

PARALLEL OPTIMIZATION OF

 INTRA MODE SELECTION

 IN HEVC USING

OPEN MP

by

PRATIK DEVENDRAKUMAR MEHTA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2014

ii

Copyright © by Pratik Devendrakumar Mehta 2014

All Rights Reserved

iii

Acknowledgements

Firstly I would like to thank Dr. Rao from the bottom of my heart for being my supervisor and his

constant support and inspiration throughout the thesis. I would like to thank Dr. Alan Davis and Dr.

Howard Russell for serving on my committee.

I would also like to thank Jamil-Ur-Rehman, Ye Zhang and also thesis by alumni of MPL lab

Sudeep Gangavati and Tushar Saxena whose research has been an inspiration to my work.

I would also like to thank Rohit Rawat, Soumitro Auddy for their expert opinion. I am also thankful

to my lab mates: Kushal Shah, Abhijith Jagannath, Harshdeep Jain, Sapna Vasudevan, Tuan Ho and

Abhishek Thungaraj for their valuable inputs throughout the research.

Last but not least, I thank my father, Devendrakumar Mehta and my mother Asmita Mehta for

encouraging me to take up thesis and for their continuous support and motivation.

 October 27, 2014

iv

 Abstract

PARALLEL OPTIMIZATION OF

 INTRA MODE SELECTION

 IN HEVC USING

OPEN MP

 Pratik Mehta, M.S

 The University of Texas at Arlington, 2014

Supervising Professor: K.R.Rao

HEVC aims at providing an efficient video coding algorithm which not only provides high

performance, but also improves coding efficiency. It also provides high compression efficiency as

compared to its counter parts, but at the cost of an increase in complexity. The increased number of intra

prediction modes in HEVC allows better compression and more flexible block representation. The

purpose of the thesis is to optimize the mode decision process using Open MP to reduce the encoding

time without further increase in complexity. This includes implementing a parallel computing method that

will calculate 35 distinct intra prediction modes in parallel and compare them to decide the three best

possible modes depending on RD cost values as compared to a single mode in H.264. There are over

11900 different intra modes according to different PB size as shown in Table 5-1 which provides higher

level compression but at the cost of increase in the encoding time . Experimental results were compared

with the HEVC reference software HM 9.1 for different standard test sequences with respect to various

quantization parameters. The proposed algorithm was evaluated using different metrics. These include

encoding time, BD- PSNR (Bjontegaard Delta Peak Signal to Noise Ratio) and BD-bitrate (Bjontegaard

Delta bitrate), rate distortion (RD curve) graph and percentage reduction in encoding time. There is a 22-

v

57% reduction in encoding time compared to reference software calculations with negligible increase in

bitrate and negligible decrease in PSNR.

vi

Table of Contents

Acknowledgement…………………………………………………………….…………………………………..iii

Abstract…………………………………………………………………..………………….………............…….iv

List of Illustrations…………………………………………………………………………….………………….viii

List of Tables………………………………………..…………………………………………..…………………xi

Chapter 1 Introduction…………………………………………………………………………………………....1

1.1 Video Compression basics…...…………………..………………………………………………….......1

 1.2 Summary…………………………………………………………………………………………………...4

 1.3 Thesis outline……………………………………………………………………………………………...4

Chapter 2 High Efficiency video coding…………………………………………….……………….………….5

 2.1 Quad based tree structure……………………………………...…………………………………….….9

 2.2 Transform scaling and Quantization………………………………………………………………......12

 2.3 Entropy coding…………………………………………...………………………………………………13

 2.2 Deblocking filter [40]…….……………………………………………………………………………….14

 2.3 Slices, Tiles and Wavefront parallel processing……………………………………………………...14

 2.4 Intra prediction……………………………………………………………………………………………16

 2.5 Summary……………………………………………………………………………………………….....17

Chapter 3 Intra Prediction………………………………………………………………….……………….......18

 3.1 Overview………………………………………….………………………………………………...........18

 3.2 Intra mode decision process…….……………….………………………………………………….....23

 3.3 Summary…………………..………………………………………………...…………………...………24

Chapter 4 Parallel programming………………..……………………………………………………………...25

 4.1 Parallel computing…………………………………………………………………….………………...25

 4.2 Parallel programming models……………………………………………………………………….....26

 4.3 Points to remember before developing a parallel program………………………………...............28

 4.4 OpenMP [72]……………………………………………………………………………………….…….31

 4.4.1 OpenMP directives………………………………………………...…………………..…....……..33

vii

 4.4.2 OpenMP directives…………………………………………………...…………………....…….....33

 4.4.3 OpenMP clauses [70]…………………………………………………………….………...…....…35

 4.4.4 OpenMP Environment variables [71]………………………………………………………....…..37

 4.5 Summary……………………………………………………………………………….………………....37

Chapter 5 Algorithm, Implementation and Results…………………………………………...…….…..........38

 5.1 Overview……………………………………………………………………………….……….…….......38

 5.2 Proposed solution by parallel processing of intra mode decision process…………….…….........39

 5.3 Results……………………………………………………………………………………….…………....41

Chapter 6 Conclusion and Future work………………………………………………………….…..………...63

 6.1 Conclusions ………………………………………………………………………….…………......63

 6.2 Future Work…………………………………………………………………………….……………......63

Appendix A Test Sequences……………………………………………………………….……………..........65

Appendix B Test Conditions………………………………………………………………………………….....71

Appendix C BD-PSNR and BD-bitrate………………………………………………………………………....73

Appendix D The code for the proposed algorithm ………………………………………….…………......….80

Appendix E Acronyms…………………………………………………………………………….……....….….89

References………………………………………………………………………………………………………..92

Biographical Information ………………………………………………………………………………………...97

viii

List of Illustrations

Figure 1-1 Similarity of successive pictures [42] ... 1

Figure 1-2 Basics of video compression [19] .. 2

Figure 1-3 Bandwidth requirements [19] ... 2

Figure 1-4 Evolution of video coding standards [41] ... 3

Figure 2-1 Encoder block diagram of HEVC [1] .. 6

Figure 2-2 Decoder block diagram of HEVC [E6] ... 7

Figure 2-3 Chroma subsampling [38] .. 8

Figure 2-4 Division of an image into CTU [13] .. 9

Figure 2-5 Different sizes of CTU [13] .. 9

Figure 2-6 Prediction blocks and residual quadtree structure [36] ... 11

Figure 2-7Example of division of image into quadtree coding structure [4] .. 11

Figure 2-8 Diagonal scan pattern in 8x8 TB [56] .. 12

Figure 2-9 Example of division of image into quadtree coding structure [39] ... 13

Figure 2-10 Subdivision of picture into (a) slices (b) tiles, and illustration of wavefront parallel processing

[1] .. 16

Figure 2-11 Intra prediction modes in HEVC [3] ... 16

Figure 2-12 HEVC intra prediction modes .. 17

Figure 3-1 Reference samples Rx,y used in prediction to obtain predicted samples Px,y for a block of size

N by N samples [3]. ... 18

Figure 3-2 Types of partitioning of intra coded CU into PUs [54] ... 19

Figure 3-3 H.264 intra prediction modes [E1] ... 21

Figure 3-4 An example of angular prediction when operating on sixth row of an 8x8 block [53] 23

Figure 3-5 Intra prediction mode decision in HM4.0 [54] .. 24

Figure 4-1 Serial computation model [57] ... 25

Figure 4-2 Parallel computation model [57] .. 26

Figure 4-3 Shared memory [59] .. 27

ix

Figure 4-4 Poorly load balanced threads as displayed in the Intel VTune Performance analyzer [63] 29

Figure 4-5 Deadlock condition [65] ... 30

Figure 4-6 OpenMP components [66] ... 32

Figure 5-1 Serial processing of intra prediction modes in HEVC [75] .. 38

Figure 5-2 Parallel processing of intra prediction modes in HEVC [75] .. 39

Figure 5-3 Profiler instrumentation data .. 40

Figure 5-4 Overhead cost for OpenMP parameters ... 41

Figure 5-5 Encoding time vs quantization parameter for BasketballDrillText ... 43

Figure 5-6 Encoding time vs quantization parameter for RaceHorses ... 43

Figure 5-7 Encoding time vs quantization parameter for SlideEditing .. 44

Figure 5-8 Encoding time vs quantization parameter for Kimono ... 44

Figure 5-9 Encoding time vs quantization parameter for PeopleOnStreet ... 45

Figure 5-10 BD-PSNR vs quantization for BasketballDrillText ... 46

Figure 5-11 BD-PSNR vs quantization for RaceHorses ... 46

Figure 5-12 BD-PSNR vs quantization for SlideEditing .. 47

Figure 5-13 BD-PSNR vs quantization for Kimono ... 47

Figure 5-14 BD-PSNR vs quantization for PeopleOnStreet ... 48

Figure 5-15 Measurement of BD-bitrate and BD-PSNR [78] .. 49

Figure 5-16 BD-Bitrate vs quantization for BasketballDrillText ... 50

Figure 5-17 BD-Bitrate vs quantization for RaceHorses ... 50

Figure 5-18 BD-Bitrate vs quantization for SlideEditing .. 51

Figure 5-19 BD-Bitrate vs quantization for Kimono .. 51

Figure 5-20 BD-Bitrate vs quantization for PeopleOnStreet ... 52

Figure 5-21 Rate distortion plot for BasketballDrillText .. 53

Figure 5-22 Rate distortion plot for RaceHorses... 54

Figure 5-23 Rate distortion plot for SlideEditing ... 54

Figure 5-24 Rate distortion plot for Kimono .. 55

x

Figure 5-25 Rate distortion plot for PeopleOnStreet ... 55

Figure 5-26 Encoded bit stream size vs quantization parameter for BasketballDrillText 56

Figure 5-27 Encoded bit stream size vs quantization parameter for RaceHorses 57

Figure 5-28 Encoded bit stream size vs quantization parameter for SlideEditing 57

Figure 5-29 Encoded bit stream size vs quantization parameter for RaceHorses 58

Figure 5-30 Encoded bit stream size vs quantization parameter for PeopleOnStreet 58

Figure 5-31 Percentage reduction in encoding time for BasketballDrillText ... 59

Figure 5-32 Percentage reduction in encoding time for RaceHorses ... 60

Figure 5-33 Percentage reduction in encoding time for SlideEditing .. 60

Figure 5-34 Percentage reduction in encoding time for Kimono... 61

Figure 5-35 Percentage reduction in encoding time for PeopleOnStreet ... 61

xi

List of Tables

Table 3-1 Comparing HEVC Intra luma prediction modes for 64x64 LCU with H.264/AVC Intra modes for

a 64x64 image region [26]... 21

Table 3-2 Luma intra prediction modes supported by different PU sizes [27] .. 22

Table 3-3 Mapping between intra prediction direction and intra prediction mode for chroma [50] 22

Table 5-1 Current problem- complexity and encoded time [74] .. 39

Table 5-2 Test Sequences used ... 42

1

Chapter 1

Introduction

1.1 Video Compression basics

A video is basically a group of images which in turn is nothing but group of pixels. Multimedia files

are large and consume lots of disk space. The file size makes it time consuming to move them from place

to place over networks or distribute them over the internet. The basic use of video compression is to

shrink video files and make them smaller and more practical to store and share. H.264 [24] and HEVC

[1][11][16][17] are popular examples. The video compression works by removing repetitious or redundant

information, effectively summarizing the contents of a file in a way that preserves as much of the original

data as possible [20]. Consider a sequence of image as shown in Fig 1-1 of a person walking on a street

with an umbrella [19]. The uncompressed video contains information for every pixel, in every frame while

compressed video contains less information because similar pixels are grouped together. Therefore by

recognizing that all pixels in the background remain the same and only the person with umbrella is in

motion, the compressed video significantly reduces the file size.

Figure 1-1 Similarity of successive pictures [42]

The modern video technology provides an extremely high image quality with moderate

compression compared to the technologies that were used in the past. Modern data compression

techniques offer the possibility to store or transmit the vast amount of data necessary to represent videos

and images in an efficient and robust way. Fig. 1-2 shows the reduced time interval in which the

2

compressed video or image file can be transmitted as compared to the uncompressed file while taking

into consideration the bandwidth limitation.

Figure 1-2 Basics of video compression [19]

Video is basically a collection of frames that are displayed quickly in succession such that the

user gets the feeling of movement of images in real time. A typical video file contains image, audio and

metadata. Each of these properties can be compressed, since all of them are made up of 0‟s and 1‟s.

Video is transmitted as electrical signals which move around via air i.e. radio waves, microwaves, etc. or

via cable i.e. HDMI, co-axial cables, etc. However as shown in Fig. 1-2 the amount of signal that can be

transmitted is limited by the bandwidth of the medium through which it is transmitted [21]. Therefore

different compression techniques have been developed to compress the signal effectively without much

reduction in quality.

Figure 1-3 Bandwidth requirements [19]

As shown in Fig. 1-3 video coding has evolved primarily through the development of the well-

known ITU-T and ISO/IEC standards. The ITU-T produced H.261 [29] and H.263 [30]; ISO/IEC produced

3

MPEG-1 [31] and MPEG-4 visual [32]. The two organizations jointly produced the H.262/MPEG-2 [33]

video and H.264/MPEG-4 AVC [34] standards. The most recent project of the ITU-T VCEG and ISO/IEC

has been released called HEVC. These evolutions have enabled maximizing compression capability and

are improving other characteristics such as data loss robustness.

Figure 1-4 Evolution of video coding standards [41]

Video is an electronic medium for the recording, copying and broadcasting of moving visual

images. However, an increasing demand of HD videos is creating even a stronger needs for higher

coding efficiency standards. Moreover the traffic caused by video applications targeting mobile devices

and tablet-PCs is imposing a severe challenge on today‟s networks.

4

1.2 Summary

The overall chapter gives basic introduction about video coding technique and its application. It also

explains the evolution in video coding standards in brief. The next chapter will introduce HEVC and its basic

components in detail.

1.3 Thesis outline

The following chapters will explain further about HEVC and proposed algorithm in detail. Chapter

2 will explain about different blocks in HEVC and their significance. Chapter 3 explains intra prediction

technique in detail. Chapter 4 will concentrate of need of parallel programming technique and will give

brief overview of Open MP technique. Chapter 5 will explain about actual implementation of parallel

programming technique for intra prediction in HEVC. It will also provide comparative analysis of proposed

algorithm with reference software HM 9.1 [11]. Chapter 6 outlines the conclusion and further possible

research.

