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ABSTRACT

PIEZOELECTRIC ANALYSIS FOR
HETROGENEOUS MEDIUM

Publication No.

Solmaz Torabi, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Dr. Seiichi Nomura

In the recent years, several types of piezocomposites have been fabricated since
they have provided material properties superior to conventional piezoelectric materials.
In order to design these composites, it is essential to find the elastic and electric fields
for their different parts, as well as the effective properties of the composite. In the
present study, the analytical approach based on the extension of Eshelby’s theory in
piezoelectricity and the numerical approach based on FEM modeling and ANSYS
software have been used to find these elastic and electric fields inside the piezoceramic
inhomogeneity for two different piezocomposite according to their connectivity, 0-3
and 1-3. In addition, based on these fields, the effective properties of the
piezocomposite have been calculated in the analytical solution and have been compared

with the numerical solution results for the effective properties. These comparisons
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between two approaches for different volume fractions show the analytical approach is
valid to find the inside’s fields and the effective properties for less than ten percent of

the piezoceramic volume fractions.
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CHAPTER 1
INTRODUCTION

In recent years, several types of piezoceramic composites have been fabricated
since piezocomposites provide material properties superior to conventional piezoelectric
materials. Piezocomposites have become attractive candidates for use in many
applications such as ultrasonic imaging, sensors, actuators, damping, medical imaging
and non-destructive evaluation. These materials consist of an active piezoelectric phase
and a passive phase, usually a polymer.

Along with the widespread application of piezocomposites, how to determine
the effects of defects and inclusions on the properties of such materials becomes one of
the most important problems in engineering. For example, a piezocomposite used as a
sensor is designed to work under stress and deformation. Thus, various damage and
micro-defects in piezocomposite sensor have been observed. Studies on defects (such as
dislocations, crack and void) and inhomogeneity inside the piezocomposite material
have then attracted the attention of many researchers. For this reason, studying the
elastic and electric fields inside and outside piezoceramic part of the piezocomposite is
necessary.

In addition to the above reason, in the past few years, much work has been done
in the analysis and prediction of the effective properties of piezocomposites according

to their importance in the design of these composites. Finding the elastic and electric



fields in different parts of piezocomposite is one way to calculate these effective
properties.

The micromechanical characterization and analysis of piezocomposites were
launched by Newnham’s connectivity theory [1], which is based on the combination of
mechanics of materials type parallel and series models. According to his theory, the
properties of composites depend on the distribution of the components. The concept of
connectivity is useful in classifying different types of composites. The basis of this
concept is that any phase in a composite may be self-connected in zero, one, two or
three dimensions. There are 10 different ways of connecting the phases in a two-phase
composite, (0-0, 1-0, 2-0, 3-0, 1-1, 2—-1, 3—1, 2-2, 3-2 and 3-3), each described by
two numbers, the first defining how the active ceramic phase is connected and the
second how the passive polymer phase is connected.

Eshelby’s theory [2] is of great importance in various engineering and physical
fields, and is the subject of extensive studies. This theorem deals with two related
problems in classical elasticity theory. The first one is the determination of the stresses
and displacements produced in a medium occupying the entire space if an ellipsoidal
subregion undergoes a spontaneous deformation, which would be homogeneous in the
absence of the surrounding material. The second one is an analogous problem for the
case in which the inclusion and matrix have different elastic constants, while the
stresses are induced by a uniform stress-field at infinity.

In approaching above objectives, Eshelby [2] proceeded through a sequence of

imaginary cutting, straining, and welding operations, which are claimed to be equivalent



to a formulation of above problems. As a result, elastic field inside the inclusion can be
calculated based on Eshelby’s theory.

Extension of the well-known Eshelby's inhomogeneity solution from elasticity
to the piezoelectric material has been done in details by Wang [3] to find the elastic and
electric fields in different parts of piezocomposite.

Wang [3] studied a problem of piezoelectric inclusions in an infinite
piezoelectric medium via the Green’s function technique to find the integral expressions
for the strain and electric fields, but the integral expressions are very complicated, thus
closed-form solutions of strain and electric fields are too difficult to obtain even though
the matrix is chosen to be non-piezoelectric. Moreover, Wang did not consider the
interaction among inclusions.

From the view of stated applications, piezocomposites are made up of a
piezoelectric phase and the non-piezoelectric matrix. For example, sensors made of
piezoelectric materials, which are widely used in smart materials or smart structures are
generally piezoelectric inhomogeneities embedded in a non-piezoelectric matrix in
which the elastic fields and the electric fields are decoupled in it.

No electro-mechanical interaction in the matrix material assumption, a non-
piezoelectric medium, has been used in many studies to obtain the coupled elastic and
electric fields inside the piezoelectric inhomogeneity in the matrix. Fan and Qin [4]
analyzed a piezoelectric ellipsoidal inhomogeneity embedded in a non-piezoelectric
elastic matrix via the equivalent inclusion method of Eshelby’s theory. They used a

simple way to find the elastic and electric fields inside the inhomogeneity. They applied



non-piezoelectric elastic matrix assumption to partially decouple the original
piezoelectric inhomogeneity problem, although the coupling still holds inside the
inhomogeneity.

Based on Fan and Qin’s analytical approach and the finite element approach, the
elastic and electric fields inside the piezoelectric spherical and ellipsoidal
inhomogeneities embedded in a non-piezoelectric elastic matrix have been analyzed in
the present thesis. Also the effective coefficients have been calculated through these
two ways, an analytical and a numerical approach.

To do all the above calculation, it is necessary to know the piezoelectric
characters and formulations, which are given in Chapter 2. The analytical solution is
based on the analysis of the coupled elastic field and electric field of a typical
piezoelectric inhomogeneity in a non-piezoelectric medium. To do this analysis, it is
essential to know the original Eshelby’s theory for the elastic problems and extension of
Eshelby’s theory to piezocomposites, which are given in Chapter 3 and 4, respectively.
For the numeric approach ANSY'S, commercial finite element software, has been used.
For this approach, Chapter 5 has been provided to teach some basic steps in using this
software in piezoelectric modeling. The result of these two ways is given and compared

in Chapter 6 and the conclusion of this study has been provided in Chapter 7.



CHAPTER 2
PIEZOELECTRIC CERAMICS

2.1 Background Theory

All materials undergo a small change in dimensions when subjected to an
electric field. If the resultant strain is proportional to the square of the field, it is known
as the electrostrictive effect. Some materials show the reverse effect — the development
of electric polarization when they are strained through an applied stress. This is called
the direct piezoelectric effect. Piezoelectricity is a property possessed by a group of
materials, discovered in 1880 by Pierre and Jacques Curie, during their study of the
effects of pressure on the generation of electrical charge by crystals such as Quartz,
tourmaline and Rochelle salt. Piezoelectricity stems from the Greek word piezo for
pressure.

Piezoelectricity is a linear effect that is related to the microscopic structure of
the solid. Some ceramic materials become electrically polarized when they are strained;
this linear and reversible phenomenon is referred to as the direct piezoelectric effect,;
and it is always accompanied by the converse piezoelectric effect where a solid becomes
strained when placed in the electric field. The microscopic origin of the piezoelectric
effect is the displacement of ionic charged within a crystal structure. In the absence of

external strain, the charge distribution within the crystal is symmetric and the net



electric dipole moment is zero. However, when an external stress is applied, the charges
are displaced and the charge distribution is no longer symmetric. A net polarization
develops and results in an internal electric field. A material can only be piezoelectric if
the unit cell has no center of inversion. The lack of center of symmetry means that a net
movement of the positive and negative ions with respect to each other, as a result of
stress, produces an electric dipole. The ceramic, being composed of the random
orientation of these piezoelectric crystallites, is inactive, i.e., the effects from the
individual crystals cancel each other and no discernable piezoelectricity is present.
Regions of equally oriented polarization vectors are known as domains. [5]

Among the 32 classes of single-crystal materials, 11 possess a center of
symmetry and are non-polar. For these, an applied stress results in symmetrical ionic
displacements so that there is no net change in dipole moment. The other 21 crystal
classes are non-centrosymmetric, and 20 of these exhibit the piezoelectric effect. The
single exception, in the cubic system, possesses symmetry characteristics, which
combine to give no piezoelectric effect. [6]

Piezoelectric materials commercialize with the discovery of barium titanate and
zirconate titanate (PZ7) in the 1940s and the 1950s, respectively. These family of
materials exhibited very high dielectric and piezoelectric properties. Furthermore, their
behavior to specific responses and applications can be modified by the use of dopants.
Today, PZT is one of the most widely used piezoelectric materials. It is noted that most
commercially available ceramics, such as barium titanate and PZT7, are based on the

perovskite structure, Fig 2.1.



Fig. 2.1 Pervoskite structure [5]

The fabrication of most bulk piezoelectric ceramics is the same as other
ceramics except that they have one more process called poling. Poling is a commonly
used method to orient the domains by polarizing the ceramic through the application of
a static electric field. The electrodes are applied to the ceramic and a sufficiently high
electric field, a strong DC filed, is applied such that the domains rotate and switch in the
direction of the electric field in the polycrystalline ceramic. The result is never a full
orientation of all domains; however, the polycrystalline ceramic exhibits a large
piezoelectric effect. During this process, there is a small expansion of the material along

the poling axis and a contraction in both directions perpendicular to it, see Fig 2.2 [5].

PR K

N 0 3 8 AL
V=0 | Van RATNS
YA

P NI N ﬁ’}’;’;n

Fig. 2.2 Polling of a piezoelectric ceramic [5]
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Polycrystalline materials in which the crystal axes of the grains are randomly
oriented all behave electrostrictively whatever the structural class of the crystallites
comprising them. If the crystals belong to a piezoelectric class and their crystal axes can
be suitably aligned, then a piezoelectric polycrystalline ceramic becomes possible.

It should be noted that a poling process is often necessary with single-crystal
ferroelectric bodies because they contain a multiplicity of randomly oriented domains.
There is, therefore, a sequence of states of increasing orderliness: polycrystalline
ferroelectric ceramics, poled ferroelectric ceramics, single-crystal ferroelectrics and
single-domain single crystals.

If a piezoelectric plate, as shown in Fig. 2.3, polarized in the direction indicated
by P, carries electrodes over its two flat faces, then a compressive stress causes a
transient current to flow in the external circuit; a tensile stress produces a current in the
opposite sense, see Fig. 2.3(a). Conversely, the application of an electric field produces
strain in the crystal, a negative strain; reversal of the field causes a positive strain, see
Fig. 2.3(b). The changes in polarization which accompany the direct piezoelectric effect
manifest themselves in the appearance of charges on the crystal surface and, in the case

of a closed circuit, in a current.



(i (i)

Fig. 2.3 (a) The direct and (b) the indirect piezoelectric effects: (i) contraction;
(i1) expansion (The broken lines indicate the original dimensions) [6]

2.2 Piezoelectric Ceramics Coefficients and Equations

Piezoelectric properties are described in terms of the parameters D, E, ¢ and &;
where D is the electrical displacement, also referred to in ANSYS as the electric flux
density, E is the electric field, o is the mechanical stress and ¢ is the mechanical strain.
The electrical response according to the direct effect can be expressed in terms of strain
by

D=ee¢, (2.1)
where e is piezoelectric constants and relating the stress and the electric field and the
converse effect can be expressed by

oc=c¢ekL. (2.2)
The equations of piezoelectric state in all terms can be written as

c=Cl¢c-eE (2.3)



D=ec+KE, (2.4)
where C” is the elastic stiffness at a constant electric field, i.e. short circuit, and K* is the
permittivity or dielectric constant at constant strain, i.e. mechanically clamped.

Most of the literatures use the above relationship in the following form:

e=s"oc+dE, (2.5)

D=do+KE, (2.6)
where s% is the elastic compliance evaluated at constant electric field, i.e. short circuit, d
is the piezoelectric tensor relating the strain and the electric field, K is the permittivity
at constant stress, i.e. mechanically free. As stated in the first Chapter, two approaches,
numerical and analytical will be studied in this thesis. For the numerical method
ANSYS software has been used, and this software requires equations in the format of
equations (2.3) and (2.4). Therefore this format will be used in this Chapter. See
Chapter 5 for converting of equation (2.5) and (2.6) to (2.3) and (2.4), respectively.

Another important parameter in piezoceramics is the electromechanical
coupling coefficient, k, measuring the ability of a piezoelectric material in transforming
mechanical energy into electrical energy, and vice versa. Piezoceramic with higher
electromechanical coupling coefficient has more applications. In practice, the energy
transfer electrical to mechanical (or vice versa) occurs in a complex 3-dimensional way.
The strains caused by applied electrical or mechanical stresses have components in
three orthogonal directions necessitating the description of the piezoelectric effect in

terms of tensors, as outlined in the next paragraph.
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The state of strain in a body is fully described by a second-rank tensor, a strain
tensor, and the state of stress by a stress tensor, again of second rank. Therefore, the
relationship between the stress and strain tensors is fourth-rank tensor. The relationship
between the electric field and electric displacement, i.e. the permittivity, is a second-
rank tensor. So one can rewrite equation (2.3) and (2.4) in the tensorial format as

0jj = ct ikl €1 — €Lk, 2.7)

Di= e e+ K ik Ex. (2.8)
Note that in tensorial notation, if an index occurs twice in any one term, summation is
taken from 1 to 3.

In general, a vector, formally regarded as a first-rank tensor, has three
components, a second-rank tensor has nine components, a third-rank tensor has 27
components and a fourth-rank tensor has 81 components.

Not all the tensor components are independent. Between equations (2.7) and
(2.8) there are 45 independent tensor components, 21 for the elastic modulus C*, 6 for
the permittivity and 18 for the piezoelectric coefficient, e. Fortunately crystal symmetry
and the choice of reference axes reduce the number even further.

So far all the equations have been developed in full tensor notation. But when
calculating actual properties, it is advantageous to reduce the number of suffixes as
much as possible. This has been done by defining new symbols. As a result, the tensor
will be reduced to matrix notation. So instead of the above tensor notation, matrix

notation can be employed to represent equations (2.7) and (2.8) as

11
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where the superscript 7 denotes the transpose of a matrix. The stress and strain tensors

can be represented by the vectors of their components as

o, &, (2.10and 11)
O, &xn
&
[o]=] 7 |and[e]=| *
T V23
Tis Vi3
T2 V12

The vector of E and tensors of D and K° remain unchanged with respect to

equations (2.7) and (2.8) as

L, D, K, K, K,Y (2.12, 13 and 14)
[E]= E, |, [D]= D, land [K]* =| K,, K, K,
E; D, Ky Ky Ky

By defining new symbols, the relation between tensors ct i« and e as stated in the
equation (2.7) and components of matrix C* and e, C*,, and e;, (where i = 1— 3, p and
q = 1— 6) will be determined by the following rule

ij or ki 11 22 33 320or23 3lorl13 12o0r2l (2.15)

porgq 1 2 3 4 5 6.
For instance, C;;= Cij11, CM:E Ciiso, C55=Z C3131, e14=% e;23 and so on. Note with

considering the multiple appearances of some elements in the original equations (2.7)
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and (2.8), there is no need to put these fractions. According to the above rule, the matrix

of piezoelectricity can be written as

€ € €3 €y €5 € (2.16)

and the stiffness matrix will be

C11 Clz C13 C14 CIS C16 (2'17)
Cy Gy Gy Cf G Cy
[C]E _ Gy Gy Gy Gy G G
Co Cun Ci Cy Ci Cy
Cy Cy Gy Cy G Cy
C, C, C, Co Cu C

N
—_
[N
LS}
N
@
(=)
B
N
[
N
(=)}

The convention is to define the poling direction as the 3-axis, as illustrated in
Fig. 2.4. The shear planes are indicated by the subscripts 4, 5 and 6 and are
perpendicular to directions 1, 2 and 3, respectively. For example, e;3; is the coefficient
relating the field along the polar axis to the stress, or strain, perpendicular to it, while
e33 1s the corresponding coefficient for either stress, or strain, and field along the polar
axis. Shear can only occur when a field is applied at right angles to the polar axis so that
there is only one coefficient, e;s.

