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Abstract

WIND FIELD ESTIMATION AND ITS UTILIZATION IN

TRAJECTORY AND INPUT PREDICTION

JANE-WIT KAMPOON, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Atilla Dogan

This dissertation work develops a method for onboard estimation of wind field

with spatial and temporal variation based on local wind vector estimation and/or

measurements from multiple aircraft flying in the same airspace. Aircraft flying in

the same airspace of operation are considered airborne wind sensors scattered over

the airspace because of the fact that aircraft carry along with them wind information

inherent in their dynamics and kinematics. The onboard wind field estimation is

formulated in the framework of parameter estimation based on various wind field

models, which are different function of position and time.

The online wind field estimation is utilized in trajectory prediction of aircraft

flying in spatially and temporally varying wind. Various simulation cases are pre-

sented to demonstrate the feasibility of wind field estimation and the benefit of us-

ing such information in trajectory prediction. Further this dissertation presents a

method of input prediction for an aircraft flying in spatially and temporally varying

wind field. Input prediction is done using inverse simulation to compute the required

control variables (control surface deflections and thrust level) for an aircraft to fly

v



through a prescribed trajectory. Estimated wind field is also used in inverse simu-

lation for input prediction as in the trajectory prediction case. Various simulation

cases are presented to demonstrate the feasibility of input prediction method and the

importance of including wind field information in inverse simulations.
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Chapter 1

INTRODUCTION

1.1 Motivation

Atmospheric wind plays an important role in aircraft operations. The effect

of wind on aircraft can be detrimental or beneficial. Detrimental effects include

performance degradation, aircraft incidents and accidents. Weather, mostly wind,

is reported to be a contributing factor in about 30% of all aviation accidents [3].

Wind can also be used to aircraft advantage. For example, wind can be utilized

to fly through optimal trajectories to save time or/and fuel [4]. Wind is also used

for soaring by extracting energy in the form of airspeed or altitude gain [5]. Thus,

whether detrimental or beneficial, information about the wind aircraft is and will be

exposed to is important to know. This will help avoid or reduce risk associated with

wind exposure or increase the benefit obtained from wind exposure.

Rapid growth in air transportation along with plans for integration UAS into

civilian airspace requires better situational awareness for both air traffic controllers

and onboard pilots in terms of flight trajectories of aircraft relative to each other. In-

formation about aircraft current positions and intended trajectories can help mitigate

the risk of conflict and collision between aircraft operating in the same airspace. In

the case of an emergency such as engine failure or loss of control surface effectiveness,

it becomes imperative to compute feasible trajectories in order to determine alterna-

tive landing fields. Accuracy and reliability of trajectory prediction enhanced by the

information of wind variation will improve the performance of various tasks such as

conflict detection and avoidance, and planning of emergency landing.
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In some cases, instead of computing the trajectory of an aircraft, a predefined

trajectory is given to the aircraft to fly. For example, when a conflict with another

aircraft is detected, conflict avoidance algorithms compute new trajectories for the

aircraft to follow to avoid the conflict. Another example is the emergency landing

situation mentioned above. Once an emergency occurs and emergency landing is

required, a trajectory is prescribed for the aircraft to follow to the emergency landing

site. There are cases where military aircraft required to follow a prescribed trajectory,

for example, in combat maneuvers or in rendezvous with other aircraft such as in aerial

refueling. The feasibility of such prescribed trajectories requires the control surface

deflections and engine thrust to be within their saturation and rate limits. This leads

to the problem of “input prediction” which is to compute the required control surface

deflections and engine thrust for the aircraft to fly through the prescribed trajectory.

The feasibility of a given trajectory depends on atmospheric wind conditions as much

as the capabilities of the aircraft. Thus, in this problem, too, the information of wind

field will improve the prediction of required input variation.

1.2 Problem Statement

This research effort aims at estimating wind field with spatial and temporal vari-

ation based on local wind vector estimations or measurements from multiple aircraft

flying in the vicinity. The implementation of new technologies like ADS-B (Auto-

matic Dependent Surveillance-Broadcast) system will enable the required communi-

cation among aircraft in the same airspace for sharing local wind information. This

research further aims to develop trajectory prediction and input prediction methods

that utilize the estimated wind field information to improve prediction accuracy.

The wind field estimation problem will be formulated in the framework of pa-

rameter estimation based on various wind field models, which are different functions

2



of position and time. The trajectory prediction will be based on a set of equations

of motion that include the effect of wind. The trajectory prediction will utilize the

wind field information and flight intent as well as the control input data.

Input prediction will be based on the inverse simulation of equations of motion

including wind terms. The goal of input prediction is to determine the required

control surface deflections and thrust for aircraft to fly through a given trajectory in

the wind field that is concurrently estimated.

(a) Trajectory prediction (b) Input prediction

Figure 1.1. Research problems’ work flow diagrams.

Flow diagrams of the research tasks are shown in Fig. 1.1. The common tasks

between the trajectory prediction and input prediction, as a comparison of Fig. 1.1-

(a) and Fig. 1.1-(b) shows, are (i) 6-DOF Model with Controller, (ii) Prevailing Wind

Field, (iii) Local Wind Vector Estimation, and (iv) Wind Field Estimation. The 6-

DOF Model with Controller includes the aircraft dynamic and kinematic equations

as well as a controller to fly the aircraft with commanded airspeed, altitude and turn

rate. Prevailing Wind Field module is the model of the spatially and temporally

varying wind field that generates the local wind vector that the aircraft experiences.
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Local Wind Vector Estimation module estimates the local wind vector the aircraft is

exposed to based on the response of the aircraft to wind exposure. Note that there

are multiple boxes for this module to indicate that multiple aircraft flying in the

same airspace estimate their own wind exposure and share that information with the

aircraft that does the wind field estimation. The local wind vector data obtained from

multiple aircraft are used in Wind Field Estimation module to approximate the wind

velocity vector field, which is used in both trajectory prediction and input prediction

modules.

1.3 Literature Review

1.3.1 Local Wind Vector Estimation

Dynamics and kinematics of aircraft are affected by the local wind it is exposed

to. Various methods have been developed to estimate the local wind vector or some

properties of it.

The most common methods for local wind vector estimation are based on

Kalman Filter frameworks as reported in Ref. [6, 7, 8, 9]. Ref. [6] uses a two state

Extended Kalman Filter (EKF) to estimate wind speed assuming that the wind com-

ponents are quasi-constant and have minimal impact onto the UAV dynamics. This

method can estimate both 2D and 3D wind components. Ref. [7] develops a tech-

nique based on Unscented Kalman Filter (UKF) to estimate the horizontal local wind

velocity by utilizing the state-estimation techniques that have the ability to recon-

struct exogenous disturbance signals that are not directly measured. Ref. [8] uses

both linear and nonlinear Kalman Filter techniques to estimate the horizontal local

wind components assuming that the local wind around the aircraft are constant. The

measurement signals are the position, airspeed and heading of each aircraft. These

4



signals are obtained by radar track data. Ref. [9] proposes a method of using an

aircraft with a single-antenna GPS receiver and Pitot tube to estimate wind speed

and direction and to calibrate the airspeed. An EKF is implemented to estimate wind

parameters. Other studies reported in the literature [10, 11] use numerical integra-

tion based on Forward Euler integration for computing wind velocity from aircraft

response. This approach relies on an accurate dynamic model and accurate state es-

timates. Assuming horizontal constant wind, Ref. [10] presents an algorithm for wind

estimation onboard a small kite-like delta wing UAV, named Kiteplane, based on

measurements of angular velocity components and translational accelerations. Ref.

[11] estimates wind velocity by comparison of measurements of aircraft motion with

respect to the earth with the predictions of aircraft motion obtained from a dynamic

model. Ref. [12] and [1, 2], use an onboard airdata sensor along with GPS/INS unit to

estimate wind speed and direction based on aircraft kinematics. Refs. [13, 14, 15] use

the Square-Root Unscented Kalman Filter to estimate aircraft states as well as local

wind vector that includes prevailing wind, turbulence and additional wind induced

by other aircraft flying in proximity.

1.3.2 Wind Field Estimation

The previous section discusses methods reported in the literature for estimat-

ing local wind that aircraft flies in. However, many applications may further benefit

from the knowledge of spacial and temporal variation of wind within the airspace of

operation. This information is referred to as “wind field”, which consists of wind ve-

locity vector representation as a function of position and time. Such a mathematical

representation can be used, for example, in trajectory prediction of aircraft. Ref. [16]

presents a method for wind field estimation that uses a known structure to simplify

estimation. A polynomial parameterization of the wind field is used, allowing im-

5



plementation of linear Kalman Filter for parameter estimation. Ref. [8, 17, 18] use

aircraft data to improve their weather models. Basically, aircraft flying in the traffic

are considered as airborne wind sensors scattered over the airspace because of the

fact that aircraft carry along with them wind information inherent in theirs dynamics

and kinematics. The idea of using aircraft data to improve meteorological data is not

new. The Aircraft Meteorological Data Relay (AMDAR) program was first proposed

by the World Meteorology Organization in the 1970s and has been using aircraft

data to improve their weather models since the late 1990s [18]. Ref. [8] generates the

global wind map by using vector spline interpolation and Finite Element Method in

solving the 2D Shallow Water Equation (SWE) as the wind field model. Ref. [17] uses

the linear interpolation to compute wind information from spatially and temporally

varying wind field model, which is represented by joint Gaussian random variables at

specified nodes. Ref. [18] uses linear interpolation to estimate the vertical wind pro-

file. The wind field is represented by statistical models and logarithmic profile, which

is the mathematical model of wind variation with altitude in the neutral boundary

layer over the lowest 100 m from surface. A logarithmic profile estimate based on

power law is used as an initial estimate when data are insufficiently available.

Modeling of wind field is also important for aircraft simulation. Wind is in

general modeled as a combination of deterministic and stochastic components. The

deterministic component is usually the nominal or mean wind while the stochastic

component represents the uncertainty or error in wind information and is modeled as

a random process with known statistical properties. Most research studies reported in

the literature considering only deterministic wind component assume constant wind

[6, 8, 9, 12]. Others model deterministic wind component as a time-varying function

such as triangular wave form [7] or a polynomial function [11]. In applications where

trajectory of aircraft is in question or the wind exposure may vary based on position,

6



wind model as function of time is not adequate. Ref. [19] and [20] model wind as

spatially varying functions. There are other papers that consider prevailing wind only

as random variables [17, 21, 22].

1.3.3 Trajectory Prediction

The aircraft trajectory prediction has been defined as the method to esti-

mate/predict the future position of the aircraft in flight, given the aircraft current

conditions, a nominal path to be followed by the aircraft, environmental information,

and aircraft-specific data [23]. The aircraft trajectory in flight can be obtained by

numerically integrating the aircraft equations of motion, which is the set of nonlin-

ear ordinary differential equation. In general, the solutions will provide the variables

(position, altitude, velocity and fuel consumption), which describe a time history of

the aircraft trajectory.

Various research studies in trajectory prediction have been conducted for decades.

In the literature, mathematical models for describing the aircraft trajectory can be

categorized as follow [24]. (i) Point-Mass Models (PMM), which consider an air-

craft as a moving point such that the rotational motions is not considered, as in Ref.

[25, 26, 27]. (ii) Kinematic Models, which deal only with position, heading, and speed

data of aircraft, as in Ref. [28]. (iii) Kinetic Models, which are the full nonlinear 6

DOF equations of motion of aircraft, as in Ref. [29], and (iv) Other models, which

include all models that do not fall into the previously defined models, e.g. energy

model and holding pattern model as in Ref. [30, 31], respectively. Many papers in

the area of trajectory prediction model aircraft motion by using PMM. Although

these mathematical models have different level of fidelity, it does not mean that one

approach outperforms the others. As a matter of fact, the trajectory prediction ac-
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curacy depends upon both the modeling and the quality of the input data used to

drive the model [23].

Three different trajectory prediction methods are reported in the literature: (i)

Nominal method, which projects the current states into the future without taking un-

certainties into account. This results in a single trajectory. (ii) Worst-case method,

which projects the current states into the future based on assumption that an air-

craft will perform any range of maneuvers. (iii) Probabilistic method, which models

uncertainties to describe potential variations in the future trajectory of the aircraft.

Most prior research studies employing nominal trajectory/state propagation

methods do not consider wind effect [32, 33, 34, 35, 36]. Many studies considering

air traffic environments [37, 38, 39, 40, 41, 42] address wind effect by adding safety

buffer zone around aircraft. References [37, 38, 39] assume all aircraft are exposed to

the same wind vector, i.e., flying in uniform wind field. Others [40, 41, 42] include

wind effect in trajectory prediction error.

Worst-case trajectory/state propagation is used only in a small number of prior

research efforts [43, 44, 45] mainly because of high false alarm rate. Most such research

studies do not account for wind effect in trajectory propagation. For example, Ref.

[44, 45] ignore wind effect while studying close parallel approaches of commercial

airplanes into airports.

