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Abstract 

COMPOSITE MATERIALS EQUIVALENT PROPERTIES 

IN LAMINA, LAMINATE, AND 

STRUCTURE LEVELS 

 

Kamran Tavakoldavani, MS 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Wen S Chan 

Increasing use of thick composite structures requires a large model for structural 

analysis. In the analysis, equivalent properties of composites are often used. The 

equivalent properties of a composite are defined as the properties of a homogeneous 

orthotropic composite to representative an anisotropic heterogeneous composite material. 

A set of equations for equivalent mechanical and thermal properties in lamina and 

laminate as well as structures was developed. The developed model for lamina and 

laminate of composite was based upon the equivalent structural characteristics of 00 lamina 

and homogenized 00 laminate for lamina and laminate level, respectively. The concept of 

narrow beam was enforced in an I-beam serving as an example for structural level. 

Laminates with symmetric/unsymmetrical, balanced/unbalanced or combined layup was 

used for study. Results indicate the equivalent properties exhibiting a significant difference 

in laminate with unsymmetrical and unbalanced layup comparing with FEM results. 
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Chapter 1  

Introduction 

1.1 Background 

Using composite materials in engineering industries requires complicated analysis and 

modeling which in most cases computer software runs the analysis. In the case of a thick 

laminate or a structure it would be a time consuming procedure to predict the mechanical and 

thermal properties of the desired laminate or structure by ply-by-ply approach. 

In composite materials the properties are different depending on the fiber orientation in 

the matrix so knowing the properties or obtaining the correct and more accurate properties is a 

very important key when it comes to analyzing the structures. It’s difficult and time consuming to 

calculate the properties of a very thick laminate with each layer having different stacking 

sequence. When analyzing a thick laminate, it would be simpler and less time consuming to use 

average properties that would represent the desired model, instead of going through the 

calculations and obtaining the stiffness matrices for each layer. 

Three different levels are considered in this research for the analysis of composite 

materials such as Lamina, laminate and structure levels. When it comes to analyzing a thick 

laminate or a composite structure, it is difficult and it takes a large amount of computer memory. 

So in order to overcome these difficulties, equivalent properties of lamina or laminate are often 

used. Equivalent properties or effective stiffness properties are an average measure of the 

stiffness of the desired material. The actual averaging process in order to obtain equivalent 

properties must be done carefully and delicately. The process is to replace the heterogeneous 

medium by a macroscopic homogeneity material. This condition is so called effective or 

equivalent homogeneity. The basic problem is to utilize the averaging process to predict the 

equivalent properties of the idealized homogeneous medium. So the resulting equivalent 

properties are to be employed in the analysis of composite materials. Several methods have been 

proposed predicting equivalent properties. One would introduce a homogeneous volume element 

which is representing the heterogeneous material volume element. Average stress and average 
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strain are defined for the representative volume element under the macroscopic homogeneous 

condition. Once the average stress and average strain are obtained, then the stiffness 

components can be calculated. Since predicting the properties of a laminate is time consuming so 

often in analysis of composite materials lumping group of plies into a single layer would reduce 

the size of the analysis and calculations. Equivalent properties are used in order to replace the 

lumped heterogeneous medium by an equivalent homogeneous material. For example consider a 

laminate with different layers and material orientation that has been lumped into one layer, so the 

equivalent properties would represent the lumped layers which behaves as if the fiber orientation 

in that layer is “0” degree. 

Computer software such as ANSYS-APDL, and Mathematica can be used for numerical 

and analytical methods obtaining and predicting the mechanical and thermal properties of the 

lumped layers which represent the desired laminate or structure. A number of methods have 

been proposed for obtaining equivalent properties of composite materials such as conventional 

method and Modified method which are the focus of this research. 

1.2 Objectives 

The purpose of this thesis is to develop sets of procedures and calculations in order to 

obtain equivalent properties in all levels, lamina, laminate, and structure. The two methods that 

are considered in this thesis in order to obtain these properties are conventional properties 

method and modified method. 

The conventional method uses smeared properties, but in the case of an angle ply, this 

method does not consider the shear strain produced by an applied axial force. Also In the case of 

a laminate under a simple tension, if the laminate is un-symmetric and/or un-balanced, it would 

produce curvature and shear strain which both of them are ignored by this method. The modified 

method considers the coupling effect of the combined axial and the bending loads that were 

induced in deriving the equivalent properties. 

Analytical method which is done by using Mathematica software is considered in order to 

obtain equivalent properties and numerical method by ANSYS is considered in order to validate 
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the results obtained from both methods. In Mathematica one program file is designed which 

contains all the three levels: lamina, laminate, and structure analysis and calculations. This file is 

divided into 3 different sections or subprograms. Program-1 contains lamina calculations, 

program-2 contains laminate calculations and program-3 contains structure calculations such as 

I-beam. 

Numerical method is conducted by using ANSYS-APDL. For the case of a laminate which 

is subjected to an axial load, the stress results obtained by ANSYS are compared against ply-by-

ply stress results from modified and conventional methods in order to confirm the accuracy of 

modified method. Also thermal load that are induced by temperature difference in the laminate is 

conducted in this thesis. Normal and shear stresses induced by thermal load are calculated by 

employing modified and conventional methods and the results are compared against ANSYS 

thermal analysis for accuracy confirmation. 

At the structural level for the I-Beam cross section, the two methods that are considered 

are modified method and smeared properties approach. The equivalent axial stiffness and the 

bending stiffness of the I-beam are obtained by employing these two methods. Stress analysis is 

conducted using the modified and smeared properties approach, and the results are compared 

against the classical lamination theory and ANSYS software. 

1.3 Outlines 

Chapter 2 discusses the concepts of equivalent properties of materials in general view. It 

gives an over history and background about these properties and the important points about 

them. 

Chapter 3 conducts the analysis and calculations for obtaining the equivalent properties 

for a lamina by employing the modified method and the conventional method. 

Chapter 4 discusses the procedures in order to obtain the equivalent properties for a 

laminate by using the two methods. 
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Chapter 5, its focus is on I-beam structure, and calculating the sectional properties by 

employing the modified method and the smeared properties method. Also the stress analysis of 

the I-beam section is conducted, and the results obtained by both methods are illustrated. 

Finally, chapter 6 is the conclusion of this thesis. 
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Chapter 2  

Concepts of equivalent properties of materials 

Materials have variety of properties, this includes mechanical and thermal properties. In 

the laboratories it has been found the combination of materials can improve the properties of 

materials. Engineers obtained a fundamental understanding of materials behavior in 

heterogeneous materials so that further improvements can be achieved. On scale of atoms and 

molecules all materials are heterogeneous. If materials were designed at this level of observation, 

the task would be very difficult to establish. To overcome this difficulty the continuum hypothesis 

is introduced. This hypothesis provides a statistical average process, and structure of the material 

is idealized as one in which the material is taken as a continuum. This continuum hypothesis 

involves the existence of certain measures associated with properties that govern the 

deformability of the media. These properties reflect averages of necessarily interactions on the 

molecular or atomic scale. Once the continuum model is constructed, the concept of homogeneity 

is of relevance. For a homogeneous medium the inherent properties that characterize it are the 

same at all points of the medium. Conditions of homogeneity and isotropy are assumed here to 

prevail within individual phases. The scale of the inhomogeneity is assumed to be orders of 

magnitude smaller than the characteristic dimension of the problem of interest. This condition just 

described is said to be that of effective or equivalent homogeneity. With the admissibility of 

equivalent homogeneity, the fundamental problem in heterogeneous material behavior can now 

be posed. The basic problem is to utilize the averaging process to predict the effective properties 

of the idealized homogeneous medium in terms of the properties of the individual phases and 

some information on the interfacial geometry. The resulting effective properties are those that 

would be employed in the analysis of a load bearing body composed of the composite material. 

The relationship between the effective properties and the individual phase properties plus the 

analysis of the structural problem of interest then provides the means of optimizing structural 

performance by varying individual phase properties or characteristics. One of the reasons that the 

effective properties are important is because it’s highly developed aspect of the subject of 
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heterogeneous media behavior. An understanding of the role individual phase plays in the overall 

macroscopic behavior of composite materials provides the key by which materials can be 

judiciously selected for optimal combinations. Without such knowledge, the field of 

heterogeneous material behavior primarily would be just an offshoot of anisotropic elasticity. 

There many different geometric forms give drastically different reinforcing effects, so far as the 

effective moduli are concerned. 

2.1 Literature review 

They have been numbers of publications regarding predicting composite materials 

properties and equivalent or effective properties of composite materials. Micromechanics, 

Macromechanics in all levels of lamina, laminate, and structure analysis. 

Fundamental principles of composite material stiffness predictions, Richardson [1] 

predicts stiffness used in this presentation are rule of mixtures (ROM), ROM with efficiency factor, 

Hart-Smith 10% rule, classical laminate analysis, and empirical formulae. 

In, discussing effective properties of composites, Lydzba [2] used the homogenization 

method is to define for the heterogeneous medium that possesses the property of statistical 

homogeneity an equivalent homogeneous material that would have the same average properties. 

There are two methods in order to formulate the homogenization problem. One method 

incorporates the notion of representative volume element on volume averaging of the basic field 

variable. Fields that are discontinuous at the level of in-homogeneities undergo smoothing 

through the process of volume averaging. This method is called smoothing method or a 

micromechanics method. Other method is the mathematical theory of homogenization. The 

homogenization method is perceived as a smoothing method which is a representative volume 

element. Small volume is defined that has all the information to describe the structure and 

properties of the material on the macro scale. Representative volume element is large enough in 

order to include all elements of a microstructural arrangement. The transition from micro to macro 

scale is based on the averaging method. 
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Increasing the use of thick laminates and thick composite structures require a large 

model for structural analysis. Chan and his associates [3] represented the lumping procedures in 

which a group of plies lumped into a single layer to reduce the size of the problem and to 

increase the efficient computation which is often used in thick composite structure modeling. By 

doing so, the use of equivalent properties for replacing the lumped heterogeneous medium by an 

equivalent homogenous material is required. This study focuses on developing the equivalent 

coefficient of hygrothermal expansion of lumped layer by taking into account for induced 

curvature and shear deformation for an un-symmetrical and un-balanced laminates. The stress 

results for each ply by employing the modified method were almost identical as the results 

obtained by using a full model. 

Closed form expansions of effective moduli that account for bending and shear induced 

deformation, used by Chan, and Chen [4] in layer lumping of finite element method analysis. The 

study demonstrates the accuracy of the present approach, quasi-3D and fully 3D FEM models of 

graphite/epoxy laminate which is subjected to a tension, bending, and torsion are investigated. 

The stress results for interlaminar stresses obtained by employing the present method were more 

appropriate than the results obtained by employing the conventional method. 

In composite laminated structures, the idea of using rod reinforcement instead of 

conversional tape reinforcement, Chan, Wang [5] to ensure the structure fully exploits and fiber 

capability. The fiber waviness exists in the Prepreg tape when thin tape is unrolled for use. For a 

structure made of Prepreg tapes, fiber waviness also often occurs in the cured laminates. When 

such a structure is under a load, the stress distribution for a rod reinforced structure is more 

complex than for a tape reinforced structure. The main goal of this work is to conduct a buckling 

analysis of the Rodpack laminates with extreme damage. Damages considered in this study are 

broken rods. Rods split vertically and horizontally, and delamination between the rod layers and 

unidirectional plies. 

This paper presents a theoretical and experimental study on the static structural 

response of composite I-Beams with elastic couplings. A Vlasov-type linear theory is developed 
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to analyze composite open section beams made out of general composite laminates, where the 

transverse shear deformation of the beam cross section is included. Chandra, and Chopra [6] 

validate this analysis, graphite/epoxy and Kevlar/epoxy symmetric I-Beams were fabricated using 

an autoclave modeling technics. The beams were tested under tip bending and torsional load, 

and their structural response in terms of bending slope and twist were measured with a laser 

optical system. A good correlation between theoretical and experimental results was achieved. 

630% increase in the torsional stiffness, and shear-bending coupling of flanges, increase the 

bending-torsion coupling stiffness of I-Beams. 

This paper main objective is to study the laminate composite beam with C-Channel cross 

section under thermal environment. Kumton [7] developed the analytical method based on 

classical laminate theory in order to estimate stress on each lamina. The developed method 

includes the effect of coupling due to un-symmetrical of both laminate and structural configuration 

levels. The analytical method calculates the sectional properties such as centroid of the cross 

section, axial and bending stiffness for different laminate layups problems. ANSYS is used to 

model the 3D laminated composite with C-channel cross section beam. Results obtained by 

analytical method and FEM are compared against each other for accuracy. 
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Chapter 3  

Lamina Equivalent Properties 

3.1 Overview  

A lamina consists of rows of parallel fibers surrounded by the matrix material. Figure 3—1 

illustrates a lamina with fiber orientations: Ɵ1, Ɵ2, and Ɵ3 which are in material principal 

coordinate system or it is also called local coordinate system. X, Y, and Z are the lamina 

coordinate system or global coordinate system. ‘Ɵ’ is positive if it is measured counter-clockwise 

from the X axis if the Z axis is upward to the lamina plane. ‘Ɵ’ is negative if it is measured 

clockwise from the X axis if the Z axis is downward to the lamina plane. 

 

Figure 3—1 Fiber orientation 

Laminar type considers material is homogenous, and uses average properties in the 

analysis, and it considers the unidirectional lamina as a quasi-homogeneous anisotropic material 

with average stiffness and strength properties. Lamina global elastic constants are: Modulus of 

elasticity: Ex, Ey, and Ez. Shear modulus: Gxy, Gxz, and Gyz. Poisson’s ratio: ʋxy, ʋyz, and ʋxz. Local 

or principal material constants are: E1, E2, E3, G12, G13, G23, ʋ12, ʋ13, and ʋ23. [S] is the compliance 

matrix in material orientation. 

The general stress/strain relation (Hook’s law) for zero degree lamina is: 

(

ϵ1
ϵ2
ϓ12

) = (
S11 S12 S16
S12 S22 S26
S16 S26 S66

)(

σ1
σ2
τ12
)                                                                                           (3.1) 
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.S11 =
1

E1
, S22 =

1

E2
, S33 =

1

E3
, S12 = −

ʋ12

E1
= −

ʋ21

E2
                                                  (3.2) 

S13 = −
ʋ31

E3
= −

ʋ13

E1
, S23 = −

ʋ23

E2
= −

ʋ32

E3
, S66 =

1

G12
                                                              (3.3) 

The relation between the engineering constants and compliance components are 

illustrated in the following matrix form. 

(

ϵx
ϵy
ϓxy

) =

(

 
 

 
1

Ex
−
ʋxy

Ex

ɳxs

Ex

−
ʋyx

Ey
 
1

Ey

ɳys

Ey

ɳxs

Ex

ɳys

Ey

1

Gxy)

 
 
(

σx
σy
τxy
)                                                                                     (3.4) 

ɳxs

Ex
= S̅16: shear coupling coefficient corresponding to normal stress in X-direction and 

shear strain in the X-Y plane and 
ɳys

Ey
 = S26 in Y-direction. 

