

MULTIPLEXING AND DEMULTIPLEXING HEVC VIDEO AND AAC AUDIO AND

ACHIEVING LIP SYNCHRONIZATION DURING PLAYBACK

by

MRUDULA BALMOHAN WARRIER

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2014

Copyright © by

ii

Copyright © by Mrudula Balmohan Warrier 2014

All Rights Reserved

iii

Acknowledgements

I’m very grateful to my thesis advisor, Dr.K.R. Rao for introducing me to

specialize in the field of video coding and for his immense support, guidance and faith in

every step of the thesis. He has been a great source of inspiration to learn, not only for

the thesis, but also for many other things.

I would like to extend my appreciation to my Multimedia processing lab mates

who provided me with their valuable inputs throughout.

I would like to extend my gratitude to UTA for providing me with opportunity and

resources to excel in my graduate studies.

Finally, I would like to thank my parents, sister and friends for their continuous

support, without which this would have not been possible.

November 10, 2014

iv

Abstract

MULTIPLEXING AND DEMULTIPLEXING HEVC VIDEO AND AAC AUDIO AND

ACHIEVING LIP SYNCHRONIZATION DURING PLAYBACK

Mrudula Balmohan Warrier, M.S

The University of Texas at Arlington, 2014

Supervising Professor: K.R. Rao

High efficiency video coding (HEVC) /H.265 [5], is the latest digital video coding

standard which has proven to be superior to earlier standards in terms of compression

ratio, quality and error resilience. In order for the end user to understand the video

meaningfully, there should be an associated audio with it. Any video is incomplete without

a proper audio. Advanced audio coding (AAC) [8] is the digital audio codec standard

defined in MPEG-2 and later in MPEG-4 with few changes. The audio quality of an AAC

stream is widely used as the audio coding standard in various applications. It would be a

great advantage to the user to adopt HEVC as video codec and AAC as the audio

coding, for transmission of digital multimedia through air (ATSC, DVB) or through the

internet (video streaming, IPTV). However, multiplexing is required for these applications

in order to combine and create a single bit stream from separate audio and video bit

streams for transmission purposes. The objective of the thesis is to propose a method for

effectively multiplexing the audio and video coded streams for transmission followed by

demultiplexing the streams at the receiver and achieving lip synchronization between the

audio and video during the playback. The proposed method uses the fact that frames are

constant throughout the length of audio and video. The first step of the process is the

v

packetization of elementary audio and video bit streams. The frame number information

is stored in the header of the packets which is used as the vital information to

synchronize the video and audio during playback. Then second layer of packetization is

carried out from the first layer in order to meet the requirements of MPEG-2 transport

stream. Proposed method uses playback time as the criteria for allocating data packets

during multiplexing in order to prevent buffer overflow or underflow at the demultiplexer.

The information required during the demultiplexer process to ensure error free is put in

the header. Flow and results of the thesis are discussed in detail in the chapters.

vi

 Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations .. ix

List of Tables .. xi

Chapter 1 INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Thesis outline .. 2

Chapter 2 OVERVIEW OF HIGH EFFICIENCY VIDEO CODING (HEVC) 4

2.1 Introduction ... 4

2.2 HEVC Encoder ... 5

2.2.1 Working of HEVC Encoder .. 5

2.2.2 Coding tree units ... 6

2.2.3 Intra Prediction .. 9

2.3 Bitstream syntax of HEVC .. 10

2.4 Video coding layer topics .. 12

2.4.1 Motion vector signaling .. 12

2.4.2 Motion compensation .. 13

2.4.3 Quantization control .. 13

2.4.4 Entropy Coding .. 14

2.4.5 Deblocking Filter .. 14

2.4.6 Sample Adaptive Offset (SAO) .. 14

2.5 Parallel decoding syntax and modified slice structuring ... 15

2.5.1 Tiles ... 15

2.5.2 Wavefront parallel processing ... 15

vii

2.5.3 Dependent slice segments .. 15

2.5.4 Slices ... 16

2.6 HEVC Profile, level. .. 16

2.7 Summary .. 16

Chapter 3 OVERVIEW OF ADVANCED AUDIO CODING (AAC) 17

3.1 Introduction ... 17

3.2 AAC Profiles ... 17

3.3 AAC Encoder .. 18

3.4 Summary .. 24

Chapter 4 MULTIPLEXING ... 25

4.1 Introduction ... 25

4.2 MPEG Bitstream Structure ... 25

4.2.1 Elementary Stream .. 26

4.2.2 Packetized Elementary Stream (PES) .. 26

4.3 MPEG-2 Multiplexing .. 28

4.4 MPEG-2 Transport Stream ... 29

4.5 Format of Transport Stream packet.. 30

4.6 Frame number as Time Stamp ... 34

4.7 Proposed Multiplexing method ... 35

4.8 Summary .. 37

Chapter 5 DEMULTIPLEXING AND SYNCHRONIZATION ... 38

5.1 Demultiplexing .. 38

5.2 Synchronization and playback .. 41

5.3 Summary .. 42

Chapter 6 RESULTS AND CONCLUSIONS... 43

viii

6.1 Test conditions.. 43

6.2 Results .. 45

6.3 Conclusion .. 49

6.3 Future research .. 49

APPENDIX A Platform .. 51

APPENDIX B List Of Acronyms .. 53

References .. 57

Biographical Information ... 63

ix

List of Illustrations

Figure 1-1 Multiplexing of audio and video streams…………………………………..13

Figure 1-2 Demultiplexing of audio and video streams……………………………….13

Figure 2-1 Block diagram of HEVC encoder…………………………………………..16

Figure 2-2 Decoder diagram of HEVC…………………………………………………17

Figure 2-3 Format for YUV components……………………………………………….18

Figure 2-4 Quadtree structure…………………………………………………………..19

Figure 2-5 Modes for splitting a CB into PBs…………………………………………..20

Figure 2-6 Intra prediction modes of HEVC encoder………………………………….22

Figure 2-7 Comparison of HEVC and H.264 NAL units………………………………23

Figure 2-8 Integer and fractional sample positions for luma interpolation………….25

Figure 2-9 Three coefficient scanning methods in HEVC…………………………….27

Figure 3-1 AAC encoder block diagram………………………………………………..30

Figure 4-1 Streams supported by MPEG-2 ……………………………………………37

Figure 4-2 PES encapsulation from elementary stream ……………………………..38

Figure 4-3 PES packet header ………………………………………………………….39

Figure 4-4 Single Program Transport Stream …………………………………………40

Figure 4-5 transport stream (TS) header ………………………………………………41

Figure 4-6 Multiplexing of audio data and video data

into MPEG-2 transport stream……………………………………………...42

Figure 4-7 Combining ES from encoders into TS (red) or a PS (yellow) …………..44

Figure 4-8 Flowchart of multiplexing process………………………………………….49

Figure 5-1 overview of multiplexing and demultiplexing………………………………50

Figure 5-2 Flowchart of the demultiplexer……………………………………………...51

Figure 6-1 Test Condition for Video file………………………………………………..56

x

Figure 6-2 HEVC encoder with IBBB setting…………………………………………..59

Figure 6-3 Morning Test sequence, WVGA 832x480, 25 FPS, 219 Frames………59

Figure 6-4 Extracting .wave and .yuv from .avi……………………………………….60

Figure 6-5 Encoding .wav to .aac low complexity using FAAC …………………….60

xi

List of Tables

Table 2-1 The NAL unit types and their associated meanings, classes in the HEVC

standard……………………………………………………………………….23

Table 3-1 ADTS header format………………………………………………………...33

Table 3-2 ADTS profile bits in header ………………….……………………………..34

Table 4-1 PES packet header description …………………………………………...38

Table 4-2 Transport stream header glossary ……………….………………………..47

Table 6-1 Test clip conditions…….…………………………………………………….55

Table 6-2 Lip synchronization results for clip 1...……………..……………………..57

Table 6-3 Lip synchronization results for clip 2………………..……………………..58

1

Chapter 1

INTRODUCTION

1.1 Introduction

Digital television transmission has already replaced analog television

transmission with better quality and less bandwidth. With the advent of HDTV,

transmission schemes are aiming at transmitting superior quality video with provision to

view both standard format and wide screen (16:9) format along with one or more audio

streams per channel [17]. Choosing the right video codec and audio codec plays a very

important role in achieving the bandwidth and quality requirements. H.265 or High

