the stream itself and defines the 

contribution of each stream. AVD

to  denotes the tri-modal observation vector 

},,{ D

t

V

t

A

t

AVD

t oooo  , s is one of the three streams, c denotes the HMM state and t is the 

time (frame) of the utterance. 

Thirty context-dependent phonetic models (triphones) were trained in total, each 

having three emitting states in a left-to-right topology (Figure 2-8) and four Gaussian 

mixtures per observation stream and state. HTK patched with the HTS software [36] were 

used for training and testing and a free grammar was used at decoding.  

 

Figure 2-8: An example left-to-right hidden Markov model with 3 emitting states and 2 

non-emitting (1
st
 and 5

th
) [35]. 

2.4  The BAVCD Database 

The BAVCD database was shot at the Vision Capture and Human Tracking 

Laboratory (now MoCap) of the Computer Science and Engineering Department at the 

University of Texas at Arlington. This lab was characterized by three main benefits for 

shooting in: 1) Background noise levels were non-existent throughout the experiment, 2) 
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Illumination was controlled and set to 220 Lux, 3) The background was solid blue, 

allowing easy detection and tracking of the person’s head, as well as enabling the 

projection of different backgrounds using chroma-keying for face detection experiments. 

We collected a connected digit corpus for digits 1-10 in both English and Greek. The 

speakers were therefore asked to read in a continuous manner random 10-digit numbers 

that were displayed on a monitor by an automated script. During each session, the 

speaker was asked to read five 10-digit sequences, repeating the process 6 times (totally 

30 ten-digit sequences). In the English corpus, both pronunciations “zero” and “oh” for 

digit “zero” were used with equal probability (vocabulary size 11) while the Greek 

vocabulary size was 10. Each speaker was given 5 seconds per sequence and the 

recording time for the five sequences was 35 seconds. At the beginning of each 

recording session the speaker was asked to clap her/is hands to facilitate synchronization 

of the various streams. 

A number of challenges were faced and resolved when using the Kinect for 

capturing video. No official software or drivers existed at the time of the experiments for 

interfacing with the device, thus solutions developed by the open-source community had 

to be used. The libfreenect drivers and libraries were employed in order to capture both 

RGB and depth images, but no support for capturing sound existed. Furthermore, the 

actual framerate of the streams was 20 fps, despite the fact that according to the official 

specifications 30fps should be feasible. In addition, although the PrimeSensor has 

provision for hardware synchronization of the streams, the Kinect has no such hardware. 

As a result the two streams are not accurately synchronized and their corresponding 

frame rates fluctuate around 20 fps. 

By recording the capturing timestamp of each frame, synchronization across the 

Kinect video streams was made possible by considering one of the streams as reference 
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(RGB) and normalizing the framerate. More specifically, the normalization process 

involves separating the stream in 10-frame segments and, by using the timestamps, 

calculating the framerate of every segment. Then, for every segment, if the framerate is 

higher than 20, frames are dropped and if it is lower than 20, nearest-neighbor 

interpolation is used to duplicate frames. In most cases either none or one frame needed 

to be either dropped or interpolated thus not harming the smoothness of the video. This 

also allowed for better synchronization with the audio stream as well as more precise 

segmentation of the sequences in each recording. Lastly, the frames of the reference 

stream (RGB) were matched to the frames of the other stream (depth) by finding the 

temporal distance of the two. In the future Dynamic Time Warping could be used for 

better matching of the two streams, but the results using our method are considered 

satisfactory. 

 

Figure 2-9: Example of a collected color video frame (left) and the corresponding depth 

frame (right). 

Due to the fact that many different sensors were used, a clap was captured by all 

sensors at the beginning of the shooting, used to segment the data streams and mainly 

synchronize the Kinect video streams with the audio stream. An alternative approach for 
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synchronizing the HD camera streams is possible, by employing cross-correlation and 

using the Zoom-H4 recorded audio of the audio streams recorded by the two devices. 

2.4.1  The Data 

The database is comprised of a set of connected digit utterances in two 

languages, English and Greek. The total number of speakers was 15, 6 of which were 

native Greek speakers. The English part contains approximately 4.500 connected digits 

from all 15 subjects and the Greek part contains approximately 2200 connected digits. 

The data includes the RGB and depth frames captured by the Kinect, as well as the 

timestamps for each frame, the corresponding audio segments captured by the audio 

recorder and the HD videos from the camera. All the frame sequences, audio and video 

files are segmented at the 10-digit sequence level. The images captured by the Kinect 

are saved as PNG format files because of its good compression rate and lossless nature. 

RGB frames were saved as ordinary three channel 24-bit PNG files, while depth frames 

are single channel with 11-bit accuracy and therefore they were saved as 16-bit 

grayscale PNG files. Since ordinary monitors cannot display images higher than 8-bit per 

channel, in order to display a depth frame either compression of the dynamic range of the 

image or, since we are interested in the mouth region, thresholding the intensity values 

displayed taking into account the intensities of the ROI and expanding this narrow 

dynamic range to 256 values (8-bit) is needed. Such an example is shown in Figure 2-9 

after color mapping for visualization purposes. 

2.5  Experimental Setup 

In this section, we present the experimental setup devised to evaluate the 

performance of our system. More specifically, we conducted extensive experiments in 

two languages, English and Greek, under the influence of audio noise [37]. In addition, 

we carried out experiments using degraded video from both parts of our database. All 
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three streams of the BAVCD database, audio, planar video and depth, were utilized. 

Training was conducted on clean speech, simulating the mismatch between the training 

and testing conditions. As already mentioned, all data utterances were connected digit 

sequences and the vocabulary size was 10 for Greek and 11 for English, since both 

“zero” and “oh” were used for digit “0”. 

In the following subsections we analyze the details for each set of experiments 

and present the corresponding results. 

2.5.1  Noise Types 

The audio samples were corrupted with additive babble noise from the NOISEX-

92 database [38] at several signal-to-noise ratios (SNRs), in order to test the system for 

robustness under the influence of audio noise. 

Additionally, the performance of our three-stream AVASR system was studied 

under the presence of visual noise, thus moving beyond the traditional AVASR paradigm 

where recognition is evaluated under noise in the audio channel alone. In our preliminary 

work [39] we performed such a study, but on a traditional, two-stream AVASR system 

without depth information, studying the effect of three types of visual degradations. Here 

we consider 4 types of visual noise, namely Gaussian noise, block noise, reduced 

brightness and altered visual contrast. These degradations can be viewed as the result of 

faulty transmission channel or camera or could be encountered in low-lighting conditions. 

Since the depth sensor operates independently of lighting conditions, such noise types 

do not affect it, and hence its use is expected to become of increased practical 

significance. 

The effects of the visual degradations considered to the ROI are depicted in 

Figure 2-10. Below, we explain in detail how they are used in our experiments. 



26 

 

Figure 2-10: The various types of visual noise applied on the ROI at different levels and 

their effect. 

2.5.1.1  Reduced Brightness 

Reduced brightness conditions are simulated using the following algorithm:  

i. The mean intensity of the ROI pixels is calculated. 

ii. A percentage of variation is set. 

iii. An intensity variation value is calculated by multiplying the percentage 

with the mean. 
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iv. This value is added to the intensity of every ROI pixel, thus altering its 

intensity. 

v. The new intensity value of every ROI pixel is limited between 0 and 255. 

This procedure alters non-linearly the intensity of every pixel by a constant value, 

but allows comparison of the amount of variation with the mean value of all pixels. 

2.5.1.2  Altered Contrast 

In the case of contrast, we experimented with both overly high and low values, 

since both can have a negative effect on image quality. For simplicity we describe only 

the method used for lowering contrast: 

i. The mean intensity of the ROI pixels is calculated. 

ii. A percentage of variation is set. 

iii. An intensity variation value is calculated by multiplying the percentage 

with the mean. 

iv. For every ROI pixel with intensity lower than the mean, this value is 

added, with the provision that the resulting intensity does not exceed the 

mean. 

v. For every ROI pixel with intensity higher than the mean, this value is 

subtracted, with the provision that the resulting intensity is not lower than 

the mean. 

The mean intensity value is used not only as a reference point, but also as a 

pivot point to vary intensity. For increasing contrast, we follow the same steps, but 

reverse the addition and subtraction conditions and restrict the resulting intensities within 

[0,255], similarly to the case of reduced brightness. 
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2.5.1.3  Block Noise and Gaussian Noise 

 Block” noise and additive Gaussian noise were the other two types of noise 

considered. The former consists of a black square block of predefined size that appears 

randomly inside the ROI at every frame causing loss of lip movement information. The 

sizes of the block that we considered were 8x8, 16x16 and 32x32 pixels. The latter is the 

well known additive Gaussian noise of zero mean and a variable standard deviation of 

15, 30 and 90. 

2.6  Results and Discussion 

In this section, the results acquired from our experiments are presented and 

compared to baseline lip-reading performance without depth information and traditional 

audio-only ASR performance. 

2.6.1  Audio Noise 

2.6.1.1  English 

Initially, the data from 14 subjects of the English part of the database was used in 

a random 2/3, 1/3 split for training and testing, respectively, to conduct multi-speaker 

ASR experiments. 

The effects of the use of depth information in combination with planar video, as 

well as the positive effects of feature transformation using the two-stage LDA are 

presented in the first set of experiments. Table 2-1 clearly depicts the performance 

improvement resulting from the use of the two-stage LDA not only when compared to the 

energy based feature selection method (by 18.13% relative), but also when compared to 

intra-frame LDA alone. In addition, the use of multi-stream HMMs improves significantly 

the ASR accuracy, when compared to baseline feature fusion (single-stream HMMs) 

(Table 2-2), something that becomes more obvious in the next set of experiments. 
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Table 2-1: Word recognition accuracy for different types of feature selection, namely 

energy-based, single LDA and two-stage LDA. 