5

Chapter 2

High Efficiency video coding

In April 2010, a Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T ISO/IEC started its

work on a new standard for High Efficiency Video Coding (HEVC). HEVC has been designed to address

essentially all existing applications of H.264 [27] and to particularly focus on issues such as increased use

of parallel processing techniques and increased video resolution. Three profiles, namely main, main intra

and main 10 bit profiles have been finalized as the final draft international standard (FDIS) by JCT-VC in

Jan. 2013. Apart from that various extensions such as 3D video, scalable video coding (SVC) are under

development. While the highest performance gain also comes with associated high complexity

requirements, just marginally lowering performance also brings high coding gains [9][4][6]. Coding gains

in HEVC are due to both advanced inter and intra predictions.

HEVC [1][11][16][17] implements the same hybrid approach as H.264 [27] which includes both

temporal and spatial predictions. It aims at 50% compression gain over H.264 while maintaining similar

video quality [5]. It requires half the bandwidth compared to H.264 for high quality video transmission.

H.264 divides the image into 16 by 16 pixels, while HEVC divides the image into varying block sizes up to

64 by 64 pixels. This larger block size typically enables better compression. Various features are

introduced in the HEVC standard to enhance parallel processing capability or to modify the structuring of

slice data for packetization purposes [2]. Either the image is divided into various parts like tiles in which

the processor works on one of them, or the wave front method where each processor handles one line of

blocks in the image, or make use of a dependent slice method in which dependent slice can only be

decoded if part of a previous slice has been decoded.

6

Figure 2-1 Encoder block diagram of HEVC [1]

As shown in Fig 2-1, theFigure 2-1 Encoder block diagram of HEVC [1] standard shows block

diagram of HEVC encoder in which each picture is partitioned into blocks of different sizes and the same

is conveyed to the decoder. In the given sequence intra prediction is applied to the very first picture which

uses spatial redundancy of the picture while for rest of the frames temporal redundancy is exploited using

inter prediction [1].

The encoding process of inter-picture prediction consists of choosing motion data which

comprises of the selected reference picture and motion vector (MV) to be applied for predicting the

samples of each block [1]. The encoder and decoder generate identical inter prediction signals by

applying motion compensation (MC) using the motion vector (MV) and mode decision data, which are

transmitted as side information.

7

Figure 2-2 Decoder block diagram of HEVC [1]

The residual signal of intra/inter prediction which is the difference between the original and

predicted blocks is further transformed by a linear spatial transform which is scaled, quantized, entropy

coded and transmitted along with prediction information. This residual signal is also inverse transformed,

inverse quantized and filtered to duplicate the decoder processing loop and added with the predicted

signal to produce a decoded picture which is stored in the buffer for further predictions. As shown in Fig.

2-2 in the block diagram of the HEVC decoder, the residual signal is added to the prediction, and the

result is fed to the deblocking filter [40] to reduce the visual artifacts and finally stored in decoded picture

buffer which can be used for further decoding of remaining pictures [1].

A non-linear amplitude mapping is introduced in the inter-prediction loop after the deblocking filter

called the sample adaptive offset (SAO). The goal is to improve the reconstruction of the original signal

amplitudes. It uses a look-up table that is described by a few parameters which can be described by

histogram analysis at the encoder side [1].

8

HEVC basically uses the YCrCb color space with 4:2:0 color format and 8 bps (bits per color

sample). As shown in Fig. 2-3 the sampling of 4:2:0 in which pixels are subsampled in both horizontal and

vertical dimensions by a factor of 2. Theoretically, the chroma pixel is positioned between the rows and

columns.

Figure 2-3 Chroma subsampling [38]

The 4:2:0 chroma format supported in the version 1 profiles has chroma information that is half

resolution both in the horizontal and vertical dimensions. This has been typical for consumer

entertainment use, but the demands of higher-quality applications and screen content coding require use

of 4:4:4 format with full-resolution chroma representations, or of the 4:2:2 format in which half-resolution

horizontal but full-resolution vertical chroma sampling is used [43].

9

2.1 Quad based tree structure

 Unlike H.264 which contains 16 by 16 size macroblocks, HEVC employs a quad tree

structure which contains a coding tree unit (CTU), size of which is selected by the encoder and can be

larger than the traditional macroblock.

Figure 2-4 Division of an image into CTU [13]

Fig.2-4 shows the basic division of image into multiple CTUs. The width and height of CTU are

signaled in a sequence parameter set hence all the CTUs in a video sequence have the same size i.e. 64

by 64, 32 by 32, or 16 by 16 [13] as shown in Fig. 2-5.

Figure 2-5 Different sizes of CTU [13]

10

Each coding unit basically consists of luma and chroma prediction blocks and each block is called

a coding tree block (CTB). This has the same size as CTU. However, CTBs are too big to decide the type

of prediction method to be used. So CTBs are further divided into coding blocks (CB), at which decision is

taken whether to perform inter-picture or intra-picture prediction [13]. CBs are good enough for prediction

type decision but too large to store motion vectors. Thus each CB can be split into prediction blocks (PB)

differently depending on the temporal and/ or spatial predictability.

In either case, the prediction residual i.e. the difference between the original input signal and the

predication signal, is transform coded using a variable block size integer DCT (Discrete cosine transform).

Note that according to the residual quad tree (RQT), the coding blocks can be further subdivided into

smaller transform blocks, such that the block sizes for prediction and for DCT coding do not have to be

the same. This is shown by Fig.2-6 in which for block labeled 7 with transform block sizes in the range of

4x4 to 32x32 for both the luma and chroma components are supported. The transform kernel for each

supported transform block size is given by a separate integer approximation of the 2D DCT-II (type-II

Discrete Cosine Transform) of the corresponding block size [36].

As shown in Fig. 2-6 division of CTU into CU (square shaped blocks) which are further subdivided

into prediction unit (square/non square shaped blocks) and transform units (square shaped blocks). The

divisions of the 4kx2k block in Fig 2-7 sequence Traffic [4] shows the coding block (white) and nested

transform block (red) structure resulting from recursive quadtree partitioning.

11

Figure 2-6 Prediction blocks and residual quadtree structure [36]

Figure 2-7 Example of division of image into quadtree coding structure [4]

12

2.2 Transform scaling and Quantization

Fig. 2-1 shows the residual signal is obtained by taking the difference between the input pixels

and their predicted values. A two-dimensional transform of the residue is computed, then the transform

values (coefficients) are quantized and then entropy encoded. The decoder performs the reverse

operation.

The two-dimensional transform is usually a DCT operation as it concentrates most of the signal

energy in the low index AC coefficients. After quantization, most of the small magnitude AC coefficients

become zero, resulting in a sparse matrix of quantized coefficients. The 2-D matrix is reordered into a 1-D

vector with a zigzag mapping as shown in Fig. 2-8, so that the vector has all the non-zero coefficients at

the beginning followed by a long tail of zero coefficients. The entropy encoder can then efficiently

compress the information [39]

Figure 2-8 Diagonal scan pattern in 8x8 TB [56]

13

2.3 Entropy coding

Figure 2-9 Example of division of image into quadtree coding structure [39]

Context adaptive binary arithmetic coding (CABAC) is used for entropy coding [1]. The algorithm

of context-based adaptive binary arithmetic coding (CABAC) has been developed within the joint

standardization activities of ITU-T and ISO/ IEC for the design and specification of the video coding

standard H.264/AVC. During the later stage when the scalable extension of H.264 / AVC or HEVC was

designed, another feature of CABAC has proven to be useful.

CABAC has been adopted as normative part of H.264 /AVC as well as of the HEVC draft

standard. The other method specified in H.264/AVC [27] is a low-complexity entropy-coding technique

based on the usage of context-adaptively switched sets of variable-length codes, so-called Context-

Adaptive Variable-Length Coding (CAVLC). Compared to CABAC, CAVLC offers reduced implementation

costs at the price of lower compression efficiency. For TV signals in standard- or high-definition

resolution, CABAC typically provides bit-rate savings of 10-20% relative to CAVLC at the same objective

video quality. Note that for the HEVC draft, CABAC is the only entropy coding method [37]. The CABAC

scheme has undergone several improvements to improve its throughput speed especially for parallel

processing architectures and its compression performance, and to reduce its context memory

requirements [1]

14

The design of CABAC involves the key elements of binarization, context modeling, and binary

arithmetic coding.

2.2 Deblocking filter [40]

In a coding scheme that uses block-based prediction and transform coding, discontinuity can

occur in the reconstructed signal at the block boundaries. Visible discontinuities at the block boundaries

are known as blocking artifacts. A major source of blocking artifacts is the block-transform coding of the

prediction error followed by coarse quantization. Moreover, in a motion compensated prediction process,

predictions for adjacent blocks in the current picture might not come from adjacent blocks in the

previously coded pictures, which create discontinuities at the block boundaries of prediction signals.

Similarly, when applying intra prediction, the prediction process of adjacent blocks might be different

causing discontinuities at the block boundaries of the prediction signal.

The HEVC draft standards define two in-loop filters that can be applied sequentially to the

reconstructed picture. The first one is the deblocking filter and the second one is the sample adaptive

offset filter (SAO) that is currently included into the main profile.

The deblocking filter in HEVC has been designed to improve the subjective quality while reducing

the complexity. It constitutes a major part of decoder complexity in H.264/AVC standard. Therefore

special consideration has been taken to maintain the subjective and objective quality while reducing

decoder complexity.

2.3 Slices, Tiles and Wavefront parallel processing

H.264/ AVC support slices, which were introduced mainly to prevent loss of quality in case of

transmission errors and also to parallelize decoder. A slice can either be an entire picture or a region of

picture as shown in part (a) of Fig. 2-10. It can be decoded independently from other slice of the same

15

picture. However, if more number of slices is used to increase parallelism, it can incur significant coding

losses. Also the number of slices is determined by the encoder and if the decoder relies on slices to

obtain real-time performance, it may not achieve this if it receives a video sequence with only one or few

slices per frame.

In the HEVC standard the introduction of a tile was yet another innovation compared to the

H.264/AVC standard. Tiles divide the frame into a grid of rectangular regions that can independently be

encode or decoded as shown in part (b) of Fig. 2-10. Unlike slices, the tiles increase the compression

ratio and also the losses in compression efficiency at the boundaries is negligibly small. The use of tiles

thus opens up new possibilities to increase encoding and decoding of video data using parallel

processing on modern multi-core desktop and mobile platforms. Tiles are independently decodable

regions of picture that are encoded with some shared header information. Hence they provide parallelism

at a more coarse level and no sophisticated synchronization of threads is necessary for their use [1]. Tiles

are basically zero overhead slices since it needs to send tile information once for sequence based on

resolution. In the case of slices, the header needs to be sent at every slice, and it can constitute as an

overhead to the bitrate in low to medium bitrate use cases.

Wavefront parallel processing (WPP) divides the slides into rows of CTUs. The first row is

processed in the ordinary way; the second row can begin to process only after a few decisions have been

made for the first row and so on as shown in part (c) of Fig. 2-10. It may provide better compression

compared to the tiles and also avoid some visual artifacts that may be incurred by tiles [1].

16

Figure 2-10 Subdivision of picture into (a) slices (b) tiles and (c) illustration of wavefront parallel

processing [1]

2.4 Intra prediction

In H.264/AVC, intra coding is based on spatial extrapolation of samples from previously decoded

image blocks, followed by discrete cosine transform (DCT) based transform coding. HEVC utilizes the

same principle, but further extends it to be able to efficiently represent wider range of textural and

structural information in images.

Figure 2-11 Intra prediction modes in HEVC [3]

There is also emphasis on avoiding introduction of artificial edges with potential blocking effects.

This is achieved by adaptive smoothening of the reference samples and smoothening the generated

prediction boundary samples and smoothening the generated prediction boundary samples for DC and

17

directly horizontal and vertical modes. As shown in Fig. 2-12, the intra prediction in HEVC has 33

different angular modes, while mode 0 and mode 1 are termed as the planar and the DC mode

respectively [3].

Since the main focus of this thesis is on intra prediction it is explained in further detail in next

chapter.

Figure 2-12 HEVC intra prediction modes

2.5 Summary

This chapter gives an overview of the basic HEVC components including a brief introduction

about intra prediction. The next chapter will explain the HEVC intra prediction process and its evolution

from the H.264 intra prediction method.

18

Chapter 3

Intra Prediction

3.1 Overview

In H.264, intra prediction [22][24][25][26] is based on spatial extrapolation of samples from

previously decoded image blocks, followed by integer discrete cosine transform (DCT) [23] based coding

[E3]. HEVC uses the same principle, but further extends it to efficiently representing a wider range of

textural and structural information in images. HEVC contains several elements for improving the efficiency

of intra prediction over earlier approaches. The introduced methods can model accurately different

structures as well as smooth regions with gradually changing sample values.

Figure 3-1 Reference samples Rx,y used in prediction to obtain predicted samples Px,y for a block of size N

by N samples [3].

As shown in Fig. 3-1 the reference samples located on top left and above of the image block to

be predicted and denoted by Rx,y while the predicted block is denoted by Px,y where (x,y) denotes the

19

position of the predicted sample value. In some cases neighboring reference samples may be unavailable

for intra prediction. Hence in such cases missing reference samples on the top boundary are obtained by

copying the closest available reference sample [3]. In Fig. 3-1 the missing reference samples on the top

boundary are obtained by copying the closest available reference sample from the left while the missing

reference samples on the left boundary are generated by copying the reference samples below.

Figure 3-2 Types of partitioning of intra coded CU into PUs [54]

The HEVC emerging standard defines that a frame is divided into large coding units (LCU) which

are then partitioned into coding units (CU) using a quad tree structure. Each leaf of the CU can also be

further partitioned into prediction units (PUs) as shown in Fig. 3-2, and each PU can deploy a different

prediction direction. An intra-coded CU can consist of one 2Nx2N PU or four NxN Pus [54].