Efficiency Video Coding (HEVC) [1], is the latest video coding standard by the ITU-T

Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts

Group (MPEG) as the product of a collective partnership effort known as the joint video

team- video coding (JVT-VC) [10]. The new standard achieved about 50% bit rate

savings as compared to H.264 [2]. In other words, this codec provides high quality video

at the same bandwidth or same quality video in less bandwidth. HEVC provides the tools

necessary to deal with packet losses in packet networks and bit errors in error-prone

wireless networks. These features make this coding standard the right candidate for

transmission. Advanced audio coding (AAC) [4] is a standardized lossy compression

scheme for audio. The compression scheme was specified both as Part 7 of the MPEG-2

standard [6], and Part 3 of the MPEG-4 standard [5]. The video and audio streams

based on these standards need to be multiplexed in order to construct a single stream,

which is a requirement for transmission. Figure 1.1 [5] shows the multiplexing process

which mainly focuses on splitting the individual streams into small packets, embedding

information to easily realign the packets and achieving lip sync between the individual

streams, providing provision to detect and correct bit errors and packet losses. In this

2

thesis, the process of encoding the raw streams, multiplexing the compressed streams

followed by demultiplexin2g and synchronizing the individual streams during playback

shown in figure 1.2 [17], is implemented in detail.

 Figure 1-1 Multiplexing of audio and video streams. [17]

Figure 1-2 Demultiplexing of audio and video streams [17].

1.2 Thesis outline

Chapters 2 and chapter 3 give an overview of the H.265 [13] video standard and

AAC audio standard [20] respectively. The bit stream formats along with the reason for

choosing the standard are discussed in detail.

HEVC
Decoder

AAC
Decoder

3

Chapter 4 explains the entire process of multiplexing the elementary streams and

preparing the data packets for transmission. The additional information to be sent in the

packet headers to assist the demultiplexing process, is also presented in this chapter.

In Chapter 5 demultiplexing of data packets and synchronization of reconstructed

elementary streams are described. The adopted method of synchronization is compared

with other methods of synchronization to analyze the advantages and disadvantages.

Chapter 6 outlines the test conditions, results and conclusions obtained using the

proposed method of implementation.

4

Chapter 2

OVERVIEW OF HIGH EFFICIENCY VIDEO CODING (HEVC)

2.1 Introduction

The High Efficiency Video Coding (HEVC) is the latest video project by ITU-T

Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group

(MPEG) standardization organizations, working together in a partnership known as the

Joint Collaborative Team on Video Coding (JCT-VC) [1]. An increasing diversity of

services like high definition (HD) TV signals over satellite, cable, and terrestrial

transmission systems, video content acquisition and editing systems, camcorders,

security applications, Internet and mobile network video, Blu-ray Discs, and real-time

conversational applications such as video chat, video conferencing, and telepresence

systems and the growing popularity of HD video, and the emergence of beyond- HD

formats (e.g., 4k×2k or 8k×4k resolution) are creating even stronger needs for coding

efficiency superior to H.264/MPEG-4 AVC’s capabilities.[13] HEVC has 50 percent more

bit rate savings than H.264/MPEG-4 AVC [6] at similar visual quality. HEVC has two

major improvements compared to H.264/MPEG-4 AVC that is increased use of parallel

processing and increased video resolution. There are many new features in HEVC like

wave front processing, tiles; dependent slices etc. which are introduced into the new

standard. This advantage of HEVC comes at the price of high encoder complexity.

5

2.2 HEVC Encoder

 Figure 2-1 Block diagram of HEVC encoder [1]

2.2.1 Working of HEVC Encoder

Figure 2.1 [1] depicts the block diagram of a hybrid video encoder, which creates

a bit stream according to the HEVC standard. The first frame of the video is entered in

the encoder and it splits into corresponding coding tree units. The first frame is always

intra-predicted. The difference of original image pixel and its predicted pixel is called the

residual. This residual is transformed using integer approximations of discrete cosine

6

transform (DCT) for all blocks except luma 4x4 intra –predicted where a transform related

to Discrete Sine transform (DST) is used. After transformation, quantization and scaling

are performed to approximate the coefficient values. The decoder loop consists of

inverse transform and scaling followed by filtering done by deblocking and SAO filters in

the encoder block diagram. This reduces the error or drift between what the encoder

predicts and what the decoder actually has. From this loop, the encoder can get

information regarding the motion compensation and intra prediction. These are sent to

entropy encoder which uses Context Adaptive Binary Arithmetic coding (CABAC) to form

the bit stream. Figure 2.2 shows the block diagram of HEVC decoder [3].

 Figure 2-2 Decoder block diagram of HEVC [3]

2.2.2 Coding tree units

 The first frame of the video is entered in the encoder and it splits into

corresponding coding tree units. This is a new concept in HEVC which replaces the

traditional macroblocks in H.264. A picture is partitioned into coding tree units (CTUs),

which each contain luma Coding Tree Blocks (CTBs) and chroma CTBs. A luma CTB

covers a rectangular picture area of L×L samples of the luma component and the

corresponding chroma CTBs cover each L/2×L/2 samples of each of the two chroma

components for the 4:2:0 and 4:4:4 formats as shown in figure 2.3 [22] . The value of L

7

may be equal to 16, 32, or 64 as determined by an encoded syntax element specified in

the Sequence Parameter Set (SPS). The luma CTB and the two chroma CTBs together

with the associated syntax form a CTU. The CTU is the basic processing unit used in the

standard to specify the decoding process.

Figure 2.3 Format for YUV components [22]

Figure 2-4 Left: CTB to CBs and TBs. Solid lines indicate CB boundaries and dotted lines

indicate TB boundaries. Right: Corresponding quadtree.[1]

The blocks specified as luma and chroma CTBs can be directly used as CBs or

can be further partitioned into multiple Coding Blocks (CBs). Partitioning is achieved

8

using tree structures as shown above in figure 2.4 [1]. The tree partitioning in HEVC is

generally applied simultaneously to both luma and chroma, although exceptions apply

when certain minimum sizes are reached for chroma. The CTU contains a quadtree

syntax that allows for splitting the CBs to a selected appropriate size based on the signal

characteristics of the region that is covered by the CTB. The quadtree splitting process

can be iterated until the size for a luma CB reaches a minimum allowed luma CB size

that is selected by the encoder using syntax in the Sequence Parameter Set and is

always 8×8 or larger (in units of luma samples). [1]

Figure 2-5 Modes for splitting a CB into PBs, subject to certain size constraints. For

intrapicture-predicted CBs, only M × M and M/2×M/2 are supported. [1]. D: Down, L: Left,

R: Right, U: Up.

The prediction mode for the CU is signaled as being intra or inter, according to

whether it uses intrapicture (spatial) prediction or interpicture (temporal) prediction. When

the prediction mode is signaled as intra, the Prediction Block (PB) size, which is the block

size at which the intrapicture prediction mode is established, is the same as the Coding

Block (CB) size for all block sizes except for the smallest CB size that is allowed in the

bitstream. When the prediction mode is signaled as inter, it is specified whether the luma

and chroma CBs are split into one, two, or four PBs as shown in figure 2.5 [1] . The luma

9

and chroma PBs, together with the associated prediction syntax, form the Prediction Unit

(PU). For residual coding, a CB can be recursively partitioned into transform blocks

(TBs). The partitioning is signaled by a residual quadtree. In contrast to previous

standards, the HEVC design allows a TB to span across multiple PBs for interpicture-

predicted CUs to maximize the potential coding efficiency benefits of the quadtree-

structured TB partitioning. [5]

2.2.3 Intra Prediction

Figure 2-6 Intra prediction modes of HEVC encoder. [1]

Intrapicture prediction operates according to the TB size, and previously decoded

boundary samples from spatially neighboring TBs are used to form the prediction signal.

