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Abstract 

ENERGY STORAGE DEVICES FOR SEAMLESS INTEGRATION 

OF RENEWABLE ENERGY 

 

Meng Liu, Ph.D. 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Wei-Jen Lee 

Renewable energy, as a promising resource for supporting continuously growing 

electricity demand, bears the disadvantages of un-controllable variability and partial 

unpredictability, which present challenges for large-scale integration into power systems. 

To maintain stable system frequency, the mechanical energy driving the generators 

should be balanced with the electrical energy consumed by loads and losses at all times. 

However, high penetration level of renewable energy presents challenges for this basic 

requirement. Energy storage system (ESS) is one of the most promising solutions to 

shape the variable renewable generation to follow certain production plans which benefits 

both system operation and market participation. In addition, ESS can contribute to grid 

reliability needs, defer transmission and distribution upgrade investments as well as 

integrate renewable generation resources. Currently, it requires significant financial 

commitment for the implementation of large-scale ESS. Therefore, designing efficient 

ESS and developing effective operation algorithms for seamless integration of renewable 

energy are of great importance.  

The Electrical Reliability Council of Texas (ERCOT) launched a nodal market in 

December, 2010, aiming at improving grid reliability, increasing market efficiency, and 

enabling transparency of wholesale energy prices. Under the new market design, the grid 
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congestion and the Locational Marginal Price (LMP) will be captured more rapid and 

granular across the network. LMP is defined as the “marginal cost of supplying, at least 

cost, the next increment of electric demand at a specific location on the electric power 

network, taking into account both supply bids and demand offers and the physical 

aspects of the transmission system including transmission and other operation 

constraints”. The variations of LMP across the network and the variations of LMP at any 

specific node along a day provide market participants more opportunities to pursue 

financial benefits. Moreover, participating energy efficiency programs like demand 

response (DR) program may bring market participants extra revenue. Texas Legislature 

passed Senate Bill (SB) 1125 in 2011, and one purpose of SB1125 is to qualify 

residential and commercial customer classes for participation in DR programs. 

Considering the market opportunities for renewable energy, ESS is the key to 

reshape the random output dominated by weather condition to follow certain desired 

pattern. ESS can also work as the bridge between convenience and revenue when 

participating in demand response programs.  

This dissertation presents the efforts involved in developing ESS operating 

strategies for different market participants, including renewable energy generation and 

end-user customers DR participation on both residential level and aggregated level. For 

renewable generation side, this dissertation addresses the idea of developing wind and 

solar PV hybrid system using ESS to compensate the intermittent output and match 

system load profile considering the facts that wind power has higher output at late night 

and early morning while solar PV only generates during day time. A hybrid ESS is also 

designed to dispatch wind farm output for maximizing financial revenue based on wind 

and LMP forecasting using Artificial Neural Networks (ANN). For end-user customer side, 

different scenarios are designed and studied for demand response program participation. 



vi 

Residential appliances are classified and controlled accordingly to take advantage of the 

LMP information. Thus, ESS is utilized to integrate renewable energy at distribution level 

so that under different operation schemes, significant financial revenue can be collected 

and system reliability can be maintained.  
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Chapter 1  

Introduction 

1.1 Current Development of Renewable Energy in Power Grids 

The continuous growth of electricity demand poses challenges to the utility 

industry due to limited resources and potential environmental impacts. Figure 1-1 shows 

the net electricity generation of the United States from 1949 to 2011 based on the data 

published by the U.S. Energy Information Administration [1, 2]. According to the 

prediction, the net generation is projected to exceed 5000 billion kWh by 2035 [1, 2] . It 

usually takes 5-10 years to complete a nuclear plant [3]; 6 years to build a coal fire plant, 

and the construction lead time for a natural gas combined cycle power plant is about 3 

years [4]. Moreover, this time-consuming process is constrained by many external factors 

such as government policies, economic conditions, and environmental concerns. 

 

Figure 1-1 Net Electricity Generation of the United States from 1949 to 2011 
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As an alternative to fossil fuel plants, renewable energy draws more and more 

attention owing to its sustainable nature. Renewable energy is defined as “energy that is 

produced by natural resources such as sunlight, wind, rain, waves, tides, and geothermal 

heat that are naturally replenished within a time span of a few years” [5]. Some 

household and industrial waste is also considered as renewable energy source. The 

installation capacities of the renewable electricity generation have been growing in recent 

years and will continue to do so as shown in Figure 1-2. This growth will be dominated by 

wind and solar energy, while other renewable sources are more likely to be restricted by 

geographical conditions [6]. The development of renewable energy sources is supported 

by the renewable portfolio standards, the federal renewable fuels standards, federal tax 

credits, and etc. The Texas legislature passed Senate Bill 7 which restructured the 

electric market in Texas in 1999; and in 2005, Senate Bill 20 in Texas launched a goal to 

reach an additional 5880 MW of renewable energy capacity by 2015, while 500 MW are 

mandated to be non-wind resources. A further target for additional renewable energy 

capacity is 10000 MW by 2025 [7]. 

 

Figure 1-2 Renewable Electricity Generation Capacity by Energy Source 
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Using wind and solar to produce electrical energy are attractive because they 

have the following advantages: 1) no fuel cost and less pollution; 2) shorter construction 

time compared with conventional power plants; and 3) highly modular structure that more 

easily enables future expansion [8]. However, the non-dispatchable output of wind and 

solar energy presents significant challenges for system operators; especially the 

penetration level is high. To maintain a stable system frequency, the required mechanical 

energy to drive the generators should be equal to the electrical energy consumed by the 

loads and losses. The intermittent nature of wind and solar is no doubt an unstable factor 

for system operation. The day-night cycle causes extremely unevenly distributed solar 

power over the course of 24 hours, while wind power is typically higher at night and 

during early morning. Moreover, the output pattern of neither wind power nor solar power 

is synchronized with system load profile at most times. Figure 1-3 plots the system load 

and wind generation on 5/30/2013 of the Electricity Reliability Council of Texas (ERCOT), 

where the mismatch is shown. The peak load of the system is around 5 pm, while the 

wind generation is at the valley by that time.  
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Figure 1-3 ERCOT System Load and Wind Power Production of 5/30/2013 

1.2 Study Objectives 

Energy storage systems (ESS) offer possible solutions to improve the effective 

utilization of renewable energy by shaping renewable generation to follow certain desired 

production plans, which benefit both system operation and market participation. 

Furthermore, ESS can contribute to grid reliability needs, defer transmission and 

distribution upgrade investments as well as promote seamless integration of renewable 

generation resources.  

This dissertation presents the efforts involved in developing ESS operating 

strategies for the seamless integration of renewable energy. For renewable generation 

side, this dissertation addresses the idea of developing wind and solar PV hybrid system 

using ESS to compensate the intermittent output and match system load profile 

considering the facts that wind power has higher output at late night and early morning 

while solar PV only generates during day time. A hybrid ESS is also designed to dispatch 
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wind farm output for maximizing financial revenue based on wind and LMP forecasting 

using Artificial Neural Networks. Demand response participation with ESS is discussed 

for end-user customer side; different scenarios are designed and studied for demand 

response program. Residential appliances are classified and controlled accordingly to 

take advantage of the LMP information. Thus, ESS is utilized to integrate renewable 

energy at distribution level so that under different operation schemes, significant financial 

revenue can be collected and system reliability can be improved.  

1.3 Synopsis of Chapters 

The organizational structure of this dissertation is as follows:  

Chapter 1 introduces the current situation of renewable energy utilization in 

power grid and illustrates the importance, motivation and study objectives of this 

dissertation.  

Chapter 2 compares the characteristics of the different energy storage 

technologies, and reviews several ongoing wind/solar power and energy storage hybrid 

projects in the United States. The increasing trend of utilizing energy storage devices is 

also discussed. 

Chapter 3 proposes a wind and solar PV hybrid system design using ESS. The 

wind/PV capacity ratio is optimized and the hybrid system is later dispatched with 

batteries to better match system load profile.  

Chapter 4 designs different scenarios for demand response program participation 

under ERCOT nodal market with ESS. The participation of end-use customers at both 

residential level and aggregated level are studied respectively. The participation of 

Voluntary Load Response program is studied for residential customers, and the 

application of renewable energy resources at distribution level with ESS are studied. For 

aggregated customers, the appliances are classified into different groups according to 
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their criticality to human lives, and different control algorithms are designed to participate 

in demand response programs for financial benefits. 

Chapter 5 discusses the dispatch scheduling of a wind farm with hybrid ESS. The 

day-ahead wind power and LMP are forecasted by Artificial Neural Networks, and the 

forecasted data are used to optimize the operation of the primary ESS. A secondary ESS 

is utilized to address the forecasting errors and improve the optimization results. 

Chapter 6 presents the conclusions and future work directions of this 

dissertation. 
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Chapter 2  

Literature Review 

2.1 Characteristics of Different Storage Technologies 

As a promising solution for solving the large-scale integration of renewable 

energy problem, energy storage has drawn more and more attention in recent years. As 

defined by the California Public Utilities Code Section 2835 (a) (1), energy storage 

system is “commercially available technology that is capable of absorbing energy, storing 

it for a period of time, and thereafter dispatching the energy” [9]. Many types of storage 

devices are available nowadays. Several criteria such as application type, reliability, 

feasibility, power rating, storage capacity, electrical efficiency, lifetime, response time and 

costs should be considered when selecting storage devices for different applications.. 

Function and form are two typically categories when classifying different ESSs 

[10]. As for function, the high power rating category can be applied for power quality 

control, and this category includes capacitors, supercapacitors, flywheels, 

superconducting magnetic energy storage (SMES), and batteries. On the other side, the 

high energy rating category is commonly employed for energy management and the ESS 

technologies include: pumped hydroelectric storage (PHS), compressed air energy 

storage (CAES), large-scale batteries, fuel cells, solar cells, etc.  

Electricity can be stored in different forms, and converted back easily when 

needed. A summary of different forms of storage technology is shown in Table 2-1. 
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Table 2-1 Energy Storage Form Summary [10] 

Electrical Energy 
Storage 

Mechanical Energy 
Storage 

Chemical Energy 
Storage 

Thermal Energy 
Storage 

• Electrostatic 
Storage 
- Capacitors 
- Supercapacitors 

• Magnetic/current 
energy storage 
- SMES 

• Kinetic energy 
storage 

- Flywheels 

• Potential energy 
storage 

- Pump Hydro 
Storage 

- Compressed Air 
Energy Storage 

• Electrochemical 
energy storage 

- Conventional 
batteries 

• Chemical Energy 
storage 

• Thermochemical 
energy storage 

• Low temperature 
energy storage 

- Aquiferous cold 
energy storage 

• High temperature 
energy storage 

- Sensible heat 
systems 

 

A detailed summary of the commonly used energy storage devices is presented 

in Table 2-2, where the power ratings, discharge characteristics, storage durations and 

capital costs between different technologies are compared respectively. 
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Table 2-2 Characteristic Comparison of Different Storage Technology [10] 

Systems 

Power Rating and  
Discharge Time 

Energy and Power 
Density 

Life Time and Cycle Life Capital Cost 

Power 
Rating 

Discharge 
Time 

Wh/kg W/kg 
Life time 
(years) 

Cycle life 
(cycles) 

$/kW $/kWh 
c/kWh-

Per 
cycle 

PHS 
100-

5000MW 
1-24h+ 0.5-1.5 - 40-60 - 

600-
2000 

5-100 0.1-1.4 

CAES 5-300MW 1-24h+ 30-60 - 20-40 - 400-800 2-50 2-4 

Lead-acid 0-20MW 
seconds-

hours 30-50 75-300 5-15 500-1000 300-600 200-400 20-100 

NaS 50kW-8MW seconds-
hours 

150-240 150-230 10-15 2500 1000-
3000 

300-500 8-20 

Li-ion 0-100kW 
minutes-

hours 
75-200 150-315 5-15 

1000-
10000+ 

1200-
4000 

600-
2500 

15-100 

Fuel cells 0-50MW 
seconds-

24h+ 
800-

10000 
500+ 5-15 1000+ 10000+ - 

6000-
20000 

Metal-Air 0-10kW 
seconds-

24h+ 
150-
3000 

- - 100-300 100-250 10-60 - 

SMES 
100kW-
10MW 

milliseconds-
8s 

0.5-5 500-2000 20+ 100000+ 200-300 
1000-
10000 

- 

Flywheel 0-250kW 
milliseconds-

15min 
10-30 400-1500 ~15 20000+ 250-350 

1000-
5000 

3-25 

Capacitor 0-50kW 
milliseconds-

60min 
0.05-5 ~100000 ~5 50000+ 200-400 

500-
1000 

- 

Super-
capacitor 

0-300kW 
milliseconds-

60min 
2.5-15 500-5000 20+ 100000+ 100-300 

300-
2000 

2-20 
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2.2 Ongoing Wind/Solar Energy Storage Hybrid Projects 

Winds are caused by uneven heating of the atmosphere by the sun, together with 

the irregularities of the Earth’s surface and the rotation of the Earth; all these factors 

influence the wind source of a specific location. The wind flow, if captured by the wind 

turbines, is an abundant and valuable source of generating electricity. As shown in Figure 

2-1, the United States (U.S.) has tremendous wind sources especially in the central part 

of the continent.  