According to Neumann’s principle, the symmetry element of any physical
property of a crystal must include the symmetry elements of the point group of the
crystal. Application of this principle can reduce the number of independent components.

Here the discussion is restricted to poled polycrystalline ceramics, which have

13



Mt eet—2
- (5)

Pir

Fig. 2.4 Labeling of reference axes and planes for piezoceramics [6]

initially isotropic. In poling direction, this isotropy is destroyed. In the direction
perpendicular to the poling direction, material is transversely isotropic. The symmetry
elements are an axis of rotation of infinite order in the direction of poling and an infinite
set of planes parallel to the polar axis as reflection planes. The symmetry of a poled
ceramic is therefore described as comm, which is equivalent to 6mm in the hexagonal
symmetry system. According to this symmetry, 5 components for the elastic stiffness
C*, 2 for the permittivity and 3 for the piezoelectric coefficient, e, will be independent;

note the multiple appearance of some elements [5, 6]. With this symmetry of

transversely isotropic piezoceramic material and considering poling direction at 3, [C ]E ,

[e]", and [K]* will reduce to

K, 0 0
[KIF=| 0 Kk, O |, (2.18)
0 0 K,



0 0 0 0 ¢, 0 (2.19)

¢, C, Cy 0 0 0 (2.20)
C, C, Cs 0 0 0
C, Ci C; 0 0 0
[c]” =
o o0 o0 C, 0 0
0 0 0 0 C, 0
0 0 0 0 0 %

2.3 Piezoelectric Composites

The reciprocity in energy conversion makes piezoelectric ceramics such as PZT
very attractive materials especially towards sensors and actuators applications. Even if
their properties make them interesting, they are often limited, first by their weight, that
can be a clear disadvantage for shape control and as a consequence, by their high
specific acoustic impedance, which reduces their acoustic matching with the external
fluid domain. Bulk piezoelectric materials have several drawbacks; hence composite
piezoelectric materials are often a better technological solution in the case of a lot of
applications such as ultrasonic transducers, medical imaging, sensors, actuators and
damping. Composite technology in general sets out to combine materials in such a way
that the properties of the composite are the optimum for a particular application. The
property, whether mechanical, thermal, or electrical, is determined by the choice of
component and their relative amounts and, most importantly, the connectivity, that is

the manner in which the components are interconnected [7].
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Piezoceramic-polymer composites are a relatively recent addition to the range of
composite materials and have been developed principally because their properties offer
advantages, especially for sonar and medical ultrasonic imaging technologies, over
those of the piezoceramics alone. For these applications, the transducer is usually
interfacing with water or soft tissue, for example body skin. The advantages include
relatively good acoustic matching between the transducer and the medium, improved
electromechanical coupling coefficients and well-defined ultrasonic pulses. [6]

The properties of composites depend on the distribution of the components. The
concept of connectivity is useful in classifying different types of composites. The basis
of this concept is that any phase in a composite may be self-connected in zero, one, two
or three dimensions. There are 10 different ways of connecting the phases in a two-
phase composite, (00 to 3-3), each described by two numbers, the first defining how
the active ceramic phase is connected and the second how the passive polymer phase is
connected [1]. In this study attention is confined to the two most commonly
encountered connectivities, 0—3 and 1-3.

The 0-3 composite is a mixture of randomly dispersed and separated particles
having a connectivity of zero, because the ceramic phase is not continuous in any
direction, while the matrix surrounding them having a connectivity of three, because it
is continuous in all three orthogonal directions. A 1-3 composite consists of
piezoceramic rods extending from electrode to electrode and embedded in a polymer.
The rods have one-dimensional connectivity and the polymer again three-dimensional

connectivity.
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CHAPTER 3
ESHELBY’S THEORY FOR PURE ELASTIC PROBLEM

3.1 Background Theory

In the physics of solids, a number of problems present themselves in which the
uniformity of an elastic medium is disturbed by a region within it which has changed its
form or which has elastic constants differing from those of the remainder. Some of
these problems may be solved for a region of arbitrary shape. Others are intractable
unless the region is some form of an ellipsoid. Fortunately, the general ellipsoid is
versatile enough to cover a wide variety of particular cases.

When a twin forms inside a crystal, the material is left in a state of internal
stress since the natural change of shape of the twinned region is restrained by its
surroundings. A similar state of strain arises if a region within the crystal alters its
unconstrained form because of thermal expansion, martensitic transformation,
precipitation of new phase with different unit cell, or for some other reason. These
examples suggest the following general problem in the theory of elasticity [2].

3.1.1 The Transformation Problem

A region, the inclusion, in an infinite homogeneous elastic medium undergoes a

change of shape and size which, but for the constraint imposed by its surroundings, the

matrix, would be an arbitrary homogeneous strain. What is the elastic strain of inclusion
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and matrix? There are different methods to find this elastic field. One of the most
famous one is referred as Eshelby’s Theory.

According to this theory, one can solve this problem with the help of a simple
set of imaginary cutting, straining and welding operations. Cut round the region, which
is to transform and remove it from the matrix. Allow the unconstrained transformation
to take place. Apply surface tractions chosen so as the restore the region to its original
form; put it back in the hole in the matrix and rejoin the material across the cut. The
stress is now zero in the matrix and has a known constant value in the inclusion. The
applied surface traction has become built in as a layer of body force spread over the
interface between the matrix and the inclusion. To complete the solution, this unwanted
layer is removed by applying an equal and opposite layer of body force; the additional
elastic filed thus introduced is found by integration from the expression for the elastic
field of a point force [2].

So far nothing has been assumed about the shape of inclusion. However,
Eshelby has showed that if it is an ellipsoid, the stress within the inclusion is uniform.
By considering this fact, one can use the solution of the transformation problem as a
convenient way in solving a second set of elastic problems. Superimpose on the whole
solid a uniform stress, which just annuls the stress in the inclusion. The removal of
unstressed inclusion to leave a hole with stress-free surface is then a mere formality,
and we have solved the problem of perturbation of a uniform stress field by an ellipsoid
cavity. More generally, suppose that the uniformly applied stress does not annul the

stress in the inclusion. Then the stress and strain in the inclusion are not related by the
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Hooke’s law of the material since part of the strain arises from a non-elastic twinning or
other transformation with which no stress is associated. The stress and strain are,
however, related by Hooke’s law of some hypothetical material and transformed the
ellipsoid may be replaced by an ellipsoid of the hypothetical material which has
suffered the same total strain, but purely elastically. So the following problem has been
solved.

3.2 General Theory of Eigenstrains

Eigenstrain is a generic name given to such nonelastic strains as thermal
expansion, phase transformation, initial strains, plastic strains and misfit strains.
Eigenstress is a generic name given to self-equilibrated internal stresses caused by one
or several of these eigenstrains in bodies which are free from any other external forces
and surface constraints. The eigenstress fields are created by the incompatibility of the
eigenstrains [8].

The actual strain is then the sum of eigenstrains and elastic strains. The elastic
strain is related to eigenstress by Hooke’s law.

When an eigenstrain is prescribed in a finite subdomain £ in a homogenous
material D (Fig. 3.1) and is zero in the matrix D-Q, then Q is called an inclusion. The
elastic moduli of the material are assumed to be homogenous when inclusions are under
consideration.

If a subdomain 2 in a material D has elastic moduli different from those of the
matrix, then Q is called an inhomogeneity. Voids, cracks and precipitates are examples

of inhomogeneity, which might also be called an inclusion. Applied stresses will be

19



N

€D,

n'
!

/

il
N //

Fig. 3.1 Ellipsoidal Inclusion £ inside the homogenous matrix

disturbed by the existence of the inhomogeneity. The disturbed stress field will be
simulated by an eigenstress field by considering a fictitious eigenstrain &¢*; in 2 in a
homogenous material.

A material containing inhomogeneities is free from any stress field unless a load
is applied. On the other hand, a material containing inclusions is subjected to an internal
stress (eigenstress) field, even if it is free from all external tractions.

If an inhomogeneity contains an eigenstrain, it is called an inhomogeneous
inclusion. Most of the precipitates in alloys and martensites in phase transformation are
inhomogeneous inclusions. Eigenstrains inside these inhomogeneous inclusions are
misfit and phase transformation strains [8].

J. D. Eshelby first pointed out that the stress disturbance in an applied stress
according to the presence of an inhomogeneity can be simulated by eigenstresses caused
by an inclusion when eigenstrain is chosen properly. This equivalency will be called the

equivalent inclusion method.
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3.2.1 The Inhomogeneity Problem
An ellipsoidal region in a solid has elastic constants differing from those of
remainder. If] in particular, the constants are zero within the ellipsoid the case is cavity.
How is an applied stress, uniform at large distance, disturbed by this inhomogeneity?
The strain in the inclusion or inhomogeneity may be found explicitly in terms of
tabulated elliptic integrals. The elastic field at large distance is also easy to determine.
The field at intermediate points is more complex, but for many purposes, it is not
necessary to know it. In fact, knowing only the uniform strain inside the ellipsoid, one
can find the following items of physical or engineering interest:
1. The elastic field far from an inclusion.
ii.  The interaction energy of the elastic filed of the inclusion with another field.
iii.  The total strain energy in the matrix and inclusion.
iv.  The interaction energy of the elastic field of the inclusion with another elastic
field.
v. The elastic field far from an inhomogeneity
vi. All the stress and strain components at the point immediately outside the
inhomogeneity. This solves the problem of stress concentration.
vil.  The interaction energy of the inhomogeneity with an elastic filed.
viil.  The change in gross elastic constants of material when a dilute dispersion of

ellipsoidal inhomogeneities is introduced into it.
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Problem (i) and (iv) can also be solved for an inclusion of arbitrary shape, (ii) and (iii) if
one can evaluate the necessary integrals. Problems (v) to (viii) can only be solved for
the ellipsoid [2].

According to Eshelby’s solution, nowhere one has to introduce ellipsoidal
coordinates, suitable stress functions or match stresses and displacements at an
interface. Considering shear transformations and the disturbance of an arbitrary shear
stress by an ellipsoidal inclusion gives an easier way to solve this problem by Eshelby.
3.2.2 Equivalent Inclusion Method of Eshelby

Consider an infinitely extended material with the elastic moduli Cj, containg
an ellipsoidal domain €, Fig. 3.1, with the elastic moduli C*;y;. The disturbance in an
applied stress caused by the presence of this inhomogeneity will be investigated. Denote
the applied stress at infinity by ¢°; and the corresponding strain by ¢°;. The stress
disturbance and strain disturbance are denoted by o; and g, respectively. The total
stress (actual stress) is 0°; + oy, and the total strain is €% + €;;.

Hooke’s law is written as

0%+ 0= C*j (e + €r) in Q, (3.1)
0%+ 0= Cijr (% + xr) in D-Q, (3.2)
where Cju are the elastic moduli (constants) for the matrix and the summation
convention for the repeated indices is employed. If an index occurs twice in any one
term, summation is taken from 1 to 3. Moreover, the superscript "*" refers to the

material property of the inhomogeneity.
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The basic idea of the equivalent inclusion method of Eshelby is to substitute for
the inhomogeneity a homogeneous inclusion with the same properties as the matrix, but
with an eigenstrain. The eigenstrain must be determined such as to produce the same
stresses and strains as the former inhomogeneity.

The equivalent inclusion method is used to simulate the stress disturbance using
the eigenstress resulting from an inclusion which occupies the space Q.

Consider an infinitely extended homogeneous material with elastic moduli Cyy
everywhere, containing a domain £ with the eigenstrain ¢*;. The eigenstrain, ¢*; has
been introduced here arbitrarily in order to simulate the inhomogeneity problem by the
use of the inclusion method. Such eigenstrain is called an equivalent eigenstrain. When
this homogeneous material is subjected to the applied strain ¢°; at infinity, the resulting
total stress, strain, and elastic strain, respectively, are 6°; + 0;7,6°% + &, and €°%; +¢;; - ¥

in Q. Then, Hooke’s law yields

0%+ 0= Cijr (% + ex - €*u) in Q, (3.3)
0%+ 0= Cijrr (% + €xr) in D-Q, 3.4)

where
0% = Ciji €. (3.5)

The necessary and sufficient condition for the equivalency of the stress and the

strain in the above two problems of inhomogeneity and inclusion is
C¥irr (&% + err) = Cijrr (6% + €r - €*1) in Q, (3.6)
The quantity ¢y can be obtained as a known function of &*; when the

eigenstrain problem in the homogeneous material is solved. Thus, (3.6) determines &%y
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for a given &%, in such a manner that the equivalency holds. After obtaining &%, the
stress 0°%; + 0; can be found from (3.1) or (3.4).

If 6° is a uniform stress, ¢*; is also uniform in £ [5]. Then according to
Eshelby’s theory

&= Sijii € ¥kt (3.7)

where S is the fourth-order Eshelby tensor and for both isotropic and anisotropic
materials are given in Eshelby’s article [2] or in more explicit format in Mura’s book
[5]. Substitution of (3.7) into (3.6) leads to

C*ijk1 (€% + Skimn €%mn) = Cijrt (€% T Skimn €*mn - €*1), (3-8)
from which the six unknown components of the eigenstrain, ¢*;, are determined.

Consequently the elastic field inside the ellipsoidal shape inhomogeneity can be
calculated based on Eshelby’s theory. Through this derivation, Eshelby showed that the
deformation of an ellipsoidal inclusion embedded in an infinite homogeneous medium,
submitted to uniform remote loading, is homogeneous. This result allows the

inhomogeneity problem to be dealt with.
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CHAPTER 4

EXTENSION OF ESHELBY’S THEORY
FOR ELECTRICAL PROBLEM

4.1 Introduction

Along with the widespread application of piezocomposites, how to determine
the effects of defects and inclusions on the properties of such materials becomes one of
the most important problems in engineering. For this reason, studying the elastic and
electric fields inside and outside piezoceramic part of the piezocomposite is necessary,
where in this Chapter, the elastic and electric fields inside piezoceramic will be studied.

In addition to the above reason, how to predict the effective constants according
to their constituent properties becomes a very important topic in designing of these
composites. One way of calculating the effective coefficients is based on the analysis
the coupled elastic and electric fields inside the piezoceramic, presented in this Chapter.

This Chapter attempts to obtain the coupled elastic and electric fields of
piezoelectric inhomogeneity in an infinite non-piezoelectric matrix; and based on these
result obtain the effective constants of the composite.

It is worthwhile to summarize the previous work directly related to the present
study. Extension of the well-known Eshelby's ellipsoidal inhomogeneity solution [2] for
elasticity to the piezoelectric material has been done in details by Wang [3]. Wang
studied the problem of piezoelectric inclusion in an infinite piezoelectric medium via

the Green’s function technique to find the integral expressions for the strain and electric
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fields, but the integral expressions are very complicated, thus the closed-form solution
of strain and electric fields are too difficult to obtain. According to this complexity,
conclusions drawn based on his formulation are general. He reached the result that all
the field variables are uniform inside the inhomogeneity. With the assumption of a non-
piezoelectric material for the matrix, the formulation will be simplified comparing to
Wang's work.

