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Abstract 

MULTIPLEXING AND DEMULTIPLEXING HEVC VIDEO AND AAC AUDIO AND 

ACHIEVING LIP SYNCHRONIZATION DURING PLAYBACK 

 

 

Mrudula Balmohan Warrier, M.S 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: K.R. Rao  

High efficiency video coding (HEVC) /H.265 [5], is the latest digital video coding 

standard which has proven to be superior to earlier standards in terms of compression 

ratio, quality and error resilience. In order for the end user to understand the video 

meaningfully, there should be an associated audio with it. Any video is incomplete without 

a proper audio. Advanced audio coding (AAC) [8] is the digital audio codec standard 

defined in MPEG-2 and later in MPEG-4 with few changes. The audio quality of an AAC 

stream is widely used as the audio coding standard in various applications. It would be a 

great advantage to the user to adopt HEVC as video codec and AAC as the audio 

coding, for transmission of digital multimedia through air (ATSC, DVB) or through the 

internet (video streaming, IPTV). However, multiplexing is required for these applications 

in order to combine and create a single bit stream from separate audio and video bit 

streams for transmission purposes. The objective of the thesis is to propose a method for 

effectively multiplexing the audio and video coded streams for transmission followed by 

demultiplexing the streams at the receiver and achieving lip synchronization between the 

audio and video during the playback. The proposed method uses the fact that frames are 

constant throughout the length of audio and video. The first step of the process is the 
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packetization of elementary audio and video bit streams. The frame number information 

is stored in the header of the packets which is used as the vital information to 

synchronize the video and audio during playback. Then second layer of packetization is 

carried out from the first layer in order to meet the requirements of MPEG-2 transport 

stream. Proposed method uses playback time as the criteria for allocating data packets 

during multiplexing in order to prevent buffer overflow or underflow at the demultiplexer. 

The information required during the demultiplexer process to ensure error free is put in 

the header. Flow and results of the thesis are discussed in detail in the chapters.
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Chapter 1  

INTRODUCTION 

1.1 Introduction 

 
Digital television transmission has already replaced analog television 

transmission with better quality and less bandwidth. With the advent of HDTV, 

transmission schemes are aiming at transmitting superior quality video with provision to 

view both standard format and wide screen (16:9) format along with one or more audio 

streams per channel [17]. Choosing the right video codec and audio codec plays a very 

important role in achieving the bandwidth and quality requirements. H.265 or High 

Efficiency Video Coding (HEVC) [1], is the latest video coding standard by the ITU-T 

Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts 

Group (MPEG) as the product of a collective partnership effort known as the joint video 

team- video coding (JVT-VC) [10]. The new standard achieved about 50% bit rate 

savings as compared to H.264 [2]. In other words, this codec provides high quality video 

at the same bandwidth or same quality video in less bandwidth. HEVC provides the tools 

necessary to deal with packet losses in packet networks and bit errors in error-prone 

wireless networks. These features make this coding standard the right candidate for 

transmission. Advanced audio coding (AAC) [4] is a standardized lossy compression 

scheme for audio. The compression scheme was specified both as Part 7 of the MPEG-2 

standard [6], and Part 3 of the MPEG-4 standard [5].  The video and audio streams 

based on these standards need to be multiplexed in order to construct a single stream, 

which is a requirement for transmission. Figure 1.1 [5] shows the multiplexing process 

which mainly focuses on splitting the individual streams into small packets, embedding 

information to easily realign the packets and achieving lip sync between the individual 

streams, providing provision to detect and correct bit errors and packet losses. In this 
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thesis, the process of encoding the raw streams, multiplexing the compressed streams 

followed by demultiplexin2g and synchronizing the individual streams during playback 

shown in figure 1.2 [17], is implemented in detail. 

 

                    Figure 1-1 Multiplexing of audio and video streams. [17] 

 

 

Figure 1-2 Demultiplexing of audio and video streams [17]. 

1.2 Thesis outline 

Chapters 2 and chapter 3 give an overview of the H.265 [13] video standard and 

AAC audio standard [20] respectively. The bit stream formats along with the reason for 

choosing the standard are discussed in detail. 

HEVC 
Decoder 

AAC 
Decoder 
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Chapter 4 explains the entire process of multiplexing the elementary streams and 

preparing the data packets for transmission. The additional information to be sent in the 

packet headers to assist the demultiplexing process, is also presented in this chapter.    

In Chapter 5 demultiplexing of data packets and synchronization of reconstructed 

elementary streams are described. The adopted method of synchronization is compared 

with other methods of synchronization to analyze the advantages and disadvantages. 

Chapter 6 outlines the test conditions, results and conclusions obtained using the 

proposed method of implementation. 
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Chapter 2  

OVERVIEW OF HIGH EFFICIENCY VIDEO CODING (HEVC) 

2.1 Introduction 

The High Efficiency Video Coding (HEVC) is the latest video project by ITU-T 

Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group 

(MPEG) standardization organizations, working together in a partnership known as the 

Joint Collaborative Team on Video Coding (JCT-VC) [1]. An increasing diversity of 

services like high definition (HD) TV signals over satellite, cable, and terrestrial 

transmission systems, video content acquisition and editing systems, camcorders, 

security applications, Internet and mobile network video, Blu-ray Discs, and real-time 

conversational applications such as video chat, video conferencing, and telepresence 

systems and  the growing popularity of HD video, and the emergence of beyond- HD 

formats (e.g., 4k×2k or 8k×4k resolution) are creating even stronger needs for coding 

efficiency superior to H.264/MPEG-4 AVC’s capabilities.[13] HEVC has 50 percent more 

bit rate savings than H.264/MPEG-4 AVC [6] at similar visual quality. HEVC has two 

major improvements compared to H.264/MPEG-4 AVC that is increased use of parallel 

processing and increased video resolution. There are many new features in HEVC like 

wave front processing, tiles; dependent slices etc. which are introduced into the new 

standard. This advantage of HEVC comes at the price of high encoder complexity. 
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2.2 HEVC Encoder 

 

 Figure 2-1 Block diagram of HEVC encoder [1] 

 

2.2.1 Working of HEVC Encoder 

Figure 2.1 [1] depicts the block diagram of a hybrid video encoder, which creates 

a bit stream according to the HEVC standard. The first frame of the video is entered in 

the encoder and it splits into corresponding coding tree units. The first frame is always 

intra-predicted. The difference of original image pixel and its predicted pixel is called the 

residual. This residual is transformed using integer approximations of discrete cosine 
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transform (DCT) for all blocks except luma 4x4 intra –predicted where a transform related 

to Discrete Sine transform (DST) is used. After transformation, quantization and scaling 

are performed to approximate the coefficient values. The decoder loop consists of 

inverse transform and scaling followed by filtering done by deblocking and SAO filters in 

the encoder block diagram. This reduces the error or drift between what the encoder 

predicts and what the decoder actually has.  From this loop, the encoder can get 

information regarding the motion compensation and intra prediction. These are sent to 

entropy encoder which uses Context Adaptive Binary Arithmetic coding (CABAC) to form 

the bit stream. Figure 2.2 shows the block diagram of HEVC decoder [3]. 