 

Figure 2-1 U.S. 50m Wind Resource Map [11]  

Besides wind resource, the U.S. is also abundant of solar power, as shown in 

Figure 2-2, especially in southwestern states. Different technologies are developed to 

deploy solar power, including solar photovoltaic technology, concentrating solar power, 

solar process heat, passive solar technology, solar water heating, etc. As one of the most 
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widely used technology, photovoltaic is drawing more and more attention because it is 

highly modular structure. Electricity can be generated from the photovoltaic effect of the 

semiconductors resulted from solar radiation, which makes solar power sustainable. 

Similar as wind power, PV generation is largely influence by the weather conditions. In 

addition, there is only PV generation in the daytime.  

 

Figure 2-2 U.S. Photovoltaic Solar Resource Map [12] 

Acting an active role in alleviating renewable resources impacts to the power 

system, ESS can also serve grid reliability needs and defer transmission and distribution 

upgrade investments. There has been a continuous growing trend of employing 

renewable resources, and a number of renewable resources/ESS hybrid projects have 

been built across the country. Here is a brief review of several typical wind/solar hybrid 

projects where ESS plays different roles [13]:  
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2.2.1 Notrees Battery Storage Project [14] 

As the largest battery storage project at a wind farm, the 36 MW (24MWh) 

Notrees Battery Storage Project owned by Duke Energy is designed to increase the 

practical application of wind generation and alleviate the intermittency issues at utility 

scale. Completed in January, 2013, the project is located in west Texas, and the total 

generation capacity of the wind farm is 152.6 MW. A picture of the project is shown in 

Figure 2-3. The ESS is developed by Xtreme Power [15], and it is located at the 

substation and tied on the distribution side [16]. This demonstration project has several 

targets: 1) integrate the ESS with variable renewable production; 2) save the energy 

during non-peak periods; 3) provide ancillary services for grid management; 4) dispatch 

energy according to market price signals or pre-determined schedules; and 5) stabilize 

system frequency.  

 

Figure 2-3 Notrees Battery Storage Project in west Texas [14] 

2.2.2 Tehachapi Wind Energy Storage Project [17, 18] 

This project is sited at Tehachapi Wind Resource Area, one of the largest wind 

resources in the world, with an expectation of 4500 MW of wind resources online by 
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2015. One of Southern California Edison’s existing substations located approximately 

100 miles north of Los Angeles will be equipped with lithium-ion battery and 

corresponding power electronics devices to improve grid performance and support 

renewable resource integration. The 8 MW (32 MWh) ESS will store energy from about 

5000 wind turbines and any future additions. The primary purpose of the project is to 

validate the performance of the ESS. At the same time, the project will also bring benefits 

to the system including voltage support, frequency regulation, ramp management and 

energy price arbitrage, etc. Figure 2-4 is a picture of the Tehachapi Wind Resource Area.  

 

Figure 2-4 Tehachapi Wind Resource Area in California [18] 

2.2.3 Wind Firming EnergyFarm [19, 20] 

This project is located in the Modesto Irrigation District, California’s Central 

Valley. The 25 MW (75 MWh) EnergyFarm will replace a planned fossil fuel power plant 

intended to smooth the intermittent output of wind and solar energy. The ESS is the 
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Primus Power, which is a highly modularized zinc-flow battery system.  The goals of the 

project include accelerating the adoption of renewable energy resources, enhancing grid 

stability, improving grid asset utilization and substituting more expensive fossil fuel power 

plants.  

2.2.4 PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting [21, 22] 

The project is owned by the Public Service Company of New Mexico (PNM), and 

is located in Albuquerque, New Mexico. A 500 kW solar PV plant and 250 kW (1MWh) 

Advanced Lead Acid batteries are installed at a utility-owned site to demonstrate a 

dispatchable distributed generation resource. The hybrid resource provides the functions 

for both voltage smoothing and peak shifting, while a target of achieving 15% or greater 

peak-load reduction is expected. Besides, the hybrid project will also improve PV source 

reliability and mitigate voltage fluctuations caused by PV source.  

With the studies and research carried on by the demonstration projects, the 

advantages of implementing ESS have been explored in recent years and the installation 

of ESS start to become mandatory in some states of the U.S. For example, to encourage 

emerging storage technologies and progress towards marking transformation, the 

California Public Utilities Commission (CPUC) issued its final rule promulgating energy 

storage requirements in October 2013. These rules are developed according to the 

Assembly Bill 2514 (AB2514), which was passed by the California Legislature in 2010 

[23-25]. The three investor-owned utilities in California – Pacific Gas and Electric 

Company, Southern California Edison Company, and San Diego Gas & Electric 

Company are required to have electricity storage capacity of 200 MW by the end of 2014, 

and 1325 MW by the end of 2020.  
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Chapter 3  

Wind and Solar PV Hybrid System Dispatch Using Energy Storage 

Wind power usually has higher power output at night and in the early morning 

while solar power is only available in the daytime. Researches and studies have been 

ongoing to alleviate the fluctuations of renewable power output by using energy storage 

devices. This dissertation proposes an idea of combining wind turbines and PVs at 

different capacity ratios, to match the hybrid system output to the system load profile. 

With an optimal capacity ratio, feasibility studies are also made by adding battery 

storages to the hybrid system to dispatch total output. 

3.1 Wind/PV Capacity Ratio Optimization 

A wind machine extracts the kinetic energy in the moving air by its rotor blades 

which are mechanically coupled to a generator [8]. For solar PV, electricity power can be 

generated by the photovoltaic effect of semiconductors exposed to solar radiation. The 

capital cost for PV modules has declined significantly in recent years, making large scale 

application more feasible. As discussed in Section 2.2, U.S. has tremendous wind 

sources, especially in the Great Plains, while the states located in the southwestern U.S., 

are extraordinarily rich in solar sources. The geographic and weather conditions of 

several states like Arizona, California, Nevada, Texas, and New Mexico make them the 

ideal locations for building wind and PV hybrid farms or adding new wind turbines / PVs 

to the existing PVs / wind farms. While peak load is a critical factor of generation 

expansion, currently only less than 10% of wind generation contributes to the peak hours 

in Texas [26]. By optimizing the capacity ratios of wind and PV hybrid output, a better 

match can be made to the system load profile. 
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3.1.1 Data Collection 

The hourly load data of ERCOT system in 2008 can be accessed from [27]. 

Under normal operation, the load changes smoothly, therefore the data have been 

interpolated to a 15-min basis for future comparison. 

The 15-min wind output data is from a wind farm located in West Texas with an 

installation capacity of 278.5 MW in the year of 2008. The PV generation is from NREL 

PVWatts Site Specific Data calculator, where the location is chosen at the same place of 

the wind farm [28]. The calculator uses hourly typical meteorological year weather data, 

and since the solar radiation only varies slightly from year to year, it is assumed that the 

PV output can represent the output of the year 2008. The data is also interpolated to a 

15-min basis. 

Since renewable outputs and load profile are highly dependent on the time of 

year, the load, wind output and PV output of both winter (January) and summer (July) are 

studied for two different cases, and decision can be made after considering the 

simulation results of both cases. To avoid the effects of weather, the monthly average of 

all three data sets is calculated and used for the study. 

3.1.2 Capacity Ratio Optimization 

For a valid capacity ratio calculation, the wind and PV output data are both 

scaled to have a total installation of 100MW. Also, to analyze curve matching without the 

bias from the magnitude, load curve, scaled wind and PV output data are all transformed 

to fit in a common range by Min-Max Normalization according to 
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Where P is actual output, PMAX and PMIN are the maximum and minimum of data 

set P; P’ is normalized output, P’MAX and P’MIN are the maximum and minimum of data set 

P’. The new scale is [0, 1] to simplify calculations, so P’MAX = 1 and P’MIN = 0. 

The normalized monthly average power outputs of wind and PV for January and 

July are shown in Figure 3-1. The hybrid system is designed in 9 different capacity ratios, 

where PV output ranges from 10% to 90% in a step of 10%, and the percentage of wind 

power decreases from 90% to 10%. 
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Figure 3-1 Normalized Load Profile and Hybrid Output for  

(a) January and (b) July 
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The mismatch between the hybrid output curve and load curve are calculated by 

standard average error (SAE), as in 

 

2( ( ) ( ))hybrid load
N

P i P i
SAE

N

−
=
∑

 (3-2) 

SAE calculations for January and July are summarized for different ratios in 

Table 3-1. With the data in this study, the optimal PV to wind capacity ratio is 3:7 in the 

winter (January) and 4:6 in the summer (July). The hybrid outputs at optimal ratio are 

plotted in Figure 3-1 with blue curves. Different capacity ratios are calculated for summer 

and winter respectively for choosing proper size of storage devices. 

Table 3-1 SAE for Different Capacity Ratios 

January July 

PV (%) Wind (%) SAE PV (%) Wind (%) SAE 

0 100 0.4310 0 100 0.4114 
10 90 0.4203 10 90 0.3978 
20 80 0.4135 20 80 0.3835 
30 70 0.4120 30 70 0.3760 
40 60 0.4157 40 60 0.3758 
50 50 0.4245 50 50 0.3830 
60 40 0.4381 60 40 0.3970 
70 30 0.4561 70 30 0.4173 
80 20 0.4779 80 20 0.4430 
90 10 0.5032 90 10 0.4731 
100 0 0.5070 100 0 0.4825 

 

3.2 Dispatch the Hybrid System with Batteries 

3.2.1 Dispatch Algorithm 

Comparing the curves in Figure 3-1, the hybrid output curve matches the load 

profile much better than when only wind or PV is used. To maximize the utilization of the 

hybrid system, especially during peak hours, ESS is added to the hybrid system to 

dispatch the power output. Because the purpose is to explore the feasibility of matching 
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the renewable energy output with the load profile, the costs of the devices are not taken 

into consideration. 

The batteries are designed to reshape the hybrid system output and maintain a 

constant output for every hour. ERCOT actual monthly average load data per hour in 

January and July 2008 are used for calculation. The hybrid system with the optimal 

PV/wind ratio for January and July are scaled to a total installation capacity of 100 MW. 

The storage capacities will be calculated after dispatch. 

The battery output at the nth hour Pb(n) depends on battery output of the previous 

hour Pb(n-1) and the load data of the previous two hours PL(n-1) and PL(n-2), as shown in 

 
( -1) - ( - 2)

( ) ( -1)   2
( - 2)

L L
b b

L

P n P n
P n P n k n

P n
= + × >   (3-3) 

Where k is capacity adjustment factor; by choosing a proper value of k, the total 

energy charged to the batteries in a single day will be equal to the total energy the 

batteries import to the grid. When n = 1 in (3-3), which is the first hour of the day, hybrid 

system output will be its actual generation without considering battery storage, so Pb(1) = 

0. When n = 2, the output of the batteries will be calculated with Pb(1), PL(1) and PL(24). 

With battery storage system added, total system output consists of hybrid system 

output and battery system output, which can be calculated according to 

 Total Hybrid bP P P= +   (3-4) 

Where PTotal is total output, PHybrid and Pb are the output of hybrid system and 

battery system respectively. 

The load profile and dispatch results are shown in Figure 3-2 and Figure 3-3. 

Figure 3-2(a) and (b) show ERCOT monthly average load profile for January and July in 

the year 2008. In Figure 3-3 (a) and (b), the blue curves are the output of the hybrid 

system at the optimal ratio, which are 3:7 in winter and 4:6 in summer with a total 



 

21 

(a) (b)

capacity of 100MW. The red curves are the dispatch results after adding the batteries. 

When the blue curves are above the red curves, the actual generation is greater than the 

dispatched generation, and the batteries are storing energy. When the blue curves are 

below the red curves, the actual generation is lower than the dispatched generation, and 

the batteries are exporting energy to the system. With batteries added, the hybrid system 

output depends on the load profile variation, so the magnitude of the load does not affect 

the results. 

