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ABSTRACT 

 

PIEZOELECTRIC ANALYSIS FOR 

HETROGENEOUS MEDIUM 
 

Publication No. ______ 

 

Solmaz Torabi, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Dr. Seiichi Nomura 

In the recent years, several types of piezocomposites have been fabricated since 

they have provided material properties superior to conventional piezoelectric materials. 

In order to design these composites, it is essential to find the elastic and electric fields 

for their different parts, as well as the effective properties of the composite. In the 

present study, the analytical approach based on the extension of Eshelby’s theory in 

piezoelectricity and the numerical approach based on FEM modeling and ANSYS 

software have been used to find these elastic and electric fields inside the piezoceramic 

inhomogeneity for two different piezocomposite according to their connectivity, 0-3 

and 1-3. In addition, based on these fields, the effective properties of the 

piezocomposite have been calculated in the analytical solution and have been compared 

with the numerical solution results for the effective properties. These comparisons 
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between two approaches for different volume fractions show the analytical approach is 

valid to find the inside’s fields and the effective properties for less than ten percent of 

the piezoceramic volume fractions. 
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CHAPTER 1 

INTRODUCTION 

In recent years, several types of piezoceramic composites have been fabricated 

since piezocomposites provide material properties superior to conventional piezoelectric 

materials. Piezocomposites have become attractive candidates for use in many 

applications such as ultrasonic imaging, sensors, actuators, damping, medical imaging 

and non-destructive evaluation. These materials consist of an active piezoelectric phase 

and a passive phase, usually a polymer. 

Along with the widespread application of piezocomposites, how to determine 

the effects of defects and inclusions on the properties of such materials becomes one of 

the most important problems in engineering. For example, a piezocomposite used as a 

sensor is designed to work under stress and deformation. Thus, various damage and 

micro-defects in piezocomposite sensor have been observed. Studies on defects (such as 

dislocations, crack and void) and inhomogeneity inside the piezocomposite material 

have then attracted the attention of many researchers. For this reason, studying the 

elastic and electric fields inside and outside piezoceramic part of the piezocomposite is 

necessary. 

In addition to the above reason, in the past few years, much work has been done 

in the analysis and prediction of the effective properties of piezocomposites according 

to their importance in the design of these composites. Finding the elastic and electric 
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fields in different parts of piezocomposite is one way to calculate these effective 

properties.  

The micromechanical characterization and analysis of piezocomposites were 

launched by Newnham’s connectivity theory [1], which is based on the combination of 

mechanics of materials type parallel and series models. According to his theory, the 

properties of composites depend on the distribution of the components. The concept of 

connectivity is useful in classifying different types of composites. The basis of this 

concept is that any phase in a composite may be self-connected in zero, one, two or 

three dimensions. There are 10 different ways of connecting the phases in a two-phase 

composite, (0–0, 1–0, 2–0, 3–0, 1–1, 2–1, 3–1, 2–2, 3–2 and 3–3), each described by 

two numbers, the first defining how the active ceramic phase is connected and the 

second how the passive polymer phase is connected.  

Eshelby’s theory [2] is of great importance in various engineering and physical 

fields, and is the subject of extensive studies. This theorem deals with two related 

problems in classical elasticity theory. The first one is the determination of the stresses 

and displacements produced in a medium occupying the entire space if an ellipsoidal 

subregion undergoes a spontaneous deformation, which would be homogeneous in the 

absence of the surrounding material. The second one is an analogous problem for the 

case in which the inclusion and matrix have different elastic constants, while the 

stresses are induced by a uniform stress-field at infinity. 

In approaching above objectives, Eshelby [2] proceeded through a sequence of 

imaginary cutting, straining, and welding operations, which are claimed to be equivalent 
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to a formulation of above problems. As a result, elastic field inside the inclusion can be 

calculated based on Eshelby’s theory.   

Extension of the well-known Eshelby's inhomogeneity solution from elasticity 

to the piezoelectric material has been done in details by Wang [3] to find the elastic and 

electric fields in different parts of piezocomposite. 

Wang [3] studied a problem of piezoelectric inclusions in an infinite 

piezoelectric medium via the Green’s function technique to find the integral expressions 

for the strain and electric fields, but the integral expressions are very complicated, thus 

closed-form solutions of strain and electric fields are too difficult to obtain even though 

the matrix is chosen to be non-piezoelectric. Moreover, Wang did not consider the 

interaction among inclusions. 

From the view of stated applications, piezocomposites are made up of a 

piezoelectric phase and the non-piezoelectric matrix. For example, sensors made of 

piezoelectric materials, which are widely used in smart materials or smart structures are 

generally piezoelectric inhomogeneities embedded in a non-piezoelectric matrix in 

which the elastic fields and the electric fields are decoupled in it. 

No electro-mechanical interaction in the matrix material assumption, a non-

piezoelectric medium, has been used in many studies to obtain the coupled elastic and 

electric fields inside the piezoelectric inhomogeneity in the matrix. Fan and Qin [4] 

analyzed a piezoelectric ellipsoidal inhomogeneity embedded in a non-piezoelectric 

elastic matrix via the equivalent inclusion method of Eshelby’s theory. They used a 

simple way to find the elastic and electric fields inside the inhomogeneity. They applied 
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non-piezoelectric elastic matrix assumption to partially decouple the original 

piezoelectric inhomogeneity problem, although the coupling still holds inside the 

inhomogeneity.  

Based on Fan and Qin’s analytical approach and the finite element approach, the 

elastic and electric fields inside the piezoelectric spherical and ellipsoidal 

inhomogeneities embedded in a non-piezoelectric elastic matrix have been analyzed in 

the present thesis. Also the effective coefficients have been calculated through these 

two ways, an analytical and a numerical approach.  

To do all the above calculation, it is necessary to know the piezoelectric 

characters and formulations, which are given in Chapter 2.  The analytical solution is 

based on the analysis of the coupled elastic field and electric field of a typical 

piezoelectric inhomogeneity in a non-piezoelectric medium. To do this analysis, it is 

essential to know the original Eshelby’s theory for the elastic problems and extension of 

Eshelby’s theory to piezocomposites, which are given in Chapter 3 and 4, respectively. 

For the numeric approach ANSYS, commercial finite element software, has been used. 

For this approach, Chapter 5 has been provided to teach some basic steps in using this 

software in piezoelectric modeling.  The result of these two ways is given and compared 

in Chapter 6 and the conclusion of this study has been provided in Chapter 7. 
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CHAPTER 2 

PIEZOELECTRIC CERAMICS 

2.1 Background Theory 

All materials undergo a small change in dimensions when subjected to an 

electric field. If the resultant strain is proportional to the square of the field, it is known 

as the electrostrictive effect. Some materials show the reverse effect – the development 

of electric polarization when they are strained through an applied stress. This is called 

the direct piezoelectric effect. Piezoelectricity is a property possessed by a group of 

materials, discovered in 1880 by Pierre and Jacques Curie, during their study of the 

effects of pressure on the generation of electrical charge by crystals such as Quartz, 

tourmaline and Rochelle salt. Piezoelectricity stems from the Greek word piezo for 

pressure.   

Piezoelectricity is a linear effect that is related to the microscopic structure of 

the solid. Some ceramic materials become electrically polarized when they are strained; 

this linear and reversible phenomenon is referred to as the direct piezoelectric effect; 

and it is always accompanied by the converse piezoelectric effect where a solid becomes 

strained when placed in the electric field. The microscopic origin of the piezoelectric 

effect is the displacement of ionic charged within a crystal structure. In the absence of 

external strain, the charge distribution within the crystal is symmetric and the net 
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electric dipole moment is zero. However, when an external stress is applied, the charges 

are displaced and the charge distribution is no longer symmetric. A net polarization 

develops and results in an internal electric field. A material can only be piezoelectric if 

the unit cell has no center of inversion. The lack of center of symmetry means that a net 

movement of the positive and negative ions with respect to each other, as a result of 

stress, produces an electric dipole. The ceramic, being composed of the random 

orientation of these piezoelectric crystallites, is inactive, i.e., the effects from the 

individual crystals cancel each other and no discernable piezoelectricity is present. 

Regions of equally oriented polarization vectors are known as domains.  [5] 

Among the 32 classes of single-crystal materials, 11 possess a center of 

symmetry and are non-polar. For these, an applied stress results in symmetrical ionic 

displacements so that there is no net change in dipole moment. The other 21 crystal 

classes are non-centrosymmetric, and 20 of these exhibit the piezoelectric effect. The 

single exception, in the cubic system, possesses symmetry characteristics, which 

combine to give no piezoelectric effect. [6] 

Piezoelectric materials commercialize with the discovery of barium titanate and 

zirconate titanate (PZT) in the 1940s and the 1950s, respectively. These family of 

materials exhibited very high dielectric and piezoelectric properties. Furthermore, their 

behavior to specific responses and applications can be modified by the use of dopants. 

Today, PZT is one of the most widely used piezoelectric materials. It is noted that most 

commercially available ceramics, such as barium titanate and PZT, are based on the 

perovskite structure, Fig 2.1. 
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Fig. 2.1 Pervoskite structure [5] 

 

The fabrication of most bulk piezoelectric ceramics is the same as other 

ceramics except that they have one more process called poling. Poling is a commonly 

used method to orient the domains by polarizing the ceramic through the application of 

a static electric field. The electrodes are applied to the ceramic and a sufficiently high 

electric field, a strong DC filed, is applied such that the domains rotate and switch in the 

direction of the electric field in the polycrystalline ceramic. The result is never a full 

orientation of all domains; however, the polycrystalline ceramic exhibits a large 

piezoelectric effect. During this process, there is a small expansion of the material along 

the poling axis and a contraction in both directions perpendicular to it, see Fig 2.2 [5].  

 

 

Fig. 2.2 Polling of a piezoelectric ceramic [5] 
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Polycrystalline materials in which the crystal axes of the grains are randomly 

oriented all behave electrostrictively whatever the structural class of the crystallites 

comprising them. If the crystals belong to a piezoelectric class and their crystal axes can 

be suitably aligned, then a piezoelectric polycrystalline ceramic becomes possible. 

It should be noted that a poling process is often necessary with single-crystal 

ferroelectric bodies because they contain a multiplicity of randomly oriented domains. 

There is, therefore, a sequence of states of increasing orderliness: polycrystalline 

ferroelectric ceramics, poled ferroelectric ceramics, single-crystal ferroelectrics and 

single-domain single crystals. 

If a piezoelectric plate, as shown in Fig. 2.3, polarized in the direction indicated 

by P, carries electrodes over its two flat faces, then a compressive stress causes a 

transient current to flow in the external circuit; a tensile stress produces a current in the 

opposite sense, see Fig. 2.3(a). Conversely, the application of an electric field produces 

strain in the crystal, a negative strain; reversal of the field causes a positive strain, see 

Fig. 2.3(b). The changes in polarization which accompany the direct piezoelectric effect 

manifest themselves in the appearance of charges on the crystal surface and, in the case 

of a closed circuit, in a current. 
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Fig. 2.3 (a) The direct and (b) the indirect piezoelectric effects: (i) contraction; 
(ii) expansion (The broken lines indicate the original dimensions) [6] 

2.2 Piezoelectric Ceramics Coefficients and Equations  

Piezoelectric properties are described in terms of the parameters D, E, σ and ε; 

where D is the electrical displacement, also referred to in ANSYS as the electric flux 

density, E is the electric field, σ is the mechanical stress and ε is the mechanical strain. 

The electrical response according to the direct effect can be expressed in terms of strain 

by 

                                                  D = e ε, (2.1) 

where e is piezoelectric constants and relating the stress and the electric field and the 

converse effect can be expressed by 

                                                 σ = e E.  (2.2)

The equations of piezoelectric state in all terms can be written as  

 σ = CE ε - e E,  (2.3)
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 D = e ε + Kε E,  (2.4)

where CE
 is the elastic stiffness at a constant electric field, i.e. short circuit, and Kε is the 

permittivity or dielectric constant at constant strain, i.e. mechanically clamped. 

Most of the literatures use the above relationship in the following form:   

 ε = sE σ + d E, (2.5)

              D = d σ + Kσ E,      (2.6)

where sE is the elastic compliance evaluated at constant electric field, i.e. short circuit, d 

is the piezoelectric tensor relating the strain and the electric field, Kσ is the permittivity 

at constant stress, i.e. mechanically free. As stated in the first Chapter, two approaches, 

numerical and analytical will be studied in this thesis. For the numerical method 

ANSYS software has been used, and this software requires equations in the format of 

equations (2.3) and (2.4). Therefore this format will be used in this Chapter. See 

Chapter 5 for converting of equation (2.5) and (2.6) to (2.3) and (2.4), respectively. 

Another important parameter in piezoceramics is the electromechanical 

coupling coefficient, k, measuring the ability of a piezoelectric material in transforming 

mechanical energy into electrical energy, and vice versa. Piezoceramic with higher 

electromechanical coupling coefficient has more applications. In practice, the energy 

transfer electrical to mechanical (or vice versa) occurs in a complex 3-dimensional way. 

The strains caused by applied electrical or mechanical stresses have components in 

three orthogonal directions necessitating the description of the piezoelectric effect in 

terms of tensors, as outlined in the next paragraph. 
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The state of strain in a body is fully described by a second-rank tensor, a strain 

tensor, and the state of stress by a stress tensor, again of second rank. Therefore, the 

relationship between the stress and strain tensors is fourth-rank tensor. The relationship 

between the electric field and electric displacement, i.e. the permittivity, is a second-

rank tensor. So one can rewrite equation (2.3) and (2.4) in the tensorial format as 

 σij = CE
ijkl  εkl – ekijEk,, (2.7) 

 Di = eikl εkl + Kε
 ik Ek. (2.8)

Note that in tensorial notation, if an index occurs twice in any one term, summation is 

taken from 1 to 3. 

In general, a vector, formally regarded as a first-rank tensor, has three 

components, a second-rank tensor has nine components, a third-rank tensor has 27 

components and a fourth-rank tensor has 81 components.  

Not all the tensor components are independent. Between equations (2.7) and 

(2.8) there are 45 independent tensor components, 21 for the elastic modulus CE, 6 for 

the permittivity and 18 for the piezoelectric coefficient, e. Fortunately crystal symmetry 

and the choice of reference axes reduce the number even further.  

So far all the equations have been developed in full tensor notation. But when 

calculating actual properties, it is advantageous to reduce the number of suffixes as 

much as possible. This has been done by defining new symbols. As a result, the tensor 

will be reduced to matrix notation. So instead of the above tensor notation, matrix 

notation can be employed to represent equations (2.7) and (2.8) as 
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                                        ⎟⎟
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where the superscript T denotes the transpose of a matrix. The stress and strain tensors 

can be represented by the vectors of their components as 
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(2.10 and 11) 

The vector of E and tensors of D and Kε remain unchanged with respect to 

equations (2.7) and (2.8) as
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333231

232221
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(2.12, 13 and 14)

By defining new symbols, the relation between tensors CE
ijkl and eijk as stated in the 

equation (2.7) and components of matrix CE and e, CE
pq and eip (where i = 1→ 3, p and 

q = 1→ 6) will be determined by the following rule 

ij or kl 11 22 33 32 or 23 31 or 13 12 or 21 (2.15) 

p or q  1  2  3 4 5 6. 