Transformation relations for engineering constants in 2D: 

1

Ex
=
m2

E1
(m2 − n2ʋ12) +

n2

E2
(n2 −m2ʋ21) +

m2n2

G12
                                                                    (3.5) 

1

Ey
=
n2

E1
(n2 −m2ʋ12) +

m2

E2
(m2 − n2ʋ21) +

m2n2

G12
                                                                    (3.6) 

1

Gxy
=
4m2n2

E1
(1 + ʋ12) +

4m2n2

E2
(1 + ʋ21) +

(m2−n2)2

G12
                                                               (3.7) 

ʋxy

Ex
=
ʋyx

Ey
=
m2

E1
(m2ʋ12 − n

2) +
n2

E2
(n2ʋ21 −m

2) +
m2n2

G12
                                                         (3.8) 

ɳxs

Ex
=
2m3n

E1
(1 + ʋ12) −

2mn3

E2
(1 + ʋ21) −

mn(m2−n2)

G12
                                                                (3.9) 

ɳys

Ey
=
2n3m

E1
(1 + ʋ12) −

2nm3

E2
(1 + ʋ21) +

mn(m2−n2)

G12
                                                              (3.10) 

In analysis of composite materials it is common and it would be more convenience to use 

equivalent elastic constants or average properties of the desired material. For instance, 

equivalent properties of an angle ply would represent the actual ply even though that’s a ply with 

fiber orientation. It means that a ply with equivalent properties would always be treated as if it was 

a zero degree ply. The important factor is that in the case of an angle ply when it is loaded under 
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an axial load it will produce shear strain in addition to the normal strains. So the shear strain 

needs to be suppressed in order to represents a zero degree ply. Suppressing the shear strain 

induces the shear stress which it needs to be considered in the analysis for obtaining the 

equivalent properties for lamina with fiber orientation. The two methods that are considered in this 

thesis are traditional method and modified method. 

3.2 Conventional method 

The set of expressions for elastic constants in the loading or reference axis are: Ex, Ey, 

Gxy, and ʋxy. Elastic constants in lamina principal axis or local axis are: E1, E2, G12, and ʋ12. In 

order to obtain the equivalent properties under an applied axial load in X-direction the following 

equations are derived. 

ϵx is the longitudinal strain or the normal strain and σx is the normal stress. For the case 

of a zero degree fiber orientation, Sin(0) =0, and Cos(0) =1, then the following equations are 

derived for the longitudinal modulus, 𝑆11̅̅ ̅̅ : 

ϵx =  S11̅̅ ̅̅  σx                                                                                                                            (3.11) 

Ex = 
1

S11̅̅ ̅̅ ̅
=

1

m4S11+n4S22+2m2n2S12+m2n2S66
                                                                         (3.12) 

1

Ex
=
m4

E1
+
n4

E2
− 2m2n2

ʋ12

E1
+
n2m2

G12
                                                                                           

(3.13) 

m =Cos(Ɵ), n =Sin(Ɵ)                                                                                                              (3.14) 

For transverse modulus: 

1

Ey
=

ϵy

 σy
= S22̅̅ ̅̅ = n

4S11 +m
4S22 + 2m

2n2S12+m
2n2S66                                               (3.15) 

1

Ey
=
n4

E1
+
m4

E2
− 2m2n2

ʋ12

E1
+
n2m2

G12
                                                                                       (3.16) 
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Poisson’s ratio: 

ϵx =  S11̅̅ ̅̅ σx, ϵy =  S12̅̅ ̅̅ σx                                                                                                     (3.17) 

ʋxy = −
ϵy

ϵx
= −

S12̅̅ ̅̅ ̅

S11̅̅ ̅̅ ̅
= Ex (

ʋ12

E1
(m4 + n4) − (

1

E1
+

1

E2
−

1

G12
)m2n2)                               (3.18) 

Shear modulus: 

ϓxy = S66̅̅ ̅̅ τxy                                                                                                                         (3.19) 

1

Gxy
=
ϓxy 

τxy
= S66̅̅ ̅̅ = 2m

2n2 (
2

E1
+

2

E2
+
4ʋ12

E1
−

1

G12
) +

m4+n4

G12
                                            (3.20) 

Obtaining longitudinal and transverse modulus Ex and Ey, respectively: 

Ex =
1

S11̅̅ ̅̅ ̅
                                                                                                                                   (3.21) 

Ey =
1

S22̅̅ ̅̅ ̅
                                                                                                                                   (3.22) 

Obtaining Poisson’s ratio ʋxy: 

ʋ𝑥𝑦 = −
S12̅̅ ̅̅ ̅

S11̅̅ ̅̅ ̅
                                                                                                                             (3.23) 

Obtaining shear modulus Gxy: 

Gxy =
1

S66̅̅ ̅̅ ̅
                                                                                                                                 (3.24) 

Obtaining coefficient of thermal expansion: 

[αx-y] = [Tϵ(Ɵ)] [α1-2] 

αx = m2 α1 + n2 α2, αy = n2 α1 + m2 α2, αxy = 2 m n (α2 – α1)                                                      (3.25) 

The issue with this method is that in the case of an angle ply, the traditional method 

doesn’t consider the induced shear stress when suppressing the shear strain. That’s why the new 

modified method has been proposed which is discussed in the next section. 

3.3 Modified method 

In analysis of composite materials a ply with a fiber orientation ‘Ɵ’ (degree) when it’s 

loaded under an axial load or a simple tensile load, it not only produces the normal strains, but 
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also it produces the shear strain. In order to obtain equivalent properties for lamina by employing 

the modified method, enforcing the lamina to deform uniformly is required. For instance, lamina 

with fiber orientation ‘Ɵ’ is loaded under a simple tension in X-direction. In this case the shear 

deformation will be induced plus extension in X-direction (longitudinal strain ϵx) and contraction in 

Y-direction (transverse strain ϵy). Since lamina with equivalent properties represents a ply with 

fiber orientation as zero degree so the shear strain needs to be suppressed. By suppressing the 

shear strain, the shear stress will be induced in the ply. The induced shear stress affects the 

longitudinal strain and the transverse strain. In the following paragraph the equivalent properties 

of a lamina by employing the modified method will be derived. 

It requires uniform deformation in order to obtain longitudinal modulus Ex also shear 

strain ϓxy should be suppressed, by doing so the shear stress will be induced. Equation (3.25) 

illustrates the condition for obtaining the longitudinal modulus. 

(

ϵx
ϵy
0
) = (

S11̅̅ ̅̅ S12̅̅ ̅̅ S16̅̅ ̅̅

S21̅̅ ̅̅ S22̅̅ ̅̅ S26̅̅ ̅̅

S16̅̅ ̅̅ S26̅̅ ̅̅ S66̅̅ ̅̅
) (

σx
0
τxy
)                                                                                       (3.25) 

From the matrix above Ƭxy can be calculated by: 

0 = S16̅̅ ̅̅  σx + S66̅̅ ̅̅ τxy                                                                                                              (3.26) 

The induced shear stress can be obtained by solving the equation above.   

τxy = −
S16̅̅ ̅̅ ̅

S66̅̅ ̅̅ ̅
 σx                                                                                                                        (3.27) 

Longitudinal strain including the induced shear stress is: 

ϵx = S11̅̅ ̅̅  σx + S16̅̅ ̅̅ τxy                                                                                                             (3.28) 

Substituting the shear stress relation into the equation above as it follows: 

ϵx = S11̅̅ ̅̅  σx + S16̅̅ ̅̅ (−
S16̅̅ ̅̅ ̅

S66̅̅ ̅̅ ̅
  σx)                                                                                               (3.29) 
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Factor out normal stress: 

ϵx =  σx (S11̅̅ ̅̅ −
S16
2̅̅ ̅̅ ̅

S66̅̅ ̅̅ ̅
 )                                                                                                              (3.30) 

Finally the longitudinal modulus Ex is obtained as: 

Ex = 
1

S11̅̅ ̅̅ ̅−
S16
2̅̅ ̅̅ ̅̅

S66̅̅ ̅̅ ̅̅

                                                                                                                           (3.31) 

Transverse strain will be calculated by: 

ϵy = S12̅̅ ̅̅  σx + S26̅̅ ̅̅ τxy                                                                                                            (3.32) 

By substituting in the equation above (S12̅̅ ̅̅ −
S16̅̅ ̅̅ ̅S26̅̅ ̅̅ ̅

S66̅̅ ̅̅ ̅
 ) for the shear stress: 

ϵy =  σx (S12̅̅ ̅̅ −
S16̅̅ ̅̅ ̅S26̅̅ ̅̅ ̅

S66̅̅ ̅̅ ̅
 )                                                                                                         (3.33) 

Obtain Poisson’s ratio ʋxy by dividing the transverse strain by the longitudinal strain as it 

shows in equation (3.35). 

ʋxy = −
ϵy

ϵx
= −

S12̅̅ ̅̅ ̅−
S16̅̅ ̅̅ ̅̅ S26̅̅ ̅̅ ̅̅

S66̅̅ ̅̅ ̅̅

S11̅̅ ̅̅ ̅−
S16
2̅̅ ̅̅ ̅̅

S66̅̅ ̅̅ ̅̅

                                                                                                    (3.34) 

Transverse modulus is obtained through applying σy: 

Ey = 
1

S22̅̅ ̅̅ ̅− 
S12
2̅̅ ̅̅ ̅̅

S66̅̅ ̅̅ ̅̅  

                                                                                                                          (3.35) 

So far the equivalent properties are obtained under the applied load in the X-direction. 

Equation (3.37) illustrates the case for the applied load in the Y-direction. The same procedures 

are required in order to achieve the uniform deformation. 

(

ϵx
ϵy
0
) = (

S11̅̅ ̅̅ S12̅̅ ̅̅ S16̅̅ ̅̅

S21̅̅ ̅̅ S22̅̅ ̅̅ S26̅̅ ̅̅

S16̅̅ ̅̅ S26̅̅ ̅̅ S66̅̅ ̅̅
)(

0
σy
τxy
)                                                                                      (3.36) 

Solve for transverse strain by deriving the above matrix. 

ϵy = S22̅̅ ̅̅  σy + S26̅̅ ̅̅ (−
S26̅̅ ̅̅ ̅

S66̅̅ ̅̅ ̅
 σy )                                                                                              (3.37) 
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Factor out the normal stress, then the transverse strain will be obtained by: 

ϵy =  σy(S22̅̅ ̅̅ −
S26
2̅̅ ̅̅ ̅

S66̅̅ ̅̅ ̅
 )                                                                                                              (3.38) 

Transverse moduli Ey can be obtained by: 

Ey = 
1

S22̅̅ ̅̅ ̅− 
S26
2̅̅ ̅̅ ̅̅

S66̅̅ ̅̅ ̅̅

                                                                                                                          (3.39) 

In order to obtain the shear modulus Gxy, pure shear deformation is required. To ensure 

the pure shear deformation for lamina under the applied shear load, the normal and the 

transverse strains need to be suppressed. By doing so the normal and the transverse stresses 

are induced. 

(

0
0
ϓxy 

) = (

S11̅̅ ̅̅ S12̅̅ ̅̅ S16̅̅ ̅̅

S21̅̅ ̅̅ S22̅̅ ̅̅ S26̅̅ ̅̅

S16̅̅ ̅̅ S26̅̅ ̅̅ S66̅̅ ̅̅
) (

σx
σy
τxy
)                                                                                   (3.40) 

The matrix above shows that after setting the strain in X and Y directions to zero, the 

normal and the transverse stresses can be calculated by the following equations. 

0 = (σx S̅11) +  (σy S̅12) + (S̅16 τxy)                                                                                 (3.41) 

0 = (σx S̅11) +  (σy S̅22) + (S̅26 τxy)                                                                                 (3.42) 

ϓxy = (σx S̅16) +  (σy S̅26) + (S̅66 τxy)                                                                            (3.43) 

Solve for the normal stress and the transverse stress: 

σx =
S̅12S̅26− S̅22S̅16

S̅11S̅22− S̅12
2  τxy                                                                                                          (3.44) 

σy =
S̅12S̅16− S̅11S̅26

S̅11S̅22− S̅12
2  τxy                                                                                                          (3.45) 

Shear strain can be calculated by substituting equation (3.44) and (3.45) into equation 

(3.43), and factor out the shear: 

ϓxy = (S66 + S16
S12 S26− S22S16

S11 S22 − S12
2 + S26

S12 S16− S11S26

S11 S22 − S12
2  ) τxy =

τxy

Gxy 
                                 (3.46) 
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Finally the shear modulus is obtained by: 

Gxy = (
1

S66 + S16 
S12 S26− S22S16

S11 S22 − S12
2  + S26 

S12 S16− S11S26

S11 S22 − S12
2

)                                                             (3.47) 

3.4 Analytical method obtaining equivalent properties 

Mathematica is used to obtain equivalent properties for lamina with different fiber 

orientations by employing conventional method and modified method. Three programs are 

developed in order to calculate the equivalent properties. Program 1 is used for calculating the 

equivalent properties for the case of lamina. This program would take the mechanical and thermal 

properties of a ply. It will calculate the reduced stiffness matrix [Q], and the compliance matrix [S] 

for the desire ply. It would implement both methods in order to obtain the equivalent properties for 

the desire lamina. 

Material that is considered throughout this thesis is carbon/epoxy (IM6G/3501-6), with 

mechanical and thermal properties as: 

Modulus elasticity, Ex =24.5(Msi), Ey =1.3(Msi) 

Shear modulus, Gxy =0.94(Msi) 

Poisson ration, ʋxy =0.31 

Longitude thermal expansion, αx =-0.5(10-6/F), and αy =13.9(10-6/F) 

3.4.1 Results and comparison of modified and conventional methods 

Compliance matrix is constructed by Mathematica-10 by applying the equations below: 

S11 =
1

E1 
, S12 = S21 = −

ʋ12

E1 
= −

ʋ21

E2
                                                                                (3.48) 

S22 =
1

E2 
, S66 =

1

G12 
                                                                                                             (3.49) 
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The matrix form constructed as: 

(

 
 

1

E1 
−
ʋ12

E1 
0

−
ʋ12

E1 

1

E2 
0

0 0
1

G12 )

 
 

                                                                                                           (3.50) 

The fiber orientations that are considered for this program are: 0, 15, 30, 45, 60, 75 and 

90 degrees. Once the equivalent properties are obtained for both methods then Excel program is 

used to plot the results. The plots that are constructed for all the cases are illustrated in the 

following pages. 

Figure 3—2 illustrates longitudinal and transverse modulus obtained from both methods. 

Each data is related to its ply orientation for both methods. The left vertical axis is the longitudinal 

modulus and the right vertical axis is the transverse modulus. The horizontal axis is the fiber 

orientation which starts with 0 degree to 90 degree with increment rate of 15 degree. As it is 

showing in the figure the longitudinal modulus is decreasing as the angle ply is increasing for both 

methods. The transverse modulus is increasing as the angle ply also is increasing. As expected 

for the 0 and 90 degree ply the value is the same for both methods. 

 

Figure 3—2 Longitudinal & Transverse Modulus 

Table 3—1 displays the results from Figure 3—2 for longitudinal modulus. The highest 

percentage difference is for 30 degree ply. 
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Table 3—1 Longitudinal Modulus 

Ex(Psi) 

Ɵ ply Modified method Conventional method % Difference 

0 2.45E+07 2.45E+07 0.0 

15 1.98E+07 9.63E+06 51.3 

30 8.58E+06 3.76E+06 56.1 

45 3.30E+06 2.16E+06 34.4 

60 1.82E+06 1.59E+06 12.6 

75 1.39E+06 1.36E+06 2.4 

90 1.30E+06 1.30E+06 0.0 

 

Table 3—2 display the results for the transverse modulus. The highest percent difference 

is for 60 degree ply. 

Table 3—2 Transverse Modulus 

Ey(Psi) 

Ɵ ply Modified method Conventional method % Difference 

0 1.30E+06 1.30E+06 0.0 

15 1.39E+06 1.36E+06 2.4 

30 1.82E+06 1.59E+06 12.6 

45 3.30E+06 2.16E+06 34.4 

60 8.58E+06 3.76E+06 56.1 

75 1.98E+07 9.63E+06 51.3 

90 2.45E+07 2.45E+07 0.0 

 

Figure 3—3 illustrates Poisson’s ratio for both methods. For the 0 and 90 degree ply the 

results are identical. For the 75 degree ply the results are in very close range. There is a big 

difference for the 15, 30, 45 and 60 degree ply. 
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Figure 3—3 Poisson’s ratio vs. Angle ply 

Table 3—3 displays the results from Figure 3—3. The percent difference is zero for the 

cases of 0 and 90 degree plies. The highest value for the percent difference is for the case of 30 

degree ply which is 85.2%. 