 

Figure 3-2 ERCOT Monthly Average Load Profile in January (a) and July (b) 2008 

 

 
Figure 3-3 Hybrid System Output with and without Batteries for (a) January and (b) July 

To compare the result of dispatch, the hybrid system output with batteries are 

normalized to [0, 1] according to equation (3-1), then SAE is compared with normalized 

load profile. The results are as follows.  
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SAE (January) = 0.0957 

SAE (July) = 0.0823 

With batteries added, the SAE for both January and July have been reduced 

more than 70%.  

3.2.2 Battery Capacity Calculation 

To keep the batteries working in normal condition, the state of charge for the 

batteries are kept between 20% and 80% during the dispatch. The round trip efficiency of 

battery storage is assumed to be 70% [29]. After considering all these aspects, the 

storage capacities are 53 MWh for January and 72 MWh for July for the 100 MW hybrid 

systems.  To fulfill the requirement of the whole year, the total storage capacity will be the 

larger value of summer and winter, which is 72 MWh. 

3.3 Results Discussion 

As an alternative to conventional plants, renewable resources such as wind 

power and PVs account for an increasing percentage of electricity generation. However, 

because the renewable resources have different control strategies from conventional 

generators, they cannot be dispatched by the system operator. The output of wind and 

PV is highly dependent on meteorological conditions, which is rarely synchronized with 

the system load profile. 

 In order to have large scale integration of renewable sources, the intermittent 

nature of the renewable source output must be addressed. This study is a feasibility 

study of matching the output of a PV and solar hybrid system to system load by 

combining PV and wind power in different ratio. The hourly load data of ERCOT in the 

year 2008 are used as load profile in this study. The output of a wind farm in west Texas 

in 2008 is used as wind data. The solar data is from the solar calculator provided by 

NREL. An optimal ratio of 3:7 for summer and 4:6 for winter time has been found. With 
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the optimal ratio, battery storage devices are added into the system to reshape the hybrid 

output in order to better fit the load profile and reduce the SAEs. With the batteries 

added, the hybrid output is dispatched and the SAEs have been reduced more than 70% 

for both summer and winter cases.  

The main goal of this study was to determine the feasibility of making the hybrid 

system dispatchable, so the cost of the batteries is not considered. However, currently 

the high cost of storage devices is still not feasible for large scale utilization. As 

technology develops, storage devices will play a more important role in dispatching 

renewable resources.  
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Chapter 4  

Demand Response Programs with Energy Storage 

Deregulated power market has been developed to maximize social benefits for 

both power generation entities and load customers. Demand response (DR) is an 

essential part of the competitive wholesale electricity markets. Many ISOs/RTOs have 

developed load participation or DR programs to provide customers opportunities to 

choose power. Each ISO/RTO has different system and market design, so DR products 

and services may be different from each other.  

4.1 Current DR programs at Different ISOs/RTOs 

North American Electric Reliability Corporation requires all DR programs to be 

categorized as one of the following products [30]:  

“Energy: Demand Resources are compensated based solely on demand 

reduction performance during a Demand Response Event. 

Capacity: Demand Resources are obligated over a defined period of time to be 

available to provide Demand Response upon deployment by the System Operator. 

Reserve: Demand Resources are obligated to be available to provide Demand 

reduction upon deployment by the System Operator, based on reserve capacity 

requirements that are established to meet applicable reliability standards. 

Regulation: Demand Resource increases and decreases Load in response to 

real-time signals from the System Operator. Demand Resources providing Regulation 

Service are subject to dispatch continuously during a commitment period. Demand 

Resources providing Regulation Service automatically respond to changes in grid 

frequency (similar to the governor action on a generator), and also are subject to 

continuous dispatch based on instructions from the System Operator (similar to 



 

Automatic Generation Control). Provision of Regulation Service does not correlate to 

Demand Response Event timelines, deadlines and durations”.

The demand response resource potential at U. 

Figure 4-1 according to the information from 

Figure 4-1 2012 Demand Response Resource Potential at U.S. ISOs and RTOs

 The following sections are brief summaries of the 

programs in different ISOs and RTOs, including California ISO, ISO New England

Midcontinent ISO, New York ISO

ERCOT will be used as example

electricity market for financial b

4.1.1 California Independent System Operator

CAISO maintains Participating Load Program (PLP) and the Proxy Demand 

Resource (PDR) Product to enable aggregators to provide DR resources into the whole 

sale energy and ancillary services market. 

Independent System Operator 

2012 DR Resource (MW) 

Percent of 2012 Peak Demand
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Automatic Generation Control). Provision of Regulation Service does not correlate to 

e Event timelines, deadlines and durations”. 

The demand response resource potential at U. S. ISOs and RTOs are shown in 

ccording to the information from [31]. 

2012 Demand Response Resource Potential at U.S. ISOs and RTOs

The following sections are brief summaries of the wholesale electricity 

rams in different ISOs and RTOs, including California ISO, ISO New England

Midcontinent ISO, New York ISO and PJM Interconnection, LLC.. The DR programs in 

used as examples to illustrate the utilization of ESS to participate into the 

electricity market for financial benefits.  

Independent System Operator (CAISO) 

CAISO maintains Participating Load Program (PLP) and the Proxy Demand 

roduct to enable aggregators to provide DR resources into the whole 

sale energy and ancillary services market. The PLP program enables load to participate 

Independent System Operator 

2012 DR Resource (MW) 

Percent of 2012 Peak Demand 

Automatic Generation Control). Provision of Regulation Service does not correlate to 

S. ISOs and RTOs are shown in 

 

2012 Demand Response Resource Potential at U.S. ISOs and RTOs 

wholesale electricity DR 

rams in different ISOs and RTOs, including California ISO, ISO New England, Inc., 

The DR programs in 

to illustrate the utilization of ESS to participate into the 

CAISO maintains Participating Load Program (PLP) and the Proxy Demand 

roduct to enable aggregators to provide DR resources into the whole 

load to participate 
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as price-responsive demand in the non-spinning reserves, replacement reserves and 

supplemental energy markets in CAISO [32]. “The CAISO shall only accept Bids for 

Supply of Energy or Ancillary Services or Submissions to Self-Provide Ancillary Services 

from Loads if such Loads are those of a Participating Load that has entered into a 

Participating Load Agreement with the CAISO and which meet standards adopted by the 

CAISO and published on the CAISO Website” [33]. The PDR products allow aggregators 

to offer demand response resources into the wholesale energy and ancillary services. 

“The CAISO shall only accept Bids for Energy or Ancillary Services, Submissions to Self-

Provide Ancillary Services from Proxy Demand Resources, or Submissions of Energy 

Self-Schedules from Proxy Demand Resources that have provided Submissions to Self-

Provide Ancillary Services, if such Proxy Demand Resources are represented by a 

Demand Response Provider that has entered into a Proxy Demand Resource Agreement 

with the CAISO, has accurately provided the information required in the Demand 

Response System, has satisfied all Proxy Demand Resource registration requirements, 

and has met standards adopted by the CAISO and published on the CAISO Website”[34]. 

4.1.2 ISO New England, Inc. 

There are two types of load participation programs in ISO New England: 

Reliability program and price program. The different programs are summarized in Table 

4-1. 
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Table 4-1 Demand Response Programs in ISO New England [35] 

Item 
Reliability 
Program 

Price Program 

Real-time Price 
Response 

Day-ahead Price Response 

Participant Any customer 

�Any Individual 
customer 
�Group of customers 
greater than 100kW  

Any customer enrolled in 
either the Real-Time Price 
or Demand Response 
Program 

Description 

Participant will be 
notified by ISO 
Control Room of a 
regional reliability 
problem. 

�Customers will be 
notified by ISO when 
the wholesale prices 
are forecasted to 
exceed $0.10/kWh 
either the night before 
or during the event 
day. 
�Customer decides 
when and for how long 
it will curtail the load 
voluntarily 

If load reduction offer 
“clears” in the Day-Ahead 
Market, the customer is 
notified by their Enrolling 
Participant around 4:00 
p.m. the day before the 
load reduction is expected. 
Load reduction must occur 
during cleared hours. 

Response 
Time 

Within 30-Minute 
or 2-Hour after 
receiving the 
request from the 
ISO. 

N/A N/A 

Payment 
Rate 

�Greater of Real 
Time Price 
�Guaranteed 
Minimum 
$0.50/kWh (30-
Minute); 
$0.35/kWh (2-
Hour). 
�Guaranteed 
Minimum payment 
is $0.10/kWh for 
Profiled Response 
Program 

Greater of Real Time 
Price or Guaranteed 
Minimum of 
$0.10/kWh. 

Either greater of the Offer 
Price or at the Hourly Day-
Ahead Market Price for 
each hour the Offer 
cleared. 

Note 
Customer must 
select option when 
enrolling. 

N/A N/A 
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4.1.3 Midcontinent Independent System Operator (MISO) 

The market participants that provide DR in MISO include Load Serving Entities, 

Aggregators of Retail Customers and End-use customers that have Market Participant 

status [36]. There are four types of DR services: 1) Economic Demand Response; 2) 

Operating Reserves Demand Response; 3) Emergency Demand Response; 4) Planning 

Resource Demand Response [36].  

4.1.4 New York Independent System Operator (NYISO) 

  When the NYISO capacity market began operation in December 1999, DR 

resources have been included in the market.  There are four types of DR programs: 1) 

the Emergency Demand Response Program; 2) the ICAP Special Case Resources 

program; 3) the Day Ahead Demand Response Program; 4) the Demand Side Ancillary 

Services Program [37]. 

4.1.5 PJM Interconnection, LLC 

There are two types of load participation in the market of PJM. The first type is 

for emergency, which provides a method that end users could be compensated by PHM 

for voluntarily load reduction during emergencies. The second type relies on economic 

incentive which provides an incentive to customers or curtailment services providers to 

decrease electricity consumption when the LMP is high. 

For the emergency DR type, it represents a mandatory commitment to reduce 

load or only consume electricity up to a certain level [38]. On the other side, for the 

economic DR, the program represents a voluntary commitment for customers. There is 

no firm commitment to reduce a specific amount of electricity consumption, although PJM 

requires a reasonably accurate estimate to effectively operate the grid [38]. Ancillary 

service is also included in the economic DR. 
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4.2 ERCOT Nodal Market 

In Texas, the Electricity Reliability Council of Texas (ERCOT) launched a 

comprehensive nodal market to improve market and operation efficiency through more 

rapid and granular pricing and scheduling of energy services [39]. To provide demand 

resources with the opportunities to provide services, different inclusive DR programs are 

designed to sustain the reliability and improve the operation efficiency of the grid [40, 41]. 

The U.S. Department of Energy defines DR as “Changes in electric usage by end-use 

customers from their normal consumption patterns in response to changes in the price of 

electricity over time, or to incentive payments designed to induce lower electricity use at 

times of high wholesale market prices or when system reliability is jeopardized.” [42]. In 

ERCOT market, DR programs can be generally classified into three categories: Voluntary 

Load Reduction, Load Resources and Emergency Interruptible Load Service. All these 

DR types can be procured in either Day-Ahead Operations or Operating Period. While 

the locational marginal price (LMP) focuses on the supply side in the wholesale market 

that contains the cost of generation, transmission congestion and losses, the ability to 

redispatch the load resources may provide efficient alternatives during peak hours, where 

20% of power generation capacity is only used to maintain peak demand, which happens 

only 5% of the time [43, 44]. 

In 2011, Texas Legislature approved Senate Bill (SB) 1125, an act focusing on 

energy efficiency goals and programs, public information regarding energy efficiency 

programs, and the participation of loads in certain energy markets [45]. One of the 

purposes of SB 1125 is to stimulate the participation of residential and commercial 

customer classes in DR programs while reliability standards are maintained. SB 1125 

also encourages utilities in the ERCOT region to facilitate retail electric providers (REPs) 

in the delivery of efficiency programs and DR programs, including programs for demand-
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side renewable energy systems which use distributed renewable generation [35

chapter of the dissertation discusses the participation of DR programs for 

customers on both individual scale and aggregated scale. 