For instance, C11= C1111, C14= 2
1  C1132, C55= 4

1  C3131, e14= 2
1  e123 and so on. Note with 

considering the multiple appearances of some elements in the original equations (2.7) 
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and (2.8), there is no need to put these fractions. According to the above rule, the matrix 

of piezoelectricity can be written as 

                           
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

363534333231

262524232221
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eeeeee
eeeeee
eeeeee

e T , 

(2.16) 

and the stiffness matrix will be 

 [ ] .

666564636261

565554535251

464544434241
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161514131211

⎟
⎟
⎟
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⎟
⎟
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⎠

⎞

⎜
⎜
⎜
⎜
⎜
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⎜
⎜
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=
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C E  

(2.17) 

The convention is to define the poling direction as the 3-axis, as illustrated in 

Fig. 2.4. The shear planes are indicated by the subscripts 4, 5 and 6 and are 

perpendicular to directions 1, 2 and 3, respectively. For example, e31 is the coefficient 

relating the field along the polar axis to the stress, or strain, perpendicular to it, while 

e33 is the corresponding coefficient for either stress, or strain, and field along the polar 

axis. Shear can only occur when a field is applied at right angles to the polar axis so that 

there is only one coefficient, e15.  

According to Neumann’s principle, the symmetry element of any physical 

property of a crystal must include the symmetry elements of the point group of the 

crystal. Application of this principle can reduce the number of independent components.  

Here the discussion is restricted to poled polycrystalline ceramics, which have 
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Fig. 2.4 Labeling of reference axes and planes for piezoceramics [6] 

 

initially isotropic. In poling direction, this isotropy is destroyed. In the direction 

perpendicular to the poling direction, material is transversely isotropic. The symmetry 

elements are an axis of rotation of infinite order in the direction of poling and an infinite 

set of planes parallel to the polar axis as reflection planes.  The symmetry of a poled 

ceramic is therefore described as ∞mm, which is equivalent to 6mm in the hexagonal 

symmetry system. According to this symmetry, 5 components for the elastic stiffness 

CE, 2 for the permittivity and 3 for the piezoelectric coefficient, e, will be independent; 

note the multiple appearance of some elements [5, 6]. With this symmetry of 

transversely isotropic piezoceramic material and considering poling direction at 3, [ ]EC , 

[ ]Te , and [ ]εK  will reduce to 
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2.3 Piezoelectric Composites 

The reciprocity in energy conversion makes piezoelectric ceramics such as PZT 

very attractive materials especially towards sensors and actuators applications. Even if 

their properties make them interesting, they are often limited, first by their weight, that 

can be a clear disadvantage for shape control and as a consequence, by their high 

specific acoustic impedance, which reduces their acoustic matching with the external 

fluid domain. Bulk piezoelectric materials have several drawbacks; hence composite 

piezoelectric materials are often a better technological solution in the case of a lot of 

applications such as ultrasonic transducers, medical imaging, sensors, actuators and 

damping. Composite technology in general sets out to combine materials in such a way 

that the properties of the composite are the optimum for a particular application. The 

property, whether mechanical, thermal, or electrical, is determined by the choice of 

component and their relative amounts and, most importantly, the connectivity, that is 

the manner in which the components are interconnected [7]. 
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Piezoceramic-polymer composites are a relatively recent addition to the range of 

composite materials and have been developed principally because their properties offer 

advantages, especially for sonar and medical ultrasonic imaging technologies, over 

those of the piezoceramics alone. For these applications, the transducer is usually 

interfacing with water or soft tissue, for example body skin. The advantages include 

relatively good acoustic matching between the transducer and the medium, improved 

electromechanical coupling coefficients and well-defined ultrasonic pulses. [6] 

The properties of composites depend on the distribution of the components. The 

concept of connectivity is useful in classifying different types of composites. The basis 

of this concept is that any phase in a composite may be self-connected in zero, one, two 

or three dimensions. There are 10 different ways of connecting the phases in a two-

phase composite, (0–0 to 3–3), each described by two numbers, the first defining how 

the active ceramic phase is connected and the second how the passive polymer phase is 

connected [1]. In this study attention is confined to the two most commonly 

encountered connectivities, 0–3 and 1–3.  

The 0-3 composite is a mixture of randomly dispersed and separated particles 

having a connectivity of zero, because the ceramic phase is not continuous in any 

direction, while the matrix surrounding them having a connectivity of three, because it 

is continuous in all three orthogonal directions.  A 1–3 composite consists of 

piezoceramic rods extending from electrode to electrode and embedded in a polymer. 

The rods have one-dimensional connectivity and the polymer again three-dimensional 

connectivity.  
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CHAPTER 3 

ESHELBY’S THEORY FOR PURE ELASTIC PROBLEM 

3.1 Background Theory 

In the physics of solids, a number of problems present themselves in which the 

uniformity of an elastic medium is disturbed by a region within it which has changed its 

form or which has elastic constants differing from those of the remainder. Some of 

these problems may be solved for a region of arbitrary shape. Others are intractable 

unless the region is some form of an ellipsoid. Fortunately, the general ellipsoid is 

versatile enough to cover a wide variety of particular cases.   

When a twin forms inside a crystal, the material is left in a state of internal 

stress since the natural change of shape of the twinned region is restrained by its 

surroundings. A similar state of strain arises if a region within the crystal alters its 

unconstrained form because of thermal expansion, martensitic transformation, 

precipitation of new phase with different unit cell, or for some other reason. These 

examples suggest the following general problem in the theory of elasticity [2].  

3.1.1 The Transformation Problem  

A region, the inclusion, in an infinite homogeneous elastic medium undergoes a 

change of shape and size which, but for the constraint imposed by its surroundings, the 

matrix, would be an arbitrary homogeneous strain. What is the elastic strain of inclusion 
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and matrix?  There are different methods to find this elastic field. One of the most 

famous one is referred as Eshelby’s Theory. 

 According to this theory, one can solve this problem with the help of a simple 

set of imaginary cutting, straining and welding operations. Cut round the region, which 

is to transform and remove it from the matrix. Allow the unconstrained transformation 

to take place. Apply surface tractions chosen so as the restore the region to its original 

form; put it back in the hole in the matrix and rejoin the material across the cut. The 

stress is now zero in the matrix and has a known constant value in the inclusion. The 

applied surface traction has become built in as a layer of body force spread over the 

interface between the matrix and the inclusion. To complete the solution, this unwanted 

layer is removed by applying an equal and opposite layer of body force; the additional 

elastic filed thus introduced is found by integration from the expression for the elastic 

field of a point force [2].    

So far nothing has been assumed about the shape of inclusion. However, 

Eshelby has showed that if it is an ellipsoid, the stress within the inclusion is uniform. 

By considering this fact, one can use the solution of the transformation problem as a 

convenient way in solving a second set of elastic problems. Superimpose on the whole 

solid a uniform stress, which just annuls the stress in the inclusion. The removal of 

unstressed inclusion to leave a hole with stress-free surface is then a mere formality, 

and we have solved the problem of perturbation of a uniform stress field by an ellipsoid 

cavity. More generally, suppose that the uniformly applied stress does not annul the 

stress in the inclusion. Then the stress and strain in the inclusion are not related by the 
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Hooke’s law of the material since part of the strain arises from a non-elastic twinning or 

other transformation with which no stress is associated. The stress and strain are, 

however, related by Hooke’s law of some hypothetical material and transformed the 

ellipsoid may be replaced by an ellipsoid of the hypothetical material which has 

suffered the same total strain, but purely elastically. So the following problem has been 

solved.     

3.2 General Theory of Eigenstrains 

Eigenstrain is a generic name given to such nonelastic strains as thermal 

expansion, phase transformation, initial strains, plastic strains and misfit strains. 

Eigenstress is a generic name given to self-equilibrated internal stresses caused by one 

or several of these eigenstrains in bodies which are free from any other external forces 

and surface constraints. The eigenstress fields are created by the incompatibility of the 

eigenstrains [8]. 

The actual strain is then the sum of eigenstrains and elastic strains. The elastic 

strain is related to eigenstress by Hooke’s law. 

When an eigenstrain is prescribed in a finite subdomain Ω in a homogenous 

material D (Fig. 3.1) and is zero in the matrix D-Ω, then Ω is called an inclusion. The 

elastic moduli of the material are assumed to be homogenous when inclusions are under 

consideration.  

If a subdomain Ω in a material D has elastic moduli different from those of the 

matrix, then Ω is called an inhomogeneity. Voids, cracks and precipitates are examples 

of inhomogeneity, which might also be called an inclusion. Applied stresses will be 
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Fig. 3.1 Ellipsoidal Inclusion Ω inside the homogenous matrix 

 

disturbed by the existence of the inhomogeneity. The disturbed stress field will be 

simulated by an eigenstress field by considering a fictitious eigenstrain ε*ij in Ω in a 

homogenous material. 

A material containing inhomogeneities is free from any stress field unless a load 

is applied. On the other hand, a material containing inclusions is subjected to an internal 

stress (eigenstress) field, even if it is free from all external tractions. 

If an inhomogeneity contains an eigenstrain, it is called an inhomogeneous 

inclusion. Most of the precipitates in alloys and martensites in phase transformation are 

inhomogeneous inclusions. Eigenstrains inside these inhomogeneous inclusions are 

misfit and phase transformation strains [8]. 

J. D. Eshelby first pointed out that the stress disturbance in an applied stress 

according to the presence of an inhomogeneity can be simulated by eigenstresses caused 

by an inclusion when eigenstrain is chosen properly. This equivalency will be called the 

equivalent inclusion method. 
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3.2.1 The Inhomogeneity Problem 

An ellipsoidal region in a solid has elastic constants differing from those of 

remainder. If, in particular, the constants are zero within the ellipsoid the case is cavity. 

How is an applied stress, uniform at large distance, disturbed by this inhomogeneity? 

The strain in the inclusion or inhomogeneity may be found explicitly in terms of 

tabulated elliptic integrals. The elastic field at large distance is also easy to determine. 

The field at intermediate points is more complex, but for many purposes, it is not 

necessary to know it. In fact, knowing only the uniform strain inside the ellipsoid, one 

can find the following items of physical or engineering interest:   

i. The elastic field far from an inclusion.  

ii. The interaction energy of the elastic filed of the inclusion with another field.  

iii. The total strain energy in the matrix and inclusion. 

iv. The interaction energy of the elastic field of the inclusion with another elastic 

field. 

v.      The elastic field far from an inhomogeneity   

vi.      All the stress and strain components at the point immediately outside the 

inhomogeneity. This solves the problem of stress concentration. 

vii.      The interaction energy of the inhomogeneity with an elastic filed. 

viii.      The change in gross elastic constants of material when a dilute dispersion of 

ellipsoidal inhomogeneities is introduced into it. 
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Problem (i) and (iv) can also be solved for an inclusion of arbitrary shape, (ii) and (iii) if 

one can evaluate the necessary integrals. Problems (v) to (viii) can only be solved for 

the ellipsoid [2].  

According to Eshelby’s solution, nowhere one has to introduce ellipsoidal 

coordinates, suitable stress functions or match stresses and displacements at an 

interface. Considering shear transformations and the disturbance of an arbitrary shear 

stress by an ellipsoidal inclusion gives an easier way to solve this problem by Eshelby.  

3.2.2 Equivalent Inclusion Method of Eshelby 

Consider an infinitely extended material with the elastic moduli Cijkl, containg 

an ellipsoidal domain Ω, Fig. 3.1, with the elastic moduli C*ijkl. The disturbance in an 

applied stress caused by the presence of this inhomogeneity will be investigated. Denote 

the applied stress at infinity by σ°ij and the corresponding strain by ε°ij. The stress 

disturbance and strain disturbance are denoted by σij and εij, respectively. The total 

stress (actual stress) is σ°ij + σij, and the total strain is ε°ij + εij.  

Hooke’s law is written as 

                         σ°ij + σij = C*ijkl (ε°kl + εkl)     in Ω,                        (3.1) 

                        σ°ij + σij = Cijkl (ε°kl + εkl)     in D-Ω,  (3.2)               

where Cijkl are the elastic moduli (constants) for the matrix and the summation 

convention for the repeated indices is employed. If an index occurs twice in any one 

term, summation is taken from 1 to 3. Moreover, the superscript "*" refers to the 

material property of the inhomogeneity. 
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The basic idea of the equivalent inclusion method of Eshelby is to substitute for 

the inhomogeneity a homogeneous inclusion with the same properties as the matrix, but 

with an eigenstrain. The eigenstrain must be determined such as to produce the same 

stresses and strains as the former inhomogeneity. 

The equivalent inclusion method is used to simulate the stress disturbance using 

the eigenstress resulting from an inclusion which occupies the space Ω. 

Consider an infinitely extended homogeneous material with elastic moduli Cijkl 

everywhere, containing a domain Ω with the eigenstrain ε*ij. The eigenstrain, ε*ij has 

been introduced here arbitrarily in order to simulate the inhomogeneity problem by the 

use of the inclusion method. Such eigenstrain is called an equivalent eigenstrain. When 

this homogeneous material is subjected to the applied strain ε°ij at infinity, the resulting 

total stress, strain, and elastic strain, respectively, are σ°ij + σij ,ε°ij + εij, and ε°ij +εij - ε*ij 

in Ω. Then, Hooke’s law yields 

                   σ°ij + σij = Cijkl (ε°kl + εkl - ε*kl )             in Ω,  (3.3) 

                  σ°ij + σij = Cijkl (ε°kl + εkl)       in D-Ω, (3.4)                                

where  

σ°ij = Cijkl ε°kl. (3.5)

The necessary and sufficient condition for the equivalency of the stress and the 

strain in the above two problems of inhomogeneity and inclusion is 

C*ijkl (ε°kl + εkl) = Cijkl (ε°kl + εkl - ε*kl)  in Ω,                                (3.6) 

The quantity εkl can be obtained as a known function of ε*kl when the 

eigenstrain problem in the homogeneous material is solved. Thus, (3.6) determines ε*kl 
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for a given ε°kl, in such a manner that the equivalency holds. After obtaining ε*kl, the 

stress σ°ij + σij can be found from (3.1) or (3.4). 

If σ°ij is a uniform stress, ε*ij is also uniform in Ω [5]. Then according to 

Eshelby’s theory 

          εij = Sijkl ε*kl , (3.7) 

where Sijkl is the fourth-order Eshelby tensor and for both isotropic and anisotropic 

materials are given in Eshelby’s article [2] or in more explicit format in Mura’s book 

[5].  Substitution of (3.7) into (3.6) leads to 

C*ijkl (ε°kl + Sklmn ε*mn) = Cijkl (ε°kl + Sklmn ε*mn  - ε*kl), (3.8) 

from which the six unknown components of the eigenstrain, ε*ij, are determined.  

Consequently the elastic field inside the ellipsoidal shape inhomogeneity can be 

calculated based on Eshelby’s theory. Through this derivation, Eshelby showed that the 

deformation of an ellipsoidal inclusion embedded in an infinite homogeneous medium, 

submitted to uniform remote loading, is homogeneous. This result allows the 

inhomogeneity problem to be dealt with.  
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CHAPTER 4 

EXTENSION OF ESHELBY’S THEORY  
FOR ELECTRICAL PROBLEM 

4.1 Introduction 

Along with the widespread application of piezocomposites, how to determine 

the effects of defects and inclusions on the properties of such materials becomes one of 

the most important problems in engineering. For this reason, studying the elastic and 

electric fields inside and outside piezoceramic part of the piezocomposite is necessary, 

where in this Chapter, the elastic and electric fields inside piezoceramic will be studied. 