 
              Figure 2-2 Decoder block diagram of HEVC [3] 

2.2.2 Coding tree units 

 The first frame of the video is entered in the encoder and it splits into 

corresponding coding tree units. This is a new concept in HEVC which replaces the 

traditional macroblocks in H.264. A picture is partitioned into coding tree units (CTUs), 

which each contain luma Coding Tree Blocks (CTBs) and chroma CTBs. A luma CTB 

covers a rectangular picture area of L×L samples of the luma component and the 

corresponding chroma CTBs cover each L/2×L/2 samples of each of the two chroma 

components for the 4:2:0 and 4:4:4 formats as shown in figure 2.3 [22] . The value of L 
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may be equal to 16, 32, or 64 as determined by an encoded syntax element specified in 

the Sequence Parameter Set (SPS). The luma CTB and the two chroma CTBs together 

with the associated syntax form a CTU. The CTU is the basic processing unit used in the 

standard to specify the decoding process.  

 
Figure 2.3 Format for YUV components [22] 

 
Figure 2-4 Left: CTB to CBs and TBs. Solid lines indicate CB boundaries and dotted lines 

indicate TB boundaries. Right: Corresponding quadtree.[1] 

The blocks specified as luma and chroma CTBs can be directly used as CBs or 

can be further partitioned into multiple Coding Blocks (CBs). Partitioning is achieved 
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using tree structures as shown above in figure 2.4 [1]. The tree partitioning in HEVC is 

generally applied simultaneously to both luma and chroma, although exceptions apply 

when certain minimum sizes are reached for chroma. The CTU contains a quadtree 

syntax that allows for splitting the CBs to a selected appropriate size based on the signal 

characteristics of the region that is covered by the CTB. The quadtree splitting process 

can be iterated until the size for a luma CB reaches a minimum allowed luma CB size 

that is selected by the encoder using syntax in the Sequence Parameter Set and is 

always 8×8 or larger (in units of luma samples). [1] 

                                   
Figure 2-5 Modes for splitting a CB into PBs, subject to certain size constraints. For 

intrapicture-predicted CBs, only M × M and M/2×M/2 are supported. [1]. D: Down, L: Left, 

R: Right, U: Up. 

 

The prediction mode for the CU is signaled as being intra or inter, according to 

whether it uses intrapicture (spatial) prediction or interpicture (temporal) prediction. When 

the prediction mode is signaled as intra, the Prediction Block (PB) size, which is the block 

size at which the intrapicture prediction mode is established, is the same as the Coding 

Block (CB) size for all block sizes except for the smallest CB size that is allowed in the 

bitstream. When the prediction mode is signaled as inter, it is specified whether the luma 

and chroma CBs are split into one, two, or four PBs as shown in figure 2.5 [1] . The luma 
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and chroma PBs, together with the associated prediction syntax, form the Prediction Unit 

(PU). For residual coding, a CB can be recursively partitioned into transform blocks 

(TBs). The partitioning is signaled by a residual quadtree. In contrast to previous 

standards, the HEVC design allows a TB to span across multiple PBs for interpicture-

predicted CUs to maximize the potential coding efficiency benefits of the quadtree-

structured TB partitioning. [5] 

2.2.3 Intra Prediction 

 

Figure 2-6 Intra prediction modes of HEVC encoder. [1] 

Intrapicture prediction operates according to the TB size, and previously decoded 

boundary samples from spatially neighboring TBs are used to form the prediction signal. 

Directional prediction with 33 different directional orientations is defined for (square) TB 

sizes from 4×4 up to 32×32 as shown in figure 2.6 [1]. HEVC supports various 

intrapicture predictive coding methods referred to as Intra−Angular, Intra−Planar, and 

Intra−DC. HEVC supports a total of 33 prediction directions, denoted as Intra−Angular[k], 

where k is a mode number from 2 to 34. The angles are intentionally designed to provide 

denser coverage for near-horizontal and near-vertical angles and coarser coverage for 

near-diagonal angles to reflect the observed statistical prevalence of the angles and the 

effectiveness of the signal prediction processing. Intra−DC prediction uses an average 
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value of reference samples for the prediction. For Intra-Planar, average values of two 

linear predictions using four corner reference samples are used. [7] 

 

2.3 Bitstream syntax of HEVC 

The high-level syntax of HEVC mainly contains from the Network Adaptation 

Layer (NAL) [1] of H.264/MPEG4 AVC. The NAL provides the ability to map the Video 

Coding Layer (VCL) data that represent the content of the pictures onto various transport 

layers, including RTP/IP [11] , ISO MP4 [10], and H.222.0/MPEG2 [9] Systems, and 

provide a framework for packet loss resilience .The comparison between NAL units of 

H.264 and HEVC is shown in figure 2.7. [6][1] 
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Figure 2-7 Comparison of HEVC and H.264 NAL units [1] 

In HEVC each slice is encoded in a single NAL unit. HEVC uses a two byte NAL 

unit header. The size of a slice (and the subsequent NAL unit) may be matched to that of 

the Maximum Transmission Unit (MTU) of the network, over which the video will be 

streamed. NAL units are classified into VCL and non VCL NAL units according to whether 

they contain coded pictures or other associated data, respectively shown in Table 1 [1] 

[2]. 
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Table 1-1 The NAL unit types and their associated meanings, classes in the HEVC 

standard. [1] 

 

 
  2.4 Video coding layer topics 

 2.4.1 Motion vector signaling 

Advanced motion vector prediction (AMVP) is used. This includes derivation of 

several most probable candidates based on data from adjacent PBs and the reference 
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picture. A merge mode for motion vector coding is also used, allowing the inheritance of 

motion vectors from temporally or spatially neighboring PBs. [2] [4] 

  2.4.2 Motion compensation 

Quarter-sample precision is used for the motion vectors. 7-tap (weights: -1, 4, -

10, 58, 17, -5, 1) or 8-tap (weights: -1, 4, -11, 40, 40, -11, 4, 1) filters are used for 

interpolation of fractional-sample positions as shown in Fig 2.8. For each PB, either one 

or two motion vectors can be transmitted, resulting either in unipredictive or bipredictive 

coding, respectively. [6][1] 

 
Figure 2-8 Integer and fractional sample positions for luma interpolation. Ai,j , represent 

the available luma samples at integer sample locations and the other positions labeled 

with lower-case letters represent samples at noninteger sample locations, which need to 

be generated by interpolation. [1] [2] 

   2.4.3 Quantization control 

 As in H.264/MPEG-4 AVC [3], uniform reconstruction quantization (URQ) is 

used in HEVC, with quantization scaling matrices supported for the various transform 

block sizes. [2]                                                       
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2.4.4 Entropy Coding 

HEVC specifies only one entropy coding method, CABAC [13] rather than two as 

in H.264/MPEG-4 AVC. Three coefficient scanning methods, diagonal up-right, 

horizontal, and vertical scans as shown in Fig. 2.9, are selected implicitly for coding the 

transform coefficients of 4×4 and 8×8 TB sizes in intrapicture-predicted regions. 