Visual feature selection Video Depth 

Energy-based 36.91% 18.20% 

Intra-frame LDA 41.51% 19.28% 

Intra and Inter-frame LDA 43.60% 20.72% 

 
Table 2-2: Word recognition accuracy for the single and two-stream HMMs, when using 

video and depth information. 

Fusion Method Video and Depth 

Feature Fusion (single stream HMMs) 41.29% 

Decision Fusion (two-stream HMMs) 44.39% 

 

In the second set of experiments, we consider different combinations of the 

available streams and examine the effects of 3D visual information to ASR when 

combined with the traditional audio stream. In Figure 2-11 we compare the performance 

of audio-only ASR to decision fusion based and feature fusion based ASR employing 

three-stream audio-visual-depth and two-stream audio-depth HMMs. From our results we 

convey that depth information increases ASR performance, especially for medium and 

low SNR values. More specifically, depth information increases audio-only ASR by a 

relative 6% on average (max. 39.7% for SNR=-10dB). In combination with planar video, 

the relative increase reached 22.1% on average (max. 186.4% for SNR=-10dB). We can 

also observe, in the case of tri-stream based AVASR, that decision fusion yields 

significant improvements over the baseline HMMs with feature fusion, specifically 29.3% 

on average (max. 97.8% for SNR=-10dB). 
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Figure 2-11: Word recognition accuracy results for noisy audio in English using audio-

only, feature fusion (audio-video-depth) and decision fusion (audio-depth, audio-video-

depth) models. 

2.6.1.2  Greek 

Additionally, we carried out a set of experiments using the Greek portion of our 

database. Our experimental paradigm was identical to that used for English, randomly 

splitting the data from the 6 Greek speakers in a 2/3 and a 1/3 set for training with clean 

data and testing with noisy data respectively. For these experiments we only used audio 

babble noise, and intra-frame LDA, while the statistical modeling remained the same. The 

results attained are shown in Figure 2-12. The highest performance was 99.02% and it 

was achieved in the lack of noise when all 3 streams were utilized by the system. Lip-
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reading performance without using audio exhibited a 9.2% improvement with the use of 

intra-frame LDA. The overall system performance degraded for lower SNR values, but 

always remained higher than the lip-reading performance. This leads to a significant 

improvement under very noisy conditions e.g. 45.63% instead of 11.55% word accuracy 

for our system in comparison to an audio-only recognizer for a Signal to Noise Ratio 

(SNR) of -10dB. 

 

Figure 2-12: Word recognition accuracy results for noisy audio in Greek using audio-only 

and decision fusion audio-video-depth models. 

Comparing with the aforementioned results for English, our system exhibited 

higher absolute accuracy overall for the Greek language. We believe that this is due to 
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the smaller number of Greek speakers in conjunction with the multi-speaker setup of the 

experiments. 

2.6.2  Noisy Audio and Video 

In this section, results carried out on both the English and Greek portions of 

BAVCD are reported, for: i) audio only, ii) video only, iii) video with depth information and 

iv) audio with video and depth, at various levels of distortion for each visual noise type. 

For this set of experiments, audio SNR=0dB. Figure 2-13 to Figure 2-16 summarize the 

results for English and Figure 2-17 to Figure 2-20 summarizes the results for Greek. 

 

Figure 2-13: Word recognition accuracy results for contrast noise in English. 
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2.6.2.1  English 

The recognition results of our system for a variety of contrast values varying from 

-50% to +50% of the mean intensity is presented in Figure 2-13. It can be observed that 

the further the deviation from normal contrast, the lower the recognition performance. As 

seen in the figure, the use of depth information along with the visual stream helps attain 

higher recognition rates under all lighting conditions. More specifically the maximum 

relative improvement was 76.6% for -50% contrast and the average improvement was 

13.6%. Furthermore, 3D visual information from the visual and depth streams used with 

the audio stream attain higher accuracy than the audio-only recognizer. More specifically, 

the maximum relative improvement was 13.3% for +25% contrast and the average 

improvement was 9.1%. 

 

Figure 2-14: Word recognition accuracy results for Gaussian noise in English. 
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For various levels of Gaussian noise, depth information proves to have a positive 

impact to the achieved accuracy, mainly for larger degradation levels, as seen in Figure 

2-14. In the case of lip-reading, accuracy exhibited a maximum relative increase of 9.6% 

for std. dev. 30 and on average 7.8%. The combined performance when using audio and 

3D visual information increased by 12.1% max. for std. dev. 15 and 10.86% on average. 

In the same manner, as shown in Figure 2-15 and Figure 2-16, our system exhibits 

performance gains for both brightness reduction ranging from 75% to 125% of the mean 

intensity and block noise of 3 different sizes, respectively. 

2.6.2.2  Greek 

As shown in Figure 2-17 to Figure 2-20, the results for the Greek portion of the 

database are similar. The main difference between the two languages is the much higher 

audio-only accuracy for this part of the database at 0dB SNR, which was 91.42% in 

comparison to 48.78% for the English part. This fact also led to a much higher overall 

accuracy, when using all three streams. However, the increase in accuracy when 

combining depth information with noisy video, as well as when utilizing 3-D visual 

information in combination with audio, remains apparent. 

2.7  Conclusions 

In this chapter we presented a novel multimodal ASR system that, in addition to 

the traditional audio and planar video modalities, utilizes facial depth information captured 

by the Kinect. Feature extraction was employed by means of the 2D DCT and a two-

stage LDA feature selection scheme was applied to the visual and depth features in order 

to boost lip-reading performance. Finally, state synchronous HMMs were used for data 

fusion and speech recognition. We tested our system under the influence of babble audio 

noise and 4 types of video degradations and conducted experiments not only in English 

but also in Greek. Our experimental results demonstrated that the depth modality 
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improves word accuracy in comparison to audio-only and video-only recognition under a 

decision fusion framework. Furthermore, 3D visual information from both planar video 

and the depth stream, leads to a significant 22.1% relative increase in accuracy in 

comparison to a conventional audio-only ASR system. Results when both audio and 

visual noise are coexistent were consistent for all types of visual noise considered, 

exhibiting increased robustness with the use of depth information. Finally, word accuracy 

in Greek appeared higher than English, with reduced dependency from the audio noise 

level, which we attribute to the smaller number of available speakers. 

 

 Figure 2-15: Word recognition accuracy results for brightness noise in English. 
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Figure 2-16: Word recognition accuracy results for block noise in English. 

 

Figure 2-17: Word recognition accuracy results for contrast noise in Greek. 
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Figure 2-18: Word recognition accuracy results for Gaussian noise in Greek. 

 

Figure 2-19: Word recognition accuracy results for brightness noise in Greek. 
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Figure 2-20: Word recognition accuracy results for block noise in Greek. 
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Chapter 3  

Multimodal Identification and Localization 

3.1  Introduction and Related Work 

As described in Chapter 1, an ambient intelligence environment is a smart space 

that aids its inhabitants with its embedded technology. The proliferation of ambient 

intelligent environments has triggered research related to applications, such as 

monitoring Activities of Daily Living (ADL), fall detection [40] - [44], risk prevention and 

surveillance [45], [46]. For achieving these goals, activity recognition performed in a 

natural and unintrusive way is of utmost importance. The most fundamental step towards 

activity monitoring and ultimately context-awareness is successful multi-person 

identification and localization. By utilizing the location of the person in a domestic setting, 

related activities can be derived. Accurate person localization plays an essential role in all 

the aforementioned applications and has been dealt with using many different 

approaches. Nevertheless, when used domestically, most current implementations can 

be considered as invasive. 

In this chapter we present the development of a novel system for multimodal, 

multi-person identification and localization in an ambient intelligence environment. Our 

unintrusive system uses RFID and 3-D audio-visual information from 2 Kinect sensors 

deployed at various locations of a simulated apartment to continuously track and identify 

its occupants, thus enabling activity monitoring. More specifically, we use skeletal 

tracking conducted on the depth images and sound source localization conducted on the 

audio signals captured by the Kinect sensors to accurately localize and track multiple 

people. RFID information is used mainly for identification purposes but also for rough 

location estimation, enabling mapping the location information from the Kinect sensors to 

the identification events of the RFID. Our system was evaluated in a real world scenario 
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and attained promising results exhibiting high accuracy, therefore showing the great 

prospect of using the RFID and Kinect sensors jointly to solve the simultaneous 

identification and localization problem. 

3.1.1  Localization: 

Applications that rely on localization such as surveillance and monitoring of ADL 

commonly use video cameras as an affordable and abundant source of information. 

Many approaches based on either a single camera or multiple cameras have been 

proposed in the literature. 

In single camera setups, discriminative appearance affinity models [47] and level-

set segmentation [48], [49] have been used for tracking, while other approaches based 

on tracking-by-detection exist [50], [51]. In multi-camera setups, stereo-vision is 

employed in order to introduce depth perception [52]. In [53], color histograms of the 

person-shaped blobs are used to disambiguate between people, when they are very 

close to each other. The system tracks multiple people standing, walking, sitting, entering 

and leaving in real-time. In [54] two techniques were used to determine the location of a 

person in 3-D space. These were 1) best-hypothesis heuristic tracking and 2) 

probabilistic multi-hypothesis tracking to derive the 3-D location of people. The results 

show similar tracking performance for both approaches. However, the simplistic 

probabilistic approach produces more false alarms, which may be improved by using a 

sophisticated probabilistic model. 