There are numerous research efforts that use probabilistic approaches for tra-

jectory/state propagation [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 22]. Some [46, 47]

neglect wind effect in trajectory prediction. Others [48, 49, 50] assume wind effect as

part of prediction uncertainty or error from nominal trajectory. Ref. [51] expresses

wind effect in along-track and cross-track uncertainties. Ref. [52, 53] include wind

effect in position errors as normal distribution with zero mean. Ref. [55] categorizes

probabilistic approaches in terms of how spatial and/or temporal correlations of wind
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components are modeled such as i) uncorrelated, ii) correlated in space but not time,

iii) correlated both space and time and iv) uncorrelated between different aircraft

flying in the same airspace. Ref. [55] models the uncertainties in deviations of wind

predictions, obtained from the Rapid Update Cycle-1 (RUC-1) forecast, which is an

operational weather prediction system developed by the National Oceanic and At-

mospheric Administration (NOAA) for users needing frequently updated short-range

weather forecasts, as both spatially and temporally correlated. Ref. [22], on the other

hand, only considers spatial correlation in wind prediction errors.

Inaccuracies in trajectory prediction are attributed to two main sources of er-

rors: (i) modeling errors in governing equations, and (ii) errors in data driving the

model such as initial conditions, aircraft data, environmental information and intent

information [23]. One aspect of weather information that greatly affects aircraft tra-

jectory is the wind [21]. Timely and accurate knowledge of the wind and its spatial

and temporal variation in the airspace of operation, either from ground-based radar or

on-board measurements, can significantly improve the accuracy of aircraft trajectory

prediction.

Generally, the aircraft navigation through the controlled airspace is required to

strictly follow the submitted flight plan, which describes where to go from one way-

point to the other and how to maneuver in between those way-points, for example,

from way-point A to B, maintain constant speed, altitude and heading. Thus, this

indicates that the intent information inherently exists in the flight plan. The aircraft

intent is the aircraft’s operation plan and defines in detail how the aircraft intends

to meet its objectives within the constraints defined in the operation plan [56]. In-

tent information is one of the important factors to improve accuracy of trajectory

prediction. Several studies in [56, 57, 58, 59, 60, 61] show that intent information

sharing either via existing data-link (Flight Management System (FMS)) or future
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technology data-link (Automatic Dependent Surveillance-Broadcast (ADS-B)) among

aircraft or between aircraft and ground-based trajectory prediction system, results in

greatly improved the accuracy of the predicted trajectory. Ref. [57] uses intent in-

formation in a probabilistic trajectory prediction method to analyze the probabilistic

conflict between aircraft. Ref. [58] develops a real-time intent based trajectory pre-

diction algorithm for air traffic control application. This study focuses on nominal

trajectory prediction method. Refs. [60, 61] develop the Aircraft Intent Description

Language (AIDL), which is a formal language for the unambiguous definition of air-

craft trajectories, in order to interchange aircraft intent information for the Air Traffic

Management Systems (ATM). They show great improvement in accuracy of ground-

based trajectory prediction by communication of aircraft intent. The references cited

above assume prior knowledge of intent information and conformance of aircraft to

the intent. Others such as Ref. [59] consider cases when intent information is not

accurately present, or does not exist and develop intent inference algorithms to infer

the pilot’s intent in real time and apply to weather cell avoidance and constraint

region avoidance. Ref. [56] shows that an inferred aircraft intent can be extracted

by using existing data-link technology (FMS and ATM) for ground-based trajectory

prediction. This study focuses on descent phase of flight.

It is obvious that the predictability of aircraft trajectory or the accuracy of the

predicted trajectory from trajectory prediction algorithms will provide effective tra-

jectory based operations, and reduce fuel consumption and emissions [62]. However,

the prediction is never perfect due to several sources of error as presented in [23]. In-

accurate wind information is the major source of aircraft trajectory prediction error.

Additionally, the lack of flight and aircraft intent information will result in aircraft

trajectory prediction error as well.
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1.3.4 Input Prediction

The preceding section discusses trajectory prediction, which can be considered

as an application of conventional (forward) simulation techniques. In that case, the

equations of motion, generally linear or nonlinear differential equations, are solved

starting with initial conditions for prescribed time variations of input variables, or

forcing terms. In the problem of trajectory prediction, for prescribed future variation

of the input variables, the forward simulation techniques determine how the aircraft

states will propagate in the immediate future by solving the differential equations

starting from the current aircraft states. In other problems, the inverse is desired.

Namely, the trajectory of the aircraft is prescribed and the question is to determine

the required input variation for the aircraft to follow the prescribed trajectory. Such

methods are referred to as “inverse simulation” or “input prediction” [63].

By using the concept of inverse simulation, the feasibility of a desired trajectory

can be determined in terms of whether the variations of control variables will be within

their saturation and rate limits. This analysis can be made more precise by taking into

account the effect of wind on aircraft trajectory, which will benefit from knowledge

of the wind variation, i.e., the wind field, in the airspace of operation.

The development of various inverse simulation algorithms have been presented

and explained along with their advantages and disadvantages comprehensively in Ref.

[63, 64]. Inverse simulation techniques have been found in the literature, particularly

in area of aircraft flight control applications as in Ref. [65, 66] and in area of aircraft

handling qualities investigation as in Ref. [67, 68].

Only a few papers in the literature consider wind field effect in aircraft dynam-

ics to be analyzed by inverse simulation techniques. Ref. [69] investigates the control

input histories that ensure safe turbulence penetration and preserve prescribed flight

path in the presence of atmospheric disturbances by using an inverse simulation tech-
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nique. A simple local wind shear atmospheric disturbance is modeled by the superpo-

sition of (i) a full period sinusoidal wind, parallel to the ground, in the plane of flight

path, changing from a head to a tail wind and (ii) a downflow consisting of a half-

period sinusoid over the same length, so that the peak downflow corresponds to the

change form head to tailwind. This paper focuses on vertical maneuvering flight of a

fighter aircraft. Ref. [70] applies a based inverse simulation to analyzing fighter flight

accidents and verifying flight tracks generated by using general optimization method,

which defined a constrained performance index as a function of state variables. A

simple wind field as a function of altitude is used; the wind velocity vector always

points to the same horizontal direction but its magnitude varies with altitude. Ref.

[71] utilizes inverse simulation to help identify safe regions on a ship’s flight deck for

landing a rotorcraft in various atmospheric conditions. The wind conditions around

a ship deck and superstructure were obtained from wind tunnel tests.

1.4 Original Contributions

The novel contributions of this research can be listed in three groups.

(i) A new method is developed that determines the “best” approximation for

spatially and temporally varying wind fields from multiple candidate models in terms

of the smallest approximation error. The approximation models are multivariable

polynomials with various orders. Their coefficients and the approximation errors

(residuals) are determined using WLSE (Weighted Least Squares Estimation) based

on local wind vector “measurements” obtained from multiple aircraft flying in the

same airspace. The best approximation models is defined as the one with the smallest

residual. The local wind velocity vectors that each aircraft is exposed to are com-

puted using various local wind estimation methods and are shared among the aircraft

through a common communication protocol like the ADS-B system. This will enable
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each aircraft to have access to local wind information from other aircraft as well as

its own for onboard wind field estimation. The weighting of the measurements in the

WLSE is done based on the predicted or intended position of each aircraft. That is,

measurements coming from other aircraft flying in the area of interest may have more

weighting than the measurements from its own aircraft.

(ii) An aircraft trajectory prediction method is developed that processes the

estimated wind field as well as the current aircraft states and aircraft intent through

an aircraft PMM that includes the effect of wind exposure. This enables the prediction

of aircraft trajectory in the presence of spatially and temporally varying wind. The

accuracy of the prediction will depend on the past trajectory of other aircraft flying

in the area since the wind field estimation depends on the local wind information

from other aircraft.

(iii) An inverse simulation method is developed for input prediction of aircraft

flying through a prescribed trajectory in the presence of spatially and/or temporally

varying wind. The inverse simulation is based on a set of equations of motion including

wind effects and will process the estimated wind field as in the case of trajectory

prediction discussed above.

1.5 Organization of the Dissertation

The remainder of the dissertation is composed of five chapters. Chapter 2

introduces models for prevailing wind field which are considered to be spatially and

temporally varying vector fields defined relative to the inertial reference frame. Chap-

ter 3 presents several set of equation of motions with different degrees of freedom that

will be implemented in simulation, trajectory prediction and input prediction. Chap-

ter 4 presents the wind field estimation. The wind field estimation problem is posed

as to determine, from a list of candidate models, the best model to represent the vari-
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ation of wind vector over an airspace of interest. The LSE (Least Square Estimation)

method is selected as it suits well with the problem formulation. The wind field esti-

mation algorithms and simulation results are also presented in this chapter. Chapter

5 presents the utilization of wind field estimation in the trajectory prediction applica-

tion. The trajectory prediction algorithms and simulation results are also included in

this chapter. Chapter 6 presents the utilization of wind field estimation in the input

prediction application for investigation of feasibility of specified trajectories in the

spatially and temporally varying wind fields. The input prediction algorithms and

simulation results are also presented. Conclusions and suggestions for future work

are presented in Chapter 7.
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Chapter 2

PREVAILING WIND FIELD MODELS

Motion of the air within the atmosphere wrapping around Earth shows highly

nonlinear and even chaotic behavior. It is still an open problem to develop equations

of atmospheric motion that can include all dynamic factors. There are, however,

models developed under various assumptions for specific cases. For example, con-

sidering atmosphere as fluid governed by fundamental physical laws, a set of partial

differential equations are derived in terms of standard state variables as dependent

variables and space and time as independent variables [72]. Meteorologists tradi-

tionally consider vertical and horizontal motion of atmosphere separately. Vertical

motion of atmosphere is termed as “updraft” or “downdraft” and horizontal one as

“wind” [73, 74]. However, the term “wind” in this research includes all components

of atmospheric motion.

For the simulation of aircraft flying in spatially and temporally varying wind,

there should be a model that captures the variation of wind over position and time.

The spatial and temporal extent of the model should be large enough to enable anal-

ysis of aircraft flying for a long time as well as multiple aircraft flying in an airspace.

Several research studies have developed wind field models specific to different types

of wind such as wind over ocean surface [75] or mountainous terrain [76, 77, 78, 79],

wind in urban area [80], tornadoes [81] and microburst [19, 82].

This chapter introduces the mathematical models used to represent prevailing

wind velocity vector fields with spatially and/or temporal variations. This research

limits the wind to horizontal wind only and thus vertical wind component is not
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included in the models. However, the variation of the horizontal wind components

with altitude is included. The wind velocity vector generated by these models are

relative to the inertial frame and the components are also expressed in the inertial

frame. The wind field models are used in simulation to generate local wind velocity

vectors that each aircraft is exposed to while flying along a trajectory.

The representation of the wind vector in the inertial frame is written as

W(x, y, z, t) =


Wx(x, y, z, t)

Wy(x, y, z, t)

Wz(x, y, z, t)

 (2.1)

where Wx,Wy,Wz are the wind components along x-axis, y-axis, and z-axis, respec-

tively. The time rate of change of the wind velocity experienced by the aircraft is

formulated in terms of the partial derivatives and the components of the aircraft

velocity in the inertial frame (ẋ, ẏ, ż) as

d

dt
W(x, y, z, t) =


∂Wx

∂t

∂Wy

∂t

∂Wz

∂t

+


∂Wx

∂x

∂Wy

∂y
∂Wz

∂z

∂Wx

∂x

∂Wy

∂y
∂Wz

∂z

∂Wx

∂x

∂Wy

∂y
∂Wz

∂z



ẋ

ẏ

ż

 (2.2)

where the first term is due to the temporal variation of the wind and the second term

is because of the spatial variation represented in terms of the wind gradients. The

temporal variation term is ignored when the velocity of the aircraft in a spatially

varying wind field is very large relative to the time rate of change in wind at the

current location (x, y, z) of the aircraft.

There are five wind models considered in this research. They are simplified

solutions to more complicated physics-based models in terms of partial differential

equations. These models will be used for two different purposes. (1) A wind model

with specified parameters will be used in simulation of aircraft flying in spatially and
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temporally varying wind field. (2) Wind field estimation will be done by estimating

the parameters of the wind models based on computed or provided local wind vector

data. The wind models are only for the horizontal components of the wind as the

focus in this research is on multiple aircraft flight at the same altitude and the vertical

wind component is assumed to be negligible.

2.1 Wind Model-1

This model represents the basic kinematics of the horizontal atmospheric wind

[72].