 
Figure 2-9 Three coefficient scanning methods in HEVC. (a) Diagonal up-right scan. (b) 

Horizontal scan. (c) Vertical scan [1] 

 
2.4.5 Deblocking Filter 

The deblocking filter is applied to all samples adjacent to a PU or TU boundary 

except the case when the boundary is also a picture boundary, or when deblocking is 

disabled across slice or tile boundaries (which is an option that can be signaled by the 

encoder). It should be noted that both PU and TU boundaries should be considered since 

PU boundaries are not always aligned with TU boundaries in some cases of interpicture-

predicted CBs. Syntax elements in the SPS and slice headers control whether the 

deblocking filter is applied across the slice and tile boundaries.[1][3]   

2.4.6 Sample Adaptive Offset (SAO) 

A non-linear amplitude mapping is introduced in the inter-picture prediction loop 

after the deblocking filter. The goal is to better reconstruct the original signal amplitudes 
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by using a look-up table that is described by a few additional parameters that can be 

determined by histogram analysis at the encoder side. [3] 

2.5 Parallel decoding syntax and modified slice structuring 

Four new features are introduced in the HEVC standard to enhance the parallel 

processing capability or modify the structuring of slice data for packetization purposes. 

2.5.1 Tiles 

The option to partition a picture into rectangular regions called tiles has been 

specified. The main purpose of tiles is to increase the capability for parallel processing 

rather than provide error resilience. Tiles are independently decodable regions of a 

picture that are encoded with some shared header information. Tiles provide parallelism 

at a more coarse level of granularity (picture/subpicture), and no sophisticated 

synchronization of threads is necessary for their use. [1][4] 

2.5.2 Wavefront parallel processing 

 When wavefront parallel processing (WPP) is enabled, a slice is divided into 

rows of CTUs. The first row is processed in an ordinary way, the second row can begin to 

be processed after only two CTUs have been processed in the first row, and the third row 

can begin to be processed after only two CTUs have been processed in the second row, 

and so on. WPP provides a form of processing parallelism at a rather fine level of 

granularity, i.e., within a slice.[1][2] 

2.5.3 Dependent slice segments 

 A structure called a dependent slice segment allows data associated with a 

particular wavefront entry point or tile to be carried in a separate NAL unit, and thus 

potentially makes that data available to a system for fragmented packetization with lower 

latency than if it were all coded together in one slice.[1][5] 
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2.5.4 Slices 

A slice is a data structure that can be decoded independently from other slices of 

the same picture, in terms of entropy coding, signal prediction, and residual signal 

reconstruction. A slice can either be an entire picture or a region of a picture. One of the 

main purposes of slices is resynchronization in the event of data losses. [1][2] 

 
2.6 HEVC Profile, level. 

Profiles, tiers, and levels specify conformance points for implementing the 

standard in an interoperable way across various applications that have similar functional 

requirements. A profile defines a set of coding tools or algorithms that can be used in 

generating a conforming bitstream, whereas a level places constraints on certain key 

parameters of the bitstream. Only three profiles targeting different application 

requirements, called the Main, Main 10, and Main Still Picture profiles, are finalized [1]. In 

the Main and Main Still Picture profiles, only a video precision of 8 bit per sample is 

supported, while the Main 10 profile supports up to 10 bit per sample. In the Main Still 

Picture profile, the entire bit stream must contain only one coded picture (and thus 

interpicture prediction is not supported) [1] [2] [4]. Extensions to these such as scalable 

video coding, 3D-TV etc are being finalized. [15]  

2.7 Summary 

HEVC with main profile and intra prediction is used in this thesis. The main 

concepts of HEVC have been explained in chapter 2. Chapter 3 explains the AAC 

standard with detailed information.  
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Chapter 3                                                                                                                     

OVERVIEW OF ADVANCED AUDIO CODING (AAC) 

3.1 Introduction 

Advanced audio coding (AAC) is a combination of state-of-the-art technologies in 

perceptual audio coding technology standardized by Moving Picture Experts Group 

(MPEG). AAC is an audio compression scheme first standardized within MPEG in 

1997.[1] AAC has been standardized under the joint direction of the International 

Organization for Standardization (ISO) and the International Electro-Technical 

Commission (IEC), as part 7 of the MPEG-2 specification. Now, it is getting more popular 

for commercial purposes. Some of the important features added to AAC as compared to 

other standards are temporal noise shaping, backward adaptive linear prediction and 

enhanced joint stereo coding techniques which are used for applications like music 

delivery over cellular phone networks, “transparent” quality (indistinguishable from the 

original source material) for the most discriminating listeners. AAC allows using wide 

range of sampling rates (8–96 kHz), bit rates (16–576 kbps) and from one to 48 audio 

channels [3]. AAC provides audio of higher quality at the same bit rate as previous 

standards or same quality audio at lower bit rates. AAC is the first codec to fulfill the ITU-

R/EBU requirements for indistinguishable quality at 128 kbps/stereo. In contrast to MP3's 

hybrid filter bank, AAC uses the modified discrete cosine transform (MDCT) together with 

the increased window lengths of 1024 or 960 samples. AAC can be used on HDTV, DVB, 

iTunes and iPod, iPhone, iPad, Apple TV, mobile phone, PDA and so on. 

3.2 AAC Profiles 

Three default profiles have been defined, using different combinations of the 

available tools: 
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Main Profile:  Uses all the encoding and decoding tools except the gain control 

module. This is the most complex of the three profiles and provides the highest quality for 

applications where the amount of random accessory memory (RAM) and processing 

power are not constraints. 

Low-complexity Profile: Deletes the prediction tool and reduces the temporal 

noise shaping tool in complexity. This profile is favorable if memory and power 

constraints are to be met.  

Scaleable sampling rate (SSR) Profile: Adds the gain control tool to the low-

complexity profile. Allows the least complex decoder. This profile is most appropriate in 

applications with reduced bandwidth. 