Table 3—3 Poisson’s Ratio 

ʋxy 

Ɵ ply Modified method Conventional Method % Difference 

0 0.310 0.310 0.0 

15 1.135 0.259 77.2 

30 1.409 0.209 85.2 

45 0.753 0.151 80.0 

60 0.298 0.088 70.5 

75 0.080 0.037 54.2 

90 0.016 0.016 0.0 

 

Figure 3—4 illustrates the shear modulus for both methods. For the cases of 0 and 90 

degree plies the results for both methods are identical. For the case of 45 degree ply it has the 

most disagreement between the results. 
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Figure 3—4 Shear Modulus 

Table 3—4 displays the results from. For 0 and 90 degree plies the percent difference is 

zero. But the rest of plies the percent difference is high value especially the highest value for αx is 

for 30 degree ply. 

Table 3—4 Shear Modulus 

Gxy(Psi) 

Ɵ ply Modified method Conventional method % Difference 

0 9.40E+05 9.40E+05 0.0 

15 2.28E+06 9.93E+05 56.3 

30 4.95E+06 1.12E+06 77.3 

45 6.28E+06 1.20E+06 80.9 

60 4.95E+06 1.12E+06 77.3 

75 2.28E+06 9.93E+05 56.3 

90 9.40E+05 9.40E+05 0.0 
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Chapter 4  

Laminate Equivalent Properties 

4.1 Overview 

It’s known that the use of the composite materials have been growing in industries, such 

as, aerospace, manufacturing, civil, oil and gas, biomedical, and many other industries around 

the globe especially in the aerospace industries in the U.S. When it comes to analysis of 

composites it takes a large amount of memory in order to run computer software. It could become 

a great challenge and time consuming matter when dealing with a structure that is constructed of 

layers of same or different materials with each ply with different fiber orientation. In order to 

resolve these issues is to obtain equivalent properties that would represent the laminate or the 

structure that is considered for analysis. The procedure starts with lumping group of layers with 

different fiber orientation into a single layer (zero degree) that would represent the actual 

structure or the actual laminate. The purpose is to replace the lumped heterogeneous material by 

an equivalent homogenous material. Briefly constructing the laminate stiffness matrices are 

discussed first. 

[A]=Extensional Stiffness matrix, (lb/in) 

[B]=Extensional-Bending Coupling Stiffness matrix, (lb) 

[D] Bending Stiffness matrix, (lb-in) 

Laminate stiffness matrices: 

[A] = ∑ [Q] (hk − hk−1
n

k=1
)                                                                                                 (4.1) 

[B] =
1

2
∑ [Q] (hk

2n

k=1
− hk−1

2 )                                                                                               (4.2) 

[D] =
1

3
∑ [Q] (hk

3n

k=1
− hk−1

3 )                                                                                               (4.3) 
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Force and moment resultants in laminate: Sum of the force and moment in each layer: 

(

Nx
Ny
Nxy 

) =∑ ∫ (

σx
σy
τxy 
)

hk
hk−1

n

k=1

dz  
lb

in
    ,   (

Mx
My
Mxy 

) =∑ ∫ (

σx
σy
τxy 
)

hk
hk−1

n

k=1

z dz 
lb−in

in
           (4.4) 

After obtaining the force and moment in each layer, then the total force and moment in 

laminate with respect to mid plane strain and curvature are as follow: 

(N
M
) = (

A B
B D

) (ϵ
0

K
)                                                                                                                (4.5) 

Expand and derive the matrix above in order to solve for the resultant forces: 

(

Nx
Ny
Nxy

) = (

A11 A12 A16
A21 A22 A26
A16 A26 A66

)(

ϵx
0

ϵy
0

ϓxy
0

) + (
B11 B12  B16
B21 B22 B26
 B16 B26 B66

)(

Kx
Ky
Kxy

)                              (4.6) 

A11 and A22 are the axial extension stiffness 

A12 is stiffness due to the Poisson’s ratio effect 

A16 and A26 are stiffness due to the shear coupling 

B11 and B22 are coupling stiffness due to the direct curvature 

B12 is the coupling stiffness due to the Poisson’s ratio effect 

B16 and B26 are the extension-twisting coupling stiffness (shear-bending coupling) 

B66 is the shear-twisting coupling stiffness 

D11 and D22 are the bending stiffness 

D12 is the bending stiffness due to the Poisson’s ratio effect 

D16 and D26 are the bending and twisting coupling 

D66 is the twisting stiffness 

Expand and solve equation (4.5) for the moments: 

 (

Mx
My
Mxy

) = (
B11 B12  B16
B21 B22 B26
 B16 B26 B66

)(

ϵx
0

ϵy
0

ϓxy
0

) + (
D11 D12 D16
D21 D22 D26
 D16 D26 D66

)(

Kx
Ky
Kxy

)                           (4.7) 
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Concept of equivalent homogenous solid Consider a microscopic heterogeneous material 

so the procedure is to construct the equivalent homogeneous medium to represents the original 

material structure. 

The average stress/strain tensor over the volume of the representing volume element: 

[σ
−
] =

1

V
∫ [σ(x, y, z)]dV                                                                                                           (4.8) 

[ϵ
−
] =

1

V
∫ [ϵ(x, y, z)]dV                                                                                                            (4.9) 

Equivalent homogeneous solids are defined as: 

[σ
−
] = [C

−

]. [ϵ
−
], [ϵ
−
] = [S

−

]. [σ
−
]                                                                                                 (4.10) 

[C] and [S] are the equivalent stiffness matrix and compliance matrix, respectively in a 

homogeneous medium. 

Equivalent Elastic constant Similar to the lamina, a laminate with equivalent properties 

should be deformed uniformly under an axial load. The two methods that were discussed in 

chapter 3 are also discussed in this chapter except this time it’s regarding the laminate equivalent 

properties. 

4.2 Conventional method 

To obtain equivalent properties, we apply the corresponding load on the laminate. Let, 

Nx≠0, and Nxy=Ny=M=0, and ‘t’ is the laminate thickness. 

(ϵ
0

к
) = (

a b
bT d

) (N
M
), ϵx =  Nx a11 =  a11 t σx =  σx  

1

Ex 
                                                (4.11) 

Longitudinal and transverse modulus: 

Ex =
1

a11 t
, Ey =

1

a22 t
                                                                                                             (4.12) 

Poisson’s ratio and shear modulus: 

ʋxy = −
a12

a11 
, Gxy =

1

a66 t
                                                                                                       (4.13) 
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Let replace the mechanical load by the thermal induced load, then the coefficient of 

thermal expansion CTE would be: 

[α] = {[a] [NTH] + [b] [M]TH}
1

ΔT
                                                                                       (4.14) 

[NTH] =∑[Q̅] [αx−y](zk − zk−1)

n

k=1

ΔT 

[MTH] =
1

2
∑[Q̅] [αx−y](zk

2 − zk−1
2 )

n

k=1

ΔT 

4.3 Modified method 

 The main objective is to lump several plies into a single ply with 0 degree fiber 

orientation. Stress at any given ply remains the same as compare with the un-lumped model. In 

this analysis a coupling effect of combined axial and bending loads were included in deriving the 

equivalent properties. Conventional method the effect of curvature and shear deformation on the 

equivalent properties was ignored for un-symmetrical and un-balanced laminates. Shear 

deformation and out of plane curvatures, this is due to the non-zero value of the extension-

bending coupling stiffness which is the B matrix. In plane extension-shear coupling stiffness 

which are A16 and A26. Bending twisting coupling stiffness are D16 and D26. The representing 0 

degree layer will not induce in plane shear and out of plane couplings. So in order to accomplish 

the results with no shear deformation and neither curvature is to suppress the shear deformation 

and curvature for analysis of obtaining the equivalent properties. 

Unlike the conventional method, this method ensures zero curvature and shear 

deformation when it’s evaluating the equivalent properties. 

Let Nx≠0, and Nxy=Ny=M=0, so only Nx is the applied load, then curvature needs to be 

suppressed in order to obtain the equivalent properties. After suppressing the curvature, moment 

equation will be induced. 

(ϵ
0

0
) = (

a b
bT d

) (N
M
), 0 = bT N + d M                                                                               (4.15) 
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M = −bT N d−1 , ϵ0 = N(a − bTb d−1)                                                                            (4.16) 

The value inside the parenthesis is a 3 by 3 matrix that it’s called [P] matrix. So the new 

mid plane strain would be: 

[P] = [a] − [bT][b] [d]−1                                                                                                     (4.17) 

ϵ0 = [P][N]                                                                                                                             (4.18) 

Now let the mid plane shear strain be suppressed and Nxy is induced, with applying load 

in the X direction: 

(
ϵx
0

ϵy
0

0

) = (
P11  P12  P16
P12  P22 P26
P16 P26 P66

)(

Nx
0
Nxy

)                                                                                     (4.19) 

From the matrix above, the mid strains can be solved: 

ϵx
0 = (P11 −

P16
2
 

P66 
 ) Nx , ϵy

0 = (P12 −
P16 P26 
P66 

 ) Nx                                                             (4.20) 

Once the mid strains equations are formed then the equivalent properties: longitudinal, 

transverse, and Poisson’s ratio can be obtained: 

Ex =
1

(P11−
P16
2
 

P66 
 ) t

 Ey =
1

(P12−
P16 P26 
P66 

 ) t
 ʋxy = −

ϵy
0

ϵx
0 = 

P12−
P16 P26 
P66 

P11−
P16
2
 

P66 

                                    (4.21) 

To obtain shear modulus Gxy with applied Nxy it requires to ϵ0
 x=ϵ0

y=0, to ensure the pure 

shear deformation. 

(

0
0
ϓxy 

) = (
P11 P12 P16
P12 P22 P26
P16 P26  P66

)(

Nx
Ny
Nxy

)                                                                                  (4.22) 

By suppressing normal strains, normal axial forces will be induced. 

(Nx
Ny
) = −(

P11 P12
P12 P22

)
−1

 (P16
P26
) Nxy = −

1

Δ
 (
P22 −P12
−P12 P11

) (P16
P26
) Nxy                          (4.23) 

Δ = P22 P11 − P12
2
 
                                                                                                                  (4.24) 
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Normal axial forces can be solved: 

Nx = −
P22 P16−P12 P26

Δ
Nxy, Ny = −

P11 P26−P12 P26

Δ
Nxy                                                   (4.25) 

From the matrix above and by having the normal axial forces induced, then shear strain 

would be: 

ϓxy = P16 Nx + P26 Ny + P66 Nxy 
                                                                                     (4.26) 

ϓxy = (P66 −
P16(P22 P16−P12 P26)

Δ
−
P26(P11 P26−P12 P26)

Δ
)Nxy                                          (4.27) 

Assuming shear strain to be 1, shear modulus can be obtained with t being the laminate 

thickness: 

Gxy =
1

(P66−
P16(P22 P16−P12 P26)

Δ
−
P26(P11 P26−P12 P26)

Δ
) t

                                                             (4.28) 

Coefficient of Thermal Expansion CTE, in the previous calculations the [P] matrix was 

constructed: 

(
ϵx
0

ϵy
0) =  (

P11 −
P16
2
 

P66 
P12 −

P16 P26 
P66 

P12 −
P16 P26 
P66 

P22 −
P26
2
 

P66 

)  (Nx
Ny
)                                                                  (4.29) 

Mid strain in X and Y directions can be solved: 

ϵx
0 = (P11 −

P16
2
 

P66 
 ) Nx + (P12 −

P16 P26 
P66 

 ) Ny                                                                     (4.30) 

ϵy
0 = (P12 −

P16 P26 
P66 

 ) Nx + (P22 −
P26
2
 

P66 
 ) Ny                                                                     (4.31) 

Force and moment resultants for thermal loads are: 

[NTH]3X1 =∑ [Q]. [ᾳ]
n

k=1
(hk − hk−1) ΔT,

lb

in
                                                                  (4.32) 

[MTH]3X1 =
1

2
∑ [Q]. [ᾳ] (hk

2n

k=1
− hk−1

2 )ΔT , lb                                                              (4.33) 

Considering the equation for the thermal load and the mid plane strain equation, 

coefficient of thermal expansion can be obtained by: 
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αx = {(P11 −
P16
2
 

P66 
 ) Nx

TH + (P12 −
P16 P26 
P66 

 ) Ny
TH}

1

ΔT
                                                        (4.34) 

αy = {(P12 −
P16 P26 
P66 

 )Nx
TH + (P22 −

P26
2
 

P66 
 ) Ny

TH}
1

ΔT
                                                        (4.35) 

4.4 Analytical method obtaining equivalent properties 

As it was discussed in the previous chapter in order to calculate equivalent properties 

software Mathematica-10 is used. Mechanical and thermal properties are the same as it was for 

chapter 1. In the software file Program-2A and Program-2B are for analysis and calculations for 

laminate using both conventional and modified properties methods. 

4.4.1 Result obtained by employing modified and conventional methods 

Consider a laminate with stacking sequence: [+Ɵ/-Ɵ/0/90]S, [+Ɵ/-Ɵ/0/90]2T, [θ2/0/90]S, 

and [θ2/0/90]2T. ‘S’ is for a symmetrical laminate and “Ɵ” is the ply orientation which varies as 0, 

15, 30, 45, 60, 75, and 90 degree. For the case of a symmetrical laminate coupling stiffness [B] 

=0. For the case of a balanced laminate stiffness due to shear coupling A16 = A26 =0. 

Figure 4—1 illustrates the longitudinal modulus for symmetrical and balanced laminate 

for both conventional method and modified method. The laminates that are considered for this 

figure are: [02/0/90]S, [15/-15/0/90]S, [30/-30/0/90]S, [45/-45/0/90]S, [60/-60/0/90]S, [75/-75/0/90]S, 

and [902/0/90]S. As expected since it’s a balanced symmetrical laminate the results obtained from 

both methods are identical. 
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Figure 4—1 Longitudinal Modulus for [Ɵ/-Ɵ/0/90]S 

Table 4—1 displays the results from Figure 4—1 As it’s displayed in the table all the 

values are the same for both methods. 

Table 4—1 Longitudinal Modulus for [Ɵ/-Ɵ/0/90]S 

Ex(Psi) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 1.88E+07 1.88E+07 0.0 

15/-15 1.72E+07 1.72E+07 0.0 

30/-30 1.32E+07 1.32E+07 0.0 

45/-45 9.38E+06 9.38E+06 0.0 

60/-60 7.63E+06 7.63E+06 0.0 

75/-75 7.18E+06 7.18E+06 0.0 

90/90 7.13E+06 7.13E+06 0.0 

 

Figure 4—2 illustrates the longitudinal modulus for un-symmetrical, and  balanced 

laminates with stacking sequence as [+Ɵ/-Ɵ/0/90]2T. Since it’s an un-symmetrical laminate the 

results are not identical. 

1.88E+07
1.72E+07

1.32E+07

9.38E+06

7.63E+06 7.18E+06

7.13E+06

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

2.00E+07

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

2.00E+07

0 15 30 45 60 75 90

[Ɵ/-Ɵ/0/90]S

Ex

(Psi)

Ex vs. Angle ply(θ)



29 

 

 

Figure 4—2 Longitudinal Modulus for [+Ɵ/-Ɵ/0/90]2T 

Table 4—2 displays the results from Figure 4—2. As it’s displayed in the table under the 

difference column none of the values are identical even though it’s a balanced laminate. 