Directional prediction with 33 different directional orientations is defined for (square) TB

sizes from 4×4 up to 32×32 as shown in figure 2.6 [1]. HEVC supports various

intrapicture predictive coding methods referred to as Intra−Angular, Intra−Planar, and

Intra−DC. HEVC supports a total of 33 prediction directions, denoted as Intra−Angular[k],

where k is a mode number from 2 to 34. The angles are intentionally designed to provide

denser coverage for near-horizontal and near-vertical angles and coarser coverage for

near-diagonal angles to reflect the observed statistical prevalence of the angles and the

effectiveness of the signal prediction processing. Intra−DC prediction uses an average

10

value of reference samples for the prediction. For Intra-Planar, average values of two

linear predictions using four corner reference samples are used. [7]

2.3 Bitstream syntax of HEVC

The high-level syntax of HEVC mainly contains from the Network Adaptation

Layer (NAL) [1] of H.264/MPEG4 AVC. The NAL provides the ability to map the Video

Coding Layer (VCL) data that represent the content of the pictures onto various transport

layers, including RTP/IP [11] , ISO MP4 [10], and H.222.0/MPEG2 [9] Systems, and

provide a framework for packet loss resilience .The comparison between NAL units of

H.264 and HEVC is shown in figure 2.7. [6][1]

11

Figure 2-7 Comparison of HEVC and H.264 NAL units [1]

In HEVC each slice is encoded in a single NAL unit. HEVC uses a two byte NAL

unit header. The size of a slice (and the subsequent NAL unit) may be matched to that of

the Maximum Transmission Unit (MTU) of the network, over which the video will be

streamed. NAL units are classified into VCL and non VCL NAL units according to whether

they contain coded pictures or other associated data, respectively shown in Table 1 [1]

[2].

12

Table 1-1 The NAL unit types and their associated meanings, classes in the HEVC

standard. [1]

 2.4 Video coding layer topics

 2.4.1 Motion vector signaling

Advanced motion vector prediction (AMVP) is used. This includes derivation of

several most probable candidates based on data from adjacent PBs and the reference

13

picture. A merge mode for motion vector coding is also used, allowing the inheritance of

motion vectors from temporally or spatially neighboring PBs. [2] [4]

 2.4.2 Motion compensation

Quarter-sample precision is used for the motion vectors. 7-tap (weights: -1, 4, -

10, 58, 17, -5, 1) or 8-tap (weights: -1, 4, -11, 40, 40, -11, 4, 1) filters are used for

interpolation of fractional-sample positions as shown in Fig 2.8. For each PB, either one

or two motion vectors can be transmitted, resulting either in unipredictive or bipredictive

coding, respectively. [6][1]

Figure 2-8 Integer and fractional sample positions for luma interpolation. Ai,j , represent

the available luma samples at integer sample locations and the other positions labeled

with lower-case letters represent samples at noninteger sample locations, which need to

be generated by interpolation. [1] [2]

 2.4.3 Quantization control

 As in H.264/MPEG-4 AVC [3], uniform reconstruction quantization (URQ) is

used in HEVC, with quantization scaling matrices supported for the various transform

block sizes. [2]

14

2.4.4 Entropy Coding

HEVC specifies only one entropy coding method, CABAC [13] rather than two as

in H.264/MPEG-4 AVC. Three coefficient scanning methods, diagonal up-right,

horizontal, and vertical scans as shown in Fig. 2.9, are selected implicitly for coding the

transform coefficients of 4×4 and 8×8 TB sizes in intrapicture-predicted regions.

Figure 2-9 Three coefficient scanning methods in HEVC. (a) Diagonal up-right scan. (b)

Horizontal scan. (c) Vertical scan [1]

2.4.5 Deblocking Filter

The deblocking filter is applied to all samples adjacent to a PU or TU boundary

except the case when the boundary is also a picture boundary, or when deblocking is

disabled across slice or tile boundaries (which is an option that can be signaled by the

encoder). It should be noted that both PU and TU boundaries should be considered since

PU boundaries are not always aligned with TU boundaries in some cases of interpicture-

predicted CBs. Syntax elements in the SPS and slice headers control whether the

deblocking filter is applied across the slice and tile boundaries.[1][3]

2.4.6 Sample Adaptive Offset (SAO)

A non-linear amplitude mapping is introduced in the inter-picture prediction loop

after the deblocking filter. The goal is to better reconstruct the original signal amplitudes

15

by using a look-up table that is described by a few additional parameters that can be

determined by histogram analysis at the encoder side. [3]

2.5 Parallel decoding syntax and modified slice structuring

Four new features are introduced in the HEVC standard to enhance the parallel

processing capability or modify the structuring of slice data for packetization purposes.

2.5.1 Tiles

The option to partition a picture into rectangular regions called tiles has been

specified. The main purpose of tiles is to increase the capability for parallel processing

rather than provide error resilience. Tiles are independently decodable regions of a

picture that are encoded with some shared header information. Tiles provide parallelism

at a more coarse level of granularity (picture/subpicture), and no sophisticated

synchronization of threads is necessary for their use. [1][4]

2.5.2 Wavefront parallel processing

 When wavefront parallel processing (WPP) is enabled, a slice is divided into

rows of CTUs. The first row is processed in an ordinary way, the second row can begin to

be processed after only two CTUs have been processed in the first row, and the third row

can begin to be processed after only two CTUs have been processed in the second row,

and so on. WPP provides a form of processing parallelism at a rather fine level of

granularity, i.e., within a slice.[1][2]

2.5.3 Dependent slice segments

 A structure called a dependent slice segment allows data associated with a

particular wavefront entry point or tile to be carried in a separate NAL unit, and thus

potentially makes that data available to a system for fragmented packetization with lower

latency than if it were all coded together in one slice.[1][5]

16

2.5.4 Slices

A slice is a data structure that can be decoded independently from other slices of

the same picture, in terms of entropy coding, signal prediction, and residual signal

reconstruction. A slice can either be an entire picture or a region of a picture. One of the

main purposes of slices is resynchronization in the event of data losses. [1][2]

2.6 HEVC Profile, level.

Profiles, tiers, and levels specify conformance points for implementing the

standard in an interoperable way across various applications that have similar functional

requirements. A profile defines a set of coding tools or algorithms that can be used in

generating a conforming bitstream, whereas a level places constraints on certain key

parameters of the bitstream. Only three profiles targeting different application

requirements, called the Main, Main 10, and Main Still Picture profiles, are finalized [1]. In

the Main and Main Still Picture profiles, only a video precision of 8 bit per sample is

supported, while the Main 10 profile supports up to 10 bit per sample. In the Main Still

Picture profile, the entire bit stream must contain only one coded picture (and thus

interpicture prediction is not supported) [1] [2] [4]. Extensions to these such as scalable

video coding, 3D-TV etc are being finalized. [15]

2.7 Summary

HEVC with main profile and intra prediction is used in this thesis. The main

concepts of HEVC have been explained in chapter 2. Chapter 3 explains the AAC

standard with detailed information.

17

Chapter 3

OVERVIEW OF ADVANCED AUDIO CODING (AAC)

3.1 Introduction

Advanced audio coding (AAC) is a combination of state-of-the-art technologies in

perceptual audio coding technology standardized by Moving Picture Experts Group

(MPEG). AAC is an audio compression scheme first standardized within MPEG in

1997.[1] AAC has been standardized under the joint direction of the International

Organization for Standardization (ISO) and the International Electro-Technical

Commission (IEC), as part 7 of the MPEG-2 specification. Now, it is getting more popular

for commercial purposes. Some of the important features added to AAC as compared to

other standards are temporal noise shaping, backward adaptive linear prediction and

enhanced joint stereo coding techniques which are used for applications like music

delivery over cellular phone networks, “transparent” quality (indistinguishable from the

original source material) for the most discriminating listeners. AAC allows using wide

range of sampling rates (8–96 kHz), bit rates (16–576 kbps) and from one to 48 audio

channels [3]. AAC provides audio of higher quality at the same bit rate as previous

standards or same quality audio at lower bit rates. AAC is the first codec to fulfill the ITU-

R/EBU requirements for indistinguishable quality at 128 kbps/stereo. In contrast to MP3's

hybrid filter bank, AAC uses the modified discrete cosine transform (MDCT) together with

the increased window lengths of 1024 or 960 samples. AAC can be used on HDTV, DVB,

iTunes and iPod, iPhone, iPad, Apple TV, mobile phone, PDA and so on.