3.3 AAC Encoder 

The block diagram of the AAC encoder is shown in Fig. 3.1 [9]. It comprises a 

perceptual model, a filter bank, a temporal noise shaping (TNS) module, a joint-stereo 

coding module (intensity stereo and mid/side stereo), a quantizer and a noiseless coding 

module. All modules are controlled by the perceptual model and the rate/distortion control 

process. [8] 
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Figure 3-1 AAC encoder block diagram [9] 

Filter Bank: The first task of an audio coder is to break an audio sample into segments, 

called blocks. A time domain filter, called a window, provides smooth transitions from 

block to block by modifying the data in these blocks. AAC uses modified discrete cosine 

transform (MDCT) in the filter bank module. Generally, transform coding controls the 

quantization noise in the MDCT component based on the frequency masking property. 

AAC uses two types of transform sizes according to the stationarity of the input signal. 

The transform size is fixed at 1,024 sample (long block mode) for a stationary segment 

and 128 points (short block mode) for a transient segment. The use of the short block 
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mode efficiently reduces the degradation called ‘‘pre-echo’’. AAC also switches between 

two different types of long blocks: sine-function and Kaiser-Bessel derived (KBD) 

according to the complexity of the signal [4] [8]. 

Temporal Noise Shaping (TNS): The TNS technique provides enhanced control of the 

location, in time, of quantization noise within a filter bank window. This allows for signals 

that are somewhere between steady state and transient in nature. The TNS module 

temporally controls the quantization noise in the encoded signal obtained by inverse 

MDCT according to the temporal masking characteristics of human auditory perception. 

In this module, the magnitude of the quantization noise is controlled in proportion to the 

signal strength through frequency-domain linear prediction (FDLP). Note that TNS can be 

applied to either the entire frequency spectrum, or to only a part of the spectrum, such 

that the time-domain quantization can be controlled in a frequency-dependant fashion.  

Intensity Stereo: The intensity stereo module encodes input stereo signals using a 

monaural signal and the spatial localization information. This module is very effective in 

the bit reduction when the stereo signal is a source with specific sound localization. 

It is based on an analysis of high-frequency audio perception based on the 

energy-time envelope of the region of the audio spectrum. Intensity stereo coding allows 

a stereo channel pair to share a single set of spectral values for the high-frequency 

components with little or no loss in sound quality. This is achieved by maintaining the 

unique envelope for each channel by means of a scaling operation so that each channel 

produces the original level after decoding.[8] 

Prediction: The prediction module is used to represent stationary or semi-stationary parts 

of an audio signal. Instead of repeating such information for sequential windows, a simple 

repeat instruction can be passed, resulting in a reduction of redundant information. The 

prediction process is based on a second-order backward adaptive model in which the 
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spectral component values of the two preceding blocks are used in conjunction with each 

predictor. The prediction parameter is adapted on a block-by-block basis. [6] 

Mid/Side (M/S) Stereo Coding: The mid/side (M/S) stereo module encodes the input 

stereo signal in terms of Hadamard transformed signals, that is, the mid-signal obtained 

by adding the left and right signals, and the side signal obtained by subtracting the right 

signal from the left signal. This module is effective when the left and right signals are 

highly correlated. [8] 

Quantization and Coding: While the previously described modules attain certain levels of 

compression, it is in the quantization phase that the majority of data reduction occurs. 

This is the AAC module in which spectral data is quantized under the control of the 

psychoacoustic model. The number of bits used must be below a limit determined by the 

desired bit rate. Huffman coding is also applied in the form of twelve codebooks. In order 

to increase the coding gain, scale factors with spectral coefficients of value zero are not 

transmitted. [5] 

Noiseless Coding: This method is nested inside of the previous module, Quantization and 

Coding. Noiseless dynamic range compression can be applied prior to Huffman coding. A 

value of +/- 1 is placed in the quantized coefficient array to carry the sign, while 

magnitude and an offset from base, to mark frequency location, are transmitted as side 

information. This process is only used when a net savings of bits results from its use. Up 

to four coefficients can be coded in this manner. 

Bit stream Multiplexing: AAC has very flexible bit stream syntax. A single transport is not 

ideally suited to all applications, and AAC can accommodate two basic bit stream 

formats: audio data interchange format (ADIF) and audio data transport stream (ADTS).  

ADIF (audio data interchange format) actually is just one header at the beginning 

of the AAC file. The rest of the data are consecutive raw data blocks. This file format is 
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meant for simple local storing purposes, where breaking of the audio data is not 

necessary. [1] [2] 

ADTS (audio data transport stream) has one header for each frame followed by 

raw block of data. ADTS headers are present before each AAC raw data block or block of 

2 to 4 raw data blocks in a frame to ensure better error robustness in streaming 

environments. Hence in this thesis, ADTS bit stream format is adopted. The details of the 

ADTS header are given in Tables 3.1 And 3.2.    

Table 3-1 ADTS header format [3] 

Field name Field size 

in bits 

Comment 

  ADTS Fixed header: these do not 

change from frame to frame 

 Syncword 12 always: '111111111111' 

ID 1 0: MPEG-4, 1: MPEG-2 

Layer 2 always: '00' 

protection_absent 1  

Profile 2  

Sampling_frequency_index 4  

private_bit 1  

channel_configuration 3  

original/copy 1  

Home 1  
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Table 3.1 – Continued 

  ADTS Variable header: This can 

change from frame to frame 

Copyright_identification_bit 1  

Copyright_identification_start 1  

aac_frame_length 13 length of the frame including 

header (in bytes) 

ADTS_buffer_fullness 11 0x7FF indicates VBR 

No_raw_data_blocks_in_frame 2  

  ADTS Error check 

crc_check 16 Only if protection_absent == 0 

Raw block of data Variable  

 

Table 3-2 ADTS profile bits in header [3] 

Profile bits ID 1 (MPEG-2 profile) 

00 (0) Main profile 

01 (1) Low complexity profile (LC) 

10 (2) Scalable sample rate profile (SSR) 

11 (3) (reserved) 
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3.4 Summary 

In this chapter, the AAC audio coding standard is discussed with a detailed 

description of the encoding process. Low complexity profile with ADTS bit stream 

formatting is used as per the advantages explained in the chapter. Chapter 4 focuses on 

the MPEG-2 transport stream and the multiplexing algorithm implemented. 
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Chapter 4                                                                                                                  

MULTIPLEXING 

4.1 Introduction 

A multimedia file consists of video, audio and other metadata like subtitles. Each 

of the video, audio or data has to be transported in different media. In order to reduce the 

cost, and to optimize the use of expensive resources, multiplexing has been introduced. 

