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Abstract
MULTIPLEXING AND DEMULTIPLEXING HEVC VIDEO AND AAC AUDIO AND

ACHIEVING LIP SYNCHRONIZATION DURING PLAYBACK

Mrudula Balmohan Warrier, M.S

The University of Texas at Arlington, 2014

Supervising Professor: K.R. Rao

High efficiency video coding (HEVC) /H.265 [5], is the latest digital video coding
standard which has proven to be superior to earlier standards in terms of compression
ratio, quality and error resilience. In order for the end user to understand the video
meaningfully, there should be an associated audio with it. Any video is incomplete without
a proper audio. Advanced audio coding (AAC) [8] is the digital audio codec standard
defined in MPEG-2 and later in MPEG-4 with few changes. The audio quality of an AAC
stream is widely used as the audio coding standard in various applications. It would be a
great advantage to the user to adopt HEVC as video codec and AAC as the audio
coding, for transmission of digital multimedia through air (ATSC, DVB) or through the
internet (video streaming, IPTV). However, multiplexing is required for these applications
in order to combine and create a single bit stream from separate audio and video bit
streams for transmission purposes. The objective of the thesis is to propose a method for
effectively multiplexing the audio and video coded streams for transmission followed by
demultiplexing the streams at the receiver and achieving lip synchronization between the
audio and video during the playback. The proposed method uses the fact that frames are

constant throughout the length of audio and video. The first step of the process is the



packetization of elementary audio and video bit streams. The frame number information
is stored in the header of the packets which is used as the vital information to
synchronize the video and audio during playback. Then second layer of packetization is
carried out from the first layer in order to meet the requirements of MPEG-2 transport
stream. Proposed method uses playback time as the criteria for allocating data packets
during multiplexing in order to prevent buffer overflow or underflow at the demultiplexer.
The information required during the demultiplexer process to ensure error free is put in

the header. Flow and results of the thesis are discussed in detail in the chapters.
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Chapter 1
INTRODUCTION

1.1 Introduction

Digital television transmission has already replaced analog television
transmission with better quality and less bandwidth. With the advent of HDTV,
transmission schemes are aiming at transmitting superior quality video with provision to
view both standard format and wide screen (16:9) format along with one or more audio
streams per channel [17]. Choosing the right video codec and audio codec plays a very
important role in achieving the bandwidth and quality requirements. H.265 or High
Efficiency Video Coding (HEVC) [1], is the latest video coding standard by the ITU-T
Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts
Group (MPEG) as the product of a collective partnership effort known as the joint video
team- video coding (JVT-VC) [10]. The new standard achieved about 50% bit rate
savings as compared to H.264 [2]. In other words, this codec provides high quality video
at the same bandwidth or same quality video in less bandwidth. HEVC provides the tools
necessary to deal with packet losses in packet networks and bit errors in error-prone
wireless networks. These features make this coding standard the right candidate for
transmission. Advanced audio coding (AAC) [4] is a standardized lossy compression
scheme for audio. The compression scheme was specified both as Part 7 of the MPEG-2
standard [6], and Part 3 of the MPEG-4 standard [5]. The video and audio streams
based on these standards need to be multiplexed in order to construct a single stream,
which is a requirement for transmission. Figure 1.1 [5] shows the multiplexing process
which mainly focuses on splitting the individual streams into small packets, embedding
information to easily realign the packets and achieving lip sync between the individual

streams, providing provision to detect and correct bit errors and packet losses. In this
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thesis, the process of encoding the raw streams, multiplexing the compressed streams
followed by demultiplexin2g and synchronizing the individual streams during playback

shown in figure 1.2 [17], is implemented in detail.

Video . Program s
Video | Packetixer . Stream -
™ Encoder 5, Multiplexer

! £ A

Andis /" Transport T2

Audio .| Packetiver Y Stream
Encoder Multiplexer

Figure 1-1 Multiplexing of audio and video streams. [17]

stream | st e

Figure 1-2 Demultiplexing of audio and video streams [17].
1.2 Thesis outline
Chapters 2 and chapter 3 give an overview of the H.265 [13] video standard and
AAC audio standard [20] respectively. The bit stream formats along with the reason for

choosing the standard are discussed in detail.



Chapter 4 explains the entire process of multiplexing the elementary streams and
preparing the data packets for transmission. The additional information to be sent in the
packet headers to assist the demultiplexing process, is also presented in this chapter.

In Chapter 5 demultiplexing of data packets and synchronization of reconstructed
elementary streams are described. The adopted method of synchronization is compared
with other methods of synchronization to analyze the advantages and disadvantages.

Chapter 6 outlines the test conditions, results and conclusions obtained using the

proposed method of implementation.



Chapter 2
OVERVIEW OF HIGH EFFICIENCY VIDEO CODING (HEVC)
2.1 Introduction

The High Efficiency Video Coding (HEVC) is the latest video project by ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) standardization organizations, working together in a partnership known as the
Joint Collaborative Team on Video Coding (JCT-VC) [1]. An increasing diversity of
services like high definition (HD) TV signals over satellite, cable, and terrestrial
transmission systems, video content acquisition and editing systems, camcorders,
security applications, Internet and mobile network video, Blu-ray Discs, and real-time
conversational applications such as video chat, video conferencing, and telepresence
systems and the growing popularity of HD video, and the emergence of beyond- HD
formats (e.g., 4kx2k or 8kx4k resolution) are creating even stronger needs for coding
efficiency superior to H.264/MPEG-4 AVC's capabilities.[13] HEVC has 50 percent more
bit rate savings than H.264/MPEG-4 AVC [6] at similar visual quality. HEVC has two
major improvements compared to H.264/MPEG-4 AVC that is increased use of parallel
processing and increased video resolution. There are many new features in HEVC like
wave front processing, tiles; dependent slices etc. which are introduced into the new

standard. This advantage of HEVC comes at the price of high encoder complexity.



2.2 HEVC Encoder
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Figure 2-1 Block diagram of HEVC encoder [1]

2.2.1 Working of HEVC Encoder

Figure 2.1 [1] depicts the block diagram of a hybrid video encoder, which creates
a bit stream according to the HEVC standard. The first frame of the video is entered in
the encoder and it splits into corresponding coding tree units. The first frame is always
intra-predicted. The difference of original image pixel and its predicted pixel is called the

residual. This residual is transformed using integer approximations of discrete cosine



transform (DCT) for all blocks except luma 4x4 intra —predicted where a transform related
to Discrete Sine transform (DST) is used. After transformation, quantization and scaling
are performed to approximate the coefficient values. The decoder loop consists of
inverse transform and scaling followed by filtering done by deblocking and SAO filters in
the encoder block diagram. This reduces the error or drift between what the encoder
predicts and what the decoder actually has. From this loop, the encoder can get
information regarding the motion compensation and intra prediction. These are sent to
entropy encoder which uses Context Adaptive Binary Arithmetic coding (CABAC) to form

the bit stream. Figure 2.2 shows the block diagram of HEVC decoder [3].