Solving the problem using only cameras is very challenging for a large space 

with many people. The reason is that localization requires wide coverage to capture and 

map the respective locations of many people simultaneously, but identification requires 

zooming into a person’s face. In surveillance applications, cameras are typically mounted 

on tall polls and configured such that they could provide maximum coverage. 
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Nevertheless, video feeds from such settings may not be sufficient to provide accurate 

information about a person’s face or other biometric features. In addition, the 

segmentation and tracking problems can be very challenging, thus hindering the system's 

reliability in a camera-only setup. Furthermore, despite the fact that the use of cameras 

and computer vision techniques are very promising, extensive use of video cameras in a 

domestic setting can be considered a violation of privacy [55]. Therefore, our main focus 

is to achieve the same goal of identifying and localizing multiple people in an assistive 

environment in a less intrusive manner. 

3.1.2  Identification: 

RFID (Radio-frequency Identification) systems are frequently being used to track 

medicine and patients in large hospitals in order to verify the correct medicine reaches 

the correct patients [56]. RFID sensors have become very popular, as they are cheap, 

easy to use and provide accurate identification information wirelessly [57]. Although RFID 

is very effective in identifying objects, it may not be as effective in surveillance 

applications, since people are required to wear an RFID tag so that the events related to 

the tag are detected. As a result, such systems may not be able to detect intruders or 

anyone not wearing a tag. However, it constitutes a viable solution for recognizing 

activities in a smart environment, since its inhabitants can very easily carry a passive 

RFID tag with them. 

Multimodal person identification has become a significant area of research in 

recent pervasive assistive applications. Some of these applications use existing biometric 

identification methods, such as face recognition and speaker identification [55], [58], [59] 

to identify multiple people in smart environments [60]. Nevertheless, these approaches 

do not convey the location information of the person. 
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3.1.3  Simultaneous Identification and Localization: 

Locating multiple users simultaneously while identifying each one, is considered 

to be the first step to create a context-aware application, such as activity and human 

behavior recognition. RFID technology has also been used to solve the problem of 

simultaneous identification and localization. Although radio signal propagation suffers 

from various problems, such as multipath, line of sight path, diffraction or reflection etc. 

[61] even in an indoor environment [62], several indoor-based localization algorithms 

have been proposed in the literature, which, according to [63] can be classified into three 

categories: 1) distance estimation, 2) scene analysis and 3) proximity. Among them, 

distance estimation algorithms use different range measurement techniques, such as 

Received Signal Strength, Time of Arrival, Time Difference of Arrival, Received Signal 

Phase etc. and apply triangulation to estimate the location of the target. On the other 

hand, the scene analysis approaches first measure fingerprints of an environment and 

then, try to match the target’s range measurements with the appropriate set of 

fingerprints for estimating the location. Finally, the proximity-based algorithms determine 

the target’s location by mapping it to the location of an antenna that receives the 

strongest signal. 

Overall, RFID technology posses a promising solution to identify and localize 

multiple objects with attached RFID tags. Existing well-known systems, such as 

LANDMARC [64] use active RFID tags and exploit the signal strength property to 

correctly localize an object. Passive RFID tags have also been used in the past to identify 

and locate multiple objects. In [65], the authors have utilized the percentage of tag counts 

at different power attenuation levels in order to approximate the distance between a 

reader and a tagged object. Another, indirect way of deriving the location information of 

an object is to record the location of the reader as the location of an object. But, the 
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location accuracy and precision of such a system heavily depends on the level of 

deployment of readers and antennas in the space [66]. 

However, RFID still lacks sufficient localization accuracy especially for the 

minimal number of deployed antennas and tags in a domestic environment. Simply using 

RFID to obtain the location of an object can lead to many false readings, e.g., an RFID 

antenna may miss a tag depending on the tag’s position and the antenna’s orientation.  

In an attempt to improve accuracy, multimodal person localization has become a 

significant research area in recent applications. Thus, for a very dynamic environment, 

information collected from multiple sources, such as video cameras, microphone arrays, 

sensors etc. are all combined together such that the system can achieve better 

identification and localization accuracy [73], [74]. Techniques, such as Hidden Markov 

Models, K-nearest neighbors etc. can be applied to captured audio-visual signals to 

extract higher-level semantic information, such as identification and location in real time. 

A system that combines face and audio based identification along with motion detection, 

person tracking and audio based localization, has been proposed in the literature [75]. 

Such a system applies state-of-the-art methods to process results from each individual 

modality and uses particle filtering to fuse both modalities for providing robust 

identification and localization. 

Methods that combine localization using cameras with identification using 

wearable sensors or accelerometers are also proposed in the literature. Since most of the 

recent mobile phones contain accelerometers and magnetometers attached to them, 

mobile phones are considered to be very convenient and fulfill all of the above 

requirements. In [45] the authors combined an existing CCTV based system with sensors 

(accelerometers and magnetometers) embedded to a person’s mobile phone as a 

solution. According to this method, the camera captures the location of each person, 
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which is transmitted wirelessly to the mobile phone carried by the respective person. 

After receiving the location information, the mobile phone resolves the most probable 

location by matching them with the measurements from its own sensors. The 

identification process is very easy in this case, as each person is labeled with her/is 

mobile phone’s unique ID. 

The deployment of wireless sensor network (WSN) is another common approach 

nowadays to monitor and localize persons in assistive environments [76], [77]. RFID 

systems and WSNs can be combined together not only for identifying and localizing 

objects, but also for real-time monitoring [78]. To identify and localize in open areas, 

researchers of [46] derived a calibration method for a joint RFID-camera system based 

on the area of overlap between the field of view (FoV) of a camera and the field of sense 

(FoS) of RFID sensors. 

In our approach, we have utilized the identification capabilities of RFID and 

combined that with precise 3D tracking from the Kinect to create an accurate 

identification and localization solution [67] - [70]. The latter is an active sensor, able to 

accurately measure the position of the person in the 3-D space. Skeletal tracking is 

carried out using the Kinect sensor's 3D depth images and sound source localization is 

conducted utilizing microphone arrays of 2 such sensors, to deduce accurate location 

information. At the same time, the video information is not captured, making this 

approach less intrusive than using video cameras. RFID is used mainly for discerning 

between users and also for providing a rough estimate of their location utilizing the RSSI 

[71]. Our goal is to map the location of multiple people in an ambient intelligence 

environment at a detailed level that will allow inference of conducted activities (Figure 

3-1). 
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In the following sections we will present the architecture and operation of our 

system for person identification and localization, the experimental setup and finally our 

concluding remarks. 

 

Figure 3-1: Example apartment layout with RFID antennas and Kinect sensors 

deployment. 

3.2  Theory and System Overview 

3.2.1  Hardware 

The Microsoft Kinect (Figure 2-1) has already been described in chapter 1. In this 

system we used the Kinect for Windows in conjunction with the Kinect SDK and in 

addition to its depth sensor, we also utilized its microphone array. The range of the depth 

sensor is 2.3-20 ft. but it is restricted to 13 ft. by the SDK and the microphone array is 

comprised of 4 microphones, enabling sound source localization. For our application, we 
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implemented the least intrusive setup possible by capturing data only from the depth 

sensor and the microphone array, without capturing the actual color video data. 

 

 

Figure 3-2: The RFID equipment used including different designs of Alien RFID Tags 

(top) and receiver, antenna (bottom). 

An RFID system is comprised of the radio scanner unit / tag reader and the 

remote transponders / tags. Each tag consists of a microchip transmitter with internal 

memory and an antenna. The memory architecture may allow the programming or re-

programming of the ID or it can be read-only. The 2 RFID technologies in use are either 

active or passive, defining if the tags have their own power source or not respectively. 

Passive tags are more common due to their lower cost, smaller size and longer lifetime, 

despite their smaller range. The most common frequency ranges used by RFID are LF 

(125-134 KHz) and HF (13,56MHz), although UHF (860MHz) and microwave (2,4GHz 

and 5,8GHz) tags exist [80]. The RFID system we have used is the commercially 

available Alien 9900+ developer kit, which includes a reader with two circularly polarized 

antennas. The tags used in our experiment are EPC Class 1 Generation 2 supported by 

the 9900 readers. Figure 3-2 shows the RFID equipment used including different tag and 
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antenna designs from Alien. As the antennas are circularly polarized, the tag orientation 

is not an issue for our experiment. However, for an indoor environment, the antenna read 

range for the passive RFID tags varies from 20 to 30 ft. Such a read range is sufficient to 

detect the presence of a person carrying a tag in the simulated rooms of the Heracleia 

simulated assistive apartment, given the tags are within the FOS of the antennas. 

Figure 3-3: System architecture showing the 3 modules and 2 operation modes. 

3.2.2  System Architecture 

The architecture of our system is modular, comprising of 3 main components as 

shown in Figure 3-3. Communication between the modules is based around the Joint 

Architecture for Unmanned Systems (JAUS) [79]. The JAUS architecture is a collection of 

standards, originally developed by the United States Department of Defense, for 
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unmanned systems. JAUS is designed to govern the way that unmanned systems are 

designed at the networked component level, as well as the networked agent level. The 

user datagram protocol (UDP) is used for inter-module communications, which increases 

the level of interoperability, allowing new software modules to be easily integrated in the 

system or existing modules to be installed on different systems. Input is provided by the 

RFID reader and the 2 Kinect devices. One of them is considered as primary, capturing 

both a stream of depth images and audio, while the secondary captures only audio for 

performing sound localization. Interfacing with the Kinect is carried out using the MS 

software development kit (SDK) v1.0 [83]. The 3 modules 1) skeletal tracking based 

localization, 2) audio localization and 3) RFID tracking are described in detail in the 

following paragraphs. 

 
Figure 3-4: The 20 joints tracked by the MS Kinect SDK skeletal tracker [84]. 