3.2 AAC Profiles

Three default profiles have been defined, using different combinations of the

available tools:

18

Main Profile: Uses all the encoding and decoding tools except the gain control

module. This is the most complex of the three profiles and provides the highest quality for

applications where the amount of random accessory memory (RAM) and processing

power are not constraints.

Low-complexity Profile: Deletes the prediction tool and reduces the temporal

noise shaping tool in complexity. This profile is favorable if memory and power

constraints are to be met.

Scaleable sampling rate (SSR) Profile: Adds the gain control tool to the low-

complexity profile. Allows the least complex decoder. This profile is most appropriate in

applications with reduced bandwidth.

3.3 AAC Encoder

The block diagram of the AAC encoder is shown in Fig. 3.1 [9]. It comprises a

perceptual model, a filter bank, a temporal noise shaping (TNS) module, a joint-stereo

coding module (intensity stereo and mid/side stereo), a quantizer and a noiseless coding

module. All modules are controlled by the perceptual model and the rate/distortion control

process. [8]

19

Figure 3-1 AAC encoder block diagram [9]

Filter Bank: The first task of an audio coder is to break an audio sample into segments,

called blocks. A time domain filter, called a window, provides smooth transitions from

block to block by modifying the data in these blocks. AAC uses modified discrete cosine

transform (MDCT) in the filter bank module. Generally, transform coding controls the

quantization noise in the MDCT component based on the frequency masking property.

AAC uses two types of transform sizes according to the stationarity of the input signal.

The transform size is fixed at 1,024 sample (long block mode) for a stationary segment

and 128 points (short block mode) for a transient segment. The use of the short block

20

mode efficiently reduces the degradation called ‘‘pre-echo’’. AAC also switches between

two different types of long blocks: sine-function and Kaiser-Bessel derived (KBD)

according to the complexity of the signal [4] [8].

Temporal Noise Shaping (TNS): The TNS technique provides enhanced control of the

location, in time, of quantization noise within a filter bank window. This allows for signals

that are somewhere between steady state and transient in nature. The TNS module

temporally controls the quantization noise in the encoded signal obtained by inverse

MDCT according to the temporal masking characteristics of human auditory perception.

In this module, the magnitude of the quantization noise is controlled in proportion to the

signal strength through frequency-domain linear prediction (FDLP). Note that TNS can be

applied to either the entire frequency spectrum, or to only a part of the spectrum, such

that the time-domain quantization can be controlled in a frequency-dependant fashion.

Intensity Stereo: The intensity stereo module encodes input stereo signals using a

monaural signal and the spatial localization information. This module is very effective in

the bit reduction when the stereo signal is a source with specific sound localization.

It is based on an analysis of high-frequency audio perception based on the

energy-time envelope of the region of the audio spectrum. Intensity stereo coding allows

a stereo channel pair to share a single set of spectral values for the high-frequency

components with little or no loss in sound quality. This is achieved by maintaining the

unique envelope for each channel by means of a scaling operation so that each channel

produces the original level after decoding.[8]

Prediction: The prediction module is used to represent stationary or semi-stationary parts

of an audio signal. Instead of repeating such information for sequential windows, a simple

repeat instruction can be passed, resulting in a reduction of redundant information. The

prediction process is based on a second-order backward adaptive model in which the

21

spectral component values of the two preceding blocks are used in conjunction with each

predictor. The prediction parameter is adapted on a block-by-block basis. [6]

Mid/Side (M/S) Stereo Coding: The mid/side (M/S) stereo module encodes the input

stereo signal in terms of Hadamard transformed signals, that is, the mid-signal obtained

by adding the left and right signals, and the side signal obtained by subtracting the right

signal from the left signal. This module is effective when the left and right signals are

highly correlated. [8]

Quantization and Coding: While the previously described modules attain certain levels of

compression, it is in the quantization phase that the majority of data reduction occurs.

This is the AAC module in which spectral data is quantized under the control of the

psychoacoustic model. The number of bits used must be below a limit determined by the

desired bit rate. Huffman coding is also applied in the form of twelve codebooks. In order

to increase the coding gain, scale factors with spectral coefficients of value zero are not

transmitted. [5]

Noiseless Coding: This method is nested inside of the previous module, Quantization and

Coding. Noiseless dynamic range compression can be applied prior to Huffman coding. A

value of +/- 1 is placed in the quantized coefficient array to carry the sign, while

magnitude and an offset from base, to mark frequency location, are transmitted as side

information. This process is only used when a net savings of bits results from its use. Up

to four coefficients can be coded in this manner.

Bit stream Multiplexing: AAC has very flexible bit stream syntax. A single transport is not

ideally suited to all applications, and AAC can accommodate two basic bit stream

formats: audio data interchange format (ADIF) and audio data transport stream (ADTS).

ADIF (audio data interchange format) actually is just one header at the beginning

of the AAC file. The rest of the data are consecutive raw data blocks. This file format is

22

meant for simple local storing purposes, where breaking of the audio data is not

necessary. [1] [2]

ADTS (audio data transport stream) has one header for each frame followed by

raw block of data. ADTS headers are present before each AAC raw data block or block of

2 to 4 raw data blocks in a frame to ensure better error robustness in streaming

environments. Hence in this thesis, ADTS bit stream format is adopted. The details of the

ADTS header are given in Tables 3.1 And 3.2.

Table 3-1 ADTS header format [3]

Field name Field size

in bits

Comment

 ADTS Fixed header: these do not

change from frame to frame

 Syncword 12 always: '111111111111'

ID 1 0: MPEG-4, 1: MPEG-2

Layer 2 always: '00'

protection_absent 1

Profile 2

Sampling_frequency_index 4

private_bit 1

channel_configuration 3

original/copy 1

Home 1

23

Table 3.1 – Continued

 ADTS Variable header: This can

change from frame to frame

Copyright_identification_bit 1

Copyright_identification_start 1

aac_frame_length 13 length of the frame including

header (in bytes)

ADTS_buffer_fullness 11 0x7FF indicates VBR

No_raw_data_blocks_in_frame 2

 ADTS Error check

crc_check 16 Only if protection_absent == 0

Raw block of data Variable

Table 3-2 ADTS profile bits in header [3]

Profile bits ID 1 (MPEG-2 profile)

00 (0) Main profile

01 (1) Low complexity profile (LC)

10 (2) Scalable sample rate profile (SSR)

11 (3) (reserved)

24

3.4 Summary

In this chapter, the AAC audio coding standard is discussed with a detailed

description of the encoding process. Low complexity profile with ADTS bit stream

formatting is used as per the advantages explained in the chapter. Chapter 4 focuses on

the MPEG-2 transport stream and the multiplexing algorithm implemented.

25

Chapter 4

MULTIPLEXING

4.1 Introduction

A multimedia file consists of video, audio and other metadata like subtitles. Each

of the video, audio or data has to be transported in different media. In order to reduce the

cost, and to optimize the use of expensive resources, multiplexing has been introduced.