® [Intra Mode Information 4
Entropy ® Inter Mode Information
Decoding ® Sample Adapteve Offset Informabon
® fesidues
Intra "
Prediction P
t Inverse Inverse
Motion '_/'. R uchon f*—1 Transform [ Quaritization
Compensation = 2
i l Deblocking Filter ]
Reference ; i
Pictune Buffer | sampleAdaptive Offset |

Figure 2-2 Decoder block diagram of HEVC [3]

2.2.2 Coding tree units

The first frame of the video is entered in the encoder and it splits into
corresponding coding tree units. This is a new concept in HEVC which replaces the
traditional macroblocks in H.264. A picture is partitioned into coding tree units (CTUS),
which each contain luma Coding Tree Blocks (CTBs) and chroma CTBs. A luma CTB
covers a rectangular picture area of LxL samples of the luma component and the
corresponding chroma CTBs cover each L/2xL/2 samples of each of the two chroma

components for the 4:2:0 and 4:4:4 formats as shown in figure 2.3 [22] . The value of L



may be equal to 16, 32, or 64 as determined by an encoded syntax element specified in
the Sequence Parameter Set (SPS). The luma CTB and the two chroma CTBs together
with the associated syntax form a CTU. The CTU is the basic processing unit used in the

standard to specify the decoding process.

- - -
O O O
- - -
O O O
EREEY] 4:2:2
® O O O ® O C;J - C;J - C;J -
o O O O o O O O O O
o O O - & © & © & ©
o O O O o O O O O O
4:1:1 4:2:0
3 —— Pixcl with only Y valuc
® —— Pixel with only Crand Cb values
—— Pixcl with ¥, Crand Cb valucs

Figure 2.3 Format for YUV components [22]

Figure 2-4 Left: CTB to CBs and TBs. Solid lines indicate CB boundaries and dotted lines
indicate TB boundaries. Right: Corresponding quadtree.[1]
The blocks specified as luma and chroma CTBs can be directly used as CBs or

can be further partitioned into multiple Coding Blocks (CBs). Partitioning is achieved



using tree structures as shown above in figure 2.4 [1]. The tree partitioning in HEVC is
generally applied simultaneously to both luma and chroma, although exceptions apply
when certain minimum sizes are reached for chroma. The CTU contains a quadtree
syntax that allows for splitting the CBs to a selected appropriate size based on the signal
characteristics of the region that is covered by the CTB. The quadtree splitting process
can be iterated until the size for a luma CB reaches a minimum allowed luma CB size
that is selected by the encoder using syntax in the Sequence Parameter Set and is

always 8x8 or larger (in units of luma samples). [1]

MxM M/2 xM MxM/2 M/2xM/2

M/4xM (L) M/4xM (R) MxM/4(U) MxM/4 (D)
Figure 2-5 Modes for splitting a CB into PBs, subject to certain size constraints. For

intrapicture-predicted CBs, only M x M and M/2xM/2 are supported. [1]. D: Down, L: Left,

R: Right, U: Up.

The prediction mode for the CU is signaled as being intra or inter, according to
whether it uses intrapicture (spatial) prediction or interpicture (temporal) prediction. When
the prediction mode is signaled as intra, the Prediction Block (PB) size, which is the block
size at which the intrapicture prediction mode is established, is the same as the Coding
Block (CB) size for all block sizes except for the smallest CB size that is allowed in the
bitstream. When the prediction mode is signaled as inter, it is specified whether the luma

and chroma CBs are split into one, two, or four PBs as shown in figure 2.5 [1] . The luma



and chroma PBs, together with the associated prediction syntax, form the Prediction Unit
(PU). For residual coding, a CB can be recursively partitioned into transform blocks
(TBs). The partitioning is signaled by a residual quadtree. In contrast to previous
standards, the HEVC design allows a TB to span across multiple PBs for interpicture-
predicted CUs to maximize the potential coding efficiency benefits of the quadtree-
structured TB partitioning. [5]

2.2.3 Intra Prediction

2 Example: Directional mode 29

0O: Planar

1: DC Béundary

samples
from decoded
PUs

\ |
14 Current PU

0 29 28 270625 24 23 22°
Figure 2-6 Intra prediction modes of HEVC encoder. [1]

Intrapicture prediction operates according to the TB size, and previously decoded
boundary samples from spatially neighboring TBs are used to form the prediction signal.
Directional prediction with 33 different directional orientations is defined for (square) TB
sizes from 4x4 up to 32x32 as shown in figure 2.6 [1]. HEVC supports various
intrapicture predictive coding methods referred to as Intra—Angular, Intra—Planar, and
Intra—DC. HEVC supports a total of 33 prediction directions, denoted as Intra—Angular[k],
where k is a mode number from 2 to 34. The angles are intentionally designed to provide
denser coverage for near-horizontal and near-vertical angles and coarser coverage for
near-diagonal angles to reflect the observed statistical prevalence of the angles and the

effectiveness of the signal prediction processing. Intra—DC prediction uses an average



value of reference samples for the prediction. For Intra-Planar, average values of two

linear predictions using four corner reference samples are used. [7]

2.3 Bitstream syntax of HEVC
The high-level syntax of HEVC mainly contains from the Network Adaptation
Layer (NAL) [1] of H.264/MPEG4 AVC. The NAL provides the ability to map the Video
Coding Layer (VCL) data that represent the content of the pictures onto various transport
layers, including RTP/IP [11] , ISO MP4 [10], and H.222.0/MPEG2 [9] Systems, and
provide a framework for packet loss resilience .The comparison between NAL units of

H.264 and HEVC is shown in figure 2.7. [6][1]
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H.264/AVC NAL Units
Figure 2-7 Comparison of HEVC and H.264 NAL units [1]

In HEVC each slice is encoded in a single NAL unit. HEVC uses a two byte NAL
unit header. The size of a slice (and the subsequent NAL unit) may be matched to that of
the Maximum Transmission Unit (MTU) of the network, over which the video will be
streamed. NAL units are classified into VCL and non VCL NAL units according to whether

they contain coded pictures or other associated data, respectively shown in Table 1 [1]

2.
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Table 1-1 The NAL unit types and their associated meanings, classes in the HEVC

standard. [1]