In addition to the above reason, how to predict the effective constants according 

to their constituent properties becomes a very important topic in designing of these 

composites. One way of calculating the effective coefficients is based on the analysis 

the coupled elastic and electric fields inside the piezoceramic, presented in this Chapter.  

This Chapter attempts to obtain the coupled elastic and electric fields of 

piezoelectric inhomogeneity in an infinite non-piezoelectric matrix; and based on these 

result obtain the effective constants of the composite. 

It is worthwhile to summarize the previous work directly related to the present 

study. Extension of the well-known Eshelby's ellipsoidal inhomogeneity solution [2] for 

elasticity to the piezoelectric material has been done in details by Wang [3]. Wang 

studied the problem of piezoelectric inclusion in an infinite piezoelectric medium via 

the Green’s function technique to find the integral expressions for the strain and electric 
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fields, but the integral expressions are very complicated, thus the closed-form solution 

of strain and electric fields are too difficult to obtain. According to this complexity, 

conclusions drawn based on his formulation are general. He reached the result that all 

the field variables are uniform inside the inhomogeneity. With the assumption of a non-

piezoelectric material for the matrix, the formulation will be simplified comparing to 

Wang's work.  

No electro-mechanical interaction in the matrix material assumption, a non-

piezoelectric medium, has been used in many studies to obtain the coupled elastic and 

electric field of piezoelectric inhomogeneity in a matrix. Fan and Qin [4] analyzed a 

piezoelectric ellipsoidal inhomogeneity embedded in a non-piezoelectric elastic matrix 

via the equivalent inclusion method; see Section 3.2.2. They used a simple way to find 

the elastic and electric fields inside the inhomogeneity. They applied this assumption to 

partially decouple the original piezoelectric inhomogeneity problem, although the 

coupling still holds inside the inhomogeneity.  

This Chapter is following the Fan and Qin’s work, not only because it simplifies 

the way to calculate the elastic and electric fields inside the inhomogeneity but also 

because one can apply their result for any shape of inhomogeneity. Based on their 

result, the effective properties of piezoceramic composite are studied at end of this 

Chapter. 

Motivated by the above mentioned reason, a physical problem shown in Fig.4.1 

is investigated in this Chapter, where a linear piezoelectric ellipsoidal inhomogeneity, 

Ω, is embedded in a homogenous non-piezoelectric medium, D, where the far fields are 
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exposed with the uniform strain and electric field. With results of this Chapter, one can 

find the elastic and electric fields of other ellipsoidal shapes inhomogeneity, such as 

sphere ( 321 aaa == ), cylinder ( ∞→3a ), and penny shape ( 321 aaa >>= ) too.   

 

Fig. 4.1 An ellipsoidal piezoelectric inhomogeneity embedded 
 in a non-piezoelectric matrix  

 

In the next section, two inclusion problems will be considered, one is elastic and 

the other is dielectric. These two inclusion problems are linked by some eigenstrain 

which corresponds to electro-mechanical coupling terms inside the piezoelectric 

inhomogeneity. In this connection, the Eshelby's elastic solution and the Eshelby-type 

solution in a dielectric material play the important roles.  

4.2 Equivalent Inclusion Formulation 

As is discussed in Section 3.2, a sub-domain with prescribed eigenstrainis called 

an inclusion, with the same material properties as the matrix; and a subdomain with 

different material properties, mechanical and electrical, from the remaining material, 

matrix, is an inhomogeneity. The stress disturbance in an applied stress according to the 
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presence of an inhomogeneity can be simulated by an eigenstresses caused by an 

inclusion when an eigenstrain is chosen properly. This equivalency will be called the 

equivalent inclusion method [4, 8]. 

 Referred to Chapter 2, the constitutive equations for a linear piezoelectric 

material are 

                         σij = C*ijkl  εkl – e*ki j Ek in Ω, (4.1) 

                              Di = e*ikl εkl + K*ik Ek             in Ω,  (4.2) 

where σij and εkl are the stress and strain, respectively, which are the mechanical field 

variables, Di and Ek are the electric displacement and electric field. C*ijkl is the elastic 

constants, e*ijk is the piezoelectric tensor and K*ik is the permittivity tensor, 

respectively. The superscript "*" refers to the material property of the piezoelectric 

inhomogeneity. 

Bearing in mind that there is no electro-mechanical coupling in the matrix, the 

constitutive equations in the matrix are expressed as 

                                   σij = Cijkl  εkl                in D-Ω, (4.3) 

                                    Di = Kik Ek                 in D-Ω. (4.4) 

where Cijkl  and Kik are the elastic moduli tensor and dielectric permittivity of the matrix. 

Since there is no coupling between the elastic fields and the electric fields in the matrix, 

one can consider the terms e*ki jEk in equation (4.1) and e*ikl εkl in equation (4.2) as 

some kind of eigenstrains [4]. Thus, the original piezoelectric inhomogeneity problem is 

partially decoupled into the following two equivalent inclusion problems: 
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4.2.1 The Elastic Equivalent Inclusion Problem 

This is a pure elasticity problem. Assume that the far field is loaded with 

uniform stress. Equation (4.1) is modified as 

                      σ°ij + σij = C*ijkl (ε°kl +  εkl) - e*kij (E°k +  Ek), (4.5) 

or 

                      σ°ij + σij = C*ijkl (ε°kl +  εkl  - εE
kl), (4.6) 

where 

                   C*ijkl εE
kl = e*kij (E°k + Ek), (4.7) 

σ°ij and ε°kl correspond to the uniform far field loading, see equation (3.5). 

By employing the equivalent inclusion method, one can convert the 

inhomogeneity to an inclusion with a certain eigenstrain which depends on the material 

properties of the inhomogeneity and the far field loading. With this concept, equation 

(4.6) can be rewritten as 

                     σ°ij + σij = Cijkl (ε°kl +  εkl  - εE
kl - ε*kl ).  (4.8) 

Equations (4.6) and (4.8) lead to 

             C*ijkl (ε°kl + εkl - εE
kl) = Cijkl (ε°kl + εkl - εE

kl - ε*kl),  (4.9) 

where ε*kl, the eigenstrain to be determined, is what one needs to convert the 

inhomogeneity with elastic constants C*ijkl to an inclusion with elastic constants Cijkl 

under the applied uniform far field loading. From the famous Eshelby inclusion 

solution, 

                  εkl = Sklmn (εE
mn+ ε*mn) = Sklmn ε**

mn, (4.10) 
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where Sklmn is called the Eshelby tensor which was defined in Eshelby's original paper 

[2] and also in more details [8]. The total eigenstrain ε**
kl is then determined by 

          C*ijkl (ε°kl + Sklmn ε**
mn - εE

kl) = Cijkl (ε°kl + Sklmn ε**
mn - ε**kl), (4.11) 

It is apparent that the total eigenstrain, ε**kl, is not only a function of ε°kl but also a 

function of εE
kl which is caused by the electro-mechanical coupling of the piezoelectric 

material [4].  

4.2.2 The Equivalent Inclusion Problem in a Dielectric Material 

To find the electric field in a dielectric material, the above equivalent inclusion 

approach is repeated as follows. Let us rewrite equation (4.2) as 

                              D°i + Di = K*ik (E°k + Ek - Eεk),  (4.12) 

where 

                           - K*ik E εk= e*ikl (εkl + ε°kl).    (4.13) 

D°i and E°k are the known far fields, and Eεk is caused by the mechanical-electrical 

coupling. Furthermore, in terms of the matrix permittivity, Kik, based on equivalent 

method, the above equation leads to 

            D°i + Di = Kik (E°k + Ek - E εk  - E*k), (4.14) 

Equations (4.12) and (4.14) lead to 

                K*ik (E°k + Ek  - Eεk) = Kik (E°k + Ek  - E εk  - E*k).  (4.15) 

By defining a total eigen-electric-field, E**k = E εk + E*k, the electric field disturbance 

is written as  

                           Ek = skl E**l,   (4.16) 
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by using the Green’s function technique and extending Eshelby's formulation to electric 

field equations, skl, electrostatic Eshelby’s tensor, can be defined. One can find the value 

of this tensor in Chapter 6 for sphere and circular cylinder inhomogeneities. 

Then, the equation for E**k is read as 

  K*ik (E°k + skl E**l - Eεk) = Kik (E°k + skl E**l  - E**k). (4.17) 

Solving equation (3.17) for E**k, one will have 

E**l = [(Kim - K*im) sml - Kil ]-1[(K*ik  - Kik) E°k - K*ik  Eεk].                             (4.18) 

It indicates that the electric field is proportional to the far field load E°k and the electro-

mechanical interaction Eεk. 

It is noted that the assumption of the matrix being non-piezoelectric media 

decoupled the general piezoelectric problem into two inhomogeneity problems. They 

are dealt with separately by the equivalent inclusion method with interaction terms, εE
kl 

and Eεk. Realizing that εE
kl and Eεk are given by equations (4.7) and (4.13), respectively, 

more explicit expressions of equations (4.11) and (4.18) are 

C*ijkl (ε°kl + Sklmn ε**
mn) - e*ki j skl E**l - e*kij E°k  = Cijkl (ε°kl + Sklmn ε**

mn - ε**kl),       (4.19)         

E**l = [(Kim  - K*im) sml - Kil ]-1[(K*ik  - Kik)E°k + e*imn Smnp ε**
pq+ e*ikl ε°kl ].             (4.20) 

Substituting equation (4.20) into (4.19), the total eigenstrain ε**kl can be obtained 

explicitly. Furthermore, equations (4.10) and (4.20), with known ε**kl, will provide the 

strain, ε°kl+ εkl, and electric field, E°k + Ek, inside the piezoelectric inhomogeneity [4]. 

Since Sijkl and smn have been studied extensively for elastic and dielectric media, there 

are no new integrals introduced in the present formulation. In fact, for some common 

shapes of the ellipsoidal inhomogeneity, such as spherical, cylindrical and penny shaped 
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sensors, there are closed form Eshelby tensors available for some anisotropic materials 

as well as for isotropic materials that will be studied in Chapter 6. Based on the result of 

this section, the effective properties of the piezoceramic composite can be found. This 

will be discussed in more details in the next section. 

4.3 Analytical Approach to Calculate Effective Material 
 Coefficient of Piezoecramic Composite 

As mentioned previously, predicting the effective constants of piezoceramic 

composite becomes a very important topic in designing of these composites, and one 

solution of these problems relies on the analysis of the coupled elastic field and electric 

field of a typical piezoelectric inhomogeneity in a non-piezoelectric medium which has 

been done in the previous section. 

With known strain and electric fields inside an inhomogeneity, the effective 

elastic, piezoelectric and dielectric constants of piezoelectric composites can be 

calculated. The effective elastic, piezoelectric and dielectric constants of piezoelectric 

composites Ceff
ijkl, eeff

kij, Keff
ik are defined by the following equations: 

<σij> = Ceff
ijkl <εkl>  -  eeff

kij <Ek>,  (4.21) 

                                  <Di> = eeff
ikl <εkl> + Keff

ik <Ek>,  (4.22) 

where < > denotes the volume average. Referring to Wang’s study [3] about calculating 

the effective properties of piezoelectric composite, the equation (4.21) and (4.22) can be 

written as 

 <σij> = Cijkl <εkl> - ekij <Ek> +  vf  C1
ijkl  εI

kl - vf  e1
ki jEI

k, (4.23) 

       <Di> = eikl <εkl> + Kik <Ek> +  vf  e1
ikl εI

kl + vf  K1
ik EI

k, (4.24) 

where vf  is the volume fraction of inhomogeneity in the piezocomposite and 
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                            C1
ijkl = C*ijk l -  Cijkl, (4.25) 

                         e1
kij = e*kij - ekij, (4.26) 

                         K1
ik = K*

ik - Kik, (4.27) 

and 

                       εI
kl = εkl + ε ° kl,  (4.28) 

                      EI
k = Ek + E ° k. (4.29) 

It is noted that, Wang has assumed that the matrix is piezoelectric, in this study the 

medium is non-piezoelectric, so one can assume zero for the piezoelectric constants of 

the matrix, e, in the above equations. Moreover according to the Gauss theorem, the 

average value for the stress, strain and electric fields, are equal to applied value of these 

parameters. This makes it easy to find the effective constants of piezoceramic 

composite. One can find an example of this solution for different inhomogeneity shapes 

and volume fraction in Chapter 6.  

Although all the effective constants of piezoelectric composite can be obtained 

in this way, one has to bear in mind that all these analyses have neglected the 

interactions between inhomogeneities. To obtain a more accurate result, one can use 

some approximate methods, such as the self-consistent scheme, to consider the 

interaction [3, 9]. 
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CHAPTER 5 

FINITE ELEMENT MODELING 

5.1 Introduction 

Finite element analysis (FEA) is a numerical method that generates approximate 

solutions to engineering problems which are often posed in terms of differential 

equations. The method partitions a structure into simply shaped portions called finite 

elements, generates an approximation solution for the variable of interest within each 

element, then combines the approximate solutions. The assemblage of solutions 

describes the variables of interest for the entire structure.   

FEA is used in a variety of engineering applications. Although the first 

development was for structural analysis, it now solves problems in solid mechanics, 

fluid mechanics, heat transfer, acoustics and electronics. Using piezoelectric materials is 

one of the electronic applications in FEA. It can be used to determine full parameters of 

piezoelectric materials. 

In this Chapter, a quick review for modeling in FEA is provided. But the main 

focus of this Chapter is modeling piezoelectricity with ANSYS, powerful FEA 

software. Although there are some other powerful FEA programs to model 

piezoelectricity, the availability of ANSYS dictates the choice of program to be used for 

the current work. 
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5.2 Summery of Finite Element Modeling  

Using a FEA for solving a problem begins with an essential question, is FEA 

required to solve this problem? If analytical and experimental solutions are not an 

option to find the solution, FEA can be used.  FEA starts with anticipating a physical 

behavior of a problem, and planning how the results will be checked to know if they are 

reasonable. According to the conditions of the problem, an initial FE model will be 

planned. Now this mode can be used in three FEA phases.  

The finite element process is generally divided into the following three distinct 

phases: 

1) Preprocessing, to build the FEM model. 

2) Solving, to solve the equations. 

3) Postprocessing, to display and evaluate the results. 

In the first phase, a proper kind of element, materials properties, model and mesh of the 

shape, and boundary conditions will be set. It begins by developing a detailed mesh plan 

that includes the degree of refinement desired in the mesh at all critical locations. The 

analyst gathers and assembles all the required data and input information for the 

preprocessor. At this point, the overall geometry of the model section is input with 

specification of the mesh generation. The actual mesh generation follows, and if the 

mesh is considered acceptable, the boundary conditions for the enforced displacements 

are applied. Also, within the preprocessor the load case or cases are input in preparation 

for the solution runs. These steps complete the preparation of the first model and it is 

ready to run [10]. 
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Run the analysis program and at the run completion, assuming no errors have 

been reported, check the output listing file. Access the program’s postprocessor, prepare 

a deformed shape displacement plot and study it for agreement with applied boundary 

conditions and expected deformations and other results. Examine the stress and other 

output results through the graphic displays and compare these to boundary conditions 

values and engineering calculations that were made with approximate equations. These 

steps provide a good check that the first model was done correctly and approximates the 

actual behavior, so study of all the results provides further insight into the wanted 

behaviors.  