3.2.2.1  Skeletal Tracking Based Localization Module 

Skeletal tracking is used in our system in order to detect and track a person in 

the FOV of the sensor, as s/he moves in the smart space and it was implemented using 
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the MS Kinect SDK. Initially, the moving person is detected, then her/is center of mass is 

determined and finally a skeletal model is fitted. The detected skeleton has a unique 

identifier for a specific session and is defined by the 3-D coordinates <
diX ,

diY ,
diZ > of its 

20 joints ( Figure 3-4) expressed in meters as shown in Table 3-1. Each joint can be at 

any of the three associated states: 1) tracked, 2) not-tracked and 3) inferred. 

Furthermore, two kinds of filters are applied to the joint coordinates due to the nature of 

the captured data, 1) high frequency jitter and 2) temporary spikes rejection. The 

infrastructure for tracking the joints of 2 skeletons and the center of mass of 4 additional 

people exists, although for the main scope of our system is to monitor an elderly 

inhabitant of an assistive environment when not supervised, 2 tracked skeletons would 

suffice. Localization using such skeletal tracking is very accurate and unintrusive since 

we only utilize the coordinates calculated from the depth sensor feed. A visualization of 

the operation of the skeletal tracker is shown in Figure 3-5. 

 

Figure 3-5: An example frame captured featuring skeletal tracking using the Microsoft 

Kinect SDK. 
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Table 3-1: Example of data captured by the Kinect skeletal tracker when 2 people are 

detected in the FOV of the sensor 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 Kinect sound source localization and detected sound source angle sign 

convention. 

User Time X Cord. Y Cord. Z Cord. 

1 
4/25/2013 

1:22:28 PM 
-0.1936212 0.1681233 3.099599 

1 
4/25/2013 

1:22:30 PM 
-0.08460984 0.08594385 3.164108 

1 
4/25/2013 

1:22:34 PM 
-0.4662972 0.07648824 2.894816 

2 
4/25/2013 

1:22:40 PM 
-0.5278196 -0.0273742 3.011885 

1 
4/25/2013 

1:22:45 PM 
-0.4450822 -0.1373514 2.829979 

2 
4/25/2013 

1:22:50 PM 
-0.456997 0.07926513 2.96067 

1 
4/25/2013 

1:22:53 PM 
-0.4790949 0.08204032 2.961271 
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Figure 3-7: Configuration of the 2 Kinect devices for audio localization of an audio source 

on a 2-D plane. 

3.2.2.2  Audio Localization Module 

The microphone array of the Kinect is comprised of 4 super-cardioid 

microphones that drive 24-bit ADC's. The frequency response of the microphones is 

tailored for human speech and their directivity is relatively stable for these frequencies (1-

7 kHz). Sound source localization and beam-forming are applied to the audio signal in 

order to determine the angle of the sound source in relation to the device and acquire the 

audio signal from that particular direction (Figure 3-6). The returned values are the sound 
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source angle in degrees in relation to the axis that is perpendicular to the device, and a 

confidence level of the reported angle. 

Nevertheless, one Kinect is only capable of providing the angle of the sound 

source but not its distance, hampering localization accuracy. Therefore, we introduce a 

second Kinect to our system that is used solely for sound source localization (Figure 3-7). 

The second unit also provides an angle for the source of the sound, which can be used in 

combination with the previously obtained angle for accurate localization through 

triangulation. In order to do so, we need to obtain some data concerning the placement of 

the sensors. More specifically, let L be the distance between the two devices, A and B. 

Also, let
  , be the angle between the wall and the axis perpendicular to device A and 

B respectively. This angle should optimally be 45 degrees to maximize coverage 

assuming the devices are mounted at the corners of the same wall in a square room. 

Assuming there is a sound source S detected by the two devices, let the corresponding 

detected angles be )50,50(,   . These angles are positive when the sound source 

is estimated to be on the left side of the device and negative when the source is 

estimated to be on the right of the device (Figure 3-6). We will consider the triangle that is 

created, with A, S and B as its vertices. The altitude of the triangle that is passing from 

vertex S, divides L into a and b so that a+b=L. Let the length of the altitude (in our case 

the distance of the audio source/person from the wall) be
sX . Then, we can formulate the 

following equations: 

a
)tan( sX
    

b
)tan( s

BB

X
  

Since L=a+b, the final solution to the system of equations is given by: 
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Thus, we can calculate the precise position of the audio source in the 2-D layout 

of the room. 

Due to the nature of the sensor and propagation of sound waves some 

restrictions had to be imposed in order to ensure reliable location estimation. Therefore, 

the sound level is calculated for a window of 1 second and the sound source angles are 

taken into account only when the sound level exceeds 50dB, corresponding to a quiet 

conversation. This technique prevents inaccurate location estimation by ignoring low level 

background noise. Additionally, we only calculate the person's location when the 

confidence for both estimated sound source angles is more than 50%. A final and 

apparent restriction is that there must exist a solution for the equation system and this 

solution should fall within the monitored space. Thus, if a sound is coming from behind 

the sensors, or outside the limits of the monitored space, the location cannot be 

estimated or it is ignored respectively. This way, noises that are generated from external 

sources, e.g. a car passing-by, will not affect the location estimation. 

3.2.2.3  RFID Based Localization Module 

The RFID system that we used was comprised of two antennas and a tag reader. 

Its main role was to identify the person in its field of sense (FOS), but also to provide a 

rough estimate of her/his location using the received signal strength indicator (RSSI) from 

each antenna (Table 3-2). The mapping between the RSSI values and the actual position 
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of the tag is accomplished through a calibration process that accounts for both the 

directionality of the antennas and the specific layout of the room. Multiple people are 

identified using their unique RFID tag and tracked as long as they remain in the FOS of 

the system. Skeletal tracking alone may not be able to discern between different people 

since a new tracking id is issued each time a person is lost from the FOV of the Kinect 

and then re-enters. Therefore, we improved our system’s accuracy by matching the new 

RFID tag with the new tracking id as soon as an individual enters the room. This 

technique allows identification of each individual detected by the skeletal tracker. In the 

case where an unmatched tag id or skeletal id appears e.g. if a person was not detected 

upon entrance by either sensor, they are matched when they both appear in the same 

sector. Finally, when no skeleton is detected in the FOV, but a tag is still being detected, 

audio localization is utilized in order to increase accuracy (e.g. when only one antenna 

reads the tag). 

Table 3-2: Example of RSSI data as captured by both antennas of the system when 2 

tags are detected in the FOS. 

 

 

 

 

 

 

 

ID Time Antenna RSSI 

E2009037890401091080A8BA 
4/25/2012 

1:22:52 AM 
1 4792.4 

E2009037890401090900BD64 
4/25/2012 

1:22:52 AM 
2 1351.6 

E2009037890401090900BD64 
4/25/2012 

1:22:53 AM 
1 1021.2 

E2009037890401091080A8BA 
4/25/2012 

1:22:54 AM 
1 4920 

E2009037890401090900BD64 
4/25/2012 

1:22:54 AM 
2 1299.1 
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Localization is based on a training phase during which pre-specified position 

signatures (RSSI in our case) are used. More specifically, we divide the entire room into 

multiple sectors, as shown in Figure 3-8. Next, we collect the RSSI signatures of the 

detected tags in these different sectors using the antennas. In the training phase, we 

label the signatures with their corresponding sector number and a model is fitted to our 

data in order to describe the relationship between the location and the observed values 

as well as to predict the location for new values. This way we build a classifier that 

classifies any RSSI measurement from an antenna into one of these different sectors. 

The idea is that given that an RFID tag is detected, the system first narrows down its 

location to one of the sectors. Next, given the measurement from the Kinect sensor for 

any particular person, if the measured location falls within that specific sector, then we 

Figure 3-8: Layout of our simulated apartment for person identification and localization 

combining 2 RFID antennas and 2 Kinect devices (left) and division of the apartment into 

8 sectors for localization using RFID (right). 
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map that particular person to the location described by the Kinect sensor. As afore-

mentioned, in both approaches we use the sound from the microphone array as another 

modality besides skeletal tracking to resolve ambiguities in mapping.  

3.3  System Operation 

The main function of our system is person localization utilizing information from 

all three modules. The main source of location information is the skeletal tracking 

module. More specifically, this module detects a person as soon as s/he enters the FOV 

of the sensor and tracks her/him while moving in the room. The accuracy and robustness 

of the tracker is exceptional due to the nature of the depth sensor, so the person is 

tracked while standing, walking or even sitting. We consider the location of the person as 

the average of the 3-D coordinates of all the tracked joints, expressed as <
dX ,

dY ,
dZ >, 

where: 





20

120

1

i

did XX the mean distance from the sensor’s plane.  
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120

1

i

did YY the mean deviation from the sensor’s axis. 





20

120

1

i

did ZZ the mean distance from the floor. 

Another source of location information is the audio localization module. It should 

be noted that the audio localization module is capable of estimating the location of the 

person in 2 dimensions expressed by <
sX , a >, not accounting for height, as described in 

the previous section. 

In order to determine the final estimated location of the person we consider the 

available localization information from all three modules hierarchically, according to our 
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experimental results presented in the next section. So, in the case where one of the 

modules does not return any coordinates, then the other module's coordinates are 

considered. The order in which we determine the location of each person is: 1) Skeletal 

tracker, 2) RFID, 3) Sound source localization. If skeletal tracking information becomes 

unavailable (e.g. if the person is outside the FOV of the depth sensor), then the system 

relies on RFID. Similarly, if both skeletal tracking and RFID information are unavailable 

(e.g. tag undetected by 1 antenna), then sound source localization is used. In addition, 

we experimented by calculating the average location for each person. More specifically, 

when a location estimate is available from both the RFID and the skeletal tracker, the 

average of each of the 2-D coordinates is calculated after proper transformation to match 

the 2 coordinate systems, while the third coordinate equals that of the skeletal tracking 

module. For our application, the detected activity is bound to the estimated location of the 

person. Therefore, if a person is standing by an appliance such as the oven or 

refrigerator we infer that s/he is using this particular appliance. 