No electro-mechanical interaction in the matrix material assumption, a non-
piezoelectric medium, has been used in many studies to obtain the coupled elastic and
electric field of piezoelectric inhomogeneity in a matrix. Fan and Qin [4] analyzed a
piezoelectric ellipsoidal inhomogeneity embedded in a non-piezoelectric elastic matrix
via the equivalent inclusion method; see Section 3.2.2. They used a simple way to find
the elastic and electric fields inside the inhomogeneity. They applied this assumption to
partially decouple the original piezoelectric inhomogeneity problem, although the
coupling still holds inside the inhomogeneity.

This Chapter is following the Fan and Qin’s work, not only because it simplifies
the way to calculate the elastic and electric fields inside the inhomogeneity but also
because one can apply their result for any shape of inhomogeneity. Based on their
result, the effective properties of piezoceramic composite are studied at end of this
Chapter.

Motivated by the above mentioned reason, a physical problem shown in Fig.4.1
is investigated in this Chapter, where a linear piezoelectric ellipsoidal inhomogeneity,

Q, is embedded in a homogenous non-piezoelectric medium, D, where the far fields are
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exposed with the uniform strain and electric field. With results of this Chapter, one can
find the elastic and electric fields of other ellipsoidal shapes inhomogeneity, such as

sphere (a, = a, = a,), cylinder (a; — ), and penny shape (a, = a, >> a,) too.

non-piezoalectric matrix

piezoelectric

Fig. 4.1 An ellipsoidal piezoelectric inhomogeneity embedded
in a non-piezoelectric matrix

In the next section, two inclusion problems will be considered, one is elastic and
the other is dielectric. These two inclusion problems are linked by some eigenstrain
which corresponds to electro-mechanical coupling terms inside the piezoelectric
inhomogeneity. In this connection, the Eshelby's elastic solution and the Eshelby-type
solution in a dielectric material play the important roles.

4.2 Equivalent Inclusion Formulation

As is discussed in Section 3.2, a sub-domain with prescribed eigenstrainis called
an inclusion, with the same material properties as the matrix; and a subdomain with
different material properties, mechanical and electrical, from the remaining material,

matrix, is an inhomogeneity. The stress disturbance in an applied stress according to the
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presence of an inhomogeneity can be simulated by an eigenstresses caused by an
inclusion when an eigenstrain is chosen properly. This equivalency will be called the
equivalent inclusion method [4, 8].
Referred to Chapter 2, the constitutive equations for a linear piezoelectric
material are
0= C¥ju e — e*1ij Ex in Q, 4.1)
D;= e*y &+ K*i Ex in Q, (4.2)
where o; and ¢y are the stress and strain, respectively, which are the mechanical field
variables, D; and Ej are the electric displacement and electric field. C*;y, is the elastic
constants, e*; is the piezoelectric tensor and K*; is the permittivity tensor,
respectively. The superscript "*" refers to the material property of the piezoelectric
inhomogeneity.
Bearing in mind that there is no electro-mechanical coupling in the matrix, the
constitutive equations in the matrix are expressed as
0= Cijxi € in D-Q, (4.3)
D; =K Ej in D-Q. (4.4)
where Cjiy and Kj; are the elastic moduli tensor and dielectric permittivity of the matrix.
Since there is no coupling between the elastic fields and the electric fields in the matrix,
one can consider the terms e*j; ;£ in equation (4.1) and e*j; ey in equation (4.2) as
some kind of eigenstrains [4]. Thus, the original piezoelectric inhomogeneity problem is

partially decoupled into the following two equivalent inclusion problems:
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4.2.1 The Elastic Equivalent Inclusion Problem
This is a pure elasticity problem. Assume that the far field is loaded with

uniform stress. Equation (4.1) is modified as

0%+ 0= C*u (% + en) - ¥ (E%+ Ep), (4.5)
or
0% + 05= C¥*yya (6% + e - €70, (4.6)
where
C*pe" = e*; (E%+ Ek), 4.7)

0°; and &% correspond to the uniform far field loading, see equation (3.5).

By employing the equivalent inclusion method, one can convert the
inhomogeneity to an inclusion with a certain eigenstrain which depends on the material
properties of the inhomogeneity and the far field loading. With this concept, equation
(4.6) can be rewritten as

0%+ 0= Cij (€% + &x - - e*u ). (4.8)
Equations (4.6) and (4.8) lead to
C*u (6% + e - €°11) = Cijt (8% + € €50~ %), (4.9)
where &%, the eigenstrain to be determined, is what one needs to convert the
inhomogeneity with elastic constants C*; to an inclusion with elastic constants Cj
under the applied uniform far field loading. From the famous Eshelby inclusion
solution,

*

Ekl— Sklmn (8Emn+ 8*mn) = Sklmn 8* mns (4 10)
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where Sy, 1s called the Eshelby tensor which was defined in Eshelby's original paper
[2] and also in more details [8]. The total eigenstrain ¢ 1 is then determined by
C*jua (% + Skimn € mn- € 1) = Cypr (6%1+ Skimn € mun - €%*u0), (4.11)
It is apparent that the total eigenstrain, £**, is not only a function of £°%; but also a
function of &”; which is caused by the electro-mechanical coupling of the piezoelectric
material [4].
4.2.2 The Equivalent Inclusion Problem in a Dielectric Material
To find the electric field in a dielectric material, the above equivalent inclusion
approach is repeated as follows. Let us rewrite equation (4.2) as
D%+ D= K*y (E% + Ex- E%), (4.12)
where
- K* E = e*i (en+ &%), (4.13)
D°; and E° are the known far fields, and E° is caused by the mechanical-electrical
coupling. Furthermore, in terms of the matrix permittivity, Kj, based on equivalent
method, the above equation leads to
D® + Di=Ky(E%+ Ex- E° - E*), (4.14)
Equations (4.12) and (4.14) lead to
K*i(E% + Ey - E%) = Ky (E% + Ey - E % - E*). (4.15)
By defining a total eigen-electric-field, E**, = E “; + E*, the electric field disturbance
is written as

Ei=su E**, (4.16)
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by using the Green’s function technique and extending Eshelby's formulation to electric
field equations, sy, electrostatic Eshelby’s tensor, can be defined. One can find the value
of this tensor in Chapter 6 for sphere and circular cylinder inhomogeneities.
Then, the equation for E**; is read as

K*i (E% + si E*¥ - E°y) = K (E% + s E*¥ - E*%). (4.17)

Solving equation (3.17) for E**,, one will have

E*= [(Kin - K*m) $mi- Kt 1 [(K*k - Kig) E%=- K*3 E%]. (4.18)
It indicates that the electric field is proportional to the far field load £° and the electro-
mechanical interaction E%.

It is noted that the assumption of the matrix being non-piezoelectric media
decoupled the general piezoelectric problem into two inhomogeneity problems. They
are dealt with separately by the equivalent inclusion method with interaction terms, &'
and E%. Realizing that £, and E% are given by equations (4.7) and (4.13), respectively,
more explicit expressions of equations (4.11) and (4.18) are

CH*u (€% Skimn € mn) - €1 St E*¥1- €% E% = Cijn (€% Skimn € - ¥%0),  (4.19)
E** = [(Kin - K*i) Smi- K 1 [(K* - Ki)E%+ €* i Smnp 3**pq+ €%t €% ] (4.20)
Substituting equation (4.20) into (4.19), the total eigenstrain £**; can be obtained
explicitly. Furthermore, equations (4.10) and (4.20), with known &**;, will provide the
strain, €%+ e, and electric field, £ + Ej, inside the piezoelectric inhomogeneity [4].
Since S;i and s, have been studied extensively for elastic and dielectric media, there
are no new integrals introduced in the present formulation. In fact, for some common

shapes of the ellipsoidal inhomogeneity, such as spherical, cylindrical and penny shaped
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sensors, there are closed form Eshelby tensors available for some anisotropic materials
as well as for isotropic materials that will be studied in Chapter 6. Based on the result of
this section, the effective properties of the piezoceramic composite can be found. This
will be discussed in more details in the next section.

4.3 Analytical Approach to Calculate Effective Material
Coefficient of Piezoecramic Composite

As mentioned previously, predicting the effective constants of piezoceramic
composite becomes a very important topic in designing of these composites, and one
solution of these problems relies on the analysis of the coupled elastic field and electric
field of a typical piezoelectric inhomogeneity in a non-piezoelectric medium which has
been done in the previous section.

With known strain and electric fields inside an inhomogeneity, the effective
elastic, piezoelectric and dielectric constants of piezoelectric composites can be
calculated. The effective elastic, piezoelectric and dielectric constants of piezoelectric
composites Ceffljk;, e, ij K, are defined by the following equations:

<oy>=Cyy <ew> - ey <Ep>, (4.21)
<D>= Ty <e>+ Ky <Ep>, (4.22)
where <> denotes the volume average. Referring to Wang’s study [3] about calculating

the effective properties of piezoelectric composite, the equation (4.21) and (4.22) can be

written as
1 ] 1 J
<0;> = Cyu <ew> - ewj <Ex>+ vy Cy €1 - vy € i jE', (4.23)
<D;>= ey <ey>+ Ky <E> + vy el et vy KW EY, (4.24)

where vy is the volume fraction of inhomogeneity in the piezocomposite and
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Cj;'ﬂd: C *ijkl - Czjjkl, (4~25)

= e*ui- e, (4.26)
Klik = K*ik - Kit, (4.27)
and
éu=euteu, (4.28)
EYv=E.+E°. (4.29)

It is noted that, Wang has assumed that the matrix is piezoelectric, in this study the
medium is non-piezoelectric, so one can assume zero for the piezoelectric constants of
the matrix, e, in the above equations. Moreover according to the Gauss theorem, the
average value for the stress, strain and electric fields, are equal to applied value of these
parameters. This makes it easy to find the effective constants of piezoceramic
composite. One can find an example of this solution for different inhomogeneity shapes
and volume fraction in Chapter 6.

Although all the effective constants of piezoelectric composite can be obtained
in this way, one has to bear in mind that all these analyses have neglected the
interactions between inhomogeneities. To obtain a more accurate result, one can use
some approximate methods, such as the self-consistent scheme, to consider the

interaction [3, 9].
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CHAPTER 5

FINITE ELEMENT MODELING

5.1 Introduction

Finite element analysis (FEA) is a numerical method that generates approximate
solutions to engineering problems which are often posed in terms of differential
equations. The method partitions a structure into simply shaped portions called finite
elements, generates an approximation solution for the variable of interest within each
element, then combines the approximate solutions. The assemblage of solutions
describes the variables of interest for the entire structure.

FEA is used in a variety of engineering applications. Although the first
development was for structural analysis, it now solves problems in solid mechanics,
fluid mechanics, heat transfer, acoustics and electronics. Using piezoelectric materials is
one of the electronic applications in FEA. It can be used to determine full parameters of
piezoelectric materials.

In this Chapter, a quick review for modeling in FEA is provided. But the main
focus of this Chapter is modeling piezoelectricity with ANSYS, powerful FEA
software. Although there are some other powerful FEA programs to model
piezoelectricity, the availability of ANSYS dictates the choice of program to be used for

the current work.
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5.2 Summery of Finite Element Modeling

Using a FEA for solving a problem begins with an essential question, is FEA
required to solve this problem? If analytical and experimental solutions are not an
option to find the solution, FEA can be used. FEA starts with anticipating a physical
behavior of a problem, and planning how the results will be checked to know if they are
reasonable. According to the conditions of the problem, an initial FE model will be
planned. Now this mode can be used in three FEA phases.

The finite element process is generally divided into the following three distinct
phases:

1) Preprocessing, to build the FEM model.

2) Solving, to solve the equations.

3) Postprocessing, to display and evaluate the results.
In the first phase, a proper kind of element, materials properties, model and mesh of the
shape, and boundary conditions will be set. It begins by developing a detailed mesh plan
that includes the degree of refinement desired in the mesh at all critical locations. The
analyst gathers and assembles all the required data and input information for the
preprocessor. At this point, the overall geometry of the model section is input with
specification of the mesh generation. The actual mesh generation follows, and if the
mesh is considered acceptable, the boundary conditions for the enforced displacements
are applied. Also, within the preprocessor the load case or cases are input in preparation
for the solution runs. These steps complete the preparation of the first model and it is

ready to run [10].
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Run the analysis program and at the run completion, assuming no errors have
been reported, check the output listing file. Access the program’s postprocessor, prepare
a deformed shape displacement plot and study it for agreement with applied boundary
conditions and expected deformations and other results. Examine the stress and other
output results through the graphic displays and compare these to boundary conditions
values and engineering calculations that were made with approximate equations. These
steps provide a good check that the first model was done correctly and approximates the
actual behavior, so study of all the results provides further insight into the wanted
behaviors.

Evaluation of the results from this first model will show where to refine the
model to begin the convergence to an accurate solution. Regions within the model with
high stress values and rapid variations as well as regions of low stress are selected for
refinement. Reducing the element size in these regions provides refinement.
Convergence of results is very important to assure the validity of the analysis.

A serious mistake would be made if only one model was analyzed with no
further refinements. Using a finite element program is no guarantee that the results will
be accurate although the graphic display may be very convincing. Accurate analyses
come about by applying good judgment and good technique to the practice of finite
element analysis [10].

Running the second analysis with the refined mesh provides a second solution
that may be compared with the first solution to check convergence. Examine the

element to element variations for reasonable continuity in the second analysis. Compare
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the relative values between the two solutions, and then project or extrapolate to better
estimate of the actual solution. Judgment of these comparisons helps decide on further
refinements needed to reach the desired convergence.

Rate the final analysis by estimating the accuracy achieved and determining if
the important criteria identified at the beginning of the analysis were satisfied. Repeat
this cycle until the solution validity is convinced.

In most FEA software, all the above steps can be found. As an example,
ANSYS will be studied in more details in next section.

5.3 ANSYS

The ANSYS program has been in commercial use since the 1970s, and has been
used extensively in the aerospace, automotive, construction, electronic, manufacturing,
nuclear, plastics, oil, and steel industries. In addition, many consulting firms and
hundreds of universities use ANYS for analysis, research, and educational use. ANSYS
is recognized worldwide as one of the most widely used and capable programs of its
type.

The ANSYS computer program is commercial finite element software with the
ability to analyze a wide range of different problems. It has excellent pre-processing
facilities and is very easy to use. The pre-processing, solution and post-processing
drivers are all contained within the same graphical user interface. The analysis
capabilities of ANSYS include the ability to solve problems in many engineering fields.
As ANSYS has been developed, other special capabilities, such as piezoelectricity and

couple filed analysis and design optimization has been added to the program. These
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capabilities contribute further to making ANSYS a multipurpose analysis toll to varied
engineering disciplines [11].

The main purpose of this section is to solve a piezoelectric problem in ANSY'S,
as one of the couple field effect.
5.3.1 Piezoelectric Analysis in ANSYS

A coupled-field analysis is an analysis that takes into account the interaction,
coupling, between two or more disciplines, fields, of engineering. A piezoelectric
analysis, for example, handles the interaction between the structural and electric fields.