Multiplexing is the process of combining different bit streams into one single signal over a 

shared medium. Thus, elementary streams of video, audio and data are multiplexed into 

one single stream that would carry all the data and transmitted over the network. Video 

and audio streams contain several number of frames, thus are of large bandwidth. A high 

quality video/audio will require large bandwidth for transmission. Therefore, compression 

and coding standards like H.264/AVC [7], HEVC/H.265 [8] etc are employed for video 

and AAC [9], HE-AAC [10] for audio. After compression, the quality remains almost the 

same but the bandwidth requirement is reduced. For example, in the DVB (satellite TV) 

world, a satellite needs to deliver, via radio, one stream to subscribers. That one stream 

needs to carry many TV channels. To do this, the many channels are multiplexed into 

one stream. There are new standards stated for multiplexing like MPEG-2, RTP etc. In 

this thesis, MPEG-2 transport stream [3] is used. 

4.2 MPEG Bitstream Structure 

To understand how the component parts of the bit stream are multiplexed, there 

is a need to first look at each component part. The most basic component is known as an 

Elementary Stream in MPEG. A program (perhaps most easily thought of as a television 

program, or a Digital Versatile Disk (DVD) track) contains a combination of elementary 

streams (typically one for video, one or more for audio, control data, subtitles, etc). Figure 

4.1 shows the streams and formats supported by MPEG -2 [5] 
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Figure 4-1 Streams supported by MPEG-2 [5] 

4.2.1 Elementary Stream  

Each Elementary Stream (ES) output by an MPEG audio, video and (some) data 

encoders contain a single type of (usually compressed) signal. There are various forms of 

ES, including: 

• Digital Control Data  

• Digital Audio (sampled and compressed)  

• Digital Video (sampled and compressed)  

• Digital Data (synchronous, or asynchronous)  

For video and audio, the data is organized into access units, each representing a 

fundamental unit of encoding. For example, in video, an access unit will usually be a 

complete encoded video frame. [5] [1]  

 

4.2.2 Packetized Elementary Stream (PES) 

 Each ES is input to an MPEG-2 processor (e.g. a video compressor or data 

formatted) which accumulates the data into a stream of Packetized Elementary Stream 

(PES) packets. A PES packet may be a fixed (or variable) sized block, with up to 65536 

bytes per block and includes a 6 byte protocol header. A PES is usually organized to 

contain an integral number of ES access units as shown in figure 4.2. [2] 
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Figure 4-2 PES encapsulation from elementary stream [2] 

The PES header starts with a 3 byte start code, followed by a one byte stream ID 

and a 2 byte length field. Figure 4.3 and Table 4.1 show the PES packet glossary. [5]   

The following well-known stream IDs are defined in the MPEG standard: 

• 110x xxxx - MPEG-2 audio stream number x xxxx.  

• 1110 yyyy - MPEG-2 video stream number yyyy. [5] 

Table 4-1 PES packet header description [7] 

                                               

Name Size Description 

Packet start code prefix 3 bytes 0x000001 

Stream id 1 byte 
Unique id for each audio and 

video stream 

PES Packet length 2 bytes Can be zero if more than 65536. 

Timestamp 2 bytes  Frame number 

Data   

 
AUDIO OR VIDEO ELEMENTARY STREAM 

PES Frame 
1 PES Frame 3  PES 

Frame 4  PES 
Frame 2  

Header Payload 
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Figure 4-3 PES packet header [4] 

The next field contains the PES Indicators. These provide additional information 

about the stream to assist the decoder at the receiver. The following indicators are 

defined: 

PES_Scrambling_Control - Defines whether scrambling is used, and the chosen 

scrambling method.  

PES_Priority - Indicates priority of the current PES packet.  

data_alignment_indicator - Indicates if the payload starts with a video or audio start code.  

copyright information - Indicates if the payload is copyright protected.  

original_or_copy - Indicates if this is the original ES.  

A one byte flags field completes the PES header. This defines the following 

optional fields, which if present, are inserted before the start of the PES payload. 

The PES packet payload includes the ES data. The information in the PES 

header is, in general, independent of the transmission method used. 

4.3 MPEG-2 Multiplexing 

The MPEG-2 standard allows two forms of multiplexing: 

• MPEG Program Stream: A group of tightly coupled PES packets referenced to 

the same time base. Such streams are suitable for transmission in a relatively error-free 
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environment and enable easy software processing of the received data. This form of 

multiplexing is used for video playback and for some network applications. [2] 

• MPEG Transport Stream: Each PES packet is broken into fixed-sized transport 

packets forming a general purpose way of combining one or more streams, possibly with 

independent time bases. This is suitable for transmission in which there may be potential 

packet loss or corruption by noise, and / or where there is a need to send more than one 

program at a time. [2]  

Digital Video Broadcast (DVB) uses the MPEG-2 transport stream over a wide 

variety of underlying networks. Since both the program stream and transport stream 

multiplex a set of PES inputs, interoperability between the two formats may be achieved 

at the PES level.  

4.4 MPEG-2 Transport Stream 

A MPEG-2 transport stream, also referred to as MPEG or MPEG-2 TS or simply 

TS, is a special format for transmitting MPEG (MPEG-1, MPEG-2, or MPEG-4) video 

multiplexed with other streams. It is commonly used for digital television and streaming 

across networks, including the internet.[6] 

Unlike programs streams, which are optimized for efficient storage and assume the 

decoder has access to the entire stream for synchronization purposes, transport streams 

are designed for delivering data in real time over unreliable transport media, to a device 

which is assumed to start reading data from some point after the beginning of 

transmission.  

In order to accommodate this, extra timestamps must be added to the stream at  

regular intervals, with synchronization of various packets (chunks of elementary streams) 

set relative to the most recent timestamp instead of a single point at the beginning of the 

file like a program stream.  
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A transport stream consists of a sequence of fixed sized transport packets of 188 

bytes. Each packet comprises 184 bytes of payload and a 4 bytes header. One of the 

items in this 4 bytes header is the 13 bit packet identifier (PID) which plays a key role in 

the operation of the transport stream. 

                           

 
         Figure 4-4 Single Program Transport Stream (Audio and Video PES). 