Wx(x, y, z, t) = Wx0(z, t) +
1

2

{[
D(z, t) + F1(z, t)

]
(x− x0)

+
[
− ζ(z, t) + F2(z, t)

]
(y − y0)

}
(2.3)

Wy(x, y, z, t) = Wy0(z, t) +
1

2

{[
ζ(z, t) + F2(z, t)

]
(x− x0)

+
[
D(z, t)− F1(z, t)

]
(y − y0)

}
(2.4)

where Wx0,Wy0 are mean wind components along x- and y-axis, respectively; x0, y0

are the arbitrary fixed position in the inertial reference frame. D is referred to as

“divergence” and related to ∂Wx

∂x
+ ∂Wy

∂y
; F1 is referred to as “stretching deformation”

and related to ∂Wx

∂x
− ∂Wy

∂y
; F2 is “shearing deformation” and related to ∂Wy

∂x
+ ∂Wx

∂y
; ζ

is called “vorticity” and related to ∂Wy

∂x
− ∂Wx

∂y
[72]. While this model includes only

horizontal components, the variations of the horizontal components with altitude is

model through the dependency of its parameters on altitude, z. The model can be

further simplified as

Wx(x, y, z, t) = Wx0(z, t) + A(z, t)(x− x0) +B(z, t)(y − y0) (2.5)

Wy(x, y, z, t) = Wy0(z, t) + C(z, t)(x− x0) + E(z, t)(y − y0) (2.6)

17



where A(z, t) = [D(z, t) + F1(z, t)], B(z, t) = [−ζ(z, t) + F2(z, t)], C(z, t) = [ζ(z, t) +

F2(z, t)], and E(z, t) = [D(z, t)− F1(z, t)], respectively.

As the arguments of the coefficients indicate, the temporal variation of wind

components are modeled through the dependency of the coefficients on time. The

temporal variations are assumed linear and formulated as

Wx0(z, t) = wx0 (2.7)

Wy0(z, t) = wy0 (2.8)

A(z, t) = a0 + a1t (2.9)

B(z, t) = b0 + b1t (2.10)

C(z, t) = c0 + c1t (2.11)

E(z, t) = e0 + e1t (2.12)

where the variation along altitude is not considered since the cases studied in this

research are limited to constant altitude flight. In Eqs. (2.7) and (2.8), the mean wind

components Wx0 and Wy0 are modeled constant to ensure that the magnitude of the

wind throughout the simulation stays reasonable and do not increase too much that

the aircraft control variable requirements would be more than the feasible limits.

2.2 Wind Model-2

This model represents uniform wind field, i.e., no spacial variation in x- and

y-axis. Thus, this model is a simplified version of Wind Model-1 as

Wx(x, y, z, t) = Wx0(z, t) (2.13)

Wy(x, y, z, t) = Wy0(z, t) (2.14)
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2.3 Wind Model-3

Another simplified version of Wind Model-1 is obtained when the mean wind

components are zero.

Wx(x, y, z, t) = A(z, t)(x− x0) +B(z, t)(y − y0) (2.15)

Wy(x, y, z, t) = C(z, t)(x− x0) +D(z, t)(y − y0) (2.16)

2.4 Wind Model-4

This model represents logarithmic variation of x-component of wind as

Wx(x, y, z, t) = Wx0(z, t) (2.17)

+ A(z, t)[log(B(z, t) + C(z, t)(x− x0)
2 (2.18)

+ D(z, t)(y − y0)
2)] (2.19)

Wy(x, y, z, t) = Wy0(z, t) + E(z, t)(x− x0) (2.20)

Temporal variation of the wind components are modeled by some of the coeffi-

cients formulated as linear functions of time as

Wx0(z, t) = wx0 (2.21)

Wy0(z, t) = wy0 + wy1t (2.22)

A(z, t) = a0 (2.23)

B(z, t) = b1t (2.24)

C(z, t) = c0 (2.25)

D(z, t) = d0 (2.26)

E(z, t) = e0 (2.27)
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2.5 Wind Model-5

This model represents a horizontal sinusoidal wave, which show the variation

of wind field along x-axis and y-axis as [20]

Wx(x, y, z, t) = −Wwave(z, t)

{
cos

[πt
6
cos

(2π(x− x0)

λ

)]
(2.28)

+ sin
[π
3
sin

(2π(y − y0)

λ

)]}
(2.29)

Wy(x, y, z, t) = −Wwave(z, t)

{
cos

[π
3
cos

(2π(x− x0)

λ

)]
(2.30)

+ sin
[π
3
cos

(2π(y − y0)

λ

)]}
(2.31)

where λ is the wave length and Wwave(z, t) is the magnitude of the wave speed, which

varies with time as

Wwave(z, t) = a0 + a1e
−a2t + a3t (2.32)

2.6 Example Wind Fields generated by the Models

Figure 2.1 shows examples of spatially varying horizontal wind vector fields over

300 × 300 km area generated by each of the first four wind models when z = 7010

m, x0 = 0 and y0 = 0. In all figures, the blue arrows indicate the direction and the

magnitude of the wind vector at a given point while the contour lines show some

isolines in terms of the wind speed. Fig. 2.1-(a) shows a wind vector field by Wind

Model - 1 when D(z, t) = 4× 10−5, ζ(z, t) = 5× 10−8, F1(z, t) = 3× 10−5, F2(z, t) =

5 × 10−5. In this wind vector field, the wind speed variation ranges from 1 to 6

m/s. Fig. 2.1-(b) shows a wind vector field by Wind Model-2 when Wx0(z, t) =

−10,Wy0(z, t) = 15 that results in uniform wind speed about 18 m/s over the entire

area.

Fig. 2.1-(c) shows a wind vector field by Wind Model-3 where A(z, t) = −2 ×

10−5, B(z, t) = −2 × 10−5, C(z, t) = 2 × 10−5, E(z, t) = −2 × 10−5 with wind speed

20



−1.5 −1 −0.5 0 0.5 1 1.5

x 10
5

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

East(y) [m]

N
o
rt

h
(x

)
[m

]

 

 

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(a) Wind Model-1
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(b) Wind Model-2
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(c) Wind Model-3
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Figure 2.1. Example wind fields by Wind Models-1, -2, -3, and -4.

variation ranging from 10 to 60 m/s over the airspace. Fig. 2.1-(d) shows a wind vector

field by Wind Model-4 where Wx0(z, t) = 0,Wy0(z, t) = 0 and A(z, t) = B(z, t) =

C(z, t) = D(z, t) = 1, E(z, t) = 1 × 10−5 with wind speed variation ranging from 5

to 25 m/s over the airspace.
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(b) t = 500 s
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(c) t = 1000 s
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(d) t = 2000 s

Figure 2.2. Spatially and temporally varying wind field by Model-1.

Figure 2.2 shows snapshots at different time instants of spatially and temporally

varying horizontal wind vector fields generated by Wind Model-1 when z = 7010 m,

x0 = 300 and y0 = 300. The mean wind components are Wx0(z, t) = −10 m/s and

Wy0(z, t) = 15 m/s and A(z, t) = 19 × 10−6 + 5 × 10−8t, B(z, t) = −5 × 10−7 +

1 × 10−6t, C(z, t) = 15 × 10−7 + 1 × 10−8t, E(z, t) = −15 × 10−7 + 5 × 10−9t. Figs.
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2.2-(a)-(d) show wind speed and direction variation over the 300 × 300 km area at

four different times t = 10, 500, 1000 and 2000 sec, respectively. This Wind Model-1

generates wind speed variation ranging from 16 to 60 m/s over the airspace.
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(b) t = 500 s
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(c) t = 1000 s
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(d) t = 2000 s

Figure 2.3. Spatially and temporally varying wind field by Model-4.
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Figure 2.4. Spatially and temporally varying wind field by Model-5.

Figure 2.3 shows snapshots at different time instants of spatially and temporally

varying horizontal wind vector fields generated by Wind Model-4 when z = 7010 m,

x0 = 300 and y0 = 300. The mean wind components are Wx0(z, t) = −10 m/s and

Wy0(z, t) = 15 + 1× 10−2t m/s and A(z, t) = 1× 10−1, B(z, t) = 1× 10−2t, C(z, t) =

D(z, t) = 1, E(z, t) = 1 × 10−6. Figs. 2.3-(a)-(d) show wind speed and direction
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variation over the 300×300 km area at four different times t = 10, 500, 1000 and 2000

sec, respectively. This Wind Model-4 captures the wind speed variation ranging from

8 to 30 m/s.

Figure. 2.4 shows snapshots at different time instants of horizontal spatially and

temporally varying wind vector fields generated by Wind Model-5 when z = 7010 m.

The wave length is λ = 3× 105. The wave speed Wwave(z, t) = 15 + e
1

180
t + 1× 10−2t

m/s. Figs. 2.4-(a)-(d) show wind speed and direction variation over the 300×300 km

area at four different times t = 10, 500, 1000 and 2000 sec, respectively. This Wind

Model-5 captures the wind speed variation ranging from 10 to 80 m/s.
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Chapter 3

AIRCRAFT MODELS

This chapter presents several sets of equations of motion used in simulation,

trajectory prediction and input prediction. First, the 6-DOF nonlinear equations of

motion used in simulating flight in a spatially and temporally varying wind field are

introduced. This is followed by the 3-DOF nonlinear equations utilized in trajectory

prediction and another set of 6-DOF nonlinear equations used in input prediction.

Note that the reference frames used for the derivation of equations of motion and for

the description of variables are presented in Appendix A.

3.1 Model for Simulation

In order to simulate flight in spatially and temporally varying wind, the 6-

DOF nonlinear equations of motion with explicit wind terms, which are developed in

Ref. [1] are used. These equations are derived under the following assumptions: (i)

the aircraft is a rigid body, (ii) the aircraft has a plane of symmetry, (iii) the earth

rotation and surface curvature are neglected (i.e., flat-earth approximation), (iv) the

Earth-fixed frame is considered as the inertial reference frame.
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3.1.1 Translational Dynamics

The aircraft translational dynamics with respect to the inertial frame [ Î ] is

written in matrix form as
V̇

β̇

α̇

 = E−1S(ωB)RBWVW − E−1RBIẆ (3.1)

+
1

m
E−1

(
RBIM +RBWA+ P

)
where

E−1 =


cosα cos β sin β cos β sinα

− 1
V
cosα sin β 1

V
cos β − 1

V
sinα sin β

− 1
V
sec β sinα 0 1

V
cosα sec β

 (3.2)

where (V, β, α) are the airspeed, side slip angle and angle-of-attack of the aircraft.

VW is the velocity of the aircraft relative to the surrounding air expressed in wind

frame [ Ŵ ]. RBI is the rotation matrix from the inertial frame to the body frame of

the aircraft, RBW is the rotation matrix from the aircraft wind frame to body frame.

The external forces acting on the aircraft are the gravitational force M (ex-

pressed in the inertial frame [ Î ]), the aerodynamic force A (expressed in the wind

frame [ Ŵ ]) and propulsive force P (expressed in the body frame [ B̂ ]). In general,

the representations of the forces are

M =


0

0

m g

 A =


−D

−S

−L

 P =


T cos δ

0

−T sin δ

 (3.3)

where g is the gravitational acceleration,m is the mass of the aircraft, (D,S, L) are the

drag, side force and lift on the aircraft, respectively, T is the thrust magnitude, and δ

is the thrust inclination angle. Also, ωB is the representation of the angular velocity
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vector of the aircraft relative to the inertial frame expressed in its own body frame

and note that S(·) is the skew-symmetric matrix operation on the representation of

a vector and defined as

S(ωB) =


0 r −q

−r 0 p

q −p 0

 (3.4)

where

ωB =


p

q

r

 (3.5)

3.1.2 Rotational Dynamics

The aircraft rotational dynamics with respect to the inertial frame [ Î ] is written

in matrix form as

ω̇B = I−1MB + I−1S(ωB)IωB (3.6)

where I is the inertia matrix of the aircraft, MB is the moment of the external forces

around the origin of body frame and expressed in the aircraft body frame as

MB =


L

M

N

 (3.7)

3.1.2.1 Translational Kinematics

The flight trajectory of aircraft with respect to the inertial reference frame [ Î ]

is written in matrix form as

ṙB = RT
BIRBWVW +WI (3.8)
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where rB is the position of the aircraft relative to the inertial frame expressed in the

inertial frame, RBI is the rotation matrix from the inertial frame to the body frame of

the aircraft, RBW is the rotation matrix from the aircraft wind frame to body frame,

VW is the velocity of aircraft relative to the surrounding air expressed in aircraft wind

frame.

3.1.3 Rotational Kinematics

The aircraft rotational kinematics with respect to the inertial frame [ Î ] is

written in terms of the Euler angles as

ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ (3.9)

θ̇ = q cosϕ− r sinϕ (3.10)

ψ̇ = (q sinϕ+ r cosϕ) sec θ (3.11)

where both the orientation in terms of (ψ, θ, ϕ), and the angular velocity, (p, q, r), of

the aircraft are relative to the inertial frame. By reversing the relations formulated in

Eqs. (3.9)-(3.11), the angular velocity components can be written in terms of Euler

angles and their derivatives as

p = ϕ̇− ψ̇ sin θ (3.12)

q = θ̇ cosϕ+ ψ̇ sinϕ cos θ (3.13)

r = ψ̇ cos θ cosϕ− θ̇ sinϕ (3.14)
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3.1.4 Aerodynamics Forces and Moments

The aerodynamic forces are given by the following standard expressions as

D =
1

2
ρV 2SCD (3.15)

S =
1

2
ρV 2SCS (3.16)

L =
1

2
ρV 2SCL (3.17)

where S is the reference area of the aircraft and ρ is the ambient air density. The

aerodynamic coefficients are

CD = CD0 + CDα2 α2 (3.18)

CS = CS0 + CSββ + CSδrδr (3.19)

CLwing
= CL0 + CLαα+ CLα2 (α− αref )

2 + CLq
c

2V
q (3.20)

CLtail
= CLδeδe (3.21)

CL = CLwing
+ CLtail

(3.22)

where (δa,δe,δr) are the deflections of the control surfaces (aileron, elevator, rudder,

respectively) and c is the chord length for the aircraft.