Evaluation of the results from this first model will show where to refine the 

model to begin the convergence to an accurate solution. Regions within the model with 

high stress values and rapid variations as well as regions of low stress are selected for 

refinement. Reducing the element size in these regions provides refinement. 

Convergence of results is very important to assure the validity of the analysis. 

A serious mistake would be made if only one model was analyzed with no 

further refinements. Using a finite element program is no guarantee that the results will 

be accurate although the graphic display may be very convincing. Accurate analyses 

come about by applying good judgment and good technique to the practice of finite 

element analysis [10].  

Running the second analysis with the refined mesh provides a second solution 

that may be compared with the first solution to check convergence. Examine the 

element to element variations for reasonable continuity in the second analysis. Compare 
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the relative values between the two solutions, and then project or extrapolate to better 

estimate of the actual solution. Judgment of these comparisons helps decide on further 

refinements needed to reach the desired convergence. 

Rate the final analysis by estimating the accuracy achieved and determining if 

the important criteria identified at the beginning of the analysis were satisfied. Repeat 

this cycle until the solution validity is convinced.  

In most FEA software, all the above steps can be found. As an example, 

ANSYS will be studied in more details in next section. 

5.3 ANSYS 

The ANSYS program has been in commercial use since the 1970s, and has been 

used extensively in the aerospace, automotive, construction, electronic, manufacturing, 

nuclear, plastics, oil, and steel industries. In addition, many consulting firms and 

hundreds of universities use ANYS for analysis, research, and educational use. ANSYS 

is recognized worldwide as one of the most widely used and capable programs of its 

type.  

The ANSYS computer program is commercial finite element software with the 

ability to analyze a wide range of different problems. It has excellent pre-processing 

facilities and is very easy to use. The pre-processing, solution and post-processing 

drivers are all contained within the same graphical user interface. The analysis 

capabilities of ANSYS include the ability to solve problems in many engineering fields. 

As ANSYS has been developed, other special capabilities, such as piezoelectricity and 

couple filed analysis and design optimization has been added to the program. These 
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capabilities contribute further to making ANSYS a multipurpose analysis toll to varied 

engineering disciplines [11]. 

The main purpose of this section is to solve a piezoelectric problem in ANSYS, 

as one of the couple field effect. 

 5.3.1 Piezoelectric Analysis in ANSYS 

A coupled-field analysis is an analysis that takes into account the interaction, 

coupling, between two or more disciplines, fields, of engineering. A piezoelectric 

analysis, for example, handles the interaction between the structural and electric fields.   

As was discussed in Chapter 2, applying a voltage to a piezoelectric material 

creates a displacement, and vibrating a piezoelectric material generates a voltage. 

Possible piezoelectric analysis types, available in the ANSYS/Multiphysics or 

ANSYS/Mechanical products only, are static, modal, harmonic, and transient [11]. 

 Modeling piezoelectricity in ANSYS is almost the same as modeling a simple 

structural problem. Just some of the steps are different and one needs to follow them to 

be able to model this kid of materials. The following sections will provide most of these 

differences. The complete modeling of one piezocomposite will be provided in the next 

Chapter. 

5.3.1.1 Piezoelectric Element Selection 

The first important point in piezoelectricity modeling is choosing a right 

element from couple field elements.  PLANE13, PLANE223, SOLID5, SOLID98, 

SOLID226 and SOLID227 are couple field elements and have the ability to be used in 

piezoelectricity modeling, but this ability should be activated in these elements. The 
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KEYOPT (1) settings, or K1 in the interactive mode, activate the piezoelectric degrees 

of freedom, displacements and voltage. For PLANE223, SOLID226 and SOLID227, 

KEYOPT (1) should set to 1001 or in the interactive mode, K1 should set to 

piezoelectric. For SOLID5 and SOLID98 KEYOPT (1) should set to 3 or in the 

interactive mode, K1 should set to UX UY UZ VOLT. Finally, for PLANE13 KEYOPT 

(1) should set to 7 or in the interactive mode, K1 should set to UX UY VOLT. 

Remember, PLANE13, SOLID5, and SOLID98 are available in ANSYS Multiphysics, 

ANSYS Mechanical, ANSYS PrepPost, and ANSYS ED but PLANE223, SOLID226, and 

SOLID227 are available in ANSYS Multiphysics, ANSYS PrepPost, and ANSYS ED [11]. 

ANSYS manual contains a complete library of detailed ANSYS element 

descriptions, arranged in order by element number. It is the definitive reference for 

element documentation. One can use this reference to choose a right piezoelectric 

element from the above list for the modeling. 

5.3.1.2 Piezoelectric Material’s Properties  

As one can find from Chapter 3, a piezoelectric model requires permittivity, or 

dielectric constants, the piezoelectric matrix, and the elastic coefficient matrix to be 

specified as material properties.  

Because of the difference between manufacturer-supplied data and the format 

required by ANSYS, conversion of material properties of piezoelectric ceramics has 

caused many users confusion. This section tries to clarify this point and to provide 

information on conversion routines. 
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As mentioned in Chapter 2, the constitutive relationships usually given by 

manufacturers or published data/reports are in the following form  

                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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EKd
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D T

E σε
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, 
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where σ and ε are the stress and strain vectors, six components are arranged in order of 

x, y, z, yz, xz, xy. D and E are the electric displacement and the electric field vectors, 

three components in order of x, y, z.  

On the other hand, ANSYS requires data in the following form  
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 (5.2)

where six components of σ and ε are arranged in order of x, y, z, xy, yz, xz.  

In order to convert the manufacturer’s data presented in the form of equation 

(5.1) to the ANSYS notation presented in the form of equation (5.2), equation (5.1) 

needs to be based on stress rather than strain. The following manipulations can be 

performed 

[ ] [ ] [ ] [ ] [ ][ ]Edss EE 11 −−
−= εσ , (5.3)

                               [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }[ ]EdsdKsdD ETET 11 −−
−+= σε .                             (5.4) 

Moreover 

                                                [ ] [ ] 1−
= EE sC , (5.5) 

[ ] [ ] [ ] [ ] [ ]dsdKK ET 1−
−= σε , (5.6) 

[ ] [ ] [ ] [ ] [ ] 11 −−
== ETE sddse .  (5.7) 
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Note that the manufacturer’s data has a mechanical vector in the form 

[ ]xyxzyzzyx  whereas ANSYS’s mechanical vector is in the form 

[ ]xzyzxyzyx . One needs to transform the manufacturer’s data to the 

ANSYS input order by switching row and column data for the shear terms. Row and 

column 4 need to be shifted to 5, and similarly, 5 to 6 and 6 to 4 [maghale tabdyl].  

According to the symmetry of transversely isotropic piezoceramic material and 

poling direction as 3, one can “map” manufacturer data, equations (2.22) and (2.23), to 

ANSYS data as 

[ ] [ ]
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Moreover, unlike equations in Chapter 2, ANSYS uses the relative permittivity Kr. In 

order to find this value, one needs to divide the real permittivity used in Chapter 2 by 

the permittivity of the vacuum K0,  
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0K
KK r = ,                                                           (5.10) 

where K0 = 8.854×10-12 C/Vm. 

Other steps in solving piezoelectric problems are the same as other modeling in 

ANSYS. For more information about modeling piezoelectricity in ANSYS, one can find 

one example of this modeling in the next Chapter.  
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CHAPTER 6 

SOLUTIONS AND RESULTS 

Piezoelectric composites have been developed in an attempt to improve the 

properties of monolithic piezoelectric materials, such as lead zirconate titanate (PZT), 

and are of interest for applications such as acoustic transducer, medical imaging and 

non-destructive evaluation. These materials consist of an active piezoelectric phase and 

a passive phase, usually a polymer. 

As discussed in previous Chapters, finding the elastic and electric fields inside 

the piezoceramic phase as well as the effective properties of pizocomposites is essential 

in designing these composites and predicting their behaviors. Two different ways of 

finding these parameters have been investigated and compared in this thesis, they are an 

analytical and a numerical approach. In the analytical solution, the coupled elastic and 

electric fields inside a piezoelectric inhomogeneity embedded in a non-piezoelectric 

medium can be found based on Eshelby’s theory and its extension to the electric field. 

Based on these elastic and electric fields, the effective properties of the piezocomposite 

can be found as well.  In the numeric approach, ANSYS, commercial finite element 

software, has been used to model a piezocomposite. Based on this model, the elastic and 

electric fields can be located inside the piezoceramic phase and also the effective 

properties of the piezocomposite can be calculated. 



 

 44

 Not only the elastic and electric fields as well as the effective coefficients in 

different approaches have been studied in this thesis but also the effect of both active 

and passive phases on the overall performance of the piezocomposite materials has been 

investigated.   

In case of the active phase, two piezoceramics with different material properties 

for two geometric configurations in various volume fractions will be studied. In the 

analytical solution, these two geometric configurations, sphere and circular cylinder, 

will be studied in details. But in the numerical solution, only the sphere configuration 

will be studied in details. In comparing two approaches, the result can be extended to a 

circular cylinder configuration.  

Despite the quite crucial function of the polymer in a piezocomposite, there has 

been less work focusing on the effect of this polymeric phase on the elastic and electric 

fields inside the piezoceramic inhomogeneity as well as the effective properties of the 

composite. When a composite is used in applications such as an ultrasonic transducer 

with PZT piezoceramic, the polymer must effectively couple the ultrasonic energy from 

a high-acoustic-impedance PZT to a low-acoustic-impedance load. Similarly, in the 

receiving mode, an ultrasonic energy incident on the composite must be effectively 

transferred to the PZT. The properties of the polymer will determine the interaction 

among the neighboring PZT phases and the dynamic behavior of the whole composite 

thereafter. So in case of the passive phase, two kinds of polymers in various volume 

fractions will be studied. 

 



 

 45

6.1 Analytical Solution 

In order to calculate the elastic and electric fields inside an inhomogeneity, one 

needs to calculate εkl and Ek, with considering ε°kl and E°k as known quantities, see 

Sections 4.2.1 and 4.2.1. According to equations (4.10) and (4.16), ε**kl and E**l need 

to be defined in order to calculate εkl and Ek. The eigen-electric-field E**l can be found 

from equations (4.20) and with substituting equation (4.20) into (4.19), the total 

eigenstrain ε**kl can be obtained explicitly. By considering the rule, (2.19), in inverting 

a tensor to a matrix, (4.19) and (4.20) can be rewritten in matrix notation as 

    [C*] {[ε°] + [S] [ε**]}- [e*] [s] [E**]-[e*] [E°]  = [C] {[ε°]+ [S] [ε**] -[ε**]},      (6.1) 

[E**] = {[K - K*] [s] - [K]}-1{[K*  - K] [E°] + [e*] [S] [ε**] + [e*] [ε°]},       (6.2)        

and with substituting equation (6.2) into (6.1), [ε**] can be written as  

[ ] [ ] [ ] [ ] [ ] [ ]{ },** °+°= ENMG εε                                          (6.3) 

where 

                          [ ] [ ] [ ] [ ] [ ] [ ]{ } [ ] [ ]{ } ,***
1−

+−−= CSeHseCCG T                         (6.4) 

[ ] [ ] [ ] [ ]{ } ,*
1−

−−= KsKKH                                         (6.5) 

[ ] [ ] [ ] [ ] [ ] [ ]TeHseCCM *** +−= ,                                   (6.6) 

                  [ ] [ ] [ ] [ ] [ ] [ ].*** KKHseeN −+= .                                   (6.7) 

All the matrices on the right hand side of the equation (6.3) except [S] and [s] are known 

from the materials properties of piezoelectric inhomogeneity and non-piezoelectric 

matrix and the value of applied strain and electric field. By substituting equation (6.3) 

into (6.2), [E**] can be defined as  
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[ ] [ ] [ ] [ ] [ ] [ ]{ },** °+°= EPOHE ε                                        (6.8) 

where 

[ ] [ ] [ ] [ ] [ ] [ ]TT eMGSeO ** += ,                                       (6.9) 

[ ] [ ] [ ] [ ] [ ] [ ],** NGSeKKP T+−=                                   (6.10) 

According to equations (6.3) and (6.8), [ε**] and [E**] are dependent on both the 

applied strain, [ε°], and the applied electric field, [E°]. When stress is applied to a 

piezocomposite, [ε°] can be found as 

 [ε°] = [C]-1[σ°].                                                (6.11) 

According to equations (4.10) and (4.16), [ε] and [E] can be defined as 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ },°+°= ENMGS εε                                  (6.12) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ },°+°= EPOHsE ε                                   (6.13) 

where [ε] and [E] are also dependent on both the applied strain and the applied electric 

field. With known [ε] and [E], the elastic and electric fields inside the inhomogeneity 

can be written as: 

Elastic fields inside the inhomogeneity 

Strain = [ ] [ ]°+ εε ,                                                 (6.14) 

according to equations (4.6) and (4.9),    

 Stress = [ ] [ ] [ ] [ ] [ ] [ ]{ }**εεεσσ −+°=°+ C ,                        (6.15)                           

Electric fields inside the inhomogeneity 

Electrical filed = [ ] [ ]°+ EE ,                                   (6.16) 
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according to equation (4.12) and (4.15),  

Electric displacement = [ ] [ ] [ ] [ ] [ ] [ ]{ }**EEEKDD −+°=°+ .        (6.17) 

For some common shapes of the ellipsoidal inhomogeneity, see Fig. 6.1, the 

closed form of the Eshelby matrices are available for some isotropic materials as well as 

for anisotropic media. For special shapes of inhomogeneities, such as spherical, 

cylindrical and penny shaped sensors,  [S] can be found from the Eshelby’s original 

paper [2] or in more explicitly in Mura’s book [8]. This matrix is dependent on 

Poisson’s ratio of the matrix and shape of the inhomogeneity. For the same shapes, the 

electrostatic Eshelby’s matrix [s] can be defined from Fan and Qin’s paper [4] and this 

matrix is only dependent on the shape of the inhomogeneity.   

 

       Fig. 6.1 An ellipsoidal inhomogeneity with principal half axes a1, a2, and a3 
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According to the symmetry of the spherical inhomogeneity in three directions 

and the circular cylindrical inhomogeneity in two directions, the dependency on the 

shape has been canceled in [S] and [s] matrices above. This cancellation can reduce the 

complexity of the main calculations for the inside’s fields as well as effective 

coefficients. Therefore, these two shapes have been used to be analyzed in this Section.   