 HEVC introduces 33 angular prediction modes along with planar and DC prediction modes as

shown in Fig. 2-11. The number and angularity of prediction directions are selected to provide a good

tradeoff between encoding complexity and coding efficiency [7]. In HEVC there are four effective intra

prediction block sizes ranging from 4 by 4 to 32 by 32 samples, each of which supports 33 distinct

prediction directions. In order to further simplify the process, all sample locations within one prediction

block are projected to a single reference row or column depending on the directionality of the selected

20

prediction mode for example, using the left reference column for angular modes 2 to 17 and the above

reference row for angular modes 18 to 34 [3].

Each predicted sample Px,y is obtained by projecting its location to the reference row of pixels

applying the selected prediction direction and interpolating a value for the sample at 1/32 pixel accuracy

using linear interpolation between two closest reference samples as shown in equation (3.1) [53] below.

Px,y = ((32-wy). Ri + wy.Ri+1+16) >> 5 (3.1)

where Ri is the i
th

 reference sample on the reference row, Ri+1 is the consecutive reference

sample, and wy is the weighting between the two reference samples corresponding to the projected sub-

pixel location between Ri and Ri+1. The reference sample index I, and the weighting parameter wy are

calculated based on the projection displacement d associated with the selected prediction direction

(describing the tangent of the prediction direction in units of 1/32 sample and having a value from -32 to

+32) as shown in Fig. 2-11 [53] is as follows.

cy= (y.d) >> 5

wy= (y.d) & 31 (3.2)

 i = x+cy

In the above equation >> denotes bit shift operation to right and & denotes the bitwise AND operation. It

should be noted that both cy and wy parameters depend only on coordinate y and the selected prediction

displacement d. Thus, both parameters remain constant when calculating predictions for one line of

samples within the prediction block as shown in Fig. 2-12. This makes the sample prediction process to

have very low computational requirements as in order to derive the predicted value for specific sample

only equation (3.1) needs to be evaluated.

Fig. 3-3 shows 9 different modes supported by H.264 while Table 3-1 shows comparison of

number of prediction modes supported by HEVC and H.264 corresponding to different block sizes [26]. In

order to be able to represent structures with various directional properties, H.264/AVC defines up to nine

different prediction modes for a given block. The maximal set of modes includes eight directional

properties and a mode predicting the block with the average (DC) value of the reference pixels. As seen

in Fig. 3-3 different directionalities are supported so that video encoders can choose the mode that

21

provides the best RD performance. For example, if the image block that is coded exhibits a strong vertical

structures, such as vertical stripes, the prediction mode 0 (vertical mode) would most likely give better

compression capability than the other modes [53].

Table 3-1 Comparing HEVC Intra luma prediction modes for 64x64 LCU with H.264/AVC Intra modes for

a 64x64 image region [26]

Prediction size

Total Intra Angular modes

HEVC/H.265(64x64) H.264/AVC(16x16)

64x64 4 NA

32x32 35 NA

16x16 35 4

8x8 35 9

4x4 18 9

Total No. of Modes 7808 16x(16x9+4x9+4)=2944

Figure 3-3 H.264 intra prediction modes [E1]

It is observed that the 9 intra prediction modes supported in H.264/ AVC with different

directionalities is not flexible enough to represent complex structures or image segments. To mitigate this,

HEVC extends the set of directional prediction modes of H.264/AVC providing increased flexibility and

more accurate predictions for the sampled values. The increased prediction accuracy provides significant

reductions in residual energy of intra coded block and improving coding efficiency [53]. Table 3-2 shows

number of intra prediction modes supported by HEVC corresponding to different PU sizes.

22

Table 3-2 Luma intra prediction modes supported by different PU sizes [27]

PU Size Intra prediction Modes

4x4 0-16, 34

8x8 0-34

16x16 0-34

32x32 0-34

64x64 0-2, 34

For the chroma component of an intra PU, the encoder selects the best chroma prediction mode

among five modes including Planar, DC, Horizontal, Vertical and a direct copy of the intra prediction

mode for the luma component. The mapping between intra prediction direction and intra prediction mode

number for chroma is shown in Table 3-3 [50].

Table 3-3 Mapping between intra prediction direction and intra prediction mode for chroma [50]

Intra_chroma_pred_mode

Intra prediction direction

0 26 10 1 X

(0<=X<=34)

 0 34 0 0 0 0

1 26 34 26 26 26

2 10 10 34 10 10

3 1 1 1 34 1

4 0 26 10 1 X

23

Figure 3-4 An example of angular prediction when operating on sixth row of an 8x8 block [53]

3.2 Intra mode decision process

As previously mentioned, HEVC supports a total 33 angular prediction modes as well as planar

and DC prediction for luma intra prediction for all the PU sizes. In H.264/AVC mode coding approach, a

single most probable mode was derived based on relative RD cost value. In H.264/AVC mode coding

approach, a single most probable mode was derived based on relative RD cost value. HEVC defines the

three most probable modes for each PU based on the modes of the neighboring PUs. The selected

number of the most probable modes makes it possible to indicate one of the 32 remaining modes by a

fixed length code, as the distribution of the mode probabilities outside of the set of most probable modes

is found to be relatively uniform [3].

24

Figure 3-5 Intra prediction mode decision in HM4.0 [54]

The HM4.0 [55] standard defines a simplified version of the intra prediction process which helps

to reduce the number of intra prediction modes to be evaluated. The algorithm is based on deciding the

best possible subset of modes that yield the smallest sum of the absolute transformed difference (SATD)

between the original pixels and the predicted pixels. Depending on the intra modes of the left and top

neighboring blocks or PUs, a most probable mode (MPM) is also added to this subset [54].

Finally, the R-D cost of each prediction mode belonging to this subset is computed and the mode

with the best R-D cost is selected to encode the PU.

3.3 Summary

This chapter explains the HEVC intra prediction method and its advantage over the H.264 intra

prediction method to represent complex structures or image segments. The next chapter will further

explain the basics of parallel processing and also the Open MP API.

25

Chapter 4

Parallel programming

4.1 Parallel computing

The main aim of parallel computing in this thesis is to design a scheme that will calculate 35 intra

prediction modes as shown in Fig. 2-12 in parallel. This will reduce the overall encoding time without

much increase in complexity.

In the early days of computing, programs were serial, that is, a program consisted of a sequence

of instructions, where each instruction executed one after the other. It ran from start to finish on a single

processor. Fig. 4-1 shows a typical scenario for a serial computation. In serial computation, a problem to

be solved is divided into discrete set of instructions which are executed one at a time.

Figure 4-1 Serial computation model [57]

Parallel programming has been developed as a means for improving performance and efficiency.

In the simplest sense, parallel computing is the simultaneous use of multiple computer resources to solve

a computational problem. In a parallel program, the processing is broken up into parts, each of which can

be executed concurrently. The instructions from each part run simultaneously on different CPUs as

shown in Fig. 4-2. These CPUs can exist on a single machine, or they can be CPUs in a set of computers

connected via a network.

26

Figure 4-2 Parallel computation model [57]

4.2 Parallel programming models

4.2.1 Shared memory [59]

Shared memory is the fastest inter process communication mechanism. The operating system

maps a memory segment in the address space of several processes. In the simplest sense, it is an extra

piece of memory that is attached to some address spaces for their owners to use. As a result, all of these

processes share the same memory segment and have access to it. Consequently, race conditions may

occur if memory accesses are not handled properly. Figure 4-3 shows two processes and their address

spaces. It also has a shared memory attached to both address spaces. Both process 1 and process 2

can have access to this shared memory as if it is part of their own address space. In some sense, the

original address space is "extended" by attaching this shared memory.

27

Figure 4-3 Shared memory [59]

4.2.2 Threads

A Thread is the smallest unit of processing that can be performed in an operating system. In most

modern operating systems, a thread exists within a process i.e. a single process may contain multiple

threads [60]

Multitasking allows processes to run concurrently, while multithreading allows sub-processes to

run concurrently. Basically, an operating system with multitasking capabilities will allow two programs to

run seemingly at the same time. On the other hand, a single program with multithreading capabilities will

allow individual sub-processes (or threads) to run seemingly at the same time. For example, an operating

system manages each application program in the PC system (Microsoft word, Microsoft excel or Internet

browser etc.) as a separate task. The operating system gives a task a turn at running, and then requires it

to wait while another program gets a turn. But it switches between tasks so fast; they appear to run many

programs simultaneously. If the program initiates a request like writing a file to the printer or reading a file

then it creates a thread.

4.2.3 Distributed memory / Message passing

The message passing interface is a communication system that was designed by a group of

researchers to supply programmers with a standard for distributed-memory parallel programming that is

portable and usable on a variety of platforms

Message passing in distributed memory systems implies that multiple processes are initiated and

run usually on different CPUs to completion. These processes do not have anything in common, and

28

each has its own memory space. Thus information exchanges require communication of data, for which

MPI (message passing interface) was, interfaced [61].

4.2.4 Data parallel model

In the task-parallel model represented, the user specifies the distribution of iterations among

processors and then the data travels to the computation. Each code is executed on one processor by

default. While in data- parallel programming model, the user specifies the distribution of arrays among

processors, and then only those processors owning the data will perform the computation. The code is

executed on every processor in parallel by default [62].

4.3 Points to remember before developing a parallel program

The goal of parallel processing is to reduce the processing time of several tasks as compared to

its serial execution without much increase in complexity. But sometimes, the desired result is not

achieved and there is an increase in the processing time or its complexity instead of improving its

performance. Hence there are few factors that should be kept in mind before developing a parallel

program.

4.3.1 Amount of work to be parallelized

An important requirement for parallelism is to make sure that the program must have enough

work that can be performed in parallel. To benefit from parallelism, the total amount of processor –

intensive work in a program must be large enough to minimize the overheads of parallelism.

4.3.2 Task granularity

If a program does a lot of parallelizable work, then proper care must be taken that a task is

broken into appropriately sized chunks that can be executed in parallel. If more number of chunks are

created than required, the overhead of managing and scheduling the chunks will be large. While if less

number of chunks are created than required, some cores on the machine will be idle.

4.3.3 Load balancing [63]

Unequal thread workloads occur whenever one thread requires more time to do a given amount

of work, thereby diminishing performance. End users experience load imbalances as sluggish program

response. Such imbalances often have characteristic visual profiles in system monitoring and software

29

development tools. For example, on modern operating systems that have graphical performance

monitoring tools, thread imbalances can show up rather dramatically

Figure 4-4 Poorly load balanced threads as displayed in the Intel VTune Performance analyzer [63]

4.3.4 Memory allocation and garbage collection

Some programs spend a lot of time in memory allocations and garbage collections. Unfortunately,

allocating memory in an operation that may require synchronization, since it must be assured that

memory regions allocated to different threads may not overlap. Also, allocating the memory typically

means that it must be also assured that garbage collection work is implemented in order to reclaim the

memory that has been freed. If the garbage collection dominates the running time of the program, them it

may scale up the overall processing time.

4.3.5 Race around condition [64]

A race condition occurs when two threads access a shared variable at the same time. The first

thread reads the variable, and the second thread reads the same value from the variable. Then the first

thread and second thread perform their operations on the value, and they race to see which thread can

30

write the value last to the shared variable. The value of the thread that writes its value last is preserved,

because the thread is writing over the value that the previous thread wrote.

Thus, to prevent the race conditions from occurring, the shared variables must be locked so that

only one thread can have access to them at a time.

4.3.6 Deadlocks [64]

A deadlock occurs when two threads each lock a different variable at the same time and then try

to lock the variable that the other thread already locked. As a result, each thread stops executing and

waits for the other thread to release the variable. Because each thread is holding the variable that the

other thread wants, nothing occurs, and the threads remain deadlocked. So it must be ensured that the

shared variable is properly unlocked by a thread before it attempts to lock another shared variable.

Figure 4-5 Deadlock condition [65]

As shown in Fig. 4-5, two threads have the printing and I/0 operations at the same time. But

thread 1 needs printer operation that is hold up by thread 2. In the same way, thread 2 needs keyboard

operation that is hold up by thread 1. In this situation CPU become idle and the deadlock condition occurs

because no thread is executed until the holdup resources are free [65].

31

4.4 OpenMP [72]

4.4.1 Introduction

OpenMP (Open Multi-processing) [72] is an API that supports multi-platform shared

multiprocessing programming in C, C++ and FORTRAN (Formula translating system) on most processor

architectures and operating systems. It consists of a set of compiler directives, library routines and

environment variables that influence run time behavior.

The OpenMP API uses the fork-join model for parallel execution in which multiple threads of

execution perform tasks defined implicitly or explicitly by OpenMP directives [14] as shown in Figure 8.

The OpenMP API is intended to support programs that will execute correctly both as parallel programs

and as sequential programs. It supports multi-platform shared memory multiprocessing programming.

Figure 4-6 Illustration of multithreading in OpenMP [12]

The OpenMP API provides a relaxed- consistency, shared-memory model. All OpenMP threads

have access to a place to store and to retrieve a variable, called the memory. In addition, each thread is

allowed to have its own temporary view of memory which allows the thread and the memory for every

reference to a variable. Each thread also has access to another type of memory that must not be

accessed by other threads, called thread private memory [33].

32

Figure 4-7 OpenMP components [66]

As shown in Fig. 4-6, the OpenMP API is comprised of three distinct components

4.4.1.1 Compiler directives [69]

Compiler directives appear as a comment in source code and are ignored by compilers unless

specified by an appropriate compiler flag. They are basically responsible for spawning a parallel region,

dividing a block of codes among threads, distributing loop iterations between threads and synchronization

of work among threads.

4.4.1.2 Runtime library routines [67]

OpenMP provides several run-time library routines to help manage the program in parallel mode.

Many of these run-time library routines have corresponding environment variables that can be set as

defaults. The run-time library routines are used for changing these factors to assist in controlling the

program.

33

4.4.1.3 Environment variables [68]

The Visual C++ implementation of the OpenMP standard includes environment variables. These

environment variables are read at program startup and modifications to their values are ignored at

runtime. Examples of environment variables are OMP_DYNAMIC, OMP_NESTED, OMP_SCHEDULE,

etc.

In the following sections a few of important OpenMP directives will be explained that serve as

important information for parallelizing code using OpenMP and they have been implemented in the thesis.

4.4.2 OpenMP directives

4.4.2.1 The OpenMP parallel pragma

This directive will set up a team of threads including master thread, all of which will execute the

block following the directive in parallel. Unlike other directive, this directive leaves it up to the programmer

as to how to partition the work. For example:

#include <omp.h>

…

void main ()

{

#pragma omp parallel

// do parallel work

}

As shown in this example, the pragma directive is initiated to execute the task in parallel below it,

which will be further executed by all threads. The function main () is run by a master thread which will

then branch off into many threads to execute the task in parallel. It should be noted that include file

“omp.h” defines all OpenMP functions and should be included to initiate them.