As was discussed in Chapter 2, applying a voltage to a piezoelectric material
creates a displacement, and vibrating a piezoelectric material generates a voltage.
Possible piezoelectric analysis types, available in the ANSYS/Multiphysics or
ANSY S/Mechanical products only, are static, modal, harmonic, and transient [11].

Modeling piezoelectricity in ANSYS is almost the same as modeling a simple
structural problem. Just some of the steps are different and one needs to follow them to
be able to model this kid of materials. The following sections will provide most of these
differences. The complete modeling of one piezocomposite will be provided in the next
Chapter.

5.3.1.1 Piezoelectric Element Selection

The first important point in piezoelectricity modeling is choosing a right
element from couple field elements. PLANEI3, PLANE223, SOLIDS5, SOLIDYS,
SOLID226 and SOLID227 are couple field elements and have the ability to be used in

piezoelectricity modeling, but this ability should be activated in these elements. The
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KEYOPT (1) settings, or K/ in the interactive mode, activate the piezoelectric degrees
of freedom, displacements and voltage. For PLANE223, SOLID226 and SOLID227,
KEYOPT (1) should set to 1001 or in the interactive mode, K/ should set to
piezoelectric. For SOLID5 and SOLID98 KEYOPT (1) should set to 3 or in the
interactive mode, K/ should set to UX UY UZ VOLT. Finally, for PLANE13 KEYOPT
(1) should set to 7 or in the interactive mode, K/ should set to UX UY VOLT.
Remember, PLANE13, SOLIDS5, and SOLIDYS are available in ANSYS Multiphysics,
ANSYS Mechanical, ANSYS PrepPost, and ANSYS ED but PLANE223, SOLID226, and
SOLID227 are available in ANSYS Multiphysics, ANSYS PrepPost, and ANSYS ED [11].

ANSYS manual contains a complete library of detailed ANSYS element
descriptions, arranged in order by element number. It is the definitive reference for
element documentation. One can use this reference to choose a right piezoelectric
element from the above list for the modeling.

5.3.1.2 Piezoelectric Material’s Properties

As one can find from Chapter 3, a piezoelectric model requires permittivity, or
dielectric constants, the piezoelectric matrix, and the elastic coefficient matrix to be
specified as material properties.

Because of the difference between manufacturer-supplied data and the format
required by ANSYS, conversion of material properties of piezoelectric ceramics has
caused many users confusion. This section tries to clarify this point and to provide

information on conversion routines.
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As mentioned in Chapter 2, the constitutive relationships usually given by

manufacturers or published data/reports are in the following form

S

where ¢ and ¢ are the stress and strain vectors, six components are arranged in order of
X, ¥, z, ¥z, xz, xy. D and E are the electric displacement and the electric field vectors,
three components in order of x, y, z.

On the other hand, ANSYS requires data in the following form

ey

where six components of ¢ and ¢ are arranged in order of x, y, z, xy, yz, xz.
In order to convert the manufacturer’s data presented in the form of equation
(5.1) to the ANSYS notation presented in the form of equation (5.2), equation (5.1)

needs to be based on stress rather than strain. The following manipulations can be

performed
[o]=[s*]'[e]-[s* ][4 ]E]. (5.3)
[D)=[a [ o1+ e ] a7 T e s

Morcover
[es]=[s*]", (5.5)
[k ]= k7 ]-[aT "] ], (5.6)

[e]= [SE]_I [a]=[a] [SE]_I. (5.7)
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Note that the manufacturer’s data has a mechanical vector in the form
[x Yy z yz Xz xy] whereas ANSYS’s mechanical vector is in the form
[x vy z xy yz xz]. One needs to transform the manufacturer’s data to the
ANSYS input order by switching row and column data for the shear terms. Row and
column 4 need to be shifted to 5, and similarly, 5 to 6 and 6 to 4 [maghale tabdyl].

According to the symmetry of transversely isotropic piezoceramic material and
poling direction as 3, one can “map” manufacturer data, equations (2.22) and (2.23), to

ANSYS data as

c, C, C, 0 0 (5.8)
C, G, Cy 0 0 0
Cl3 C13 C33 O 0
C £ _ SE ! = _ "
[ ] [ ] 0 0 0 Cll 2C12 O 0
0 0 0 0 Cuy O
0 0 0 0 0 C,
0 0 e, (5.9)
0 0 e
5 0 0 e
E[! 33
— d p—l
=k Tl o
0 e
es 0

Moreover, unlike equations in Chapter 2, ANSYS uses the relative permittivity K,. In
order to find this value, one needs to divide the real permittivity used in Chapter 2 by

the permittivity of the vacuum K,
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K =—, (5.10)

where K= 8.854x10™"* C/Vim.
Other steps in solving piezoelectric problems are the same as other modeling in
ANSYS. For more information about modeling piezoelectricity in ANSY'S, one can find

one example of this modeling in the next Chapter.
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CHAPTER 6
SOLUTIONS AND RESULTS

Piezoelectric composites have been developed in an attempt to improve the
properties of monolithic piezoelectric materials, such as lead zirconate titanate (PZ7),
and are of interest for applications such as acoustic transducer, medical imaging and
non-destructive evaluation. These materials consist of an active piezoelectric phase and
a passive phase, usually a polymer.

As discussed in previous Chapters, finding the elastic and electric fields inside
the piezoceramic phase as well as the effective properties of pizocomposites is essential
in designing these composites and predicting their behaviors. Two different ways of
finding these parameters have been investigated and compared in this thesis, they are an
analytical and a numerical approach. In the analytical solution, the coupled elastic and
electric fields inside a piezoelectric inhomogeneity embedded in a non-piezoelectric
medium can be found based on Eshelby’s theory and its extension to the electric field.
Based on these elastic and electric fields, the effective properties of the piezocomposite
can be found as well. In the numeric approach, ANSYS, commercial finite element
software, has been used to model a piezocomposite. Based on this model, the elastic and
electric fields can be located inside the piezoceramic phase and also the effective

properties of the piezocomposite can be calculated.
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Not only the elastic and electric fields as well as the effective coefficients in
different approaches have been studied in this thesis but also the effect of both active
and passive phases on the overall performance of the piezocomposite materials has been
investigated.

In case of the active phase, two piezoceramics with different material properties
for two geometric configurations in various volume fractions will be studied. In the
analytical solution, these two geometric configurations, sphere and circular cylinder,
will be studied in details. But in the numerical solution, only the sphere configuration
will be studied in details. In comparing two approaches, the result can be extended to a
circular cylinder configuration.

Despite the quite crucial function of the polymer in a piezocomposite, there has
been less work focusing on the effect of this polymeric phase on the elastic and electric
fields inside the piezoceramic inhomogeneity as well as the effective properties of the
composite. When a composite is used in applications such as an ultrasonic transducer
with PZT piezoceramic, the polymer must effectively couple the ultrasonic energy from
a high-acoustic-impedance PZT to a low-acoustic-impedance load. Similarly, in the
receiving mode, an ultrasonic energy incident on the composite must be effectively
transferred to the PZT. The properties of the polymer will determine the interaction
among the neighboring PZT phases and the dynamic behavior of the whole composite
thereafter. So in case of the passive phase, two kinds of polymers in various volume

fractions will be studied.
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6.1 Analvtical Solution

In order to calculate the elastic and electric fields inside an inhomogeneity, one
needs to calculate ey and Ej, with considering £°%; and E° as known quantities, see
Sections 4.2.1 and 4.2.1. According to equations (4.10) and (4.16), e**; and E** need
to be defined in order to calculate ¢ and Ej. The eigen-electric-field E** can be found
from equations (4.20) and with substituting equation (4.20) into (4.19), the total
eigenstrain ¢**; can be obtained explicitly. By considering the rule, (2.19), in inverting
a tensor to a matrix, (4.19) and (4.20) can be rewritten in matrix notation as

[C*1 {[e) +[S1 [ 13- [e*] [s] [E**I-[e*] [E°] = [CT{[e°I+ [S] [ 1-[**T},  (6.1)

[E*¥]={[K - K*] [s]- [K]} " {[K* - K] [E°)+ [e*] [S] [ ]+ [e*] [¢°]},  (6.2)

and with substituting equation (6.2) into (6.1), [e**] can be written as
e =+]=[6] {m] o]+ V] [£°) (©3)

where

(6]=fe—c1-fe] 5] (1] [T} [sT+ T (64

(1] ={& - & #] [s]- [& ]}, (6.5)
[]=[c-c*l+[e*] [s] [H] [T, (6.6)
(V=[] +[e*] [s] [#1] [ *—&]. 6.7)

All the matrices on the right hand side of the equation (6.3) except [S] and [s] are known
from the materials properties of piezoelectric inhomogeneity and non-piezoelectric
matrix and the value of applied strain and electric field. By substituting equation (6.3)
into (6.2), [E**] can be defined as
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[£+4]= (1] o] [s°]+[P] 2]} (69)
where
[0]=le*I'[s] [G] [M]+[e*], (6.9)
[Pl=[x*-K]+[e*['[s] [G] [V] (6.10)
According to equations (6.3) and (6.8), [¢"] and [E**] are dependent on both the

applied strain, [¢°], and the applied electric field, [E°]. When stress is applied to a

piezocomposite, [¢°] can be found as

[¢°] = [C]'[0°]. (6.11)

According to equations (4.10) and (4.16), [e] and [E] can be defined as
[6]=[s] [GHa] [e] [] [} (6.12)
[£]=[s] [}{o] [e°)+[P] [E°]; (6.13)

where [¢] and [E] are also dependent on both the applied strain and the applied electric
field. With known [e] and [E], the elastic and electric fields inside the inhomogeneity
can be written as:
Elastic fields inside the inhomogeneity

Strain = [¢]+[£°], (6.14)

according to equations (4.6) and (4.9),

Stress = [0']+ [GO] = [C] {[g°]+ [5] - [e * *]}, (6.15)
Electric fields inside the inhomogeneity

Electrical filed = [E]+[E°], (6.16)
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according to equation (4.12) and (4.15),

Electric displacement Z[D]+ [DO] = [K ] {[ °]+ [E ]— [E * *]} (6.17)

For some common shapes of the ellipsoidal inhomogeneity, see Fig. 6.1, the

closed form of the Eshelby matrices are available for some isotropic materials as well as
for anisotropic media. For special shapes of inhomogeneities, such as spherical,
cylindrical and penny shaped sensors, [S] can be found from the Eshelby’s original
paper [2] or in more explicitly in Mura’s book [8]. This matrix is dependent on
Poisson’s ratio of the matrix and shape of the inhomogeneity. For the same shapes, the
electrostatic Eshelby’s matrix [s] can be defined from Fan and Qin’s paper [4] and this

matrix is only dependent on the shape of the inhomogeneity.

3

Fig. 6.1 An ellipsoidal inhomogeneity with principal half axes a;, a,, and a;
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According to the symmetry of the spherical inhomogeneity in three directions
and the circular cylindrical inhomogeneity in two directions, the dependency on the
shape has been canceled in [S] and [s] matrices above. This cancellation can reduce the
complexity of the main calculations for the inside’s fields as well as effective
coefficients. Therefore, these two shapes have been used to be analyzed in this Section.

For a sphere and a circular cylinder, [S] and [s] can be summarized from those
references as:

Sphere, aj=a; =as=a

A+2B A A 0 0 O
A A+2B A 0 0 O
A A A+2B 0 0 O
[s]= : (6.18)
0 0 B 0 0
0 0 0 B O
0 0 0 0 B
where
15(1-v)
and
= _4-v , (6.20)
15(1-v)
where v is the Poisson’s ratio of the non-piezoelectric matrix,
1 00
[s]=l0 1 0]} (6.21)
0 0 1
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Circular cylinder, a; = a; = a and az — o

C(§+D) C(l—D) Cv 0 0 0
4 4
C(%—D) C(%+D) Cv 0 0 0
0 0 0 0 O
[S] = 0 0 0 1 0 ) (6.22)
4
0 0 0 0 1 0
4
0 0 0 0 O C(i + D)
where
1
= , (6.23)
2(1-v)
and
p=1=2v (6.24)
2
where v is the Poisson’s ratio of the non-piezoelectric matrix,
1 0 0
2
1
[s]=] 0 5 0| (6.25)
0 0 0

As mentioned in Section 4.3, with the known strain field, ¢+ ¢y, and the
electric field, E°% + Ej, inside an inhomogeneity the effective elastic, piezoelectric and
dielectric constants of piezoelectric composites can be calculated. From equations

(4.21) through (4.29) in Section 4.3, the effective constants of piezocomposite can be
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defined. By assuming a non-piezoelectric matrix and considering the Gauss theorem as

well as equation (2.19), equations (4.1), (4.22), (4.23) and (4.24) can be rewritten as

[0°] = [C"] [¢°] - [¢”] [E°], (6.26)
[D°]= [e”] [¢°] + [K"] [E°], (6.27)
[6°]=[C] [¢°] + vy [C*- C][e°+¢] - vy [e*] [E°+ E], (6.28)
[D°]= [K] [E®] + v/ [e¥] [e°+e]+ vy [K*- K][E+ E]. (6.29)

Now, comparing equations (6.26) and (6.28) together, and also (6.27) and (6.29)
together, with considering [¢] and [E] are both dependent on applied strain [¢°] and

applied electric field [E°], can define the effective constants as
[cr]=[c]+ v, [ex—cl+v [c*=c] [s][G] M]-v, [e*] [s] [H] [0, (6:30)
e | =v e +v [T [S][G] [M]+v, [k *-K] [s] [H] [0].  (6:31)

[k |=[K]+v, [e*] [S] [G] [N]+v, [k *~K]+v, [k *—K] [s] [H] [P} (632)
Equations (6.30) through (6.32) show that the effective properties of composites are
only dependent on the materials properties of different phases of the composite as well
as their volume fractions but are independent of the applied conditions.

With some proper software such as MATLAB, the calculations above can be
programmed and inside’s fields and the effective properties can be solved
straightforward for a specific piezocomposite material.

6.1.1 Results of Analytical Solution

The configuration shown in Fig. 6.2 is used to be analyzed in this Section. A

piezocomposite with an infinite polymer matrix in all directions and elliptical
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inhomogeneities, randomly distributed in the matrix, is subjected to a far-field
hydrostatic stress and a zero far-electric field. One of the main applications of the
piezocompoiste is in water or as a biomaterial inside a body; this is the reason to choose
hydrostatic state of applied stress in this section. The zero electric field is selected to

facilitate the ANSYS modeling in the next Section.

rf

piezosalecinc

G

Fig. 6.2 Piezocomposite with infinite polymer matrix and an elliptical
inhomogeneity, subjected to a far field hydrostatic stress
and zero far electric field, 0, =0, =0, =0

As an example, two kinds of piezoelectric materials and two kinds of polymers
are selected for studying in this Section for two different shapes of inhomogeneity. As a
result of this selection, eight different piezocomposites can be produced and analyzed.

For a piezoceramic, the class of PZT with a high electromechanical coupling
factor, k, is conventionally used in the present study. In case of polymers, two

commercial available polymers with electronic applications, Epoxy and Unsaturated
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Polyester Resin (UPR), are selected. One can find the properties of these materials in
Table 6.1 and Table 6.2.

Table 6.1 Material properties of piezoceramic, Cy (10"’ N/m’),
ew (C/m’), Ky (10" C/Vim) [11, 12]

Piezocemmic C]] C33 C44 C]g C]j €3 €33 €js K]] K33
PZT4 1321115260 | 7.1 |73 |-4.1]|14.1|10.5|71.24|58.41

PZT6 16.8 11631271 |6.0|60|-09| 7.1 | 4.6 |36.00 | 34.00

According to the symmetry described in Chapter 2 for transversely isotropic
piezoceramics, only 5 components for the elastic stiffness C, 2 for the permittivity K
and 3 for the piezoelectric coefficient e, will be independent as shown in Table 6.1.