For a sphere and a circular cylinder, [S] and [s] can be summarized from those 

references as: 

Sphere, a1 = a2 = a3 = a   
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where  

)1(15
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ν
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−

=A ,                                                         (6.19) 

and  

,
)1(15
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=B                                                          (6.20) 

where ν is the Poisson’s ratio of the non-piezoelectric matrix, 
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Circular cylinder, a1 = a2 = a and a3 → ∞ 
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where  

)1(2
1
ν−

=C ,                                                         (6.23) 

and  

,
2
21 ν−

=D                                                            (6.24) 

where ν is the Poisson’s ratio of the non-piezoelectric matrix, 
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As mentioned in Section 4.3, with the known strain field, ε°kl+ εkl, and the 

electric field, E°k + Ek, inside an inhomogeneity the effective elastic, piezoelectric and 

dielectric constants of piezoelectric composites can be calculated. From equations 

(4.21) through (4.29) in Section 4.3, the effective constants of piezocomposite can be 
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defined. By assuming a non-piezoelectric matrix and considering the Gauss theorem as 

well as equation (2.19), equations (4.1), (4.22), (4.23) and (4.24) can be rewritten as 

[σ°] = [Ceff] [ε°] - [eeff] [E°],                                          (6.26) 

       [D°] =   [eeff] [ε°] + [Keff] [E°],                                        (6.27) 

[σ°] = [C] [ε°] + vf  [C* - C] [ε°+ ε] - vf  [e*] [E°+ E],                  (6.28) 

[D°] =   [K] [E°] + vf  [e*] [ε°+ ε]+ vf  [K* - K] [E°+ E].                  (6.29) 

Now, comparing equations (6.26) and (6.28) together, and also (6.27) and (6.29) 

together, with considering [ε] and [E] are both dependent on applied strain [ε°] and 

applied electric field [E°], can define the effective constants as 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]OHseMGSCCCCCC fff
eff *** ννν −−+−+= ,     (6.30) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]OHsKKMGSeee f
T

f
T

f
Teff −++= *** ννν ,       (6.31) 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ].*** PHsKKKKNGSeKK ff
T

f
eff −+−++= ννν    (6.32) 

Equations (6.30) through (6.32) show that the effective properties of composites are 

only dependent on the materials properties of different phases of the composite as well 

as their volume fractions but are independent of the applied conditions.  

With some proper software such as MATLAB, the calculations above can be 

programmed and inside’s fields and the effective properties can be solved 

straightforward for a specific piezocomposite material. 

6.1.1 Results of Analytical Solution  

The configuration shown in Fig. 6.2 is used to be analyzed in this Section. A 

piezocomposite with an infinite polymer matrix in all directions and elliptical 
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inhomogeneities, randomly distributed in the matrix, is subjected to a far-field 

hydrostatic stress and a zero far-electric field. One of the main applications of the 

piezocompoiste is in water or as a biomaterial inside a body; this is the reason to choose 

hydrostatic state of applied stress in this section. The zero electric field is selected to 

facilitate the ANSYS modeling in the next Section.    

 

Fig. 6.2 Piezocomposite with infinite polymer matrix and an elliptical 
  inhomogeneity, subjected to a far field hydrostatic stress 

 and zero far electric field, σσσσ === zyx  
 

As an example, two kinds of piezoelectric materials and two kinds of polymers 

are selected for studying in this Section for two different shapes of inhomogeneity. As a 

result of this selection, eight different piezocomposites can be produced and analyzed.  

 For a piezoceramic, the class of PZT with a high electromechanical coupling 

factor, k, is conventionally used in the present study.  In case of polymers, two 

commercial available polymers with electronic applications, Epoxy and Unsaturated 
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Polyester Resin (UPR), are selected. One can find the properties of these materials in 

Table 6.1 and Table 6.2.  

Table 6.1 Material properties of piezoceramic, Cij (1010 N/m2), 
 ekl (C/m2), Kij (10—10 C/Vm) [11, 12] 

 
Piezoceramic C11 C33 C44 C12 C13 e13 e33 e15 K11 K33 

PZT4 13.2 11.5 2.60 7.1 7.3 -4.1 14.1 10.5 71.24 58.41

PZT6 16.8 16.3 2.71 6.0 6.0 -0.9 7.1 4.6 36.00 34.00

 

According to the symmetry described in Chapter 2 for transversely isotropic 

piezoceramics, only 5 components for the elastic stiffness C, 2 for the permittivity K 

and 3 for the piezoelectric coefficient e, will be independent as shown in Table 6.1. 

Table 6.2 Material properties of polymer matrix, Young's modulus E (GPa), 
Poisson’s ratioν, K (10—10 C/Vm) [12, 13] 

 
Polymer E ν K 
Epoxy 3.4 0.35 0.452

UPR 4.7 0.35 0.328

 

For isotropic material such as polymers, the stiffness and the permittivity matrices can 

be calculated as 
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In this section, MATLAB has been used to program all the calculations for different 

piezocomposites in different volume fractions of the piezoceramic. Based on these 

calculations, the elastic and electric fields inside the inhomogeneity as well as the 

effective properties of the piezocomposite can be solved straightforward for the above 

applied conditions. Table 6.3 and Table 6.4 show the value of elastic and electric fields 

inside the different shapes of inhomogeneity. According to equations (6.14) to (6.17), 

the elastic and electric fields inside the inhomogeneity are independent of volume 

fraction of the piezoceramic, so the values in Table 6.3 and Table 6.4 are valid for any 

volume fraction.   In these Tables, E stands for Epoxy, U for UPR, 4 for PZT4, 6 for 

PZT6, S for spherical and C for circular cylindrical inhomogeneity.  All these 

calculations are based on Pa25321 =°=°=° σσσ and E°i = 0 as the applied conditions. 
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Table 6.3 Elastic and electric fields inside the spherical inhomogeneity  
ε (10-9), σ (Pa), E (V/m), D (C/m2) 

Piezocomposite [ε] [σ] [E] [D] 
 

E4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0

1266.0
1316.0
1316.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
4666.35
4519.35
4519.35  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

− 1208.0
0
0

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

 

 

E6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0

1177.0
1254.0
1254.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
5074.35
4850.35
4850.35  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

− 1795.0
0
0

 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

 

 

U4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0

1257.0
1306.0
1306.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
2262.35
2062.35
2062.35  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

− 1201.0
0
0

 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

 

 

U6 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0

1170.0
1245.0
1245.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
2819.35
2513.35
2513.35  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

− 1784.0
0
0

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0
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Table 6.4 Elastic and electric fields inside the circular cylindrical inhomogeneity  
                                       ε (10-9), σ (Pa), E (V/m), D (10-7C/m2) 

Piezocomposite [ε] [σ] [E] [D] 
 

E4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

0
0
0
206.2
635.0
635.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
9881.160
1544.32
1544.32

 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3631.0
0
0

 

 

E6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

0
0
0
206.2
442.0
442.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
5666.360

6677.31
6677.31  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1646.0
0
0

 

 

U4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

0
0
0
596.1
416.0
416.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
7481.122
0045.32
0045.32

 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2591.0
0
0

 

 

U6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

0
0
0
596.1
282.0
282.0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
3123.226

5360.31
5360.31  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1184.0
0
0
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The effective constants are calculated for different piezocomposites and volume 

fractions of the piezoceramic. The analytical solution is based on the assumption of no 

interaction among the inhomogeneities. This assumption is valid for real composites 

with small volume fractions. With an increase of the volume fraction, the analytical 

solution is no longer accurate. Therefore, only small volume fractions of the 

piezoceramic have been considered in this Chapter. Tables 6.5 to 6.8 show the complete 

matrices of these values at a constant volume fraction of the piezoceramics, νf = 0.1. For 

other volume fractions, only the independent and non-zero components have been 

shown in the Appendix A.  

Table 6.5 Permittivity matrix for piezocomposite 
[Keff] (10-10 C/Vm) 

Piezocomposite [Keff]S [Keff]C 

 

E4 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

4970.000
04970.00
004970.0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

411.600
0542.00
00542.0

 

 

U4 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3607.000
03607.00
003607.0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

299.600
0393.00
00393.0

 

 

E6 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

4967.000
04967.00
004967.0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

814.300
0540.00
00540.0

 

 

U6 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3605.000
03605.00
003605.0

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

702.300
0393.00
00393.0
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Table 6.6 Effective piezoelectric matrix for piezocomposite  
[eeff] (C/m2) 

Piezocomposite [eeff]S [eeff]C 

 

E4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000015.0
00015.00

0007.000
0002.000
0002.000

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000027.0
00027.00

6895.100
0218.000
0218.000

 

 

U4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000014.0
00014.00

0007.000
0002.000
0002.000

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000026.0
00026.00

6838.100
0300.000
0300.000

 

E6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000015.0
00015.00

0004.000
00003.000
00003.000

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000028.0
00028.00

7546.000
0043.000
0043.000

 

 

U6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000014.0
00014.00

0004.000
00003.000
00003.000

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−
−

000
000027.0
00027.00

7535.000
0059.000
0059.000
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Table 6.7 Effective stiffness matrix for piezocomposite  
[Ceff] (GPa) 

Piezocomposite [Ceff]S

 

 

E4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

3037.300000
03710.30000
003710.3000
0003120.62814.32814.3
0002814.33049.62873.3
0002814.32873.33049.6

 

 

 

U4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

4496.400000
05613.40000
005613.4000
0006978.85252.45252.4
0005252.46845.85362.4
0005252.45362.46845.8

 

 

 

E6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

4190.300000
03220.30000
003220.3000
0003202.62801.32801.3
0002801.33179.62805.3
0002801.32805.33179.6

 

 

 

U6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

6432.400000
04796.40000
004796.4000
0007130.85230.45230.4
0005230.47087.85237.4
0005230.45237.47087.8
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Table 6.8 Effective stiffness matrix for piezocomposite  
[Ceff]  (GPa) 

Piezocomposite [Ceff]C

 

 

E4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

152.300000
0319.30000
00319.3000
000634.11310.3310.3
000310.3165.6264.3
000310.3264.3165.6

 

 

 

U4 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

279.400000
0500.40000
00500.4000
000686.13565.4565.4
000565.4500.8503.4
000565.4503.4500.8

 

 

 

E6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

225.300000
0275.30000
00275.3000
000386.18208.3208.3
000208.3174.6261.3
000208.3261.3174.6

 

 

 

U6 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

406.400000
0427.40000
00427.4000
000385.20426.4426.4
000426.4517.8499.4
000426.4499.4517.8
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6.2 Numerical Solution 

For the numeric approach, ANSYS, commercial finite element software, has 

been used to find the elastic and electric fields inside the inhomogeneity as well as the 

effective properties of piezocomposite.  

Although with reviewing Chapter 5, one can model piezoelectricity in ANSYS, 

this modeling has been reviewed in more details for the piezocomposites in the next 

Section.  

6.2.1 Modeling a Piezocomposite in ANSYS 

The problem configuration is the same as in Fig. 6.2. Unlike the analytical 

solution, the matrix in the ANSYS model is no longer infinite. As a result, a 

piezocomposite with a finite polymer matrix and elliptical inhomogeneities is subjected 

to a hydrostatic stress and zero electric field.  

With 2-D modeling and selecting plane strain option for the elements, the 

infinite matrix assumption can be modeled the same as analytical solution. However 

finding the elastic and electric fields inside the inhomogeneity in all directions as well 

as all the effective properties needs three dimensional finite element modeling. So finite 

matrix will bring the first reason for the difference between the results of ANSYS and 

analytical solution. This difference is independency of the elastic and electric fields 

inside the inhomogeneity to volume fraction of inhomogeneity in the case of analytical 

solution and dependency in the case of ANSYS model.   
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As an example, the same piezoelectric and polymer material as in Section 6.1.1 

are selected to study in this Section for only one geometric configuration of 

inhomogeneity, i.e. sphere. As a result of this selection, four different piezocomposite 

can be modeled and analyzed.  

In order to model the piezocomposite, the actual piezocomposite, with randomly 

distributed inhomogeneities as used in Section 6.1, is replaced by a repeated spherical 

array of piezoceramic embedded in a homogeneous matrix material of finite dimensions 

as shown in Fig. 6.3.  The regular inhomogeneity array is then reduced to the smallest, 

fully informative, repeating segment as shown in Fig. 6.3 in the dashed square. This 

repeating segment is called a unit cell or a representative volume element. In order to 

change the volume fraction in the unit cell model, one can change the number of the 

inhomogeneities in constant volume of the unit cell, which will change the square 

arrangement of the piezoceramic, as shown in Fig. 6.3, to hexagonal or other 

arrangements or one can change the geometry of the inhomogeneities.  

 

 

Fig. 6.3 2-D image of unit cell model, square arrangement of sphere piezoceramic  
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In this section, only one unit cell with just one inhomogeneity is studied. 

Different volume fractions of the piezoceramic are produced by changing the geometry 

of the inhomogeneity for the unit length of the cell. 

In ANSYS or other FEM software, the first step before modeling a problem is to 

simplify the problem. Taking the advantages of the symmetry in the above problem, a 

spherical inhomogeneity embedded at the center of the cell, only one eighth of the unit 

cell is enough for modeling, see Fig. 6.4. By considering this octant of the problem, the 

boundary conditions need to be adjusted as shown in Fig 6.5. Now this new problem 

can be modeled in ANSYS with less complication than the original problem. Start the 

modeling with preprocessing it. It means to select the proper elements, input the 

materials property, create the geometry, mesh the volume and assign the boundary and 

loading conditions. 

This phase starts with finding the right elements for different parts of the 

piezocomposite, active and passive parts. For both parts, a block element has the 

preference over a tetrahedron element; because with block element, a good convergence 

can be obtained with a small number of elements. According to the existence of sphere, 

a 20-node block is chosen to cover all the geometry. For the passive part, polymer, the 

SOLID95 Element which is a 3-D 20-Node Structural Solid Element, and for the active 

part, the piezoceramic, SOLID226 Element which is 3-D 20-Node Coupled-Field Solid 

Element are selected, see Fig. 6.6.  

 

 



 

 63

 

Fig. 6.4 Simplifying the original problem a) 2-D image of unit cell 
 with inhomogeneity at the center b) an octant of the unit cell  

with spherical inhomogeneity  
 

 

 

Fig. 6.5 New boundary conditions for the octant of original problem  
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Fig. 6.6 SOLID95 or SOLID226 Element 
 

 SOLID95 can tolerate irregular shapes without as much loss of accuracy. These 

brick elements have compatible displacement shapes and are well suited to model 

curved boundaries. The element is defined by 20 nodes having three degrees of freedom 

per node, UX, UY and UZ. The element may have any spatial orientation [11].  

SOLID226 has structural, thermal, electrical, thermoelectric, piezoresistive, and 

piezoelectric capabilities. The element has twenty nodes with up to four degrees of 

freedom per node, UX, UY, UZ and VOLT. SOLID226 has large deflection and stress 

stiffening capabilities. After selecting this element for modeling the piezoelectricity, go 

to the option window and select K1 as piezoelectric as shown in Fig 6.7. 
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Fig. 6.7 Selecting K1 as piezoelectric for SOLID226 piezoelectric Element 

 

As discussed in Chapter 5, for the piezoelectric materials, the manufacturer-

supplied data needs to be converted to the required format by ANSYS. In order to do 

this conversion, one needs to read Section 5.31.2 carefully. Equations (5.5), (5.6) and 

(5.7) are the essential equations for this conversion.  