Multiplexing is the process of combining different bit streams into one single signal over a

shared medium. Thus, elementary streams of video, audio and data are multiplexed into

one single stream that would carry all the data and transmitted over the network. Video

and audio streams contain several number of frames, thus are of large bandwidth. A high

quality video/audio will require large bandwidth for transmission. Therefore, compression

and coding standards like H.264/AVC [7], HEVC/H.265 [8] etc are employed for video

and AAC [9], HE-AAC [10] for audio. After compression, the quality remains almost the

same but the bandwidth requirement is reduced. For example, in the DVB (satellite TV)

world, a satellite needs to deliver, via radio, one stream to subscribers. That one stream

needs to carry many TV channels. To do this, the many channels are multiplexed into

one stream. There are new standards stated for multiplexing like MPEG-2, RTP etc. In

this thesis, MPEG-2 transport stream [3] is used.

4.2 MPEG Bitstream Structure

To understand how the component parts of the bit stream are multiplexed, there

is a need to first look at each component part. The most basic component is known as an

Elementary Stream in MPEG. A program (perhaps most easily thought of as a television

program, or a Digital Versatile Disk (DVD) track) contains a combination of elementary

streams (typically one for video, one or more for audio, control data, subtitles, etc). Figure

4.1 shows the streams and formats supported by MPEG -2 [5]

26

Figure 4-1 Streams supported by MPEG-2 [5]

4.2.1 Elementary Stream

Each Elementary Stream (ES) output by an MPEG audio, video and (some) data

encoders contain a single type of (usually compressed) signal. There are various forms of

ES, including:

• Digital Control Data

• Digital Audio (sampled and compressed)

• Digital Video (sampled and compressed)

• Digital Data (synchronous, or asynchronous)

For video and audio, the data is organized into access units, each representing a

fundamental unit of encoding. For example, in video, an access unit will usually be a

complete encoded video frame. [5] [1]

4.2.2 Packetized Elementary Stream (PES)

 Each ES is input to an MPEG-2 processor (e.g. a video compressor or data

formatted) which accumulates the data into a stream of Packetized Elementary Stream

(PES) packets. A PES packet may be a fixed (or variable) sized block, with up to 65536

bytes per block and includes a 6 byte protocol header. A PES is usually organized to

contain an integral number of ES access units as shown in figure 4.2. [2]

27

Figure 4-2 PES encapsulation from elementary stream [2]

The PES header starts with a 3 byte start code, followed by a one byte stream ID

and a 2 byte length field. Figure 4.3 and Table 4.1 show the PES packet glossary. [5]

The following well-known stream IDs are defined in the MPEG standard:

• 110x xxxx - MPEG-2 audio stream number x xxxx.

• 1110 yyyy - MPEG-2 video stream number yyyy. [5]

Table 4-1 PES packet header description [7]

Name Size Description

Packet start code prefix 3 bytes 0x000001

Stream id 1 byte
Unique id for each audio and

video stream

PES Packet length 2 bytes Can be zero if more than 65536.

Timestamp 2 bytes Frame number

Data

AUDIO OR VIDEO ELEMENTARY STREAM

PES Frame
1 PES Frame 3 PES

Frame 4 PES
Frame 2

Header Payload

28

Figure 4-3 PES packet header [4]

The next field contains the PES Indicators. These provide additional information

about the stream to assist the decoder at the receiver. The following indicators are

defined:

PES_Scrambling_Control - Defines whether scrambling is used, and the chosen

scrambling method.

PES_Priority - Indicates priority of the current PES packet.

data_alignment_indicator - Indicates if the payload starts with a video or audio start code.

copyright information - Indicates if the payload is copyright protected.

original_or_copy - Indicates if this is the original ES.

A one byte flags field completes the PES header. This defines the following

optional fields, which if present, are inserted before the start of the PES payload.

The PES packet payload includes the ES data. The information in the PES

header is, in general, independent of the transmission method used.

4.3 MPEG-2 Multiplexing

The MPEG-2 standard allows two forms of multiplexing:

• MPEG Program Stream: A group of tightly coupled PES packets referenced to

the same time base. Such streams are suitable for transmission in a relatively error-free

29

environment and enable easy software processing of the received data. This form of

multiplexing is used for video playback and for some network applications. [2]

• MPEG Transport Stream: Each PES packet is broken into fixed-sized transport

packets forming a general purpose way of combining one or more streams, possibly with

independent time bases. This is suitable for transmission in which there may be potential

packet loss or corruption by noise, and / or where there is a need to send more than one

program at a time. [2]

Digital Video Broadcast (DVB) uses the MPEG-2 transport stream over a wide

variety of underlying networks. Since both the program stream and transport stream

multiplex a set of PES inputs, interoperability between the two formats may be achieved

at the PES level.

4.4 MPEG-2 Transport Stream

A MPEG-2 transport stream, also referred to as MPEG or MPEG-2 TS or simply

TS, is a special format for transmitting MPEG (MPEG-1, MPEG-2, or MPEG-4) video

multiplexed with other streams. It is commonly used for digital television and streaming

across networks, including the internet.[6]

Unlike programs streams, which are optimized for efficient storage and assume the

decoder has access to the entire stream for synchronization purposes, transport streams

are designed for delivering data in real time over unreliable transport media, to a device

which is assumed to start reading data from some point after the beginning of

transmission.

In order to accommodate this, extra timestamps must be added to the stream at

regular intervals, with synchronization of various packets (chunks of elementary streams)

set relative to the most recent timestamp instead of a single point at the beginning of the

file like a program stream.

30

A transport stream consists of a sequence of fixed sized transport packets of 188

bytes. Each packet comprises 184 bytes of payload and a 4 bytes header. One of the

items in this 4 bytes header is the 13 bit packet identifier (PID) which plays a key role in

the operation of the transport stream.

 Figure 4-4 Single Program Transport Stream (Audio and Video PES).

Figure 4.4 shows two elementary streams sent in the same MPEG-2 transport

multiplex. Each packet is associated with a PES through the setting of the PID value in

the packet header (the values of 64 and 51 in the figure 4.4). The audio packets have

been assigned PID 64, and the video packets PID 51 (these are arbitrary, but can be

different values). As is usual, there are more video than audio packets, but the two types

of packets are not evenly spaced in time. The MPEG-TS is not a time division multiplex,

packets with any PID may be inserted into the TS at any time by the TS multiplexor. If no

packets are available at the multiplexor, it inserts null packets (denoted by a PID value of

0x1FFF) to retain the specified TS bit rate. The multiplexor also does not synchronize the

two PESs; indeed the encoding and decoding delay for each PES may be and usually is

different. A separate process is therefore required to synchronize the two streams. [5]

4.5 Format of Transport Stream packet

Each MPEG-2 TS packet carries 184 bytes of payload data prefixed by a 4 bytes

(32 bit) header as shown in Figure 4.5 and Table 4.2 [4].

31

 Figure 4-5 Transport stream (TS) header [4]

Table 4-1 PES packet header description [7]

Abbr Function

SB Synchronization Byte

TEI Transport Error Indicator

PUSI Payload Unit Start Indicator

TSC Transport Scrambling Control

TP Transport Priority

PID Packet Identifier

AFC Adaptation Field Control

CC Continuity Counter

AF Adaptation Field (Optional)

The header starts with a well-known synchronization byte (8 bits). This has the

bit pattern 0x47 (0100 0111).

32

A set of three flag bits are used to indicate how the payload should be

processed. The first flag indicates a transport error. The second flag indicates the start of

a payload (payload_unit_start_indicator).The third flag indicates transport priority bit.

The flags are followed by a 13 bit packet identifier (PID). This is used to uniquely

identify the stream to which the packet belongs (e.g. PES packets corresponding to an

ES) generated by the multiplexer. The PID allows the receiver to differentiate the stream

to which each received packet belongs. Some PID values are predefined and are used to

indicate various streams of control information. A packet with an unknown PID, or one

with a PID which is not required by the receiver, is silently discarded. The particular PID

value of 0x1FFF is reserved to indicate that the packet is a null packet (and is to be

ignored by the receiver).

The two scrambling control bits are used by conditional access procedures to

encrypt the payload of some TS packets.

Two adaption field control bits which may take four values:

01 – no adaptation field, payload only

10 – adaptation field only, no payload

11 – adaptation field followed by payload

00 - RESERVED for future use.