Table 4—2 Longitudinal Modulus for [+Ɵ/-Ɵ/0/90]2T 

Ex(Psi) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 1.88E+07 1.80E+07 4.3 

15/-15 1.72E+07 1.64E+07 4.7 

30/-30 1.32E+07 1.25E+07 4.9 

45/-45 9.38E+06 8.92E+06 4.8 

60/-60 7.63E+06 7.34E+06 3.8 

75/-75 7.18E+06 6.93E+06 3.6 

90/90 7.13E+06 6.86E+06 3.7 

 

Figure 4—3 illustrates the longitudinal modulus for symmetrical laminate with stacking 

sequence as [θ2/0/90]S. For the cases of [02/0/90] and [902/0/90] the laminate is balanced so the 

results are identical. But for rest of the cases the laminates are not balanced anymore and the 

results are not identical. 
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Figure 4—3 Longitudinal Modulus for [θ2/0/90]S 

Table 4—3 displays the results from Figure 4—3. As it’s displayed in the table for the 

cases of [02/0/90] and [902/0/90] the percent difference is zero. The percent differences are non- 

zero values for the rest of the stacking sequences. 

Table 4—3 Longitudinal Modulus for [θ2/0/90]S 

Ex(Psi) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 1.88E+07 1.88E+07 0.0 

15/15 1.72E+07 1.31E+07 24.1 

30/30 1.32E+07 9.21E+06 30.0 

45/45 9.38E+06 7.88E+06 16.0 

60/60 7.63E+06 7.36E+06 3.5 

75/75 7.18E+06 7.17E+06 0.2 

90/90 7.13E+06 7.13E+06 0.0 

 

Figure 4—4 illustrates the longitudinal modulus for un-symmetrical laminate with stacking 

sequence as [Ɵ2/0/90]2T. The laminates are un-symmetrical so the results are not identical even 

though [02/0/90]2T and [902/0/90]2T are balanced laminates. 
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Figure 4—4 Longitudinal Modulus for [θ2/0/90]2T 

Table 4—4 displays the results from Figure 4—4. As it’s displayed in the table the 

percent difference is non-zero values for all the cases. 

Table 4—4 Longitudinal Modulus for [θ2/0/90]2T 

Ex(Psi) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 1.88E+07 1.80E+07 4.3 

15/15 1.72E+07 1.28E+07 25.8 

30/30 1.32E+07 9.00E+06 31.6 

45/45 9.38E+06 7.64E+06 18.5 

60/60 7.63E+06 7.11E+06 6.9 

75/75 7.18E+06 6.91E+06 3.8 

90/90 7.13E+06 6.86E+06 3.7 

 

Figure 4—5 illustrates the transverse modulus for symmetrical balanced laminates with 

stacking sequence as [+Ɵ/-Ɵ/0/90]S. All the obtained results for both methods are identical. 
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Figure 4—5 Transverse Modulus for [Ɵ/-Ɵ/0/90]S 

Table 4—5 displays the results from Figure 4—5. As it’s displayed in the table the 

percent difference is zero for all cases. 

Table 4—5 Transverse Modulus for [Ɵ/-Ɵ/0/90]S 

Ey(Psi) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 7.13E+06 7.13E+06 0.0 

15/-15 7.18E+06 7.18E+06 0.0 

30/-30 7.63E+06 7.63E+06 0.0 

45/-45 9.38E+06 9.38E+06 0.0 

60/-60 1.32E+07 1.32E+07 0.0 

75/-75 1.72E+07 1.72E+07 0.0 

90/90 1.88E+07 1.88E+07 0.0 

 

Figure 4—6 illustrates the transverse modulus for un-symmetrical balanced laminates 

with stacking sequence as [+Ɵ/-Ɵ/0/90]2T. Even though the laminate is balanced for all the cases 

the results are not identical and for the case of [902/0/90]2T the results are in very close range for 

both methods. 
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Figure 4—6 Transverse Modulus for [Ɵ/-Ɵ/0/90]2T 

Table 4—6 displays the results from Figure 4—6. As it’s displayed in the table for the 

case of [90/90] the results are very close but rest of cases the percent difference is greater than 

one. 

Table 4—6 Transverse Modulus for [Ɵ/-Ɵ/0/90]2T 

Ey(Psi) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 7.13E+06 5.38E+06 24.5 

15/-15 7.18E+06 5.47E+06 23.8 

30/-30 7.63E+06 6.06E+06 20.6 

45/-45 9.38E+06 8.21E+06 12.4 

60/-60 1.32E+07 1.26E+07 4.1 

75/-75 1.72E+07 1.69E+07 1.4 

90/90 1.88E+07 1.87E+07 0.4 

 

Figure 4—7 illustrates the transverse modulus for symmetrical laminates with stacking 

sequence as [θ2/0/90]S. The cases of [902/0/90] S and [02/0/90]S the laminates are balanced and 

the results are identical but for the rest of cases the laminates are un-balanced and the results 

are not identical. 
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Figure 4—7 Transverse Modulus for [θ2/0/90]S 

Table 4—7 displays the results from Figure 4—7 As it’s shown in the table the only 

laminates that are balanced are [0/0] and [90/90] with identical results unlike the rest of the 

laminates that are un-balanced with no identical results. Also the case of [15/15] laminate even 

though it’s an un-balanced laminate but the result is very close only 0.2%. 

Table 4—7 Transverse Modulus for [θ2/0/90]S 

Ey 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 7.13E+06 7.13E+06 0.0 

15/15 7.18E+06 7.17E+06 0.2 

30/30 7.63E+06 7.36E+06 3.5 

45/45 9.38E+06 7.88E+06 16.0 

60/60 1.32E+07 9.21E+06 30.0 

75/75 1.72E+07 1.31E+07 24.1 

90/90 1.88E+07 1.88E+07 0.0 

 

Figure 4—8 illustrates the transverse modulus for un-symmetrical laminates with stacking 

sequence as [θ2/0/90]2T. Laminates [902/0/90]2T and [02/0/90]2T are balanced but only [902/0/90]2T 

has very close results for both methods. The rest of the laminates including the balanced 

laminate [02/0/90]2T have no identical results. 
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Figure 4—8 Transverse Modulus for [θ2/0/90]2T 

Table 4—8 displays the results from Figure 4—8. As it’s shown in the table laminate with 

[90/90] has very close results 0.4%. Rest of laminates the percent difference is much greater than 

one percent. 

Table 4—8 Transverse Modulus for [θ2/0/90]2T 

Ey(Psi) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 7.13E+06 5.38E+06 24.5 

15/15 7.18E+06 5.44E+06 24.2 

30/30 7.63E+06 5.69E+06 25.4 

45/45 9.38E+06 6.33E+06 32.5 

60/60 1.32E+07 7.95E+06 39.6 

75/75 1.72E+07 1.24E+07 27.8 

90/90 1.88E+07 1.87E+07 0.4 

 

Figure 4—9 illustrates the shear modulus for un-symmetrical balanced laminates with 

stacking sequence as [+Ɵ/-Ɵ/0/90]2T. Even though the laminate is balanced for all cases but only 

laminates [02/0/90]2T and [902/0/90]2T have identical results for both methods. 
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Figure 4—9 Shear Modulus for [Ɵ/-Ɵ/0/90]2T 

Table 4—9 shows the results from Figure 4—9. Cases of [0/0] and [90/90] the percent 

difference is zero but for the rest of the laminates the percent difference is greater than one. 

Table 4—9 Shear Modulus for [Ɵ/-Ɵ/0/90]2T 

Gxy(Psi) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 9.40E+05 9.40E+05 0.0 

15/-15 1.61E+06 1.54E+06 4.3 

30/-30 2.94E+06 2.65E+06 9.9 

45/-45 3.61E+06 3.20E+06 11.3 

60/-60 2.94E+06 2.66E+06 9.7 

75/-75 1.61E+06 1.54E+06 4.1 

90/90 9.40E+05 9.40E+05 0.0 

 

Figure 4—10 illustrates the shear modulus for symmetrical balanced laminates with 

stacking sequence as [Ɵ/-Ɵ/0/90]S. The results obtained from both methods are identical for all 

cases. 
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Figure 4—10 Shear Modulus for [Ɵ/-Ɵ/0/90]S 

Table 4—10 displays the results from Figure 4—10. The percent difference is zero for all 

of the cases. 

Table 4—10 Shear modulus for [Ɵ/-Ɵ/0/90]S 

Gxy(Psi) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 9.40E+05 9.40E+05 0.0 

15/-15 1.61E+06 1.61E+06 0.0 

30/-30 2.94E+06 2.94E+06 0.0 

45/-45 3.61E+06 3.61E+06 0.0 

60/-60 2.94E+06 2.94E+06 0.0 

75/-75 1.61E+06 1.61E+06 0.0 

90/90 9.40E+05 9.40E+05 0.0 

 

Figure 4—11 illustrates the shear modulus for un-symmetrical laminates with stacking 

sequence as [θ2/0/90]2T. Laminates [902/0/90]2T and [02/0/90]2T are the only balanced laminates 

with the identical results obtained from both methods. The rest of the laminates are un-balanced 

and their results are not identical. 
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Figure 4—11 Shear Modulus for [Ɵ2/0/90]2T 

Table 4—11 displays the results for both methods from Figure 4—11. Cases of [0/0] and 

[90/90] have zero values for the percent difference unlike the rest of the laminates with non-zero 

values for the percent difference. 

Table 4—11 Shear modulus for [θ2/0/90]2T 

Gxy(Psi) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 9.40E+05 9.40E+05 0.0 

15/15 1.60E+06 1.18E+06 26.4 

30/30 2.92E+06 1.77E+06 39.5 

45/45 3.61E+06 2.08E+06 42.3 

60/60 3.01E+06 1.69E+06 43.8 

75/75 1.63E+06 1.15E+06 29.2 

90/90 9.40E+05 9.40E+05 0.0 

 

Figure 4—12 illustrates the shear modulus for symmetrical laminates with stacking 

sequence as [θ2/0/90]S. Laminates [902/0/90]S and [02/0/90]S are the only balanced laminates and 

their results obtained from both methods are identical. For the rest of the un-balanced laminates 

the results are not identical. 
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Figure 4—12 Shear Modulus for [θ2/0/90]S 

Table 4—12 displays the results from Figure 4—12. Laminates [902/0/90]S and [02/0/90]S 

have zero values for the percent difference unlike the rest of the laminates with non-zero values 

for the percent difference. 

Table 4—12 Shear modulus for [θ2/0/90]S 

Gxy(Psi) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 9.40E+05 9.40E+05 0.0 

15/15 1.60E+06 1.21E+06 24.5 

30/30 2.92E+06 1.90E+06 35.0 

45/45 3.61E+06 2.34E+06 35.2 

60/60 3.01E+06 1.90E+06 36.9 

75/75 1.63E+06 1.21E+06 25.6 

90/90 9.40E+05 9.40E+05 0.0 

 

Figure 4—13 illustrates the Poisson’s ratio for un-symmetrical balanced laminates with 

stacking sequence as [Ɵ/-Ɵ/0/90]2T. The results obtained from both methods for laminate 

[902/0/90] are in very close range. 
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Figure 4—13 Poisson’s Ratio for [Ɵ/-Ɵ/0/90]2T 

Table 4—13 displays the results from Figure 4—13. For the case of [90/90] the percent 

difference is very small as 0.9. For the rest of the laminates the percent differences are much 

larger. 

Table 4—13 Poisson’s Ratio for [Ɵ/-Ɵ/0/90]2T 

ʋxy 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 5.68E-02 6.77E-02 16.2 

15/-15 1.48E-01 1.86E-01 20.6 

30/-30 2.99E-01 3.75E-01 20.3 

45/-45 2.99E-01 3.50E-01 14.8 

60/-60 1.73E-01 1.88E-01 7.8 

75/-75 6.18E-02 6.37E-02 3.0 

90/90 2.16E-02 2.14E-02 0.9 

 

Figure 4—14 illustrates the Poisson’s ratio for symmetrical balanced laminates with 

stacking sequence as [Ɵ/-Ɵ/0/90]S. The results obtained from both methods are identical for all 

the laminates. 
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Figure 4—14 Poisson’s Ratio for [Ɵ/-Ɵ/0/90]S 

Table 4—14 displays the results from Figure 4—14. The percent differences for all the 

laminates are zero. 

Table 4—14 Poisson’s Ratio for [Ɵ/-Ɵ/0/90]S 

ʋxy 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 5.68E-02 5.68E-02 0.0 

15/-15 1.48E-01 1.48E-01 0.0 

30/-30 2.99E-01 2.99E-01 0.0 

45/-45 2.99E-01 2.99E-01 0.0 

60/-60 1.73E-01 1.73E-01 0.0 

75/-75 6.18E-02 6.18E-02 0.0 

90/90 2.16E-02 2.16E-02 0.0 

 

Figure 4—15 illustrates the Poisson’s ratio for un-symmetrical laminates with stacking 

sequence as [θ2/0/90]2T. Laminates [902/0/90]2T and [02/0/90]2T are the only balanced laminates 

for the case of [θ2/0/90]2T but [902/0/90]2T is the only laminate with the results obtained from both 

methods are in very close range. The results of the other laminates are not identical. 
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Figure 4—15 Poisson’s ratio for [θ2/0/90]2T 

Table 4—15 displays the results from Figure 4—15. For the case of [90/90] the percent 

difference is very small as 0.9 unlike the rest of the laminates the percent differences are much 

larger. 

Table 4—15 Poisson’s Ratio for [θ2/0/90]2T 

ʋxy 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 0.057 0.068 16.2 

15/15 0.148 0.096 34.9 

30/30 0.299 0.111 62.8 

45/45 0.299 0.105 65.0 

60/60 0.173 0.081 53.1 

75/75 0.062 0.044 28.1 

90/90 0.022 0.021 0.9 

 

Figure 4—16 illustrates the Poisson’s ratio for symmetrical laminates with stacking 

sequence as [Ɵ2/0/90]S. Laminates [902/0/90]S and [02/0/90]S are the only balanced laminates 

with the identical results obtained from both methods. The rest of the laminates are un-balanced 

with no identical results. 
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Figure 4—16 Poisson’s Ratio for [θ2/0/90]S 

Table 4—16 displays the results from Figure 4—16. The percent difference for the cases 

of [0/0] and [90/90] is zero. The rest of the laminates have non-zero values for the percent 

difference. 

Table 4—16 Poisson’s ratio for [θ2/0/90]S 

ʋxy 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 5.68E-02 5.68E-02 0.0 

15/15 1.48E-01 8.10E-02 45.2 

30/30 2.99E-01 9.40E-02 68.6 

45/45 2.99E-01 9.09E-02 69.6 

60/60 1.73E-01 7.51E-02 56.7 

75/75 6.18E-02 4.45E-02 28.0 

90/90 2.16E-02 2.16E-02 0.0 

 

Figure 4—17 illustrates the Coefficient of Thermal Expansion for un-symmetrical laminate 

with stacking sequence as [Ɵ/-Ɵ/0/90]2T. There is no identical result from both methods for this 

case. 
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Figure 4—17 Longitudinal Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]2T 

Table 4—17 displays the plotted values from Figure 4—17. The percent difference is a 

none zero value for all the cases. 

Table 4—17 Longitudinal Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]2T 

αx(10-6/F0) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 -6.35E-08 -3.06E-08 51.8 

15/-15 -7.68E-08 -7.47E-08 2.7 

30/-30 -3.79E-09 -6.95E-08 94.6 

45/-45 4.22E-07 3.82E-07 9.3 

60/-60 1.08E-06 1.13E-06 4.1 

75/75 1.53E-06 1.62E-06 5.6 

90/90 1.66E-06 1.76E-06 6.0 

 

Figure 4—18 illustrates the Coefficient of Thermal Expansion for symmetrical laminate 

with stacking sequence as [Ɵ/-Ɵ/0/90]S. It’s a balanced laminate for all the cases. So the results 

from both methods are identical. 
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Figure 4—18 Longitudinal Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]S 

Table 4—18 displays the results from Figure 4—18. The percent difference is zero for all 

the cases. 