Table 6.2 Material properties of polymer matrix, Young's modulus E (GPa),
Poisson’s ratiov, K (107" C/Vm) [12, 13]

Polymer | E % K
Epoxy |3.4]0.35|0.452

UPR |4.7035]0.328

For isotropic material such as polymers, the stiffness and the permittivity matrices can

be calculated as

1-v v 0 0 0
v 1-v 0 0 0
E 1% v l1-v 0 0 0
[C]: , (6.33)
(l+v)i-2v)f 0 0 0 1-2v 0 0
0 0 0 0 1-2v 0
0 0 0 0 1-2v
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K 0 0
[K]=]0 K 0] (6.34)
0 0 K

In this section, MATLAB has been used to program all the calculations for different
piezocomposites in different volume fractions of the piezoceramic. Based on these
calculations, the elastic and electric fields inside the inhomogeneity as well as the
effective properties of the piezocomposite can be solved straightforward for the above
applied conditions. Table 6.3 and Table 6.4 show the value of elastic and electric fields
inside the different shapes of inhomogeneity. According to equations (6.14) to (6.17),
the elastic and electric fields inside the inhomogeneity are independent of volume
fraction of the piezoceramic, so the values in Table 6.3 and Table 6.4 are valid for any
volume fraction. In these Tables, E stands for Epoxy, U for UPR, 4 for PZT4, 6 for
PZT6, S for spherical and C for circular cylindrical inhomogeneity. All these

calculations are based on ¢°, = 0°, = 0°, = 25Pa and E°; = 0 as the applied conditions.
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¢ (10, o (Pa), E (V/m), D (C/m°)

Table 6.3 Elastic and electric fields inside the spherical inhomogeneity

Piezocomposite [¢] [0] [£] [D]
0.1316 35.4519
0.1316 35.4519
E4 0 0
0.1266 35.4666
0 0 (1)2 0
0 0 —0.1208 0
0 0
0.1254 35.4850
0.1254 35.4850
E6 0 0
0.1177 35.5074
0 0 (1) 0
0 0 —0.1795 0
0 0
0.1306 35.2062
0.1306 35.2062
U4 0 0
0.1257 35.2262
0 0 ?2 1 :
0 0 -0.120 0
0 0
0.1245 35.2513
0.1245 35.2513
U6 0 0
0.1170 35.2819
et i
0 0 -0.178 0
0 0
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Table 6.4 Elastic and electric fields inside the circular cylindrical inhomogeneity
¢ (10, o (Pa), E (V/m), D (107 C/m?)

Piezocomposite [¢] [0] [£] [D]
-0.635 32.1544
-0.635 32.1544
E4 0 0
2.206 160.9881
0 0 0 0
0 0 0 0.3631
0 0
—-0.442 31.6677
—-0.442 31.6677
E6 0 0
2.206 360.5666
0 0 0 0
0 0 0 0.1646
0 0
-0.416 32.0045
-0.416 32.0045
U4 0 0
1.596 122.7481
0 0 0 0
0 0 0 0.2591
0 0
-0.282 31.5360
-0.282 31.5360
U6 0 0
1.596 226.3123
0 0 0 0
0 0 0 0.1184
0 0
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The effective constants are calculated for different piezocomposites and volume
fractions of the piezoceramic. The analytical solution is based on the assumption of no
interaction among the inhomogeneities. This assumption is valid for real composites
with small volume fractions. With an increase of the volume fraction, the analytical
solution is no longer accurate. Therefore, only small volume fractions of the
piezoceramic have been considered in this Chapter. Tables 6.5 to 6.8 show the complete
matrices of these values at a constant volume fraction of the piezoceramics, v¢ = 0.1. For

other volume fractions, only the independent and non-zero components have been

shown in the Appendix A.
Table 6.5 Permittivity matrix for piezocomposite
[KD) (107" C/Vm)
Piezocomposite [K) [K/©
0.4970 0 0 0542 0 0
£4 0 0.4970 0 0 0542 0
0 0 0.4970 0 0 6411
0.3607 0 0 0393 0 0
U4 0 0.3607 0 0 0393 0
0 0 0.3607 0 0 6.299
0.4967 0 0 0540 0 0
£6 0 0.4967 0 0 0540 O
0 0 0.4967 0 0 3.814
0.3605 0 0 0393 0 0
Us 0 0.3605 0 0 0393 0
0 0 0.3605 0 0 3.702
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Table 6.6 Effective piezoelectric matrix for piezocomposite

[ (C/m)
Piezocomposite [e77]° [e7¢
0 0 —0.0002 0 0 -0.0218
24 0 0 —0.0002 0 0 -0.0218
0 0 0.0007 0 0 1.6895
0 0.0015 0 0 0.0027 0
0.0015 0 0 0.0027 0 0
0 0 0 0 0 0
0 0 —0.0002 0 0 —0.0300
U 0 0 —0.0002 0 0 —0.0300
0 0 0.0007 0 0 1.6838
0 0.0014 0 0 0.0026 0
0.0014 0 0 0.0026 0 0
0 0 0 0 0 0
0 0 —0.00003 0 0 —-0.0043
26 0 0 —0.00003 0 0 —-0.0043
0 0 0.0004 0 0 0.7546
0 0.0015 0 0 0.0028 0
0.0015 0 0 0.0028 0 0
0 0 0 0 0 0
0 0 —0.00003 0 0 —0.0059
Us 0 0 —0.00003 0 0 —0.0059
0 0 0.0004 0 0 0.7535
0 0.0014 0 0 0.0027 0
0.0014 0 0 0.0027 0 0
0 0 0 0 0 0

57




Table 6.7 Effective stiffness matrix for piezocomposite
[C7] (GPa)

Piezocomposite [Cc7P
6.3049 3.2873 3.2814 0 0 0
3.2873 6.3049 3.2814 0 0 0
3.2814 3.2814 6.3120 0 0 0
E4 0 0 0 3.3710 0 0
0 0 0 0 3.3710 0
0 0 0 0 0 3.3037
8.6845 4.5362 4.5252 0 0 0
4.5362 8.6845 4.5252 0 0 0
4.5252 4.5252 8.6978 0 0 0
U4 0 0 0 4.5613 0 0
0 0 0 0 4.5613 0
0 0 0 0 0 4.4496
6.3179 3.2805 3.2801 0 0 0
3.2805 6.3179 3.2801 0 0 0
3.2801 3.2801 6.3202 0 0 0
E6 0 0 0 3.3220 0 0
0 0 0 0 3.3220 0
0 0 0 0 0 3.4190
8.7087 4.5237 4.5230 0 0 0
4.5237 8.7087 4.5230 0 0 0
4.5230 4.5230 8.7130 0 0 0
Ué6 0 0 0 4.4796 0 0
0 0 0 0 4.4796 0
0 0 0 0 0 4.6432
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Table 6.8 Effective stiffness matrix for piezocomposite

[C?] (GPa)

Piezocomposite [C/©
6.165 3.264 3.310 0 0 0
3.264 6.165 3.310 0 0 0
3.310 3.310 11.634 0 0 0
E4 0 0 0 3.319 0 0
0 0 0 0 3.319 0
0 0 0 0 0 152
8.500 4.503 4.565 0 0
4.503 8.500 4.565 0 0
4.565 4.565 13.686 0 0
U4 0 0 0 4.500 0 0
0 0 0 4.500 0
0 0 0 0 279
6.174 3.261 3.208 0 0
3.261 6.174 3.208 0 0
3.208 3.208 18.386 0 0
E6 0 0 0 3.275 0 0
0 0 0 3.275 0
0 0 0 0 225
8.517 4.499 4.426 0 0 0
4.499 8.517 4.426 0 0 0
4426 4.426 20.385 0 0 0
Ué6 0 0 0 4.427 0 0
0 0 0 0 4.42 0
0 0 0 0 0 406
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6.2 Numerical Solution

For the numeric approach, ANSYS, commercial finite element software, has
been used to find the elastic and electric fields inside the inhomogeneity as well as the
effective properties of piezocomposite.

Although with reviewing Chapter 5, one can model piezoelectricity in ANSYS,
this modeling has been reviewed in more details for the piezocomposites in the next
Section.

6.2.1 Modeling a Piezocomposite in ANSYS

The problem configuration is the same as in Fig. 6.2. Unlike the analytical
solution, the matrix in the ANSYS model is no longer infinite. As a result, a
piezocomposite with a finite polymer matrix and elliptical inhomogeneities is subjected
to a hydrostatic stress and zero electric field.

With 2-D modeling and selecting plane strain option for the elements, the
infinite matrix assumption can be modeled the same as analytical solution. However
finding the elastic and electric fields inside the inhomogeneity in all directions as well
as all the effective properties needs three dimensional finite element modeling. So finite
matrix will bring the first reason for the difference between the results of ANSYS and
analytical solution. This difference is independency of the elastic and electric fields
inside the inhomogeneity to volume fraction of inhomogeneity in the case of analytical

solution and dependency in the case of ANSY'S model.
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As an example, the same piezoelectric and polymer material as in Section 6.1.1
are selected to study in this Section for only one geometric configuration of
inhomogeneity, i.e. sphere. As a result of this selection, four different piezocomposite
can be modeled and analyzed.

In order to model the piezocomposite, the actual piezocomposite, with randomly
distributed inhomogeneities as used in Section 6.1, is replaced by a repeated spherical
array of piezoceramic embedded in a homogeneous matrix material of finite dimensions
as shown in Fig. 6.3. The regular inhomogeneity array is then reduced to the smallest,
fully informative, repeating segment as shown in Fig. 6.3 in the dashed square. This
repeating segment is called a unit cell or a representative volume element. In order to
change the volume fraction in the unit cell model, one can change the number of the
inhomogeneities in constant volume of the unit cell, which will change the square
arrangement of the piezoceramic, as shown in Fig. 6.3, to hexagonal or other

arrangements or one can change the geometry of the inhomogeneities.

Fig. 6.3 2-D image of unit cell model, square arrangement of sphere piezoceramic

61



In this section, only one unit cell with just one inhomogeneity is studied.
Different volume fractions of the piezoceramic are produced by changing the geometry
of the inhomogeneity for the unit length of the cell.

In ANSYS or other FEM software, the first step before modeling a problem is to
simplify the problem. Taking the advantages of the symmetry in the above problem, a
spherical inhomogeneity embedded at the center of the cell, only one eighth of the unit
cell is enough for modeling, see Fig. 6.4. By considering this octant of the problem, the
boundary conditions need to be adjusted as shown in Fig 6.5. Now this new problem
can be modeled in ANSYS with less complication than the original problem. Start the
modeling with preprocessing it. It means to select the proper elements, input the
materials property, create the geometry, mesh the volume and assign the boundary and
loading conditions.

This phase starts with finding the right elements for different parts of the
piezocomposite, active and passive parts. For both parts, a block element has the
preference over a tetrahedron element; because with block element, a good convergence
can be obtained with a small number of elements. According to the existence of sphere,
a 20-node block is chosen to cover all the geometry. For the passive part, polymer, the
SOLID95 Element which is a 3-D 20-Node Structural Solid Element, and for the active
part, the piezoceramic, SOLID226 Element which is 3-D 20-Node Coupled-Field Solid

Element are selected, see Fig. 6.6.
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(a)

Fig. 6.4 Simplifying the original problem a) 2-D image of unit cell
with inhomogeneity at the center b) an octant of the unit cell
with spherical inhomogeneity
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Fig. 6.5 New boundary conditions for the octant of original problem
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Fig. 6.6 SOLID95 or SOLID226 Element

SOLIDY5 can tolerate irregular shapes without as much loss of accuracy. These
brick elements have compatible displacement shapes and are well suited to model
curved boundaries. The element is defined by 20 nodes having three degrees of freedom
per node, UX, UY and UZ. The element may have any spatial orientation [11].

SOLID226 has structural, thermal, electrical, thermoelectric, piezoresistive, and
piezoelectric capabilities. The element has twenty nodes with up to four degrees of
freedom per node, UX, UY, UZ and VOLT. SOLID226 has large deflection and stress
stiffening capabilities. After selecting this element for modeling the piezoelectricity, go

to the option window and select K/ as piezoelectric as shown in Fig 6.7.

64



ANSYS Main Manu X

Preferences
= Preprocessor
= Element Type
fdd;/Edit /Delete

Defined Elemant Types:

Type 2 SOLIDGS
Switch Elem Type
pddoor

SOLIDZ226 element type options
Remove DOFs
= Options For SOLIDZZ26, Element Tvpe Ref, Mo, 1
Elem Tech Control
Real Constants
analysis Type K1

Material Props

Sections
Modeling

Meshing a4 | Cancel |

Trefftz Domain
Checking Ctrls
MNumbering Ctrls
Archive Model
Coupling / Ceqn
FLOTRAN Set Up Add... Cptions. .. | Delete |

FSI Set Up
Help |

MultiField Set Up
Loads
Physics

[ B TS S T S

Fig. 6.7 Selecting K1 as piezoelectric tfor SOLID226 piezoelectric Element

As discussed in Chapter 5, for the piezoelectric materials, the manufacturer-

supplied data needs to be converted to the required format by ANSYS. In order to do

this conversion, one needs to read Section 5.31.2 carefully. Equations (5.5), (5.6) and

(5.7) are the essential equations for this conversion.

After finding the C¥, e and K°, remember that the manufacturer’s data has a

mechanical vector in the order [x Yy z yz Xxz xy] whereas mechanical vector in

ANSYS is in the order[x y z Xxy yz xz] and one needs to transform the

manufacturer’s data to the ANSYS input order by switching row and column data for

the shear terms. Equations (5.8) and (5.9) show the order that is needed for inputting

data in ANSYS, also see Fig. 6.9 and 6.10. Again remember ANSYS uses the relative

permittivity K,, see Fig. 6.11.
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Fig. 6.8 Inputting material’s property of isotropic material (a) Young’s Modulus
and Poisson’s ration of Epoxy (b) Relative permittivity K, of Epoxy
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The next step in the preprocessing phase is creating the problem’s geometry. As

described in the previous Section, only small volume fractions of the piezoceramics

have been used in analytical solution. Use the same volume fractions for the ANSYS

model. Find the radius of sphere based on this volume fractions and total volume of unit

cell as one. As stated before, here increasing the volume fraction of the piezoceramic

means increasing the geometry of the inhomogeneity instead of increasing the number

of the inhomogeneities. The following equations can be used to calculate the volume

fractions. The size of unit cell in Fig. 6.4 (b) has assumed to be unit, a = 1 m.

volume of the piezoceramic

Vf
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v, =L=’%, (6.31)

Based on the above equation and small volume fraction used in analytical solution, the
following table shows the different inhomogeneity geometries that need to b modeled.

Table 6.9 Different radii of the spherical inhomogeneity and its
corresponding volume fraction

vy r
5.23E-7 | 0.01
5.23E4 | 0.1
4.19E-3 | 0.2
3.35E-2 | 04

26.8 0.8

With different options in the modeling section in ANSYS main menu, one can
create the geometry described in Fig. 6.4 (b) and Table 6.9. The only important note is
using the Boolean operation like overlap or glue command in order to connect two parts
of the piezocomposite together.