 

Figure 4-2 ERCOT Region [47] 

ERCOT manages 85% of electric power load and 75% of the land area in Texas 

where 23 million customers are served [47], as shown in blue in Figure 4-2. In September 

2003, the Public Utility Commission of Texas (PUCT) required ERCOT to 

nodal wholesale market to improve market and operation efficiency through more rapid 

and granular pricing and scheduling of energy services. On 12/1/2010, ERCOT launched 

a comprehensive nodal market where electric grid congestion and price information will 

be captured at more than 4000 nodes [39]. Compared with the previous zonal market, a 

nodal market has the following advantages: 1) price signals are more detailed and 
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specific location (node) on the electric power network, taking into account both supply 

bids and demand offers and the physical aspects of the transmission system including 

transmission and other operational constraints” [49]. LMP includes marginal cost of 

generation, marginal cost of losses and marginal cost of transmission congestion [43]. In 

real time nodal market (RTM), ERCOT publishes the LMP for the next 5-min. The 

ERCOT nodal market consists of several types of day ahead and real time operations. In 

RTM, the price of the electricity at a single node varies along the day while there could be 

substantial differences in electricity prices at different nodes. The LMP information RTM 

in two typical time spot are plotted in Figure 4-3. Figure 4-3(a) and (b) show the RTM 

price at 19:40 10/7/2012 and 11:15 10/8/2012 respectively [50]. In Figure 4-3 (a), the 

highest price is around 51.99 $/MWh and the lowest price is less than 18.29 $/MWh, 

while the price range is from -97.14 $/MWh to 3021.34 $/MWh in Figure 4-3 (b). The 

extremely high price shown in Figure 4-3 (b) in West Texas is caused by network 

congestion. The tremendous change in LMP displays the financial opportunities of 

exploiting price variations if electricity could be kept in energy storage devices when the 

price is relatively low and consumed or even sold back to the grid when the price reaches 

a certain level.      



 

Figure 4-3 ERCOT 

Price information at 
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(a) 

 

(b) 

ERCOT Locational Marginal Pricing in Real Time Market 

Price information at (a) 10/7/2012 19:40 and (b) 10/8/2012 11:15 
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4.3 Demand Response Program Participation for Residential Households with 

Renewable Source and Storage Devices 

4.3.1 Voluntary Load Response in ERCOT Market 

Sustaining the reliability and managing the operation of the grid are the principal 

missions of ERCOT, while supporting the day-ahead market is another task [40]. 

ERCOT’s objective is to “ensure that sufficient resources in the proper location and 

required Ancillary Services have been committed for all expected Load on a Day Ahead 

and Real Time basis” [51]. Resources include both generation resources and load 

resources. For the load resource, customers will be rewarded by changing consumption 

patterns to facilitate system reliability under ERCOT’s nodal market environment. 

Different load responses and demand-side programs are summarized in Table 4-2. 
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Table 4-2 Demand-Side Participation in ERCOT [40] 

Resource Type 
Resources or Service that can be 

Provided 
Requirements 

Voluntary Load 
Response 

Curtailment or reduction in 
response to load zone price or other 
factors 

• Metering and/or curtailment 
technology defined in retail 
electric provider contract 

Day Ahead 
Market bids and 

response 

Load may choose to curtail or 
reduce consumption in response to 
prices bid in the Day Ahead energy 
market 

• Day Ahead Market Pricing 
• Metering and/or curtailment 

technology defined in Retail 
Electric Provider contract 

Real Time 
Market and 

passive 
response to 

price 

Load may choose to curtail or 
reduce consumption in response to 
prices in the Real Time energy 
market 

• Real Time Pricing 
• Metering and/or curtailment 

technology 

Load 
Resources 

Various ERCOT Ancillary Service:  
Regulation Up Reserve Service 
Regulation Down Reserve Service 
Responsive Reserve Service 
Non-Spinning Reserve Service 

• Interval Data Recorder 
meter 

• Telemetry 
• Qualification 

 

Voluntary load response (VLR), also referred to as “passive load response” or 

“self-directed load response”, is the customers’ self-motivated behaviors of adjusting the 

levels of consumption according to stimulus from market prices. More  flexible than other 

programs, VLR does not obligate customers to respond to the market as a load source; 

however, if the customers would like to behave as a load resource, further financial 

compensation could be exploited depending on the contracts with the REPs [40]. The 

main financial opportunities of VLR can be gained from changing consumption patterns in 

order to reduce electricity bills, such as reducing electricity usage when prices are high. 

In RTM, customers can request their REPs to provide ERCOT’s real time operation 

prices; since the price data can be accessed from the public website, customers can 
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accommodate their consumption behaviors to achieve financial benefits [35, 52]. Figure 

4-4 shows the consumption pattern of a residential customer after enrolling in a program 

that provides free electricity between 22:00 and 6:00 the next day. The customer utilized 

the free energy at night by moving some non-time-sensitive load to 22:00 and later. 

 

Figure 4-4 Power Consumption of A Residential Customer with Incentive Program 

4.3.2 Urban Area Renewable Alternative: Solar Power 

4.3.2.1 Solar Resources in Texas 

The cost of renewable generation continues to decrease. In urban areas, PVs 

are the most widely used for exploiting renewable energy because they are CO2 

emission-free and installation locations such as house roofs and building surfaces are 

easily found [53]. Its free of noise pollution, long life span, and low maintenance 

requirements make PV a preference among renewable resources in urban areas. There 

are abundant solar resources in Texas. In general, the daily and seasonal demands of 

Texas are synchronized with solar power output, which makes it feasible to cover a large 

portion of energy requirements using solar resources under the condition that the cost of 

renewable generation can be reduced as technologies develop [54]. The historical trend 
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of average module costs [55] are shown in Figure 4-5. Generation test of a commercially 

available PV panel has been conducted in the Microgrid lab of Energy Systems Research 

Center with both Pulse Width Modulated (PWM) and Maximum Power Point Tracking 

(MPPT) charge controllers, and the generation curve is shown in Figure 4-6. The tested 

PV panels have a total capacity of 470 W.  

 

Figure 4-5 Cost of Solar PV Generation [55] 
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Figure 4-6 PV Panels Generation Curves (Test Date: 9/6/2012) 
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metering to facilitate renewable energies, SB 20 launched a goal to achieve an additional 

5880 MW renewable energy capacity by 2015; 500 MW are mandated to be non-wind 

resources, which indirectly promotes solar energy. A further target of additional 

renewable energy capacity is set to be 10000 MW by 2025 [56]. In order to encourage 

the installation of PVs, federal, state, local, and private incentives and rebates offer 

numerous economic stimuli such as tax credits, tax deductions, property tax relief, 

purchase incentives (rebates), production incentives, etc.. Among them, a significant 
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portion is designed to benefit residential applications [57, 58]. In different cities, various 

incentives are offered to cut installation costs and to offer rebates per kWh of solar 

generation, making PV installation in households feasible. For example, the residential 

customer discussed in this part of the work took advantage of local and federal 

incentives, including a solar panel rebate of 3$/kW from the local utility; a rebate of 

0.8$/kW for participation in a demonstration project; and a 30% federal tax incentive [59, 

60]. Assuming a life time of 25 years for the solar panel system, the approximate daily 

cost for each kW installation is $0.04. Considering the fact that the electricity retail price 

will actually be higher than the wholesale price, there will be sufficient savings after 

installation to compensate for this daily cost. Another example can be found at UT 

Arlington: the installation of 384.93kW solar panels atop Park North and Park Central 

parking garages cost the university $368,000, but Oncor provided a $390,000 rebate [61]. 

From these two examples, the cost of PV installation can be reduced to a negligible level 

via incentives and rebate programs. Therefore, the solar panel installation cost is not 

considered in this study. 

4.3.3 Energy Storage Device Selection 

The day-night cycle causes extremely unevenly distributed PV output over the 

course of 24 hours. Energy storage devices offer possible solutions to improve the 

effective utilization of solar power by leveling peak demand and shifting excess energy to 

the time when electricity is needed and sunlight is not available. Nowadays, many types 

of storage devices are available, and several criteria such as application type, reliability, 

feasibility, power rating, storage capacity, electrical efficiency, lifetime, response time, 

and costs must be considered when making choices [62]. For residential usage, batteries 

are preferred since they can be located inside the building. The energy is stored in 

electro-chemical form, and the batteries are connected to the grid by compatible auxiliary 
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devices, like power converters and inverters. Typically, the battery system has 60% to 

80% cycling efficiency and its response time is approximately 20 ms [63].  

Though batteries have good characteristics, their high cost presents a major 

obstacle to large-scale application. Ongoing research aims to enhance capacity and 

lower costs. New technologies under development include Li-based, sodium-sulfur, 

nickel-cadmium, nickel-metal hydride, and zinc-bromine batteries. [64, 65]. 

The primary goal of selecting storage devices in this study is market success. 

Thus the main objectives are to: 1) reduce cost; 2) increase performance; 3) reduce 

weight and volume; 4) increase tolerance to abnormal conditions. Li-based batteries have 

a wide range of uses such as powering electric vehicles and aerospace applications 

because of their high energy density. Li-based batteries also have a satisfactory energy-

to-weight ratio, low charge loss, and no memory effect [29]. Therefore, Li-based battery is 

used for this study and the chosen model is currently under development, supported by 

the U.S. Department of Energy under American Recovery and Reinvestment Act cost-

shared grants. The battery is expected to be available by 2014 [66]. The life span of the 

battery is expected to be 15 years with a cost of $3400 and a capacity of 11.6 kWh.  

4.3.4 Financial Opportunities Analysis: Case Studies 

In order to adopt the ideas of SB 1125 and reap the financial benefits, DR 

programs design in ERCOT is extended to residential customers for the studies. The 

financial benefits calculation in this work is based on daily information, so the cost of 

batteries is also scaled to daily intervals. By calculation, the battery cost per day per kWh 

is $0.053. This cost is a key factor when seeking optimal storage capacity. 

Three case studies of implementing PV systems and Li-based batteries under 

ERCOT’s demand response program’s design for a household will be discussed in the 

following sections. The ultimate target of the studies is to explore financial opportunities 
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in RTM. A typical Texas residential load profile and the LMP information of ERCOT’s 

RTM are applied to calculate the battery capacity and total revenue. 

4.3.4.1 ERCOT Real Time Market LMPs 

The whole sale price information of the ERCOT real time market can be 

accessed through [67]. The price information of 7/24/2012 for a node called 

AUSTPL_ALL (near Austin) is shown in Figure 4-7 as an example. 7/24/2012 is a 

common summer day, with a temperature range between 77°F and 96°F. From Figure 

4-7, it is shown that the prices before 11 am and after 9 pm were relatively low, all less 

than 30$/MWh, while the peak price appeared at around 4 pm, reaching more than 

80$/MWh. The prices varied more than 4 times within a single day. 

 

Figure 4-7 LMP in Real Time Market at Node AUSTPL_ALL (Date: 7/24/2012) 
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chosen; the TDSP charge usually costs several cents/kWh [68]. In this work, the main 

interest is to employ the fluctuations of the price signals. Thus, the electricity prices 

applied to the residential customers are assumed to be the wholesale electricity price 

without the TDSP and other charges, since they will not affect the prices variation 

patterns. The prices are assumed to remain constant for five minutes before new data 

are published. 

4.3.4.2 Load Profile and PV Generation Curve 

 

Figure 4-8 Load Consumption Curve and PV Generation Curve of a Typical Texas 

Household on 7/24/2014 
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Where C0 is the total cost; pM(t) is the LMP at node AUSTPL_ALL for each 

minute in $/kWh; PL(t) is load consumption power in kW, and is assumed to be constant 

within each minute. C0 is calculated to be $1.8645.  

 This household has PVs installed, which provide power during daytime between 

8 am and 9 pm. The demand is around 2 kW during most of the day before the peak hour 

around 5 pm. Since the output of PVs exceeds load consumption during most of the day, 

batteries might provide a solution to shift the excess part for night use. Because battery 

cost is an important factor, different scenarios involving PV and battery installation are 

discussed. 

4.3.4.3 Case Studies 

As previously mentioned, the cost of PV systems is not considered in this study.  

Several other assumptions for the battery systems are made: 1) perfect efficiency (for 

calculation purposes); 2) maintenance free; 3) no auxiliary devices (e.g. inverters) cost. In 

addition, in all the cases, electricity feeds back from user side to grid side is designed to 

be minimum and is not metered. 

Scenario One: PV only 

In this case, PVs are installed in the household while no batteries are included. 

When there is no output from PVs, electricity is imported from the grid; when PVs have 

power output, it will be consumed before grid power. The electricity cost C1 for 7/24/2012 

with PV installed can be calculated by using (4-2) 
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Where PPV(t) is PV power generation in kW at each minute and is assumed to be 

constant for the whole minute. C1 equals to $0.8826 after calculation.  

Compared to C0, the electricity cost C1 has been reduced by 53%, showing that 

installing PV is a cost effective solution if the cost of the PV can be compensated through 

incentive programs. This is because PV output covers most of the power consumption in 

the daytime, reducing the total energy imported from the grid, especially when the LMP is 

high during peak hours. Therefore, installing PV is a good solution for reducing electricity 

bills. 