 

Figure 3-9: Simulated apartment layout and placement of the Kinect devices. 
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Figure 3-10: An aspect of our simulated apartment (top) and a 3-D reconstruction of our 

simulated apartment (bottom). 
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3.4  Experimental Setup 

An extensive set of evaluation experiments were conducted in order to fine-tune 

the parameters of the setup at our simulated apartment . As mentioned earlier, two Kinect 

devices and two RFID antennas were used, mounted at the opposite sides of one of the 

walls, facing the entrance. The distance between the two devices was 175.5 inches. The 

axis perpendicular to the sensors’ axes pointed at 45 degrees towards the interior of the 

apartment, maximizing both the FOS, FOV and microphone coverage (Figure 3-9 and 

Figure 3-10). 

All modules were installed on the same computer, although our system's 

implementation permits the use of separate computers for each one of the modules. For 

our experiments we partitioned the space in 8 different sectors, intersecting at the center 

of the room. The estimated location of the person was considered accurate when the 

coordinates fell within the boundaries of the corresponding sector. For our application, 

the detected activity is bound to the estimated sector. 

Table 3-3:  Experimental results for the identification and localization tasks for all three 

modules. 

Task/Source 4 people 2 people 1 person 

Identification/RFID 92.5% 97.1% 100% 

Localization/Kinect 90.3% 93.8% 98% 

Localization/RFID 82.1% 87.2% 85.4% 

Localization/Sound 75.9% (1 speaker) 

 

In our experimental setup, we have deployed two antennas at the two corners of 

the bedroom, as shown in Figure 3-8. We have simulated an experiment for identifying 

and localizing up to 4 people, limited only to part of the apartment, although the system 
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can be extended to more rooms by adding more Kinect sensors in the apartment. During 

the experiment, each person wears an RFID tag around her/is neck. 

We conducted extensive experiments in our realistic domestic setup. Four 

individuals participated in our experiments, with one, two or four occupying the apartment 

simultaneously. Subjects were asked to move in the apartment in 10 sessions and 

perform 4 activities, namely walk and sit in a chair, at a desk or on a bed. The total 

number of instances used for the classification was 400 per experiment. In Table 3-3:  

Experimental results for the identification and localization tasks for all three modules. we 

report results for both the identification and localization tasks after 10-fold cross 

validation. For both tasks, accuracy degraded for more occupants, due to the people 

interacting and the resulting occlusions. Identification accuracy using RFID was at very 

high levels, considering single antenna misdetections. Localization accuracy denotes the 

percentage of correctly estimated locations for all individuals present in the room and 

also accounts for misidentifications and mismatches between the detected tag sector and 

skeletal id location. The accuracy attained using the Kinect was over 90%, and 

constituted the most accurate source for person location information. The accuracy 

achieved using RFID was over 80% and 75.9% using sound (only 1 speaker). 

3.5  Conclusions 

In this chapter we presented a novel system capable of accurate and robust 

person localization and identification. Our system combines the tracking capabilities of 

the Kinect sensor with identification information from existing RFID technology. 3 types of 

data were used to solve the localization problem, namely the RSSI, 3D depth and audio 

information. Accurate position estimation for each person was carried out using the depth 

sensor and microphone array of the Kinect as inputs, by means of skeletal tracking and 

sound source localization respectively. The system was deployed in a simulated 
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apartment and during the experiments conducted, it achieved high localization and 

identification accuracy, proving its effectiveness for the 4-person localization scenario. 
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Chapter 4  

Assistive Robot Navigation and Placement 

4.1  Introduction and Related Work 

Person localization, identification and activity monitoring in general are very 

important in an ambient intelligence environment. Nevertheless, a dynamic environment 

that changes over time, requires the adaptation of the sensors’ configuration. 

Furthermore such a system must compensate for sensor failure in an online fashion, 

where the remaining operational sensors compensate for the ones that failed. Finally, this 

system must achieve maximum coverage of the monitored space for increased efficiency 

and cost containment. The field of robotics in particular has shown great potential in 

addressing these challenges. 

In this chapter, we present the development of a novel system that optimally 

positions a number of robots in an assistive environment and can be used in a domestic 

environment inhabited by an elderly, disabled or visually impaired person, for guidance 

and event recognition [81]. Placement of the robots is done by means of the Extended 

Max Sum Decentralized Coordination algorithm. The sensor readings are taken into 

account during the optimal placement process, in addition to the environment layout, in 

order to maximize the system’s effectiveness. Our framework was built on top of our 

previous work, the prototype assistive-guide robot eyeDog [82], shown in Figure 4-1, 

which was initially developed to provide the visually impaired with autonomous vision-

based navigation and laser-based obstacle avoidance capabilities. Therefore, we also 

describe its design and development. This kind of assistive-guide robot has several 

advantages, such as robust performance and reduced cost and maintenance. The main 

components of our system are the Create robotic platform (from iRobot), a net-book, an 

on-board USB webcam and a LIDAR unit.  The camera is used as the primary sensor for 
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the navigation task; the frames captured by the camera are processed in order to robustly 

estimate the position of the vanishing point associated to the road/corridor where the 

eyeDog needs to move. The controller then steers the robot until the vanishing point and 

the image center coincide. This condition guarantees the robot to move parallel to the 

direction of the road/corridor. While moving, the robot uses the LIDAR for obstacle 

avoidance. The novelty of our implementation is the use of RANSAC with adaptive 

thresholds to estimate the vanishing point of the visual scene as well as the fusion with 

the laser data in order to navigate the robot. The feasibility and effectiveness of the 

approach is demonstrated by successfully guiding the user down the center of a path, 

such as a hallway or sidewalk, while navigating around obstacles and walls. 

The development of an effective aid, especially for the disabled or visually 

impaired is a demanding task which requires multiple challenges to be resolved [85]. The 

nature of such a condition requires that both location and situational awareness be 

provided, while conveying this information to the user effectively and in real-time. 

Perhaps the most identifiable and useful aid for the visually impaired is a specially-trained 

guide dog. Guide dogs are trained to lead their owner through the environment, 

remaining on a given path, while avoid obstacles and hazards, increasing her/is safety. 

While the benefits of guide dogs are undeniable, many factors make them unsuitable or 

impractical in several situations. Guide dogs require extensive training before they can be 

matched with a user. Once a suitable dog has been identified and trained, the person 

must also be trained to operate as a single unit with the dog. Perhaps the greatest 

limiting factor in guide-dog use is their cost. The average cost of a guide dog in the 

United States, including the necessary training for both the dog and the user, is $42,000 

[86]. Other limitations include allergies, location and availability of training schools, time 

required for training etc. which make guide dogs impractical in many cases. The use of 
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robotics is a promising alternative to guide dogs. A properly designed robot-navigation 

aid could be both performance and cost effective. Recent advances in sensing 

technology, particularly in computer vision, allow a robot to identify paths and objects, 

thus enabling effective location and hazard recognition.  

 

Figure 4-1: eyeDog, the prototype assistive-guide robot. 
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The problem of guiding a robot along a certain path or corridor belongs to the 

broader range of lane-detection problems. These types of problems have been attacked 

using various approaches during the last years and even competitions like the DARPA 

Urban Challenge [87] or the Mini Grand Challenge [88]. There have been different 

approaches for lane detection, including particle filters [89] and homography [90]. One of 

the most popular approaches consist of using RANSAC for robust clustering of multiple 

lines in the image space in order to determine the vanishing point in an image [91] - [94]. 

However, research efforts have focused on car traffic and not assistive robots. To 

our knowledge there has been only one previous attempt of an assistive guide robot for 

the visually impaired, which focused on indoor navigation. This was developed in the 

Utah State University by Kulyukin et al. [95]- [97] and was built on a Pioneer robotic 

platform, utilizing a SICK LIDAR for obstacle avoidance, a webcam, and RFID in order to 

locate a specific product in a store and then navigated to its position. The navigation was 

accomplished using a colored tape on the floor of the aisles and RFID tags on the 

intersections. This system requires a number of modifications in an existing store in order 

to be deployed, such as RFID tags on all product packages and placing colored tape on 

all aisles. In contrast, our approach [82] uses Computer-Vision techniques to navigate a 

specific path without requiring any changes to the environment. Furthermore, we 

expanded our previous work, aiming at utilizing a multi-robot configuration framework that 

is able not only to navigate throughout an apartment but also monitor and recognize 

certain events such as loud noises and movement. The existence of more than one 

robots can ensure more effective monitoring capabilities and responsiveness in case of 

need by the user. In such a case, the problem of positioning the robots in the apartment 

is of utmost importance, since a fully automatic and efficient algorithm must be used so 

as to ensure effective and optimal coverage of the monitored space by the robots' 
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sensors, while taking into account both the layout of the space and the characteristics of 

the sensors used. We thus utilized a tool for sensor placement and system monitoring 

that allows for designing the environment layout, defining crucial areas and updating the 

position of the robots dynamically. We followed a similar approach, presented in [104] 

where we used cameras and a decentralized framework in the form of a multi-agent 

system. In our approach we have incorporated more types of sensors to our robot which 

is also able to move in the apartment [81]. 

4.2  Theory and Robot Architecture 

The eyeDog is comprised of the following main components: the iRobot platform, 

a notebook computer, a Logitech USB webcam and a Hokuyo LIDAR unit shown in 

Figure 4-2. The camera is the primary sensor for the navigation task and is used to 

estimate the vanishing point from the captured video. This video sequence is processed 

using OpenCV 2.1 [103] which extracts prominent lines in the image. Then RANSAC is 

used to determine the most probable vanishing point. After the vanishing point has been 

determined, the deviation from the principal point of the camera is calculated and the 

robot steers accordingly in order to move parallel to the direction of the road. While 

moving, the robot uses the LIDAR scanning system for obstacle detection and avoidance. 