The overlap commands will join two or more entities to create three or more
new entities that encompass all parts of the originals. The end result is similar to an add
operation, except that boundaries will be created around the overlap zone. Thus, the
overlap operation produces a number of relatively uncomplicated regions, as compared

to the single relatively complicated region created by the add operation. For this reason,
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overlapped entities will often mesh better than added entities. Overlapping is valid only
if the overlap region has the same dimensionality as the original entities.

Glue is similar to overlap, except that it applies only to cases in which the
intersection between entities occurs at a boundary, and is one dimension lower than the
original entities. The entities maintain their individuality, they are not added, but they
become connected at their intersection.

The Boolean overlap and glue commands for volumes are as follows:

a) Main Menu> Preprocessor> Modeling> Operate> Booleans> Overlap>

Volumes,

b) Main Menu> Preprocessor> Modeling> Operate> Booleans> Glue> Volumes.

Now it’s time for meshing the volume with the selected elements. Remember,
before assigning any element and materials property to any volume go to
Main Menu> Preprocessor> Meshing> Mesh Attributes> Default Attribs
and change the default element type number and material number as it should be for the
volume that is meshing, polymer volume or piezoceramic volume. Now mesh the
volume with the following command as shown Fig. 6. 12:

Main Menu> Preprocessor> Meshing> Mesh> Volume> Free,

and selecting the proper volume. In order to have refiner mesh use the following
command:

Main Menu> Preprocessor> Meshing> Modify mesh> Refine at> All.

This study shows that refining the piezoceramic volume will give better result at the

end, Fig. 6. 12.
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Fig. 6. 12 Meshing the volumes, with refinement in piezoceramic volume

The last step in the preprocessing phase is setting the load conditions of the

problem as shown in Fig. 6.5. Go the following link

Main Menu> Preprocessor> Loads> Define loads> Apply> Structural> Displacement

or Pressure> on Area,

and select the area and apply the boundary conditions as well as loading conditions, Fig.

6.13.
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Fig. 6.13 Applying different boundary conditions

Now the model is ready to be solved through the following link:

Main Menu> Preprocessor> Solution> Solve> Current LS

The last phase is the postprocessing. In this phase, the results can be displayed

and evaluate in a desired way.

The same examples for spherical inhomogeneity as analytical solution have been model

here, four different piezocomposites with applied hydrostatic stress and zero electric

field at different volume fractions based on Table 6.9. Under these conditions, elastic

and electric fields at the center of the piezoceramic have been selected from the output

data of ANSYS. Table 6.10 shows the value of elastic and electric fields at the middle
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of the piezoceramics for the smallest volume fraction in Table 6.9, vy = 5.23E-7.
According to the symmetry of the sphere, the center of the piezoceramic has been
selected as representative of inside points. In these Tables, E stands for Epoxy, U for
UPR, 4 for PZT4, 6 for PZT6. Again the applied conditions

arec°, =0°, =0°, =25Pa, E°% = 0 . For the other volume fractions, elastic and

electric fields at the center of the piezoceramic have been selected from the output data

of ANSYS and gathered in Tables shown in Appendix B.
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Table 6.10 Elastic and electric fields at the center of the spherical inhomogeneity
¢ (10, o (Pa), E (V/m), D (C/m?)

Piezocomposite [¢] [o] [£] [D]
0.133 36.00
4 0.136 36.00 S ACE S .
0.127 35.96 '
_058E—4 | |—01ss||[!PF 4 0
—047E-3|||-0.014 —0.1192 0
—0.12E-3) | (—0.004
0.127 35.98
s 0.128 36.14 0035 -4\ | (o
0.119 35.99 '
_015E-3| | |-0.005 | | | O14E 3 0
—~0.17E-3 | | -=0.005 ~0.1808 0
—0.19E -3 -0.01
0.132 35.74
U 0.135 35.93 0a2E-a | (o
0.127 35.71 '
_011E-3| || -0004| || O13E3 0
—0.55E—4 || -0.002 —0.1186 0
—0.44E-3) | (-0.013
0.126 35.73
U 0.127 35.88 N
0.118 35.75 '
_014E-3| | |—0004]| | | %13E 3 0
—~0.16E-3 || | —0.005 ~0.1799 0
~0.182-3) | | =0.009
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To find the effective coefficients in ANSYS, special elastic or electric load,
cases with different boundary conditions must be constructed in such a way that for a
particular load case only one value in the strain or electric field vector, according to
constitutive equation (2.12), is non-zero and all others become zero. Then from one row
in equation (2.23) the corresponding effective coefficient can be calculated using the
calculated average non-zero value in the strain or electric field vector and the calculated
average values in the stress or electrical displacement vector. In this way ones need to
find the elastic and electric values for all the nodes and take the average of it. This can
be very time consuming and almost impossible. But with using equation (5.1) instead of
equation (2.12), the average non-zero value in the strain or electric field value can be
found from the data located in the surface of the model, the same surface that stress has
been applied, and the calculated average values in the stress or electrical displacement
vector will be the same as applied stress and electric filed. The later method can be
more convenient to use in ANSYS but in this case stress needs to be applied to the
model. Remember with using equation (5.1) to find the effective properties, instead of
[CYYE and [¢7] and [KYT, [SY]* and [@] and [K¥] can be found from ANSYS,
respectively. Therefore, to compare the results of two approaches, one needs to convert
effective matrices found in analytical solution to ANSYS format or vice versa, based on
the information stated in Chapter 5.

To make the above calculation more clear, one piezocomposite has been

selected and based on the above method the effective stiffness has been calculated in
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this Section and compared with result of analytical solution for different volume
fractions in the next Section.

As an example, piezocomposite with Epoxy polymer matrix and PZ74 sphere
piezoceramic has been selected. The model configuration is the same as shown in Fig.
6.4 (b). In six steps, all the component of compliance matrix can be found with

assuming this matrix has the following format as an anisotropic material.

Sll S12 S13 0 0
S21 SZZ S23 0 0
S, S, S 0 0
[S]E — 31 32 33 (632)
0o 0 0 S, 0 0
0

0 0 0 0 0 S,

Based on equation (5.1) and assuming the applied electric field is zero, in each step just
apply only one stress component and find the corresponding compliance components.

As instance if onlyo® # 0 then

£ =8,0°, (6.33)
g, =5,0°, (6.34)
£ =8,0°,, (6.35)

where with considering value of average strain at the surface of the model, one can

locate this data from ANSY'S output as, ¢, is the average strain in i direction found

on the plane i =1. With 5 more steps, other compliance components can be found
and the complete matrix can be converted to stiffness matrix. For one volume

fraction, v¢ = 0.1, these values have been gathered in Table 6.11.
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Table 6.11 Effective stiffness matrix for £4 piezocomposite with sphere

inhomogeneity [C¥] (GPa)

Piezocomposite [C]
5.0540 2.5268 2.6139 0 0 0
2.5268 5.0540 2.6139 0 0 0
2.6139 2.6139 5.2097 0 0 0
E4 0 0 0 1.19775 0 0
0 0 0 0 1.19775 0
0 0 0 0 0 2.2457

One can find the compliance matrix of other volume fractions for £4 piezocomposite at
Appendix B.

6.3 Evaluation the Results and Discussion

Now based on numerical approach the results can be evaluated, and if there is
numerical result for a particular piezocomposite, the results can compare together.
6.3.1 The elastic and electric fields inside the piezoceramic inhomogeneity

These inside’s fields for different piezocomposite have been studied based on
numerical and analytical solutions. For both approaches the same applied conditions
were used, the same hydrostatic stress amount and zero electric field. Results of
analytical solution have been studied individually in the following paragraphs, and then
its results have been compared to ANSYS results for the same piezocmposites.

First, only consider the found matrices of the inside’s fields for one particular
piezocomposite, to find the possible relation between the components in different

directions. Based on Table (6.3), one can observe for one particular piezocomposite

77



with sphere ceramic, stress and strain fields inside the spherical inhomogeneity is the
same in two directions, x, y with small difference with the third direction, z as shown
Fig. 6.11. Because in the case of spherical inhomogeneity, the piezoceramic is
completely surrounded by polymer, so in all three directions, an isotropic material
transfers the applied stress result in the same stress and strain at the interfaces of the
sphere and polymer in all directions. However, the piezoceramic itself is a transversely
isotropic material, where in this study the properties of the ceramic is the same in x and
v directions and different in z direction. So even though transferred stress is the same at
the interfaces of two parts in all directions, but stiffness coefficients are not the same in
all these direction. Resulting in the same inside elastic field in x and y directions and
different in z direction. With more precise look at the stiffness matrices of PZ74 and
PZT6, one can find properties in z direction has small difference with the other two
directions, resulting in a small difference in the inside elastic field’s component in z
direction compare to the other directions.

One can find the same behavior in piezocomposite in ANSYS model. As an
example stress inside the spherical inhomogeneity for E4S piezocomposite has been

shown in Fig. 6.12 for different volume fractions.
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Fig. 6.11 Elastic fields inside the spherical inhomogeneity for different piezocomposite
based on analytical solution, (a) stress field, (b) strain field

37

36 -
35 -
34 |

33 4
32 4
314
30 +

o (Pa)

29 4

O ox
Woy
A\
//&
4&

PZT4 different volume fraction
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based on ANSY'S modeling

In the case of circular cylinder inhomogeneity, Table 6.4, for one particular

piezocomposite, stress and strain fields inside the inhomogeneity is the same in two

directions, x, y with enormous difference with the third direction, z as shown Fig. 6.13.

In this case, the inhomogeneity is completely surrounded by polymer only in x and y

directions. As stated before in these directions, an isotropic material transfers the
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applied stress, resulting in the same transferred stress at interface of two parts of the
composite. According to isotropy behavior of the ceramic itself in x and y directions, the
same inside elastic field in x and y directions will be resulted. However, in the z
direction, the piezoceramic has free surface and receiving applied stress directly. Since
the stiffness of the piezoceramic is much higher than the polymer in any direction, the

stress and strain inside in this direction is much higher than two other directions.
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Fig. 6.13 Elastic fields inside the circular cylindrical inhomogeneity for different
piezocomposite based on analytical solution, (a) stress field, (b) strain field

Based on Table (6.3), one can observe for one particular piezocomposite that
electric field, E, inside the spherical inhomogeneity is zero in two directions, x, y and
non- zero in the third direction, z. According to the equation (2.2) and the in the
piezoelectricity matrix and value of the e;5s and poling direction at z, because there is no
shear stress inside the piezoceramic, there will not be any electric potential at x and y
direction. But according to e;3 and e»; (equal to e;3) and e3; and normal stresses, non-zero

E. will be resulted in opposite direction of the poling direction. One can find the same
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behavior in ANSYS model. As an example electric potential field inside the spherical
inhomogeneity for E4S piezocomposite has been shown in Fig. 6.14 for different

volume fractions in logarithmic scale.
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Fig. 6.14 Electric potential field inside the spherical inhomogeneity for £4
piezocomposite based on ANSY'S modeling

As mentioned before, first, elastic and electrical fields inside the piezoceramic
inhomogeneity based on analytical solution result is valid for any volume fractions
according to its infinite matrix. Second, analytical solution is based on no interaction
between the in homogeneities. These assumptions are valid for real composites just for
small volume fractions. With increasing the volume fraction, the analytical solution is
no longer valid. Therefore only small volume fractions of the piezoceramic have been
used in both approaches. Both methods are simulation of real behaviors, so both have
their own errors based on how their assumptions produce the model and how they
predict the behaviors. In the case of the elastic and electrical fields inside the

piezoceramic inhomogeneity, both methods give almost the same result for less than ten
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percent volume fraction. Some examples of two approaches comparison have been
shown in the Fig. 6.15. In order to show the differences better, logarithmic scale has

been used for volume fractions in some graphs.
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In addition based on both approaches, effects of three parameters on elastic and
electric fields inside the inhomogeneity have been studied. To analyze these effects, in
three steps consider two parameters as constant and change the third one as a variable.

First, consider polymer and shape of the in homogeneity are constants and type
of the piezoceramic is variable. As an example, consider £4S and E6S piezocomposites.
Although the type of the piezoceramic varies between PZT4 and PZT6 the elastic field
inside the inhomogeneity is almost the same, Fig. 6.11. The reason is again because of
the load-transferring role of the polymer. Both piezoceramics in this case experience
the same load at interface of two parts of the composite. The small difference between
two composite elastic fields is according to higher stiffness of the PZT6, which will
cause higher inside stress and lower inside strain. The higher stress inside the in
homogeneity will cause the higher electric field, absolute value, in E6S according to
equation (2.2), Fig. 6.16. In the case of circular cylinder, in z direction, polymer has no
transferring role. In this direction, higher stiffness of the PZ76 will cause higher inside
stress and lower inside strain, absolute strain, Fig. 6.13. In two other directions, inside
stress is almost the same, according to the load- transferring role of the polymer and the
small difference is according to small difference in ceramic stiffness matrices. The
higher strain inside the homogeneity will cause the higher electric displacement, in

PZT4, Fig. 6.16.
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Fig. 6.16 Electric fields inside (a) the sphere and (b) circular cylinder inhomogeneity
for different piezocomposite based on analytical solution

Second, consider piezoceramic and shape of the in homogeneity are constants
and type of the polymer is variable. As an example, consider E4S and U4S
piezocomposites. As the type of the polymer changes from Epoxy to UPR the stress
field inside the inhomogeneity will decrease and strain field will increase, Fig. 6.11.
Because the UPR polymer phase will transfers less load due its higher stiffness than
Epoxy. As a result, U4S interface will receive fewer loads than £4S. Higher inside stress

in E4S will result in higher strain compare to U4S with considering the piezoceramic
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stiffness is the same for the both composite. The same strain will result in same
electrical field in these two composite, Fig. 6.16 (a). Now consider £4C and U4C. In x
and y directions, the same discussion and result can be conducted as the spherical
inhomogeneity, according to the load-transferring role of the polymer, Fig. 6.13. In z
direction, unlike the prediction, stress inside is not the same for both composite, it
seems this parameter is also dependent on characters of the polymer. As a result, again
stress at z direction is higher in composite with lower polymer stiffness. Again higher
strain inside the homogeneity will cause the higher electric displacement, in £4C, Fig.
6.16.

Third, consider piezoceramic and polymer material are constants and shape of
the inhomogeneity is variable. As an example, consider £4S and E4C piezocomposites.
As stated previously, circular cylinder shape piezoceramic receives applied stress
directly in z direction, without transferring from the polymer. As the stiffness of the
piezoceramic is much higher than polymer, it will result in higher stress in this direction
in £4C than E4S, and higher strain Fig. 6.11 and Fig. 6.13.