Scenario Two: Batteries Only 

The main idea of this scenario is to install energy storage devices (batteries in 

this study) in a household and store the electricity in the batteries when the LMP is low. 

Instead of importing electricity from the grid during peak hours, energy in the batteries will 

be used to reduce the total cost. One key factor which influences overall revenue is the 

capacity of the battery system since the cost of batteries is still relatively high for large 

scale applications. 

A threshold price that clarifies a boundary between the high price and the low 

price is defined to determine whether the batteries absorb or deliver electricity. A 

threshold factor kb is also introduced. When the LMP reaches the threshold price LMPset, 

batteries start to deliver electricity; LMPset is defined by 

   (0 1)set MAX b bLMP LMP k k= ⋅ < <  (4-3) 

Where LMPMAX represents the maximum price among the day in $.In this study 

LMPMAX is assumed to be well forecasted. For example, LMPMAX in Figure 4-7 is 86.33 

$/MWh. When kb is chosen to be 0.75, LMPset is 72.25 $/MWh. Thus when the LMP is 

higher than 72.25 $/MWh, the batteries will support the load. For different values of kb, 
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different battery capacities will be required. A lower LMPset value results in the need for 

larger battery capacity. 

The total cost of batteries is calculated by the product of the cost per kWh and 

the total capacity. As mentioned before, the cost of the battery used in this dissertation is 

0.053 $/kWh per day. A plot of the total electricity cost as a function of threshold factor kb 

is shown in Figure 4-9; kb changes from 0.3 to 1 for better visualization. When kb is 

chosen to be a smaller value, the batteries start to absorb energy when the LMP is 

relatively low, thus a larger capacity is required; however, the cost saved by shifting PV 

output cannot compensate the investment for batteries, resulting in an invalid solution. As 

kb increases, the cost varies slightly around $1.86. The minimum cost in this scenario, C2, 

is acquired at $1.8558 when kb is 0.45-0.57. Compared with C0, there is not much 

improvement after installing the batteries because of their high cost. This scenario might 

become feasible as battery technology develops. 

 

Figure 4-9 Electricity Cost for 7/24/2012 with Different Threshold Factor kb 
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Scenario Three: PV and Batteries 

With the installation of both PV and batteries, this scenario is designed to 

optimize the usage of solar power. The electricity generated by PVs has the priority to 

supply the load. When PV generation is greater than load consumption, the surplus 

portion is stored in the batteries; when generation is less than consumption, batteries 

supply the load before grid electricity is imported. The total cost of this case consists of 

two parts, electricity cost and battery cost. The total cost C3 for 7/24/2012 can be 

achieved by (4-4) 

 
1440

3 0

1
( ) [ ( ) ( )] ( )

60M L B BC p t P t P t dt C E= ⋅ − ⋅ +∫  (4-4) 

Where PB(t) is the battery output power in kW; E is the battery capacity; and CB is 

the battery cost per day in $ calculated from the product of battery capacity and cost per 

kWh. As the capacity varies, CB will also change. 

To maximize financial benefits, shared ESS are assumed when calculating the 

storage capacity since the actual value required for a single household may fall below the 

economic scale. The electricity cost as a function of storage capacity is plotted in Figure 

4-10. As capacity increases, the total cost drops before reaching the bottom and then 

rising again. All the capacity choices which make the total cost less than C0 are valid 

solutions. C3 is chosen to be the minimum value, $0.7955. This result shows that by 

installing both PVs and batteries, the electricity cost can be reduced on the condition that 

a proper storage capacity is chosen. 

The comparison of three different scenarios is shown in Table 4-3. In summary, 

installing PV is an effective method of cutting electricity bills, and implementing batteries 

together with PV system brings slightly better results. However, if only batteries are 

added, they do not significantly reduce the electricity bill. In general, PV installation does 
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provide an alternative for supplying residential load, especially during peak hours in 

Texas. Customers are able to obtain some financial benefits by participating in DR 

programs. The LMP of wholesale market is used in this work since the variation of prices 

is the main interest; when retail price is implemented where prices are higher, the 

scenario with battery installation will have better results. 

 

Figure 4-10 Electricity Cost When Different Storage Capacity Is Chosen 
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4.3.5 Conclusions 

Since similar laws may be implemented in other markets in the future, this study 

uses ERCOT’s demand response programs and SB1125 as an example to implement PV 

systems and Li-based batteries for a household to reap financial benefits. Three different 

scenarios have been studied. Based on the analysis results, following conclusions can be 

derived: 

1) DR programs at the residential level are win-win policies that can benefit the 

load customers and relieve grid congestion during peak hours. 

2) The financial benefits are largely dependent on customers’ load profiles. 

Savings can be achieved when consumption habits are changed by shifting 

some non-time-sensitive load to the time when LMP is low.  

3) For the locations with wider nodal price variation, the proposed approach in 

this dissertation becomes more attractive.  

4) When rebates and incentives are available, installing renewable sources 

suitable for residential area applications like PV is a clean and cost effective 

option to fulfill home demand.  

5) Due to its high cost, installing energy storage devices alone is of little benefit, 

but PV installation can work as an alternative method for supplying 

residential load in Texas, especially during peak hours.  

 
4.4 Demand Response Program Participation for Aggregated Residential Appliances with 

Renewable Source and Storage Devices 

Though the LMP in the wholesale market can change from one moment to 

another, for most residential customers, electricity bills are still charged monthly over a 

flat rate where the price does not reflect the actual electricity cost during usage [69]. 

Without market incentives, residential customers do not have any motivations to curtail 
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their consumption to lower the peak demand or relief the supply shortage. The deficiency 

with flat rate on the one hand forces utilities to take the risks associated with price 

fluctuations for keeping electricity rate constant [70]; while on the other hand residential 

customers do not have opportunities to adjust their consumption patterns according to 

LMP variations to reduce electricity bills. 

In addition, the growth of electricity demand and environmental concerns drive 

people to seek solutions from renewable energy. Therefore, this paper also proposes an 

idea to install a solar farm coupled with energy storage devices to supply the aggregated 

demand to further increase the financial benefits for all participants. 

4.4.1 Residential Appliance Classification 

In recent years, the widely deployment of smart meters, smart sensors and 

automatic control devices in distribution and residential levels has created a platform to 

control the operation of residential appliances in an intelligent way considering both 

household economic benefits and grid operational constraints [71]. With the vision that 

demand response may be expanded to residential customers, this dissertation presents 

approaches to aggregate a number of residential customers to shift the coincidental peak 

load by adopting different operation strategies for the most representative residential load 

types, including HVACs, clothes dryers, and refrigerators for possible system reliability 

improvement and financial benefits for all participating customers. An optimal operation 

schedule is able to make decisions for the appliances for switching on/off, cycling and 

shifting operating time while compromising the comfort and convenience of customers 

within a predefined tolerable range. The smart appliances can be classified into different 

categories according to appliance characteristics and consumption patterns. 

The most common appliances account for different shares of residential 

electricity consumption [72], as shown in Figure 4-11 where air conditioning (AC) and 
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space heating account for nearly half of the consumption. Water heating, refrigerators, 

lighting, clothes dryers also occupy significant parts of the electricity bills. Residential 

appliances can be classified according to their properties and criticality to daily life, 

making it possible to design operation strategies accordingly. The appliances are 

generally classified into noncontrollable appliances and controllable appliances, where 

controllable appliances are further classified into thermostatically controlled appliances 

and nonthermostatically controlled appliances; the classifications of major residential 

appliances are shown in Table 4-4 [71]. The noncontrollable appliances are the critical 

loads which are not suitable for rescheduling in DR programs. For controllable 

appliances, the thermostatic ones have thermal inertia which means the load 

consumption of the current moment is influenced by the consumption of the previous 

moment and will affect the next moment. For nonthermostatically load, there are 

flexibilities on their service time and can be deferred as needed. Being the most 

representative appliances in each category, AC/Heater, clothes dryer and refrigerator are 

chosen in this study to discuss the operation strategies for each type of appliances. By 

aggregating a number of appliances and shifting the coincidental peak load by certain 

amount of time, financial benefits can be achieved. 



 

Figure 4-11 Residential Appliances Electricity Consumption Percentage 
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4.4.2 Aggregated Appliances Operation Strategy 

4.4.2.1 AC/Heater Load Control – Steps of Temperature  

It is common practice for most residential consumers to set the thermostat of 

AC/heater at a constant temperature set-point. This practice is inefficient and costly in a 

real-time electricity pricing environment since the AC/heater still operates at the same 

set-point even the LMP is high. On the other hand, when the price is low, this practice 

does not take advantage of that low price to operate AC/heater at the coldest/hottest 

allowable temperature to reserve the thermal energy for the subsequent periods. 

The thermodynamics of AC/heater systems located at the end user is modeled 

as in [73]. It is assumed that the system is equipped with smart controls that manage the 

power consumption during the day in response to price signals, while at the same time 

maintaining the inside temperature within preset comfort limits. Equation (4-5) is used to 

simulate the indoor temperature of the next time frame [74]. 

 ����� � 1	 
 ������	 � �1 � �	 ��
����	 � ����
���	

� �  (4-5) 

��: �������, !: "##$���	 

Where 

 �����	  Inside temperature in period � 

 �
����	    Outside temperature in period � 

 %��	   Power consumption in period � 

   ����        Coefficient of performance 

 �   Factor of inertia (0.96) 

 &             Overall thermal conductivity (0.14 �+/-) 

Further, it is assumed that the smart control maintains the inside temperature 

within certain limits, which is around the user defined temperature set-point. Thus,  

 �.�� / �����	 / �.01 , 2�   (4-6) 
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Where 

     �34�   User defined temperature set-point 

 ∆�       Maximum deviation from set-point (2-) 

 �.��    Minimum inside temperature (�34� ! ∆�) 

 �.01   Maximum inside temperature (�34� � ∆�) 

For the operation strategy, it is considered that the AC/heater operates within the 

ASHRAE comfort zones [75]. Comfort zones are seasonal: the summer zone is 

separated from the winter zone. As shown in, both zones cover approximately 6-. 

 

Figure 4-12 ASHRAE Summer and Winter Comfort Zones [75] 

Outdoor temperature data of the year 2011 are obtained from [76] for a node in 

central Texas for simulation purposes. Figure 4-13 shows the temperature data of the 

entire year. Figure 4-14 shows the outdoor temperature data on a hot summer day while 
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Figure 4-15 shows outdoor temperature data on a cold winter day for illustration purpose. 

These data are used for AC/heater load control simulations together with the LMP of the 

same year at the same node. 

 

Figure 4-13 Annual Temperature of a Node in Central Texas in 2011(F°) 

 

 

Figure 4-14 Temperature at a Node in Central Texas on a Summer Day (F°) 
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 Figure 4-15 Temperature at a Node in Central Texas on a Winter Day (F°) 
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other hand, the heater load is operated the coolest (near the lower boundary of the 

ASHRAE winter comfort zone, i.e.69 -) when the LMP is higher than the predefined 

value (e.g., 35 $/MWh). The heater is operated between these two boundaries depending 

on the real-time LMP. 

4.4.2.2 Clothes Dryer – Price Naming 

The control strategy of Price Naming, as presented in [78], is a suitable strategy 

to be exploited for nonthermostatically controlled residential appliances such as clothes 

dryers. This is a familiar operation mode in the online discount reservation in [79] or in the 

auto insurance in [80] and it is adopted as load control strategy. An operator of the 

aggregated load can “name” his/her own electricity purchasing price for the load 

controller to send the control command to operate an appliance when the LMP drops 

below the desired price threshold [78]. By shifting the aggregated load usage to 

subsequent cheaper LMP timeframes, the overall consumption is not reduced and the 

desired missions are accomplished, but the benefits can be substantial. 

For modeling the clothes dryer consumption, a one-year worth of statistically 

averaged usage pattern of this end-use appliance is utilized. For the purpose of this 

study, the load data obtained as part of the End-Use Load and Consumer Assessment 

Program are used that have been made publicly available in [81]. The average yearly 

consumption (kWh/year) of clothes dryers can be expressed as follows [82]: 

 538.2 � 179.4 = >?@  (4-7) 

Where 

 >?@  Number of bedrooms (>?@ 
 3 in this study) 

4.4.2.3 Refrigerator 

Similarly, a one-year worth of statistically averaged usage pattern of this end-use 

appliance is utilized from the ELCAP data [81]. The average annual consumption 
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(kWh/year) of a refrigerator is 434kWh/year. Refrigerator is classified as non-controllable 

appliance; therefore its original consumption pattern will not be modified. The hourly 

electricity consumption by a refrigerator on an average winter and summer day is shown 

in Figure 4-16 (a) and (b) respectively. 