TABLE 1
NAL UNIT TYPES, MEANINGS, AND TYPE CLASSES
Type Meaning Class
0, 1 Slice segment of ordinary trailing picture VCL
2,3 Slice segment of TSA picture VCL
4.5 Slice segment of STSA picture VCL
6.7 Slice segment of RADL picture VCL
8.9 Slice segment of RASL picture VCL
10-15 Reserved for future use VCL
16-18 Slice segment of BLA picture VCL
19, 20 Slice segment of IDR picture VCL
21 Slice segment of CRA picture VCL
22-31 Reserved for future use VCL
32 Video parameter set (VPS) non-VCL
33 Sequence parameter set (SPS) non-VCL
34 Picture parameter set (PPS) non-VCL
35 Access unit delimiter non-VCL
36 End of sequence non-VCL
37 End of bitstream non-VCL
38 Filler data non-VCL
39, 40 SEl messages non-VCL
4147 Reserved for future use non-VCL
48-63 Unspecified (available for system use) non-VCL

2.4 Video coding layer topics
2.4.1 Motion vector signaling
Advanced motion vector prediction (AMVP) is used. This includes derivation of

several most probable candidates based on data from adjacent PBs and the reference

12



picture. A merge mode for motion vector coding is also used, allowing the inheritance of
motion vectors from temporally or spatially neighboring PBs. [2] [4]
2.4.2 Motion compensation
Quarter-sample precision is used for the motion vectors. 7-tap (weights: -1, 4, -
10, 58, 17, -5, 1) or 8-tap (weights: -1, 4, -11, 40, 40, -11, 4, 1) filters are used for
interpolation of fractional-sample positions as shown in Fig 2.8. For each PB, either one
or two motion vectors can be transmitted, resulting either in unipredictive or bipredictive

coding, respectively. [6][1]

A Aga |@g. | boog | Co [ A Ag
Ain Agg | g | Pog | Coo | Arn Azg
dig don | €op | Top | Qoo | dia dyg
hig Moo | log | Jop | Koo | 1o hag
Nig Mg | Pog | Goo | Too | Mo N20
Ay Agy |80 | Poy | Coy | Ars Ay
Az Agz | 80z | boz | Coz | Az Azs

Figure 2-8 Integer aﬁd ffactional samble positions for luma interboiation. Ai,j , represent
the available luma samples at integer sample locations and the other positions labeled
with lower-case letters represent samples at noninteger sample locations, which need to
be generated by interpolation. [1] [2]

2.4.3 Quantization control
As in H.264/MPEG-4 AVC [3], uniform reconstruction quantization (URQ) is
used in HEVC, with quantization scaling matrices supported for the various transform

block sizes. [2]
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2.4.4 Entropy Coding

HEVC specifies only one entropy coding method, CABAC [13] rather than two as
in H.264/MPEG-4 AVC. Three coefficient scanning methods, diagonal up-right,
horizontal, and vertical scans as shown in Fig. 2.9, are selected implicitly for coding the

transform coefficients of 4x4 and 8x8 TB sizes in intrapicture-predicted regions.

7

vy V. Vv

v

Yy vV V¢

A Yy VY VYV VY VY
(a) (b) (c)

Figure 2-9 Three coefficient scanning methods in HEVC. (a) Diagonal up-right scan. (b)

Horizontal scan. (c) Vertical scan [1]

2.4.5 Deblocking Filter

The deblocking filter is applied to all samples adjacent to a PU or TU boundary
except the case when the boundary is also a picture boundary, or when deblocking is
disabled across slice or tile boundaries (which is an option that can be signaled by the
encoder). It should be noted that both PU and TU boundaries should be considered since
PU boundaries are not always aligned with TU boundaries in some cases of interpicture-
predicted CBs. Syntax elements in the SPS and slice headers control whether the
deblocking filter is applied across the slice and tile boundaries.[1][3]
2.4.6 Sample Adaptive Offset (SAO)

A non-linear amplitude mapping is introduced in the inter-picture prediction loop

after the deblocking filter. The goal is to better reconstruct the original signal amplitudes

14



by using a look-up table that is described by a few additional parameters that can be
determined by histogram analysis at the encoder side. [3]
2.5 Parallel decoding syntax and modified slice structuring

Four new features are introduced in the HEVC standard to enhance the parallel
processing capability or modify the structuring of slice data for packetization purposes.
2.5.1 Tiles

The option to partition a picture into rectangular regions called tiles has been
specified. The main purpose of tiles is to increase the capability for parallel processing
rather than provide error resilience. Tiles are independently decodable regions of a
picture that are encoded with some shared header information. Tiles provide parallelism
at a more coarse level of granularity (picture/subpicture), and no sophisticated
synchronization of threads is necessary for their use. [1][4]
2.5.2 Wavefront parallel processing

When wavefront parallel processing (WPP) is enabled, a slice is divided into
rows of CTUs. The first row is processed in an ordinary way, the second row can begin to
be processed after only two CTUs have been processed in the first row, and the third row
can begin to be processed after only two CTUs have been processed in the second row,
and so on. WPP provides a form of processing parallelism at a rather fine level of
granularity, i.e., within a slice.[1][2]
2.5.3 Dependent slice segments

A structure called a dependent slice segment allows data associated with a
particular wavefront entry point or tile to be carried in a separate NAL unit, and thus
potentially makes that data available to a system for fragmented packetization with lower

latency than if it were all coded together in one slice.[1][5]
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2.5.4 Slices

A slice is a data structure that can be decoded independently from other slices of
the same picture, in terms of entropy coding, signal prediction, and residual signal
reconstruction. A slice can either be an entire picture or a region of a picture. One of the

main purposes of slices is resynchronization in the event of data losses. [1][2]

2.6 HEVC Profile, level.

Profiles, tiers, and levels specify conformance points for implementing the
standard in an interoperable way across various applications that have similar functional
requirements. A profile defines a set of coding tools or algorithms that can be used in
generating a conforming bitstream, whereas a level places constraints on certain key
parameters of the bitstream. Only three profiles targeting different application
requirements, called the Main, Main 10, and Main Still Picture profiles, are finalized [1]. In
the Main and Main Still Picture profiles, only a video precision of 8 bit per sample is
supported, while the Main 10 profile supports up to 10 bit per sample. In the Main Still
Picture profile, the entire bit stream must contain only one coded picture (and thus
interpicture prediction is not supported) [1] [2] [4]. Extensions to these such as scalable
video coding, 3D-TV etc are being finalized. [15]

2.7 Summary

HEVC with main profile and intra prediction is used in this thesis. The main

concepts of HEVC have been explained in chapter 2. Chapter 3 explains the AAC

standard with detailed information.
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Chapter 3
OVERVIEW OF ADVANCED AUDIO CODING (AAC)
3.1 Introduction