Table 4—18 Longitudinal Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]S 

αx(10-6/F0) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 -6.35E-08 -6.35E-08 0.0 

15/-15 -7.68E-08 -7.68E-08 0.0 

30/-30 -3.79E-09 -3.79E-09 0.0 

45/-45 4.22E-07 4.22E-07 0.0 

60/-60 1.08E-06 1.08E-06 0.0 

75/-75 1.53E-06 1.53E-06 0.0 

90/90 1.66E-06 1.66E-06 0.0 

 

Figure 4—19 illustrates the longitudinal Coefficient of Thermal Expansion for un-

symmetrical laminate with stacking sequence as [θ2/0/90]2T. None of the results are identical 

obtained from both methods. 
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Figure 4—19 Longitudinal Coefficient of Thermal Expansion [θ2/0/90]2T 

Table 4—19 displays the results from Figure 4—19. The percent difference is large for all 

the cases from both methods. 

Table 4—19 Longitudinal Coefficient of Thermal Expansion [θ2/0/90]2T 

αx(10-6/F0) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 -6.35E-08 -3.06E-08 51.8 

15/15 -7.68E-08 3.44E-07 122.4 

30/30 -3.79E-09 8.96E-07 100.4 

45/45 4.22E-07 1.26E-06 66.5 

60/60 1.08E-06 1.50E-06 27.6 

75/75 1.53E-06 1.68E-06 9.1 

90/90 1.66E-06 1.76E-06 6.0 

 

Figure 4—20 illustrates the longitudinal Coefficient of Thermal Expansion for symmetrical 

laminate with stacking sequence as [θ2/0/90]S. Only for the cases of 0 and 90 degree the results 

are identical from both methods and the rest of the cases the results are not identical. Also for the 

case of 75 degree the results are in very close range. 
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Figure 4—20 Longitudinal Coefficient of Thermal Expansion [θ2/0/90]S 

Table 4—20 displays the results from Figure 4—20. The percent difference for the cases 

of 0 and 90 degree is 0 and for the case of 75 degree is very small value. 

Table 4—20 Longitudinal Coefficient of Thermal Expansion [θ2/0/90]S 

αx(10-6/F0) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 -6.35E-08 -6.35E-08 0.0 

15/15 -7.68E-08 3.35E-07 122.9 

30/30 -3.79E-09 8.88E-07 100.4 

45/45 4.22E-07 1.22E-06 65.6 

60/60 1.08E-06 1.43E-06 24.0 

75/75 1.53E-06 1.58E-06 3.4 

90/90 1.66E-06 1.66E-06 0.0 

 

Figure 4—21 illustrates the transverse coefficient of thermal expansion for the stacking 

sequence of [Ɵ/-Ɵ/0/90]2T. The data from both methods is not the same for all the cases. 
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Figure 4—21 Transverse Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]2T 

Table 4—21 displays the results from Figure 4—21. The percent difference is none zero 

value for all the cases. The highest percent difference value is for the case of 60/-60. 

Table 4—21 Transverse Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]2T 

αy(10-6/F0) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 1.66E-06 2.54E-06 34.8 

15/-15 1.53E-06 2.33E-06 34.6 

30/-30 1.08E-06 1.61E-06 32.8 

45/-45 4.22E-07 5.74E-07 26.5 

60/-60 -3.79E-09 3.91E-09 196.8 

75/-75 -7.68E-08 -7.22E-08 5.9 

90/90 -6.35E-08 -6.07E-08 4.4 

 

Figure 4—22 illustrates the transverse coefficient of thermal expansion for the 

symmetrical laminates with stacking sequence of [Ɵ/-Ɵ/0/90]S. The results obtained from both 

methods are the same. 
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Figure 4—22 Transverse Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]S 

Table 4—22 displays the results from Figure 4—22. For the symmetrical laminate the 

percent difference for all the cases are zero value. 

Table 4—22 Transverse Coefficient of Thermal Expansion [Ɵ/-Ɵ/0/90]S 

αy(10-6/F0) 

Ɵ/-Ɵ Modified method Conventional method % Difference 

0/0 1.66E-06 1.66E-06 0 

15/-15 1.53E-06 1.53E-06 0 

30/-30 1.08E-06 1.08E-06 0 

45/-45 4.22E-07 4.22E-07 0 

60/-60 -3.79E-09 -3.79E-09 0 

75/-75 -7.68E-08 -7.68E-08 0 

90/90 -6.35E-08 -6.35E-08 0 

 

Figure 4—23 illustrates the transverse coefficient of thermal expansion for the un-

symmetrical laminates with stacking sequence as [θ2/0/90]2T. None of the results are the same 

from both methods. The biggest difference is for the case of 75/75. 
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Figure 4—23 Transverse Coefficient of Thermal Expansion [θ2/0/90]2T 

Table 4—23 illustrates the results from Figure 4—23. The percent difference is none zero 

for all the laminates. The highest value for the percent difference is for the case of 75/75. 

Table 4—23 Transverse Coefficient of Thermal Expansion [θ2/0/90]2T 

αy(10-6/F0) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 1.66E-06 2.54E-06 34.8 

15/15 1.53E-06 2.43E-06 37.1 

30/30 1.08E-06 2.17E-06 50.1 

45/45 4.22E-07 1.79E-06 76.5 

60/60 -3.79E-09 1.21E-06 100.3 

75/75 -7.68E-08 4.09E-07 118.8 

90/90 -6.35E-08 -6.07E-08 4.4 

 

Figure 4—24 illustrates the transverse coefficient of thermal expansion for the 

symmetrical laminates with stacking sequence as [θ2/0/90]S. The only cases that have the same 

results are 0/0 and 90/90. For the case of 15/15 the results are in a very close range from both 

methods. 
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Figure 4—24 Transverse Coefficient of Thermal Expansion [θ2/0/90]S 

Table 4—24 illustrates the results from Figure 4—24. The percent difference for the case 

of 0/0 and 90/90 is zero. For the case of 15/15 the percent difference is as small as 3.4%. 

Table 4—24 Transverse Coefficient of Thermal Expansion [θ2/0/90]S 

αy(10-6/F0) 

Ɵ/Ɵ Modified method Conventional method % Difference 

0/0 1.66E-06 1.66E-06 0.0 

15/15 1.53E-06 1.58E-06 3.4 

30/30 1.08E-06 1.43E-06 24.0 

45/45 4.22E-07 1.22E-06 65.6 

60/60 -3.79E-09 8.88E-07 100.4 

75/75 -7.68E-08 3.35E-07 122.9 

90/90 -6.35E-08 -6.35E-08 0.0 

 

4.5 Stress analysis of laminate 

In the previous sections equivalent properties of laminate were obtained by applying 

modified method and conventional method. These are the mechanical and thermal properties of a 

laminate but when it comes to analysis of laminates there is another key factor that plays a very 

important role in the analysis is the stress of each ply in the laminate. In this section the stress 

analysis of the laminate using the classical lamination theory is compared against the stress 

results obtained by employing the modified method and the conventional method. 

For the case of an axial load, Fx =1(lb) is applied at the node on the mid-plane of each 

laminate. For the case of thermal load, ΔT =1(F0) applied uniform temperature in the desired 
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laminate. The stacking sequences that are considered for the stress analysis are [45/-45/0/90]2T, 

[45/-45/0/90]S, [15/-15/0/90]2T, [15/-15/0/90]S, [452/0/90]2T, [452/0/90]S , and [152/0/90]2T, [30/-

30/0/90]2T, and [30/-30/0/90]S. For the case of thermal load the stacking sequences considered 

are [45/-45/0/90]S, and [45/-45/0/90]2T, and [30/-30/0/90]S. 

Equation (4.34) is derived in order to calculate the mid plane strain and curvature of the 

laminate. 

(ϵ
0

к
) = (

a b
bT d

) (N
M
)                                                                                                             (4.36) 

Recall equations (4.15) and (4.16), by using these two equations the P matrix and the 

stain mid-plane ca be obtained. Once the strain mid-plane is obtained then strain for each ply can 

be calculated. For the case of a symmetrical laminate since the [B] matrix is zero, the curvature 

will not exist. But for an un-symmetrical laminate with curvature, strain for each ply in the desired 

lumped laminate can be obtained by the following equation (4.35). “h” is the height measured 

from bottom of the lowest ply, and [k] is the curvature. 

ϵ = ϵ0  + h [k]                                                                                                                       (4.37) 

4.5.1 Ply-by-ply stress results 

In ANSYS-APDL, an axial load of 1(lb) applied at a node in mid-plane (centroid) of the 

desired laminate with boundary conditions for the un-loaded side, all nodes in X-direction are set 

to zero displacement, nodes along the vertical line through the centroid in the Y-direction are set 

to zero displacement, and one node at the centroid in Z-direction is set to zero displacement. 

For the case of the thermal load, assume temperature difference of ΔT=1(F0) with the 

same boundary conditions as it was conducted for the axial load case. 

Figure 4—25 illustrates ply-by-ply stress results for the laminate, subjected to an axial 

load of 1(lb) which is acting at the node in the mid-plane of the laminate, by employing both 

methods and also the ply stress for the actual laminate. This figure is for the case of un-

symmetrical laminate with stacking sequence as [45/-45/0/90]2T. 
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Figure 4—25 Ply-by-ply stress under axial load 1(lb) [45/-45/0/90]2T 

Table 4—25 displays the stress results obtained from the modified method and the 

lamination theory. 

Table 4—25 Stress results under axial load 1(lb) [45/-45/0/90]2T 

σx(Psi) 

Z(in) Ply(Ɵ) Modified method % Difference Lamination theory 

0.02 45 10.7 7.0 11.5 

0.015 45 11.9 7.0 12.8 

0.015 -45 16.9 5.9 15.9 

0.01 -45 16.5 5.5 15.6 

0.01 0 71.3 4.3 74.5 

0.005 0 68.3 4.6 71.6 

0.005 90 3.2 3.0 3.3 

0 90 3.2 3.0 3.3 

0 45 15.8 4.8 16.6 

-0.005 45 17 5.0 17.9 

-0.005 -45 15.4 5.8 14.5 

-0.01 -45 15 6.0 14.1 

-0.01 0 59.4 5.1 62.6 

-0.015 0 56.4 5.5 59.7 

-0.015 90 2.97 4.2 3.1 

-0.02 90 2.9 3.3 3 
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Figure 4—26 illustrates ply-by-ply stress results under axial load of 1(lb), obtained for 

symmetrical, balanced laminate subjected to an axial load, by employing  both methods and also 

the ply stress results by employing the laminate theory. 

 

Figure 4—26 Ply-by-ply stress under axial load 1(lb) [45/-45/0/90]S 

Table 4—26 displays the results from Figure 4—26. The percent difference is zero for all 

the cases. 

Table 4—26 Stress results under axial load 1(lb) [45/-45/0/90]S 

σx(psi) 

Z(in) Ply(Ɵ) %Difference Modified method Lamination theory 

0.02 45 0 15.8 15.8 

0.015 -45 0 15.8 15.8 

0.01 0 0 65.3 65.3 

0.005 90 0 3.2 3.2 

-0.005 90 0 3.2 3.2 

-0.01 0 0 65.3 65.3 

-0.015 -45 0 15.8 15.8 

-0.02 45 0 15.8 15.8 

 

Figure 4—27 illustrates ply-by-ply stress under axial load of 1(lb) for the case of the 

symmetrical, balanced laminate with stacking sequence as: [15/-15/0/90]S by employing the 

modified method and the lamination theory. The results gained from both methods are identical. 
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Figure 4—27 Ply-by-ply stress under axial load 1(lb) [15/-15/0/90]S 

Table 4—27 displays the stress results from Figure 4—27. The results gained from the 

modified method and the lamination theory are identical. 

Table 4—27 Stress results under axial load 1(lb) [15/-15/0/90]S 

σx(psi) 

Z(in) Ply(Ɵ) Modified method % Difference Lamination theory 

0.02 15 31.2 0 31.2 

0.015 -15 31.2 0 31.2 

0.01 0 35.7 0 35.7 

0.005 90 1.8 0 1.8 

-0.005 90 1.8 0 1.8 

-0.01 0 35.7 0 35.7 

-0.015 -15 31.2 0 31.2 

-0.02 15 31.2 0 31.2 

 

Figure 4—28 illustrates ply-by-ply stress results under axial load of 1(lb) for the case of 

the un-symmetrical, balanced laminate with stacking sequence as: [15/-15/0/90]2T. Unlike the 

symmetrical model, the results are not identical. The largest difference is for the case of the 0 

degree ply and 15 degree ply. 
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Figure 4—28 Ply-by-ply stress under axial load 1(lb) [15/-15/0/90]2T 

Table 4—28 displays the results from Figure 4—28. The largest difference between the 

results is for the 15 and 0 degree plies. 

Table 4—28 Stress results under axial load 1(lb) [15/-15/0/90]2T 

σx(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified 

0.02 15 30.27 46% 16.2 

0.015 -15 31.94 12% 27.98 

0.01 0 35.94 8.8% 32.78 

0.005 90 1.8 0% 1.8 

-0.005 15 31.69 9% 34.98 

-0.01 -15 30.14 12.6% 34.48 

-0.015 0 35.4 20.6% 44.59 

-0.02 90 1.84 27.6% 2.54 

 

Figure 4—29 illustrates ply-by-ply stress under axial load of 1(lb) for un-symmetrical, un-

balanced laminate with stacking sequence as [452/0/90]2T. The stress results gained by 

employing modified method for plies 45 and 90 degree are in a very close range with the results 

gained by FEM. 
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Figure 4—29 Ply-by-ply stress under axial load 1(lb) [452/0/90]2T 

Table 4—29 displays the results from Figure 4—29. The largest difference is for the 45 

degree plies stress results gained by conventional method compared with the other two stress 

results. 

Table 4—29 Stress results under axial load 1(lb) [452/0/90]2T 

σx(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 45 7.68 12% 8.73 

0.015 45 8.21 6.6% 8.79 

0.01 0 78.34 13% 90.13 

0.005 90 4.03 7% 4.33 

0 45 9.89 9.4% 8.96 

-0.005 45 10.4 13.3% 9.02 

-0.01 0 77.87 15.3% 65.95 

-0.015 90 4.05 22.5% 3.14 

-0.02 90 4.05 30% 2.84 

 

Figure 4—30 illustrates ply-by-ply stress under axial load of 1(lb) for symmetrical, un-

balanced laminate with stacking sequence as [452/0/90]S. Stress results gained by employing 

modified method are identical compared with the results by FEM. 
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Figure 4—30 Ply-by-ply stress under axial load 1(lb) [452/0/90]S 

Table 4—30 displays the results from Figure 4—30. As it’s displayed in the table, the 

stress results gained by conventional method have large differences compared with the results 

from modified method and FEM, for the cases of 45 degree plies. 

Table 4—30 Stress results under axial load 1(lb) [452/0/90]S 

σx(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 45 8.98 0.2% 8.96 

0.015 45 8.98 0.2% 8.96 

0.01 0 78 0% 78 

0.005 90 4.03 0% 4.03 

-0.005 90 4.03 0% 4.03 

-0.01 0 78 0% 78 

-0.015 45 8.98 0.2% 8.96 

-0.02 45 8.98 0.2% 8.96 

 

Figure 4—31 illustrates ply-by-ply stress under axial load of 1(lb) for un-symmetrical, un-

balanced laminate with stacking sequence as [152/0/90]2T. It includes the stress results obtained 

from ANSYS. Conventional method stress result for the case of the 15 degree ply has a large 

difference compared with the actual data results and modified method results. 
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Figure 4—31 Ply-by-ply stress results under axial load 1(lb) [152/0/90]2T 

Table 4—31 displays the results from Figure 4—31. The stress results obtained from 

modified method are in closer range to the actual results (lamination theory) compared with 

conventional method. Conventional method has the largest difference for the stress results for the 

case of the 15 degree ply compared with the results from modified method and the actual results. 