 

Figure 4-16 ELCAP - Refrigerator Load Shape for an Average Day 
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4.4.3 Solar Power and Energy Storage 

4.4.3.1 PV and Energy Storage Systems Integration 

Texas is rich in solar resource. With the advantages of emission-free, long life-

span and low maintenance requirement, PV is a preference for harvesting solar energy in 

this study. The incentives and rebates from federal, state and local levels make the PV 

installation feasible. 

The day-night cycling causes the output of PV to be extremely unevenly 

distributed. Typically, the maximum PV output in a single day appears around 2pm while 

the peak hours of the demand are between 4pm – 7pm, which is usually when LMP 

increase dramatically. To effective utilize PV output, energy storage systems (ESS) are 

implemented in this collaborative system to store the excess energy when the PV 

generation is higher than load consumption. The stored energy is used to supply load 

when PV power cannot fulfill the load and it can also be used to mitigate possible price 

spikes or sags. Several PV and energy storage hybrid projects are built across the world 

to mitigate the intermittence of the renewable energy. Meanwhile, the importance and 

benefits of installing ESS are realized more and more in recent years, for example, in 

California, the Public Utilities Commission requires 1.3GW of battery installation by 2020 

[83]. The selection and sizing of ESS are beyond the reach of this study; it is assumed 

that ESS is preinstalled. Therefore, this study defines the operation strategies while both 

PV and ESS are available and their sizes are fixed. 
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4.4.3.2 Energy Storage Systems Operation Strategy 

 

Figure 4-17 Dispatch Algorithm of PV Power and Energy Storage Devices 

The operation strategy is designed to choose the power sources for supplying 

customer appliances, which can be PV output, ESS or grid. The control strategy is 

illustrated in Figure 4-17. At each time step �, PV output %�A , load consumption %B
0C , 

ESS energy status D3� and LMP are read. The residue power %@43 is calculated by 

 %@43 
 %�A ! %B
0C    (4-8) 

If %@43 E 0, the residue power will be either used to charge ESS when the storage 

is not fully charged or dumped which leaves D3�  unchanged. When D3� F D3�_.01 , the 

wasted power (which is either consumed in heat or curtailed) %H03�4  and D3�  are 

calculated as 

Start
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Pch = min[Pch_max, Pres, 
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Est(i+1) = Est(i) + Pch * 

(1h)
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Pgrid = -Pres;
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Pdis = min[Pst_max, -Pres, 
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 %H03�4 
 %@43 (4-9) 

 D3��� � 1	 
 D3���	  (4-10) 

When D3� I D3�_.01, the storage devices can be charged, and the charging power 

%JK  is limited by the physical limits of the inverters %JK_.01 , %@43 , and the ESS energy 

status. %JK and D3� are calculated as 

 %JK 
 min O%JK_.01 , %@43 , �D3�_.01 ! D3���		/�1h	 Q (4-11) 

 D3��� � 1	 
 D3���	 � %JK = �1�	  (4-12) 

If %@43 / 0 , PV output is not enough to cover the load consumption. If D3�  is 

smaller than or equal to the minimum limit D3�_.��, D3� will not be changed, and the power 

imported from the grid, %R@�C will compensate the shortage of PV power. 

 %R@�C 
 !%@43 (4-13) 

 D3��� � 1	 
 D3���	  (4-14) 

On the other hand, if D3� E D3�_.��, a threshold price, ST%34�, is chosen to avoid 

over cycling of the ESS but still reduce purchasing electricity from grid if the LMP is high. 

In this study, ST%34� is the 75th percentile of the whole year LMP. When ST% I ST%34�, 

buying electricity from the grid is acceptable. ESS energy status will be unchanged. %R@�C  

and D3��� � 1	 can also be calculated from (4-13) and (4-14). But when LMP goes beyond 

the threshold value, the discharge power from the storage devices, %C�3, will be limited by 

the discharging capability of the inverters, the shortage between load consumption and 

PV output �!%@43	, and the status of ESS. %C�3 and D3� are calculated in (4-15) and (4-16) 

respectively. 

 %C�3 
 min O%C�3_.01 , !%@43, �D3���	 ! D3�_.��	/�1�	Q  (4-15) 

 D3��� � 1	 
 D3���	 ! %C�3 = �1�	 (4-16) 
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4.4.4 Simulation Results 

Several conditions and assumptions are made to obtain a more realistic 

simulation:  

1) The aggregation of 1,000 households is considered. The simulation is 

developed for the entire year of 2011.  

2) Recently a number of major appliance companies have invested in the 

production of smart appliances which are capable of supporting the proposed 

control strategies. It is assumed that a smart appliance has the ability to 

automatically schedule its operation based on real time pricing and also allow 

remote control by customers via smart phones or across the Internet [84].  

3) The LMP at a node in central Texas is used for the aggregated load for billing 

purposes.  

4) A distribution level solar farm with ESS is assumed to be available and 

supplies electricity for the 1,000 customers. 

Three case studies are implemented for comparison. The study results for a 

typical summer day (7/20/2011) and a typical winter day (12/7/2011) are shown as 

examples for the control of AC/heater. The study result for a summer day with price 

spikes (7/15/2011) is chosen to show the control strategy of the clothes dryer. 

4.4.4.1 No Load Control 

In this case, the AC/heater will always operate at the preset temperature 

regardless of LMP variations. As shown in Figure 4-18 and Figure 4-19, the AC works at 

77oF while the heater works at 71oF. The clothes dryer will operate without any load 

control either, as shown in Figure 4-20. 
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Figure 4-18 Outside Temperature, Temperature Setting and LMP as Seen from a 

Residential Customer in Central Texas on 7/5/2011 

 

Figure 4-19 Outside Temperature, Temperature Setting and LMP as Seen from a 

Residential Customer in Central Texas on 12/7/2011 
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Figure 4-20 Total Clothes Dryer Electricity Consumption for the 1,000 Customers without 

Load Control and Hourly Average LMP in Central Texas on 7/20/2011 
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algorithm as seen in Figure 4-21 and Figure 4-22 respectively. It can be noticed that the 
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On the other hand, the clothes dryer will operate following the Price Naming 

strategy. In this case, the price which lies 97.5th percentile of the LMP (70$/MWh) has 
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Figure 4-21 Outside Temperature, Temperature Setting and LMP as Seen from a 

Residential Customer in Central Texas on 7/15/2011 under the Steps of Temperature  

 

Figure 4-22 Outside Temperature, Temperature Setting and LMP as Seen from a 

Residential Customer in Central Texas on 12/7/2011 under the Steps of Temperature 
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Figure 4-23 Total Clothes Dryer Electricity Consumption for the 1,000 Customers with 

Price Naming Load Control and Hourly Average LMP in Central Texas on 7/20/2011 

 

4.4.4.3 Load Control with PV and Energy Storage 

The operation strategy introduced in Section 4.4.3 is implemented. ESS storage 
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output curve of a Texas PV farm in the year 2011 is used for simulation. The energy 

capacity of the ESS is assumed as 3 times of the average hourly customer total load 

consumption. The state of charge of the ESS is set between 20% and 80%. 

The total load consumption and the powers supplied by PV farm are shown in 

Figure 4-24. The ESS energy status and LMP variations of a week in July is shown in 

Figure 4-25 for demonstration purposes. It is shown that the ESS is charged before high 
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Figure 4-24 Total Load Consumption and Power Supplied by PV Farm  

 

Figure 4-25 Energy Stored in ESS and LMP  
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The operation strategy is simulated for the whole year of 2011. In summary, 

when no load control is performed during one year operation, 1,000 customers will 

consume 7,183 MWh which represents a cost of 0.42 million of dollars. After 

implementing the load control strategies of Steps of Temperature for the ACs/heaters, 

and the Price Naming for the clothes dryers, the annual consumption is 7,067 MWh with 

a cost of 0.38 million of dollars. 

Finally, when the group of customers utilizes renewable resources to meet its 

load through the PV power and ESS coupled with the load control strategies, they will 

consume from the grid 4,939 MWh which in turn represents 0.30 millions of dollars. This 

simulation results are summarized in Table 4-5. 

Table 4-5 Results of the Simulations 

Strategy 
Annual Electricity Consumption 

Drawn from the Grid (MWh) 
Total Cost 

(Millions of $) 

No Load Control 7183.3671 0.4205 

Load Control:  
Steps of Temperature, Price 

Naming 
7067.0862 0.3826 

Load Control with PV Power 
and Energy Storage 

5994.7382 0.3145 

 

4.4.5 Conclusions 

While sustaining the reliability and maintaining the operation efficiency of the grid 

are the principal missions of ERCOT, DR programs provide a new way to ensure that 

sufficient resources are committed in electricity market. SB 1125 proposes the expansion 

of DR programs to residential and commercial customers while the reliability standards 

are maintained. With the vision that DR will be expanded to residential customers in the 
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foreseeable future, an idea of aggregating a number of residences to shift the 

coincidental peak load by adopting different operation strategies is proposed. This study 

develops different operation strategies for the most representative residential load types, 

including ACs/heaters, clothes dryers, and refrigerators. 

When real time LMP information are taken into consideration, by grouping the 

residential appliances into controllable and uncontrollable loads and designing 

corresponding operation strategies for each load type, savings can be made for 

customers, and the load profiles are adjusted to facilitate system reliability. 

With the utilization of solar power and ESS, PV output is used both for supplying 

load demand and saving energy to the ESS. The operation strategies are simulated for a 

whole year and the annual costs are calculated and compared in this study. The results 

show that participating DR programs by doing load control and utilizing renewable 

resources, the total electricity cost can be reduced effectively, which suggests the 

effectiveness of the proposed approaches. 
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Chapter 5  

Wind Farm Dispatch Scheduling with Hybrid Energy Storage Based on Wind and LMP 

Forecasting 

Wind power, as a promising renewable energy resource for supporting 

continuously growing electricity demand, bears the disadvantages of non-controllable 

variability and partial unpredictability, which present challenges for large-scale integration 

into power system [85]. Energy storage systems (ESS) may work as a solution to shape 

the variable wind generation to follow certain production plans which benefits both 

system operation and market participation [86]. Currently, it requires significant financial 

commitment for a large scale ESS. Accurately forecasted wind power and LMP 

information can reduce the required capacity and make it financially feasible for the ESS 

to perform desired functions. This part of the dissertation focuses on the operation of 

wind farm with appropriate ESS installation. 

Wind power forecasting methods can be generally classified into two groups: 

physical methods and statistical methods [87-89]. Physical methods employ 

meteorological data and physical laws to forecast the wind speeds and directions, and 

feed the results into wind turbine power curves to calculate the corresponding power 

outputs [90]. Statistical methods attempt to develop models using historical wind power 

data [91]. Hybrid approaches that combine both methods are also proposed to improve 

forecasting accuracy [92, 93]. Various algorithms have been proposed to develop wind 

forecasting models, including autoregressive models [94, 95], ANN [96, 97], support 

vector machines [98, 99], and fuzzy logic [100, 101], etc. 

On the other hand, LMP forecasting in competitive electricity markets is critical 

for any decision-making process of market participants. Different candidates may impact 

LMP including system load profile, fuel price, transmission congestion, and generation 



 

69 

facility behaviors [102]. LMP carries a nonlinear relationship with historical values and the 

forecasted values of the influencing factors [103]. ANN [104-106] techniques are one of 

the most commonly used methods for LMP forecasting. 

With day-ahead wind power and LMP forecasting results, a wind farm with ESS 

is able to optimize its operation schedule to obtain maximum financial benefits. 

Researches have been done to optimize wind farm and ESS operations by forecasting 

wind power and designing operation strategies accordingly [86, 107]. However, the gap 

between the predicted and actual wind power is rarely considered.  

In this study, the day-ahead wind power and LMP information are forecasted by 

ANN, and the forecasting results are used to dispatch the primary ESS to store wind 

power when the LMP is low, and delivers electricity during peak hours when LMP is high. 

Due to the required response speed, the mismatch between the forecasted wind power 

and actual wind power is adjusted by a second set of ESS in real-time operation to 

enhance the performance. 

5.1 ANN Based Wind Power and LMP Forecasting  

ANNs are massively parallel distributed processors consisted of simple 

computing units, called neurons, to mimic the learning processes that brain performs by 

constructing input-output mapping of the given examples [97, 108]. The complex non-

linear relationship between input and output variables can be used to make future 

predictions. 