The aerodynamic moments, which are the rolling, pitching and yawing mo-

ments, respectively, are given by the following standard expression as

L =
1

2
ρV 2SbCL (3.23)

M =
1

2
ρV 2ScCM +∆zT (3.24)

N =
1

2
ρV 2SbCN (3.25)
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where b is the wingspan of the aircraft and ∆z is the moment arms of the thrust in

the aircraft’s body frame. The aerodynamic moment coefficients are

CL = CL0 + CLδaδa + CLδrδr + CLββ + CLp
b

2V
p+ CLr

b

2V
r (3.26)

CM = CLαα + CLδeδe + CMq
c

2V
q (3.27)

CN = CN0 + CN δaδa + CN δrδr + CNββ + CNp
b

2V
p+ CN r

b

2V
r (3.28)

3.1.5 Engine Dynamics

The thrust generated by the engine (T ) is

T = δT Tmax (3.29)

where δT denotes the instantaneous throttle setting and Tmax is the maximum avail-

able thrust of the aircraft and assumed to be constant in this research. The engine

dynamics is modeled as that of a first order system with time constant τ . Thus, we

have

δ̇T =
δT − δtT

τ
, (3.30)

where δtT is the commanded throttle setting (0≤ δtT ≤ 1).

3.1.6 Actuator Dynamics

For the present study, the actuator saturation and rate limit are considered.

The deflection range attainable from each control surface deflection is (-20 deg, 20

deg). A rate limit of 50 deg/sec is applied on control surface deflections.

3.2 Model for Trajectory Prediction

When the focus is on predicting trajectory of aircraft, i.e., the change in the

position of the CM of the aircraft over time, the rotational motion can be ignored.

This leads to the concept of Point-Mass-Model (PMM), which is also referred to
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as “Performance Model” [26]. Since the rotational motion is not considered, the

equations of motion governs only the translational motion, i.e., 3-DOF motion is

considered.

3.2.1 Translational Kinematics

The flight trajectory of aircraft with respect to the inertial reference frame [ Î ]

is written in scalar form as

ẋ = V cos γ cosµ+Wx(x, y, z, t) (3.31)

ẏ = V cos γ sinµ+Wy(x, y, z, t) (3.32)

ż = V sin γ +Wz(x, y, z, t) (3.33)

where x, y, z is the aircraft position in the inertial frame, V is the airspeed, angles γ

and µ specifies the direction of the airspeed vector (velocity vector relative to air) and

Wx,Wy,Wz are the spatially and temporally varying wind components along inertial

x, y, z axes.

3.2.2 Translational Dynamics

The aircraft translational dynamics with wind effects included are written in

scalar form as

V̇ =
T −D −mg sin γ

m
− Ẇx (3.34)

γ̇ =
L
m
cos ζ − g cos γ + Ẇz cos ζ + Ẇy sin ζ

V
(3.35)

µ̇ =
L
m
sin ζ − Ẇy cos ζ + Ẇz sin ζ

V cos γ
(3.36)

where ζ is velocity-roll angle, which is the angular displacement of wind frame by

rotating about OWXW axis with respect to the inertial frame [ Î ], (L,D) are aero-

dynamic lift and drag, respectively, T is thrust, g is gravitational acceleration, m
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is the mass and Ẇx, Ẇy, Ẇz are time rate of change of wind velocity components

experienced by the aircraft.

3.2.3 Discretized PMM for Trajectory Prediction

For the online implementation of PMM equations for trajectory prediction, the

differential equation given in previous section are discretized using the forward Euler’s

formula, which leads to the following difference equations:

x(n+ 1) = x(n) + V (n) cos γ(n) cosµ(n)∆t+Wx∆t (3.37)

y(n+ 1) = y(n) + V (n) cos γ(n) sinµ(n)∆t+Wy∆t (3.38)

z(n+ 1) = z(n) + V (n) sin γ(n)∆t+Wz∆t (3.39)

V (n+ 1) = V (n) +
T

m
∆t− D

m
∆t

− g sin γ(n)∆t− Ẇx∆t (3.40)

γ(n+ 1) = γ(n) +
L

mV (n)
cos ζ∆t− g

V (n)
cos γ(n)∆t

+
Ẇz

V (n)
cos ζ∆t− Ẇy

V (n)
sin ζ∆t (3.41)

µ(n+ 1) = µ(n) +
L sin ζ∆t

mV (n) cos γ(n)
− Ẇy cos ζ∆t

V (n) cos γ(n)

+
Ẇz sin ζ∆t

V (n) cos γ(n)
(3.42)

where n is the discrete time and ∆t is the sampling period. The trajectory prediction

includes the time propagation of these difference equations into the future until a

specified “look-ahead” time.

3.3 Model for Input Prediction

As stated earlier, input prediction requires the inverse simulation of the equa-

tions of motion. That is, given the trajectory of the aircraft, i.e., the locus of the
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CM of the aircraft in 4-DOF space (time and 3-DOF space in the inertial frame), the

equations of motion should be solved to determine the required input variables, i.e.,

aerodynamic control surface deflections and throttle setting. The 6-DOF nonlinear

equations of motion, given in Section 3.1, especially the translational and rotational

dynamics equations, will be employed for this purpose. Notice that, the scalar form

of the dynamic equations is needed in order to explicitly show all the input variables.

3.3.1 Translational Dynamics

The translational dynamic equations represent the force-balance relations in

the case of steady state (no acceleration) flight and required force and acceleration

relations in case of flight through trajectory requiring translational acceleration. The
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translational equations with the aerodynamic force expressions for a KC-135 aircraft

are written in scalar form as follows.

V̇ = g [cos θ sin β sinϕ+ cos β (cosϕ cos θ sinα− cosα sin θ)]

+
1

m

[
−K1vV

2 −K2vα
2V 2+ δTTmax cos (α + δ) cos β]

+
[
er(1, 1)Ẇx + er(1, 2)Ẇy + er(1, 3)Ẇz

]
(3.43)

β̇ = −r cosα + p sinα

+
g

V
[− cosϕ cos θ sinα sin β + cos β cos θ sinϕ +cosα sin β sin θ]

− 1

m V

[
K1bV

2 +K2bβV
2 +K3bV

2δr + δTTmax cos (α+ δ) sin β
]

+
[
er(2, 1)Ẇx + er(2, 2)Ẇy + er(2, 3)Ẇz

]
(3.44)

α̇ = q − (p cosα + r sinα) tan β

+
g sec β

V
[cosα cosϕ cos θ + sinα sin θ]

−sec β

m V

[
K1aV

2 +K2aαV
2 +K3aV

2 (α− αref )
2]

+
[
K4aqV +K5aV

2δe + δTTmax sin (α + δ)
]

+
[
er(3, 1)Ẇx + er(3, 2)Ẇy + er(3, 3)Ẇz

]
(3.45)

where V is the airspeed, α, β are angle of attack and side slip angle, which define

the orientation of velocity vector relative to body frame [ B̂ ]. ψ, θ, ϕ are the Euler’s

angles, which define the orientation of body frame [ B̂ ] relative to inertial frame [ Î ].

δT , δe, δr are thrust setting, elevator and rudder deflection angles, respectively.
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In Eq. (3.43)-(3.45), the “K -coefficients” are introduced in terms of the stability

and control derivatives for brevity as follows. Note that these coefficients are not

constant as the air density changes with altitude.

K1v =
1

2
ρSCD0 K2v =

1

2
ρSCDα2

K1b =
1

2
ρSCS0 K2b =

1

2
ρSCSβ

K3b =
1

2
ρSCSδr

K1a =
1

2
ρSCL0 K2a =

1

2
ρSCLα K3a =

1

2
ρSCLα2

K4a =
1

4
ρScCLq K5a =

1

2
ρSCLδe

Matrix er is calculated by

er = E−1R(ψ, θ, ϕ) (3.46)

and

E−1 =


cosα cos β sin β cos β sinα

− 1
V
cosα sin β 1

V
cos β − 1

V
sinα sin β

− 1
V
sec β sinα 0 1

V
cosα sec β

 (3.47)

where the entities of matrix er are:

er(1, 1) = cos β sinα (sinϕ sinψ + cosϕ cosψ sin θ)

− sin β (cosϕ sinψ − cosψ sinϕ sin θ)

+ cosα cos β cosψ cos θ (3.48)

er(1, 2) = cos β sinα (− sinϕ cosψ + cosϕ sinψ sin θ)

+ sin β (cosϕ cosψ + sinψ sinϕ sin θ)

+ cosα cos β sinψ cos θ (3.49)

er(1, 3) = − cosα cos β sin θ + sin β sinϕ cos θ

+cos β sinα cosϕ cos θ (3.50)
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er(2, 1) = − 1

V
(cosα sin β cos θ cosψ)

+
1

V
(− cosϕ sinψ + cosψ sinϕ sin θ) cos β

− 1

V
(sinϕ sinψ + cosϕ sin θ cosψ) sinα sin β (3.51)

er(2, 2) = − 1

V
(cosα sin β cos θ sinψ)

+
1

V
(cosϕ cosψ + sinψ sinϕ sin θ) cos β

− 1

V
(− sinϕ cosψ + cosϕ sin θ sinψ) sinα sin β (3.52)

er(2, 3) = − 1

V
(cosα sin β sin θ) +

1

V
(sin β sinϕ cos θ)

+
1

V
(cos β sinα cosϕ cos θ) (3.53)

er(3, 1) = − 1

V
(sec β sinα cos θ cosψ)

+
1

V
(sinϕ sinψ + cosϕ sin θ cosψ) cosα sec β (3.54)

er(3, 2) = − 1

V
(sec β sinα cos θ sinψ)

+
1

V
(− sinϕ cosψ + cosϕ sin θ sinψ) cosα sec β (3.55)

er(3, 3) = − 1

V
(sec β sinα sin θ)

+
1

V
(− sec β sinα cosϕ cos θ) (3.56)

3.3.2 Rotational Dynamics

Rotational dynamic equations represent the moment-balance relation in case

of steady-state (unaccelerated) flight and the required moment-angular acceleration

relation when the aircraft follows a specified “angular trajectory”, i.e, variation of the

aircraft orientation relative to the inertial frame. The rotational dynamic equations
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with the KC-135 aerodynamic moment expressions included are written in the scalar

form as follows:

ṗ = K1p p q +K2p q r +K3p V
2

+K4p δa V
2 +K5p δr V

2 +K6p β V
2

+K7p p V +K8p r V (3.57)

q̇ = K1q p r +K2q (r2 − p2) +K3q V
2

+K4q α V 2 +K5q δe V
2 +K6q q V (3.58)

ṙ = K1r p q +K2r q r +K3r V
2

+K4r δa V
2 +K5r δr V

2 +K6r β V
2

+K7r p V +K8r r V (3.59)

where p, q, r are angular velocity components in frame [ B̂ ] and δa is the aileron

deflection angle. The “K -coefficients” in Eq. (3.57)-(3.59) are introduced in brevity

in terms of aerodynamic stability and control derivatives. These coefficients, as in the
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case of translational dynamics, may vary through air density when there is change in

altitude.