In addition to the navigation task, we provide a modular software development 

platform to facilitate the evaluation of a variety of potential sensing and control 

approaches. This “plug and play” philosophy is loosely based around the Joint 

Architecture for Unmanned Systems (JAUS)[79] (see Chapter 3), originally developed by 

the U.S. Department of Defense, to govern the way that unmanned systems are 

designed. While a fully compliant JAUS implementation is out of the scope of this project, 

the software architecture utilized in the robotic guide dog follows many of the guidelines 

established by JAUS (distribution of software modules, UDP communication between 
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modules, etc). This increases the level of interoperability at the component level, allowing 

a new software module to be quickly and easily integrated in the system without changes 

to other components. 

 

Figure 4-2: The hardware components of the eyeDog: the iRobot platform (left), Hokuyo 

LIDAR (middle) and Logitech webcam (right). 

4.2.1  Control Software Architecture 

As mentioned previously, the architecture employed by the system is distributed 

at the component level. Individual software modules were created for specific tasks, such 

as polling a particular sensor or sending actuator commands to the iRobot platform. 

These background processes communicate over a network protocol using UDP packets 

in a specific format. The modules are able to run on the same machine or on their own 

dedicated hardware simply by specifying the IP addresses and port numbers accordingly. 

This networked approach makes it possible to distribute computational load across 

several computers for increased performance and expandability. The software 

architecture employed by the eyeDog is shown in the diagram in Figure 4-3 inside the 

“control” box.  

Each software module is assigned a unique IP address and port number pair, 

allowing them to be individually addressed across multiple hardware units.  
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Figure 4-3: Architecture of the prototype eyeDog robot, displaying the communication 

between the sensing hardware, control software modules and vehicle platform. 

The vision and ranging modules monitor the camera and the LIDAR, 

respectively, compute error signals, and send perceived values to the system controller. 

The system controller implements the robot’s PID controller, provides error reference 

signals to the sensing modules, and visualizes the incoming data streams. Every aspect 

of the vehicle control law (such as the period, PID gains, and filtering parameters) is 

configurable from the system controller. Filtering of the incoming data streams is 

performed independently, with both a moving-average and moving-median filter 



 

69 

implemented. These filters, running in parallel, can be modified during execution to aid in 

testing and performance evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2  Vision Module 

The vision module is responsible for estimating the pixel position of the vanishing 

point at each time instant. Initially, image processing techniques are used based on the 

Canny edge-detector in conjunction with Hough transform to extract the prominent lines 

in each image. Since the effectiveness of this feature extraction step has been proven, 

we decided to also use it in our assistive robot application. The main vision pipeline is 

illustrated in Figure 4-4. After the current frame is obtained, the Canny Edge Detection 

Canny 

Hough 

RANSAC 

Median 

Filtering and 

Hist. Eq. 

Figure 4-4: Vision module pipeline and 

example. 
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algorithm is used to extract all the image edges. The Hough transform is then adopted to 

extract only the most prominent image lines. Finally, RANSAC is adopted to detect the 

position of the vanishing point while simultaneously extracting those image lines parallel 

to the road. 

4.2.2.1  Canny Edge Detection 

The first step of image processing is the detection of edges in each frame of the 

captured video. In order to improve the performance of our edge detector, each image 

has to be preprocessed. Initially the image is converted to grayscale, since Canny 

operates on this kind of images. Secondly, histogram equalization is performed on the 

image in order to increase contrast and therefore emphasize edges [98]. Histogram 

equalization is an image enhancement technique that operates on the spatial domain. It 

modifies the distribution of the pixels to become more evenly spread out over the 

available pixel range. Since a histogram of a grayscale image displays the distribution of 

the pixel intensity values, histogram equalization attempts to reshape the probability 

distribution function (PDF) into a uniform function (Figure 4-5). Therefore, although a dark 

image will have mostly low intensity pixels and a bright image only high intensity pixels 

thus lowering the contrast, an image with a uniform PDF will have pixel values at all valid 

intensities [99]. 

Before proceeding to the actual edge detection, a median filter operates on the 

image. This is a smoothing filter that causes blurring but at the same time preserves 

larger edges. This aims at adjusting the size of edges that we want to preserve by 

choosing a corresponding filter size. In our application the median filtering uses a window 

of 5x5. 

After preprocessing, the Canny edge detector is used to extract the edges of the 

image. The operation of the Canny edge detector in general can be summarized as 
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follows. Normally, a Gaussian blurring filter is first convolved with the image in order to 

discard noise and unimportant edges, although this is not performed in the OpenCV 

implementation of Canny. Then, a Sobel operator is applied in order to calculate the 

gradient norms in the x and y axes. This is followed by hysteresis thresholding which 

uses 2 thresholds in order to determine whether a pixel is an actual edge pixel, 

discarding small edges and noise. The higher threshold for the canny edge detector is set 

adaptively using Kerry Wong’s [99] formula high_thresh=1.66*mean, where mean is the 

mean value of the pixels’ intensity after the image has gone through histogram 

equalization. The lower threshold has been defined using the empirical rule 

low_thresh=0.4*high_thresh. Finally non-maxima suppression is applied on the image in 

order to reduce the edges thickness to 1 pixel to clearly define the contours in the image. 

 
Figure 4-5: Histograms.  The original histogram (top) compared to the equalized 

histogram (bottom).  The range of the pixel intensity values becomes broader. 

4.2.2.2  Line Localization 

Since our ultimate goal is to determine the vanishing point in the image, we first 

need to detect the perspective lines that intersect at the vanishing point. Therefore after 
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acquiring the edges of the given image, we use the Hough transform [99] of the road to 

detect the most prominent lines. Hough transform is a voting algorithm that can be used 

to determine whether there are enough pixels to form a particular shape in the image, in 

our case a particular line. In order to accomplish that, each line has to be expressed in 

polar coordinates (ρ θ), so that a generic point (x,y) (pixels) belonging to a line will satisfy 

the following equation: 

  )sin()cos( yx
 

 
Where ρ represents the distance from the origin to the line along a vector 

perpendicular to the line and θ is the angle between the x-axis and the vector 

perpendicular to the line (Figure 4-6(top)). 

By using this transform, a line can be represented by a single point in the polar-

coordinate parameter space. Similarly, since infinite lines pass through any given pixel in 

the original image, the representation of a pixel in the parameter space is a unique 

sinusoidal curve (representing all the lines that can pass through that pixel). The point of 

intersection between multiple sinusoidal curves in the parameter space represents the 

line passing through all the pixels. Therefore the more the intersection points, the more 

pixels a line passes through (Figure 4-6(bottom)). The parameter space is then divided 

into bins in the ρ and θ space. The total number of intersections in each bin is then saved 

into the accumulator, and the highest voted lines are returned. In addition, only a 

maximum number of 30 lines with the higher accumulator values that result from the 

Hough transform are considered in order to save computation time. 

After acquiring the parameters of the lines detected in the image, the following 

filtering procedure is conducted in order to discard lines that cannot be considered for the 

vanishing point estimation. Since the camera is mounted at a certain height, we assume 

that the edges of the path cannot appear as horizontal lines. In addition we assume that 
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the robot remains in the path, and therefore there can be no vertical lines coming from 

the edges of the path. Thus we filter lines that deviate by 5 and 10 degrees from the 

vertical and horizontal axes, respectively. 

 

 
Figure 4-6: Polar-coordinates (ρ,θ) representation of a straight line (top). Each line has a 

unique representation (ρ,θ). The Hough space of an image (bottom), indicating the points 

with the highest number of intersections. Many points are around 90 degrees, i.e. the 

image has many horizontal lines. 

4.2.2.3  RANSAC 

The result from the line localization step consists of a set of lines in the image at 

a specific slope and distance to the image center. We will assume hereafter that most of 
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the lines in the image will pass near the vanishing point. Under this assumption, we can 

use RANSAC (RANdom SAmple and Consensus) [94] in order to randomly sample the 

above set of lines and find an estimate of the point of intersection (i.e., the vanishing 

point) which has the highest consensus. RANSAC is a non-deterministic iterative method 

for estimating the parameters of a model that best fits the given data, while ignoring 

outliers contained in the data due to noise or erroneous measurements. In what follows 

we report a description of the RANSAC for the detection of vanishing point and the 

calculation of those lines that originated it (inliers): 

 
 Two lines are randomly selected from the list of lines detected by Hough and the 

coordinate of their intersection point is calculated. This can be done by solving 

for  Tyx,  in the following: 
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Where ρ and θ correspond to the parameters for the first line (analogously for the 

second line). Since there are as many equations as unknowns, the above linear 

system has only one solution. 

 After the coordinates (x,y) of the intersection point are computed, we calculate 

the distance D of each line to this point by using the following equation: 

iiii yxD   )sin()cos(  

Lines with a distance below a certain threshold t are considered inliers, while 

lines which are more distant are considered outliers. The inlier-set represents the 

consensus for the vanishing point calculation. 
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 If the consensus set is larger than a certain threshold cT
, then we consider that 

these inliers are a good estimate for the inliers of our data and the algorithm 

stops by returning the estimated intersection point coordinates as well as the 

inlier set. Otherwise we iterate the previous step either until we do find a large 

enough consensus or until a maximum number of iterations is reached. In every 

intermediate iteration with a higher consensus, we keep the new estimate as a 

better one. 

The three thresholds of the RANSAC algorithm are set adaptively. 