From the ANSYS model, the same discussion as above can be conducted based
on two parameters, polymer and piezoceramic type. In the constant volume fraction, the
same result as analytical solution can be found in ANSYS result for inside’s fields, as

shown in Fig 6.17 at v¢= 4.199E-3.
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Fig. 6.17 Elastic and Electric fields for different piezocomposite based on ANSYS
method, (a) inside stress, (b) inside strain, (c) inside electric field
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6.3.2 The effective properties of the piezocomposites

As studied in details, from both approaches effective properties of the
piezocomposite can be calculated. Results of analytical solution for effective properties
matrices, show that piezocomposites have isotropic character in two directions, x and y,
and anisotropy character in the z direction, valid for both shapes of inhomogeneity in
any volume fraction. This anisotropy character is very noticeable in the case of circular
cylinder but very small in the case of sphere, Fig. 6.18, Fig. 6.19. and Fig. 6. 20. The
polymer matrix is an isotropic material but piezoceramic is a transversely isotropic
ceramic with the isotropy in x and y directions and anisotropy in z direction.
Piezocomposite has properties between its two parts, based on volume fractions. So it is
reasonable that it has anisotropy in z direction according to the existence of
piezoceramic with anisotropy in z direction. Spherical inhomogeneity has symmetry in
all directions but circular cylinder has longitude shape which cause more anisotropy
behavior in properties of the composite. Moreover from the materials properties of
PZT4 and PZT6 these properties in z direction have small difference with the other two
directions, resulting in a small difference in the effective properties of the composite
with sphere ceramic in z direction compare to the other directions. In addition with
increasing the volume fraction of the sphere the symmetry in shape will be the same so
it will not cause much difference between properties in x and z direction, like between
C¥,; and C¥5; Fig. 6.18 (a), or KY,; and K5, Fig. 6.19 (a), or e 5 and ¥, Fig. 6.20
(a). In the case of circular cylinder inhomogeneity, there is symmetry in plane

perpendicular to the axes of the cylinder so there will be isotropy in this plane which
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increasing the volume fraction will not change the properties in this plane like C¥}, and
7,5 because the symmetry will not change, compare C¥,;, and C 3, Fig 6.18 (b). But
there is anisotropy in cylinder axes direction because of which will be more
recognizable with increasing the volume fraction, cause noticeable difference for
example between C¥;; and C¥3; Fig 6.18 (b), or K%, and K35 Fig. 6.19 (b), or ¥
and ¢35 Fig. 6.20 (b). Moreover, piezocomposites are not transversely isotropic like
piezoceramics because their stiffness matrix has six independent components.

Remember from Chapter 2 and equation (2.23) that transversely isotropic material has

. ) c,-C,
only five independent stiffness components as C, = — 5
10 25
~ =
S | g [-ec]| g L | [—cn
2 =33 Ny / —=— (33
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; : ]
s —x—
S X {4 || § 10| C66
2 X KWK *-c2|| ¥ L ——CI2
S 2 cf| | &2 % | |—=—C13
3 v
T T T T T T 0 T T T 0
1E-07  1E-06 0.00001 0.0001 0.001 0.01 0.1 1 0.0000001 0.00001 0.001 0.1
Log PZT4 volume fraction Log PZT4 volume fraction
(a) (b)

Fig. 6.18 Difference between C? components of E4 piezocomposite at different volume
fractions (a) sphere piezoceramic and (b) circular cylinder piezoceramic
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In the case of sphere shape piezoceramic, effective compliance matrices have

been calculated based on ANSYS model. From this calculation almost the same

evaluation can be report for piezocomposite, Fig. 6.21, isotropy in x and y directions

and small anisotropy in the z direction. Also this result has been compared with




numerical calculation and shown in Fig. 6.22. The results are almost the same for low
volume fractions but differences will appear in volume fraction higher than ten percent,

which the reason was discussed before.
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In addition, effects of three parameters on effective parameters of the
piezocomposite have been studied here. To analyze these effects, again in three steps
consider two parameters as constant and change the third one as a variable for different
volume fractions. The result of this comparison shows at low volume fractions of the
piezoceramic, the effective properties of the composite is close to the properties of the
polymer matrix, with increasing the volume fraction, the effective properties will be
change toward the piezoceramic’s properties.

As a result, at high volume fraction in the volume fraction range pof this study,
piezocomposite with PZT76 ceramic and UPR polymer matrix has higher effective
stiffness than piezocomposite with PZ74 ceramic and Epoxy polymer matrix. In the
case of piezoelectricity matrix, piezocomposite with PZT4 ceramic has higher effective
piezoelectricity than piezocomposite with PZT6 ceramic. Remember the polymer has
zero piezoelectricity effect. For the effective permittivity, piezocomposite with PZT4
ceramic and Epoxy polymer matrix has higher effective permittivity than
piezocomposite with PZ76 and UPR.

The other factor that can be variable is shape of the ceramic. At low volume
fractions of the piezoceramic, the effective properties are close to the properties of the
polymer matrix without any influence from the shape of the inhomogeneity. With
increasing the volume fraction, the effective properties will be change according to
shape difference of the piezoceramic. For the effective stiffness, all the components of
the matrix such as C%}; are higher for composite with sphere shape piezoceramic

except the C¥3;, Fig. 6.23. Symmetry difference between these two shapes causes this
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result. For the effective piezoelectricity matrix, all the components of the matrix are
higher for composite with circular cylinder piezoceramic except the e?33, Fig. 6.24. For

the effective permittivity matrix, all the components of the matrix are higher in the case

of the circular cylinder, Fig. 6.25.
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Fig. 6.23 Difference between effective stiffness matrices of the piezocomposite with
different shape of the piezoceramic (a) 7, (b) Cc¥;
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

The analytical solution based on the extension of Eshelby’s theory to
piezoelectricity has been purposed in this thesis to calculate the elastic and effective
fields inside the piezoceramic inhomogeneity for various piezocomposites. Based on
this approach, the effective properties of the piezocomposite have been obtained too.
This approach has been tested for different materials and shapes as well as volume
fractions. The results for inside’s fields and the effective properties were matched with
what were expected according to materials property or volume fractions. However,
because of the assumptions made for finding the equations in this method, it is only
valid for small volume fractions of the inhomogeneities.

Also for these volume fractions, the numerical approach based on ANSYS
software has been use to model the same problems as the analytical approach. Based on
this model, the elastic and effective fields inside the piezoceramic inhomogeneity for
various piezocomposites have been found at the center of these parts. With different
boundary conditions, the effective properties of the piezocomposite have been
calculated for these FEM models.

The result for both the inside’s fields and the effective properties were close to
numerical solution for all the piezocomposite only for the small volume fraction of the

piezoceramic. For higher volume fraction, more than ten percent of the piezoceramic,
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there will be a divergence between the results of two approaches. So as what expected
before, the analytical solution based on the extension of Eshelby’s theory to
piezoelectricity is only valid for small volume fraction of the inhomogeneities.

It is recommended to extent this study for higher volume fraction of the
inhomogeneities. For this matter, one needs to consider the interactions among the
inhomogeneities, so other methods than the extension of Eshelby’s theory to
piezoelectricity need to be considered such as the self-consistent scheme, to consider
the interactions.

Also, it is recommended to compare the results of this study for lower volume
fractions with experimental data. The result of this comparison can be helpful in

designing these composite.
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APPENDIX A

ANALYTICAL SOLUTION RESULT
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Only independent and non-zero components of the effective properties for
different piezocomposite at different volume fraction of the piezocomceramic have been
shown in the following tables. In these tables, £ stands for Epoxy, U for UPR, 4 for
PZT4, 6 for PZT6, S for spherical inhomogeneity and C for circular cylinder
inhomogeneity.

Table A.1 C¥, (GPa) from the stiffness matrix

\% E4S | E6S | U4S | U6S | E4C | E6C | U4C [U6C
5.23E-07]5.4568(5.4568|7.5432{7.5432|5.4568|5.4568|7.5432|7.5432
5.23E-04]5.4612(5.4613(7.5492|7.5493|5.4605|5.4605|7.5482|7.5483
4.19E-03)5.4923(5.4928] 7.591 | 7.592 |5.4864|5.4868|7.5833| 7.584
3.35E-02]5.7409(5.7452|7.9255{7.9336(5.6939(5.6969|7.8637| 7.869

0.1 [6.3049(6.3179|8.6845|8.7087| 6.165 | 6.174 | 8.5 |8.517

0.27 17.7293]7.7641]10.601{10.666| 7.354 | 7.378 {10.107{10.152

Table A.2 C¥' 33 (GPa) from the stiffness matrix

\% E4S | E6S | U4S | U6S | E4C | E6C | U4C [U6C
5.23E-07] 5.468 [5.4568|7.5432|7.5432|5.4568|5.4569|7.5432|7.5433
5.23E-04]5.4613|5.4613|7.5493(7.5493|5.4891|5.5245|7.5754|7.6104
4.19E-03)5.4926(5.4929|7.5267(7.5233]5.7154(5.9981|7.8004(8.0809
3.35E-02]5.7432| 5.746 |7.9299| 7.935 |7.5258|9.7873(9.6005|11.844

0.1 6.312 16.3202|8.6978| 8.713 |11.634[18.386|13.686(20.385

0.27 |7.7748]7.7702]10.637[10.678]22.009(40.101]24.001{41.953
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Table A.3 C¥,, (GPa) from the stiffness matrix

Vr E4S | E6S | U4S | U6S | E4C | E6C | U4C | U6C

5.23E-07|2.5185|2.5185|3.4815(3.4815|2.5185|2.5185|3.4815|3.4815

5.23E-04| 2.523 |2.5227|3.4865|3.4867|2.5227|2.5225|3.4868(3.4864

4.19E-03]2.5542|2.5522(3.5267)3.5233| 2.552 |12.5502{3.5241]3.5211

3.35E-02(2.8041]2.7876|3.8432|3.8158|2.7865|2.7719|3.8226{ 3.798

0.1 3.371(3.32214.5613(4.4796| 3.319 [ 3.275| 4.5 [4.427

0.27 14.8028|4.6714][ 6.375 ] 6.156 [ 4.662 | 4.546 | 6.211 ] 6.015

Table A.4 C¥, 66 (GPa) from the stiffness matrix

Vr E4S | E6S | U4S | U6S | E4C | E6C | U4C | U6C

5.23E-07|2.5185|2.5618|3.4815(3.4815|2.5185|2.5185|3.4815|3.4815

5.23E-04(2.5226(2.5232|3.4865(3.4876|2.5218|2.5222|3.4857|3.4863

4.19E-03[2.5512]2.5562| 3.522 |13.5301| 2.545 ]2.5481{3.5149|3.5202

3.35E-02|2.7815|2.8201|3.8057(3.8706|2.7306|2.7551|3.7486| 3.791

0.1 [3.3037|3.419 |4.4496|4.6432| 3.152 | 3.225 | 4.279 | 4.406

0.27 14.6223|4.9313{ 6.075|6.594 |4.215|4.411 | 5.618 | 5.958

Table A.5 C¥}, (GPa) from the stiffness matrix

Vr E4S | E6S | U4S | U6S | E4C | E6C | U4C | U6C

5.23E-07|2.9383|2.9383|4.0617]|4.0617|2.9383|2.9383|4.0617(4.0617

5.23E-04{2.9401]2.9401|4.0642{4.0641| 2.94 | 2.94 | 4.064 | 4.064

4.19E-03]2.9529]2.9526(4.0816| 4.081 [2.9519]2.9518(4.0802| 4.08

3.35E-02(3.0552|3.0529(4.2206(4.2165|3.0473|3.0464|4.2097| 4.208

0.1 [3.2873|3.2805|4.5362|4.5237| 3.264 | 3.208 | 4.503 | 4.499

0.27 |3.8734|3.8554[5.333| 5.3 | 3.81 |3.803]5.245|5.232
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Table A.6 C¥}; (GPa) from the stiffness matrix

Vr E4S | E6S | U4S | U6S | E4C | E6C | U4C | U6C

5.23E-07|2.9383|2.9383|4.0617|4.0617|2.9383|2.9383|4.0617[4.0167

5.23E-04{2.9401]2.9401|4.0642|4.0641|2.9402|2.9397|4.0644(4.0636

4.19E-03]2.9526]2.9526(4.0811]|4.0811{2.9538|2.9496|4.0828| 4.077

3.35E-02(3.0532(3.0528| 4.217 |4.2162|3.0629|3.0288|4.2304| 4.184

0.1 [3.2814(3.2801(4.5252|4.523 | 3.31 |3.208 | 4.565 | 4.426

0.27 |3.8576|3.8543] 5.304 |5.2998] 3.935 | 3.662 | 5.411 | 5.039

Table A.7 S¥, (1 0’ mZ/N) from the compliance matrix

Vr E4S | E6S | U4S | U6S
5.23E-07]0.2941]0.2941|0.2128]0.2128
5.23E-04/0.2938]0.2938|0.2126]0.2125
4.19E-03]0.2918]0.2917{0.2111] 0.211
3.35E-02{0.2763]0.2757(0.2002{0.1997

0.1 10.2466(0.2453|0.1793| 0.178
0.27 10.1941]0.1921{0.1419]0.1399

Table A.8 S5, (10° mZ/N) from the compliance matrix

v, | E4S | E6S | U4S | U6S
5.23E-07]0.2941[0.2941(0.2128/0.2128
5.23E-04]0.2938(0.2938|0.2126/0.2125
4.19E-03/0.2917]0.2917]0.2111] 0.211
3.35E-02| 0.276 0.2757[0.1999[0.1996
0.1 [0.2459/0.2452/0.1786(0.1779
0.27 [0.1929/0.1918/0.1407/0.1396
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Table A.9 S¢. 44 (1 0’ mz/N) from the compliance matrix

\% E4S | E6S | U4S | U6S
5.23E-07|0.3971]0.3971)0.2872{0.2872
5.23E-04/0.3964|0.3964|0.2868|0.2868
4.19E-03]0.3915|0.3918]0.2836]0.2838
3.35E-02{0.3566]0.3587{0.2602]0.2621

0.1 10.2966| 0.301 |0.2192{0.2232
0.27 10.2082] 0.241 [0.1569]0.1624

Table A.10 S, 66 (1 0’ mZ/N) from the compliance matrix

\% E4S | E6S | U4S | U6S
5.23E-07|0.3971]0.3971)0.2872{0.2872
5.23E-04/0.3964]0.3963]0.2868]0.2867
4.19E-03[0.3919]0.3912{0.2839]0.2833
3.35E-02{0.3595]0.3546|0.2628]0.2584

0.1 10.3027(0.2925|0.2247|0.2154
0.27 ]0.2163]0.2028(0.1646]0.1516

Table A.11 S}, (10°° m?/N) from the compliance matrix

v, | E4S | E6S | U4S | U6S
5.23E-071-0.10291-0.1029-0.0745-0.0745
5.23E-04-0.1028}-0.1028}-0.0744}-0.0744
4.19E-03|-0.102 | -0.102 |-0.0738-0.0738
3.35E-021-0.0961-0.09571-0.0697-0.0693
0.1 |-0.0848-0.0839-0.0618/-0.0608
0.27 |0.065310.0638-0.0479-0.0465
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Table A.12 S¥,;(10”° m*/N) from the compliance matrix

Vr

E4S

E6S

U4S

uesS

5.23E-

07

-0.1029

-0.1029

-0.0745

-0.

0745

5.23E-

04}-0.102

8-0.1028

-0.0744

-0.

0744

4.19E-

03

-0.102

-0.102

-0.0738

-0.