Advanced audio coding (AAC) is a combination of state-of-the-art technologies in
perceptual audio coding technology standardized by Moving Picture Experts Group
(MPEG). AAC is an audio compression scheme first standardized within MPEG in
1997.[1] AAC has been standardized under the joint direction of the International
Organization for Standardization (ISO) and the International Electro-Technical
Commission (IEC), as part 7 of the MPEG-2 specification. Now, it is getting more popular
for commercial purposes. Some of the important features added to AAC as compared to
other standards are temporal noise shaping, backward adaptive linear prediction and
enhanced joint stereo coding techniques which are used for applications like music
delivery over cellular phone networks, “transparent” quality (indistinguishable from the
original source material) for the most discriminating listeners. AAC allows using wide
range of sampling rates (8—96 kHz), bit rates (16—576 kbps) and from one to 48 audio
channels [3]. AAC provides audio of higher quality at the same bit rate as previous
standards or same quality audio at lower bit rates. AAC is the first codec to fulfill the ITU-
R/EBU requirements for indistinguishable quality at 128 kbps/stereo. In contrast to MP3's
hybrid filter bank, AAC uses the modified discrete cosine transform (MDCT) together with
the increased window lengths of 1024 or 960 samples. AAC can be used on HDTV, DVB,
iTunes and iPod, iPhone, iPad, Apple TV, mobile phone, PDA and so on.

3.2 AAC Profiles
Three default profiles have been defined, using different combinations of the

available tools:
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Main Profile: Uses all the encoding and decoding tools except the gain control
module. This is the most complex of the three profiles and provides the highest quality for
applications where the amount of random accessory memory (RAM) and processing
power are not constraints.

Low-complexity Profile: Deletes the prediction tool and reduces the temporal
noise shaping tool in complexity. This profile is favorable if memory and power
constraints are to be met.

Scaleable sampling rate (SSR) Profile: Adds the gain control tool to the low-
complexity profile. Allows the least complex decoder. This profile is most appropriate in
applications with reduced bandwidth.

3.3 AAC Encoder

The block diagram of the AAC encoder is shown in Fig. 3.1 [9]. It comprises a
perceptual model, a filter bank, a temporal noise shaping (TNS) module, a joint-stereo
coding module (intensity stereo and mid/side stereo), a quantizer and a noiseless coding
module. All modules are controlled by the perceptual model and the rate/distortion control

process. [8]
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Figure 3-1 AAC encoder block diagram [9]

Filter Bank: The first task of an audio coder is to break an audio sample into segments,

called blocks. A time domain filter, called a window, provides smooth transitions from

block to block by modifying the data in these blocks. AAC uses modified discrete cosine

transform (MDCT) in the filter bank module. Generally, transform coding controls the

guantization noise in the MDCT component based on the frequency masking property.

AAC uses two types of transform sizes according to the stationarity of the input signal.

The transform size is fixed at 1,024 sample (long block mode) for a stationary segment

and 128 points (short block mode) for a transient segment. The use of the short block
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mode efficiently reduces the degradation called “pre-echo”. AAC also switches between
two different types of long blocks: sine-function and Kaiser-Bessel derived (KBD)
according to the complexity of the signal [4] [8].

Temporal Noise Shaping (TNS): The TNS technique provides enhanced control of the
location, in time, of quantization noise within a filter bank window. This allows for signals
that are somewhere between steady state and transient in nature. The TNS module
temporally controls the quantization noise in the encoded signal obtained by inverse
MDCT according to the temporal masking characteristics of human auditory perception.
In this module, the magnitude of the quantization noise is controlled in proportion to the
signal strength through frequency-domain linear prediction (FDLP). Note that TNS can be
applied to either the entire frequency spectrum, or to only a part of the spectrum, such
that the time-domain quantization can be controlled in a frequency-dependant fashion.
Intensity Stereo: The intensity stereo module encodes input stereo signals using a
monaural signal and the spatial localization information. This module is very effective in
the bit reduction when the stereo signal is a source with specific sound localization.

It is based on an analysis of high-frequency audio perception based on the
energy-time envelope of the region of the audio spectrum. Intensity stereo coding allows
a stereo channel pair to share a single set of spectral values for the high-frequency
components with little or no loss in sound quality. This is achieved by maintaining the
unique envelope for each channel by means of a scaling operation so that each channel
produces the original level after decoding.[8]

Prediction: The prediction module is used to represent stationary or semi-stationary parts
of an audio signal. Instead of repeating such information for sequential windows, a simple
repeat instruction can be passed, resulting in a reduction of redundant information. The

prediction process is based on a second-order backward adaptive model in which the
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spectral component values of the two preceding blocks are used in conjunction with each
predictor. The prediction parameter is adapted on a block-by-block basis. [6]
Mid/Side (M/S) Stereo Coding: The mid/side (M/S) stereo module encodes the input
stereo signal in terms of Hadamard transformed signals, that is, the mid-signal obtained
by adding the left and right signals, and the side signal obtained by subtracting the right
signal from the left signal. This module is effective when the left and right signals are
highly correlated. [8]
Quantization and Coding: While the previously described modules attain certain levels of
compression, it is in the quantization phase that the majority of data reduction occurs.
This is the AAC module in which spectral data is quantized under the control of the
psychoacoustic model. The number of bits used must be below a limit determined by the
desired bit rate. Huffman coding is also applied in the form of twelve codebooks. In order
to increase the coding gain, scale factors with spectral coefficients of value zero are not
transmitted. [5]
Noiseless Coding: This method is nested inside of the previous module, Quantization and
Coding. Noiseless dynamic range compression can be applied prior to Huffman coding. A
value of +/- 1 is placed in the quantized coefficient array to carry the sign, while
magnitude and an offset from base, to mark frequency location, are transmitted as side
information. This process is only used when a net savings of bits results from its use. Up
to four coefficients can be coded in this manner.
Bit stream Multiplexing: AAC has very flexible bit stream syntax. A single transport is not
ideally suited to all applications, and AAC can accommodate two basic bit stream
formats: audio data interchange format (ADIF) and audio data transport stream (ADTS).
ADIF (audio data interchange format) actually is just one header at the beginning

of the AAC file. The rest of the data are consecutive raw data blocks. This file format is
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meant for simple local storing purposes, where breaking of the audio data is not
necessary. [1] [2]

ADTS (audio data transport stream) has one header for each frame followed by
raw block of data. ADTS headers are present before each AAC raw data block or block of
2 to 4 raw data blocks in a frame to ensure better error robustness in streaming
environments. Hence in this thesis, ADTS bit stream format is adopted. The details of the
ADTS header are given in Tables 3.1 And 3.2.