K1p =
(Ixx − Iyy + Izz)Ixz

IxxIzz − I2xz
K2p =

Iyy − Izz + I2zz − I2xz
IxxIzz − I2xz

K3p =
ρSb(IzzCL0 + IxzCN0)

2(IxxIzz − I2xz)
K4p =

ρSb(IzzCLδa
+ IxzCNδa

)

2(IxxIzz − I2xz)

K5p =
ρSb(IzzCLδr

+ IxzCNδr
)

2(IxxIzz − I2xz)
K6p =

ρSb(IzzCLβ
+ IxzCNβ

)

2(IxxIzz − I2xz)

K7p =
ρSb2(IzzCLp + IxzCNp)

4(IxxIzz − I2xz)
K8p =

ρSb2(IzzCLr + IxzCNr)

4(IxxIzz − I2xz)

K1q =
Izz − Ixx
Iyy

K2q =
Ixz
Iyy

K3q =
ρScCM0

2Iyy

K4q =
ρScCMα

2Iyy
K5q =

ρScCMδe

2Iyy
K6q =

ρSc2CMq

4Iyy

K1r =
I2xx − IxxIyy + I2xz
IxxIzz − I2xz

K2r =
(−Ixx + Iyy − Izz)Ixz

IxxIzz − I2xz

K3r =
ρSb(IxzCL0 + IxxCN0)

2(IxxIzz − I2xz)
K4r =

ρSb(IxzCLδa
+ IxxCNδa

)

2(IxxIzz − I2xz)

K5r =
ρSb(IxzCLδr

+ IxxCNδr
)

2(IxxIzz − I2xz)
K6r =

ρSb(IxzCLβ
+ IxxCNβ

)

2(IxxIzz − I2xz)

K7r =
ρSb2(IxzCLp + IxxCNp)

4(IxxIzz − I2xz)
K8r =

ρSb2(IxzCLr + IxxCNr)

4(IxxIzz − I2xz)

3.3.3 Discretized Dynamics Model for Input Prediction

In order to implement these equations in the input prediction process, all the

derivative terms are approximated by using backward difference scheme (BDS). Note

that, BDS approximates time derivative of a variable using its value at the current

discrete time and that at the previous time [83]. The time derivative of state x is,

then, approximated as

ẋ ∼=
x− x(n−1)

∆t
(3.60)
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where ∆t is the time step. Note x in the above equation denotes the value of variable

x at the current discrete time step and x(n−1) refers to the value of x at the previous

discrete time, n− 1.

Note that the equation of motion includes derivative of wind components. The

wind derivatives are not approximated as they are assumed to be calculated by

Eq. (2.2). Replacing all the other derivative terms with their approximations and

rearranging the equations such that they are in the form of f(x) = 0 yields the follow-

ing algebraic equations. As state above, variables in the following equations without

an index are at the current discrete time n while variables with index n− 1 refers to

the value of the corresponding variable at the previous discrete time n− 1.

0 = g [cos θ sin β sinϕ+ cos β (cosϕ cos θ sinα− cosα sin θ)]

+
1

m

[
−K1vV

2 −K2vα
2V 2+ δTTmax cos (α + δ) cos β]

+
[
er(1, 1)Ẇx + er(1, 2)Ẇy + er(1, 3)Ẇz

]
− [

V − Vn−1

∆t
] (3.61)

0 = −r cosα + p sinα

+
g

V
[− cosϕ cos θ sinα sin β + cos β cos θ sinϕ +cosα sin β sin θ]

− 1

m V

[
K1bV

2 +K2bβ
2V 2 +K3bV

2δr + δTTmax cos (α+ δ) sin β
]

+
[
er(2, 1)Ẇx + er(2, 2)Ẇy + er(2, 3)Ẇz

]
− [

β − βn−1

∆t
] (3.62)

0 = q − (p cosα+ r sinα) tan β

+
g sec β

V
[cosα cosϕ cos θ + sinα sin θ]

−sec β

m V

[
K1aV

2 +K2aαV
2 +K3aV

2 (α− αref )
2]

+
[
K4aqV +K5aV

2δe + δTTmax sin (α + δ)
]

+
[
er(3, 1)Ẇx + er(3, 2)Ẇy + er(3, 3)Ẇz

]
− [

α− αn−1

∆t
] (3.63)
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where (p, q, r) are expressed in terms of Euler’s angles and their derivatives by Eqs. (3.12)-

(3.14) as

p = [
ϕ− ϕn−1

∆t
]− [

ψ − ψn−1

∆t
] sin θ (3.64)

q = [
θ − θn−1

∆t
] cosϕ− [

ψ − ψn−1

∆t
] sinϕ cos θ (3.65)

r = [
ψ − ψn−1

∆t
] cosϕ cos θ − [

θ − θn−1

∆t
] sinϕ (3.66)

0 = K1ppq +K2pqr +K3pV
2

+K4pδaV
2 +K5pδrV

2 +K6pβV
2

+K7ppV +K8prV − [
p− pn−1

∆t
] (3.67)

0 = K1qpr +K2q(r
2 − p2) +K3qV

2

+K4qαV
2 +K5qδeV

2 +K6qqV − [
q − qn−1

∆t
] (3.68)

0 = K1rpq +K2rqr +K3rV
2

+K4rδaV
2 +K5rδrV

2 +K6rβV
2

+K7rpV +K8rrV − [
r − rn−1

∆t
] (3.69)

This set of nonlinear algebraic equations will be solved based on the differen-

tiation method to compute the variation of aircraft control input variables over a

specified time interval.
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Chapter 4

WIND FIELD ESTIMATION

Multiple aircraft flying in the same airspace can be used as mobile sensors

measuring local wind vectors, as stated in the previous section. This section discusses

a method that estimates the wind field, i.e., the spatial and temporal variation of wind

vector over a larger airspace. The estimation of the wind field is especially useful in

areas that the aircraft are likely to fly to in the immediate future. Assuming that the

wind field can be represented by smooth (continuous and differentiable) functions,

the wind field estimation problem is posed as to determine, from a list of candidate

models, the best functional approximation to represent the variation of wind vector

over an airspace of interest. The candidate wind models can be any smooth function

of position and time with unknown parameters. In this research, the wind models

introduced in the following section are used as the candidate models. Then, the

problem can be formulated with two steps: (i) parameter estimation for each model,

and (ii) choosing the model with the minimum estimation error as the best model. For

the solution of this problems, the LSE (Least Square Estimation) method is employed

as it suits well with the problem formulation.

4.1 Wind Estimation Models

The spatially and temporally varying wind models introduced in Chapter 2 are

used in simulations when the main goal is to study the dynamic response of aircraft

flying in such a wind vector field. The second use of the wind models is in approximat-

ing the wind field in which multiple aircraft are flying by estimating the parameters of
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wind models based on local wind vector measurements. The parameter estimation is

carried out using LSE (Least Square Estimation) method, which approximates func-

tions to be estimated as a linear combination of basis functions. Some of the wind

models introduced in Chapter 2 can be rearranged such that the basis functions can

be identified. This procedure applied to Wind model-1 as shown in Appendix B leads

to a wind Estimation Model-2 (EM-2) with polynomial basis functions. Note that,

the order of the following presentations of the wind EM depends on the number of

coefficients in the model. This section describes various additional polynomial basis

functions of time and position used in this research.

Wind Estimation Model-1 : This model has the same structure as Wind

Model-1 but the temporal variation is neglected as

Ŵx(x, y, z, t) = ĉx1 + ĉx2 x+ ĉx3 y (4.1)

Ŵy(x, y, z, t) = ĉy1 + ĉy2 x+ ĉy3 y (4.2)

The basis functions to be used in LSE of this Estimation Model (EM) are

h1(x, y, z, t) = 1 (4.3)

h2(x, y, z, t) = x (4.4)

h3(x, y, z, t) = y (4.5)

Consider q number of aircraft gathering and sharing their local wind informa-

tion. Each part of the basis function matrix is constructed based on the data from

each aircraft. Consider aircraft-i has gathered pi number of local wind vector infor-
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mation at discrete times {ti1 . . . tipi}. Then, H-matrix from aircraft-i at discrete time

k ≥ tipi is

Hi(k) =



1 xi1 yi1

1 xi2 yi2
...

...
...

1 xipi yipi


∈ Rpi×3 (4.6)

Combining data from all the aircraft, the overall H-matrix is constructed as

H(k) =


H1(k)

...

Hq(k)

 ∈ R(pi×q)×3 (4.7)

Wind Estimation Model-2 : As demonstrated in Appendix B, this wind

estimation model is developed from Wind Model-1 defined in Section 2.1.

Ŵx(x, y, z, t) = ĉx1 + ĉx2t+ ĉx3x+ ĉx4y + ĉx5tx+ ĉx6ty (4.8)

Ŵy(x, y, z, t) = ĉy1 + ĉy2t+ ĉy3x+ ĉy4y + ĉy5tx+ ĉy6ty (4.9)

Based on this formulation, the basis function to be used in LSE are

h1(x, y, z, t) = 1 (4.10)

h2(x, y, z, t) = t (4.11)

h3(x, y, z, t) = x (4.12)

h4(x, y, z, t) = y (4.13)

h5(x, y, z, t) = tx (4.14)

h6(x, y, z, t) = ty (4.15)

Consider q number of aircraft gathering and sharing their local wind informa-

tion. Each part of the basis function matrix is constructed based on the data from

44



each aircraft. Consider aircraft-i has gathered pi number of local wind vector infor-

mation at discrete times {ti1 . . . tipi}. Then, H-matrix from aircraft-i at discrete time

k ≥ tipi is

Hi(k) =



1 ti1 xi1 yi1 ti1xi1 ti1yi1

1 ti2 xi2 yi2 ti2xi2 ti2yi2
...

...
...

...
...

...

1 tipi xipi yipi tipixipi tipiyipi


∈ Rpi×6 (4.16)

Combining data from all the aircraft, the overall H-matrix is constructed as

H(k) =


H1(k)

...

Hq(k)

 ∈ R(pi×q)×6 (4.17)

Wind Estimation Model-3 : This model has the structure of quadratic

polynomial function of position as

Ŵx(x, y, z, t) = ĉx1 + ĉx2 x+ ĉx3 y + ĉx4 xy + ĉx5 x
2 + ĉx6 y

2 (4.18)

Ŵy(x, y, z, t) = ĉy1 + ĉy2 x+ ĉy3 y + ĉy4 xy + ĉy5 x
2 + ĉy6 y

2 (4.19)

The basis function to be used in LSE of EM-3 are

h1(x, y, z, t) = 1 (4.20)

h2(x, y, z, t) = x (4.21)

h3(x, y, z, t) = y (4.22)

h4(x, y, z, t) = xy (4.23)

h5(x, y, z, t) = x2 (4.24)

h6(x, y, z, t) = y2 (4.25)

Similarly, Consider q number of aircraft gathering and sharing their local wind in-

formation. Each part of the basis function matrix is constructed based on the data
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from each aircraft. Consider aircraft-i has gathered pi number of local wind vector

information at discrete times {ti1 . . . tipi}. Then, H-matrix from aircraft-i at discrete

time k ≥ tipi is

H(k) =



1 xi1 yi1 xi1yi1 x2i1 y2i1

1 xi2 yi2 xi2yi2 x2i2 y2i2
...

...
...

...
...

...

1 xipi yipi xipiyipi x2ipi y2ipi


∈ Rpi×6 (4.26)

Combining data from all the aircraft, the overall H-matrix is constructed as

H(k) =


H1(k)

...

Hq(k)

 ∈ R(pi×q)×6 (4.27)

Wind Estimation Model-4 : The structure of this model is represented by

quadratic polynomial function of time and position as

Ŵx(x, y, z, t) = ĉx1 + ĉx2 t+ ĉx3 x+ ĉx4 y + ĉx5 tx (4.28)

+ ĉx6 ty + ĉx7 xy + ĉx8 t
2 + ĉx9 x

2 + ĉx10 y
2 (4.29)

Ŵy(x, y, z, t) = ĉy1 + ĉy2 t+ ĉy3 x+ ĉy4 y + ĉy5 tx (4.30)

+ ĉy6 ty + ĉy7 xy + ĉy8 t
2 + ĉy9 x

2 + ĉy10 y
2 (4.31)
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The basis function of EM-4, based on this formulation, to be used in the LSE

are

h1(x, y, z, t) = 1 (4.32)

h2(x, y, z, t) = t (4.33)

h3(x, y, z, t) = x (4.34)

h4(x, y, z, t) = y (4.35)

h5(x, y, z, t) = tx (4.36)

h6(x, y, z, t) = ty (4.37)

h7(x, y, z, t) = xy (4.38)

h8(x, y, z, t) = t2 (4.39)

h9(x, y, z, t) = x2 (4.40)

h10(x, y, z, t) = y2 (4.41)

Similarly, Consider q number of aircraft gathering and sharing their local wind

information. Each part of the basis function matrix is constructed based on the data

from each aircraft. Consider aircraft-i has gathered pi number of local wind vector

information at discrete times {ti1 . . . tipi}. Then, H-matrix from aircraft-i at discrete

time k ≥ tipi is

H(k) =



1 ti1 xi1 yi1 ti1xi1 ti1yi1 xi1yi1 t2i1 x2i1 y2i1

1 ti2 xi2 yi2 ti2xi2 ti2yi2 xi2yi2 t2i2 x2i2 y2i2
...

...
...

...
...

...
...

...
...

...

1 tipi xipi yipi tipixipi tipiyipi xipiyipi t2ipi
x2ipi

y2ipi


∈ R(pi×q)×10 (4.42)

Combining data from all the aircraft, the overall H-matrix is constructed as

H(k) =


H1(k)

...

Hq(k)

 ∈ R(pi×q)×10 (4.43)
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4.1.1 Least Square Technique

The term “Least Squares (LS)” in mathematics is an approach to solving the

overdetermined linear systems of equations by computing an approximate solution

to the systems that minimize the sum of the squares of the residuals. The residuals

depend on the difference between the approximated values and the actual values.