 The consensus threshold is set as a fraction of the filtered lines considered by 

RANSAC and has been found to work effectively in the region of 50-80% of the 

total number of detected lines. 

 The maximum number of iterations is set in order to make the algorithm 

computationally efficient by avoiding the execution for every possible sample. If p 

is the probability that at least one of the samples is free from outliers, ε is the 

probability of a line being an outlier and s is the sample size, then it can be 

proven that: pw Ns  1)1( , where 1w  [101]. Therefore, the 

maximum number of iterations can be expressed as 
))1(1log(

)1log(
s

p
N




  ,where p 

is usually set to 99%. 

 The distance threshold t is calculated as follows. According to [101], the 

measurement error can be described by a zero mean Gaussian with standard 

deviation σ. Then the square of the points’ distance to the lines can be expressed 

as a chi-squared distribution with co-dimension equal to 1. Thus, from the 
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cumulative chi-squared distribution mF  with m degrees of freedom (co-

dimension): 

212 )(   aFt m  

Where α is the probability of a point being an inlier. Then for m=1 and α=95% : 

222 84.384.3   tt  

After the completion of the above procedure, we have a number n of inlier lines 

with the highest consensus which we will use to determine the vanishing point in the 

image. The resulting system will be in the form: 
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This over-determined problem can be expressed as    and solved in a least-

squares sense using SVD. 

In addition to obtaining the coordinates of the vanishing point for every frame, we 

store the coordinates of the last 5 frames and return the median of these coordinates. 

This acts as a buffering mechanism since it suppresses radical changes in the 

coordinates of the vanishing point due to incorrect estimation in specific frames. The x-

coordinate of this filtered vanishing point is then used to calculate the deviation from the 

principal point of the camera. In our implementation we assume that the principal point is 

in the middle of the image and that the camera points parallel to the axis of motion of the 

robot. The deviation, which takes values from 0 to 255 from far left to far right, is then 

sent to the controller module using UDP datagrams. 



 

77 

 
 

 
 

Figure 4-7: Algorithm operation example. Original image (top). Processed edges image 

with Hough lines, inliers and the estimated vanishing point (bottom). 

An example of the operation of the algorithm is seen in Figure 4-7. In Figure 

4-7(top) we can see the original image captured by the webcam mounted on the robot. In 

Figure 4-7(bottom) we can see the image edges with the lines detected from Hough 

transform. Despite the large number of lines, RANSAC has picked the actual path edges 

as the inliers (amber lines). The red circle represents the vanishing point estimated for 

the current frame, the green rectangle is the buffered vanishing point after taking into 

account the last 5 estimations and the blue triangle is the simple least squares solution. 

The horizontal red line represents the deviation from the center of the camera and is 

equal to the x-coordinate of the blue circle. This value is sent to the controller for the 

steering command calculation. 
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4.2.3  LIDAR Module 

The laser module is designed to serve as the software interface to the LIDAR 

unit. Measurements from the Hokuyo URG-04-LX-01 ranging unit are acquired using the 

SKIP 2.0 USB protocol for Hokuyo ranging devices. The URG-04-LX-01 returns readings 

from an envelope of 240 degrees with 0.36 degree resolution. Each ranging 

measurement is achieved with a resolution of 1mm, and is assembled into a UDP packet 

for transmission to the system controller.  

Once received by the system controller (at a rate of 10 Hz), the UDP packet is 

used to populate an array of measurements. These measurements are then filtered using 

either a moving average or moving median filter, both with adjustable window sizes. After 

filtering, a “safety envelope” is scanned for potential obstacles. Laser measurements 

falling within this safety area are counted, and if this number exceeds a user defined 

threshold, the laser signal overrides the vision signal as the source of error for the PID 

controller.  

4.2.4  System Controller Module 

As a central component of the eyeDog, the system controller is responsible for 

fusing real-time data streams from sensing components. This module performs the 

selection and filtering of sensor streams in order to generate the control law error signal. 

At each time step, filtered error signals are used as input to the controller. 

The System Control GUI, in addition to conditioning data streams and providing 

user interface settings, performs discrete iterations of the PID controller. This common 

controller is used to calculate the turning radius command that is sent to the iRobot 

platform. The error e(t) is defined as the deviation of the vehicle from the desired path at 

time step t. The vehicle turning radius commanded at time t is then given by: 
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The control gains kp, ki, and kd are configurable in the System Control GUI, along 

with an integration window of size T. This allows the user to tune and to evaluate every 

aspect of the radius controller. 

In order to avoid collision with static and moving obstacles, the system controller 

switches the error signal source from the vision module to the laser module when 

obstacles are detected within the safety envelope. The centroid of all the scanning points 

lying within the safety envelope is then used as a new e(t) to its upper or lower bound 

value, such that the platform spins in place away from the obstacle centroid. This 

behavior is repeated until the safety envelope of the robot is determined to be clear.  

The translational velocity command is switched in a manner similar to the turning 

radius, though a simple bang-bang controller is used in place of PID; its value is set by 

the user with the control GUI when no obstacles are present (zero otherwise). 

4.2.5  Platform Module 

The iRobot platform module receives command packets from the system 

controller. These command packets are validated and transformed into iRobot Create OI 

commands, which are sent to the platform through a configurable serial port [102]. In 

addition to serving as control relay point, the module allows the user to override any UDP 

command with the keyboard arrows. This feature provides an additional debugging utility 

for the user. 

4.3  Robot Placement Framework 

For the placement of the robots, we employed our Sensor Placement and 

System Monitoring (SPSM) tool [105]. This tool is able to place sensors in optimal 
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positions, according to a map that depicts critical areas and is also able to monitor the 

system for faulty sensors and raise warnings, alerts or modify the placement if a sensor is 

faulty. The SPSM tool has two modes, Environment Drawing and System Monitoring and 

three phases, defining critical areas, placing sensors and monitoring them afterwards.  

In the Environment Drawing mode, the user is able to draw a map of the 

environment (or load a previously saved one), define critical areas with the provided 

utilities (Figure 4-8) and run the EMSDC [106] algorithm to automatically place sensors in 

near optimal locations (Figure 4-9). Before running the placement algorithm, however, the 

user must define the set of available sensors as well as their properties. A sensor may 

either be “single” or “multiple”, meaning it may sense just one (e.g. sound) or more 

modalities (e.g. infrared, sound, temperature etc). A sensor also has properties, such as 

range, coverage angle, battery life and so on. If a sensor is “multiple” the user must 

define these characteristics for each sub-sensor. However, critical areas need to be 

defined for each type of sensor, as for example the critical area of a camera is not 

necessarily the same as the critical area of an RFID reader or a thermometer. Also, a 

sensor may be considered mobile or static. A static sensor cannot be moved once it is 

placed, while a mobile sensor, such as our robotic platforms, may move to respond to 

changes in the environment, depending on the type of mobility (turning, moving, etc). 

EMSDC also takes into account several other parameters, such as the fact that the more 

critical an area is the more overlap in coverage we probably want, to increase fault 

tolerance, or the fact that certain types of sensors may or may not be blocked by 

obstacles, walls etc. After the tool has placed the sensors, the user may adjust the 

sensors’ positions to her/is preferences. 
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Figure 4-8: Definition of critical areas in a given environment layout/floor plan using the 

SPSM tool. 

 
Figure 4-9: During sensor placement, in the SPSM tool, sensors move around trying to 

find an optimal position. 

In the System Monitoring mode, the system frequently communicates with each 

sensor to make sure it is working properly. If a sensor fails to communicate within a 

predefined time frame, a warning is raised. If the sensor does not respond for too long, it 

is considered failed, an alert is raised and EMSDC will adjust the placement to account 

for the failure (Figure 4-10). 
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This tool operates in an online fashion, and is able to adapt to changes in the 

environment (i.e. changes in the critical areas, sensor failures etc). This gives us the 

ability to react to events of interest (e.g. the user falls) by simply adjusting the definition of 

critical areas. E.g. If we have a mobile sensor, it can be moved to compensate for the 

failure of another sensor or for the appearance of a new critical area.  

 
Figure 4-10: Monitoring mode of SPSM, where green means the sensor is fine, yellow 

that there is a warning and red that the sensor is faulty. 

4.4  System Operation 

As we described in the previous section, the two main system components are 

the robots and the placement tool, as visualized in Figure 4-11. A typical operation 

scenario for our system would begin with the definition of the apartment layout by the 

user. After the layout has been inserted in the tool, the areas of high importance are 

determined. The importance of each region/room is defined by subjective criteria that 

usually depend on the time the user spends in a particular area, such as the living room, 

or increased risk of injury due to the particular characteristics and usage of a specific 

room, e.g. the restroom. The combination of these important or critical regions create a 

“critical area map” which is used by the tool as a base map with the default importance 
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values for each area. After these regions, as well as the number of robots available have 

been defined, the tool uses the EMSDC algorithm to define the number of the robots and 

position of each one in the different areas of the apartment. During this process, the 

range and coverage span of each sensor of the robot are taken into account. These 

factors may depend on the sensitivity of each sensor, its resolution and its directionality. 

Therefore, the microphone is considered as an isotropic sensor, while the laser sensor 

has both less effective range as well as a smaller angle of coverage. The camera on the 

other hand offers good range, but has a very small coverage angle. After all the above 

parameters are taken into account, the final position of the robots is determined and 

appropriate commands are sent to each one of them. 

 

 

 

 

 

 

 

 

 

 

 

 

Each robot navigates to its predetermined position by using the camera and the 

LIDAR sensors. After it reaches its position it starts monitoring the space and stands by 

for further instructions. Space monitoring could be carried out using both audio and video. 