34

4.4.2.2 The OpenMP single Pragma

In some cases only one thread is required to execute some part code, even though that code is

part of the parallel or other work sharing block.

For example:

#pragma omp single

{

}

4.4.2.3 The OpenMP barrier pragma

The barrier directive helps to synchronize all the threads in a team. When a thread reaches

barrier directive, it will wait at the point until all other threads have reached the barrier, and then continues

executing the code after the barrier in parallel.

For example:

#pragma omp barrier newline

4.4.2.4 The OpenMP critical pragma

It basically allows only one thread to enter a particular part of code at a time, while others wait.

For example:

#pragma omp critical [(name)]

{

//code

}

The thread waits at the start of a critical region identified by a given name until no other thread in

the program is executing a critical region with that same name. The critical directive supports no open MP

clauses.

4.4.2.5 The OpenMP for pragma

It basically breaks up a C/C++ for loop, assigning various iterations to various threads.

35

For example:

#pragma omp parallel for [clauses]

//For_statement

Each thread executes one or more of the iterations and executes in parallel. The programmer

must make sure that the iterations are independent. It supports many clauses like firstprivate, lastprivate,

nowait, ordered, private, reduction, and schedule. Some of this clause will be explained later on.

4.4.2.6 The OpenMP ordered pragma

It basically specifies the code under a parallelized for loop that must be executed in sequential

order.

For example:

void main()

{

#pragma omp parallel for

for (int i=0; i<2;i++)

 {

///some parallelized code

#pragma omp ordered

printf(“-----”)

 }

}

As shown in this example, it applies to statement block immediately following it which is a print

statement in the given code. Thus, threads for loop iteration will execute print statement sequentially

rather than executing it in parallel.

4.4.3 OpenMP clauses [70]

Some directives mentioned above have clauses associated with them. The brief description about

some of the important OpenMP clauses is described below.

36

4.4.3.1 private clause

It declares variables to be private to each thread in a team. Private copies of the variable are

initialized from the original object when entering the region.

4.4.3.2 firstprivate clause

It provides a superset of the functionality provided by the private clause. Each private data object

is initialized with the value of the original object.

4.4.3.3 lastprivate clause

It provides a superset of the functionality provided by the private clause. The original object is

updated with the value of the private copy from the last sequential iteration of the associated loop, or the

lexically last section construct, when exiting the region.

4.4.3.4 default clause

It enables programmer to affect the data-scope attributes of variables.

4.4.3.5 reduction clause

It performs a reduction on scalar variables.

4.4.3.6 ordered clause

The structured block following an ordered directive is executed in the order in which iterations

would be executed in a sequential loop.

4.4.3.7 schedule clause

It specifies how iterations of for loop are divided among the threads of the team.

4.4.3.8 nowait clause

It indicates that an implementation may omit the barrier at the end of the work sharing region.

4.4.3.9 collapse (n) clause

It specifies the number of loops that are associated with the OpenMP loop construct for

collapsing.

37

4.4.3.10 shared clause

It shares variables among all the threads in a team.

4.4.3.11 untied clause

It indicates that a resumed task does not have to be executed by same thread executing it, before

it was suspended.

4.4.3.12 final (expr)

The expr is evaluated, and if the value is true, then this task and all its descendant tasks are non-

deferred (not executed in parallel).

4.4.4 OpenMP Environment variables [71]

4.4.4.1 omp_dynamic

It specifies whether the OpenMP run time can adjust the number of threads in parallel region.

4.4.4.2 omp_nested

It specifies whether nested parallelism is enabled, unless nested parallelism is enabled or

disabled with omp_set nested

4.4.4.3 omp_num_threads

It sets the maximum number of threads in the parallel region, unless overridden by

omp_set_num_threads or num_threads.

4.4.4.4 omp_schedule

It modifies the behavior of the schedule clause when schedule (runtime) is specified

in for or parallel for directive.

4.5 Summary

The chapter gives a brief introduction of parallel computing and its components. It also gives an

overview of the openMP API that has been used in this thesis. The next chapter will further explain about

how parallel computing using openMP has been implemented in this thesis to parallelize 35 different intra

prediction modes along with results.

http://msdn.microsoft.com/en-us/library/x5aw0hdf.aspx

38

Chapter 5

Algorithm, Implementation and Results

5.1 Overview

The HEVC standard has proven to be able to deliver high compression ratio, suitable for a wide

range of applications including HDTV broadcasting. The increased number of intra prediction modes in

the HEVC standard allows better compression and more flexible block representation, on top of which

advanced prediction and transform concepts can be built. It has been shown that significant visual and

about 40% better PSNR performance improvement can be achieved over H.264/AVC [5].

Figure 5-1 Serial processing of intra prediction modes in HEVC [75]

Fig.5-1 shows a serial implementation of 35 different intra modes supported by HEVC. As

mentioned in Section 3.2 about intra mode decision process, HEVC defines the three most probable

modes depending on RD cost values as compared to single mode in H.264. There are over 11900

possibilities of splitting a single CU as shown in Table 5-1. It is not a small feat for the encoder to perform

39

this computation and come up with the best mode that costs the least and also has minimum distortion

and bitrate [74]. Thus, in this thesis, effort has been taken to reduce the encoding time. This time can be

saved if a mode decision process is executed in parallel instead of serials. It must be ensured that with

reduction in encoding time there is not much variation in peak signal to noise ratio (PSNR) and bitrate

Table 5-1 Current problem- complexity and encoded time [74]

Size of a PB Number of PBs in 64x64
CU

Number of modes to be
tested in one PB

Total number of modes
to be tested at this level

32x32 4 35 140

16x16 16 35 560

8x8 64 35 2240

4x4 256 35 8960

Total 11,900

5.2 Proposed solution by parallel processing of intra mode decision process

There are number of papers and approaches available on reducing the encoding time of HEVC

by modifying the intra mode decision process. Fast intra prediction mode decision can be done using

parallel processing approach [75]. This has been proposed by J.Rehman and Zhang which aims at

parallelizing eight different H.264 intra modes to reduce the encoding time (see Fig. 3-3). The main

objective here is to further implement the parallel approach using Open MP API to parallelize 35 different

intra prediction modes in HEVC leading to reduction in the encoding time.

Figure 5-2 Parallel processing of intra prediction modes in HEVC [75]

40

As shown in Fig. 5-2, a parallel approach has been implemented to reduce the encoding time

required for decision making process. It aims at dividing the modes among multiple threads, calculating

RD cost values and other decision parameters corresponding to each thread simultaneously, then

comparing it. The approach is in contrast to the method shown in Fig. 5-1 which calculates decision

making parameters corresponding to each mode in sequential order. The parallel approach described in

Fig.5-2 helps in reducing the encoding time without much increase in complexity and affecting PSNR and

bitrate parameters of the sequence.

 A maximum of two threads are run in parallel on two different cores to eliminate data

dependency. Also the data dependency in other functions must be reduced which relate to work sharing

among threads during the decision making process.

The data based parallelism is achieved by finding the hotspot in the HM 9.1 reference software.

These hotspots are further made to run in parallel by dividing the total work of a hotspot into two different

threads equally by using OpenMP software. This division of work is done by enhancing the code of the

hotspot under consideration. Also it is preferable to maintain load balancing between the two threads for

optimum results. Thus it may increase software complexity and produce an additional overhead of thread

creation for each hotspot in the reference software. This is further discussed in future implementation

section of this thesis.

Figure 5-3 Profiler instrumentation data

41

To implement data based parallelism one needs to find hotspot in the reference software. A

profiler tool is available in Visual studio. This is used to determine exactly the amount of time which is

consumed by each function. As shown in Fig. 5-3, the function named „esIntraPredQT‟ (highlighted in Fig

5-3) which was responsible for calling the functions to calculate the RD cost values and storing them in a

buffer. This function consumes most of the time for mode decision process. Hence efforts are taken to

parallelize that particular section of code to improve the overall performance by reducing the encoding

time.

However the main drawback of OpenMP is overhead caused while entering a parallel section of

the code. As shown in Fig.5-4 there is a definite overhead included while using different openMP

parameters. Thus by calculating the overall overhead time during parallelization process and subtracting

it from overall encoding time, actual estimation of amount of time saved after implementing the parallel

processing approach can be determined.

Figure 5-4 Overhead cost for OpenMP parameters

5.3 Results

5.3.1 Test conditions

The performance of the proposed parallel approach in intra prediction was evaluated using HEVC

reference software (HM 9.1) [11]. The intra main profile was selected by setting the value of intra period in

42

configuration file as 1 to make sure that all frames are intra coded and frame rate is 50 fps. The approach

was evaluated by using different QP values of 22, 27, 32 and 37 on standard test sequences [15]

recommended by JCT-VC as shown in Table 5-2.

Table 5-2 gives a brief overview of the sequences used and the corresponding parameters.

Table 5-2 Test Sequences used [15]

No. Sequence Name Resolution Type Approx.

size (MB)

No. of

frames

1 RaceHorses_416x240_30.yuv 416x240 WQVGA 44 30

2 BasketballDrillText_832x480_50.yuv 832x480 WVGA 294 30

3 SlideEditing_1280x720_30.yuv 1280x720 SD 405 30

4 Kimono1_1920x1080_24.yuv 1920x1080 HD 729 30

5 PeopleOnStreet_2560x1600_30.yuv 2560x1600 WQHD 900 30

5.3.2 Encoding Time Gain

The proposed parallel approach used to reduce encoding time provides a reduction in encoding time of

about 22-57 % as compared to the unmodified encoder of HM 9.1 [11]. To analyze the results standard test

sequences [15] are considered using different quantization parameters (QP) as suggestedby JCTVC. The results are

described in Fig 5-4 through Fig 5-9

43

Figure 5-5 Encoding time vs quantization parameter for BasketballDrillText

Figure 5-6 Encoding time vs quantization parameter for RaceHorses

2746.764

3713.074

3420.087

1422.315

2297.383

2876.004 2814.824

1289.585

0

500

1000

1500

2000

2500

3000

3500

4000

22 27 32 37

Original

Proposed

BasketballDrillText_832x480_50

498.279
442.88

965.389

421.117
481.626

343.807

850.714

377.409

0

200

400

600

800

1000

1200

22 27 32 37

Original

Proposed

RaceHorses_416x240_30

QP

E
n
c
o
d

in
g
 t
im

e
 (

s
e
c
)

E
n
c
o
d

in
g
 t
im

e
 (

s
e
c
)

QP

44

Figure 5-7 Encoding time vs quantization parameter for SlideEditing

Figure 5-8 Encoding time vs quantization parameter for Kimono

3636.988 3487.915
3177.193

5276.146

2076.008

2574.293

1356.849

4249.525

0

1000

2000

3000

4000

5000

6000

22 27 32 37

Original

Proposed

SlideEditing_1280x720_30

10408.007

7651.664

6187.364

7402.71

5225.91 5163.971

3774.61
3275.808

0

2000

4000

6000

8000

10000

12000

22 27 32 37

Original

Proposed

Kimono1_1920x1080_24

E
n

co
d

in
g
 t

im
e

 (
se

c)

QP

E
n
c
o
d

in
g
 t
im

e
 (

s
e
c
)

45

Figure 5-9 Encoding time vs quantization parameter for PeopleOnStreet

5.3.3 BD-PSNR

BD-PSNR (see Appendix C) is a curve fitting program based on the rate and distortion of the

video sequence. Based on the rate distortion (R-D) curve fitting, it helps to provide a good evaluation of

the R-D performance. However BD-PSNR has a critical drawback that it does not take the coding

complexity into account. Clearly, for practical video applications, especially for those on handheld

devices, coding complexity has to be considered while evaluating overall coding performance [77]. As

expected there is a slight decrease in PSNR for the proposed algorithm, making BD-PSNR negative. The

results for BD-PSNR are describes as follows from Fig. 5-10 through 5-14

3636.988
3487.915

3177.193

5276.146

2076.008

2574.293

1356.849

4249.525

0

1000

2000

3000

4000

5000

6000

22 27 32 37

Original

Proposed

PeopleOnStreet_2560x1600_30

E
n
c
o
d

in
g
 t
im

e
 (

s
e
c
)

QP

46

Figure 5-10 BD-PSNR vs quantization for BasketballDrillText

Figure 5-11 BD-PSNR vs quantization for RaceHorses

-0.0108

-0.1279

-0.2519

-0.2927

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

22 27 32 37

BasketballDrillText_832x480_50

Original vs Proposed

-0.1696

-0.1832

-0.0459 -0.051

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

22 27 32 37

Original vs Proposed

RaceHorses_416x240_30

QP

B
D

-P
S

N
R

 (
d

B
)

QP

B
D

-P
S

N
R

 (
d

B
)

47

Figure 5-12 BD-PSNR vs quantization for SlideEditing

Figure 5-13 BD-PSNR vs quantization for Kimono

-0.0359

-0.1408

-0.1897

-0.2357 -0.25

-0.2

-0.15

-0.1

-0.05

0

22 27 32 37

Original vs Proposed

SlideEditing_1280x720_30

-0.0459

-0.13

-0.1079

-0.1552
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

22 27 32 37

Kimono1_1920x1080_24

Original vs Proposed

B
D

-P
S

N
R

 (
d

B
)

QP

QP

B
D

-P
S

N
R

 (
d
B

)

48

Figure 5-14 BD-PSNR vs quantization for PeopleOnStreet

5.3.4 BD- bitrate

Similar to BD-PSNR , BD-bitrate is also a metric to determine the quality of encoded video

sequence. The relation between BD-PSNR and BD-bitrate is clearly shown in Fig. 5-15.As expected there

is slight increase in bitrate for the proposed algorithm, making BD-bitrate positive as shown in results

below from Fig. 5-16 through Fig. 5-20.