Finally there is a half byte continuity counter (4 bits).

Figure 4.6 shows how the audio and video PES packets are placed in MPEG-2

TS. [2]

33

Figure 4-6 Multiplexing of audio data and video data into MPEG-2 transport stream. [2]

Two options are possible for inserting PES data into the TS packet payload:

The simplest option, from both the encoder and receiver viewpoints, is to send

only one PES (or a part of single PES) in a TS packet. This allows the TS packet header

to indicate the start of the PES, but since a PES packet may have an arbitrary length,

also requires the remainder of the TS packet to be padded, ensuring correct alignment of

the next PES to the start of a TS packet. In MPEG-2 the padding value is the

hexadecimal byte 0xFF.

In general a given PES packet spans several TS packets so that the majority of

TS packets contain continuation data in their payloads. When a PES packet is starting,

however, the payload_unit_start_indicator bit is set to ‘1’ which means the first byte of the

TS payload contains the first byte of the PES packet header. Only one PES packet can

start in any single TS packet. The TS header also contains the PID so that the receiver

can accept or reject PES packets at a high level without burdening the receiver with too

34

much processing. Figure 4.7 shows the combining of elementary streams into transport

stream [4].

 Figure 4-7 Combining ES from encoders into TS (red) or a PS (yellow) [4]

4.6 Frame number as Time Stamp

This thesis proposes a method to use the frame number as timestamps. This

section explains how frame numbers can be used to synchronize audio and video

streams. Both H.265 [2] and AAC [3] bit streams are composed of data blocks sorted into

frames. A particular video bit stream has a constant frame rate during playback specified

by frames per second (fps). Hence, given the frame number, one can calculate the time

of occurrence of this frame in the video sequence during playback as follows:

 Time of playback = Frame number /fps (4-1)

The AAC compression standard defines each audio frame to contain 1024

samples. The audio data in the AAC bit stream can have any discrete sampling

frequency between 8 KHz and 96 kHz. The frame duration increases from 96 kHz to 8

kHz. However, the sampling frequency and hence the frame duration remain constant

35

throughout a particular audio stream. So, the time of occurrence of the frame during

playback is as follows:

 Time of playback = 1024*frame number/(sampling freq). (4-2)

Thus from (4-1) and (4-2) it is found the time of playback by encoding the frame

numbers as the time stamps. In other words, given the frame number of one stream, the

frame number of the other streams that will be played at the same time as the frame of

the first stream. This will help to synchronize the streams during the playback. This idea

can be extended to synchronize more than one audio stream with the single video stream

like in the case of stereo or programs with single video and multiple audio channels.

The timestamp is assigned in the last 2 bytes of the PES packet header. This

implies that timestamp can carry frame numbers up to 65536. Once the frame number

exceeds this, in the case of long video and audio streams, the frame number is rolled

over. The rollover takes simultaneously on both audio and video frame numbers as soon

as either one of the stream crosses the maximum allowed frame number. This will not

create a conflict at the demultiplexer during synchronization because the audio and video

buffer sizes are much smaller than the maximum allowed frame number. Hence, at no

point of time there will be two frames in the buffer with the same timestamp. [7]

4.7 Proposed Multiplexing method

 The final transmission stream is formed by multiplexing the TS packets

of the various elementary streams. The number of packets allocated for a particular

elementary stream during transmission, plays an important part in avoiding buffer

overflow or underflow at the demultiplexer. If more video TS packets are sent as

compared to audio TS packets, then at the receiver there may be a situation when video

buffer is full and is overflowing whereas audio buffer does not have enough data. This will

36

prevent the demultiplexer from starting a playback and will lead to loss of data from the

overflowing buffer.

 In order to prevent such a scenario, timing counters are employed at the

multiplexer. Each elementary stream has a timing counter, which gets incremented when

a TS packet from that elementary stream is transmitted. The increment value depends on

the playback time of the TS packet. The playback time of each PES can be calculated

since the frame duration is constant in both audio and video elementary streams. By

finding out how many TS packets are obtained from a single PES packet, the playback

time of each TS packet can be calculated. The elementary stream whose counter has the

least timing value is always given preference in packet allocation. This method will make

sure that at any point of time, the difference in the fullness of the buffers, in terms of

playback time is less than the playback time of one TS packet. This is never more than

the duration of a single frame and is typically in milliseconds. The flowchart of

multiplexing process as shown in figure 4.8.

Figure 4

This chapter provides with the information of the standard MPEG

stream and how it is used for multiplexing video and audio bitstream. Eventually, a

method for multiplexing the TS packets is proposed that can prevent buffer overflow o

underflow at the demultiplexer. Next chapter gives the procedure for demultiplexing the

audio and video streams and lip synchronization

37

Figure 4-8 Flowchart of multiplexing process.

4.8 Summary

This chapter provides with the information of the standard MPEG -2 transport

stream and how it is used for multiplexing video and audio bitstream. Eventually, a

method for multiplexing the TS packets is proposed that can prevent buffer overflow o

underflow at the demultiplexer. Next chapter gives the procedure for demultiplexing the

audio and video streams and lip synchronization.

2 transport

stream and how it is used for multiplexing video and audio bitstream. Eventually, a

method for multiplexing the TS packets is proposed that can prevent buffer overflow or

underflow at the demultiplexer. Next chapter gives the procedure for demultiplexing the

38

Chapter 5

DEMULTIPLEXING AND SYNCHRONIZATION

5.1 Demultiplexing

Demultiplexing performs the reverse function of multiplexing that is split a

combined stream arriving from a shared medium into the original information streams as

shown in Figure 5.1 [15]. The process of extracting the elementary streams from the

multiplexed transport stream is called demultiplexing. This is the first step carried out at

the receiver, in the process of delivering a complete multimedia program to the end user.

Figure 5-1 Overview of multiplexing and demultiplexing.[23]

 The flowchart of the demultiplexer algorithm is shown in Fig 5.2.

Figure

39

Figure 5-2 Flowchart of the demultiplexer.

40

The procedure is almost reverse as in the multiplexing process and it is

explained below.

When the packets from the transport stream is received, the corresponding

packet identifier (PID) values are obtained. If the packet has value 14, then it is

recognized as an audio packet or if the packet value is 15, it is recognized as a video

packet. If the packet has any PID value that is not relevant to the multimedia program

that is being recovered, the packet is dropped and the next packet is analyzed.

At this stage, all the TS packets from other programs or null packets are

discarded as there should not be unwanted data to be added in the decoded output.

When the packet is found out to be the correct one, it is checked for more details. The

‘adaptation field control’ (AFC) bit is checked to see if any data other than the elementary

stream data is present in the packet. If the AFC bit is set, then the data is recovered from

the payload starting from the byte obtained by reading the ‘byte offset value’ from the

header. The remaining data is rejected if it is filled with stuffing bytes.

The data is identified to be audio data or video data through the PID value and is

redirected to the appropriate buffer. The packet is also analyzed to check if the ‘payload

unit start’ (PUS) bit is set. If it is set, then the PES header is present in the packet. The

header information is read to recover the frame length and timestamp, which is the frame

number. The frame number and location of the frame in the data buffer are stored in a

separate buffer. This process is continued until one of the elementary stream buffers is

full.

In order to detect packet losses, 4 bit continuity counter value is continuously

monitored for each PID separately, to check if the counter value increments in sequence.

If not a packet loss is declared and the particular frame in the buffer, which is involved in

the loss, is marked to be erroneous. In some transmission schemes, retransmission of

41

the packet is requested to correct the error. Otherwise, the frame is skipped during

playback to prevent any stall in the decoder.

The most important thing is to continuously monitor the fullness of the elementary

stream buffers. The buffer should not be allowed to overflow or underflow. This will lead

to loss of data. This is taken into account during the multiplexing process as explained in

section 4.4.