The linear regression or curve fitting and parameter estimation by LS scheme is

one of the most basic and commonly used estimation techniques in diverse engineer-

ing applications such as structural reliability analysis [84], UAV [85], remote sensing

[86], computer graphics [87]. This is because (i) it can easily and efficiently be im-

plemented in computer, (ii) it is easy to understand and interpret without having

advance mathematical background, and (iii) it provides optimal solution if all basic

assumptions are valid. For example, if the system being studied is truly linear with

additive uncorrelated normally distributed noise (of zero mean and constant vari-

ance), then the constants solved for by the least squares are in fact the most likely

coefficients to have been used to generate the data [88].

In general, the LS algorithms consist of two steps : (i) predetermine the func-

tion with unknown parameters or coefficients that closely model the behavior of the

process or physical quantity of interest and (ii) construct and solve the equation for

the optimal coefficients. Theoretically, the first step is to construct the linear com-

bination of basis functions, which are reasonable to describe the process, i.e., wind

vector field in this research. Note that, the individual basis functions can be nonlin-

ear functions as well. These functions are also known as “Approximation function”

or “Approximant” in short. The most commonly used approximant is polynomial

function [89]. Another approximant, which is widely used in parameter estimation of

dynamic systems is exponential function of time. For stochastic processes or systems,

the Guassian function is commonly used as the approximant.
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4.1.1.1 Least Square Estimation for Wind Field Approximation

A wind vector field, particularly each component, can be considered as some

unknown functions of position and time. The local wind vectors from multiple aircraft

are “data” or “measurements” of these unknown functions at a set of discrete positions

and times. Then, approximations for these unknown functions are defined as linear

combinations of a set of basis functions as

w(x, y, z, t) ∼=
n∑

i=1

cihi(x, y, z, t) (4.44)

where w(x, y, z, t) is each of the components of the wind vector field, hi(x, y, z, t) are

the basis functions and ci are the set of unknown coefficients to be estimated. Then,

the kth measurement at position (xk, yk, zk) and time tk can be expressed as

w̃k = hkc+ ek (4.45)

where w̃k = w̃(xk, yk, zk, tk), hk = [h1(xk, yk, zk, tk), . . . , hn(xk, yk, zk, tk)] ∈ R1×n,

c = [c1, . . . , cn]
T ∈ Rn×1 and ek = e(xk, yk, zk, tk) is the residual error. For all k

number of measurements put together, the matrix measurement equation is written

as

W̃k = Hkc+ Ek (4.46)

where W̃k ∈ Rk×1, Hk ∈ Rk×n, Ek ∈ Rk×1, and k ≥ n. By the LSE method, the

unknown coefficients can be estimated as

ĉk = (HT
k Hk)

−1HT
k W̃k (4.47)

The residual is defined as the difference between what is actually measured and what

would be measured if c = ĉk, which can be expressed as

Ek = Hkĉk − W̃k (4.48)
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Substituting Eq. (4.47) in Eq. (4.48) yields the residual error at estimation time k.

Ek = Hk(H
T
k Hk)

−1HT
k W̃k − W̃k (4.49)

The sum of the squares of the residuals is calculated as

∥Ek∥ =
k∑

i=1

E2
i (4.50)

4.1.1.2 Least Square Estimation Algorithm

The LSE method as a global estimation method equally weighs each local wind

data measured or estimated from the aircraft in the airspace of operation. The LSE

algorithm is represented as follows

Algorithm : Least Squares Estimation

1: Initialization.

Read Local Wind Data : Wxj , Wyj , xj , yj , tj

where j = 1, 2, . . . , q, which indicates the number of the aircraft in the vicinity.

2: Estimation.

[1] Construct Hk matrix, where Hk ∈ Rpq×l

where p is data size and l is a number of basis functions.

[2] Solve normal equation for ĉk, where ĉk ∈ Rl×1.

ĉk = (HT
k Hk)

−1HT
k W̃k

[3] Determine residual errors Ek, where Ek ∈ Rpq×1

Ek = Hk(H
T
k Hk)

−1HT
k W̃k − W̃k

[4] Find the least sum of the squares of the residuals

∥Ek∥ =
∑n

i=1E
2
i

[5] Repeat steps 1-4 for each wind estimation model.

[6] Choose the results of the wind estimation model with the least residual error.

3: End Estimation.

Output the ĉk of the EM-m, where m indicates the estimation

model numbers with the least ∥Ek∥.
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4.1.1.3 Weighted Least Square Estimation (WLSE)

The LSE method discussed in the previous section is a global estimation tech-

nique. All data are considered evenly important and thus equally weighted. However,

when the wind field information around the immediate trajectory of the aircraft is con-

sidered more important than the wind field information in the rest of the airspace, the

weighted least square method is more appropriated for wind field estimation within

the intended airspace of operation of aircraft. This can be implemented by (i) pre-

determine the intended airspace of the aircraft by using the predicted position of

the owner aircraft at the next update time, (ii) determine the relative distance of

other aircraft in the same airspace of operation with respect to the predicted owner

aircraft position, and (iii) calculate weight based on the relative distance calculated

form previous step.

There are many options for distance weighting functions, which are used in

scattered data interpolation and approximation, reported in the literature. Ref. [90]

introduced a simple inverse distance weighting function also referred to as “Shepard’s

Method”

G(d) =
1

dp
(4.51)

where p > 0, the most common choice of p = 2 and d is the relative distance. Ref.

[91] utilizes Gaussian weighting function, this function is exponentially decay to zero

with increasing d

G(d) = e−
d2

h2 (4.52)

where h is the spacing parameter which can be used to smooth out small features in

the data. Ref. [92] presents Wendland weighting function, which is well defined in

interval d ∈ [0, h] and furthermore, G(0) = 1, G(h) = 0, G′(h) = 0 and G′′(h) = 0.

G(d) =
(
1− d

h

)4(
1 +

4d

h

)
(4.53)
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Notice that all these weighting functions have the identical role of formulating

points closer to the point of interest to be more important than points far away. In

this research, “Shepard’s Method” is used by specifying p = 1, i.e., the weighting

function is inversely proportional to the relative distance from ownership aircraft

intended position with the specified time horizon ∆tLH s. The point of interest is

calculated by

xpk = xk + Vk cos(µk)∆tLH (4.54)

ypk = yk + Vk sin(µk)∆tLH (4.55)

where xpk , ypk are the point of interest or intended position of the ownership aircraft,

xk, yk are position, Vk, µk are speed and heading angle of ownership aircraft at discrete

time k, respectively.

Consider q number of aircraft gathering and sharing their local wind informa-

tion. Once the point of interest is calculated, the relative distance of each aircraft

from this point of interest at the time instant k is calculated by

dkj =
√

(xpi − xkj)2 + (ypi − ykj)
2 (4.56)

where j = 1, 2, . . . , q.

Consider aircraft-i has gathered pi number of local wind vector information at

discrete times {ti1, . . . , tipi}. Then, the weighted matrix of aircraft-i at discrete time

k ≥ tipi is calculated by

Gi(k) =



1
di1

0 · · · 0

0 1
di2

. . .
...

...
. . .

. . . 0

0 · · · 0 1
dipi


∈ Rpi×pi (4.57)
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Combining data from all the aircraft, the overall G - matrix is constructed as

G(k) =



G1(k) 0 · · · 0

0 G2(k)
. . .

...

...
. . .

. . . 0

0 · · · 0 Gq(k)


∈ R(pi×q)×(pi×q) (4.58)

By using WLSE method, the unknown coefficients, which are dependent upon

relative distance, can be estimated by

ĉk(d) = (HT
k G(d)Hk)

−1HT
k G(d)W̃k (4.59)

Similar to the LSE method, the residual error is determined by Eq. (4.48).

Substituting Eq. (4.59) in Eq. (4.48) yields the formulation for the residual error at

estimation time k.

Ek = Hk(H
T
k G(d)Hk)

−1HT
k G(d)W̃k − W̃k (4.60)

Then, the sum of the squares of the residuals is calculated as

∥Ek∥ =
k∑

i=1

E2
i (4.61)

4.1.1.4 Weighted Least Square Estimation Algorithm

The WLSE is a local estimation method and weighs more heavily wind data

gathered closer to the projected aircraft location as compared to wind data collected

away from the projected aircraft position. This means that each aircraft may cal-

culate a different wind field approximation even though from the same local wind

measurements. The algorithm for a computer implementation of WLSE method is

given below.
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Algorithm : Weighted Least Squares Estimation

1: Initialization.

[1] Read local wind data : Wxj , Wyj , xj , yj , tj

where j = 1, 2, . . . , q, which indicates the number of

the aircraft in the vicinity.

[2] Read current aircraft position : xkj , ykj

[3] Read ownership aircraft flight data : xk, yk, Vk, µk

2: Estimation.

[1] Calculate predicted position of ownership aircraft for given

look-ahead time ∆tLH .

xp = xk + Vk cos(µk)∆tLH

yp = yk + Vk sin(µk)∆tLH

[2] Calculate relative distance from ownership predicted position

of others aircraft in the vicinity.

dkj =
√
(xp − xkj)2 + (yp − ykj)

2

[3] Calculate weight G(dk)j , which is a function of dk.

of each aircraft in the vicinity.

G(dk)j =
1

dkj

[4] Construct Hk matrix, where Hk ∈ Rpq×l

where p is data size and l is a number of basis functions.

[5] Solve normal equation for ĉk(dk), where ĉk(dk) ∈ Rl×1.

ĉk(dk) = (HT
k G(dk)Hk)

−1HT
k G(dk)W̃k

[6] Determine residual errors Ek, where Ek ∈ Rpq×1

Ek = Hk(H
T
k G(dk)Hk)

−1HT
k G(dk)W̃k − W̃k

[7] Find the least sum of the squares of the residuals

∥Ek∥ =
∑n

i=1E
2
i

[8] Repeat steps 1-7 for each wind estimation model.

[9] Choose the results of the wind estimation model with the least residual error.

3: End Estimation.

Output the ĉk of the EM-m, where m indicates the estimation

model numbers with the least ∥Ek∥
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4.2 Generation of Local Wind Data

In this research, the wind field estimation relies on local wind information from

multiple aircraft flying in the area. This implies that the aircraft are used as wind

sensors measuring local wind vectors at different locations within the same wind field.

While there are efforts to directly measure wind vector by onboard sensors such as

Doppler LIDAR (Light Detection and Ranging) [93], various methods are available

to estimate wind an aircraft is exposed to using available onboard flight data sensors,

as discussed in Section 1.3.1. In this research, a method presented in Ref. [1, 2]

is used for wind estimation. This method assumes the availability of a GPS unit

that provides the velocity of the aircraft relative to the inertial frame, an IMU that

provides the orientation relative to the inertial frame, and an airdata sensor providing

the velocity vector of the aircraft relative to the air in terms of airspeed, side slip angle

and angle of attack. Using these data, the method can calculate the wind velocity

vector that the aircraft is experiencing by using the kinematic relation between the

velocity vectors.

4.2.1 Kinematics-based Local Wind Estimation [1, 2]

The velocity of an aircraft relative to the inertial frame can be written as the

sum of (i) the velocity of the aircraft relative to the surrounding air and (ii) the

velocity of the air relative to the inertial frame, which is, by definition, is the wind

velocity vector. This leads to

Vaircraft
inertial

= Vaircraft
air

+ V air
inertial

(4.62)

where Vaircraft
inertial

and V air
inertial

are usually expressed in the inertial frame while Vaircraft
air

is

conveniently written in the aircraft wind frame. Then, the relation given in Eq. (4.62)

55



is used to write the wind vector representation in terms of the representation of the

other two vectors and the rotation matrices between these frames as

WI = ṙB −RT
BIR

T
BW [V 0 0]T (4.63)

where WI is the representation of the wind vector in the inertial frame, ṙB is the

representation of the aircraft inertial velocity in the inertial frame, V is the airspeed,

RBI is the rotation matrix from inertial reference frame to the aircraft body frame

and RBW is the rotation matrix from wind frame to the aircraft body frame. An

onboard GPS/IMU system will provide ṙB. RBI is expressed in terms of Euler angles

(ψ, θ, ϕ), which are provided by the IMU system. RBW is expressed in terms of side

slip angle, β and angle of attack, α. The triad (V, β, α) are obtained from an onboard

airdata system.

4.2.2 Estimated Local Wind of Other Aircraft

The preceding section details how the local wind vector is estimated from the

standard aircraft sensors on the ownership aircraft. In simulation, the ownership air-

craft is modeled by 6-DOF equations of motion and controller and thus all necessary

signals for local wind estimation are available. For the wind field estimation, local

wind data from other aircraft in the vicinity are utilized. For these other aircraft, the

simulation does not use full 6-DOF equations. Instead, only the kinematics equations

are used to generate trajectories based on specified speed, flight path angle and head-

ing angle. The position information at a given time from the aircraft trajectory is

used in wind field models introduced in Chapter 2 to compute the local wind velocity

vector. The local wind information from multiple aircraft are assumed to be shared

with other aircraft in the same airspace for wind field estimation.
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4.3 Simulation Results of Local Wind Estimation

4.3.1 Local Wind Estimation of Ownership Aircraft

The local wind vector estimation method is implemented in the simulation

environment that includes the 6-DOF nonlinear equations of motion, introduced in

Section 3.1. In the simulation runs for the evaluation of the wind estimation, two

aircraft are flying in different trajectories within various wind fields. Each aircraft

has onboard local wind estimation system running based on onboard measurements.