The general structure of three-layer feed-forward ANNs which are composed of 

an input layer, a hidden layer, and an output layer is shown in Figure 5-1. It has been 

stated that as long as enough neurons are chosen, one hidden layer is enough to 

estimate any continuous function for application [97, 109]. This dissertation utilizes 

forward heuristic simulation to decide the proper number of hidden units. The training 
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process starts with a small number of hidden units and increases the unit number by one 

until no significant improvement is achieved to avoid overfitting issues. 

 

Figure 5-1 Structure of Three Layer Feed-Forward ANNs Model 

The selection of input variables is problem-dependent; both influencing factors 

and historical data may affect the accuracy of the forecasting results. The forecast 

performances are evaluated by the mean absolute percentage error (MAPE) defined in 

(5-1), which is the ratio between absolute forecast errors and the actual values. 
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5.1.1 Wind Power Forecasting  

The hybrid forecasting method is adopted in this study where both numerical 

weather prediction (NWP) data and historical wind farm power outputs are used to predict 

the wind power for the next day in 15-min time step. The available data are 9-month 

power output of a wind farm in West Texas, with a total installation capacity of 160MW. 

The weather information of the weather station located in the wind farm of the same year 

can be accessed from [76] and used as NWP data. Based on correlation coefficient 

analysis defined in (5-2), time indices (hour, quarter) and several meteorological data are 

used as ANN inputs including temperature, pressure, sine and cosine for wind direction, 

wind speed and humidity of the forecasting day. 

 , 2 2
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Where 

 ,x yρ   correlation coefficient between X and Y; 

 ,x yσ σ   standard deviation of X and Y; 

 ,x yµ µ   mean of x and y 

Autocorrelation function defined in (5-3) is applied for selecting the appropriate 

lagged values for the power output data. The last 6-hour of day-ahead power outputs in 

15-min time-step are chosen as inputs. 
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Where 

kr   autocorrelation coefficient  between ty and t ky −  

T   length of time series 

yµ   mean of y 

Therefore, the networks shown in Figure 5-1 is composed of three layers for wind 

power forecasting, while the input layer has 32 neurons, the output layer has 1 neuron 

(power output), and the hidden layer is calculated to have 20 neurons. The hyperbolic 

tangent activation function is employed with the networks and Levenberg-Marquardt 

method is used to train the model. The data from January to June are used to train the 

network and the data from July to September are used for testing. The MAPE of the 

model is calculated to be 10.24%. The actual and forecasted wind power of a week in 

July is plotted in Figure 5-2 as an example. The results of the ANN forecasting is 

accurate enough to forecast the day-ahead wind power, and the results will be used for 

day-ahead wind and hybrid ESS system operation optimization in Section 5.5. 
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Figure 5-2 Actual and Forecasted 15-min Wind Power of a Sample Week in July  

5.1.2 LMP Forecasting  

In nodal market, LMP is the cost to provide the next MW of power at given node; 

it includes marginal generation cost, marginal loss cost and marginal transmission 

congestion cost [43].  In ERCOT, wind generation is not required to submit offers in the 

day-ahead market like other qualified scheduling entities. Wind generation resources are 

allowed to generate according to the wind condition, and it usually participates the real-

time market as a price-taker [110]. Thus, the day-ahead LMP forecasting provides 
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or not holiday, forecasted temperature, system load and the lagged values of ST%�U�, 

corresponding to the indices � 
 24, 25, 26, 48, 49, 50, 72, 73, 74, 96, 97, 98, 120, 121, 

122, 144, 145, and 146. For LMP forecasting, the input layer has 23 neurons, the hidden 

layer is calculated to have 18 neurons, and the only output neuron is LMP.  

The annually 15-min LMP data from ERCOT are available and the hourly LMP 

data feeding into the ANN are the average value of each hour at the node nearest to the 

wind farm. The data from January to June are used to train the network and the data from 

July to September are used for testing. The actual and forecasted hourly LMP of the 

same sample week as wind power is plotted in Figure 5-3. The MAPE is calculated to be 

17.38%. The majority of the forecasting errors come from the price spikes. 

 

Figure 5-3 Actual and Forecasted Hourly LMP of a Sample Week in July  

 

Two price spikes can be observed in the weekly LMP curve in Figure 5-3. The 
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which was forecasted by the system operators to plan for generation schedule.  From 

Figure 5-3, LMP forecasting for an operation day without price spike can reflect the price 

variations more accurately, as shown by the magnifying window. However, when LMP 

spikes happen, as in July 21 and July 25, the mismatches between actual and forecasted 

LMP become quite large. 

It can be observed from Figure 5-2 and Figure 5-3 that the wind farm has higher 

output in the early morning and at late night while the LMP has higher values, even 

spikes, during the peak hours, typically in the afternoon. Therefore, the application of 

hybrid ESS can optimize the production plan of the wind-storage system according to 

LMP variations to realize financial benefits from the power markets.  

5.2 Hybrid ESS Technology Selection 

The Hybrid ESS is composed of two set of ESS in this study. The primary ESS is 

utilized for optimizing wind-storage system production with day-ahead forecasting data. 

Different types of technologies have been adopted for bulk energy storage in power 

system, while several studies suggest that pump hydroelectric storage (PHS) is the most 

widely used large-scale ESS because of technology maturity, large storage capacity, long 

storage period, high round-trip efficiency and relatively low capital cost per unit energy 

[10, 86, 111]. Therefore, PHS is chosen as the primary ESS in this study where the pump 

will elevate the water to an upper reservoir during off-peak hours and a turbine will 

generate electricity when the water is released during peak hours. 

In real-time operation, the forecasting errors are addressed by a secondary ESS. 

With a smaller operation time-step (15-min is chosen), the secondary ESS reacts to the 

actual wind power and LMP data and adjusts the total production schedule accordingly. 

Compared with the primary ESS, the secondary ESS requires smaller installation 

capacity and faster response time. Being highly modular and having low standby losses, 
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rechargeable batteries can respond very rapidly to smooth out load changes and co-

generated power. Various rechargeable batteries are available nowadays, among which 

sodium sulfur (NaS) battery is preferred in this study due to its very high electrical 

efficiency, long cycle life and potential low cost [10]. 

5.3 Day-Ahead Wind-ESS Optimization 

For wind-ESS operation optimization with day-ahead wind power and LMP 

forecasting data, the available wind power can be: 1) directly delivered to the grid; 2) 

stored to the primary/secondary ESS and redeliver to the grid later; 3) dissipated by 

dump load or wind curtailment, as shown in Figure 5-4. 

 

Figure 5-4 Day-ahead Operation of Wind Farm and the Primary ESS  

 

To decrease the wear and tear costs of hydro units, the dispatch is scheduled for 

each hour. The daily operation optimization function is defined as  

 
( ) ( )

24
( ) ( ) ( )

, 1

max ( )
i i

p

i i i
p p

P P i

P LMP P C
=

× − ×∑   (5-4) 

Where the objective is to maximize the total daily revenue, (i) is the number of 

time interval, P is the power delivered to the grid based on forecasting, LMP is the 

Wind
Power

Pump
Dump
Load

Water
Reservoir

Hydro 
Generator

GridPw P

Pp PhPd

Pg



 

77 

locational marginal price PP is the power consumed by pump system and CP is the cost of 

pump system. The revenue is calculated from the sale of wind power in different hour at 

different LMP subtracting the cost of operating the pump system. 

The optimization is subject to the following constraints. 

1) Power Balance Constraints: 

 ( ) ( ) ( )i i i
w hP P P= +   (5-5) 

 ( ) ( ) ( ) ( )i i i i
g w p dP P P P= + +   (5-6) 

Where PW is the wind power delivered to the grid directly, Ph is the power 

generated by hydro unit, Pd is the power dissipated by dump load, and Pg is the 

forecasted total available wind power. 

2) Delivered Wind Power Constraints:  

 ( ) 0i
wP ≥   (5-7) 

This constraint limits that the power consumed by the pump system can only be 

supplied by the wind farm. 

3) Dump Load Constraints:  

 ( ) 0i
dP ≥   (5-8) 

4) Pump Output Constraints: 

 min ( ) maxi
p p pP P P≤ ≤  (5-9) 

Where Pp
min and Pp

max are the maximum and minimum pump system power 

consumption limits. 

5) Hydro Unit Output Constraints: 
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The output of the hydro unit is limited by its own power limits and the available 

energy stored in the upper water reservoir. Ph
min and Ph

max are the maximum and 

minimum hydro unit power generation limits. ER is the available water reservoir energy, 

and �h is hydro unit efficiency. 

6) Water Reservoir Energy Constraints: 

 
( )

( 1) ( ) ( ) (1 ) (1 )
i

i i i h
R R p p

h

P
E E P h hη

η
+  
= + × − × 

 
 (5-11) 

 ( ) max0 i
R RE E≤ ≤   (5-12) 

 (1) ( 24 ) max
R R RE E E k= = ×   (5-13) 

Where �p is pump system efficiency and ER
max is the maximum available water 

reservoir energy. 

The energy stored in the water reservoir at the beginning of each hour is 

determined by the initial energy of the previous hour and the output of both pump system 

and hydro generation units during the previous hour. To make the operation strategy 

available for longer time span, the initial and final energy levels of an operation day are 

predefined by an energy level factor k as shown in (5-13). 

5.4 Real-Time Wind-ESS Dispatch  

In real-time operation, the primary ESS system is dispatched based on the 

optimal schedule developed from day-ahead forecasting information. While the actual 

wind power output may differ from forecasted value, the secondary ESS either 

compensates the power mismatches or exploits the excess wind power concerning its 

energy and power limits. In real-time power market, ERCOT publishes the settlement 

price for each node 5-min ahead of the operation time. The prices of at 0, 15, 30 and 45 

minutes of each hour are used as actual LMP, and are used for price comparison for the 

next 15 minutes. The actual LMP is compared with a threshold price (LMPthr), which is 
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determined according to LMP forecasting to reduce unnecessary or uneconomic battery 

cycling. The algorithm of dispatching the secondary ESS is shown in Algorithm 5-1. 

Algorithm 5-1 Secondary ESS dispatch 

 

For each time interval (i) 

if Pg
act(i) > Pg

(i) (Pmis is positive) 

     if LMP(i) < LMPthr 

           (charge battery until EB
max; deliver rest power to grid) 

         Pch
(i) = min[Pch

max, Pmis, ηbch ·(EB
max – EB

(i)) / t] 

         Pact(i) = P(i) + Pmis 

         EB
(i+1) = EB

(i) + Pch
(i) × t 

     else (LMP(i) > LMPthr) 

        (deliver wind power and battery energy to grid) 

         Pdch
(i) = min[Pdch

max, ηbdch ·(EB
(i) – EB

min) / t] 

         Pact(i) = P(i) + Pmis + Pdch
(i) 

         EB
(i+1) = EB

(i) – Pdch
(i) × t 

     end if 

else (Pg
act(i) < Pg

(i), Pmis is negative) 

     if LMP(i) < LMPthr 

         (deliver less wind power to grid; charge reservoir) 

         Pact(i) = P(i) + Pmis  

         EB
(i+1) = EB

(i) 

     else (LMP(i) > LMPthr) 

         (discharge battery; deliver energy to grid) 

         Pdch
(i) = min[Pdch

max, ηbdch ·(EB
(i) – EB

min) / t] 

         Pact(i) = P(i) + Pdch
(i)

 + Pmis 

         EB
(i+1) = EB

(i) – Pdch
(i) × t 

         ER
(i+1) = ER

(i+1) + ηp Pmis 

     end if 

end if 
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Where Pg
act is the actual total available wind power, Pmis is the actual and 

forecasted wind power mismatch, LMPthr is the LMP threshold for secondary ESS 

operation, Pch, Pdch and ηbch are battery charge power, discharge power and charging 

efficiency respectively, and EB is the available battery capacity. 

In each 15-min time interval, when the actual wind power exceeds the forecasted 

value, real-time LMP will be compared with LMPthr to determine the strategy to use the 

surplus wind power. The secondary ESS will be charged until its maximum capacity when 

LMP is lower than LMPthr to shift the power to peak hours; when LMP surpasses LMPthr, 

the extra wind power will be directly delivered to the grid to gain financial benefits. 

On the contrary, when the actual wind power fails to reach the forecasted level, if 

real-time LMP is less than LMPthr, instead of being delivered to the grid, wind power is 

consumed by the pump system to elevate water to the upper reservoir; if real-time LMP is 

greater than LMPthr, the energy stored in the secondary ESS will be discharged and sent 

to grid to take advantage of the high LMP. At the same time, the output of the primary 

ESS will be used to accommodate possible deficits of the wind power. 