-0.0168

-0.3903

-0.1959

-0.2727

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

22 27 32 37

Original vs Proposed

 PeopleOnStreet_2560x1600_30

B
D

-P
S

N
R

 (
d

B
)

QP

49

Figure 5-15 Measurement of BD-bitrate and BD-PSNR [78]

50

Figure 5-16 BD-Bitrate vs quantization for BasketballDrillText

Figure 5-17 BD-Bitrate vs quantization for RaceHorses

0.3959

1.6653

3.3677

4.4054

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

22 27 32 37

BasketballDrillText_832x480_50

Original vs Proposed

1.3172

2.115

2.5314

2.8799

0

0.5

1

1.5

2

2.5

3

3.5

22 27 32 37

Original vs Proposed

RaceHorses_416x240_30

B
D

-B
it
ra

te
 (

k
b

p
s)

QP

B
D

-B
it
ra

te
 (

k
b
p
s)

QP

51

Figure 5-18 BD-Bitrate vs quantization for SlideEditing

Figure 5-19 BD-Bitrate vs quantization for Kimono

1.8973
2.1516

2.6511

2.974

0

0.5

1

1.5

2

2.5

3

3.5

22 27 32 37

Original vs Proposed

SlideEditing_1280x720_30

0.2843

0.9519

1.6041

2.228

0

0.5

1

1.5

2

2.5

22 27 32 37

Kimono1_1920x1080_24

Original vs Proposed

B
D

-B
it
ra

te
 (

k
b

p
s)

QP

QP

B
D

-B
it
ra

te
 (

k
b
p
s)

52

Figure 5-20 BD-Bitrate vs quantization for PeopleOnStreet

1.3127

2.43617

3.5837

4.9853

0

1

2

3

4

5

6

22 27 32 37

Original vs Proposed

 PeopleOnStreet_2560x1600_30

B
D

-B
it
ra

te
 (

k
b

p
s)

QP

53

5.3.5 Rate Distortion Plot (RD Plot)

Rate distortion plot is basically used to evaluate the performance of an algorithm in terms of

variation in PSNR value with respect to bitrate. As can be seen through Fig. 5-21 to Fig. 5-25, there is

negligible loss in PSNR and negligible increase in bit rate for the proposed algorithm.

Figure 5-21 Rate distortion plot for BasketballDrillText

30

32

34

36

38

40

42

44

0 1000 2000 3000 4000 5000 6000

Original

Proposed

P
S

N
R

 (
d
B

)

Bitrate (kbps)

54

Figure 5-22 Rate distortion plot for RaceHorses

Figure 5-23 Rate distortion plot for SlideEditing

30

32

34

36

38

40

42

44

0 5000 10000 15000 20000 25000

Original

Proposed

RaceHorses_416x240_30

32

34

36

38

40

42

44

46

0 10000 20000 30000 40000

Original

Proposed

Bitrate (kbps)

P
S

N
R

 (
d

B
)

Bitrate (kbps)

P
S

N
R

 (
d
B

)

SlideEditing_1280x720_30

55

Figure 5-24 Rate distortion plot for Kimono

Figure 5-25 Rate distortion plot for PeopleOnStreet

32

34

36

38

40

42

44

46

0 5000 10000 15000 20000

Original

Proposed

32

34

36

38

40

42

44

46

0 20000 40000 60000 80000 100000 120000

Original

Proposed

 PeopleOnStreet_2560x1600_30

Bitrate (kbps)

P
S

N
R

 (
d
B

)

Kimono1_1920x1080_24

P
S

N
R

 (
d

B
)

Bitrate (kbps)

56

5.3.6 Bit stream size gain

Figures 5-26 through 5-31 show the bit stream size of the HM 9.1 software vs proposed algorithm

results for different video sequences. It can be concluded that there is a negligible increase in bit stream

size as compared to the HM 9.1 software.

Figure 5-26 Encoded bit stream size vs quantization parameter for BasketballDrillText

1558651

865639

478681

272846

1558890

873784

487692

278709

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

22 27 32 37

Original

Proposed

BasketballDrillText_832x480_50

QP

E
n
co

d
ed

 b
it

 s
tr

e
a
m

 s
iz

e
(K

b
)

57

Figure 5-27 Encoded bit stream size vs quantization parameter for RaceHorses

Figure 5-28 Encoded bit stream size vs quantization parameter for SlideEditing

629610

392677

225283

120599

634061

395992

228033

122480

0

100000

200000

300000

400000

500000

600000

700000

22 27 32 37

Original

Proposed

RaceHorses_416x240_30

4291504

3205925

2432408

1815529

4343397

3251155

2466488

1855430

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

22 27 32 37

Original

Proposed

SlideEditing_1280x720_30

E
n
co

d
ed

 b
it

 s
tr

e
a
m

 s
iz

e
(K

b
)

QP

E
n
co

d
ed

 b
it

 s
tr

e
a
m

 s
iz

e
(K

b
)

QP

58

Figure 5-29 Encoded bit stream size vs quantization parameter for RaceHorses

Figure 5-30 Encoded bit stream size vs quantization parameter for PeopleOnStreet

2844373

1634344

977321

577370

2854385

1641297

983985

583038

0

500000

1000000

1500000

2000000

2500000

3000000

22 27 32 37

Original

Proposed

Kimono1_1920x1080_24

13010500

7538987

4283144

2493804

13123471

7633611

4351610

2550682

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

22 27 32 37

Original

Proposed

PeopleOnStreet_2560x1600_30

E
n
c
o
d

e
d
 b

it
 s

tr
e

a
m

 s
iz

e
 (

K
b
)

QP

E
n
co

d
ed

 b
it

 s
tr

e
a
m

 s
iz

e
(K

b
)

QP

59

5.3.7 Percentage reduction in encoding time

Figures 5-31 through 5-35 show the reduction in encoding time from 9-59% reduction for different

QP values corresponding to different test video sequences as compared to the HM 9.1 algorithm.

Figure 5-31 Percentage reduction in encoding time for BasketballDrillText

-36.26

-22.54

-17.70

-9.33

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

22 27 32 37

BasketballDrillText_832x480_50

Original vs Proposed

%
 d

ec
re

as
e

in
 e

n
co

d
in

g
 t

im
e

QP

60

Figure 5-32 Percentage reduction in encoding time for RaceHorses

Figure 5-33 Percentage reduction in encoding time for SlideEditing

-3.34

-22.37

-11.88
-10.38

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

22 27 32 37

Original vs Proposed

RaceHorses_416x240_30

-42.92

-26.19

-57.29

-19.46

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

22 27 32 37

Original vs Proposed

SlideEditing_1280x720_30

%
 d

ec
re

as
e

in
 e

n
co

d
in

g
 t

im
e

QP

%
 d

ec
re

as
e

in
 e

n
co

d
in

g
 t

im
e

QP

61

Figure 5-34 Percentage reduction in encoding time for Kimono

Figure 5-35 Percentage reduction in encoding time for PeopleOnStreet

-20.91

-32.51

-38.99

-55.75 -60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

22 27 32 37

Kimono1_1920x1080_24

Original vs Proposed

-18.95 -20.85

-59.89

-38.64

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

22 27 32 37

Original vs Proposed

PeopleOnStreet_2560x1600_30

%
 d

ec
re

as
e

in
 e

n
co

d
in

g
 t

im
e

QP

%
 d

ec
re

as
e

in
 e

n
co

d
in

g
 t

im
e

QP

62

5.4 Summary

This chapter describes the actual implementation of the parallel optimization of intramode

selection in the HEVC standard using OpenMP. It also shows the results in terms of encoding time, BD-

bitrate, BD-PSNR, rate distortion, bitstream size and percentage reduction in encoding time

corresponding to different QP values for various standard test sequences. The next chapter will describe

conclusions and future analysis to improve the proposed algorithm.

63

Chapter 6

Conclusions and Future work

6.1 Conclusions

The main aim of this thesis is to introduce parallel optimization of mode decision process for intra

prediction in the HEVC standard. The increase in the number of angular modes in intra prediction has no

doubt improved performance but at the cost of an increase in processing time. The proposed parallel

approach gives an overview of the possible performance improvement in the HEVC standard. The results

show that encoding time can by reduced by approximately 35-40% on average as compared to the HM

9.1 encoder. There is a negligible drop in image quality with a slight increase in bitrate for different values

of the quantization parameter values on various test sequences. Apart from encoding time the

parameters that are taken into consideration to evaluate the proposed technique are BD-PSNR, BD-

bitrate, bitstream size and rate distortion plot.

6.2 Future Work

As discussed in Chapter 4, the proposed method is introduced to get an estimate of the effect of

parallel approach in reduction of encoding time. There are many other effective techniques to implement

parallelism to different sections of the software that consumes more processing time.

Parallel programming by Open MP is much simpler to understand and easier to debug as

compared to other parallel processing techniques It also also helps to improve the portability between

multiple platforms [72]. But the Fork-join model of the Open MP program may impose an additional thread

in nested loops during thread creation [79]. For example, if there is a parallel do directive on an inner

loop, then it will incur the parallel overhead n-1 times, where n is the number of iterations [80]. If the inner

loop is parallelized, the iteration is much lower but the overhead of work sharing is much higher [81].

There are many approaches to solve this overhead problem but care must be taken to eliminate thread

dependency as it might result in increase in encoding time as compared to original software. The

encoding time mentioned in Chapter 5 has been determined by deducting the calculated overhead time

from the actual encoding time.

64

In parallel computing model like Computer Unified Device Architecture (CUDA) [82] invented by

NVIDIA, the thread creation overhead can be reduced as CUDA threads are extremely light weight, with

very low creation overheads and switching time.

The use of POSIX threads (pthreads) [84] provides thread pool which reduces overhead in thread

creation as they already pre-allocated before the master thread begins dispatching threads to work. The

tasks are processed in order, usually faster and can be done by creating a thread per task [83].

65

Appendix A

Test Sequences [15]

The following standard test sequences have been used in chapter 5 to obtain the results for the

proposed algorithm. These test sequences are arranged in increasing order of video resolution as

mentioned in Table 5-2.

66

A.1 Racehorses

67

A.2 BasketballDrillText

68

A.3 Slide Editing

69

A.4 Kimono

70

A.5 PeopleOnStreet

71

Appendix B

Test Conditions

72

The proposed thesis was implemented on Intel i5 processor at 2.67 GHz frequency. The RAM

size was 4. GB and operating system is 64 bit Window8.1 OS. The reference software that was used was

HM 9.1 [11].

73

Appendix C

BD-PSNR and BD-bitrate

74

ITU - Telecommunications Standardization Sector
STUDY GROUP 16 Question 6
Video Coding Experts Group (VCEG)

Thirteenth Meeting: Austin, Texas, USA, 2-4 April, 2001

Document VCEG-M33
Filename: VCEG-M33.doc
Generated: 26 March ‟01

Question: Q.6/SG16 (VCEG)

Source: Gisle Bjontegaard
Telenor Satellite Services
P.O.Box 6914 St.Olavs plass
N-0130 Oslo, Norway

Tel:
Fax:
Email:

+47 23 13 83 81
+47 22 77 79 80
gisle.bjontegaard@telenor.com

Title: Calculation of average PSNR differences between RD-curves

Purpose: Proposal

Introduction

VCEG-L38 defines "Recommended Simulation Conditions for H.26L". One of the outcomes is

supposed to be RD-plots where PSNR and bitrate differences between two simulation conditions may be

read. The present document describes a method for calculating the average difference between two

such curves. The basic elements are:

 Fit a curve through 4 data points (PSNR/bitrate are assumed to be obtained for QP =

16,20,24,28)

 Based on this, find an expression for the integral of the curve

 The average difference is the difference between the integrals divided by the integration

interval

IPR

“The contributor(s) are not aware of any issued, pending, or planned patents associated with the

technical content of this proposal.”

Fitting a curve

A good interpolation curve through 4 data points of a "normal" RD-curve (see figure 1) can be

obtained by:

SNR = (a + b*bit + c*bit2)/(bit + d)

where a,b,c,d are determined such that the curve passes through all 4 data points.

75

This type of curve is well suited to make interpolation in "normal" luma curves. However, the

division may cause problems. For certain data (Jani pointed out some typical chroma data) the obtained

function may have a singular point in the range of integration - and it fails.

Use of logarithmic scale of bitrate

When we look at figure 1, the difference between the curves is dominated by the high bitrates.

 The range (1500-2000) gets 4 times the weight of the range (375-500) even if they both

represent a bitrate variation of 33%

Hence it was considered to be more appropriate to do the integration based on logarithmic scale

of bitrate. Figure 2 shows a plot where "Logarithmic x-axes" is used in the graph function of Excel.

However, this function has no flexibility and only allows factors of 10 as units.

In figure 3 I first took the logarithm of bitrates and the plot has units of "dB" along both axes. The

factor between two vertical gridlines in the plot is: 10
0.05

= 1.122 (or 12.2%). Could this be an alternative

way of presenting RD-plots?

Interpolation with logarithmic bitrate scale

With logarithmic bitrate scale the interpolation can also be made more straight forward with a third

order polynomial of the form:

SNR = a + b*bit + c*bit2 + d*bit3

To further improve the approximation accuracy a piece-wise cubic interpolation is proposed as an

alternative (See page 282 in Chapter 9 of the book cited at the end).

This result in good fit and there is no problems with singular points. This is therefore the function

I have used for the calculations in VCEG-M34. However, for integration of luma curves the results are

practically the same as with the first integration method which was used for the software distributed by

Michael regarding the complexity experiment.

In the same way we can do the interpolation to find Bit as a function of SNR:

SNR = a + b*SNR + c*SNR
2
 + d*SNR

3

In this way we can find both:

76

 Average PSNR difference in dB over the whole range of bitrates

 Average bitrate difference in % over the whole range of PSNR

 On request from Michael average differences are found over the whole simulation range (see

integration limits in figure 3) as well as in the middle section - called mid range.

 As a result VCEG-M34 shows 4 separate data tables.

Conclusions

 It is proposed to include this method of finding numerical averages between RD-curves as part of the

presentation of results. This is a more compact and in some sense more accurate way to present the

data and comes in addition to the RD-plots.

 The distinction between "total range" and "mid range" does not seem to add much and it is therefore

proposed to use "total range" only.

 From the data it is seen that relation between SNR and bitrate is well represented by 0.5 dB =

10% or 0.05 dB = 1% It is therefore proposed to calculate either change in bitrate or change in

PSNR.

 Should it be considered to present RD-plots as indicated in figure 3?