Table 4—31 Stress results under axial load 1(lb) [152/0/90]2T 

σx(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 15 23.36 29% 16.56 

0.015 15 23.93 22% 18.73 

0.01 0 47.47 3% 46.1 

0.005 90 2.44 1.6% 2.4 

0 15 25.64 1.6% 25.22 

-0.005 15 26.61 2.8% 27.39 

-0.01 0 47.21 2% 48.12 

-0.015 90 2.45 5.8% 2.6 

-0.02 90 2.45 5.8% 2.6 

 

Figure 4—32 illustrates ply-by-ply stress under axial load of 1(lb) for un-symmetrical, 

balanced laminate with stacking sequence as [30/-30/0/90]2T. 
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Figure 4—32 Ply-by-ply stress under axial load 1(lb) [30/-30/0/90]2T 

Table 4—32 displays the results from Figure 4—32. 

Table 4—32 Stress results under axial load 1(lb) [30/-30/0/90]2T 

σx(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 30 22 39% 13.4 

0.015 -30 25.6 0.8% 25.4 

0.01 0 47.4 4.4% 45.3 

0.005 90 2.25 0% 2.25 

-0.005 30 27.5 3.8% 28.6 

-0.01 -30 25.1 2.7% 25.8 

-0.015 0 48 2.4% 49.2 

-0.02 90 2.4 11% 2.7 

 

Figure 4—33 Illustrates ply-by-ply stress under axial load of 1(lb) for symmetrical, 

balanced laminate with stacking sequence as [30/-30/0/90]S. Unlike conventional method, the 

stress results obtained from modified method are in a very close range with FEM results. 
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Figure 4—33 Ply-by-ply stress under axial load 1(lb) [30/-30/0/90]S 

Table 4—33 displays the results from Figure 4—33. The stress results obtained by 

modified method are almost identical to those obtained from FEM. 

Table 4—33 Stress results under axial load 1(lb) [30/-30/0/90]S 

σx(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 30 25.8 0.8% 25.6 

0.015 -30 25.8 0.8% 25.6 

0.01 0 46.5 0.21% 46.6 

0.005 90 2.26 0.44% 2.25 

-0.005 90 2.26 0.44% 2.25 

-0.01 0 46.5 0.21% 46.6 

-0.015 -30 25.8 0.8% 25.6 

-0.02 30 25.8 0.8% 25.6 

 

Figure 4—34 illustrates ply-by-ply normal stress induced by the thermal load due to the 

temperature difference of ΔT=1(F0) for the symmetrical, balanced laminate with stacking 

sequence as [45/-45/0/90]S. The results obtained from modified method are identical with the 

stress results by FEM and the lamination theory. But the stress results gained from conventional 

method are not identical compare with the results gained from the lamination theory and FEM. 
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Figure 4—34 Ply-by-ply stress, σx
TH [45/-45/0/90]S 

Table 4—34 displays the stress results from Figure 4—34, plus it includes the thermal 

stress results obtained by employing FEM. 

Table 4—34 Stress results, σx
TH [45/-45/0/90]S 

σx
TH(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 45 -0.08 0% 0 

0.015 -45 -0.08 0% 0 

0.01 0 17.2 0% 17.2 

0.005 90 -17.2 0% -17.2 

-0.005 90 -17.2 0% -17.2 

-0.01 0 17.2 0% 17.2 

-0.015 -45 -0.08 0% 0 

-0.02 45 -0.08 0% 0 

 

Figure 4—35 illustrates ply-by-ply shear stress induced by the thermal load due to the 

temperature difference as ΔT=1(F0). The stress results gained from modified method are identical 

with FEM. 
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Figure 4—35 Ply-by ply Shear stress, Ƭxy
TH [45/-45/0/90]S 

Table 4—35 displays the results from Figure 4—35, including the stress results from 

FEM. 

Table 4—35 Shear stress results, Ƭxy
TH [45/-45/0/90]S 

Ƭxy
TH(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 45 17.2 0% 17.2 

0.015 -45 -17.2 0% -17.2 

0.01 0 -0.02 0% 0 

0.005 90 -0.02 0% 0 

-0.005 90 -0.02 0% 0 

-0.01 0 -0.02 0% 0 

-0.015 -45 -17.2 0% -17.2 

-0.02 45 17.2 0% 17.2 

 

Figure 4—36 illustrates ply-by-ply normal stress induced by thermal load due to the 

temperature difference of ΔT=1(F0) for the symmetrical, balanced laminate with stacking 

sequence as [30/-30/0/90]S. The stress results for all the methods are identical to the FEM 

results. 
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Figure 4—36 Ply-by ply Normal stress, σx
TH [30/-30/0/90]S 

Table 4—36 displays the results from Figure 4—36. The stress results obtained are 

identical to those results from FEM except for 30 and -30 plies which the percent difference is 

only 0.2%. 

Table 4—36 Normal stress results, σx
TH [30/-30/0/90]S 

σx
TH(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 30 5.24 0.2% 5.25 

0.015 -30 5.24 0.2% 5.25 

0.01 0 7.03 0% 7.03 

0.005 90 -17.53 0% -17.53 

-0.005 90 -17.53 0% -17.53 

-0.01 0 7.03 0% 7.03 

-0.015 -30 5.24 0.2% 5.25 

-0.02 30 5.24 0.2% 5.25 

 

Figure 4—37 illustrates ply-by-play shear stress induced by thermal load due to the 

temperature difference of ΔT =1(F0) for the symmetrical, balanced laminate with stacking 

sequence as [30/-30/0/90]S. The stress results obtained by modified method are identical with the 

stress results from FEM. 
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Figure 4—37 Ply-by ply Shear stress, Ƭxy
TH [30/-30/0/90]S 

Table 4—37 displays the results from Figure 4—37. The stress results obtained are 

identical to the results obtained by FEM. 

Table 4—37 Shear stress results, Ƭxy
TH [30/-30/0/90]S 

Ƭxy
TH(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 30 13.6 0% 13.6 

0.015 -30 -13.6 0% -13.6 

0.01 0 0.0003 0% 0 

0.005 90 0.0003 0% 0 

-0.005 90 0.0003 0% 0 

-0.01 0 -13.6 0% -13.6 

-0.015 -30 13.6 0% 13.6 

-0.02 30 13.6 0% 13.6 
 

Figure 4—38 illustrates ply-by-ply normal stress induced by thermal load due to the 

temperature difference of 1(F0) in the un-symmetrical, balanced laminate with stacking sequence 

as [45/-45/0/90]2T. 
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Figure 4—38 Ply-by-ply Normal stress, σx
TH [45/-45/0/90]2T 

Table 4—38 displays the results from Figure 4—38. 

Table 4—38 Normal stress results, σx
TH [45/-45/0/90]2T 

σx
TH(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 45 -2 25% -1.5 

0.015 -45 2 64% 0.72 

0.01 0 16.4 0.61% 16.3 

0.005 90 -17.2 0% -17.2 

-0.005 45 1.3 61.5% 0.5 

-0.01 -45 -1.9 62% -0.72 

-0.015 0 19.3 3% 19.9 

-0.02 90 -17.1 0.58% -17 
 

Figure below illustrates ply-by-ply normal stress induced by thermal load due to the 

temperature difference of 1(F0) in the un-symmetrical, un-balanced laminate with stacking 

sequence as [152/0/90]2T. 
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Figure 4—39 Ply-by-ply Normal stress, σxTH [152/0/90]2T 

The table below displays the stress results obtained by modified method are in closer 

range to the results obtained by FEM in comparing them with conventional method’s results. 

Table 4—39 Normal stress results, σxTH [152/0/90]2T 

σx
TH(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 15 4.6 2% 4.7 

0.015 15 3.8 2.6% 3.7 

0.01 0 17.3 0% 17.3 

0.005 90 -16.7 0% -16.7 

-0.005 15 0.62 4.6% 0.65 

-0.01 15 -0.28 20% -0.35 

-0.015 0 13.8 0% 13.8 

-0.02 90 -17.5 0% -17.5 

 

The figure below illustrates ply-by-ply shear stress induced by thermal load due to the 

temperature difference of 1(F0) in the un-symmetrical, un-balanced laminate with stacking 

sequence as [152/0/90]2T. 
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Figure 4—40 Ply-by-ply Shear stress, Ƭxy
TH [152/0/90]2T 

The table below displays the stress results are in a very close range in comparing them 

with the results from FEM. 

Table 4—40 Shear stress results, Ƭxy
TH [152/0/90]2T 

Ƭxy
TH(psi) 

Z(in) Ply(Ɵ) FEM %Difference Modified method 

0.02 15 3.2 11.1% 3.6 

0.015 15 3 9% 3.3 

0.01 0 -2.9 6.9% -2.7 

0.005 90 -2.8 3.6% -2.7 

-0.005 15 2.6 0% 2.6 

-0.01 15 2.4 4.2% 2.3 

-0.015 0 -2.5 0% -2.5 

-0.02 90 -2.4 0% -2.4 

 

4.6 Constructing laminate model by ANSYS 

The finite element method is done by using ANSYS-APDL software. Laminate is 

subjected to Fx =1(lb) which is acting at a node on the centroid of the laminate.  All the nodes on 

the loaded side of the laminate are coupled in X-direction, in order to achieve uniform load 

distribution through all the elements. On the un-loaded side of the laminate, all the nodes are 

constrained in the X-direction, the nodes displacements on the vertical line through the centroid in 

the Y-direction are set to be zero, and one node on the mid-plane (centroid) is only constrained in 
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the Z-direction. The laminate length and width is 1 by 1 (X by Y), and Z axis is from 0 to top of the 

laminate thickness. 

Figure 4—41 shows the induced thermal stress due to the temperature difference of ΔT 

=1(F0) for the laminate [45/-45/0/90]S.  

 

Figure 4—41 Induced σx
TH due to ΔT =1(F0), [45/-45/0/90]S 

Figure 4—42 shows the induced shear thermal stress due to the temperature difference 

for laminate [45/-45/0/90]S. 

 

Figure 4—42 Induced Ƭxy
TH due to ΔT =1(F0), [45/-45/0/90]S 

Figure 4—43 shows the induced thermal stress caused by the temperature difference of 

ΔT =1(F0) for the laminate [15/-15/0/90]2T. 
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Figure 4—43 Induced σx
TH for [15/-15/0/90]2T 

Figure 4—44 shows the normal stress caused by an applied axial load of 1(lb) for the 

laminate with stacking sequence as [45/-45/0/90]2T. 

 

Figure 4—44 σx due to Axial load 1(lb), [45/-45/0/90]2T 

Figure 4—45 shows the induced normal stress results for the laminate [45/-45/0/90]2T 

due to the temperature difference of 1(F0). 
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Figure 4—45 σx
TH due to Thermal load, 1(F0) [45/-45/0/90]2T 

Figure 4—46 shows the induced shear stress results for the laminate [45/-45/0/90]2T due 

to the temperature difference of 1(F0). 

 

Figure 4—46 Ƭxy
TH due to Thermal load, 1(F0) [45/-45/0/90]2T 

Figure 4—47 shows the induced normal stress results for the laminate [30/-30/0/90]S, due 

to the temperature difference of 1(F0). 
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Figure 4—47 σx
TH due to Thermal load, 1(F0) [30/-30/0/90]S 

Figure 4—48 shows the induced shear stress results for the laminate [30/-30/0/90]S, due 

to the temperature difference of 1(F0). 

 

Figure 4—48 Ƭxy
TH due to Thermal load, 1(F0) [30/-30/0/90]S 

Figure 4—49 shows the boundary conditions, as an example for laminate with stacking 

sequence of [45/-45/0/90]S. The nodal displacements for all the nodes in the X-direction is zero, 

nodes on the vertical line through the centroid in the Y-direction is zero, and only one node at the 

mid-plane (centroid) in the Z-direction is zero. 
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Figure 4—49 Laminate with Boundary Conditions by ANSYS-APDL 

Figure 4—50 shows applied axial force of 1(lb), acting at the mid-plane of the laminate, 

and all the nodes are coupled in the X-direction. 

 

Figure 4—50 Laminate with applied axial load by ANSYS 

In order to read the stress results in ANSYS, The data are chosen at least one element 

away from the edge of the laminate in order to avoid the edge effect. 

Figure 4—51 illustrates how the results are obtained by FEM approach. For each 

laminate, the stack of 8 elements which represent the exact 8 layers in the desired laminate are 

chosen in order to obtain ply-by-ply stress. The stacks of elements are chosen one element away 
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from the edge of the laminate, and each element is associated with each ply in the desired 

laminate in the same order as the stacking sequence. 

 

Figure 4—51 Stack of elements representing a laminate 

Figure 4—52 illustrates as an example, the induced normal stress due to the temperature 

difference of 1( F0) for the element number 715 (top ply) which is associated with the layer 

number 8 in the laminate [30/-30/0/90]S. 

 

Figure 4—52 Element number 715 associated with layer # 8 of [30/-30/0/90]S 

Figure 4—53 shows the stress results obtained by ANSYS-APDL, using the “list results” 

command for the element number 515. It also displays the stress results for each node. For the 
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FEM approach, the stress for each layer in the laminate is obtained by employing the list results 

command for all of the laminate cases. 

 

Figure 4—53 Stress Listing for element 515, layer # 6 of [45/-45/0/90]S 

Figure 4—54 shows the stack of elements that are chosen for the analysis for each and 

individual laminate. The stacks are carefully picked that they are one element away from the edge 

of the laminate. The element that is circled is the figure, is element number 715 which is the top 

layer of the laminate. 

 

Figure 4—54 Stack of elements chosen for FEM analysis for each laminate 
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Chapter 5  

Equivalent Properties of Structure 

5.1 Overview 

Composite materials are used in many different types of structures in industries. For 

example bridges, air craft wings, ballistic materials and much more. Composite structures are 

made of different geometries. The structure level of composite materials is laminated composites 

that are bonded together in order to form a new geometry such as I-Beams or aircraft wings. The 

focus of this chapter is on obtaining the equivalent properties and stress analysis of laminated or 

composite I-Beam. 

In this chapter the stress analysis of composite I-Beam is conducted by finite element 

method using ANSYS-APDL software, and also by analytical method using Mathematica 

software. There are two methods that are considered in this chapter in order to obtain the 

equivalent properties of I-Beam cross section. One is conventional method using smeared 

properties, and the other is modified method. In the modified method, the constitutive equations 

of the top and bottom flanges and the web were first obtained based on a composite narrow 

beam behavior. The sectional properties, centroid, axial stiffness, and bending stiffness of 

composite I-Beam are derived. Once the strain and curvature are calculated then the resultant 

forces and moment can be obtained. With having the moment and the resultant forces calculated, 

then the stress for each ply in the sub-laminates can be calculated as well. 

As far as analysis of I-Beam, most of them are considered to be one dimensional. The 

analysis of I-Beam is based on the moment and curvature relation along the longitudinal axis. In 

the laminate level, the classical laminated plate theory is employed in order to calculate the ply 

stresses. 

In order to calculate the section property of structure by employing the analytical method 

(non-FEM) approach, first the equivalent stiffness of each sub-laminate by lamination theory 

needs to be calculated. Conventional method using in composite analysis is to calculate the 



77 

equivalent stiffness of each sub-laminate by the lamination theory. But by employing this method, 

the coupling effect of the structural level would be ignored.  

The focus of this chapter is to obtain and evaluate equivalent properties of I-Beam by 

employing conventional method using smeared properties, and modified method. The main factor 

that would make a big difference in comparing the two methods is the translation of axis. In 

structural modeling it may be necessary to translate the reference axis of a laminate. For 

instance, for the case of I-Beam, the flange laminate axis of I-Beam needs to be translated to the 

laminate axis of the entire cross section. The effect of this axis translation in obtaining the 

equivalent properties of laminated I-Beam using smeared properties and modified method will be 

discussed in details later on in this chapter. 