5.2 Synchronization and playback

 Once the elementary stream buffer is full, the content is ready to be

played back for the viewer. The audio bit stream format i.e., audio data transport stream

(ADTS), enables us to begin decoding from any frame. However, the video bit stream

does not have the same kind of sophistication. The decoding can start only from the

anchor frames, which are the IDR frames. IDR frames are forced during the encoding

process at regular intervals. Hence, the video buffer is first searched from the top to get

the first occurring IDR frame. Once this is found, the timestamp or the frame number is

obtained for that IDR frame. Then audio stream is aligned accordingly to achieve

synchronization. This is done by calculating the audio frame number that would

correspond to the IDR frame in terms of playback time. This is calculated as follows:

 Audio frame number =
fps*1024

frequency sampling*number frame Video

 (5-1)

If the frame number calculated is a non-integer value, then the value is rounded

off and the corresponding frame is taken. The round off error is discussed later in this

42

chapter. If the calculated frame number is not found in the buffer, next IDR frame is

searched and a new audio frame number is calculated. Once video frame number and

audio frame number are obtained, the location of these frames is looked up in the buffer

and the block of data from this frame to the end of the buffer is taken and sent to the

decoder for playback. The buffer is then emptied and the incoming data is filled in the

buffer and the process is repeated. In order to have a continuous playback, block of data

from first IDR frame to last IDR frame in the buffer is played back and during this

playback the next set of data buffering takes place in the background. This process

continues and the program is continuously played for the viewer.

 Once the buffer is full and the synchronized frames are calculated, the audio and

video content are played back. The buffering is continued after the playback and next set

of data is put through the same process. This process continues and thus successful

demultiplexing and synchronized playback are achieved.

This completes the process of multiplexing, demultiplexing and a synchronized

playback of multimedia programs.

5.3 Summary

In this chapter, the process of extracting data from the multiplexed TS packets, to

reconstruct the elementary stream is explained in detail. Synchronization and playback

method using frame numbers as timestamps are proposed and the limitations due to

possible error in synchronization are discussed. Next chapter discusses the test

conditions, results and conclusion obtained after implementing the procedure.

43

Chapter 6

RESULTS AND CONCLUSIONS

6.1 Test conditions

In order to evaluate the proposed multiplexing algorithm, a single multimedia

stream consisting of elementary video and elementary audio streams are used. Raw

elementary video stream are in YUV format and raw elementary audio stream are

present in WAVE format. There are many standard raw formats of individual audio and

video elementary streams available but the combination of both is not freely available.

Hence, an AVI or MOV file is used that is freely available. The raw YUV format of the

video and the raw WAVE format of the audio is extracted using a very powerful open

source software called ffmpeg[39]. The YUV video file is of very large size and it is

encoded using HM 14.0 software[29]. The raw YUV file is used as an input to the HM and

output is a .hevc file which is compressed. The encoder setting used is main intra profile

with GOP structure as IBBB. The raw audio stream is encoded using open source

software called FAAC[40]. The audio stream is an encoded in low-complexity profile. The

input .WAVE is used as an input to the FAAC and output is an .aac file which is

compressed as shown in figure 6.1. Both elementary streams are then multiplexed to

form transport stream packets. The details of the test clips are described in Table 6.1:

44

Table 6-1 Test clip conditions

Test clip details Clip 1: Morning.avi Clip 2: SpeedBag

.avi file size (kB) 901 12650

.yuv file size (kB) 128115 390794

.hevc file size (kB) 57.1 391

.wave file size (kB) 1277 897

.aac file size (kB) 126 69

Clip Duration (sec) 9 sec 4 sec

Frame rate (frames/sec) 25 50

Audio frequency (KHz) 44.100 48

 Video Compression

Ratio

2242.06 999.4

Audio compression ratio 10.1349 13.1

No. of TS packets 1377 2704

Total TS size (kB) 128 141

.mkv movie size (kB) 192 462

The results in Table 6.1 clearly show that the compression achieved, using

HEVC video codec and AAC audio codec, in the proposed method is more than that of

the MKV movie files (.mkv) or AVI files. The .avi file is played using the VLC media player

by VideoLAN[38]. Then the TS packets are given as the input to the proposed

demultiplexer algorithm to achieve the synchronized playback. It is verified to see if

synchronization between audio and video is achieved, irrespective of which TS packet

the user starts demultiplexing from. The demultiplexed audio and video are obtained and

merged using MKVtoolNix [42]. Since HEVC video is the latest standard, there are very

45

few players which play it. Open-source DivX player [41] with HEVC plug-in is used to play

the final mkv movie file. Hence, some random TS packets are chosen to begin the

demultiplexing process and the results of the synchronization process are given in Table

6.2. The delay between audio and video is less than 13 milliseconds in the observed

cases.

 Figure 6-1 Test Condition for Video file

6.2 Results

Table 6-2 Lip synchronization results for clip 1

TS

packet

number

Synchroniz

ed video

frame

Synchroniz

ed audio

frame

Frame

Playba

ck

Audio

playback

Delay

(msec)

Visual

Delay

(yes/no)

57 7 12 0.28 0.278 2 No

117 16 28 0.640 0.650 10 No

250 32 56 1.290 1.3 10 No

500 63 108 2.52 2.507 13 No

820 121 208 4.840 4.829 11 No

 1001 153 264 6.120 6.130 10 No

 1240 205 353 8.200 8.196 4 No

.avi/.mov
file

Video
YUV file .hevc file

Audio
WAVE file .aac file

46

 Table 6-3 Lip synchronization results for clip 2

TS

packet

number

Synchronized

Video Frame

Synchronized

Audio frame

Frame

video

playback

Frame

audio

playback

Delay Visual

Delay

(yes/no)

61 6 5 120 106 14 No

251 18 17 360 362 2 No

524 27 25 540 533 7 No

1001 52 48 1040 1024 16 No

1500 88 82 1760 1749 11 No

2000 120 112 2400 2389 11 No

2500 132 124 2640 2645 5 No

47

Figure 6-2 HEVC encoder with IBBB setting.

Figure 6-3 Morning test sequence, WVGA 832x480, 25 fps, 219 Frames

48

Figure 6-4 SpeedBag test sequence, SD 1280x720, 50 fps, 204 Frames

Figure 6-5 Extracting .wave and .yuv from .avi

49

Figure 6-6 Encoding .wav to .aac low complexity using FAAC

6.3 Conclusion

An effective transport stream which carries multiple audio and video streams and

also easily decodable with synchronization is implemented in this thesis. Two layers of

packetization are used and multiplexing of the packets is implemented. The proposed

multiplexing procedure is effective in that the user could start demultiplexing from any TS

packet and achieve synchronized playback. The results show that there is no visual

synchronization delay. The buffer overflow/underflow problem is taken care of and there

is a delay of approximately 13 ms. Video broadcasting applications should be error-free

and packet losses should not occur. Hence, both layers of packetization are

accompanied by a packet identifier header.

6.3 Future research

The multiplexing algorithm in this thesis uses two elementary streams. However,

it could be modified to implement multiple streams and also, multiple programs at the

50

same time. Some robust error correction codes can be integrated to the transport

packets, to make them more suitable for applications such as Video conferencing,

broadcasting where the packets are prone to be lost.

51

APPENDIX A

Platform

52

The research was carried out using an Intel Core i5 3317 CPU @ 1.7 GHz

machine with Microsoft Windows 8 64bit version running with 4 GB RAM at a speed of

1.7GHz.

53

APPENDIX B

 List Of Acronyms

54

AAC: Advanced audio coding

ADIF: Audio data interchange format

ADTS: Audio data transport stream

AFC: Adaptation field control

ATSC: Advanced television systems committee

AVC: Advanced Video Coding

CABAC: Context-based Adaptive Binary Arithmetic Coding

CAVLC: Context-based Adaptive Variable Length Coding

CB: Coding Block

CPU: Central Processing Unit

CTU: Coding Tree Unit

CTB: Coding Tree Block

CU: Coding Unit

DCT: Discrete Cosine Transform

DTS: Decoding Time Stamp

DVB: Digital video broadcasting

DVD: digital video disc or digital versatile disc

EBU: European broadcasting union

ES: Elementary stream

FAAC: Free advanced audio coder

FAAD: Free advanced audio decoder

FPS: Frames per second

GOP: Group of pictures

HDTV: High definition television.