This section presents the results of the wind estimation and the comparison with

the actual wind vector computed from the wind field used in each simulation. In

the simulations presented herein, the temporally and spatially varying wind fields

are considered. The four different wind fields simulated are the ones introduced in

Chapter 2.

In this simulation, two aircraft, Aircraft-1 and Aircraft-2 are flown by their

respective controllers. Each controller is designed to fly the aircraft to follow airspeed,

altitude and turn rate commands. The commanded altitude and speed for both

aircraft are 7010 m and 190 m/s , respectively. The commanded turn rates are

given to fly each aircraft through the flight paths shown in Fig. 4.1 as overlaid on

each wind field. These figures also show, as contour lines, the variation of wind

strength with position and time over 300×300 km area. The aircraft are assumed to

be equipped with the sensors necessary for local wind vector estimation as described

above. The details of the sensor measurements are tabulated in Table 4.1. While

measurements are provided with high sampling rates, the wind vector calculations

are updated only at every 10 seconds.

The simulation results are presented in Fig. 4.2. In simulations the wind vectors

computed by the wind field models are multiplied by a factor before sent to the aircraft
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(c) WM-4
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Figure 4.1. Aircraft-1 and -2 trajectories in WM-1 -2 -4 and -5.

dynamics module. This factor start from zero and goes to 1 as a step response of a

first order transfer function with the time constant of 10 sec. This is done to ensure

that the controller flying the aircraft can smoothly adjust the control inputs to their

normal levels without causing any saturation in magnitude and rate. The choice of
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Table 4.1. Details of sensor data [1, 2]

Measurements states and sampling rate
Symbol Description Unit Sensor Sampling rate
ṙB Inertial velocity m/s GPS/IMU 100 Hz

(ψ, θ, ϕ) Euler’s angle deg GPS/IMU 100 Hz
V True airspeed m/s Airdata 20 Hz

(β, α) Aerodynamic angle deg Airdata 20 Hz

10 sec for the time constant implies that the wind goes to its normal level after 50

sec.

Figures 4.2 (a)-(d) show the actual and estimated wind components for Aircraft-

1 and Aircraft-2, respectively, flying in the wind field modeled by Wind Model-1, -2,

-4, and -5. The top plots show wind component along x-axis, while the bottom

plots present wind component along y-axis. As can be seen in these figures, multiple

aircraft flying in different regions of a wind field experience different wind vectors.

This information, when shared between aircraft, can help estimate a model for the

entire wind field.

4.3.2 Local Wind Estimation of Other Aircraft

In simulations presented in this thesis, only Aircraft-1 and -2 use local wind

estimation based on onboard flight data sensors. The other aircraft models are only

kinematics based as explained in Section 4.2.2. In the simulation cases, theses aircraft

are flying along straight lines with constant airspeed of 190 m/s at altitude of 7010

m but different heading angles.

The trajectories of the aircraft are represented in dash line overlaid on the

spatially and temporally varying wind field, i.e., WM-1, -2, -4, and -5, as depicted
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Figure 4.2. Estimated and actual local wind in WM-1 -2 -4 and -5.

in Figure 4.3 (a)-(d). The wind strength, which each aircraft expose to are shown in

Fig. 4.4 (a)-(d), respectively.
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(c) WM-4
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Figure 4.3. Aircraft -3 to -10 trajectories in WM-1 -2 -4 and -5.

4.4 Wind Field Estimation Simulation Results

The LSE and WLSE algorithms are implemented in simulation and various

simulation cases are run for evaluating the algorithms. This section shows the sim-

ulations results of the wind field estimation. In the simulation cases presented here,

ten aircraft fly with 190 m/s airspeed at 7010 m altitude with in a 300 × 300 km
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Figure 4.4. Estimated local wind in WM-1 -2 -4 and -5.

area. There are two trajectory patterns, flown by ten aircraft in the same airspace of

operation. Aircraft positions at time t = 100, 500, 1000 and 2000 s are marked with

small airplane icon and the paths are indicated by dashed-lines, overlaid on the wind

fields, in Figs. 4.6 and 4.7. As stated earlier, each aircraft is assumed to broadcast

its local wind vector estimation along with the position and time of the estimation.
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The simulation cases are run with different wind field models introduced in Chapter

2. As stated then, the wind field models are used as both wind field “estimation

model” and “simulation model”. In each simulation case, different combinations of

wind field models for “estimation” and “simulation” are used for evaluating the LSE

and WLSE method. In each simulation case, the wind field estimation algorithm

carries out parameter estimation for each model and chooses the estimation model

with the least residual errors. This means that the estimation might be switching

between estimation models depending on the value of their residual error.

The wind field estimation is updated every 10 s. The local wind is sampled

every 1 s or sampling frequency of 1 Hz and the data size for local wind data storage

of each aircraft is equal to 100 such that the dimension of Hk is 1000 × 3 for EM-1,

1000× 6 for EM-2 and -3, and 1000× 10 for EM-4, respectively. In each wind field,

the ten aircraft are flown along two different patterns, pattern-1 and pattern-2, as

shown in Figs. 4.5.a and 4.5.b, respectively.
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(a) Trajectory pattern - 1
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(b) Trajectory pattern - 2

Figure 4.5. Aircraft trajectory patterns-1 and -2 .
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4.4.1 Wind Field Model-1 Case

4.4.1.1 Least Square Estimation Results

In this simulation case, spatially and temporally varying horizontal wind vector

field is generated by WM-1, when z = 7010 m, x0 = 300 and y0 = 300. The mean

wind components are Wx0(z, t) = −10 m/s and Wy0(z, t) = 15 m/s and A(z, t) =

19 × 10−6 + 5 × 10−8t, B(z, t) = −5 × 10−7 + 1 × 10−6t, C(z, t) = 15 × 10−7 + 1 ×

10−8t, E(z, t) = −15×10−7+5×10−9t. This WM-1 captures the wind speed variation

ranging from 20− 80 m/s in this simulation, which is run for 2000 s.

Figures 4.6 and 4.7-(a)-(d) shows the snapshots of the positions of and the

paths traveled by ten aircraft flying in spatially and temporally varying horizontal

wind field represented by WM-1, through trajectory patterns-1 and -2, at different

times, t = 100, 500, 1000 and 2000 s, respectively. Since the wind is varying with

position and time, the aircraft flying in different region and different time are exposed

to the different wind strength as shown by the contour lines.

The performance of the wind field estimation algorithms are shown in Figures

4.8 and 4.9 while the aircraft flying in WM-1 through trajectory pattern-1 and -2,

shown in Figs. 4.6 and 4.7, respectively. Subfigures (a) indicates the wind estimation

model with the least residual error by the EM number. Fig. 4.8 (a) shows that EM-4

is always the estimation model with the least residual error while aircraft flying in

WM-1 along trajectory pattern-1. However, Fig. 4.9 (a) shows that, when aircraft

flying through trajectory pattern-2, EM-4 is the best model initially, but the residual

error of EM-2 becomes the smallest after a while. It is also interesting to note that

x-component switches between EM-4 and EM-2 while y- component stays with EM-2.

This shows that the x- and y-components may be computed using different estimation

models because an estimation model may have the least residual error in x- component
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(c) T = 1000 s
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(d) T = 2000 s

Figure 4.6. Aircraft trajectory pattern-1 in WM-1.

while another for y-component. Subfigures (b) shows the smallest residual error while

Subfigures (c) presents the comparison of the residual errors from all four estimation

models. Both Figs. 4.8 (c) and 4.9 (c) show that the switching between EM-4 and EM-

2 occurs when estimation error becomes very small compared to the values earlier in

the simulation. This may bring up an argument for improving the overall estimation
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(c) T = 1000 s
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(d) T = 2000 s

Figure 4.7. Aircraft trajectory pattern-2 in WM-1.

performance by adding a logic to prevent unnecessary switching when the difference

in estimation error is less than a threshold. However, this is left for future work.

Subfigures (d) show the comparison of the estimated local wind and the actual local

wind along the trajectory of Aircraft-1.
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(d) Measured vs Estimated

Figure 4.8. Wind estimation by LSE in WM-1 trajectory pattern-1.

4.4.1.2 Weighted Least Square Estimation Results

In the previous section, the performance of wind field estimation based on LSE

are presented. In this section, the performance of the WLSE wind field estimation

algorithms are shown in Figures 4.10 and 4.11 while the aircraft are flying in WM-1

through trajectory pattern-1 and -2, similar to the LSE case, shown in Figs. 4.6 and
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(d) Measured vs Estimated

Figure 4.9. Wind estimation by LSE in WM-1 trajectory pattern-2.

4.7. Subfigures (a) indicates the wind estimation model with the least residual error

by the EM number. Unlike LSE, Figs. 4.10 (a) and 4.11 (a) show that the estimation

model with the least estimation error switches between all four models while aircraft

flying in WM-1 through both trajectory pattern-1 and -2. It is also interesting that x-

component switches between wind models occur more frequently than y-component.
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This shows that the x- and y-components are probably computed using different esti-

mation models. Subfigures (b) shows the smallest residual error while Subfigures (c)

presents the comparison of the residual errors from all four estimation models. Simi-

larly as discussed in the LSE case, the future work to improve the overall estimation

performance to prevent unnecessary switching among estimation models also applies

to the WLSE case. Subfigures (d) show the comparison of the estimated local wind

and the actual local wind along the trajectory of Aircraft-1.

4.4.2 Wind Field Model-4 Case

4.4.2.1 Least Square Estimation Results

In this simulation case, the spatially and temporally varying horizontal wind

vector field is generated by WM-4, when z = 7010 m, x0 = 300 and y0 = 300, the

mean wind components are Wx0(z, t) = −10 m/s and Wy0(z, t) = 15 + 1× 10−2t m/s

and the coefficients are A(z, t) = 1 × 10−1, B(z, t) = 1 × 10−2t, C(z, t) = D(z, t) =

1, E(z, t) = 1 × 10−6. This WM-4 captures the wind speed variation ranging from

10− 65 m/s in this simulation, which is run for 2000 s.

Figures 4.12 and 4.13-(a)-(d) show the snapshots of the positions of and the

paths traveled by ten aircraft flying in the spatially and temporally varying horizontal

wind field represented by WM-4, through trajectory patterns-1 and -2, at different

times, t = 100, 500, 1000 and 2000 s, respectively. Since the wind is varying with

position and time, the aircraft flying in different region and different time is exposed

to different wind strengths as shown by the contour lines.

The performance of the wind field estimation algorithms are shown in Figures

4.14 and 4.15 while aircraft are flying in WM-4 through trajectory pattern-1 and

-2, which are similar to the WM-1 case, shown in Figs. 4.12 and 4.13, respectively.
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(d) Measured vs Estimated

Figure 4.10. Wind estimation by WLSE in WM-1 trajectory pattern-1.

Subfigures (a) indicates the wind estimation model with the least residual error by

the EM number. Fig. 4.14 (a) and 4.15 (a) show that EM-4 is always the estimation

model with the least residual error while the aircraft fly in WM-4 through both

trajectory pattern-1 and -2 in x-component. However, in y-component, EM-4 is the

best model initially, but the residual error of EM-2 becomes the smallest after a while.
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(d) Measured vs Estimated

Figure 4.11. Wind estimation by WLSE in WM-1 trajectory pattern-2.

Furthermore, Fig. 4.15 (a) shows y- component, while aircraft flying in trajectory

pattern-1, switches between EM-2 and EM-4 during short duration because at that

time the estimation error of EM-4 becomes smaller than the estimation error value of

the EM-2. Subfigures (c) presents the comparison of the residual errors from all four

estimation models. Both Figs. 4.14 (c) and 4.15 (c) show that the switching between
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(d) T = 2000 s

Figure 4.12. Aircraft trajectory pattern-1 in WM-4.

EM-4 and EM-2 occurs when the estimation error becomes very small compared to

the values earlier in the simulation. This obvious results again would be improved

by adding a logic to prevent unnecessary switching when the difference in estimation

error is less than a threshold. Subfigures (d) show the comparison of the estimated

local wind and the actual wind along the trajectory of Aircraft-1.
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(d) T = 2000 s

Figure 4.13. Aircraft trajectory pattern-2 in WM-4.