In the analysis of a long I-Beam, moment My and twisting curvature kxy in the Y-plane are 

neglected. For the case of a laminated I-Beam under an axial load acting at the centroid, the 

bending moment Mx and Mxy may be induced. In this thesis, transverse normal force Fy shear 

force Fxy, moment My, and twisting curvature kxy are assumed to be zero. The laminated 

constitutive equation for a narrow beam in the form of a matrix can be constructed as: 

(Nx
Mx
) = (

Ax
narrow Bx

narrow

Bx
narrow Dx

narrow) (
ϵx
0

кx
)                                                                                        (5.1) 

Ax
narrow is the laminate axial stiffness, Bx

narrow is the coupling stiffness, and Dx
narrow is the 

bending stiffness. ϵx
0 and kx are the mid plane strain and the curvature of the laminate, 

respectively. 

5.2 Composite I-Beam geometry 

I-Beam is constructed of two sub-laminates, top and bottom flanges, and the web sub-

laminate. All the sub-laminates are to be perfectly bonded. The top flange is numbered 1, the web 

is numbered 2, and the bottom flange is numbered 3. The width of the top and bottom flanges are 

bf1 and bf3 respectively, and the height of the web is hw. z1 is measured from the bottom of the 

flange 3 to the mid thickness of the flange 1. z2 or zw is measured from the bottom of the flange 3 

to the mid height of the web, and z3 is measured from bottom of the flange 3 to its mid thickness. 
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Figure 5—1 it’s an arbitrary geometry only to illustrates the dimensions and it’s not to 

resemble the actual I-Beam that is used for the analysis. The width and the height of the I-Beam 

for this analysis are bf1 =1(in), bf3 =2(in), and hw =1(in). 

 

Figure 5—1 Composite I-Beam geometry and dimensions 

5.3 Sectional properties of composite I-Beam 

The significant difference between the smeared properties stiffness and the narrow beam 

bending stiffness (modified method) is that the bending stiffness in smeared properties does not 

consider the stacking sequence in the calculations. The smeared properties method only consider 

an equivalent young’s modulus and multiply it by the inertia of the cross section of the beam. So 

that is why the effect of the stacking sequence on the bending stiffness is ignored. This is 

acceptable for the case of a very thin I-beam which the height from the bending axis is large. 

However in the case of a thick laminate which the height from the bending axis is small, then the 

stacking sequence will have a significant influence on calculating the bending stiffness. So for the 

case of a thick laminate it is more appropriate to employ the modified method rather than the 

smeared properties method. 
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5.3.1 Conventional method’s approach 

As it was mentioned before, this method does not consider the stacking sequence effect 

when obtaining the bending stiffness. It only take the young’s modulus and multiply it by the 

inertia of the cross section of the beam. 

Conventional method’s approach uses smeared properties in order to obtain the axial 

and the bending stiffness. 

Ax
smeared =

w 

a11 
= E A                                                                                                             (5.2) 

Dx
smeared = w Dx = E I                                                                                                           (5.3) 

I = 2 (
1 

12
 bfihfi

3 + (bfi hfi) ZiC
2 ) +

1 

12
 twhw

3                                                                         (5.4) 

Where ZiC is the distance measured from the centroid of the I-beam to the mid axis of the 

laminate. 

5.3.2 Modified method’s approach 

Since the ratio of the width to the depth of the beam is usually not greater than 6, a 

narrow beam assumption is employed in this study. The equation of constitutive of I-beam has 

been derived in [8]. The key equations used in this study are given below. 

Total axial stiffness with “w” being the width of the beam is: 

Ax
narrow =

w d11 

a11 d11 − b11
2                                                                                                              (5.5) 

Total coupling stiffness can be calculated by: 

Bx
narrow =

w b11 

b11
2 − a11 d11 

                                                                                                             (5.6) 

Total bending stiffness can be calculated as: 

Dx
narrow =

w a11 

a11 d11 − b11
2                                                                                                              (5.7) 

By having the sectional properties, then the equivalent axial stiffness of the entire cross-

section can be defined by using equation (5.8). 
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EAc = bf1(A1,f1) + bf2(A1,f2) + bf3(A1,f3)                                                                        (5.8) 

The centroid of a structural cross-section is defined as the average location of forces 

acting on each part of the cross section. So the centroid can be located by using equation (5.9) 

and the bending stiffness of the entire I-Beam is defined as equation (5.10). 

Zc =
bf1(A1,f1)z1+bf2(A1,f2)z2+bf3(A1,f3)z3

bf1(A1,f1)+bf2(A1,f2)+bf3(A1,f3)
                                                                                  (5.9) 

Dx
c =∑ bfi(A1,fi zic

2 + 2 B1,fizic + Di,fi) + A1,w(
1

12

2

i=1
hw
3 + hwhwc

2 )                           (5.10) 

5.3.3 Results obtained by employing modified and Conventional methods 

Mathematica software was used in order to calculate the sectional properties of the I-

Beam cross section. The ply thickness is 0.005(in) and the stacking sequence of the top flange 

(1) of the I-Beam is [45/-45/0/90]S, for the bottom flange (3) is [45/-45/04/90]S, and for the web (2) 

is [45/-45/0]S. The top flange width is 1(in), the bottom flange width is 2(in). For this case the 

height of the web hw is 1(in). 

Properties of the typical unidirectional composite in 2-D, used for this analysis are 

displayed in Table 5—1. Table 5—2 displays the results for the sectional properties of I-Beam, for 

the case of hw=1(in) by employing both conventional and modified methods. 

Table 5—1 Properties of Carbon/Epoxy (IM6G/3501-6) 

Density 

ρ 

(lb/in3) 

Long. 

Modulus 

E1(Msi) 

Trans. 

Modulus 

E2(Msi) 

Shear 

Modulus 

G12(Msi) 

Poisson’s 

Ratio 

ʋ12 

Long. 

TEC 

ᾳ1(10-6/F0) 

Trans. 

TEC 

ᾳ2(10-6/F0) 

0.059 24.5 1.3 0.94 0.31 -0.5 13.9 

 

As it was expected for the axial stiffness, the results gained from both methods are 

identical, and the results for the bending stiffness have 58.3% difference. 
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Table 5—2 Sectional properties results for hw =1(in) 

Equivalent. Prop. of I-Beam Modified method Conventional method 

Centroid (in) 0.229 0.229 

Axial stiffness,EAC(lb) 2.909 x 106 2.909 x 106 

Percent Difference % 0% 

Bending stiffness,Dx
C(lb.in2) 382857 918475 

Percent Difference % 58.3% 

 

5.4 Stress analysis of composite I-Beam 

In composite materials, the centroid is defined to be at the location where an axial load Nx 

does not cause any change in the curvature KC
x and the bending moment Mx does not induce 

axial strain ϵC
x. So it means if the load is applied at the centroid, it decouples the structural 

response between the axial extension and the bending. 

Consider an I-Beam which is subjected to Nx and Mx acting at the centroid of the cross 

section. Since load is applied at the centroid, the axial and bending stiffness are decoupled. 

Equations (5.8) and (5.9) are the constitutive equations in the matrix form. It can be constructed 

based on the strain and curvature of the whole I-Beam section. 

(ϵx
c

Kx
c) = (

a11 b11
b11 d11

) (Nx
Mx
)                                                                                                      (5.11) 

(Nx
Mx
) = (

EAc 0
0 Dx

c) (
ϵx
c

Kx
c)                                                                                                       (5.12) 

Nx and Mx are the applied axial and moment loads, respectively. a11, b11, and d11 are the 

compliance, coupling, and flexibility components of each sub-laminate, EAC and DC
x are the 

equivalent axial and bending stiffness of the I-Beam cross section, respectively. 

5.4.1 Applied axial load 

In the case of axial load acting at the centroid, the curvature Kx
C = Kx,fi = 0 and ϵx,fi

0 = ϵx
C

  

in order to obtain the strain at the centroid, ϵx
C equation (5.13) can be applied. 
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ϵx
C =

Nx

EA
                                                                                                                                    (5.13) 

The resultant force and moment per unit width of sub-laminates are: 

Nx,fi = A1,fi  ϵx
C                                                                                                                            (5.14) 

Mx,fi = B1,fi  ϵx
C                                                                                                                            (5.15) 

Now the mid plane strain and curvature of each sub-laminate can be calculated by 

equation (5.16). 

 

(

 
 
 
 

ϵx,fi
0

ϵy,fi
0

ϵxy,fi
0

Kx,fi
Ky,fi
Kxy,fi)

 
 
 
 

=

(

 
 
 

a11 b11 b16
a12 b21 b26
a16 b61 b66
b11 d11 d16
b12 d12 d26
b16 d61 d66)

 
 
 

(

Nx,fi
Mx,fi
Mxy,fi

)                                                                         (5.16) 

Once the mid plane strains for sub-laminate is calculated, strain of each layer in the sub-

laminate can be calculated by: 

ϵfi,k = ϵfi
0 + zfi,k Kfi                                                                                                                       (5.17) 

ϵfi,k is the strain for the desired layer in a sub-laminate, and zfi,k is the height from the 

center of the desired layer in a sub-laminate to the bottom of the I-Beam. 

5.4.2 Applied bending moment 

In the case of bending moment acting at the centroid, the curvature of the composite I-

Beam can be calculated by using equation (5.18). 

kx,fi = Kx
C =

Mx 

Dx
C                                                                                                                      (5.18) 

The resultant force and moment can be obtained by using equations (5.16) and (5.17). 

Hint that for this case: ϵC
x =0 and KC

x =kx,fi. 

Nx,fi  = ( Ax,fi
narrow zc,fi  +   Bx,fi

narrow ) =
Mx 

Dx
C                                                                         (5.19) 

Mx,fi  = ( Bx,fi
narrow zc,fi  +   Dx,fi

narrow ) =
Mx 

Dx
C                                                                        (5.20) 
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Chapter 6  

Conclusions 

Materials have variety of properties which includes mechanical and thermal properties. It 

was found that the combination of materials can improve the properties of materials. So 

composite materials were introduced and they have been used in many industries for a long time. 

Also this would bring a great challenge when it comes to analysis of composite materials. It is a 

very time consuming process and it takes a large amount of computer memory. So obtaining 

equivalent properties would reduce the size of the problem. 

A concept of equivalent properties for lamina, laminate, and structure levels is 

considered. Methods that are considered in this thesis are the modified or the present method, 

and the conventional method. Equivalent properties are calculated by the present method is 

taken consideration of the structure behavior of equivalent zero degree lamina. Hence, the 

induced curvature and the shear deformation are suppressed for un-symmetrical and un-

balanced laminates under applied axial load, and the induced axial and shear deformation are 

suppressed under applied bending moment. 

It was discussed at the lamina level how to obtain and derive the equivalent properties for 

variety of ply orientations and the results gained from both methods were compared against each 

other and the properties were plotted. At the laminate level, both methods were employed for 

different cases, for all of the properties Ex, Ey, Gxy, ʋxy, ᾳx, and ᾳx. Laminates with stacking 

sequences as [Ɵ/-Ɵ/0/90]2T, [Ɵ/-Ɵ/0/90]S, [Ɵ2/0/90]S, and [Ɵ2/0/90]2T were considered. 

Longitudinal normal stress, due to an applied axial load for the cases of [45/-45/0/90]2T, [45/-

45/0/90]S, [15/-15/0/90]2T, [15/-15/0/90]S, [452/0/90]S, [452/0/90]2T, [152/0/90]2T, [30/-30/0/90]2T, and 

[30/-30/0/90]S were analyzed and the results were plotted. Also induced normal and shear 

stresses caused by temperature load, due to the temperature difference for the case of [45/-

45/0/90]S, [45/-45/0/90]2T, [30/-30/0/90]2T, [30/-30/0/90]2T, and [152/0/90]2T were calculated and 

analyzed by employing the two methods and compared the results against those that were 

obtained by the laminate theory. At the structure level, I-Beam cross section was considered for 
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the analysis. The two methods, modified method and smeared properties approach were 

employed in order to obtain the sectional properties such as centroid, axial and bending stiffness. 

Stress analysis for flange 2 when I-Beam is subjected to an axial load and moment which were 

acting at the centroid of the I-Beam cross section were conducted and tabulated. The stress 

results with an applied axial load by employing both methods were compared against the results 

gained by employing FEM by using ANSYS. The method of constructing the model in ANSYS 

with the boundary conditions and the load cases were discussed and plotted. 

 



 

85 

Appendix A 

Mathematica codes and calculations 
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Sample codes for laminate analysis and equivalent properties: 

IM6G/3501-6: 

E1 = 24.5e6, E2 = 1.3e6. G12 = 0.94e6, V12 = 0.31, α1 = -0.5e-6, α2 = 13.9e-6 

Equivalent- properties for [+θ/-θ/0/90] 2T : lumped layer, θ = 0,15, 30, 45, 60, 75, 90 

σnew=Table[0,{a,3}]; 

σ45=Table[0,{t,3}]; 

σmin45=Table[0,{s,3}]; 

σ0=Table[0,{aa,3}]; 

σnew0=Table[0,{b,3}]; 

σnewmin45=Table[0,{ee,3}]; 

σnew45=Table[0,{dd,3}]; 

σnew90=Table[0,{q,3}]; 

s=Table[0,{c,3},{d,3}]; 

snew=Table[0,{e,3},{f,3}]; 

q=Table[0,{o,3},{p,3}]; 

delta=Table[0,{g,3},{h,3}]; 

qnew=Table[0,{i,3},{j,3}]; 

A=Table[0,{k,3},{l,3}]; 

B=Table[0,{kk,3},{ll,3}]; 

b=Table[0,{mm,3},{nn,3}]; 

Dmat=Table[0,{oo,3},{pp,3}]; 

d=Table[0,{qq,3},{rr,3}]; 

a= Table[0,{m,3},{n,3}]; 

Q0=Table[0,{u,3},{v,3}]; 

P=Table[0,{r,3},{hh,3}]; 

Qmin45=Table[0,{gg,3},{ff,3}]; 
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Q45=Table[0,{ii,3},{jj,3}]; 

NTtotal=Table[0,{w,3}]; 

Napply=Table[0,{z,3}]; 

Ntotal=Table[0,{bb,3}]; 

α=Table[0,{ss,3}]; 

αnew=Table[0,{tt,3}]; 

α45=Table[0,{tt,3}]; 

αmin45=Table[0,{av,3}]; 

αold=Table[0,{ww,3}]; 

L=Table[0,{xx,3},{yy,3}]; 

Q90=Table[0,{zz,3},{ab,3}]; 

α90=Table[0,{cd,3}]; 

ϵmid=Table[0,{ef,3}]; 

k=Table[0,{gh,3}]; 

ϵ45=Table[0,{ij,3}]; 

ϵmin45=Table[0,{kl,3}]; 

snew=Table[0,{mn,3},{op,3}]; 

deltanew=Table[0,{qr,3},{st,3}]; 

Qnew45=Table[0,{uv,3},{wx,3}]; 

σnewlump=Table[0,{yz,3}]; 

ϵmid=Table[0,{ba,3}]; 

Pnew=Table[0,{dc,3},{fe,3}]; 

NT=Table[0,{hg,3}]; 

αnew=Table[0,{ji,3}]; 

ϵnewlump=Table[0,{lk,3}]; 

ϵ0=Table[0,{nm,3}]; 
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NTlump=Table[0,{po,3}]; 

MTlump=Table[0,{rq,3}]; 

ϵ90=Table[0,{ts,3}]; 

σ90=Table[0,{vu,3}]; 

Qnewlump=Table[0,{xw,3},{zy,3}]; 

MT=Table[0,{ac,3}]; 

bt=Table[0,{ad,3},{ae,3}]; 