After finding the CE, e and Kε, remember that the manufacturer’s data has a 

mechanical vector in the order [ ]xyxzyzzyx  whereas mechanical vector in 

ANSYS is in the order [ ]xzyzxyzyx  and one needs to transform the 

manufacturer’s data to the ANSYS input order by switching row and column data for 

the shear terms. Equations (5.8) and (5.9) show the order that is needed for inputting 

data in ANSYS, also see Fig. 6.9 and 6.10.  Again remember ANSYS uses the relative 

permittivity Kr, see Fig. 6.11. 
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(a)  

 

(b) 

Fig. 6.8 Inputting material’s property of isotropic material (a) Young’s Modulus 
 and Poisson’s ration of Epoxy (b) Relative permittivity Kr of Epoxy  
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Fig. 6.9 Order of inputting piezoelectric stiffness data, PZT4   

 

 

Fig. 6.10 Order of inputting piezoelectricity properties, PZT4     
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Fig. 6.11 Relative permittivity of piezoelectric, PZT4 

 

The next step in the preprocessing phase is creating the problem’s geometry. As 

described in the previous Section, only small volume fractions of the piezoceramics 

have been used in analytical solution. Use the same volume fractions for the ANSYS 

model. Find the radius of sphere based on this volume fractions and total volume of unit 

cell as one. As stated before, here increasing the volume fraction of the piezoceramic 

means increasing the geometry of the inhomogeneity instead of increasing the number 

of the inhomogeneities. The following equations can be used to calculate the volume 

fractions. The size of unit cell in Fig. 6.4 (b) has assumed to be unit, a = 1 m. 

cellunittheofvolume
icpiezoceramtheofvolumev f = ,                             (6.30) 
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3
4

3

3

r

r

v f
π

π

== ,                                           (6.31) 

Based on the above equation and small volume fraction used in analytical solution, the 

following table shows the different inhomogeneity geometries that need to b modeled. 

Table 6.9 Different radii of the spherical inhomogeneity and its  
corresponding volume fraction  

vf r 
5.23E-7 0.01

5.23E-4 0.1 

4.19E-3 0.2 

3.35E-2 0.4 

26.8 0.8 

 

With different options in the modeling section in ANSYS main menu, one can 

create the geometry described in Fig. 6.4 (b) and Table 6.9. The only important note is 

using the Boolean operation like overlap or glue command in order to connect two parts 

of the piezocomposite together.  

The overlap commands will join two or more entities to create three or more 

new entities that encompass all parts of the originals. The end result is similar to an add 

operation, except that boundaries will be created around the overlap zone. Thus, the 

overlap operation produces a number of relatively uncomplicated regions, as compared 

to the single relatively complicated region created by the add operation. For this reason, 
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overlapped entities will often mesh better than added entities. Overlapping is valid only 

if the overlap region has the same dimensionality as the original entities.  

Glue is similar to overlap, except that it applies only to cases in which the 

intersection between entities occurs at a boundary, and is one dimension lower than the 

original entities. The entities maintain their individuality, they are not added, but they 

become connected at their intersection. 

The Boolean overlap and glue commands for volumes are as follows: 

a) Main Menu> Preprocessor> Modeling> Operate> Booleans> Overlap> 

Volumes, 

b) Main Menu> Preprocessor> Modeling> Operate> Booleans> Glue> Volumes. 

Now it’s time for meshing the volume with the selected elements. Remember, 

before assigning any element and materials property to any volume go to 

Main Menu> Preprocessor> Meshing> Mesh Attributes> Default Attribs 

and change the default element type number and material number as it should be for the 

volume that is meshing, polymer volume or piezoceramic volume. Now mesh the 

volume with the following command as shown Fig. 6. 12: 

Main Menu> Preprocessor> Meshing> Mesh> Volume> Free,  

and selecting the proper volume. In order to have refiner mesh use the following 

command:  

Main Menu> Preprocessor> Meshing> Modify mesh> Refine at> All.  

This study shows that refining the piezoceramic volume will give better result at the 

end, Fig. 6. 12.  
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Fig. 6. 12 Meshing the volumes, with refinement in piezoceramic volume 

 

The last step in the preprocessing phase is setting the load conditions of the 

problem as shown in Fig. 6.5. Go the following link  

Main Menu> Preprocessor> Loads> Define loads> Apply> Structural> Displacement 

or Pressure> on Area, 

and select the area and apply the boundary conditions as well as loading conditions, Fig. 

6.13. 
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Fig. 6.13 Applying different boundary conditions 

 

Now the model is ready to be solved through the following link: 

 Main Menu> Preprocessor> Solution> Solve> Current LS 

The last phase is the postprocessing. In this phase, the results can be displayed 

and evaluate in a desired way. 

The same examples for spherical inhomogeneity as analytical solution have been model 

here, four different piezocomposites with applied hydrostatic stress and zero electric 

field at different volume fractions based on Table 6.9. Under these conditions, elastic 

and electric fields at the center of the piezoceramic have been selected from the output 

data of ANSYS. Table 6.10 shows the value of elastic and electric fields at the middle 
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of the piezoceramics for the smallest volume fraction in Table 6.9, vf = 5.23E-7. 

According to the symmetry of the sphere, the center of the piezoceramic has been 

selected as representative of inside points. In these Tables, E stands for Epoxy, U for 

UPR, 4 for PZT4, 6 for PZT6.  Again the applied conditions 

are Pa25321 =°=°=° σσσ , E°i = 0 . For the other volume fractions, elastic and 

electric fields at the center of the piezoceramic have been selected from the output data 

of ANSYS and gathered in Tables shown in Appendix B.  
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Table 6.10 Elastic and electric fields at the center of the spherical inhomogeneity  
ε (10-9), σ (Pa), E (V/m), D (C/m2) 

Piezocomposite [ε] [σ] [E] [D] 
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To find the effective coefficients in ANSYS, special elastic or electric load,  

cases with different boundary conditions must be constructed in such a way that for a 

particular load case only one value in the strain or electric field vector, according to 

constitutive equation (2.12), is non-zero and all others become zero. Then from one row 

in equation (2.23) the corresponding effective coefficient can be calculated using the 

calculated average non-zero value in the strain or electric field vector and the calculated 

average values in the stress or electrical displacement vector. In this way ones need to 

find the elastic and electric values for all the nodes and take the average of it. This can 

be very time consuming and almost impossible. But with using equation (5.1) instead of 

equation (2.12), the average non-zero value in the strain or electric field value can be 

found from the data located in the surface of the model, the same surface that stress has 

been applied, and the calculated average values in the stress or electrical displacement 

vector will be the same as applied stress and electric filed. The later method can be 

more convenient to use in ANSYS but in this case stress needs to be applied to the 

model. Remember with using equation (5.1) to find the effective properties, instead of 

[Ceff]E and [eeff] and [Keff]ε, [Seff]E and [deff] and [Keff]σ can be found from ANSYS, 

respectively. Therefore, to compare the results of two approaches, one needs to convert 

effective matrices found in analytical solution to ANSYS format or vice versa, based on 

the information stated in Chapter 5.    

To make the above calculation more clear, one piezocomposite has been 

selected and based on the above method the effective stiffness has been calculated in 



 

 76

this Section and compared with result of analytical solution for different volume 

fractions in the next Section. 

As an example, piezocomposite with Epoxy polymer matrix and PZT4 sphere 

piezoceramic has been selected. The model configuration is the same as shown in Fig. 

6.4 (b). In six steps, all the component of compliance matrix can be found with 

assuming this matrix has the following format as an anisotropic material. 
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Based on equation (5.1) and assuming the applied electric field is zero, in each step just 

apply only one stress component and find the corresponding compliance components. 

As instance if only 0≠° xσ  then 

xx S °= σε 11 ,                                                          (6.33) 

xy S °= σε 21 ,                                                          (6.34) 

xz S °= σε 31 ,                                                          (6.35) 

where with considering value of average strain at the surface of the model, one can 

locate this data from ANSYS output as, iε  is the average strain in i direction found 

on the plane i =1. With 5 more steps, other compliance components can be found 

and the complete matrix can be converted to stiffness matrix. For one volume 

fraction, νf = 0.1, these values have been gathered in Table 6.11. 
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Table 6.11 Effective stiffness matrix for E4 piezocomposite with sphere 

 inhomogeneity [Ceff] (GPa) 

 

One can find the compliance matrix of other volume fractions for E4 piezocomposite at 

Appendix B. 

6.3 Evaluation the Results and Discussion  

Now based on numerical approach the results can be evaluated, and if there is 

numerical result for a particular piezocomposite, the results can compare together.  

6.3.1 The elastic and electric fields inside the piezoceramic inhomogeneity 

These inside’s fields for different piezocomposite have been studied based on 

numerical and analytical solutions. For both approaches the same applied conditions 

were used, the same hydrostatic stress amount and zero electric field. Results of 

analytical solution have been studied individually in the following paragraphs, and then 

its results have been compared to ANSYS results for the same piezocmposites. 

First, only consider the found matrices of the inside’s fields for one particular 

piezocomposite, to find the possible relation between the components in different 

directions.   Based on Table (6.3), one can observe for one particular piezocomposite 
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with sphere ceramic, stress and strain fields inside the spherical inhomogeneity is the 

same in two directions, x, y with small difference with the third direction, z as shown 

Fig. 6.11. Because in the case of spherical inhomogeneity, the piezoceramic is 

completely surrounded by polymer, so in all three directions, an isotropic material 

transfers the applied stress result in the same stress and strain at the interfaces of the 

sphere and polymer in all directions. However, the piezoceramic itself is a transversely 

isotropic material, where in this study the properties of the ceramic is the same in x and 

y directions and different in z direction. So even though transferred stress is the same at 

the interfaces of two parts in all directions, but stiffness coefficients are not the same in 

all these direction. Resulting in the same inside elastic field in x and y directions and 

different in z direction. With more precise look at the stiffness matrices of PZT4 and 

PZT6, one can find properties in z direction has small difference with the other two 

directions, resulting in a small difference in the inside elastic field’s component in z 

direction compare to the other directions.  

One can find the same behavior in piezocomposite in ANSYS model. As an 

example stress inside the spherical inhomogeneity for E4S piezocomposite has been 

shown in Fig. 6.12 for different volume fractions. 
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Fig. 6.11 Elastic fields inside the spherical inhomogeneity for different piezocomposite 
based on analytical solution, (a) stress field, (b) strain field 

 
 

28
29
30
31
32
33
34
35
36
37

vf 
= 5.

2E
-7

vf 
= 5.

2E
-4

vf 
= 4.

19
E-3

vf 
= 3.

35
E-2

vf 
= 0.

1

vf 
= 0.

27

PZT4 different volume fraction

σ 
(P

a)

σx

σy

σz

 

Fig. 6.12 Stress field inside the spherical inhomogeneity for E4 piezocomposite 
 based on ANSYS modeling 

 

In the case of circular cylinder inhomogeneity, Table 6.4, for one particular 

piezocomposite, stress and strain fields inside the inhomogeneity is the same in two 

directions, x, y with enormous difference with the third direction, z as shown Fig. 6.13. 

In this case, the inhomogeneity is completely surrounded by polymer only in x and y 

directions. As stated before in these directions, an isotropic material transfers the 
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applied stress, resulting in the same transferred stress at interface of two parts of the 

composite. According to isotropy behavior of the ceramic itself in x and y directions, the 

same inside elastic field in x and y directions will be resulted. However, in the z 

direction, the piezoceramic has free surface and receiving applied stress directly. Since 

the stiffness of the piezoceramic is much higher than the polymer in any direction, the 

stress and strain inside in this direction is much higher than two other directions. 
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Fig. 6.13 Elastic fields inside the circular cylindrical inhomogeneity for different 

piezocomposite based on analytical solution, (a) stress field, (b) strain field 
 

Based on Table (6.3), one can observe for one particular piezocomposite that 

electric field, E, inside the spherical inhomogeneity is zero in two directions, x, y and 

non- zero in the third direction, z. According to the equation (2.2) and the in the 

piezoelectricity matrix and value of the e15 and poling direction at z, because there is no 

shear stress inside the piezoceramic, there will not be any electric potential at x and y 

direction. But according to e13 and e23 (equal to e13) and e33 and normal stresses, non-zero 

Ez will be resulted in opposite direction of the poling direction. One can find the same 
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behavior in ANSYS model. As an example electric potential field inside the spherical 

inhomogeneity for E4S piezocomposite has been shown in Fig. 6.14 for different 

volume fractions in logarithmic scale. 
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Fig. 6.14 Electric potential field inside the spherical inhomogeneity for E4  
piezocomposite based on ANSYS modeling 

 

As mentioned before, first, elastic and electrical fields inside the piezoceramic 

inhomogeneity based on analytical solution result is valid for any volume fractions 

according to its infinite matrix. Second, analytical solution is based on no interaction 

between the in homogeneities. These assumptions are valid for real composites just for 

small volume fractions. With increasing the volume fraction, the analytical solution is 

no longer valid. Therefore only small volume fractions of the piezoceramic have been 

used in both approaches. Both methods are simulation of real behaviors, so both have 

their own errors based on how their assumptions produce the model and how they 

predict the behaviors. In the case of the elastic and electrical fields inside the 

piezoceramic inhomogeneity, both methods give almost the same result for less than ten 
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percent volume fraction. Some examples of two approaches comparison have been 

shown in the Fig. 6.15. In order to show the differences better, logarithmic scale has 

been used for volume fractions in some graphs. 
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Fig. 6.15 Comparing elastic and electric fields inside the sphere piezoceramic 

 between the analytical and ANSYS methods (a) σx, (b) εz, (c) Ez 
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In addition based on both approaches, effects of three parameters on elastic and 

electric fields inside the inhomogeneity have been studied. To analyze these effects, in 

three steps consider two parameters as constant and change the third one as a variable. 

First, consider polymer and shape of the in homogeneity are constants and type 

of the piezoceramic is variable. As an example, consider E4S and E6S piezocomposites. 

Although the type of the piezoceramic varies between PZT4 and PZT6 the elastic field 

inside the inhomogeneity is almost the same, Fig. 6.11. The reason is again because of 

the load-transferring role of the polymer.  Both piezoceramics in this case experience 

the same load at interface of two parts of the composite. The small difference between 

two composite elastic fields is according to higher stiffness of the PZT6, which will 

cause higher inside stress and lower inside strain. The higher stress inside the in 

homogeneity will cause the higher electric field, absolute value, in E6S according to 

equation (2.2), Fig. 6.16. In the case of circular cylinder, in z direction, polymer has no 

transferring role.  In this direction, higher stiffness of the PZT6 will cause higher inside 

stress and lower inside strain, absolute strain, Fig. 6.13. In two other directions, inside 

stress is almost the same, according to the load- transferring role of the polymer and the 

small difference is according to small difference in ceramic stiffness matrices.  The 

higher strain inside the homogeneity will cause the higher electric displacement, in 

PZT4, Fig. 6.16. 
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Fig. 6.16 Electric fields inside (a) the sphere and (b) circular cylinder inhomogeneity 

 for different piezocomposite based on analytical solution 

 

Second, consider piezoceramic and shape of the in homogeneity are constants 

and type of the polymer is variable. As an example, consider E4S and U4S 

piezocomposites. As the type of the polymer changes from Epoxy to UPR the stress 

field inside the inhomogeneity will decrease and strain field will increase, Fig. 6.11. 

Because the UPR polymer phase will transfers less load due its higher stiffness than 

Epoxy. As a result, U4S interface will receive fewer loads than E4S. Higher inside stress 

in E4S will result in higher strain compare to U4S with considering the piezoceramic 
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stiffness is the same for the both composite. The same strain will result in same 

electrical field in these two composite, Fig. 6.16 (a). Now consider E4C and U4C. In x 

and y directions, the same discussion and result can be conducted as the spherical 

inhomogeneity, according to the load-transferring role of the polymer, Fig. 6.13. In z 

direction, unlike the prediction, stress inside is not the same for both composite, it 

seems this parameter is also dependent on characters of the polymer. As a result, again 

stress at z direction is higher in composite with lower polymer stiffness. Again higher 

strain inside the homogeneity will cause the higher electric displacement, in E4C, Fig. 

6.16.  