Table 3-1 ADTS header format [3]

[Field name Field size |[Comment
in bits
ADTS Fixed header: these do not
change from frame to frame
Syncword 12 always: '111111111111°
IID 1 0: MPEG-4, 1: MPEG-2
|Layer 2 always: '00'
Iprotection_absent 1
[Profile 2
Sampling_frequency_index 4
Iprivate_bit 1
fchannel_configuration 3
loriginal/copy 1
IHome 1
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Table 3.1 — Continued

IADTS Variable header: This can
change from frame to frame
ICopyright_identification_bit 1
ICopyright_identification_start 1
laac_frame_length 13 length of the frame including
header (in bytes)
ADTS_buffer_fullness 11 0x7FF indicates VBR
INo_raw_data_blocks_in_frame 2
IADTS Error check
lcrc_check 16 Only if protection_absent ==
Raw block of data Variable

Table 3-2 ADTS profile bits in header [3]

Profile bits ID 1 (MPEG-2 profile)
00 (0) Main profile
01 (1) Low complexity profile (LC)
10 (2) Scalable sample rate profile (SSR)
11 (3) (reserved)
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3.4 Summary
In this chapter, the AAC audio coding standard is discussed with a detailed
description of the encoding process. Low complexity profile with ADTS bit stream
formatting is used as per the advantages explained in the chapter. Chapter 4 focuses on

the MPEG-2 transport stream and the multiplexing algorithm implemented.
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Chapter 4
MULTIPLEXING
4.1 Introduction

A multimedia file consists of video, audio and other metadata like subtitles. Each
of the video, audio or data has to be transported in different media. In order to reduce the
cost, and to optimize the use of expensive resources, multiplexing has been introduced.
Multiplexing is the process of combining different bit streams into one single signal over a
shared medium. Thus, elementary streams of video, audio and data are multiplexed into
one single stream that would carry all the data and transmitted over the network. Video
and audio streams contain several number of frames, thus are of large bandwidth. A high
quality video/audio will require large bandwidth for transmission. Therefore, compression
and coding standards like H.264/AVC [7], HEVC/H.265 [8] etc are employed for video
and AAC [9], HE-AAC [10] for audio. After compression, the quality remains almost the
same but the bandwidth requirement is reduced. For example, in the DVB (satellite TV)
world, a satellite needs to deliver, via radio, one stream to subscribers. That one stream
needs to carry many TV channels. To do this, the many channels are multiplexed into
one stream. There are new standards stated for multiplexing like MPEG-2, RTP etc. In
this thesis, MPEG-2 transport stream [3] is used.

4.2 MPEG Bitstream Structure

To understand how the component parts of the bit stream are multiplexed, there
is a need to first look at each component part. The most basic component is known as an
Elementary Stream in MPEG. A program (perhaps most easily thought of as a television
program, or a Digital Versatile Disk (DVD) track) contains a combination of elementary
streams (typically one for video, one or more for audio, control data, subtitles, etc). Figure

4.1 shows the streams and formats supported by MPEG -2 [5]
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Figure 4-1 Streams supported by MPEG-2 [5]
4.2.1 Elementary Stream
Each Elementary Stream (ES) output by an MPEG audio, video and (some) data
encoders contain a single type of (usually compressed) signal. There are various forms of
ES, including:
e Digital Control Data
e Digital Audio (sampled and compressed)
e Digital Video (sampled and compressed)
e Digital Data (synchronous, or asynchronous)
For video and audio, the data is organized into access units, each representing a
fundamental unit of encoding. For example, in video, an access unit will usually be a

complete encoded video frame. [5] [1]

4.2.2 Packetized Elementary Stream (PES)

Each ES is input to an MPEG-2 processor (e.g. a video compressor or data
formatted) which accumulates the data into a stream of Packetized Elementary Stream
(PES) packets. A PES packet may be a fixed (or variable) sized block, with up to 65536
bytes per block and includes a 6 byte protocol header. A PES is usually organized to

contain an integral number of ES access units as shown in figure 4.2. [2]
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Figure 4-2 PES encapsulation from elementary stream [2]
The PES header starts with a 3 byte start code, followed by a one byte stream ID
and a 2 byte length field. Figure 4.3 and Table 4.1 show the PES packet glossary. [5]
The following well-known stream IDs are defined in the MPEG standard:
e 110x xxxx - MPEG-2 audio stream number x XXxXx.
e 1110 yyyy - MPEG-2 video stream number yyyy. [5]

Table 4-1 PES packet header description [7]

Name Size Description

Packet start code prefix 3 bytes 0x000001

Unique id for each audio and

Stream id 1 byte
video stream
PES Packet length 2 bytes Can be zero if more than 65536.
Timestamp 2 bytes Frame number
Data
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Figure 4-3 PES packet header [4]

The next field contains the PES Indicators. These provide additional information
about the stream to assist the decoder at the receiver. The following indicators are
defined:

PES_Scrambling_Control - Defines whether scrambling is used, and the chosen
scrambling method.

PES_Priority - Indicates priority of the current PES packet.

data_alignment_indicator - Indicates if the payload starts with a video or audio start code.
copyright information - Indicates if the payload is copyright protected.

original_or_copy - Indicates if this is the original ES.

A one byte flags field completes the PES header. This defines the following
optional fields, which if present, are inserted before the start of the PES payload.

The PES packet payload includes the ES data. The information in the PES
header is, in general, independent of the transmission method used.

4.3 MPEG-2 Multiplexing
The MPEG-2 standard allows two forms of multiplexing:
* MPEG Program Stream: A group of tightly coupled PES packets referenced to

the same time base. Such streams are suitable for transmission in a relatively error-free
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environment and enable easy software processing of the received data. This form of
multiplexing is used for video playback and for some network applications. [2]

* MPEG Transport Stream: Each PES packet is broken into fixed-sized transport
packets forming a general purpose way of combining one or more streams, possibly with
independent time bases. This is suitable for transmission in which there may be potential
packet loss or corruption by noise, and / or where there is a need to send more than one
program at a time. [2]

Digital Video Broadcast (DVB) uses the MPEG-2 transport stream over a wide
variety of underlying networks. Since both the program stream and transport stream
multiplex a set of PES inputs, interoperability between the two formats may be achieved
at the PES level.

4.4 MPEG-2 Transport Stream

A MPEG-2 transport stream, also referred to as MPEG or MPEG-2 TS or simply
TS, is a special format for transmitting MPEG (MPEG-1, MPEG-2, or MPEG-4) video
multiplexed with other streams. It is commonly used for digital television and streaming
across networks, including the internet.[6]

Unlike programs streams, which are optimized for efficient storage and assume the
decoder has access to the entire stream for synchronization purposes, transport streams
are designed for delivering data in real time over unreliable transport media, to a device
which is assumed to start reading data from some point after the beginning of
transmission.