77

"Normal" RD-plot

25

26

27

28

29

30

31

32

33

34

35

0 500 1000 1500 2000 2500Bitrate

P
S

N
R

 (
d

B
)

Plot2

Plot1

Log X-axes

25

26

27

28

29

30

31

32

33

34

35

100 1000 10000

Bitrate

P
S

N
R

 (
d

B
)

Plot2

Plot1

78

Here is a document about BD-PSNR which has been referenced by many Video Engineers. You can
download it at http://wftp3.itu.int/av-arch/video-site/

The matlab code for computing BD-Bitrate and BD-PSNR is found in this link:
http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaardmetric/content/bjontegaard.m

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode)

%BJONTEGAARD Bjontegaard metric calculation
% Bjontegaard's metric allows to compute the average gain in PSNR or the
% average per cent saving in bitrate between two rate-distortion
% curves [1].
% Differently from the avsnr software package or VCEG Excel [2] plugin this
% tool enables Bjontegaard's metric computation also with more than 4 RD
% points.
%
% R1,PSNR1 - RD points for curve 1
% R2,PSNR2 - RD points for curve 2
% mode -
% 'dsnr' - average PSNR difference
% 'rate' - percentage of bitrate saving between data set 1 and
% data set 2
%
% avg_diff - the calculated Bjontegaard metric ('dsnr' or 'rate')
%
% (c) 2010 Giuseppe Valenzise
%
% References:
%

Log/Log plot

25

26

27

28

29

30

31

32

33

34

35

25 26 27 28 29 30 31 32 33 34
10xlog(bitrate)

P
S

N
R

 (
d

B
)

Plot2

Plot1

Lim2

Lim1

Lim4

Lim3

http://wftp3.itu.int/av-arch/video-site/
http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaardmetric/content/bjontegaard.m

79

% [1] G. Bjontegaard, Calculation of average PSNR differences between
% RD-curves (VCEG-M33)
% [2] S. Pateux, J. Jung, An excel add-in for computing Bjontegaard metric and
% its evolution

% convert rates in logarithmic units
lR1 = log(R1);
lR2 = log(R2);

switch lower(mode)
 case 'dsnr'
 % PSNR method
 p1 = polyfit(lR1,PSNR1,3);
 p2 = polyfit(lR2,PSNR2,3);

 % integration interval
 min_int = min([lR1; lR2]);
 max_int = max([lR1; lR2]);

 % find integral
 p_int1 = polyint(p1);
 p_int2 = polyint(p2);

 int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);
 int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

 % find avg diff
 avg_diff = (int2-int1)/(max_int-min_int);

 case 'rate'
 % rate method
 p1 = polyfit(PSNR1,lR1,3);
 p2 = polyfit(PSNR2,lR2,3);

 % integration interval
 min_int = min([PSNR1; PSNR2]);
 max_int = max([PSNR1; PSNR2]);

 % find integral
 p_int1 = polyint(p1);
 p_int2 = polyint(p2);

 int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);
 int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

 % find avg diff
 avg_exp_diff = (int2-int1)/(max_int-min_int);
 avg_diff = (exp(avg_exp_diff)-1)*100;
end

BD-PSNR and BD-BITRATE are described graphically in Chapter 6 A. Tabatabai et al, “Compression
performance analysis in HEVC”, in the book, V. Sze, M. Budagavi, and G.J. Sullivan, “High efficiency
vodeo coding (HEVC): algorithms and architectures”, Springer, 2014.

80

Appendix D

The code for the proposed algorithm

81

The following section of HEVC code had been modified to implement the proposed algorithm.

Void
TEncSearch::estIntraPredQT(TComDataCU* pcCU,
 TComYuv* pcOrgYuv,
 TComYuv* pcPredYuv,
 TComYuv* pcResiYuv,
 TComYuv* pcRecoYuv,
 UInt& ruiDistC,
 Bool bLumaOnly)
{
 UInt uiDepth = pcCU->getDepth(0);
 UInt uiNumPU = pcCU->getNumPartInter();
 UInt uiInitTrDepth = pcCU->getPartitionSize(0) == SIZE_2Nx2N ? 0 : 1;
 UInt uiWidth = pcCU->getWidth (0) >> uiInitTrDepth;
 UInt uiHeight = pcCU->getHeight(0) >> uiInitTrDepth;
 UInt uiQNumParts = pcCU->getTotalNumPart() >> 2;
 UInt uiWidthBit = pcCU->getIntraSizeIdx(0);
 UInt uiOverallDistY = 0;
 UInt uiOverallDistC = 0;
 UInt CandNum;
 Double CandCostList[FAST_UDI_MAX_RDMODE_NUM];
 Double BuffCandCostList[FAST_UDI_MAX_RDMODE_NUM];

 // Int totalThreads=0;
//omp_set_num_threads (2);
 // Fun_count++;
// printf("function count is %d\n\n",Fun_count);

//int iCPU = omp_get_num_procs();
//printf("number of PU is %d\n\n",iCPU);
 //===== set QP and clear Cbf =====
 if (pcCU->getSlice()->getPPS()->getUseDQP() == true)
 {
 pcCU->setQPSubParts(pcCU->getQP(0), 0, uiDepth);
 }
 else
 {
 pcCU->setQPSubParts(pcCU->getSlice()->getSliceQp(), 0, uiDepth);
 }

 //===== loop over partitions =====
 UInt uiPartOffset = 0;

 for(UInt uiPU = 0; uiPU < uiNumPU; uiPU++, uiPartOffset += uiQNumParts)
 {
 //===== init pattern for luma prediction =====
 Bool bAboveAvail = false;
 Bool bLeftAvail = false;
 pcCU->getPattern()->initPattern (pcCU, uiInitTrDepth, uiPartOffset);
 pcCU->getPattern()->initAdiPattern(pcCU, uiPartOffset, uiInitTrDepth, m_piYuvExt, m_iYuvExtStride,
m_iYuvExtHeight, bAboveAvail, bLeftAvail);

 //===== determine set of modes to be tested (using prediction signal only) =====

82

 Int numModesAvailable = 35; //total number of Intra modes
 Pel* piOrg = pcOrgYuv ->getLumaAddr(uiPU, uiWidth);
 Pel* piPred = pcPredYuv->getLumaAddr(uiPU, uiWidth);
 UInt uiStride = pcPredYuv->getStride();
 UInt uiRdModeList[FAST_UDI_MAX_RDMODE_NUM];
 UInt BuffuiRdModeList[FAST_UDI_MAX_RDMODE_NUM];

 Int numModesForFullRD = g_aucIntraModeNumFast[uiWidthBit];

 Bool doFastSearch = (numModesForFullRD != numModesAvailable);
 //printf("value of doFastSearch is %d\n\n",doFastSearch);
 if (doFastSearch)
 {
 assert(numModesForFullRD < numModesAvailable);

 for(Int i=0; i < numModesForFullRD; i++)
 {
 CandCostList[i] = MAX_DOUBLE;
 BuffCandCostList[i]= MAX_DOUBLE;
 }
 CandNum = 0;

 Int modeIdx=0;

 Fun_count++;
 printf("function count is %d\n\n",Fun_count);

#pragma omp parallel for shared (uiStride,uiWidth, uiHeight, bAboveAvail, bLeftAvail)
 for(modeIdx = 0; modeIdx < numModesAvailable; modeIdx++)
 {
 UInt uiMode = modeIdx;
 UInt temp;
 printf("mode is %d \n\n",uiMode);
 totalThreads = omp_get_num_threads();
 printf("Total number of threads are %d\n",totalThreads);
 // printf("check point 1 is here\n\n");

 predIntraLumaAng(pcCU->getPattern(), uiMode, piPred, uiStride, uiWidth, uiHeight, bAboveAvail,
bLeftAvail);
 // }
 // printf("check point 2 is here\n\n");
 // use hadamard transform here
 UInt uiSad = m_pcRdCost->calcHAD(g_bitDepthY, piOrg, uiStride, piPred, uiStride, uiWidth,
uiHeight);
 // printf("check point 3 is here\n\n");
 UInt iModeBits = xModeBitsIntra(pcCU, uiMode, uiPU, uiPartOffset, uiDepth, uiInitTrDepth);
 // printf("check point 4 is here\n\n");
 Double cost = (Double)uiSad + (Double)iModeBits * m_pcRdCost->getSqrtLambda();
 // printf("check point 5 is here\n\n");
//#pragma omp critical
 // {
 BuffuiRdModeList[modeIdx]= uiMode;
 BuffCandCostList[modeIdx]=cost;

 }

83

 for(modeIdx = 0; modeIdx < numModesAvailable; modeIdx++)
 {
 CandNum = CandNum + xUpdateCandList(BuffuiRdModeList[modeIdx],
BuffCandCostList[modeIdx], numModesForFullRD, uiRdModeList, CandCostList);
 //}
 }

#if FAST_UDI_USE_MPM
 Int uiPreds[3] = {-1, -1, -1};
 Int iMode = -1;
 Int numCand = pcCU->getIntraDirLumaPredictor(uiPartOffset, uiPreds, &iMode);
 if(iMode >= 0)
 {
 numCand = iMode;
 }

//# pragma omp parallel for reduction (+:numModesForFullRD)
 for(Int j=0; j < numCand; j++)

 {
 Bool mostProbableModeIncluded = false;
 Int mostProbableMode = uiPreds[j];

 for(Int i=0; i < numModesForFullRD; i++)
 {
 mostProbableModeIncluded |= (mostProbableMode == uiRdModeList[i]);
 }
 if (!mostProbableModeIncluded)
 {
 uiRdModeList[numModesForFullRD++] = mostProbableMode;
 }
 }

#endif // FAST_UDI_USE_MPM
 }
 else
 {
 for(Int i=0; i < numModesForFullRD; i++)
 {
 uiRdModeList[i] = i;
 }
 }

 //===== check modes (using r-d costs) =====
#if HHI_RQT_INTRA_SPEEDUP_MOD
 UInt uiSecondBestMode = MAX_UINT;
 Double dSecondBestPUCost = MAX_DOUBLE;
#endif

 UInt uiBestPUMode = 0;
 UInt uiBestPUDistY = 0;
 UInt uiBestPUDistC = 0;
 Double dBestPUCost = MAX_DOUBLE;

//# pragma omp parallel for

84

 for(UInt uiMode = 0; uiMode < numModesForFullRD; uiMode++)
 {
 // set luma prediction mode
 UInt uiOrgMode = uiRdModeList[uiMode];

 pcCU->setLumaIntraDirSubParts (uiOrgMode, uiPartOffset, uiDepth + uiInitTrDepth);

 // set context models
 if(m_bUseSBACRD)
 {
 m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST]);
 }

 // determine residual for partition
 UInt uiPUDistY = 0;
 UInt uiPUDistC = 0;
 Double dPUCost = 0.0;
#if HHI_RQT_INTRA_SPEEDUP
 xRecurIntraCodingQT(pcCU, uiInitTrDepth, uiPartOffset, bLumaOnly, pcOrgYuv, pcPredYuv,
pcResiYuv, uiPUDistY, uiPUDistC, true, dPUCost);
#else
 xRecurIntraCodingQT(pcCU, uiInitTrDepth, uiPartOffset, bLumaOnly, pcOrgYuv, pcPredYuv,
pcResiYuv, uiPUDistY, uiPUDistC, dPUCost);
#endif

 // check r-d cost
 if(dPUCost < dBestPUCost)
 {
#if HHI_RQT_INTRA_SPEEDUP_MOD
 uiSecondBestMode = uiBestPUMode;
 dSecondBestPUCost = dBestPUCost;
#endif
 uiBestPUMode = uiOrgMode;
 uiBestPUDistY = uiPUDistY;
 uiBestPUDistC = uiPUDistC;
 dBestPUCost = dPUCost;

 xSetIntraResultQT(pcCU, uiInitTrDepth, uiPartOffset, bLumaOnly, pcRecoYuv);

 UInt uiQPartNum = pcCU->getPic()->getNumPartInCU() >> ((pcCU->getDepth(0) + uiInitTrDepth)
<< 1);
 ::memcpy(m_puhQTTempTrIdx, pcCU->getTransformIdx() + uiPartOffset, uiQPartNum * sizeof(
UChar));
 ::memcpy(m_puhQTTempCbf[0], pcCU->getCbf(TEXT_LUMA) + uiPartOffset, uiQPartNum *
sizeof(UChar));
 ::memcpy(m_puhQTTempCbf[1], pcCU->getCbf(TEXT_CHROMA_U) + uiPartOffset, uiQPartNum
* sizeof(UChar));
 ::memcpy(m_puhQTTempCbf[2], pcCU->getCbf(TEXT_CHROMA_V) + uiPartOffset, uiQPartNum
* sizeof(UChar));
 ::memcpy(m_puhQTTempTransformSkipFlag[0], pcCU->getTransformSkip(TEXT_LUMA) +
uiPartOffset, uiQPartNum * sizeof(UChar));
 ::memcpy(m_puhQTTempTransformSkipFlag[1], pcCU->getTransformSkip(TEXT_CHROMA_U) +
uiPartOffset, uiQPartNum * sizeof(UChar));
 ::memcpy(m_puhQTTempTransformSkipFlag[2], pcCU->getTransformSkip(TEXT_CHROMA_V) +
uiPartOffset, uiQPartNum * sizeof(UChar));
 }

85

#if HHI_RQT_INTRA_SPEEDUP_MOD
 else if(dPUCost < dSecondBestPUCost)
 {
 uiSecondBestMode = uiOrgMode;
 dSecondBestPUCost = dPUCost;
 }
#endif
 } // Mode loop

#if HHI_RQT_INTRA_SPEEDUP
#if HHI_RQT_INTRA_SPEEDUP_MOD
 for(UInt ui =0; ui < 2; ++ui)
#endif
 {
#if HHI_RQT_INTRA_SPEEDUP_MOD
 UInt uiOrgMode = ui ? uiSecondBestMode : uiBestPUMode;
 if(uiOrgMode == MAX_UINT)
 {
 break;
 }
#else
 UInt uiOrgMode = uiBestPUMode;
#endif

 pcCU->setLumaIntraDirSubParts (uiOrgMode, uiPartOffset, uiDepth + uiInitTrDepth);

 // set context models
 if(m_bUseSBACRD)
 {
 m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST]);
 }