5.5 Application Results and Discussion  

Numerical simulation results of sample cases are used to illustrate the benefits of 

the proposed dispatch method.  

5.5.1 Assumptions and Parameters Selection  

ESS can contribute to grid reliability needs, defer transmission and distribution 

upgrade investments as well as integrate renewable generation resources. The 

advantages of implementing ESS have been realized in recent years and the installation 

of ESS starts to become mandatory. For example, in October 2013, the California Public 

Utilities Commission sets an energy storage goal for utilities of installing 1.3 GW batteries 

by 2020 [83].  Since the main goal of this part of the dissertation is to design the 
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operation strategy of wind farm with hybrid ESS, the installation and maintenance costs 

of the ESS are not considered in the calculation.  

The total available primary storage capacity is defined as 80% of 2-hour wind 

farm installation capacity, which is 256MWh. The efficiency of pump system and hydro 

unit are both set at 87%, with a round-trip efficiency �@ 
 �V = �K 
 75.7%. The power 

output limits of the hydro units are defined as 10MW and 50MW for minimum and 

maximum respectively, and pump system can consume from 0MW to 50MW. The 

operation cost of pump system is set as 2$/MWh. The energy level factor k of the primary 

ESS is set as 50%.  

For the secondary ESS, NaS battery has a high charge/discharge efficiency 

(85+%) [112]. Therefore, the charge and discharge efficiency are both set as 93% with a 

round-trip efficiency of 86.5%. Being secondary ESS, the energy capacity of the battery 

system is smaller since it is designed to adjust mismatches between forecasted and 

actual wind power. The total energy capacity is set as 2-hour of average wind power 

mismatches, (a forecasting error of 10.78% is this study), which is 18MWh. The limits for 

the state of charge are defined between 20% and 80% of the energy capacity, and the 

maximum charge and discharge power are both defined as 2MW. The LMP threshold 

(LMPthr) is set as 75 percentile of the forecasting results to avoid unnecessary cycling. 

5.5.2 Case Studies  

As discussed in Section 5.1.2, the accuracy of LMP forecasting becomes worse 

when price spikes happen. The dispatch strategy of two typical summer days, July 24th 

(without LMP spikes) and July 25th (with LMP spike) are used as examples to calculate 

the financial revenues respectively.  

To solve the optimization problem, CVX, a package for specifying and solving 

convex programs is used [113, 114]. The dispatch results of the wind farm and ESS for 
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July 24th, when no LMP spikes happen, are shown in Figure 5-5 to Figure 5-8. In Figure 

5-5, the total forecasted wind power and the scheduled deliverable wind power are 

plotted to the left axis. The LMP are plotted to the right axis. A large portion of the wind 

power generated between 5am and 9am when the LMP is low (shown in Figure 5-5) are 

shifted to the peak hours between 3pm to 6 pm as shown by the solid curve which 

represents the total scheduled wind power in Figure 5-8. The charge and discharge 

process of both primary ESS and secondary ESS are plotted in Figure 5-6 and Figure 

5-7. The total actual output of the wind-storage system is plotted by the dash line in 

Figure 5-8. The total revenue of this case is $45832, while the original revenue without 

optimization is $39898. 

 

Figure 5-5 Total Wind Power, Delivered Wind Power (Left-Axis) and LMP (Without Price 

Spikes, Right-Axis) for July 24th 
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Figure 5-6 Pump System Consumption, Hydro Unit Output (Left-Axis) and Water 

Reservoir Energy Level (Right-Axis) for July 24th 

 

Figure 5-7 Battery Charge and Discharge Power (Left-Axis) and Battery Energy (Right-

Axis) for July 24th  

 

4 8 12 16 20 24

0

40

80

120

160
P

ow
er

 (
M

W
)

 

 
Pump System
Hydro Unit
Reservoir Energy

4 8 12 16 20 24
50

100

150

200

250

300

Hour

R
es

ev
oi

r 
E

ne
rg

y 
(M

W
h)

4 8 12 16 20 24

0

2

4

P
ow

er
 (

M
W

)

4 8 12 16 20 24
5

10

15

B
at

te
ry

 E
ne

rg
y 

(M
W

h)

Hour

 

 
Battery Energy
Charge Power
Discharge Power



 

84 

 

Figure 5-8 Scheduled Power Delivered with Primary ESS and Actual Power Delivered to 

the Grid with Hybrid ESS for July 24th  

 

The dispatch results for July 25th, when LMP spikes happen are shown in Figure 

5-9 and Figure 5-12. 

 

Figure 5-9 Total Wind Power, Delivered Wind Power (Left-Axis) and Lmp (With Price 

Spikes, Right-Axis) for July 25th  
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Figure 5-10 Pump system consumption, hydro unit output (left-axis) and water reservoir 

energy level (right-axis) for July 25th  

 

Figure 5-11 Battery charge and discharge power (left-axis) and battery energy (right-axis) 

for July 25th  
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Figure 5-12 Scheduled power delivered with primary ESS and actual power delivered to 

the grid with hybrid ESS for July 25th  

When comparing the dispatch results with non-spike case, it can be observed 

that when there are LMP spikes, more wind power are stored into ESS and discharged 

when the price is considered high, and less wind power are directly delivered to the grid, 

as shown in Figure 5-9. To take advantage of the tremendous LMP variations, both 

primary ESS and secondary ESS are cycled more often than the operation day without 

LMP spikes, as shown in Figure 5-10 and Figure 5-11. The total actual output of the 

wind-storage system is plotted by the dash line in Figure 5-12. The total revenue of this 

case is $61085, while the original revenue without optimal scheduling is $30761.  

The dispatch results are compared and summarized in Table 5-1. With hybrid 

ESS, the total revenue of the wind farm has satisfactory improvement for both operation 

days with and without LMP spikes. The revenue increase for July 24th is about 15.11%; 

the revenue increase for July 25th, when the price cap goes up to 400 $/MWh, is as high 

as 98.49%. Therefore, with accurately forecasted wind power and LMP information, the 

dispatch of the wind farm with hybrid ESS system works as a profitable strategy in the 

deregulated electricity market.  
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Table 5-1 Dispatch and Original Revenue Comparison 

Date Original Revenue 
($) 

Dispatch 
Revenue ($) 

Increase (%) 

July 24th (no LMP spikes) 39898 45925 15.11 

July 25th (LMP spikes) 30761 61059 98.49 

 

5.6 The Impacts of Forecasting Accuracy 

To achieve optimal dispatch results, accurately forecasted wind power and LMP 

information play important roles. With wind power and LMP information, the hybrid ESS is 

able to plan ahead to store wind power and consume the stored energy based on 

electricity price signals. Moreover, well-forecasted wind power can enhance system 

stability and reduce economic uncertainty. On the other hand, well-forecasted LMP 

information is able to reduce network congestion and generate electric power by more 

efficient units. However, both wind power and LMP information are affected by various 

factors. For wind, factors including temperature, pressure, wind direction, wind speed, 

humidity and so on; all these factors have impacts on the actual wind power outputs of a 

wind farm. For LMP information, uncertainties contain generators operation plan, season, 

weather, network congestions, outage plans, etc. Though historical data and other 

related information are available, there is an ongoing research in the energy forecasting 

community to improve the forecasting accuracy of wind and LMP to achieve better 

results.  

To study the impacts of forecasting accuracy on the hybrid ESS dispatch results 

proposed by this dissertation, pseudo hourly wind power and 15-min LMP day-ahead 

forecasting data for the peak season (from July to September) are used to study the 
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relationship between dispatch revenue and forecasting accuracy. The peak season is 

chosen because the LMP usually experience more price spikes during this period, so the 

ESS can make better financial revenue. The MAPE of wind power forecasting is from 

10% to 20%, with a rough step of 3%, while the MAPE of LMP forecasting is from 17.73% 

to 26.39% with a rough step of 3%. The MAPE of the pseudo wind power and LMP 

Forecast data used for the study are summarized in Table 5-2.  

Table 5-2 The MAPE of the Pseudo Wind Power and LMP Forecast Data 

 MAPE 

Wind Power 10.76 % 13.21 % 16.23 % 20.07 % 

LMP 17.73 % 20.09 % 23.72 % 26.39 % 

 

Different cases are studied with each pair of wind power and LMP MAPE. The 

total revenues of the months from July to September are calculated, and the comparisons 

of the revenue are shown in Figure 5-13. 
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Figure 5-13 Comparison of Total Revenue for Different Wind Power and LMP MAPE 

Cases 

It can be shown from the comparison results that the total revenue drops as the 

forecasting accuracy decreases. An approximately 10% drop from both LMP forecasting 

MAPE and wind power forecasting MAPE will reduce the total revenue about 4%. 

Therefore, increasing forecasting results is crucial for improving the total dispatch 

revenue. 

5.7 Summary  

In this study, the dispatch strategy for a wind farm with hybrid ESS is developed 

based on day-ahead wind power and LMP forecasting information. In general, the 

outputs of the wind generation resources are based upon wind conditions, and they 

participate in the electricity market as price-takers. While the potential benefits of large-

scale ESS are recognized nowadays, some states have passed regulations about energy 
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storage installation requirements. In this dissertation, a hybrid ESS with primary ESS and 

secondary ESS is designed to dispatch the total output of wind-storage system according 

to LMP signals. The primary ESS is designed to optimize system revenue according to 

day-ahead wind power and LMP forecasting, while the secondary ESS is applied to 

adjust the mismatches between actual values and forecasted values in real-time 

operation. Two-case studies for two typical summer operation days, one with LMP spikes 

and one without LMP spikes, are included to show the potential financial benefits of the 

dispatch strategy. The calculation results show that large financial benefits can be 

achieved by the proposed dispatch strategy, especially for days with LMP spikes. 

Improving both, wind power and LMP forecasting, is a crucial method of improving the 

total revenue.  
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Chapter 6  

Conclusions and Future Work Directions 

6.1 Conclusions 

As an alternative to conventional power plants, renewable energy draws more 

and more attention to fulfill the growing electricity demand owing to its sustainable nature. 

However, the non-dispatchable output of renewable energy presents significant 

challenges for power systems, especially for large-scale integration. Being a bridge 

between renewable resources and the grid, ESS could shape the variable renewable 

generation to follow certain production plans which benefits both system operation and 

market participation. Furthermore, ESS can contribute to grid reliability needs, defer 

transmission and distribution upgrade investments as well as integrate renewable 

generation resources. 

This dissertation presented several studies covering the utilization of ESS for 

seamless integration of renewable energy under ERCOT nodal market design to pursue 

financial revenue for both renewable generation side and end-use customer side: 

For renewable generation side, by creating a hybrid renewable power plant, it 

was shown that the intermittent output of wind and solar PV generation could 

compensate each other. With the help of ESS, the hybrid generation profile could follow 

the ERCOT load profile, which can benefit system reliability and increase the 

dispatchability of renewable resources. 

Another study focused on the operation dispatch of a wind farm. In this study, the 

day-ahead wind power and LMP information were forecasted by ANN, and the 

forecasting results were used to dispatch the primary ESS to store wind power when the 

LMP is low, and to deliver electricity during peak hours when LMP is high. In real-time 

operation, the mismatch between the forecasted wind power and actual wind power was 
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adjusted by a second set of ESS to enhance its performance. Since the mismatch may 

be either positive or negative, the secondary ESS either compensated the power 

mismatches and/or exploited the excess wind power concerning its energy and power 

limits. With this hybrid ESS design, financial benefits can be achieved for the wind farm.  

For end-user customer side, different scenarios were designed and studied for 

demand response program participation. The participation of Voluntary Load Response 

program is studied for residential customers, and the application of renewable energy 

resources at distribution level with ESS are studied. At aggregated level, the appliances 

are classified into different groups according to their criticality to human lives, and 

different control algorithms were designed to allow the aggregated load to participate in 

demand response programs for financial benefits.  

6.2 Future Work Directions 

Currently, the high capital costs of the ESS are still the main obstacles 

preventing it from large-scale industrial application. Sizing the ESS and selecting suitable 

ESS technology and corresponding auxiliary devices for each specific renewable power 

plant site is of great value before implementation.  

In addition, the forecasting method used in this dissertation is the ANN, which is 

a relatively mature method for wind power and LMP forecasting. Some other forecasting 

algorithms might be studied for wind power and LMP forecasting to improve the 

forecasting results, and different forecasting results could be fed into the optimization 

models to compare the final results.   

Finally, the optimization model used in this dissertation was a deterministic 

model, where the output of the model was fully determined by the parameters and the 

initial conditions. Solving the problems with stochastic models considering the 

randomness in power system operation may be conducted in future research. 
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