In order to accommodate this, extra timestamps must be added to the stream at
regular intervals, with synchronization of various packets (chunks of elementary streams)
set relative to the most recent timestamp instead of a single point at the beginning of the

file like a program stream.
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A transport stream consists of a sequence of fixed sized transport packets of 188
bytes. Each packet comprises 184 bytes of payload and a 4 bytes header. One of the
items in this 4 bytes header is the 13 bit packet identifier (PID) which plays a key role in

the operation of the transport stream.

¥ideo packet

Audio packet

Figure 4-4 Single Program Transport Stream (Audio and Video PES).

Figure 4.4 shows two elementary streams sent in the same MPEG-2 transport
multiplex. Each packet is associated with a PES through the setting of the PID value in
the packet header (the values of 64 and 51 in the figure 4.4). The audio packets have
been assigned PID 64, and the video packets PID 51 (these are arbitrary, but can be
different values). As is usual, there are more video than audio packets, but the two types
of packets are not evenly spaced in time. The MPEG-TS is not a time division multiplex,
packets with any PID may be inserted into the TS at any time by the TS multiplexor. If no
packets are available at the multiplexor, it inserts null packets (denoted by a PID value of
Ox1FFF) to retain the specified TS bit rate. The multiplexor also does not synchronize the
two PESs; indeed the encoding and decoding delay for each PES may be and usually is
different. A separate process is therefore required to synchronize the two streams. [5]

4.5 Format of Transport Stream packet
Each MPEG-2 TS packet carries 184 bytes of payload data prefixed by a 4 bytes

(32 bit) header as shown in Figure 4.5 and Table 4.2 [4].
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Figure 4-5 Transport stream (TS) header [4]

Table 4-1 PES packet header description [7]

Abbr Function

SB Synchronization Byte

TEI Transport Error Indicator
PUSI Payload Unit Start Indicator
TSC Transport Scrambling Control
TP Transport Priority

PID Packet Identifier

AFC Adaptation Field Control

CcC Continuity Counter

AF Adaptation Field (Optional)

The header starts with a well-known synchronization byte (8 bits). This has the

bit pattern 0x47 (0100 0111).
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A set of three flag bits are used to indicate how the payload should be
processed. The first flag indicates a transport error. The second flag indicates the start of
a payload (payload_unit_start_indicator).The third flag indicates transport priority bit.

The flags are followed by a 13 bit packet identifier (PID). This is used to uniquely
identify the stream to which the packet belongs (e.g. PES packets corresponding to an
ES) generated by the multiplexer. The PID allows the receiver to differentiate the stream
to which each received packet belongs. Some PID values are predefined and are used to
indicate various streams of control information. A packet with an unknown PID, or one
with a PID which is not required by the receiver, is silently discarded. The particular PID
value of OX1FFF is reserved to indicate that the packet is a null packet (and is to be
ignored by the receiver).

The two scrambling control bits are used by conditional access procedures to
encrypt the payload of some TS packets.

Two adaption field control bits which may take four values:

01 — no adaptation field, payload only

10 — adaptation field only, no payload

11 — adaptation field followed by payload

00 - RESERVED for future use.

Finally there is a half byte continuity counter (4 bits).

Figure 4.6 shows how the audio and video PES packets are placed in MPEG-2

TS. [2]
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Figure 4-6 Multiplexing of audio data and video data into MPEG-2 transport stream. [2]

Two options are possible for inserting PES data into the TS packet payload:

The simplest option, from both the encoder and receiver viewpoints, is to send
only one PES (or a part of single PES) in a TS packet. This allows the TS packet header
to indicate the start of the PES, but since a PES packet may have an arbitrary length,
also requires the remainder of the TS packet to be padded, ensuring correct alignment of
the next PES to the start of a TS packet. In MPEG-2 the padding value is the
hexadecimal byte OxFF.

In general a given PES packet spans several TS packets so that the majority of
TS packets contain continuation data in their payloads. When a PES packet is starting,
however, the payload_unit_start_indicator bit is set to ‘1’ which means the first byte of the
TS payload contains the first byte of the PES packet header. Only one PES packet can
start in any single TS packet. The TS header also contains the PID so that the receiver

can accept or reject PES packets at a high level without burdening the receiver with too
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much processing. Figure 4.7 shows the combining of elementary streams into transport
stream [4].
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Figure 4-7 Combining ES from encoders into TS (red) or a PS (yellow) [4]

4.6 Frame number as Time Stamp
This thesis proposes a method to use the frame number as timestamps. This
section explains how frame numbers can be used to synchronize audio and video
streams. Both H.265 [2] and AAC [3] bit streams are composed of data blocks sorted into
frames. A particular video bit stream has a constant frame rate during playback specified
by frames per second (fps). Hence, given the frame number, one can calculate the time

of occurrence of this frame in the video sequence during playback as follows:

Time of playback = Frame number /fps (4-1)
The AAC compression standard defines each audio frame to contain 1024
samples. The audio data in the AAC bit stream can have any discrete sampling
frequency between 8 KHz and 96 kHz. The frame duration increases from 96 kHz to 8

kHz. However, the sampling frequency and hence the frame duration remain constant
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throughout a particular audio stream. So, the time of occurrence of the frame during

playback is as follows:

Time of playback = 1024*frame number/(sampling freq). (4-2)

Thus from (4-1) and (4-2) it is found the time of playback by encoding the frame
numbers as the time stamps. In other words, given the frame number of one stream, the
frame number of the other streams that will be played at the same time as the frame of
the first stream. This will help to synchronize the streams during the playback. This idea
can be extended to synchronize more than one audio stream with the single video stream
like in the case of stereo or programs with single video and multiple audio channels.

The timestamp is assigned in the last 2 bytes of the PES packet header. This
implies that timestamp can carry frame numbers up to 65536. Once the frame number
exceeds this, in the case of long video and audio streams, the frame number is rolled
over. The rollover takes simultaneously on both audio and video frame numbers as soon
as either one of the stream crosses the maximum allowed frame number. This will not
create a conflict at the demultiplexer during synchronization because the audio and video
buffer sizes are much smaller than the maximum allowed frame number. Hence, at no

point of time there will be two frames in the buffer with the same timestamp. [7]

4.7 Proposed Multiplexing method
The final transmission stream is formed by multiplexing the TS packets
of the various elementary streams. The number of packets allocated for a particular
elementary stream during transmission, plays an important part in avoiding buffer
overflow or underflow at the demultiplexer. If more video TS packets are sent as
compared to audio TS packets, then at the receiver there may be a situation when video

buffer is full and is overflowing whereas audio buffer does not have enough data. This will
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prevent the demultiplexer from starting a playback and will lead to loss of data from the
overflowing buffer.