… 
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Figure 4-11: System Architecture of the 

assistive robot placement framework. 
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More specifically, the microphone could be used for audio monitoring and the webcam for 

video monitoring. Audio monitoring can be two-fold, event recognition and vocal 

commands. In the event recognition mode, the robot would monitor the audio level 

captured by the microphone. If a high level noise is detected, such as a scream or the 

sound of an object or person falling, an alert would be sent to the placement tool which 

raises the importance of the specific area and also records the event type, time and the 

position where it occurred. The second mode of audio monitoring would use vocal 

commands to make the robot move. Therefore, the importance map would be updated 

when a user changes the position of a unit. This mode of operation would give the user 

the ability to control the robot, but could also allow for further interaction with the robot. 

The second stream of information which could be used for monitoring is video, based on 

motion detection. Motion detection conducted by means of background subtraction would 

be sufficient for a domestic environment with stationary background. In a similar way to 

audio event recognition, intense motion can be considered a critical event which would 

cause the placement tool to be updated by increasing the importance of the particular 

position and record the time, type and position of the event. This can prove very effective 

in recognizing falls since a concurrent detection of an event from both audio and video 

can be a good indicator of such an event. 

In all cases of an event being detected, the importance of a particular area of the 

“critical area map” is raised. Nevertheless, in order to avoid the creation of local maxima 

in the map, the importance of the area is reverted back to its default value found in the 

base map, after a certain amount of time has elapsed and if no other events have 

occurred in that area. 
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4.5  Navigation Experiments 

In this section we present the results of the experiments conducted to validate 

the effectiveness of the robotic design. We tested the system in various scenarios in 

order to evaluate its robustness to changes in illumination and obstacle avoidance. 

During our tests we came up with practical modifications that increased both the 

accuracy and the performance of our system. The first was to restrict the coordinates of 

the initial intersection point of the pair of lines to the middle 1/3 of the image vertically and 

inside the boundaries of the image horizontally. This is based on the assumptions that 

the path cannot have an extreme inclination and that the camera always keeps the path 

in its view. This made the vanishing point estimation more robust by using RANSAC that 

discarded false lines intersecting at arbitrary points. The second set of experiments 

included testing the robotic platform outdoors, as a worst case scenario, to examine the 

robustness in a radically different environment with greatly varying illumination and 

contrast conditions as well as fewer perspective lines. The visual module was found to 

operate better when only the lower half of the image was processed, thus reducing 

drastically the processing time and the occurrence of false lines coming from objects. The 

intersection point of the pair of lines was restricted to the upper half of the image. 

The highest navigation accuracy was achieved indoors since there was an 

increased number of perspective lines coming from the walls and the ceiling. This 

resulted in accurate vanishing point estimation. Outdoors, performance was lower due to 

the fact that collinear edge pixels coming from objects or noise in the image were 

detected as lines, introducing inaccuracies in the execution of RANSAC. The collision 

avoidance system proved to operate robustly in all the environments. The interaction with 

the robots was done through a GUI from which the system can be switched on and off 

using two large and distinct buttons. In addition the interface allows for the operating 
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parameters of the robot to be tuned for better performance and for matching the robot’s 

operation to the user’s needs (Figure 4-12). Furthermore, the GUI provides a 

visualization of the captured video with the estimated vanishing point as well as the 

direction of the robot and any obstacles detected. 

 
Figure 4-12: Vision and ranging data visualized by the system at different processing 

steps. 

4.6  Conclusions 

Our novel framework for optimal assistive robot placement manages to 

effectively monitor an ambient intelligence environment by taking into account the 

apartment layout, the importance of different rooms and the user’s preferences. It does 

so by utilizing the EMSDC algorithm, which enables robots incorporating a variety of 

different sensors to be positioned optimally in an apartment for event recognition. Our 

system is based on the eyeDog guide robot. This robot was designed as an effective 

assistive solution for the visually impaired, able to successfully navigate on a given path 

and avoid obstacles. Additionally, it is cost effective and can be easily built since it uses 

low cost, off-the-shelf parts. Our system can prove very valuable in an assistive 
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environment for the elderly or disabled were accidents and unexpected events must be 

detected promptly in order to insure the person’s well-being. 
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Chapter 5  

Discussion and Extensions 

We have presented our vision and efforts towards a novel ambient intelligence 

environment that utilizes speech and localization information as well as robotics. The 

individual developed subsystems satisfy successfully the main conditions that we set in 

Chapter 1. More specifically, they exhibit the ability to recognize speech and be location 

aware, enabling recognition of events and ultimately context-awareness. Furthermore, 

the incorporation of embedded sensors such as the Kinect and the utilization of depth 

images instead of planar video, renders them less intrusive, reducing privacy concerns. 

Finally, they are adaptive to sensor failure or dynamic changes of the environment over 

time  by means of optimal placement of mobile sensor bearing robotic platforms. 

Therefore, the framework described in this work enables the creation of the infrastructure 

for effective human-centered computing to provide enhanced pervasive services to 

humans. Our efforts were successful at focusing on the collection and analysis of 

multimodal data that can result from human monitoring applications inside an ambient 

intelligence environment.  

In particular, in Chapter 2 we presented a novel multimodal ASR system that 

utilizes facial depth information captured by the Kinect, in addition to the traditional audio 

and planar video modalities. We also used this configuration to capture a connected digit 

database in two languages, the first featuring this stream combination. Feature extraction 

was employed by means of the 2D DCT and a two-stage LDA feature selection scheme 

was applied to the visual and depth features in order to boost lip-reading performance. 

Finally, state synchronous HMMs were used for data fusion and speech modeling. We 

tested our system under the influence of babble audio noise and 4 types of video 

degradations and conducted experiments not only in English but also in Greek. Our 
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experimental results demonstrated that the depth modality improves word accuracy in 

comparison to audio-only and audiovisual recognition and that 3D visual information from 

both planar video and the depth stream, leads to a significant increase in accuracy in 

comparison to audio-only ASR.  

In Chapter 3 we presented a novel system capable of accurate and robust 

person localization and identification. Our system combines the tracking capabilities of 

the Kinect sensor with identification information from existing RFID technology. 2 Kinect 

devices were used as well as 2 RFID antennas, identifying and tracking multiple tags. 

The three types of data captured to solve the localization problem were the RSSI, 3D 

depth images and audio information. Accurate position estimation for each person was 

carried out using the depth sensor of the Kinect, by means of skeletal tracking. The 

system was deployed in a simulated apartment and during the experimental phase it was 

tested for a 4 person scenario. The results achieved exhibited high identification and 

localization accuracy, exceeding 90%, proving its effectiveness. 

Finally, in Chapter 4 we expanded on the concept of ubiquitous computing in a 

dynamic ever-changing environment by presenting a framework for adaptive monitoring 

through optimal placement of sensor bearing robots. This framework can ensure optimal 

coverage of the monitored environment as well as adaptation and failure recovery in an 

online fashion by means of the Extended Max Sum Decentralized Coordination algorithm. 

The foundation of this framework is the prototype eyeDog robotic platform initially 

developed as a guidance aid for the visually impaired. The main components of this 

platform are a camera for the navigation task, and a LIDAR unit for obstacle avoidance. 

RANSAC has been employed for vanishing point estimation based navigation using a set 

of adaptive thresholds over similar approaches, and a PID controller ensures stable 

steering control. The feasibility and effectiveness of the approach was demonstrated by 
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successful navigation down the center of a path, while navigating away from obstacles 

and optimal sensor placement. 

5.1  Extensions 

A number of possible extensions and improvements can be considered for each 

one of the subsystems described in this work. Our AVASR system demonstrated the 

usefulness of 3D visual information for this task. However, its overall robustness could 

benefit through the use of product-modal HMMs, which lack the inherent assumption of 

synchronous streams. In addition, investigating the extraction of a different set of features 

from the visual and particularly the depth stream, could lead to higher accuracy by 

ensuring extraction of higher information content from this type of data. Finally, in order to 

promote natural interaction of the user with the environment, a dialogue system as well 

as speech synthesis would be a meaningful addition for a potential real world deployment 

of the system.  

 

Figure 5-1: Proposed extension with the incorporation of a dialogue system that will 

enable effective interaction between the user, the ambient intelligence environment and 

the robotic platforms. 
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In terms of our multimodal person localization and identification system, there is 

plenty of room for future extensions and improvements. In the localization domain, we 

consider as a reasonable and straight forward expansion to experiment with stereovision 

based on multiple cameras or Kinect sensors as an additional information stream. We 

also consider experimenting with the integration of an advanced data fusion technique for 

combining the heterogeneous data from all sensors and especially from audio and video. 

After confirming the effectiveness of this design, it could be extended by utilizing depth 

and audio information from additional Kinect devices for increased robustness and 

coverage. 

In terms of our robotic infrastructure, an extension regarding the SPSM tool 

would be to automatically generate patrol routes for the mobile sensors and adjust them 

accordingly if events of interest occur. Another prospective development would be to 

replace the webcam with the MS Kinect sensor in order to capture real-time video with 

depth information from the robot’s surroundings. This would allow us to acquire depth 

measurements that are correlated with the video stream and also replace both the 

webcam and the LIDAR unit with only the Kinect. Furthermore, if it proved sensible, we 

could disable the planar video input for increased privacy. Another foreseeable 

enhancement would be to add a speech based user interface for ease of use, more 

tailored towards the elderly or disabled. By combining our ASR system with the robotic 

platform and also incorporating speech generation and a dialogue system as part of a 

prompting system, it would be possible to prompt the user in case an event is detected 

and also allow her/him to issue commands verbally and receive system notifications. A 

final possibility is the development of a different type of platform, e.g. a quad rotor such 

as the ARdrone, in order to examine different challenges for the navigation task and 
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promote easier access to otherwise inaccessible portions of a domestic environment by 

our current platform. 
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