 // determine residual for partition
 UInt uiPUDistY = 0;
 UInt uiPUDistC = 0;
 Double dPUCost = 0.0;
 xRecurIntraCodingQT(pcCU, uiInitTrDepth, uiPartOffset, bLumaOnly, pcOrgYuv, pcPredYuv,
pcResiYuv, uiPUDistY, uiPUDistC, false, dPUCost);

 // check r-d cost
 if(dPUCost < dBestPUCost)
 {
 uiBestPUMode = uiOrgMode;
 uiBestPUDistY = uiPUDistY;
 uiBestPUDistC = uiPUDistC;
 dBestPUCost = dPUCost;

 xSetIntraResultQT(pcCU, uiInitTrDepth, uiPartOffset, bLumaOnly, pcRecoYuv);

 UInt uiQPartNum = pcCU->getPic()->getNumPartInCU() >> ((pcCU->getDepth(0) + uiInitTrDepth)
<< 1);
 ::memcpy(m_puhQTTempTrIdx, pcCU->getTransformIdx() + uiPartOffset, uiQPartNum * sizeof(
UChar));
 ::memcpy(m_puhQTTempCbf[0], pcCU->getCbf(TEXT_LUMA) + uiPartOffset, uiQPartNum *
sizeof(UChar));

86

 ::memcpy(m_puhQTTempCbf[1], pcCU->getCbf(TEXT_CHROMA_U) + uiPartOffset, uiQPartNum
* sizeof(UChar));
 ::memcpy(m_puhQTTempCbf[2], pcCU->getCbf(TEXT_CHROMA_V) + uiPartOffset, uiQPartNum
* sizeof(UChar));
 ::memcpy(m_puhQTTempTransformSkipFlag[0], pcCU->getTransformSkip(TEXT_LUMA) +
uiPartOffset, uiQPartNum * sizeof(UChar));
 ::memcpy(m_puhQTTempTransformSkipFlag[1], pcCU->getTransformSkip(TEXT_CHROMA_U) +
uiPartOffset, uiQPartNum * sizeof(UChar));
 ::memcpy(m_puhQTTempTransformSkipFlag[2], pcCU->getTransformSkip(TEXT_CHROMA_V) +
uiPartOffset, uiQPartNum * sizeof(UChar));
 }
 } // Mode loop
#endif

 //--- update overall distortion ---
 uiOverallDistY += uiBestPUDistY;
 uiOverallDistC += uiBestPUDistC;

 //--- update transform index and cbf ---
 UInt uiQPartNum = pcCU->getPic()->getNumPartInCU() >> ((pcCU->getDepth(0) + uiInitTrDepth) <<
1);
 ::memcpy(pcCU->getTransformIdx() + uiPartOffset, m_puhQTTempTrIdx, uiQPartNum * sizeof(
UChar));
 ::memcpy(pcCU->getCbf(TEXT_LUMA) + uiPartOffset, m_puhQTTempCbf[0], uiQPartNum *
sizeof(UChar));
 ::memcpy(pcCU->getCbf(TEXT_CHROMA_U) + uiPartOffset, m_puhQTTempCbf[1], uiQPartNum *
sizeof(UChar));
 ::memcpy(pcCU->getCbf(TEXT_CHROMA_V) + uiPartOffset, m_puhQTTempCbf[2], uiQPartNum *
sizeof(UChar));
 ::memcpy(pcCU->getTransformSkip(TEXT_LUMA) + uiPartOffset,
m_puhQTTempTransformSkipFlag[0], uiQPartNum * sizeof(UChar));
 ::memcpy(pcCU->getTransformSkip(TEXT_CHROMA_U) + uiPartOffset,
m_puhQTTempTransformSkipFlag[1], uiQPartNum * sizeof(UChar));
 ::memcpy(pcCU->getTransformSkip(TEXT_CHROMA_V) + uiPartOffset,
m_puhQTTempTransformSkipFlag[2], uiQPartNum * sizeof(UChar));
 //--- set reconstruction for next intra prediction blocks ---
 if(uiPU != uiNumPU - 1)
 {
 Bool bSkipChroma = false;
 Bool bChromaSame = false;
 UInt uiLog2TrSize = g_aucConvertToBit[pcCU->getSlice()->getSPS()->getMaxCUWidth() >> (pcCU-
>getDepth(0) + uiInitTrDepth)] + 2;
 if(!bLumaOnly && uiLog2TrSize == 2)
 {
 assert(uiInitTrDepth > 0);
 bSkipChroma = (uiPU != 0);
 bChromaSame = true;
 }

 UInt uiCompWidth = pcCU->getWidth (0) >> uiInitTrDepth;
 UInt uiCompHeight = pcCU->getHeight(0) >> uiInitTrDepth;
 UInt uiZOrder = pcCU->getZorderIdxInCU() + uiPartOffset;
 Pel* piDes = pcCU->getPic()->getPicYuvRec()->getLumaAddr(pcCU->getAddr(), uiZOrder);
 UInt uiDesStride = pcCU->getPic()->getPicYuvRec()->getStride();
 Pel* piSrc = pcRecoYuv->getLumaAddr(uiPartOffset);
 UInt uiSrcStride = pcRecoYuv->getStride();

87

 for(UInt uiY = 0; uiY < uiCompHeight; uiY++, piSrc += uiSrcStride, piDes += uiDesStride)
 {
 for(UInt uiX = 0; uiX < uiCompWidth; uiX++)
 {
 piDes[uiX] = piSrc[uiX];
 }
 }
 if(!bLumaOnly && !bSkipChroma)
 {
 if(!bChromaSame)
 {
 uiCompWidth >>= 1;
 uiCompHeight >>= 1;
 }
 piDes = pcCU->getPic()->getPicYuvRec()->getCbAddr(pcCU->getAddr(), uiZOrder);
 uiDesStride = pcCU->getPic()->getPicYuvRec()->getCStride();
 piSrc = pcRecoYuv->getCbAddr(uiPartOffset);
 uiSrcStride = pcRecoYuv->getCStride();
 for(UInt uiY = 0; uiY < uiCompHeight; uiY++, piSrc += uiSrcStride, piDes += uiDesStride)
 {
 for(UInt uiX = 0; uiX < uiCompWidth; uiX++)
 {
 piDes[uiX] = piSrc[uiX];
 }
 }
 piDes = pcCU->getPic()->getPicYuvRec()->getCrAddr(pcCU->getAddr(), uiZOrder);
 piSrc = pcRecoYuv->getCrAddr(uiPartOffset);
 for(UInt uiY = 0; uiY < uiCompHeight; uiY++, piSrc += uiSrcStride, piDes += uiDesStride)
 {
 for(UInt uiX = 0; uiX < uiCompWidth; uiX++)
 {
 piDes[uiX] = piSrc[uiX];
 }
 }
 }
 }

 //=== update PU data ====
 pcCU->setLumaIntraDirSubParts (uiBestPUMode, uiPartOffset, uiDepth + uiInitTrDepth);
 pcCU->copyToPic (uiDepth, uiPU, uiInitTrDepth);
// Fun_count++;
 } // PU loop

// printf("total outer functions are %d\n\n",Fun_count);
 if(uiNumPU > 1)
 { // set Cbf for all blocks
 UInt uiCombCbfY = 0;
 UInt uiCombCbfU = 0;
 UInt uiCombCbfV = 0;
 UInt uiPartIdx = 0;
 for(UInt uiPart = 0; uiPart < 4; uiPart++, uiPartIdx += uiQNumParts)
 {
 uiCombCbfY |= pcCU->getCbf(uiPartIdx, TEXT_LUMA, 1);
 uiCombCbfU |= pcCU->getCbf(uiPartIdx, TEXT_CHROMA_U, 1);
 uiCombCbfV |= pcCU->getCbf(uiPartIdx, TEXT_CHROMA_V, 1);
 }

88

 for(UInt uiOffs = 0; uiOffs < 4 * uiQNumParts; uiOffs++)
 {
 pcCU->getCbf(TEXT_LUMA)[uiOffs] |= uiCombCbfY;
 pcCU->getCbf(TEXT_CHROMA_U)[uiOffs] |= uiCombCbfU;
 pcCU->getCbf(TEXT_CHROMA_V)[uiOffs] |= uiCombCbfV;
 }
 }

 //===== reset context models =====
 if(m_bUseSBACRD)
 {
 m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST]);
 }

 //===== set distortion (rate and r-d costs are determined later) =====
 ruiDistC = uiOverallDistC;
 pcCU->getTotalDistortion() = uiOverallDistY + uiOverallDistC;
}

89

Appendix E

Acronyms

90

Acronyms

API: Application Programming Interface

AVC: Advanced Video Coding

AVS: Audio Video Coding Standard

BD: Bjontegaard Delta

CABAC: Context Adaptive Binary Arithmetic Coding

CB: Coding Block

CE: Consumer Electronics

CPU: Central Processing Unit

CSVT: Circuits and Systems for Video Technology

CTB: Coding Tree Block

CTU: Coding Tree Unit

CU: Coding Unit

CUDA: Compute Unified Device Architecture

DCC: Data Compression Conference

DCT: Discrete Cosine Transform

DST: Discrete Sine Transform

FDIS: Final Draft International Standard

FORTRAN: Formula Translating System

HD: High Definition

HDMI: High Definition Multimedia Interface

HEVC: High Efficiency Video Coding

ICASSP: International Conference on Acoustics, Speech and Signal Processing

ICIP: International Conference on Image Processing

IEC: International Electrotechnical Commission

ISO: International Organization for Standardization

ITU-T: International Telecommunication Union – Telecommunication Standardization Sector

JCT-VC: Joint Collaborative Team on Video Coding

91

MC: Motion Compensation

MCP: Motion Compensated Predication

MPEG: Moving Picture Experts Group

MPI: Message Passing Interface

MPM: Most Probable Mode

MVC: Multiview video coding

NGVC: Next Generation Video Coding

OPENMP: Open Multiprocessing

PB: Prediction Block

PCM: Pulse Code Modulation

PSNR: Peak Signal to Noise Ratio

PU: Prediction Unit

RD: Rate Distortion

SAO: Sample Adaptive Offset

SATD: Sum Of Absolute Transformed Difference

SIMD: Single Instruction Multiple Data

SVC: Scalable Video coding

TB: Transform Block

VCEG: Video Coding Experts Group

VCIP: Visual Communication and Image Processing

92

References

[1] G.J. Sullivan et al, “Overview of the high efficiency video coding (HEVC) standard”, IEEE Trans.
CSVT, vol. 22, pp.1649-1668, Dec.2012.

[2] C.C.Chi et al, “Parallel scalability and efficiency of HEVC parallelization approaches”, IEEE Trans.
CSVT, vol. 22, pp.1827-1838, Dec.2012.

[3] J. Lainema et al, ”Intra coding of the HEVC standard”, IEEE Trans. CSVT,vol.22, pp.1792-1801,
Dec.2012.

[4] F. Bossen et al, “HEVC complexity and implementation analysis”, IEEE Trans. CSVT, vol. 22,
pp.1685-1696, Dec.2012.

[5] P. Hanhart et al, “Subjective quality evaluation of the upcoming HEVC video compression standard”
SPIE Applications of digital image processing XXXV, vol.8499, pp.8499-30, Aug.2012.

[6] J.-R Ohm, et al, “Comparison of the coding efficiency of video coding standards- including high
efficiency video coding (HEVC)” , IEEE Trans. CSVT , vol.22, pp.1669-1684, Dec.2012.

[7] X. Zhang, S. Liu and S. Lei, ”Intra mode coding in HEVC standard”, Visual Communications and
Image Processing, VCIP 2012, pp. 1-6, San Diego, CA, Nov.2012.

[8] Y.Duan, “An optimized real time multi-thread HEVC decoder”, Visual Communications and Image
Processing, VCIP 2012, pp.1, San Diego, CA, Nov.2012.

[9] G. Correa et al, “Performance and computational complexity assessment of high efficiency video
encoders”, IEEE Trans. CSVT, vol.22, pp.1899-1909, Dec.2012.

[10] A.Saxena, F. Fernandes and Y. Reznik, ”Fast transforms for intra-prediction-based image and video
coding,” in Proc. IEEE Data Compression Conference (DCC‟13), pp.13-22, Snowbird, UT, Mar.2013.

[11]HEVC open source software (encoder/decoder)
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-9.1-dev/

[12] Introduction to parallel computing https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

[13] Information about quad tree structure of HEVC http://codesequoia.wordpress.com/2012/10/28/hevc-
ctu-cu-ctb-cb-pb-and-tb/

[14] Guide into OpenMP: Easy multithreading programming for C++
http://bisqwit.iki.fi/story/howto/openmp/

[15] Website for downloading test sequence for research purposes
http://media.xiph.org/video/derf/

[16] Information on developments in HEVC NGVC- Next generation video coding
http://bisqwit.iki.fi/story/howto/openmp/

[17] F. Bossen, D. Flynn and K. Suhring (July 2012), “HEVC reference software manual” online available:
http://phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip

 [18] JCT-VC documents are publicly available at http://ftp3.itu.ch/av-arch/jctvc-site and http://phenix.it-
sudparis.eu/jct/

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-9.1-dev/
https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
http://bisqwit.iki.fi/story/howto/openmp/
http://media.xiph.org/video/derf/
http://bisqwit.iki.fi/story/howto/openmp/
http://phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip
http://ftp3.itu.ch/av-arch/jctvc-site
http://phenix.it-sudparis.eu/jct/
http://phenix.it-sudparis.eu/jct/

93

[19] Information about basics of video compression
http://desktopvideo.about.com/od/videoonyourwebsite/qt/compress.htm

[20] Video research project
http://www1.curriculum.edu.au/videoresearch/compression.htm

[21] Video compression basics
http://wolfcrow.com/blog/what-is-video-compression/

[22] T.L Silva et al, ”HEVC intra coding acceleration based on tree inter-level mode correlation”, SPA
2013 Sep.2013, Poznan, Poland

[23] A. Saxena and F. Fernanades, “Mode dependent DCT/DST for intra prediction in block based
image/video coding”, IEEE ICIP, pp. 1685-1688, Sept. 2011.

[24] H. Zhang and Z. Ma, ”Fast intra prediction for high efficiency video coding ”, Pacific Rim Conf. on
Multimedia, PCM2012, Singapore, Dec.2012.