In order to prevent such a scenario, timing counters are employed at the
multiplexer. Each elementary stream has a timing counter, which gets incremented when
a TS packet from that elementary stream is transmitted. The increment value depends on
the playback time of the TS packet. The playback time of each PES can be calculated
since the frame duration is constant in both audio and video elementary streams. By
finding out how many TS packets are obtained from a single PES packet, the playback
time of each TS packet can be calculated. The elementary stream whose counter has the
least timing value is always given preference in packet allocation. This method will make
sure that at any point of time, the difference in the fullness of the buffers, in terms of
playback time is less than the playback time of one TS packet. This is never more than
the duration of a single frame and is typically in milliseconds. The flowchart of

multiplexing process as shown in figure 4.8.
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Figure 4-8 Flowchart of multiplexing process.
4.8 Summary
This chapter provides with the information of the standard MPEG -2 transport
stream and how it is used for multiplexing video and audio bitstream. Eventually, a
method for multiplexing the TS packets is proposed that can prevent buffer overflow or
underflow at the demultiplexer. Next chapter gives the procedure for demultiplexing the

audio and video streams and lip synchronization.
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Chapter 5
DEMULTIPLEXING AND SYNCHRONIZATION
5.1 Demultiplexing
Demultiplexing performs the reverse function of multiplexing that is split a
combined stream arriving from a shared medium into the original information streams as
shown in Figure 5.1 [15]. The process of extracting the elementary streams from the
multiplexed transport stream is called demultiplexing. This is the first step carried out at

the receiver, in the process of delivering a complete multimedia program to the end user.
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Figure 5-1 Overview of multiplexing and demultiplexing.[23]

The flowchart of the demultiplexer algorithm is shown in Fig 5.2.
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Figure 5-2 Flowchart of the demultiplexer.
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The procedure is almost reverse as in the multiplexing process and it is
explained below.

When the packets from the transport stream is received, the corresponding
packet identifier (PID) values are obtained. If the packet has value 14, then it is
recognized as an audio packet or if the packet value is 15, it is recognized as a video
packet. If the packet has any PID value that is not relevant to the multimedia program
that is being recovered, the packet is dropped and the next packet is analyzed.

At this stage, all the TS packets from other programs or null packets are
discarded as there should not be unwanted data to be added in the decoded output.
When the packet is found out to be the correct one, it is checked for more details. The
‘adaptation field control’ (AFC) bit is checked to see if any data other than the elementary
stream data is present in the packet. If the AFC bit is set, then the data is recovered from
the payload starting from the byte obtained by reading the ‘byte offset value’ from the
header. The remaining data is rejected if it is filled with stuffing bytes.

The data is identified to be audio data or video data through the PID value and is
redirected to the appropriate buffer. The packet is also analyzed to check if the ‘payload
unit start’ (PUS) bit is set. If it is set, then the PES header is present in the packet. The
header information is read to recover the frame length and timestamp, which is the frame
number. The frame number and location of the frame in the data buffer are stored in a
separate buffer. This process is continued until one of the elementary stream buffers is
full.

In order to detect packet losses, 4 bit continuity counter value is continuously
monitored for each PID separately, to check if the counter value increments in sequence.
If not a packet loss is declared and the particular frame in the buffer, which is involved in

the loss, is marked to be erroneous. In some transmission schemes, retransmission of
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the packet is requested to correct the error. Otherwise, the frame is skipped during
playback to prevent any stall in the decoder.

The most important thing is to continuously monitor the fuliness of the elementary
stream buffers. The buffer should not be allowed to overflow or underflow. This will lead
to loss of data. This is taken into account during the multiplexing process as explained in

section 4.4.

5.2 Synchronization and playback

Once the elementary stream buffer is full, the content is ready to be
played back for the viewer. The audio bit stream format i.e., audio data transport stream
(ADTS), enables us to begin decoding from any frame. However, the video bit stream
does not have the same kind of sophistication. The decoding can start only from the
anchor frames, which are the IDR frames. IDR frames are forced during the encoding
process at regular intervals. Hence, the video buffer is first searched from the top to get
the first occurring IDR frame. Once this is found, the timestamp or the frame number is
obtained for that IDR frame. Then audio stream is aligned accordingly to achieve
synchronization. This is done by calculating the audio frame number that would

correspond to the IDR frame in terms of playback time. This is calculated as follows:

Videoframenumber samplingfrequency
1024 fps

Audio frame number =

(5-1)

If the frame number calculated is a non-integer value, then the value is rounded

off and the corresponding frame is taken. The round off error is discussed later in this
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chapter. If the calculated frame number is not found in the buffer, next IDR frame is
searched and a new audio frame number is calculated. Once video frame number and
audio frame number are obtained, the location of these frames is looked up in the buffer
and the block of data from this frame to the end of the buffer is taken and sent to the
decoder for playback. The buffer is then emptied and the incoming data is filled in the
buffer and the process is repeated. In order to have a continuous playback, block of data
from first IDR frame to last IDR frame in the buffer is played back and during this
playback the next set of data buffering takes place in the background. This process
continues and the program is continuously played for the viewer.

Once the buffer is full and the synchronized frames are calculated, the audio and
video content are played back. The buffering is continued after the playback and next set
of data is put through the same process. This process continues and thus successful
demultiplexing and synchronized playback are achieved.

This completes the process of multiplexing, demultiplexing and a synchronized

playback of multimedia programs.

5.3 Summary
In this chapter, the process of extracting data from the multiplexed TS packets, to
reconstruct the elementary stream is explained in detail. Synchronization and playback
method using frame numbers as timestamps are proposed and the limitations due to
possible error in synchronization are discussed. Next chapter discusses the test

conditions, results and conclusion obtained after implementing the procedure.
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Chapter 6
RESULTS AND CONCLUSIONS
6.1 Test conditions

In order to evaluate the proposed multiplexing algorithm, a single multimedia
stream consisting of elementary video and elementary audio streams are used. Raw
elementary video stream are in YUV format and raw elementary audio stream are
present in WAVE format. There are many standard raw formats of individual audio and
video elementary streams available but the combination of both is not freely available.
Hence, an AVI or MOV file is used that is freely available. The raw YUV format of the
video and the raw WAVE format of the audio is extracted using a very powerful open
source software called ffmpeg[39]. The YUV video file is of very large size and it is
encoded using HM 14.0 software[29]. The raw YUV file is used as an input to the HM and
output is a .hevc file which is compressed. The encoder setting used is main intra profile
with GOP structure as IBBB. The raw audio stream is encoded using open source
software called FAAC[40]. The audio stream is an encoded in low-complexity profile. The
input .WAVE is used as an input to the FAAC and output is an .aac file which is
compressed as shown in figure 6.1. Both elementary streams are then multiplexed to

form transport stream packets. The details of the test clips are described in Table 6.1:
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Table 6-1 Test clip conditions