 HEVC: High Efficiency Video Coding

55

IDR: Instantaneous decoder refresh

ISO: International Organization for Standardization

ITU: International Telecommunication Union

ITU-T: International Telecommunication Union – Telecommunication Standardization

sector

JCT-VC: Joint Collaborative Team on Video Coding

JVT: Joint Video Team

LC: Low Complexity

MC: Motion Compensation

MDCT: Modified discrete cosine transform

MPEG: Moving Picture Experts Group

NAL: Network Adaptation Layer

NALU: Network Abstraction Layer Unit

 PB: Prediction Block

PCM: Pulse Code Modulation

 PCR: Program Clock Reference

PES: Packetized elementary stream

PID: Packet identifier

PPS: Picture parameter set

PTS: Presentation Time Stamp

PU: Prediction Unit.

PUS: Payload unit start.

RTP/IP: Real Time Transport protocol/Internet protocol

SPS: Sequence parameter set

 SSR: Scalable sampling rate

56

TB: Transform block

TNS: Temporal noise shaping

TS: Transport stream

TU: Transform unit

VCEG: Video Coding Experts Group

VCL: Video coding layer

VPS: Video parameter set

YUV: Luminance and chrominance color components

57

 References

 [1] G. Sullivan et al, “Overview of the high efficiency video coding (HEVC)

standard”, IEEE Transactions on Circuits and Systems for Video Technology, vol.

22, n 12, pp. 1649-1668, Dec. 2012.

[2] Multimedia Processing Lab website: http://www.uta.edu/faculty/Krrao/dip

[3] MPEG–2 advanced audio coding, AAC. International Standard IS 13818–7,

ISO/IEC JTC1/SC29 WG11, 1997.

[4] MPEG: Information technology — generic coding of moving pictures and

associated audio information, part 3: Audio .International Standard IS 13818–3,

ISO/IEC JTC1/SC29 WG11, 1994.

[5] MPEG: Information technology — generic coding of moving pictures and

associated audio information, part 4: Conformance testing .International

Standard IS 13818–4, ISO/IEC JTC1/SC29 WG11, 1998.

[6] Information technology—Generic coding of moving pictures and associated

audio—Part 1: Systems, ISO/IEC 13818-1:2005, International

Telecommunications Union.

[7] MPEG-4: ISO/IEC JTC1/SC29 14496-10: Information technology – Coding of

audio-visual objects - Part 10: Advanced Video Coding, ISO/IEC, 2005.

58

[8] M. Bosi and M. Goldberg “Introduction to digital audio coding and standards”,

Boston: Kluwer Academic Publishers, 2003.

[9] R.Linneman, “Advanced audio coding on FPGA”, BS honors thesis, October

2002, School of Information Technology, Brisbane, Australia.

[10] Y. Kubo et al,” Improved high-quality MPEG-2/4 advanced audio coding

encoder”, The Acoustical Society of Japan, 2008.

[11] K. Brandenburg, “MP3 and AAC explained”, AES 17th International Conference,

Florence, Italy, September 1999.

[12] J. Nightingale, Q. Wang and C. Grecos, “HEVStream: A framework for streaming

and evaluation of High Efficiency Video Coding (HEVC) content in lossprone

networks”, IEEE Transactions on Consumer Electronics, vol. 59, pp.404-412,

May 2012.

[13] G. Sullivan, P. Topiwala and A. Luthra, “The H.264/AVC video coding standard:

overview and introduction to the fidelity range extensions”, SPIE Conference on

Applications of Digital Image Processing XXVII, vol. 5558, pp. 53-74, August

2004.

[14] C. Fogg, “Suggested figures for the HEVC specification”, ITUT/ISO/IEC Joint

Collaborative Team on Video Coding (JCTVC) document JCTVCJ0292r1, July

2012.

59

[15] K.R.Rao, D. Kim and J.J. Hwang,” Video coding standards: AVS China,

H.264/MPEG-4 Part10, HEVC, VP6, DIRAC and VC-1"´, Springer, 2014.

[16] I.E.Richardson, “The H.264 advanced video compression standard”, 2nd

Edition, Wiley, 2010.

[17] ISO/MP4 information: http://en.wikipedia.org/wiki/MPEG4_Part_14.

[18] T.Schierl et al, “RTP Payload Format for High Efficiency Video Coding”, Nokia,

February 27, 2012.

[19] HEVC tutorial http://www.vcodex.com/h265.html.

[20] G.Sullivan et al ,” Standardized Extensions of High Efficiency Video Coding

(HEVC) “, IEEE Journal of Selected Topics in Signal Processing, vol. 7, pp.

1001-1016, Dec. 2013.

[21] T. Wiegand et al, “Overview of the H.264/AVC Video Coding Standard,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 560-

576, July 2003.

 [22] MPEG-4: ISO/IEC JTC1/SC29 14496-10: Information technology – Coding Of

audio-visual objects - Part 10: Advanced Video Coding, ISO/IEC, 2005.

60

[23] J. Herre and H. Purnhagen, “General audio coding,” in The MPEG-4 Book

(Prentice Hall IMSC Multimedia Series), F. Pereira and T.Ebrahimi, Eds.

Englewood Cliffs, NJ: Prentice-Hall, 2002.

[24] V. Sze, M. Budhagiavi, G.J. Sullivan,”High efficiency video coding : Algorithms

and architecture”, Springer 2014.

[25] Website for AC-3:

http://www.digitalpreservation.gov/formats/fdd/fdd000209.shtml

[26] Basics of video: http://lea.hamradio.si/~s51kq/V-BAS.HTM

[27] The HEVC website: http://hevc.hhi.fraunhofer.de/

[28] HEVC open source software (encoder/decoder):

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM14.0dev/

[29] JCTVC documents are publicly available at http://ftp3.itu.ch/avarch/jctvcsite and

http://phenix.itsudparis.eu/jct/.

[30] HEVC software manual:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-9.2-

dev/doc/software-manual.pdf

61

Special issues on HEVC.

[31] Special issue on emerging research and standards in next generation video

coding, IEEE Transactions on Circuits and Systems for Video Technology

(CSVT), vol.22, pp. 1646-1909, Dec. 2012.

 [32] “Introduction to the issue on video coding: HEVC and beyond”, IEEE journal of

Selected Topics in Signal Processing, vol.7, pp. 931-1151, Dec. 2013.

[33] D. K. Fibush, “Timing and Synchronization Using MPEG-2 Transport Streams,”

SMPTE Journal, pp. 395-400, July, 1996.

[34] Z. Cai et.al “A RISC Implementation of MPEG-2 TS Packetization”, in the

proceedings of IEEE HPC conference, pp 688-691, May 2000.

[35] P.A. Sarginson, “MPEG-2: Overview of systems layer”, BBC RD 1996/2.

[36] MPEG 2 TS: http://www.erg.abdn.ac.uk/future-net/digital-video/mpeg2-trans.html

[37] VLC software and source code website www.videolan.org

[38] Ffmpeg software and official website

http://ffmpeg.mplayerhq.hu/

[39] “FAAC and FAAD AAC software” www.audiocoding.com

[40] DivX player : www.divx.com

62

[41] MKVToolNix GUI preview

[42] T.Ogunfunmi, M. Narasimha, “Principles of speech coding”, Boca rattan, FL,

CRC press, 2010.

63

Biographical Information

Mrudula Warrier received her Bachelor of Engineering degree in Instrumentation

from Mumbai University, India, in June 2012. She pursued her masters studies at the

University of Texas at Arlington from August 2012 and received her M.S degree in

Electrical Engineering in December 2014. She was a member of the multimedia

processing research group guided by Dr. K. R. Rao. She worked as an intern and is

currently employed with Extron Electronics, Raleigh, NC. Her research interests are video

and audio processing, digital signal processing.