Figure 4.4 shows two elementary streams sent in the same MPEG-2 transport 

multiplex. Each packet is associated with a PES through the setting of the PID value in 

the packet header (the values of 64 and 51 in the figure 4.4). The audio packets have 

been assigned PID 64, and the video packets PID 51 (these are arbitrary, but can be 

different values). As is usual, there are more video than audio packets, but the two types 

of packets are not evenly spaced in time. The MPEG-TS is not a time division multiplex, 

packets with any PID may be inserted into the TS at any time by the TS multiplexor. If no 

packets are available at the multiplexor, it inserts null packets (denoted by a PID value of 

0x1FFF) to retain the specified TS bit rate. The multiplexor also does not synchronize the 

two PESs; indeed the encoding and decoding delay for each PES may be and usually is 

different. A separate process is therefore required to synchronize the two streams. [5] 

4.5 Format of Transport Stream packet 

Each MPEG-2 TS packet carries 184 bytes of payload data prefixed by a 4 bytes 

(32 bit) header as shown in Figure 4.5 and Table 4.2 [4].  
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 Figure 4-5 Transport stream (TS) header [4] 

 

 

Table 4-1 PES packet header description [7] 

Abbr Function  

SB Synchronization Byte 

TEI Transport Error Indicator 

PUSI Payload Unit Start Indicator 

TSC Transport Scrambling Control 

TP Transport Priority 

PID Packet Identifier 

AFC Adaptation Field Control 

CC Continuity Counter 

AF Adaptation Field (Optional) 

 

The header starts with a well-known synchronization byte (8 bits). This has the 

bit pattern 0x47 (0100 0111).  
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A set of three flag bits are used to indicate how the payload should be 

processed. The first flag indicates a transport error. The second flag indicates the start of 

a payload (payload_unit_start_indicator).The third flag indicates transport priority bit.  

The flags are followed by a 13 bit packet identifier (PID). This is used to uniquely 

identify the stream to which the packet belongs (e.g. PES packets corresponding to an 

ES) generated by the multiplexer. The PID allows the receiver to differentiate the stream 

to which each received packet belongs. Some PID values are predefined and are used to 

indicate various streams of control information. A packet with an unknown PID, or one 

with a PID which is not required by the receiver, is silently discarded. The particular PID 

value of 0x1FFF is reserved to indicate that the packet is a null packet (and is to be 

ignored by the receiver).  

The two scrambling control bits are used by conditional access procedures to 

encrypt the payload of some TS packets.  

Two adaption field control bits which may take four values:  

01 – no adaptation field, payload only  

10 – adaptation field only, no payload  

11 – adaptation field followed by payload  

00 - RESERVED for future use. 

Finally there is a half byte continuity counter (4 bits). 

Figure 4.6 shows how the audio and video PES packets are placed in MPEG-2 

TS. [2]  
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Figure 4-6 Multiplexing of audio data and video data into MPEG-2 transport stream. [2] 

Two options are possible for inserting PES data into the TS packet payload: 

The simplest option, from both the encoder and receiver viewpoints, is to send 

only one PES (or a part of single PES) in a TS packet. This allows the TS packet header 

to indicate the start of the PES, but since a PES packet may have an arbitrary length, 

also requires the remainder of the TS packet to be padded, ensuring correct alignment of 

the next PES to the start of a TS packet. In MPEG-2 the padding value is the 

hexadecimal byte 0xFF.  

In general a given PES packet spans several TS packets so that the majority of 

TS packets contain continuation data in their payloads. When a PES packet is starting, 

however, the payload_unit_start_indicator bit is set to ‘1’ which means the first byte of the 

TS payload contains the first byte of the PES packet header. Only one PES packet can 

start in any single TS packet. The TS header also contains the PID so that the receiver 

can accept or reject PES packets at a high level without burdening the receiver with too 
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much processing. Figure 4.7 shows the combining of elementary streams into transport 

stream [4]. 

                
               Figure 4-7 Combining ES from encoders into TS (red) or a PS (yellow) [4] 

4.6 Frame number as Time Stamp 

This thesis proposes a method to use the frame number as timestamps. This 

section explains how frame numbers can be used to synchronize audio and video 

streams. Both H.265 [2] and AAC [3] bit streams are composed of data blocks sorted into 

frames. A particular video bit stream has a constant frame rate during playback specified 

by frames per second (fps). Hence, given the frame number, one can calculate the time 

of occurrence of this frame in the video sequence during playback as follows: 

 

    Time of playback = Frame number /fps                 (4-1)   

The AAC compression standard defines each audio frame to contain 1024 

samples. The audio data in the AAC bit stream can have any discrete sampling 

frequency between 8 KHz and 96 kHz. The frame duration increases from 96 kHz to 8 

kHz. However, the sampling frequency and hence the frame duration remain constant 
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throughout a particular audio stream. So, the time of occurrence of the frame during 

playback is as follows: 

 

    Time of playback = 1024*frame number/(sampling freq).               (4-2) 

Thus from (4-1) and (4-2) it is found the time of playback by encoding the frame 

numbers as the time stamps. In other words, given the frame number of one stream, the 

frame number of the other streams that will be played at the same time as the frame of 

the first stream. This will help to synchronize the streams during the playback. This idea 

can be extended to synchronize more than one audio stream with the single video stream 

like in the case of stereo or programs with single video and multiple audio channels. 

The timestamp is assigned in the last 2 bytes of the PES packet header. This 

implies that timestamp can carry frame numbers up to 65536. Once the frame number 

exceeds this, in the case of long video and audio streams, the frame number is rolled 

over. The rollover takes simultaneously on both audio and video frame numbers as soon 

as either one of the stream crosses the maximum allowed frame number. This will not 

create a conflict at the demultiplexer during synchronization because the audio and video 

buffer sizes are much smaller than the maximum allowed frame number. Hence, at no 

point of time there will be two frames in the buffer with the same timestamp. [7]    

 
4.7 Proposed Multiplexing method 

 The final transmission stream is formed by multiplexing the TS packets 

of the various elementary streams. The number of packets allocated for a particular 

elementary stream during transmission, plays an important part in avoiding buffer 

overflow or underflow at the demultiplexer. If more video TS packets are sent as 

compared to audio TS packets, then at the receiver there may be a situation when video 

buffer is full and is overflowing whereas audio buffer does not have enough data. This will 
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prevent the demultiplexer from starting a playback and will lead to loss of data from the 

overflowing buffer. 

 In order to prevent such a scenario, timing counters are employed at the 

multiplexer. Each elementary stream has a timing counter, which gets incremented when 

a TS packet from that elementary stream is transmitted. The increment value depends on 

the playback time of the TS packet. The playback time of each PES can be calculated 

since the frame duration is constant in both audio and video elementary streams. By 

finding out how many TS packets are obtained from a single PES packet, the playback 

time of each TS packet can be calculated. The elementary stream whose counter has the 

least timing value is always given preference in packet allocation. This method will make 

sure that at any point of time, the difference in the fullness of the buffers, in terms of 

playback time is less than the playback time of one TS packet. This is never more than 

the duration of a single frame and is typically in milliseconds. The flowchart of 

multiplexing process as shown in figure 4.8. 



 

Figure 4

This chapter provides with the information of the standard MPEG 

stream and how it is used for multiplexing video and audio bitstream. Eventually, a 

method for multiplexing the TS packets is proposed that can prevent buffer overflow o

underflow at the demultiplexer. Next chapter gives the procedure for demultiplexing the 

audio and video streams and lip synchronization
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Figure 4-8 Flowchart of multiplexing process. 