Test clip details Clip 1: Morning.avi Clip 2: SpeedBag
.avi file size (kB) 901 12650
.yuv file size (kB) 128115 390794
.hevc file size (kB) 57.1 391
.wave file size (kB) 1277 897
.aac file size (kB) 126 69

Clip Duration (sec) 9 sec 4 sec
Frame rate (frames/sec) 25 50
Audio frequency (KHz) 44.100 48
Video Compression 2242.06 999.4
Ratio

Audio compression ratio 10.1349 131
No. of TS packets 1377 2704
Total TS size (kB) 128 141
.mkv movie size (kB) 192 462

The results in Table 6.1 clearly show that the compression achieved, using
HEVC video codec and AAC audio codec, in the proposed method is more than that of
the MKV movie files (.mkv) or AVI files. The .avi file is played using the VLC media player
by VideoLAN[38]. Then the TS packets are given as the input to the proposed
demultiplexer algorithm to achieve the synchronized playback. It is verified to see if
synchronization between audio and video is achieved, irrespective of which TS packet
the user starts demultiplexing from. The demultiplexed audio and video are obtained and

merged using MKVtoolNix [42]. Since HEVC video is the latest standard, there are very
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few players which play it. Open-source DivX player [41] with HEVC plug-in is used to play
the final mkv movie file. Hence, some random TS packets are chosen to begin the
demultiplexing process and the results of the synchronization process are given in Table
6.2. The delay between audio and video is less than 13 milliseconds in the observed

cases.

Video M | il

YUV file

.avi/_.mov
file Audio

WAVE file

Figure 6-1 Test Condition for Video file

==— |

.aac file

6.2 Results

Table 6-2 Lip synchronization results for clip 1

TS Synchroniz | Synchroniz | Frame | Audio Delay Visual
packet ed video ed audio Playba | playback ( msec) Delay
number frame frame ck (yes/no)

57 7 12 0.28 0.278 2 No

117 16 | 28 0.640 0.650 10 No

250 32 | 56 1.290 13 10 No

500 63 | 108 2.52 2.507 13 No

820 121 | 208 4.840 4.829 11 No
1001 153 | 264 6.120 6.130 10 No
1240 205 | 353 8.200 8.196 4 No
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Table 6-3 Lip synchronization results for clip 2

TS Synchronized | Synchronized | Frame Frame Delay | Visual
packet | Video Frame | Audio frame video audio Delay
number playback | playback (yes/no)
61 6 5 120 106 14 No

251 18 17 360 362 2 No

524 27 25 540 533 7 No
1001 52 48 1040 1024 16 No
1500 88 82 1760 1749 11 No
2000 120 112 2400 2389 11 No
2500 132 124 2640 2645 5 No
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Figure 6-4 SpeedBag test sequence, SD 1280x720, 50 fps, 204 Frames
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48

Command Prompt - = _



Em Command Prompt

SUsersSMRUDULASDocumentssfaac—1.285\f rontend\Debugfaac E:\shrek:shrek.wav -o
sshreksshrekl . aac
reevare Advanced Audio Coder

Dhject type: Low Complexity(MPEG-2)> + M/S

ontainer format: Transport Stream (ADTS)

Encoding E:“shreksshrek.wav to E:\shreksshrekl.aac
frame i hitrate | elapsedsestim | play~sCPU

10341834 (d1@@:>! 122.8 | 1.9-1.9 i 12.8ix

SserssMRUDULANDocumentssfaac—1.28\frontend:\Dehug >

Figure 6-6 Encoding .wav to .aac low complexity using FAAC
6.3 Conclusion

An effective transport stream which carries multiple audio and video streams and
also easily decodable with synchronization is implemented in this thesis. Two layers of
packetization are used and multiplexing of the packets is implemented. The proposed
multiplexing procedure is effective in that the user could start demultiplexing from any TS
packet and achieve synchronized playback. The results show that there is no visual
synchronization delay. The buffer overflow/underflow problem is taken care of and there
is a delay of approximately 13 ms. Video broadcasting applications should be error-free
and packet losses should not occur. Hence, both layers of packetization are
accompanied by a packet identifier header.

6.3 Future research
The multiplexing algorithm in this thesis uses two elementary streams. However,

it could be modified to implement multiple streams and also, multiple programs at the
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same time. Some robust error correction codes can be integrated to the transport
packets, to make them more suitable for applications such as Video conferencing,

broadcasting where the packets are prone to be lost.
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APPENDIX A

Platform
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The research was carried out using an Intel Core i5 3317 CPU @ 1.7 GHz
machine with Microsoft Windows 8 64bit version running with 4 GB RAM at a speed of

1.7GHz.
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APPENDIX B

List Of Acronyms
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AAC: Advanced audio coding

ADIF: Audio data interchange format

ADTS: Audio data transport stream

AFC: Adaptation field control

ATSC: Advanced television systems committee
AVC: Advanced Video Coding

CABAC: Context-based Adaptive Binary Arithmetic Coding
CAVLC: Context-based Adaptive Variable Length Coding
CB: Coding Block

CPU: Central Processing Unit

CTU: Coding Tree Unit

CTB: Coding Tree Block

CU: Coding Unit

DCT: Discrete Cosine Transform

DTS: Decoding Time Stamp

DVB: Digital video broadcasting

DVD: digital video disc or digital versatile disc
EBU: European broadcasting union

ES: Elementary stream

FAAC: Free advanced audio coder

FAAD: Free advanced audio decoder

FPS: Frames per second

GOP: Group of pictures

HDTV: High definition television.

HEVC: High Efficiency Video Coding
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IDR: Instantaneous decoder refresh

ISO: International Organization for Standardization
ITU: International Telecommunication Union

ITU-T: International Telecommunication Union — Telecommunication
sector

JCT-VC: Joint Collaborative Team on Video Coding
JVT: Joint Video Team

LC: Low Complexity

MC: Motion Compensation

MDCT: Modified discrete cosine transform

MPEG: Moving Picture Experts Group

NAL: Network Adaptation Layer

NALU: Network Abstraction Layer Unit

PB: Prediction Block

PCM: Pulse Code Modulation

PCR: Program Clock Reference

PES: Packetized elementary stream

PID: Packet identifier

PPS: Picture parameter set

PTS: Presentation Time Stamp

PU: Prediction Unit.

PUS: Payload unit start.

RTP/IP: Real Time Transport protocol/Internet protocol
SPS: Sequence parameter set

SSR: Scalable sampling rate
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TB: Transform block

TNS: Temporal noise shaping

TS: Transport stream

TU: Transform unit

VCEG: Video Coding Experts Group
VCL: Video coding layer

VPS: Video parameter set

YUV: Luminance and chrominance color components
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