Third, consider piezoceramic and polymer material are constants and shape of 

the inhomogeneity is variable. As an example, consider E4S and E4C piezocomposites. 

As stated previously, circular cylinder shape piezoceramic receives applied stress 

directly in z direction, without transferring from the polymer. As the stiffness of the 

piezoceramic is much higher than polymer, it will result in higher stress in this direction 

in E4C than E4S, and higher strain Fig. 6.11 and Fig. 6.13.  

From the ANSYS model, the same discussion as above can be conducted based 

on two parameters, polymer and piezoceramic type. In the constant volume fraction, the 

same result as analytical solution can be found in ANSYS result for inside’s fields, as 

shown in Fig 6.17 at vf = 4.199E-3.  
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Fig. 6.17 Elastic and Electric fields for different piezocomposite based on ANSYS 

method, (a) inside stress, (b) inside strain, (c) inside electric field 
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6.3.2 The effective properties of the piezocomposites 

As studied in details, from both approaches effective properties of the 

piezocomposite can be calculated. Results of analytical solution for effective properties 

matrices, show that piezocomposites have isotropic character in two directions, x and y, 

and anisotropy character in the z direction, valid for both shapes of inhomogeneity in 

any volume fraction. This anisotropy character is very noticeable in the case of circular 

cylinder but very small in the case of sphere, Fig. 6.18, Fig. 6.19. and Fig. 6. 20. The 

polymer matrix is an isotropic material but piezoceramic is a transversely isotropic 

ceramic with the isotropy in x and y directions and anisotropy in z direction. 

Piezocomposite has properties between its two parts, based on volume fractions. So it is 

reasonable that it has anisotropy in z direction according to the existence of 

piezoceramic with anisotropy in z direction. Spherical inhomogeneity has symmetry in 

all directions but circular cylinder has longitude shape which cause more anisotropy 

behavior in properties of the composite. Moreover from the materials properties of 

PZT4 and PZT6 these properties in z direction have small difference with the other two 

directions, resulting in a small difference in the effective properties of the composite 

with sphere ceramic in z direction compare to the other directions. In addition with 

increasing the volume fraction of the sphere the symmetry in shape will be the same so 

it will not cause much difference between properties in x and z direction, like between 

Ceff
11 and Ceff

33 Fig. 6.18 (a), or Keff
11 and Keff

33 Fig. 6.19 (a), or eeff
13 and eeff

33 Fig. 6.20 

(a). In the case of circular cylinder inhomogeneity, there is symmetry in plane 

perpendicular to the axes of the cylinder so there will be isotropy in this plane which 
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increasing the volume fraction will not change the properties in this plane like Ceff
12 and 

Ceff
13  because the symmetry will not change, compare Ceff

12 and Ceff
13, Fig 6.18 (b). But 

there is anisotropy in cylinder axes direction because of which will be more 

recognizable with increasing the volume fraction, cause noticeable difference for 

example between Ceff
11 and Ceff

33 Fig 6.18 (b), or Keff
11 and Keff

33 Fig. 6.19 (b), or eeff
13 

and eeff
33 Fig. 6.20 (b). Moreover, piezocomposites are not transversely isotropic like 

piezoceramics because their stiffness matrix has six independent components. 

Remember from Chapter 2 and equation (2.23) that transversely isotropic material has 

only five independent stiffness components as
2
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Fig. 6.18 Difference between Ceff components of E4 piezocomposite at different volume 

fractions  (a) sphere piezoceramic and (b) circular cylinder piezoceramic 
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Fig. 6.19 Difference between Keff

11 and Keff
33 for (a) sphere and  

(b) circular cylinder inhomogeneity 
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(b) 

Fig. 6.20 Difference between eeff
13 and eeff

33 for (a) sphere and  
(b) circular cylinder inhomogeneity 

 

In the case of sphere shape piezoceramic, effective compliance matrices have 

been calculated based on ANSYS model. From this calculation almost the same 

evaluation can be report for piezocomposite, Fig. 6.21, isotropy in x and y directions 

and small anisotropy in the z direction. Also this result has been compared with 
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numerical calculation and shown in Fig. 6.22. The results are almost the same for low 

volume fractions but differences will appear in volume fraction higher than ten percent, 

which the reason was discussed before. 
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Fig. 6.21 Compliance matrix of E4S piezocomposite based on ANSYS model 
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Fig. 6.22 Comparing results of two approaches for compliance matrix of E4S  
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In addition, effects of three parameters on effective parameters of the 

piezocomposite have been studied here. To analyze these effects, again in three steps 

consider two parameters as constant and change the third one as a variable for different 

volume fractions. The result of this comparison shows at low volume fractions of the 

piezoceramic, the effective properties of the composite is close to the properties of the 

polymer matrix, with increasing the volume fraction, the effective properties will be 

change toward the piezoceramic’s properties.  

As a result, at high volume fraction in the volume fraction range pof this study, 

piezocomposite with PZT6 ceramic and UPR polymer matrix has higher effective 

stiffness than piezocomposite with PZT4 ceramic and Epoxy polymer matrix. In the 

case of piezoelectricity matrix, piezocomposite with PZT4 ceramic has higher effective 

piezoelectricity than piezocomposite with PZT6 ceramic. Remember the polymer has 

zero piezoelectricity effect. For the effective permittivity, piezocomposite with PZT4 

ceramic and Epoxy polymer matrix has higher effective permittivity than 

piezocomposite with PZT6 and UPR.  

The other factor that can be variable is shape of the ceramic. At low volume 

fractions of the piezoceramic, the effective properties are close to the properties of the 

polymer matrix without any influence from the shape of the inhomogeneity. With 

increasing the volume fraction, the effective properties will be change according to 

shape difference of the piezoceramic. For the effective stiffness, all the components of 

the matrix such as Ceff
11 are higher for composite with sphere shape piezoceramic 

except the Ceff
33, Fig. 6.23. Symmetry difference between these two shapes causes this 
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result. For the effective piezoelectricity matrix, all the components of the matrix are 

higher for composite with circular cylinder piezoceramic except the eeff
33, Fig. 6.24. For 

the effective permittivity matrix, all the components of the matrix are higher in the case 

of the circular cylinder, Fig. 6.25.  
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Fig. 6.23 Difference between effective stiffness matrices of the piezocomposite with 

different shape of the piezoceramic (a) Ceff
11 (b) Ceff

33 
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Fig. 6.24 Difference between effective piezoelectricity component eeff
33 of the 

piezocomposite with different shape of the piezoceramic  
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Fig. 6.25 Difference between effective permittivity component Keff
33 of the 

piezocomposite with different shape of the piezoceramic 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

The analytical solution based on the extension of Eshelby’s theory to 

piezoelectricity has been purposed in this thesis to calculate the elastic and effective 

fields inside the piezoceramic inhomogeneity for various piezocomposites. Based on 

this approach, the effective properties of the piezocomposite have been obtained too. 

This approach has been tested for different materials and shapes as well as volume 

fractions. The results for inside’s fields and the effective properties were matched with 

what were expected according to materials property or volume fractions. However, 

because of the assumptions made for finding the equations in this method, it is only 

valid for small volume fractions of the inhomogeneities.  

Also for these volume fractions, the numerical approach based on ANSYS 

software has been use to model the same problems as the analytical approach. Based on 

this model, the elastic and effective fields inside the piezoceramic inhomogeneity for 

various piezocomposites have been found at the center of these parts. With different 

boundary conditions, the effective properties of the piezocomposite have been 

calculated for these FEM models. 

The result for both the inside’s fields and the effective properties were close to 

numerical solution for all the piezocomposite only for the small volume fraction of the 

piezoceramic. For higher volume fraction, more than ten percent of the piezoceramic, 
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there will be a divergence between the results of two approaches. So as what expected 

before, the analytical solution based on the extension of Eshelby’s theory to 

piezoelectricity is only valid for small volume fraction of the inhomogeneities.  

It is recommended to extent this study for higher volume fraction of the 

inhomogeneities. For this matter, one needs to consider the interactions among the 

inhomogeneities, so other methods than the extension of Eshelby’s theory to 

piezoelectricity need to be considered such as the self-consistent scheme, to consider 

the interactions.  

Also, it is recommended to compare the results of this study for lower volume 

fractions with experimental data. The result of this comparison can be helpful in 

designing these composite. 
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ANALYTICAL SOLUTION RESULT
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Only independent and non-zero components of the effective properties for 

different piezocomposite at different volume fraction of the piezocomceramic have been 

shown in the following tables. In these tables, E stands for Epoxy, U for UPR, 4 for 

PZT4, 6 for PZT6, S for spherical inhomogeneity and C for circular cylinder 

inhomogeneity.  

Table A.1 Ceff
11 (GPa) from the stiffness matrix 

vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 5.4568 5.4568 7.5432 7.5432 5.4568 5.4568 7.5432 7.5432 

5.23E-04 5.4612 5.4613 7.5492 7.5493 5.4605 5.4605 7.5482 7.5483 

4.19E-03 5.4923 5.4928 7.591 7.592 5.4864 5.4868 7.5833 7.584 

3.35E-02 5.7409 5.7452 7.9255 7.9336 5.6939 5.6969 7.8637 7.869 

0.1 6.3049 6.3179 8.6845 8.7087 6.165 6.174 8.5 8.517 

0.27 7.7293 7.7641 10.601 10.666 7.354 7.378 10.107 10.152 
 

 
Table A.2 Ceff

33 (GPa) from the stiffness matrix 
 

vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 5.468 5.4568 7.5432 7.5432 5.4568 5.4569 7.5432 7.5433 

5.23E-04 5.4613 5.4613 7.5493 7.5493 5.4891 5.5245 7.5754 7.6104 

4.19E-03 5.4926 5.4929 7.5267 7.5233 5.7154 5.9981 7.8004 8.0809 

3.35E-02 5.7432 5.746 7.9299 7.935 7.5258 9.7873 9.6005 11.844 

0.1 6.312 6.3202 8.6978 8.713 11.634 18.386 13.686 20.385 

0.27 7.7748 7.7702 10.637 10.678 22.009 40.101 24.001 41.953 
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Table A.3 Ceff
44 (GPa) from the stiffness matrix  

 
vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 2.5185 2.5185 3.4815 3.4815 2.5185 2.5185 3.4815 3.4815 

5.23E-04 2.523 2.5227 3.4865 3.4867 2.5227 2.5225 3.4868 3.4864 

4.19E-03 2.5542 2.5522 3.5267 3.5233 2.552 2.5502 3.5241 3.5211 

3.35E-02 2.8041 2.7876 3.8432 3.8158 2.7865 2.7719 3.8226 3.798 

0.1 3.371 3.322 4.5613 4.4796 3.319 3.275 4.5 4.427 

0.27 4.8028 4.6714 6.375 6.156 4.662 4.546 6.211 6.015 
 

 
Table A.4 Ceff

66 (GPa) from the stiffness matrix  
 

vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 2.5185 2.5618 3.4815 3.4815 2.5185 2.5185 3.4815 3.4815 

5.23E-04 2.5226 2.5232 3.4865 3.4876 2.5218 2.5222 3.4857 3.4863 

4.19E-03 2.5512 2.5562 3.522 3.5301 2.545 2.5481 3.5149 3.5202 

3.35E-02 2.7815 2.8201 3.8057 3.8706 2.7306 2.7551 3.7486 3.791 

0.1 3.3037 3.419 4.4496 4.6432 3.152 3.225 4.279 4.406 

0.27 4.6223 4.9313 6.075 6.594 4.215 4.411 5.618 5.958 
 

 
Table A.5 Ceff

12 (GPa) from the stiffness matrix  
 

vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 2.9383 2.9383 4.0617 4.0617 2.9383 2.9383 4.0617 4.0617 

5.23E-04 2.9401 2.9401 4.0642 4.0641 2.94 2.94 4.064 4.064 

4.19E-03 2.9529 2.9526 4.0816 4.081 2.9519 2.9518 4.0802 4.08 

3.35E-02 3.0552 3.0529 4.2206 4.2165 3.0473 3.0464 4.2097 4.208 

0.1 3.2873 3.2805 4.5362 4.5237 3.264 3.208 4.503 4.499 

0.27 3.8734 3.8554 5.333 5.3 3.81 3.803 5.245 5.232 
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Table A.6 Ceff
13 (GPa) from the stiffness matrix  

 
vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 2.9383 2.9383 4.0617 4.0617 2.9383 2.9383 4.0617 4.0167 

5.23E-04 2.9401 2.9401 4.0642 4.0641 2.9402 2.9397 4.0644 4.0636 

4.19E-03 2.9526 2.9526 4.0811 4.0811 2.9538 2.9496 4.0828 4.077 

3.35E-02 3.0532 3.0528 4.217 4.2162 3.0629 3.0288 4.2304 4.184 

0.1 3.2814 3.2801 4.5252 4.523 3.31 3.208 4.565 4.426 

0.27 3.8576 3.8543 5.304 5.2998 3.935 3.662 5.411 5.039 
 

Table A.7 Seff
11 (10-9 m2/N) from the compliance matrix  

vf E4S E6S U4S U6S

5.23E-07 0.2941 0.2941 0.2128 0.2128

5.23E-04 0.2938 0.2938 0.2126 0.2125

4.19E-03 0.2918 0.2917 0.2111 0.211

3.35E-02 0.2763 0.2757 0.2002 0.1997

0.1 0.2466 0.2453 0.1793 0.178

0.27 0.1941 0.1921 0.1419 0.1399
  

Table A.8 Seff
33 (10-9 m2/N) from the compliance matrix  

vf E4S E6S U4S U6S

5.23E-07 0.2941 0.2941 0.2128 0.2128

5.23E-04 0.2938 0.2938 0.2126 0.2125

4.19E-03 0.2917 0.2917 0.2111 0.211

3.35E-02 0.276 0.2757 0.1999 0.1996

0.1 0.2459 0.2452 0.1786 0.1779

0.27 0.1929 0.1918 0.1407 0.1396
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Table A.9 Seff
44 (10-9 m2/N) from the compliance matrix 

vf E4S E6S U4S U6S

5.23E-07 0.3971 0.3971 0.2872 0.2872

5.23E-04 0.3964 0.3964 0.2868 0.2868

4.19E-03 0.3915 0.3918 0.2836 0.2838

3.35E-02 0.3566 0.3587 0.2602 0.2621

0.1 0.2966 0.301 0.2192 0.2232

0.27 0.2082 0.241 0.1569 0.1624
 

Table A.10 Seff
66 (10-9 m2/N) from the compliance matrix 

vf E4S E6S U4S U6S

5.23E-07 0.3971 0.3971 0.2872 0.2872

5.23E-04 0.3964 0.3963 0.2868 0.2867

4.19E-03 0.3919 0.3912 0.2839 0.2833

3.35E-02 0.3595 0.3546 0.2628 0.2584

0.1 0.3027 0.2925 0.2247 0.2154

0.27 0.2163 0.2028 0.1646 0.1516
 

Table A.11 Seff
12 (10-9 m2/N) from the compliance matrix 

vf E4S E6S U4S U6S

5.23E-07-0.1029-0.1029-0.0745-0.0745

5.23E-04-0.1028-0.1028-0.0744-0.0744

4.19E-03 -0.102 -0.102 -0.0738-0.0738

3.35E-02-0.0961-0.0957-0.0697-0.0693

0.1 -0.0848-0.0839-0.0618-0.0608

0.27 -0.0653-0.0638-0.0479-0.0465
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Table A.12 Seff
13 (10-9 m2/N) from the compliance matrix 