4.8 Summary 

This chapter provides with the information of the standard MPEG -2 transport 

stream and how it is used for multiplexing video and audio bitstream. Eventually, a 

method for multiplexing the TS packets is proposed that can prevent buffer overflow o

underflow at the demultiplexer. Next chapter gives the procedure for demultiplexing the 

audio and video streams and lip synchronization. 
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Chapter 5                                                                                                  

DEMULTIPLEXING AND SYNCHRONIZATION 

5.1 Demultiplexing 

Demultiplexing performs the reverse function of multiplexing that is split a 

combined stream arriving from a shared medium into the original information streams as 

shown in Figure 5.1 [15]. The process of extracting the elementary streams from the 

multiplexed transport stream is called demultiplexing. This is the first step carried out at 

the receiver, in the process of delivering a complete multimedia program to the end user. 

 

Figure 5-1 Overview of multiplexing and demultiplexing.[23] 

 The flowchart of the demultiplexer algorithm is shown in Fig 5.2.  

 



 

Figure
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Figure 5-2 Flowchart of the demultiplexer. 
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The procedure is almost reverse as in the multiplexing process and it is 

explained below. 

When the packets from the transport stream is received, the corresponding 

packet identifier (PID) values are obtained. If the packet has value 14, then it is 

recognized as an audio packet or if the packet value is 15, it is recognized as a video 

packet. If the packet has any PID value that is not relevant to the multimedia program 

that is being recovered, the packet is dropped and the next packet is analyzed.  

At this stage, all the TS packets from other programs or null packets are 

discarded as there should not be unwanted data to be added in the decoded output. 

When the packet is found out to be the correct one, it is checked for more details. The 

‘adaptation field control’ (AFC) bit is checked to see if any data other than the elementary 

stream data is present in the packet. If the AFC bit is set, then the data is recovered from 

the payload starting from the byte obtained by reading the ‘byte offset value’ from the 

header. The remaining data is rejected if it is filled with stuffing bytes.  

The data is identified to be audio data or video data through the PID value and is 

redirected to the appropriate buffer. The packet is also analyzed to check if the ‘payload 

unit start’ (PUS) bit is set. If it is set, then the PES header is present in the packet. The 

header information is read to recover the frame length and timestamp, which is the frame 

number. The frame number and location of the frame in the data buffer are stored in a 

separate buffer. This process is continued until one of the elementary stream buffers is 

full.  

In order to detect packet losses, 4 bit continuity counter value is continuously 

monitored for each PID separately, to check if the counter value increments in sequence. 

If not a packet loss is declared and the particular frame in the buffer, which is involved in 

the loss, is marked to be erroneous. In some transmission schemes, retransmission of 
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the packet is requested to correct the error. Otherwise, the frame is skipped during 

playback to prevent any stall in the decoder. 

The most important thing is to continuously monitor the fullness of the elementary 

stream buffers. The buffer should not be allowed to overflow or underflow. This will lead 

to loss of data. This is taken into account during the multiplexing process as explained in 

section 4.4.  

 

5.2 Synchronization and playback 

 Once the elementary stream buffer is full, the content is ready to be 

played back for the viewer. The audio bit stream format i.e., audio data transport stream 

(ADTS), enables us to begin decoding from any frame. However, the video bit stream 

does not have the same kind of sophistication. The decoding can start only from the 

anchor frames, which are the IDR frames. IDR frames are forced during the encoding 

process at regular intervals. Hence, the video buffer is first searched from the top to get 

the first occurring IDR frame. Once this is found, the timestamp or the frame number is 

obtained for that IDR frame. Then audio stream is aligned accordingly to achieve 

synchronization. This is done by calculating the audio frame number that would 

correspond to the IDR frame in terms of playback time. This is calculated as follows: 

 

        Audio frame number =   
fps*1024

frequency  sampling*number frame  Video
 

 (5-1) 

 

If the frame number calculated is a non-integer value, then the value is rounded 

off and the corresponding frame is taken. The round off error is discussed later in this 
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chapter. If the calculated frame number is not found in the buffer, next IDR frame is 

searched and a new audio frame number is calculated. Once video frame number and 

audio frame number are obtained, the location of these frames is looked up in the buffer 

and the block of data from this frame to the end of the buffer is taken and sent to the 

decoder for playback. The buffer is then emptied and the incoming data is filled in the 

buffer and the process is repeated. In order to have a continuous playback, block of data 

from first IDR frame to last IDR frame in the buffer is played back and during this 

playback the next set of data buffering takes place in the background. This process 

continues and the program is continuously played for the viewer. 

 Once the buffer is full and the synchronized frames are calculated, the audio and 

video content are played back. The buffering is continued after the playback and next set 

of data is put through the same process. This process continues and thus successful 

demultiplexing and synchronized playback are achieved. 

This completes the process of multiplexing, demultiplexing and a synchronized 

playback of multimedia programs.  

  

5.3 Summary 

In this chapter, the process of extracting data from the multiplexed TS packets, to 

reconstruct the elementary stream is explained in detail. Synchronization and playback 

method using frame numbers as timestamps are proposed and the limitations due to 

possible error in synchronization are discussed. Next chapter discusses the test 

conditions, results and conclusion obtained after implementing the procedure. 

 

 

 
 



 

43 
 

Chapter 6                                                                                                                  

RESULTS AND CONCLUSIONS 

6.1 Test conditions 

In order to evaluate the proposed multiplexing algorithm, a single multimedia 

stream consisting of elementary video and elementary audio streams are used. Raw 

elementary video stream are in YUV format and raw elementary audio stream are 

present in WAVE format. There are many standard raw formats of individual audio and 

video elementary streams available but the combination of both is not freely available. 