ϵnewmidlump=Table[0,{af,3}]; 

s0=Table[0,{ag,3},{ah,3}]; 

s15=Table[0,{ak,3},{ai,3}]; 

s30=Table[0,{al,3},{aj,3}]; 

s45=Table[0,{an,3},{am,3}]; 

s60=Table[0,{ap,3},{ao,3}]; 

s75=Table[0,{ar,3},{aq,3}]; 

s90=Table[0,{at,3},{as,3}]; 

Q15=Table[0,{au,3},{av,3}]; 

Q30=Table[0,{aw,3},{ax,3}]; 

Q60=Table[0,{ay,3},{az,3}]; 

Q75=Table[0,{ba,3},{bb,3}]; 

α15=Table[0,{bc,3}]; 

α30=Table[0,{bd,3}]; 

α60=Table[0,{be,3}]; 

α75=Table[0,{bf,3}]; 

αnew0=Table[0,{bg,3}]; 

αmin15=Table[0,{bh,3}]; 

αmin30=Table[0,{bi,3}]; 
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αnew45=Table[0,{bj,3}]; 

αmin60=Table[0,{bk,3}]; 

αmin75=Table[0,{bl,3}]; 

αnew90=Table[0,{bm,3}]; 

αold0=Table[0,{bn,3}]; 

αold15=Table[0,{bm,3}]; 

αold30=Table[0,{bn,3}]; 

αold45=Table[0,{bo,3}]; 

αold60=Table[0,{bp,3}]; 

αold75=Table[0,{bq,3}]; 

αold90=Table[0,{br,3}]; 

Qmin15=Table[0,{bu,3},{bv,3}]; 

Qmin30=Table[0,{bx,3},{bw,3}]; 

Qmin60=Table[0,{bz,3},{by,3}]; 

Qmin75=Table[0,{cb,3},{ca,3}]; 

Qmin90=Table[0,{cc,3},{cd,3}]; 

αmin90=Table[0,{ce,3}]; 

Qoldlump=Table[0,{cf,3},{cg,3}]; 

ϵnewmidlump=Table[0,{cj,3}]; 

Qnewlump=Table[0,{ck,3},{cl,3}]; 

Mapply=Table[0,{cn,3}]; 

knewlump=Table[0,{co,3}]; 

s[[1,1]]=1/E1; 

s[[1,2]]=s[[2,1]]=-V12/E1; 

s[[2,2]]=1/E2; 

s[[3,3]]=1/( G12); 
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s;MatrixForm[%]; 

delta[[1,1]]=s[[1,1]]*s[[2,2]]-s[[1,2]]*s[[1,2]]; 

delta[[2,2]]=s[[1,1]]*s[[2,2]]-s[[1,2]]*s[[1,2]]; 

delta[[1,2]]=s[[1,1]]*s[[2,2]]-s[[1,2]]*s[[1,2]]; 

delta[[2,1]]=s[[1,1]]*s[[2,2]]-s[[1,2]]*s[[1,2]]; 

q[[1,1]]=s[[2,2]]/delta[[1,1]]; 

q[[2,2]]=s[[1,1]]/delta[[2,2]]; 

q[[1,2]]=(-1*s[[1,2]])/delta[[1,2]]; 

q[[3,3]]=1/s[[3,3]]; 

qnew[[1,1]]=Cos[θ]^4*q[[1,1]]+Sin[θ]^4*q[[2,2]]+2*Cos[θ]^2*Sin[θ]^2*q[[1,2]]+4*Cos[θ]^2

*Sin[θ]^2*q[[3,3]]; 

qnew[[2,2]]=Sin[θ]^4*q[[1,1]]+Cos[θ]^4*q[[2,2]]+2*Cos[θ]^2*Sin[θ]^2*q[[1,2]]+4*Cos[θ]^2

*Sin[θ]^2*q[[3,3]]; 

qnew[[1,2]]=qnew[[2,1]]=Cos[θ]^2*Sin[θ]^2*q[[1,1]]+Cos[θ]^2*Sin[θ]^2*q[[2,2]]+(Cos[θ]^

4+Sin[θ]^4)*q[[1,2]]-4*Cos[θ]^2*Sin[θ]^2*q[[3,3]]; 

qnew[[1,3]]=qnew[[3,1]]=Cos[θ]^3*Sin[θ]*q[[1,1]]-Cos[θ]*Sin[θ]^3*q[[2,2]]-

Cos[θ]*Sin[θ]*(Cos[θ]^2-Sin[θ]^2)*q[[1,2]]-2*Cos[θ]*Sin[θ]*(Cos[θ]^2-Sin[θ]^2)*q[[3,3]]; 

qnew[[2,3]]=qnew[[3,2]]=Cos[θ]*Sin[θ]^3*q[[1,1]]-

Cos[θ]^3*Sin[θ]*q[[2,2]]+Cos[θ]*Sin[θ]*(Cos[θ]^2-Sin[θ]^2)*q[[1,2]]+2*Cos[θ]*Sin[θ]*(Cos[θ]^2-

Sin[θ]^2)*q[[3,3]]; 

qnew[[3,3]]=Cos[θ]^2*Sin[θ]^2*q[[1,1]]+Cos[θ]^2*Sin[θ]^2*q[[2,2]]-

2*Cos[θ]^2*Sin[θ]^2*q[[1,2]]+(Cos[θ]^2-Sin[θ]^2)^2*q[[3,3]]; 

snew[[1,1]]=Cos[θ]^4*s[[1,1]]+Sin[θ]^4*s[[2,2]]+2*Cos[θ]^2*Sin[θ]^2*s[[1,2]]+Cos[θ]^2*Si

n[θ]^2*s[[3,3]]; 

snew[[2,2]]=Sin[θ]^4*s[[1,1]]+Cos[θ]^4*s[[2,2]]+2*Cos[θ]^2*Sin[θ]^2*s[[1,2]]+Cos[θ]^2*Si

n[θ]^2*s[[3,3]]; 
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snew[[1,2]]=snew[[2,1]]=Cos[θ]^2*Sin[θ]^2*s[[1,1]]+Cos[θ]^2*Sin[θ]^2*s[[2,2]]+(Cos[θ]^4

+Sin[θ]^4)*s[[1,2]]-Cos[θ]^2*Sin[θ]^2*s[[3,3]]; 

snew[[1,3]]=snew[[3,1]]=2*Cos[θ]^3*Sin[θ]*s[[1,1]]-

2*Cos[θ]*Sin[θ]^3*s[[2,2]]+2*(Cos[θ]*Sin[θ]^3-Cos[θ]^3*Sin[θ])*s[[1,2]]+(Cos[θ]*Sin[θ]^3-

Cos[θ]^3*Sin[θ])*s[[3,3]]; 

snew[[2,3]]=snew[[3,2]]=2*Cos[θ]*Sin[θ]^3*s[[1,1]]-

2*Cos[θ]^3*Sin[θ]*s[[2,2]]+2*(Cos[θ]^3*Sin[θ]-Cos[θ]*Sin[θ]^3)*s[[1,2]]+(Cos[θ]^3*Sin[θ]-

Cos[θ]*Sin[θ]^3)*s[[3,3]]; 

snew[[3,3]]=4*Cos[θ]^2*Sin[θ]^2*s[[1,1]]+4*Cos[θ]^2*Sin[θ]^2*s[[2,2]]-

8*Cos[θ]^2*Sin[θ]^2*s[[1,2]]+(Cos[θ]^2-Sin[θ]^2)^2*s[[3,3]]; 

α[[1]]=- 0.5*10^- 6; 

α[[2]]=13.9*10^-6; 

α[[3]]=0; 

αnew[[1]]=Cos[θ]^2*α[[1]]+Sin[θ]^2*α[[2]]-Cos[θ]*Sin[θ]*α[[3]]; 

αnew[[2]]=Cos[θ]^2*α[[2]]+Sin[θ]^2*α[[1]]+Cos[θ]*Sin[θ]*α[[3]]; 

αnew[[3]]=2*Cos[θ]*Sin[θ]*α[[1]]-2*Cos[θ]*Sin[θ]*α[[2]]+(Cos[θ]^2-Sin[θ]^2)*α[[3]]; 

αmin15=αnew/.θ-> -(15*Pi)/180; 

α90=αnew/.θ-> Pi/2; 

α30=αnew/.θ-> (30*Pi)/180; 

α60=αnew/.θ-> (60*Pi)/180; 

α15=αnew/.θ-> (15*Pi)/180; 

α75=αnew/.θ-> (75*Pi)/180; 

α45=αnew/.θ-> Pi/4; 

αmin45=αnew/.θ-> - Pi/4; 

αmin30=αnew/.θ->- (30*Pi)/180; 

αmin75=αnew/.θ-> -(75*Pi)/180; 
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αmin60=αnew/.θ-> -(60*Pi)/180; 

αmin90=αnew/.θ-> - Pi/2; 

t=0.005; 

h0=- 4*t; 

h1=- 3*t; 

h2=- 2*t; 

h3=- t; 

h4=0; 

h5=t; 

h6=2*t; 

h7=3* t; 

h8=4*t; 

Napply[[1]]=1; 

Napply[[2]]=0; 

Napply[[3]]=0; 

Mapply[[1]]=0; 

Mapply[[2]]=0; 

Mapply[[3]]=0; 

s0=snew/.E1-> 24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->0; 

Q0=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->0; 

Q45=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->Pi/4; 

Q15=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ-

>(15*Pi)/180; 

Q30=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ-

>(30*Pi)/180; 
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Qmin30=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->-

(30*Pi)/180; 

MatrixForm[%]; 

Q60=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ-

>(60*Pi)/180; 

Qmin60=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->-

(60*Pi)/180; 

Q90=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->Pi/2; 

Qmin90=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->- 

Pi/2; 

Q75=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ-

>(75*Pi)/180; 

Qmin45=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->-

Pi/4; 

Qmin15=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->-

(15*Pi)/180; 

Qmin75=qnew/.E1->  24.5*10^6/.E2-> 1.3*10^6/.V12-> 0.31 /.G12-> 0.94*10^6/.θ->-

(75*Pi)/180; 

------------------------θ 0/0 

Extensional stiffness (lb / in) 

A=2*(Q90*t)+6*(Q0*t); 

 ({  {751834., 16202.6, 0.}, 

  {16202.6, 285456., 0.}, 

  {0., 0., 37600.} 

 })Extensional - Bending coupling stiffness ( lb ) 



 

94 

B=0.5*((Q90*(h1^2-h0^2))+(Q0*(h2^2- h1^2))+(Q0*(h3^2-h2^2))+(Q0*(h4^2-

h3^2))+(Q90*(h5^2-h4^2))+(Q0*(h6^2-h5^2))+(Q0*(h7^2-h6^2))+(Q0*(h8^2-h7^2))); 

})Bending stiffness ( lb-in) 

Dmat=(1/3)*((Q90*(h1^3-h0^3))+(Q0*(h2^3- h1^3))+(Q0*(h3^3-h2^3))+(Q0*(h4^3-

h3^3))+(Q90*(h5^3-h4^3))+(Q0*(h6^3-h5^3))+(Q0*(h7^3-h6^3))+(Q0*(h8^3-h7^3))); 

 ({  {94.4148, 2.16035, 0.}, 

  {2.16035, 43.8905, 0.}, 

  {0., 0., 5.01333} 

 })ABD=({ 

    {A[[1,1]], A[[1,2]], A[[1,3]], B[[1,1]], B[[1,2]], B[[1,3]]}, 

    {A[[2,1]], A[[2,2]], A[[2,3]], B[[2,1]], B[[2,2]], B[[2,3]]}, 

    {A[[3,1]], A[[3,2]], A[[3,3]], B[[3,1]], B[[3,2]], B[[3,3]]}, 

    {B[[1,1]], B[[1,2]], B[[1,3]], Dmat[[1,1]], Dmat[[1,2]], Dmat[[1,3]]}, 

    {B[[2,1]], B[[2,2]], B[[2,3]], Dmat[[2,1]], Dmat[[2,2]], Dmat[[2,3]]}, 

    {B[[3,1]], B[[3,2]], B[[3,3]], Dmat[[3,1]], Dmat[[3,2]], Dmat[[3,3]]} 

abd=Inverse[ABD]; 

a=({    {abd[[1,1]], abd[[1,2]], abd[[1,3]]}, 

    {abd[[2,1]], abd[[2,2]], abd[[2,3]]}, 

    {abd[[3,1]], abd[[3,2]], abd[[3,3]]} 

   });b=({ 

    {abd[[1,4]], abd[[1,5]], abd[[1,6]]}, 

    {abd[[2,4]], abd[[2,5]], abd[[2,6]]}, 

    {abd[[3,4]], abd[[3,5]], abd[[3,6]]} 

   });bt=({ 

    {abd[[4,1]], abd[[4,2]], abd[[4,3]]}, 

    {abd[[5,1]], abd[[5,2]], abd[[5,3]]}, 
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    {abd[[6,1]], abd[[6,2]], abd[[6,3]]} 

   });d=({    {abd[[4,4]], abd[[4,5]], abd[[4,6]]}, 

    {abd[[5,4]], abd[[5,5]], abd[[5,6]]}, 

    {abd[[6,4]], abd[[6,5]], abd[[6,6]]} 

P is ϵmid 

P=a-(b.Inverse[d].Transpose[b]); 

 ({  {1.33171*10-6, -7.55886*10-8, 0.}, 

  {-7.55886*10-8, 3.50746*10-6, 0.}, 

  {0., 0., 0.0000265957} 

 })Exnew=1/((P[[1,1]]-(P[[1,3]]^2/P[[3,3]]))*8*t) 

1.87729*107 

Eynew=1/((P[[2,2]]-(P[[2,3]]^2/P[[3,3]]))*8*t) 

7.12766*106 

υxynew=- ((P[[1,2]]-((P[[1,3]]*P[[2,3]])/P[[3,3]]))/(P[[1,1]]-(P[[1,3]]^2/P[[3,3]]))) 

0.0567606 

delta=P[[1,1]]*P[[2,2]]-P[[1,2]]^2; 

Gxynew=(1/(P[[3,3]]-((P[[1,3]]*(P[[2,2]]*P[[1,3]]-P[[1,2]]*P[[2,3]]))/delta)-

((P[[2,3]]*(P[[1,1]]*P[[2,3]]-P[[1,2]]*P[[2,3]]))/delta)))*(1/(8*t)) 

940000. 

Equiv-prop for α: thermal moment load, assume T = 1 

( lb / in ) 

T=1; 

NT=T*((6*(Q0.α)*t)+(2*(Q90.α90)*t)); 

 ({  {-0.0208704}, 

  {0.471979}, 

  {0.} 
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 })( lb ): 

MT=(0.5*T)* 

   (((Q90.α90)*(h1^2-h0^2))+((Q0.α)*(h2^2- h1^2))+((Q0.α)*(h3^2-h2^2))+((Q0.α)*(h4^2-

h3^2))+((Q90.α90)*(h5^2-h4^2))+((Q0.α)*(h6^2-h5^2))+((Q0.α)*(h7^2-h6^2))+((Q0.α)*(h8^2-

h7^2))); 

 ({  {-0.00184818}, 

  {0.00184818}, 

  {0.} 

 })αnew[[1]]=((P[[1,1]]-(P[[1,3]]^2/P[[3,3]]))*NT[[1]])+((P[[1,2]]-

((P[[1,3]]*P[[2,3]])/P[[3,3]]))*NT[[2]]) 

-6.34696*10-8 

αnew[[2]]=((P[[1,2]]-((P[[1,3]]*P[[2,3]])/P[[3,3]]))*NT[[1]])+((P[[2,2]]-

(P[[2,3]]^2/P[[3,3]]))*NT[[2]]) 

1.65703*10-6 

Smeared method 

Exold=1/(a[[1,1]]*8*t) 

1.79603*107 

Eyold=1/(a[[2,2]]*8*t) 

5.38477*106 

υxyold=- (a[[1,2]]/a[[1,1]]) 

0.0677194 

Gxyold=1/(8*t*a[[3,3]]) 

αold=a.NT+b.MT; 
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