vf E4S E6S U4S U6S

5.23E-07-0.1029-0.1029-0.0745-0.0745

5.23E-04-0.1028-0.1028-0.0744-0.0744

4.19E-03 -0.102 -0.102 -0.0738-0.0738

3.35E-02-0.0958-0.0957-0.0694-0.0693

0.1 -0.0841-0.0838-0.0611-0.0608

0.27 -0.0641-0.0638-0.0468-0.0463
 

Table A.13 eeff
13

 (C/m2) from the piezoelectric matrix 

vf E4S E6S U4S U6S E4C E6C U4C U6C

5.23E-07 -1.094E-09-1.97E-10-1.081E-09-1.93E-10-1.14E-07-2.20E-08 -1.57E-07-3.20E-08

5.23E-04 -1.09E-06 -1.97E-07 -1.08E-06 -1.93E-07-1.00E-04-2.23E-05 -2.00E-04-3.07E-05

4.19E-03 -8.75E-06 -1.57E-06 -8.65E-06 -1.55E-06-9.00E-04-2.00E-04 -1.30E-03-2.00E-04

3.35E-02 -7.00E-05 -1.26E-05 -6.92E-05 -1.24E-05-7.30E-03-1.40E-03 -1.00E-02-2.00E-03

0.1 -0.0002 -3.76E-05 -2.00E-04 -3.69E-05-2.18E-02-4.30E-03 -3.00E-02-5.90E-03

0.27 -0.0006 -0.0001 -6.00E-04 -1.00E-04-5.83E-02-1.14E-02 -8.03E-02-1.57E-02
 

 
Table A.14 eeff

33
 (C/m2) from the piezoelectric matrix 

vf E4S E6S U4S U6S E4C E6C U4C U6C

5.23E-07 3.484E-092.318E-09 3.45E-092.31E-09 8.84E-06 3.95E-06 8.81E-06 3.94E-06

5.23E-04 3.48E-06 2.318E-06 3.45E-062.31E-06 8.80E-03 3.90E-03 8.80E-03 3.90E-03

4.19E-03 2.79E-05 1.85E-05 2.76E-051.85E-05 7.07E-02 3.16E-02 7.05E-02 3.15E-02

3.35E-02 2.23E-04 1.48E-04 2.21E-041.48E-04 5.66E-01 2.53E-01 5.64E-01 2.52E-01

0.1 0.0007 4.43E-04 7.00E-044.00E-041.69E+00 7.55E-01 1.68E+00 7.54E-01

0.27 0.0018 0.0012 1.80E-031.20E-034.53E+002.02E+004.51E+00 2.02E+00
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Table A.15 eeff
15

 (C/m2) from the piezoelectric matrix 

vf E4S E6S U4S U6S E4C E6C U4C U6C

5.23E-07 7.63E-097.973E-09 7.19E-097.42E-091.40E-081.50E-081.40E-081.40E-08

5.23E-04 7.63E-067.973E-06 7.19E-067.42E-061.43E-051.49E-051.35E-051.40E-05

4.19E-03 6.10E-05 6.38E-05 5.75E-055.94E-011.00E-041.00E-031.00E-041.00E-04

3.35E-02 4.88E-04 5.10E-04 4.60E-044.75E-019.00E-041.00E-039.00E-049.00E-04

0.1 0.0015 0.0015 1.40E-031.40E-03 0.0027 2.80E-032.60E-032.70E-03

0.27 0.0039 0.004 3.70E-033.80E-03 0.0073 7.60E-036.90E-037.10E-03
 
 

Table A.16 Keff
11

 (10-10 C/Vm) from the permittivity matrix 

vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 0.452 0.452 0.328 0.328 0.452 0.52 0.328 0.328 

5.23E-04 0.45220.45220.32820.32820.4525 0.452 0.32830.3283 

4.19E-03 0.45390.45390.32940.32940.45580.45570.33070.3307 

3.35E-02 0.4671 0.467 0.33890.3389 0.482 0.482 0.35 0.35 

0.1 0.497 0.49670.36070.3605 0.542 0.54 0.393 0.393 

0.27 0.57260.57180.41560.4152 0.69 0.689 0.5 0.501 
 
 

Table A.17 Keff
33

 (10-10 C/Vm) from the permittivity matrix 

vf E4S E6S U4S U6S E4C E6C U4C U6C 

5.23E-07 0.452 0.452 0.328 0.328 0.452 0.452 0.328 0.328 

5.23E-04 0.45220.45220.32820.32820.48320.46960.35920.3457 

4.19E-03 0.45390.45390.32940.32940.70150.5927 0.578 0.4693 

3.35E-02 0.4671 0.467 0.339 0.3389 2.248 1.578 2.328 1.458 

0.1 0.497 0.49670.36070.3605 6.411 3.814 6.299 3.702 

0.27 0.57260.57170.41560.4151 16.42 9.46 16.33 9.369 
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NUMERICAL SOLUTION RESULT 
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In the following tables, stress and strain fields as well as electric and electric 

displacement fields at the center of the spherical inhomogeneity for different volume 

fractions of the piezoceramic have been shown. Again, E stands for Epoxy, U for UPR, 

4 for PZT4, 6 for PZT6 and the loading conditions are Pa25321 =°=°=° σσσ , E°i = 0. 

Table B.1 Stress field, σ (Pa), for E4 piezocomposite 

vf σx σy σz σyz σxz σxy 

5.23E-07 36 36 35.965-4.43E-03 -0.1875 -1.41E-02 

5.23E-0435.767 35.824 35.84 -1.53E-03-2.58E-03-3.44E-03 

4.19E-0335.625 35.50435.579-5.99E-04 3.16E-04 6.76E-04 

3.35E-0234.881 34.88434.939-2.97E-01-3.44E-03-1.90E-03 

0.1 33.715 33.70833.716-9.09E-03-1.06E-02-9.17E-03 

0.27 31.037 31.04231.146-2.31E-02-2.32E-02-2.27E-02 
 

Table B.2 Stress field, σ (Pa), for E6 piezocomposite 

vf σx σy σz σyz σxz σxy 

5.23E-0735.979 36.14335.993-4.68E-03-5.07E-03 1.01E-02 

5.23E-0435.694 35.83335.868-2.42E-03-3.93E-03-3.44E-03 

4.19E-0335.704 35.49535.601-1.74E-03-8.33E-04-6.44E-04 

3.35E-0234.877 34.88334.899-2.28E-03-2.48E-03-2.26E-03 

0.1 33.599 33.60733.493-9.26E-03-6.23E-03 -0.00684 

0.27 30.731 30.75330.413-5.12E-02-5.04E-02-7.66E-02 
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Table B.3 Stress field, σ (Pa), for U4 piezocomposite 

vf σx σy σz σyz σxz σxy 

5.23E-0735.738 35.93335.709-4.20E-03-1.80E-03-1.30E-02 

5.23E-0435.512 35.56535.586-1.30E-03-2.40E-03-3.30E-03 

4.19E-0335.372 35.25635.335-5.80E-04 3.30E-04 6.50E-04 

3.35E-0234.653 34.65634.712-2.80E-03-3.30E-03-1.80E-03 

0.1 33.52 33.51333.523-8.80E-03-1.00E-02-8.80E-03 

0.27 30.983 31.001 31.1 -7.50E-02-7.40E-02-6.80E-02 
 

Table B.4 Stress field, σ (Pa), for U6 piezocomposite 

vf σx σy σz σyz σxz σxy 

5.23E-0735.734 35.88435.754-4.40E-03-4.80E-03-9.60E-01 

5.23E-0435.455 35.58835.631-2.30E-03-3.80E-03 3.30E-03 

4.19E-0335.462 35.26235.373-1.70E-03 7.70E-04 -6.10E-04 

3.35E-0234.661 34.66734.689-2.20E-03-2.40E-03-2.20E-03 

0.1 33.419 33.42733.319-6.00E-03-6.60E-03-8.90E-03 

0.27 30.622 30.64330.312-5.00E-02-4.90E-02-7.40E-02 
 

Table B.5 Strain field, ε (10-9), for E4 piezocomposite 

vf εx εy εz εyz εxz εxy 

5.23E-07 1.33E-01 1.36E-011.27E-01-1.15E-04-5.82E-05-4.70E-04

5.23E-04 1.32E-01 1.33E-011.28E-01-4.30E-05-6.45E-05-1.15E-04

4.19E-03 1.33E-01 1.31E-011.27E-01-9.88E-06 7.50E-06 2.25E-05 

3.35E-02 1.29E-01 1.29E-011.25E-01-8.42E-05-9.18E-05-6.32E-05

0.1 1.25E-01 1.25E-011.20E-01-2.22E-04-2.53E-04-3.06E-04

0.27 1.15E-01 1.15E-011.12E-01-5.71E-04-5.58E-04-7.55E-04
 



 

 107

Table B.6 Strain field, ε (10-9), for E6 piezocomposite 

vf εx εy εz εyz εxz εxy 

5.23E-07 1.27E-01 1.28E-011.19E-01-1.49E-04-1.71E-04-1.88E-04

5.23E-04 1.26E-01 1.27E-011.19E-01-8.06E-05-1.27E-04-6.37E-05

4.19E-03 1.27E-01 1.25E-011.18E-01-5.39E-05-2.16E-05-1.19E-05

3.35E-02 1.23E-01 1.23E-011.16E-01-7.06E-05-7.72E-05-4.19E-05

0.1 1.19E-01 1.19E-011.11E-01-1.89E-04-2.09E-04-1.72E-04

0.27 1.09E-01 1.09E-019.96E-02-1.56E-03-1.53E-03-1.42E-03
 

Table B.7 Strain field, ε (10-9), for U4 piezocomposite 

vf εx εy εz εyz εxz εxy 

5.23E-07 1.32E-01 1.35E-011.27E-01-1.08E-04-5.48E-05-4.40E-04

5.23E-04 1.31E-01 1.32E-011.27E-01-3.79E-05-6.05E-05-1.10E-04

4.19E-03 1.32E-01 1.30E-011.26E-01-9.79E-06 7.76E-06 2.15E-05 

3.35E-02 1.28E-01 1.29E-011.24E-01-8.00E-05-8.71E-05-6.02E-05

0.1 1.24E-01 1.24E-011.20E-01-2.14E-04-2.42E-05-2.93E-04

0.27 1.15E-01 1.15E-011.11E-01-1.92E-03-1.80E-03-2.26E-03
 

Table B.8 Strain field, ε (10-9), for U6 piezocomposite 

vf εx εy εz εyz εxz εxy 

5.23E-07 1.26E-01 1.27E-011.18E-01-1.77E-04-1.41E-04-1.61E-04

5.23E-04 1.25E-01 1.26E-011.18E-01-6.17E-05-7.55E-05-1.23E-04

4.19E-03 1.26E-01 1.24E-011.17E-01-1.14E-05-5.16E-04-1.99E-05

3.35E-02 1.22E-01 1.22E-011.15E-01-4.01E-04-6.77E-05-7.39E-05

0.1 1.18E-01 1.13E-011.10E-01-1.66E-04-1.83E-04-2.02E-04

0.27 1.09E-01 1.09E-019.93E-02-1.38E-03-1.53E-03-1.49E-03
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Table B.9 Electric fields, E (V/m) and D (C/m2), for E4 piezocomposite 

vf Ex Ey Ez Dx Dy Dz 

5.23E-07 3.46E-05 1.39E-04-0.1192-3.65E-13-2.17E-13-1.59E-02 

5.23E-04 8.62E-05 3.89E-05-0.1228-6.32E-14-1.75E-13-3.13E-13 

4.19E-03-1.15E-05 3.26E-05-0.1212-3.24E-15 1.28E-13 4.62E-15 

3.35E-02 1.00E-04 7.42E-05-0.1199-2.49E-13-3.56E-13 2.61E-13 

0.1 3.80E-04 3.15E-04-0.1147 5.33E-14 -9.01E-14-8.84E-13 

0.27 8.25E-04 7.84E-04-0.1083 2.05E-14 -4.08E-13-1.46E-12 
 

Table B.10 Electric fields, E (V/m) and D (C/m2), for E6 piezocomposite 

vf Ex Ey Ez Dx Dy Dz 

5.23E-07 9.28E-051.40E-04 -0.181 -4.54E-13-1.80E-13 2.34E-13 

5.23E-04 1.04E-045.14E-05-0.1821-2.09E-13-1.86E-13 1.28E-13 

4.19E-03 5.41E-056.10E-01-0.1798 9.55E-14 -2.81E-14-5.09E-14

3.35E-02 8.33E-068.06E-05-0.1764-5.55E-14-3.55E-14-1.91E-14

0.1 2.54E-042.41E-04 -0.168 -4.93E-14-3.22E-15-1.25E-13

0.27 1.93E-031.85E-03-0.1504-1.15E-13-6.02E-13-2.47E-12
 

Table B.11 Electric fields, E (V/m) and D (C/m2), for U4 piezocomposite 

vf Ex Ey Ez Dx Dy Dz 

5.23E-07 3.20E-05 1.30E-04-0.1186-3.48E-08-2.07E-13-1.48E-12 

5.23E-04 8.17E-05 3.33E-06 -0.122 -5.31E-14-1.60E-13-3.12E-13 

4.19E-03-1.20E-05 3.12E-05-0.1205-4.15E-15 1.18E-13 9.12E-15 

3.35E-02 9.54E-05 7.11E-05-0.1192-2.35E-13-3.34E-13 2.45E-13 

0.1 3.65E-04 3.04E-04-0.1087-4.92E-13-3.07E-12-6.90E-12 

0.27 2.59E-03 2.40E-03-0.1087-3.49E-07-3.07E-12-6.80E-12 
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Table B.12 Electric fields, E (V/m) and D (C/m2), for U6 piezocomposite 

vf Ex Ey Ez Dx Dy Dz 

5.23E-078.66E-05 1.33E-04-0.1799-4.27E-13 -1.69E-13 2.16E-13 

5.23E-041.02E-04 4.62E-05-0.1809-1.97E-13 -1.81E-13 1.87E-13 

4.19E-035.00E-05 5.85E-05-0.1787 9.19E-14 -2.69E+12-4.90E-14 

3.35E-027.97E-05 7.72E-05-0.1754-5.30E-14 3.33E-14 -1.77E-14 

0.1 2.45E-04 2.33E-04-0.1672-4.00E-14 -2.43E-15 -1.22E-13 

0.27 1.87E-03 1.79E-03-0.1505-9.99E-14 -5.74E-13 -2.40E-12 
 

Table B.13 The independent and non-zero components of effective compliance matrix 
for E4 piezocomposite at different volume fraction of the sphere piezocomceramic  

 
vf Sef

11 Sef
33 Sef

44 Sef
66 Sef

12 Sef
13 

5.2E-07 0.2941 0.2941 0.54132 0.49904 -0.1029 -0.1029 

0.00052 0.2954 0.2954 0.54066 0.49082 -0.1029 -0.1029 

0.00419 0.295 0.295 0.55406 0.50106 -0.102 -0.102 

0.03349 0.2967 0.294 0.4915 0.4104 -0.1004 -0.1013 

0.1 0.2987 0.2935 0.50566 0.4453 -0.097 -0.1012 

0.26795 0.2978 0.2962 0.4532 0.4333 0.10118 -0.1011 
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