Hence, an AVI or MOV file is used that is freely available. The raw YUV format of the 

video and the raw WAVE format of the audio is extracted using a very powerful open 

source software called ffmpeg[39]. The YUV video file is of very large size and it is 

encoded using HM 14.0 software[29]. The raw YUV file is used as an input to the HM and 

output is a .hevc file which is compressed. The encoder setting used is main intra profile 

with GOP structure as IBBB. The raw audio stream is encoded using open source 

software called FAAC[40]. The audio stream is an encoded in low-complexity profile. The 

input .WAVE is used as an input to the FAAC and output is an .aac file which is 

compressed as shown in figure 6.1. Both elementary streams are then multiplexed to 

form transport stream packets. The details of the test clips are described  in Table 6.1: 
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Table 6-1 Test clip conditions 

 
Test clip details Clip 1: Morning.avi Clip 2: SpeedBag 

.avi file size (kB) 901  12650 

.yuv file size (kB) 128115 390794 

.hevc file size (kB) 57.1 391 

.wave file size (kB) 1277 897 

.aac file size (kB) 126 69 

Clip Duration (sec) 9 sec 4 sec 

Frame rate (frames/sec) 25 50 

Audio frequency (KHz) 44.100 48 

 Video Compression 

Ratio 

2242.06 999.4 

Audio compression ratio 10.1349 13.1 

No. of TS packets 1377 2704 

Total TS size (kB) 128 141 

.mkv movie size (kB) 192 462 

The results in Table 6.1 clearly show that the compression achieved, using 

HEVC video codec and AAC audio codec, in the proposed method is more than that of 

the MKV movie files (.mkv) or AVI files. The .avi file is played using the VLC media player 

by VideoLAN[38]. Then the TS packets are given as the input to the proposed 

demultiplexer algorithm to achieve the synchronized playback. It is verified to see if 

synchronization between audio and video is achieved, irrespective of which TS packet 

the user starts demultiplexing from. The demultiplexed audio and video are obtained and 

merged using MKVtoolNix [42]. Since HEVC video is the latest standard, there are very 
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few players which play it. Open-source DivX player [41] with HEVC plug-in is used to play 

the final mkv movie file.  Hence, some random TS packets are chosen to begin the 

demultiplexing process and the results of the synchronization process are given in Table 

6.2. The delay between audio and video is less than 13 milliseconds in the observed 

cases.  

  
                     Figure 6-1 Test Condition for Video file 

6.2 Results 

Table 6-2 Lip synchronization results for clip 1 

TS 

packet 

number 

Synchroniz

ed video 

frame 

Synchroniz

ed audio 

frame 

Frame 

Playba

ck  

Audio 

playback 

Delay 

( msec) 

Visual 

Delay 

(yes/no) 

57 7 12 0.28 0.278 2 No 

117 16 28 0.640 0.650 10 No 

250 32 56 1.290 1.3 10 No 

500 63 108 2.52 2.507 13 No 

820            121 208 4.840 4.829 11 No 

 1001                  153 264 6.120 6.130 10 No 

 1240                    205 353 8.200 8.196 4 No 

 

.avi/.mov 
file

Video 
YUV file .hevc file

Audio 
WAVE file .aac file
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   Table 6-3 Lip synchronization results for clip 2        

TS 

packet 

number 

Synchronized 

Video Frame 

Synchronized 

Audio frame 

Frame 

video 

playback 

Frame 

audio 

playback 

Delay Visual 

Delay 

(yes/no) 

61 6 5 120 106 14 No 

251 18 17 360 362 2 No 

524 27 25 540 533 7 No 

1001 52 48 1040 1024 16 No 

1500 88 82 1760 1749 11 No 

2000 120 112 2400 2389 11 No 

2500 132 124 2640 2645 5 No 
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Figure 6-2 HEVC encoder with IBBB setting. 

 

 
Figure 6-3 Morning test sequence, WVGA 832x480, 25 fps, 219 Frames 
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Figure 6-4 SpeedBag test sequence, SD 1280x720, 50 fps, 204 Frames 

 

 
Figure 6-5 Extracting .wave and .yuv from .avi 
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Figure 6-6 Encoding .wav to .aac low complexity using FAAC  

6.3 Conclusion 

An effective transport stream which carries multiple audio and video streams and 

also easily decodable with synchronization is implemented in this thesis. Two layers of 

packetization are used and multiplexing of the packets is implemented. The proposed 

multiplexing procedure is effective in that the user could start demultiplexing from any TS 

packet and achieve synchronized playback. The results show that there is no visual 

synchronization delay. The buffer overflow/underflow problem is taken care of and there 

is a delay of approximately 13 ms. Video broadcasting applications should be error-free 

and  packet losses should not occur. Hence, both layers of packetization are 

accompanied by a packet identifier header. 

6.3 Future research 

The multiplexing algorithm in this thesis uses two elementary streams. However, 

it could be modified to implement multiple streams and also, multiple programs at the 
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same time. Some robust error correction codes can be integrated to the transport 

packets, to make them more suitable for applications such as Video conferencing, 

broadcasting where the packets are prone to be lost.   
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APPENDIX A  

Platform 
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The research was carried out using an Intel Core i5 3317 CPU @ 1.7 GHz 

machine with Microsoft Windows 8 64bit version running with 4 GB RAM at a speed of 

1.7GHz. 
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APPENDIX B 

 List Of Acronyms 
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AAC: Advanced audio coding 

ADIF: Audio data interchange format 

ADTS: Audio data transport stream 

AFC: Adaptation field control 

ATSC: Advanced television systems committee 

AVC: Advanced Video Coding 

CABAC: Context-based Adaptive Binary Arithmetic Coding 

CAVLC: Context-based Adaptive Variable Length Coding 

CB: Coding Block 

CPU: Central Processing Unit 

CTU: Coding Tree Unit 

CTB: Coding Tree Block 

CU: Coding Unit 

DCT: Discrete Cosine Transform 

DTS: Decoding Time Stamp  

DVB: Digital video broadcasting 

DVD: digital video disc or digital versatile disc 

EBU: European broadcasting union 

ES: Elementary stream 

FAAC: Free advanced audio coder 

FAAD: Free advanced audio decoder 

FPS: Frames per second 

GOP: Group of pictures 

HDTV: High definition television. 

 HEVC: High Efficiency Video Coding 
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IDR: Instantaneous decoder refresh 

ISO: International Organization for Standardization 

ITU: International Telecommunication Union 

ITU-T: International Telecommunication Union – Telecommunication    Standardization 

sector 

JCT-VC:  Joint Collaborative Team on Video Coding 

JVT: Joint Video Team 

LC: Low Complexity 

MC: Motion Compensation 

MDCT: Modified discrete cosine transform 

MPEG: Moving Picture Experts Group 

NAL: Network Adaptation Layer 

NALU: Network Abstraction Layer Unit 

 PB: Prediction Block 

PCM: Pulse Code Modulation 

 PCR: Program Clock Reference 

PES: Packetized elementary stream 

PID: Packet identifier 

PPS: Picture parameter set 

PTS: Presentation Time Stamp  

PU: Prediction Unit. 

PUS: Payload unit start. 

RTP/IP: Real Time Transport protocol/Internet protocol 

SPS: Sequence parameter set 

 SSR: Scalable sampling rate 
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TB: Transform block 

TNS: Temporal noise shaping 

TS: Transport stream 

TU: Transform unit  

VCEG: Video Coding Experts Group 

VCL: Video coding layer  

VPS: Video parameter set 

YUV: Luminance and chrominance color components 
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