[25] M. Zhang, C. Zhao and J. Xu, ”An adaptive fast intra mode decision in HEVC ”, IEEE ICIP 2012,
pp.221-224, Orlando, FL, Sept.- Oct.2012.

[25] K. Chen et al, ”Efficient SIMD optimization of HEVC encoder over X86 processors”, APSIPA, pp.
1732-1745, Los Angeles, CA, Dec. 2012.

[26] Y. Kim et al, “A fast intra-prediction method in HEVC using rate-distortion estimation based on
Hadamard transform”, ETRI Journal, vol.35, #2, pp.270-280, Apr.2013.

[27] T. Wiegand et al., ”Overview of the H.264/AVC Video Coding Standard”, IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560-576, Jul.2003.

[28] M. Khan et al, “An adaptive complexity reduction scheme with fast prediction unit decision for HEVC
Intra encoding”, IEEE ICIP, pp. 1578-1582, Sept. 2013.

[29] ITU-T, “Video Codec for Audiovisual Services at px64 Kbit/s”, ITU-T Recommendation H.261,
Version 1: Nov. 1990; Version 2: Mar. 1993.

[30] ITU-T, “Video coding for low bit rate communication”, ITU-T Recommendation H.263, Nov. 1995 (and
subsequent editions)

[31] ISO/IEC JTC 1, “Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to
about 1.5 Mbit/s – Part 2: Video”, ISO/IEC 11172 (MPEG-1),1993.

[32] ISO/IEC JTC 1, “Coding of audio-visual objects – Part 2: Visual”, ISO/IEC 14496-2 (MPEG-4 Visual
version 1), April 1999 (and subsequent editions).

[33] ITU-T and ISO/IEC JTC 1, “Generic coding of moving pictures and associated audio information- Part
2: Video”, ITU-T Recommendation H.262 and ISO/IEC 13818-2 (MPEG @ Video), Nov. 1994.

[34] ITU-T and ISO/IEC JTC 1, “Advanced Video Coding for generic audio-visual services”, ITU-T
Recommendation H.264 and ISO/IEC 14496-10 (AVC), May 2003 (and subsequent editions).

[35] K.R. Rao, D.N. Kim and J.J. Hwang, “Video coding standards: AVS China, H.264/MPEG-4 Part 10,
HEVC, VP6, DIRAC and VC-1”, Springer, 2014.

[36] Generic quadtree based approach for block partitioning

http://desktopvideo.about.com/od/videoonyourwebsite/qt/compress.htm
http://www1.curriculum.edu.au/videoresearch/compression.htm
http://wolfcrow.com/blog/what-is-video-compression/

94

http://www.hhi.fraunhofer.de/fields-of-competence/image-processing/research-groups/image-video-
coding/hevc-high-efficiency-video-coding/generic-quadtree-based-approach-for-block-partitioning.html

[37] Information about context based binary arithmetic coding
http://www.hhi.fraunhofer.de/de/kompetenzfelder/image-processing/research-groups/image-video-
coding/statistical-modeling-coding/context-based-adaptive-binary-arithmetic-coding-cabac.html

[38] Basics of video
http://lea.hamradio.si/~s51kq/V-BAS.HTM

[39] Circuit implementation of High-Efficiency video coding tools
http://dspace.mit.edu/bitstream/handle/1721.1/75691/820028934.pdf?sequence=1

[40] A. Norkin et al., ”HEVC Deblocking Filter”, IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1746-1754, Dec.2012.
A. Norkin et al., ”Corrections to HEVC Deblocking Filter”, IEEE Trans. Circuits Syst. Video Technol., vol.
23, no. 12, pp. 2141, Dec.2013.

[41] C. Fogg, “Suggested figures for the HEVC specification”, ITU-T/ISO/IEC Joint Collaborative Team on
Video Coding (JCT-VC) document JCTVC- J0292r1, July 2012.

[42] Video compression basics
http://www.nt.tuwien.ac.at/fileadmin/users/psvoboda/video-basics.pdf

[43] G.J. Sullivan et al, “Standardized Extension of High Efficiency Video Coding (HEVC)”, IEEE Journal
of Selected topics in Signal processing, vol. 7, no. 6, pp.1001-1016, Dec.2013.

[44] Special issue on emerging research and standards in next generation video coding, IEEE Trans.
CSVT, vol.22, pp.1646-1909, Dec. 2012.

[45] G.J. Sullivan, “HEVC; The next generation in video compression”. Keynote speech, Visual
Communications and Image Processing, VCIP 2012, San Diego, CA, 27-30 Nov.2012.

[46] M.T Pourazad et al,”HEVC: The new gold standard for video compression”, IEEE CE magazine vol.1,
issue 3, pp. 36-46, July 2012.

[47] J-R. Ohm, T. Wiegand and G.J. Sullivan, “Video coding progress; The high efficiency video coding
(HEVC) standard and its future extensions”, IEEE ICASSP, Tutorial, Vancouver, Canada, 2013.

[48] Several papers on HEVC in the poster session IVMSP-P3: Video coding II, IEEE ICASSP 2013,
Vancouver, Canada, June 2013.

[49] HEVC tutorial by I.E.G. Richardson: http://www.vcodex.com/h265.html

[50] JCT-VC documents can be found in JCT-VC document management system http://phenix.int-
evry.fr/ict

[51] VCEG & JCT documents available from
http://wftp3.itu.int/av-arch in the video-site and jvt-site folders

[52] HEVC encoded bit streams
ftp://ftp.kw.bbc.co.uk/hevc/hm-11.0-anchors/bitstreams/

[53] J. Lainema and K. Ugur, “Angular Intra Prediction in High Efficiency Video Coding”, IEEE 13

th

International Workshop on Multimedia Signal Processing (MMSP) , pp. 1-5, Oct. 2011.

http://www.hhi.fraunhofer.de/fields-of-competence/image-processing/research-groups/image-video-coding/hevc-high-efficiency-video-coding/generic-quadtree-based-approach-for-block-partitioning.html
http://www.hhi.fraunhofer.de/fields-of-competence/image-processing/research-groups/image-video-coding/hevc-high-efficiency-video-coding/generic-quadtree-based-approach-for-block-partitioning.html
http://www.hhi.fraunhofer.de/de/kompetenzfelder/image-processing/research-groups/image-video-coding/statistical-modeling-coding/context-based-adaptive-binary-arithmetic-coding-cabac.html
http://www.hhi.fraunhofer.de/de/kompetenzfelder/image-processing/research-groups/image-video-coding/statistical-modeling-coding/context-based-adaptive-binary-arithmetic-coding-cabac.html
http://lea.hamradio.si/~s51kq/V-BAS.HTM
http://dspace.mit.edu/bitstream/handle/1721.1/75691/820028934.pdf?sequence=1
http://www.nt.tuwien.ac.at/fileadmin/users/psvoboda/video-basics.pdf
http://www.vcodex.com/h265.html
http://phenix.int-evry.fr/ict
http://phenix.int-evry.fr/ict
http://wftp3.itu.int/av-arch
ftp://ftp.kw.bbc.co.uk/hevc/hm-11.0-anchors/bitstreams/

95

[54] T. Silva, L.Agostini and L.Cruz, “Fast HEVC Intra Prediction Mode Decision Based on Edge Direction
Information”, 20th European Signal Processing Conference (EUSIPCO 2012), pp. 1214-1218, Aug. 2012.

[55] High Efficiency Video Coding Test Model Available in:
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-4.0/,2011

[56] J. Sole et al, “Transform Coefficient Coding in HEVC”, IEEE Trans. CSVT, vol. 22, no.12 pp.1765-
1777, Dec.2012.

[57] Introductions to parallel programming
https://computing.llnl.gov/tutorials/parallel_comp/

[58] Introduction to parallel programming and MapReduce
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAn
dMapReduce.pdf

[59] Information about shared memory
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/shm/what-is-shm.html

[60] Definition of thread
http://www.techopedia.com/definition/27857/thread

[61] Information about message passing interface
http://www.hpcvl.org/faqs/programming/mpi-message-passing-interface

[62] Information about Data parallel programming model
http://insidehpc.com/2006/03/what-is-data-parallel-programming/

[63] Information about Load imbalance
https://software.intel.com/en-us/articles/load-balancing-between-threads

[64] Description about race around condition and deadlocks
http://support.microsoft.com/kb/317723

[65] Information and example for deadlock
http://www.roseindia.net/java/thread/deadlocks.shtml

[66] Open MP components
http://www.capsl.udel.edu/courses/cpeg421/2012/slides/openmp_tutorial_04_06_2012.pdf

[67] OpenMP Run time library routines
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-
D3FC1F0B-DD99-4176-B9B5-56EEE72E81A7.htm

[68] OpenMP environment variable
http://msdn.microsoft.com/en-us/library/6sfk977f.aspx

[69] OpenMP tutorial
https://computing.llnl.gov/tutorials/openMP/#Abstract

[70] Information about OpenMP clauses
https://software.intel.com/sites/products/documentation/studio/composer/en-
us/2011Update/compiler_c/optaps/common/optaps_par_dirs.htm

[71] Information regarding OpenMP environment variables
http://msdn.microsoft.com/en-us/library/tt15eb9t.aspx

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-4.0/,2011
https://computing.llnl.gov/tutorials/parallel_comp/
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/shm/what-is-shm.html
http://www.techopedia.com/definition/27857/thread
http://www.hpcvl.org/faqs/programming/mpi-message-passing-interface
http://insidehpc.com/2006/03/what-is-data-parallel-programming/
https://software.intel.com/en-us/articles/load-balancing-between-threads
http://support.microsoft.com/kb/317723
http://www.roseindia.net/java/thread/deadlocks.shtml
http://www.capsl.udel.edu/courses/cpeg421/2012/slides/openmp_tutorial_04_06_2012.pdf
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-D3FC1F0B-DD99-4176-B9B5-56EEE72E81A7.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-D3FC1F0B-DD99-4176-B9B5-56EEE72E81A7.htm
http://msdn.microsoft.com/en-us/library/6sfk977f.aspx
https://computing.llnl.gov/tutorials/openMP/#Abstract
https://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_par_dirs.htm
https://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_par_dirs.htm
http://msdn.microsoft.com/en-us/library/tt15eb9t.aspx

96

[72] Official website for information on OpenMP
http://openmp.org/wp/

[72] Official website for information on OpenMP
http://openmp.org/wp/

[73] D.P. Kumar, “Intra Frame Luma Prediction using Neural Networks in HEVC”, website: http://www-
ee.uta.edu/Dip/Courses/EE5359/Dilip_Thesis_Document.pdf, Thesis, University of Texas at Arlington,
UMI Dissertation Publishing, May 2013

[74] M.Mrak, A. Gabriellini , D.Flynn, “Parallel processing for combined intra prediction in high efficiency
video coding”, IEEE ICIP, pp.3489 -3492, Sept. 2011.

[75] J.Rehman, Y. Zhang,”Fast Intra Prediction mode decision using parallel processing”, Proceedings of
the fourth international conference on machine learning and cybernetics, pp.5094-5098, Aug. 2005

[76]Overhead in openMP parameters
http://www.embedded.com/design/mcus-processors-and-socs/4007155/Using-OpenMP-for-programming-
parallel-threads-in-multicore-applications-Part-2

[77] X. Li et al, “Rate-Complexity-Distortion evaluation for hybrid video coding”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 21, pp. 957- 970, July 2011.

[78] V.Sze, M.Budagavi, G.J. Sullivan, “High Efficiency Video Coding (HEVC)- Algorithm and
Architectures”, Springer, 2014.

[79] Spiros N Agathos, P. Hadjidoukas and V. Dimakopoulos,“Task based execution of Nested OpenMP
loops”, Springer, 2012.

[80] R.Chandra et al, “Parallel programming in OpenMP”, Academic Press, 2001.

[81] R.Eigenmann, B. Supinski, “OpenMP in a New Era of Parallelism”, 4

th
 International Workshop,

IWOMP 2008 West Lafayette, IN, USA proceedings, Springer 2008.

[82] Getting Started with CUDA
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_N
VISION08.pdf

[83] Multithreaded programming guide
http://docs.oracle.com/cd/E19253-01/816-5137/ggedn/index.html

[84] Information about Pthread
http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread.h.html

[85] H. Jain,” Fast intra mode decision in high efficiency video coding”, M.S. Thesis, EE Dept., UTA, Aug
2014. Access from www.uta.edu/faculty/krrrao/dip

[86] S. Gangavati, ”Complexity reduction of H.264 using parallel programming”, M.S. Thesis,EE
Dept.,UTA, Dec 2012. Access from www.uta.edu/faculty/krrrao/dip

[87] T. Saxena, “Reducing the encoding time for H.264 baseline profile using parallel programming
techniques”, M.S. Thesis, EE Dept., UTA, June 2012. Access from www.uta.edu/faculty/krrrao/dip

http://openmp.org/wp/
http://openmp.org/wp/
http://www-ee.uta.edu/Dip/Courses/EE5359/Dilip_Thesis_Document.pdf
http://www-ee.uta.edu/Dip/Courses/EE5359/Dilip_Thesis_Document.pdf
http://www.embedded.com/design/mcus-processors-and-socs/4007155/Using-OpenMP-for-programming-parallel-threads-in-multicore-applications-Part-2
http://www.embedded.com/design/mcus-processors-and-socs/4007155/Using-OpenMP-for-programming-parallel-threads-in-multicore-applications-Part-2
http://docs.oracle.com/cd/E19253-01/816-5137/ggedn/index.html
http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread.h.html
http://www.uta.edu/faculty/krrrao/dip
http://www.uta.edu/faculty/krrrao/dip
http://www.uta.edu/faculty/krrrao/dip

97

Biographical Information

Pratik Devendrakumar Mehta was born in Nes, Gujarat, India in 1987. After completing his

schooling at Saraswati Vidyalaya, Bhayander in 2003, he went on to obtain his Diploma of Engineering in

Industrial Electronics, Bhausaheb Vartak Polytechnic, India from 2003-2007. After which he completed

his bachelors in Electronics Engineering from 2007-2010 and then went on to work at Infosys

Technologies Limited as System Engineer till 2012.

He joined University of Texas at Arlington, USA to pursue his Masters in Electrical Engineering in

Fall 2012. He also worked as research assistant in Multimedia Processing Lab. He work for 2 semesters

as Coop at Blackberry as Field test specialist from Jan 2014 to Aug 2014.