0738

3.35E-

02}-0.095

8-0.0957

-0.0694

-0

.0693

0.1

-0.084

1}-0.0838

-0.0611

-0

.0608

0.27

-0.064

11-0.0638

-0.04681-0

.0463

Table A.13 %5 (C/m?) from the piezoelectric matrix

Vr

E4S

E6S

U4S

uesS

E4C

E6C

v4cC

ueC

5.23E-07

-1.094E-09

-1.97E-10

-1.081E-09

-1.93E-10

-1.14E-07

-2.20E-08

-1.57E-07

-3.20E-08

5.23E-04

-1.09E-06

-1.97E-07

-1.08E-06

-1.93E-07

-1.00E-04

-2.23E-05

-2.00E-04

-3.07E-05

4.19E-03

-8.75E-06

-1.57E-06

-8.65E-06

-1.55E-06

-9.00E-04

-2.00E-04

-1.30E-03

-2.00E-04

3.35E-02

-7.00E-05

-1.26E-05

-6.92E-05

-1.24E-05

-7.30E-03

-1.40E-03

-1.00E-02

-2.00E-03

0.1

-0.0002

-3.76E-05

-2.00E-04

-3.69E-05

-2.18E-02

-4.30E-03

-3.00E-02

-5.90E-03

0.27

-0.0006

-0.0001

-6.00E-04

-1.00E-04

-5.83E-02

-1.14E-02

-8.03E-02

-1.57E-02

Table A.14 ¢

eff3

3 (C/m?) from the piezoelectric matrix

Vr

E4S

E6S

U4S

Ue6sS

E4C

E6C

u4cC

ueC

5.23E-07

3.484E-09

2.318E-09

3.45E-09

2.31E-09

8.84E-06

3.95E-06

8.81E-06

3.94E-06

5.23E-04

3.48E-06

2.318E-06

3.45E-06]

2.31E-06

8.80E-03

3.90E-03

8.80E-03

3.90E-03

4.19E-03

2.79E-05

1.85E-05

2.76E-05

1.85E-05

7.07E-02

3.16E-02

7.05E-02

3.15E-02

3.35E-02

2.23E-04

1.48E-04

2.21E-04

1.48E-04

5.66E-01

2.53E-01

5.64E-01

2.52E-01

0.1

0.0007

4.43E-04

7.00E-04

4.00E-04

1.69E+00

7.55E-01

1.68E+00

7.54E-01

0.27

0.0018

0.0012

1.80E-03

1.20E-03

4.53E+00

2.02E+00

4.51E+00

2.02E+00
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Table A.15 5 (C/m?) from the piezoelectric matrix

Vr E4S E6S U4S Ue6S E4C E6C v4cC vueC
5.23E-07[7.63E-09[7.973E-097.19E-09[7.42E-09|1.40E-08|1.50E-08|1.40E-08|1.40E-08
5.23E-04{7.63E-06[7.973E-06[7.19E-06[7.42E-06|1.43E-05|1 .49E-05|1.35E-05|1.40E-05
4.19E-0316.10E-05] 6.38E-05 |5.75E-05|5.94E-01{1.00E-04{1.00E-03|1.00E-04|1.00E-04
3.35E-024.88E-04] 5.10E-04 4.60E-044.75E-01{9.00E-04{1.00E-03|9.00E-04{9.00E-04

0.1 0.0015 | 0.0015 ]1.40E-03(1.40E-03| 0.0027 2.80E-03]2.60E-03[2.70E-03
0.27 10.0039 | 0.004 [3.70E-03]3.80E-03| 0.0073 [7.60E-03}6.90E-03|7.10E-03

Table A.16 K¢, (107" C/Vm) from the permittivity matrix

Vr E4S | E6S | U4S | U6S | E4C | E6C | U4C | U6C
5.23E-0710.45210.452{0.328[0.32810.452| 0.52 {0.328]0.328
5.23E-04/0.4522/0.4522|0.3282/0.3282/0.4525/ 0.452 [0.3283|0.3283
4.19E-030.4539/0.4539/0.3294(0.3294|0.4558/0.45570.3307/0.3307
3.35E-02/0.4671)0.467 [0.33890.3389]0.48210.482| 0.35 | 0.35

0.1 10.49710.4967/0.3607/0.3605[0.542 | 0.54 {0.393]0.393

0.27 10.5726/0.5718|0.4156/0.4152] 0.69 [0.689| 0.5 ]0.501

Table A.17 K%55 (107" C/Vm) from the permittivity matrix

vy E4S | E6S | U4S | U6S [EAC | E6C | U4C | U6C
5.23E-07/0.45210.452{0.328|0.3280.452[0.452|0.328 0.328
5.23E-04/0.4522/0.4522/0.3282/0.3282/0.4832/0.4696/0.3592/0.3457
4.19E-03/0.4539/0.4539/0.3294(0.3294/0.7015/0.5927/ 0.578 |0.4693
3.35E-02/0.4671{0.467[0.3390.3389]2.248 [ 1.578 | 2.328 | 1.458
0.1 10.49710.4967)0.3607/0.3605[6.411 |3.814]6.299|3.702

0.27 10.57260.5717/0.4156/0.4151/16.42| 9.46 [16.33]9.369
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NUMERICAL SOLUTION RESULT
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In the following tables, stress and strain fields as well as electric and electric
displacement fields at the center of the spherical inhomogeneity for different volume

fractions of the piezoceramic have been shown. Again, E stands for Epoxy, U for UPR,

4 for PZT4, 6 for PZT6 and the loading conditions are c°, = 0°, = 0°; =25Pa , E°% = 0.

Table B.1 Stress field, o (Pa), for £4 piezocomposite

Vr

Ox

Oy

Gz

Oyz

GXZ

Oxy

5.23E-07

36

36

35.965

-4.43E-03

-0.1875

-1.41E-02

5.23E-04

35.767

35.824

35.84

-1.53E-03

-2.58E-03

-3.44E-03

4.19E-03

35.625

35.504

35.579

-5.99E-04

3.16E-04

6.76E-04

3.35E-02

34.881

34.884

34.939

-2.97E-01

-3.44E-03

-1.90E-03

0.1

33.715

33.708

33.716

-9.09E-03

-1.06E-02

-9.17E-03

0.27

31.037

31.042

31.146

-2.31E-02

-2.32E-02

-2.27E-02

Table B.2 Stress field, o (Pa), for £6 piezocomposite

Vr

Ox

Oy

Gz

Oyz

GXZ

Oxy

5.23E-07

35.979

36.143

35.993

-4.68E-03

-5.07E-03

1.01E-02

5.23E-04

35.694

35.833

35.868

-2.42E-03

-3.93E-03

-3.44E-03

4.19E-03

35.704

35.495

35.601

-1.74E-03

-8.33E-04

|6.44E-04

3.35E-02

34.877

34.883

34.899

-2.28E-03

-2.48E-03

-2.26E-03

0.1

33.599

33.607

33.493

-9.26E-03

-6.23E-03

-0.00684

0.27

30.731

30.753

30.413

-5.12E-02

-5.04E-02

-7.66E-02
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Table B.3 Stress field, o (Pa), for U4 piezocomposite

Vr

Gx

Gy

Gyz

cSXZ

GXV

5.23E-07

35.73835.933[35.709}-4.20E-03

-1.80E-03

-1.30E-02

5.23E-04

35.51235.565[35.586}-1.30E-03

-2.40E-03

-3.30E-03

4.19E-03

35.37235.256(35.335-5.80E-04

3.30E-04

6.50E-04

3.35E-02

34.65334.656[34.712}-2.80E-03

-3.30E-03

-1.80E-03

0.1

33.52

33.51333.523

-8.80E-03

-1.00E-02

-8.80E-03

0.27

30.98331.001

-7.50E-02

-7.40E-02

-6.80E-02

Table B.4 Stress field, o (Pa), for U6 piezocomposite

Vr

Gx

Gy

Gyz

cSXZ

GXV

5.23E-07

35.734{35.88435.754}-4.40E-03

-4.80E-03

-9.60E-01

5.23E-04

35.455(35.588[35.631

-2.30E-03

-3.80E-03

3.30E-03

4.19E-03

35.462/35.262[35.373

-1.70E-03

7.70E-04

-6.10E-04

3.35E-02

34.661

34.66734.689|-2.20E-03

-2.40E-03

-2.20E-03

0.1

33.419(33.42733.319}-6.00E-03

-6.60E-03

-8.90E-03

0.27

30.622/30.643(30.312|-5.00E-02

-4.90E-02

-7.40E-02

Table B.5 Strain field, ¢ (10”), for E4 piezocomposite

14

Ex

&y

&z

Eyz

8XZ

Exy

5.23E-07

1.33E-01

1.36E-01

1.27E-01

-1.15E-04

-5.82E-05

-4.70E-04

5.23E-04

1.32E-01

1.33E-01

1.28E-01

-4.30E-05

-60.45E-05

-1.15E-04

4.19E-03

1.33E-01

1.31E-01

1.27E-01

-9.88E-06

7.50E-06

2.25E-05

3.35E-02

1.29E-01

1.29E-01

1.25E-01

-8.42E-05

-9.18E-05

-6.32E-05

0.1

1.25E-01

1.25E-01

1.20E-01

-2.22E-04

-2.53E-04

-3.06E-04

0.27

1.15E-01

1.15E-01

1.12E-01

-5.71E-04

-5.58E-04

-7.55E-04
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Table B.6 Strain field, & (10”), for E6 piezocomposite

Vr

Ex

&y

&z

(c:yz

SXZ

SXY

5.23E-07

1.27E-01

1.28E-01

1.19E-01

-1.49E-04

-1.71E-04

-1.88E-04

5.23E-04

1.26E-01

1.27E-01

1.19E-01

-8.06E-05

-1.27E-04

-6.37E-05

4.19E-03

1.27E-01

1.25E-01

1.18E-01

-5.39E-05

-2.16E-05

-1.19E-05

3.35E-02

1.23E-01

1.23E-01

1.16E-01

-7.06E-05

-7.72E-05

-4.19E-05

0.1

1.19E-01

1.19E-01

1.11E-01

-1.89E-04

-2.09E-04

-1.72E-04

0.27

1.09E-01

1.09E-01

9.96E-02

-1.56E-03

-1.53E-03

-1.42E-03

Table B.7 Strain field, & (10”), for U4 piezocomposite

Vr

&x

&y

&z

(c:yz

SXZ

SXY

5.23E-07

1.32E-01

1.35E-01

1.27E-01

-1.08E-04

-5.48E-05

-4 40E-04

5.23E-04

1.31E-01

1.32E-01

1.27E-01

-3.79E-05

-60.05E-05

-1.10E-04

4.19E-03

1.32E-01

1.30E-01

1.26E-01

-9.79E-06

7.76E-06

2.15E-05

3.35E-02

1.28E-01

1.29E-01

1.24E-01

-8.00E-05

-8.71E-05

-6.02E-05

0.1

1.24E-01

1.24E-01

1.20E-01

-2.14E-04

-2.42E-05

-2.93E-04

0.27

1.15E-01

1.15E-01

1.11E-01

-1.92E-03

-1.80E-03

-2.26E-03

Table B.8 Strain field, ¢ (10”), for U6 piezocomposite

14

Ex

&y

&z

Eyz

8XZ

Exy

5.23E-07

1.26E-01

1.27E-01

1.18E-01

-1.77E-04

-1.41E-04

-1.61E-04

5.23E-04

1.25E-01

1.26E-01

1.18E-01

-6.17E-05

-7.55E-05

-1.23E-04

4.19E-03

1.26E-01

1.24E-01

1.17E-01

-1.14E-05

-5.16E-04

-1.99E-05

3.35E-02

1.22E-01

1.22E-01

1.15E-01

-4.01E-04

-6.77E-05

-7.39E-05

0.1

1.18E-01

1.13E-01

1.10E-01

-1.66E-04

-1.83E-04

-2.02E-04

0.27

1.09E-01

1.09E-01

9.93E-02

-1.38E-03

-1.53E-03

-1.49E-03
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Table B.9 Electric fields, E (V/m) and D (C/m"°), for E4 piezocomposite

Vr

E,

E,

E;

Dy

D,

D

5.23E-07

3.46E-05

1.39E-04

-0.1192

-3.65E-13

-2.17E-13

-1.59E-02

5.23E-04

8.62E-05

3.89E-05

-0.1228

-6.32E-14

-1.75E-13

-3.13E-13

4.19E-03

-1.15E-05

3.26E-05

-0.1212

-3.24E-15

1.28E-13

4.62E-15

3.35E-02

1.00E-04

7.42E-05

-0.1199

-2.49E-13

-3.56E-13

2.61E-13

0.1

3.80E-04

3.15E-04

-0.1147

5.33E-14

-9.01E-14

-8.84E-13

0.27

8.25E-04

7.84E-04

-0.1083

2.05E-14

-4.08E-13

-1.46E-12

Table B.10 Electric fields, E (V/m) and D (C/m?), for E6 piezocomposite

Vr

Ey

L,

E;

Dy

D,

D

5.23E-07

9.28E-05

1.40E-04

-0.181

-4.54E-13

-1.80E-13

2.34E-13

5.23E-04

1.04E-04

5.14E-05

-0.1821

-2.09E-13

-1.86E-13

1.28E-13

4.19E-03

5.41E-05

6.10E-01

-0.1798

9.55E-14

-2.81E-14

-5.09E-14

3.35E-02]

8.33E-06

8.06E-05

-0.1764

-5.55E-14

-3.55E-14

-1.91E-14

0.1

2.54E-04

2.41E-04

-0.168

-4.93E-14

-3.22E-15

-1.25E-13

0.27

1.93E-03

1.85E-03

-0.1504

-1.15E-13

-6.02E-13

-2.47E-12

Table B.11 Electric fields, E (V/m) and D (C/m?), for U4 piezocomposite

14

E,

Ly

E.

D,

D,

D;

5.23E-07

3.20E-05

1.30E-04

-0.1186

-3.48E-08

-2.07E-13

-1.48E-12

5.23E-04

8.17E-05

3.33E-06

-0.122

-5.31E-14

-1.60E-13

-3.12E-13

4.19E-03

-1.20E-05

3.12E-05

-0.1205

-4.15E-15

1.18E-13

9.12E-15

3.35E-02

9.54E-05

7.11E-05

-0.1192

-2.35E-13

-3.34E-13

2.45E-13

0.1

3.65E-04

3.04E-04

-0.1087

-4.92E-13

-3.07E-12

-6.90E-12

0.27

2.59E-03

2.40E-03

-0.1087

-3.49E-07

-3.07E-12

-6.80E-12
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Table B.12 Electric fields, E (V/m) and D (C/m?), for U6 piezocomposite

Vi

Ey

E,

E;

Dy

D,

D;

5.23E-07

8.66E-05

1.33E-04

-0.1799

-4.27E-13

-1.69E-13

2.16E-13

5.23E-04

1.02E-04

4.62E-05

-0.1809

-1.97E-13

-1.81E-13

1.87E-13

4.19E-03

5.00E-05

5.85E-05

-0.1787

9.19E-14

-2.69E+12

-4.90E-14

3.35E-02

7.97E-05

7.72E-05

-0.1754

-5.30E-14

3.33E-14

-1.77E-14

0.1

2.45E-04

2.33E-04

-0.1672

-4.00E-14

-2.43E-15

-1.22E-13

0.27

1.87E-03

1.79E-03

-0.1505

-9.99E-14

-5.74E-13

-2.40E-12

Table B.13 The independent and non-zero components of effective compliance matrix
for E4 piezocomposite at different volume fraction of the sphere piezocomceramic

Vf

571

5753

5€f44

5756

5712

571

5.2E-07

0.2941

0.2941

0.54132

0.49904

-0.1029

-0.1029

0.00052

0.2954

0.2954

0.54066

0.49082

-0.1029

-0.1029

0.00419

0.295

0.295

0.55406

0.50106

-0.102

-0.102

0.03349

0.2967

0.294

0.4915

0.4104

-0.1004

-0.1013

0.1

0.2987

0.2935

0.50566

0.4453

-0.097

-0.1012

0.26795

0.2978

0.2962

0.4532

0.4333

0.10118

-0.1011
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