4.4.2.2 Weighted Least Square Estimation Results

The performance of the wind field estimation algorithms based on WLSE are

shown in Figures 4.16 and 4.17 while the aircraft are flying in the WM-4 through

trajectory pattern-1 and -2, shown in Figs. 4.12 and 4.13, respectively. Subfigures

(a) show that the best wind estimation model (i.e., the one with the smallest least
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(d) Measured vs Estimated

Figure 4.14. Wind estimation by LSE in WM-4 trajectory pattern-1.

square error) switches between all estimation models. Again, the best models for

x- and y-components are not necessarily the same. For example, Figs. 4.16 (a) and

4.17 (a) has EM-1 for x-component and EM-4 (mostly) for y-component during the

last phase of the simulations. Subfigures (c) presents the comparison of the residual

errors from all four estimation models. Both Figs. 4.16 (c) and 4.17 (c) show that the
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Ŵx

0 500 1000 1500 2000
0

20

40

60

Time [s]

W
y

v
s

Ŵ
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(d) Measured vs Estimated

Figure 4.15. Wind estimation by LSE in WM-4 trajectory pattern-2.

switching among all four estimation models occur when the estimation error becomes

very small compared to the values earlier in the simulation. This phenomenon can be

avoided, if considered detrimental, by adding a logic to prevent unnecessary switching

when the difference in estimation error is less than a threshold. Subfigures (d) show
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the comparison of the estimated local wind and the actual wind along the trajectory

of Aircraft-1.
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(d) Measured vs Estimated

Figure 4.16. Wind estimation by WLSE in WM-4 trajectory pattern-1.
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Figure 4.17. Wind estimation by WLSE in WM-4 trajectory pattern-2.

4.4.3 Wind Field Model-5 Case

4.4.3.1 Least Square Estimation Results

In this simulation case, the experiment is simulated with the spatially and

temporally varying horizontal wind vector field is generated by WM-5 when z = 7010

m, the wave length λ = 3×105 and the wave speedWwave(z, t) = 15+e
1

180
t+1×10−2t
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m/s, in order to investigate the performance of wind field estimation algorithms based

on LSE in the nonlinear wind vector field.
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(d) T = 2000 s

Figure 4.18. Aircraft trajectory pattern-1 in WM-5.

Figures 4.18 and 4.19-(a)-(d) shows the snapshots of the positions of and the

paths traveled by ten aircraft flying in spatially and temporally varying horizontal
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(d) T = 2000 s

Figure 4.19. Aircraft trajectory pattern-2 in WM-5.

wind field represented by WM-5, through trajectory pattern-1 and -2, at different

times, t = 100, 500, 1000 and 2000 s, respectively. Since the wind is varying with

position and time, the aircraft flying in different region and different time will be

exposed to the different wind strength and direction as shown by contour lines.
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The performance of the wind field estimation algorithms are shown in Figures

4.20 and 4.21 while the aircraft are flying in WM-5 through trajectory pattern-1

and -2, shown in Figs. 4.18 and 4.19, respectively. Subfigures (a) indicates the wind

estimation model with the least residual error by the EM number. Figs. 4.20 (a)

and 4.21 (a) show that EM-4 is always the estimation model with the least residual

error while the aircraft fly in WM-5 along both trajectory pattern-1 and -2 and in

both x- and y-component. Subfigures (b) shows the smallest residual error while

Subfigures (c) presents the comparison of the residual errors from all four estimation

models. Subfigures (d) show the comparison of the estimated local wind and actual

wind along the trajectory of Aircraft-1. Fig. 4.21 (d) shows an interesting result that,

while the aircraft flying through the trajectory pattern-2, the difference between the

estimated wind and actual wind components along x-axis is smaller than that when

the aircraft flying through the trajectory pattern-1. This indicates the the benefit of

collecting wind data from aircraft spread more over the area of operation.

4.4.3.2 Weighted Least Square Estimation Results

The performance of wind field estimation by implementing WLSE algorithms

are shown in Figures 4.22 and 4.23 while the aircraft are flying in WM-5 through

trajectory pattern-1 and -2, shown in Figs. 4.18 and 4.19, respectively. Subfigures (a)

indicates the wind estimation model with the least residual error by the EM number.

Fig. 4.22 (a) shows that the best estimation model switches between all estimation

models when aircraft fly through trajectory pattern-1 while Fig. 4.23 (a) indicates

that the best model is EM-4 in the first half of the simulation and switches between

all four in the rest of the simulation. Subfigures (b) shows the smallest residual

error while Subfigures (c) presents the comparison of the residual errors from all four

estimation models.
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Ŵ
x

 

 

Wx

Ŵx
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(d) Measured vs Estimated

Figure 4.20. Wind estimation by LSE in WM-5 trajectory pattern-1.

Both Figs. 4.22 and 4.23 show the discontinuous jumps in the estimated wind

components when the estimation model switches to EM-1. This implies that the

wind field estimation model with the smallest residual error does not necessarily give

the best local wind vector estimation along a specific trajectory even in the case
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(d) Measured vs Estimated

Figure 4.21. Wind estimation by LSE in WM-5 trajectory pattern-2.

of weighted LSE. The switching among the different estimation models should be

improved.

An estimation performance comparison between the LSE and WLSE shows that

the WLSE shows a better estimation in the sense that error between the estimated

wind and the actual wind along a trajectory is usually smaller. However, the WLSE
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(d) Measured vs Estimated

Figure 4.22. Wind estimation by WLSE in WM-5 trajectory pattern-1.

methods result in more frequent switching between the estimation models, which

causes discontinuity in the estimated local wind components.
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(d) Measured vs Estimated

Figure 4.23. Wind estimation by WLSE in WM-5 trajectory pattern-2.
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Chapter 5

TRAJECTORY PREDICTION

The recent growth of air transportation system and demand to integrate Un-

manned Aircraft System (UAS) into the national airspace system (NAS) in near

future, will result in overcrowded sky. However, safe, orderly and efficient air navi-

gation for every party should not be compromised [94]. The air traffic management

(ATM) and the air traffic control (ATC) have the key roles to these issues and counter

measures have been researched and experimented for decades. Among the solutions

considered is to obtain the accurate knowledge of intended aircraft motion and hence

its intended trajectory in the intended area of operation.

The knowledge of intended aircraft trajectory within some look ahead time

(e.g., 2 minutes for short term or greater than 20 minutes for long term) will enhance

the situational awareness for both pilot and ATC. The intended aircraft trajectory is

the output of the trajectory prediction algorithms, which are the core processes that

reside in both advanced airborne (Flight Management System (FMS)) and ground -

based decision support tool (DST). The aircraft trajectory prediction or the prediction

of four-dimensional (4D) aircraft trajectories are the key fundamental information for

many advance ATC and ATM concepts [95]. The advanced DSTs are the promising

solution to overcome the human factor limitation to deal with increasing capacity of

the aircraft in the sky, in order to guarantee safety and efficiency of air navigation.

Additionally, the trajectory prediction plays an important role in the light aircraft,

gliders [96] and unmanned aircraft system (UAS) [97] application, which is expected
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to be integrated into NAS in near future, for example, in conflict detection and

avoidance capability for safety operations.

It is obvious that the predictability of aircraft trajectory or the accuracy of the

predicted trajectory from trajectory prediction algorithms will improve the effective-

ness of DST, which is trajectory based operation (TBO), reduce fuel consumption

and emissions [62]. However, the prediction is never perfect due to several sources

of error as presented in [23]. Inaccurate wind information is the major source of air-

craft trajectory prediction error. Additionally, the lack of flight and aircraft intent

information will result in aircraft trajectory prediction error as well.

5.1 Overview of Trajectory Prediction Process

The discrete equations given in Section 3.2.3 are propagated using the 4th order

Runge-Kutta method. The propagation starts from the current time and runs through

the whole “prediction period” specified by the “look ahead time”. The precision of

propagation is specified by the “update rate”. Fig. 5.1 demonstrates the input-output

interface of the trajectory prediction module in simulation. The trajectory prediction

requires the following for propagation of the equations:

1) Aircraft parameters such as mass, wing span, wing reference area.

2) The current values of the aircraft state variables (V, γ, µ, x, y, z).

3) The input variables (ζ, α, q, δe, δr, T ) specified through the whole prediction

period. The variations of the input variables through the prediction period can be

specified if the aircraft intent information is available. Otherwise, the inputs are

assumed to stay at their current values.

4) Wind components (Ŵx, Ŵy, Ŵz) and derivatives (
˙̂
Wx,

˙̂
Wy,

˙̂
Wz) computed

by the estimated wind field model.
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Figure 5.1. Trajectory prediction process block diagram.

This trajectory prediction process, which incorporates intent information and

estimated wind field in the prediction process is summarized in the form of an algo-

rithm as follows.
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Algorithm : Trajectory Prediction with Intents and Estimated Wind Information

1: Initialization.

Read Initial States : x0, y0, z0, V0, γ0, µ0

Read Initial Input/Control Variables : δT0 , δe0 , α0, q0, ζ0

Read Estimated Wind : Ŵx, Ŵy, Ŵz,
̂̇W x,

̂̇W y,
̂̇W z

2: Prediction.

Propagate the states from tk → tk +∆tLH

Check if the predicted states require flight mode change.

[1] Yes : Go to nominal condition analysis

Find when this event occurs? Assign as tb

Recalculate the input/control variables based-on intent information

Propagate the states from tb − 1 → ∆tLH

Store the result from tk → tk +∆tLH

Go to next step

[2] No : Go to next step

3: End Prediction.

Output the predicted position

5.2 Nominal Condition Analysis

The trajectory prediction process consists of the propagation of the PMM-

based equations of motion throughout the prediction period. For the solution of the

differential equations, the initial conditions of the state variables are set to the current

values and the control variables are kept constant at the current values throughout the

propagation period. This implies that the aircraft is assumed to continue flying in the

current flight mode throughout the whole prediction period. The intent information

may reveal that the aircraft will change flight mode within the prediction period.
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This may be a time-based schedule or an event-based mode change. In the case of

a mode change, the control variables should not be kept at their current values and

need to be recalculated. The recalculation of the control variables requires a nominal

or trimmed condition analysis if it is assumed that the second mode of flight is a

trimmed flight condition. At the time of the mode change, for a selected set of state

variables, the values of the state variables right before the mode change are used as

the nominal values of the states in the second flight mode. Based on these nominal

state variables and the nature of the flight mode, a trimmed condition analysis is

carried out to determine the required nominal values of the control variables in the

second mode of flight. For example, an aircraft is flying in straight-level flight and its

known intent is to switch to a steady-state turn with a specified turn rate and speed

at the same constant altitude when the aircraft reaches a certain position. If the

predicted trajectory of the steady straight-level flight reaches the specified position

within the prediction period, a trim analysis of the steady turn flight is carried out to

determine the required nominal values of the control variables. The values of these

control variables and the state variables at the time of the flight mode switch are

used to propagate the PMM-based equations of motion in the rest of the prediction

period.

The trimmed condition analysis is carried out with a specified speed V and yaw

rate µ̇. The pitch rate q is set to zero and the angle of attack α is set to a constant.

Further, the flights in this research are limited to constant altitude, which implies

that ż = 0. Then, the PMM-based equations of motion in Eq. (5.1)-(5.3) yield three
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algebraic equations for the trimmed flight specified, which are solved for the control

variables (δT0 , δe0 , ζ0).

0 = KPM1δT −KPM2V
2 −KPM3α

2V 2

− g sin(γ) (5.1)

0 = KPM4V +KPM5αV +KPM6(α− αref )
2V

+ KPM7q +KPM8δeV − g

V
cos(γ) (5.2)

0 = KPM4
sin(ζ)

cos(γ)
V +KPM5

sin(ζ)

cos(γ)
αV

+ KPM6
sin(ζ)

cos(γ)
(α− αref )

2V +KPM7
sin(ζ)

cos(γ)
q

+ KPM8
sin(ζ)

cos(γ)
δeV (5.3)

where

KPM1 =
Tmax

m
KPM2 =

ρSCD0

2m
KPM3 =

ρSCDα2

2m

KPM4 =
ρSCL0

2m
KPM5 =

ρSCLα

2m
KPM6 =

ρSCLα2

2m

KPM7 =
ρScCLq

4m
KPM8 =

ρSCLδe

2m

5.3 Simulation Results

5.3.1 Utilization of Spatially Varying Wind in TP

The simulation cases presented here are the same as those presented in Section

4.4.2.1 where wind field estimation was performed. Two different simulation cases are

run with Wind Model-4 but its parameters are set differently. The second case has

stronger wind (25% of the aircraft airspeed) overall compared to the first case (13%).

There are 10 aircraft flying in the area and the trajectory prediction is carried out

for Aircraft-1 and -2. The role of the other aircraft in the simulation is to provide

local wind information for wind field estimation. No intent information is used for
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trajectory prediction in the simulation presented in this section. That is, the aircraft

inputs are assumed to stay constant at their current values. The trajectory predictions

are performed in two cases: (i) wind information formulated in the estimated wind

field models is used in the propagation of the equations and (ii) it is assumed that

there is no wind and thus the wind terms are ignored in the propagation equations

although the aircraft are flying in the presence of the spatially varying wind. The

“look ahead time” and “update rate” are set to be 120 sec and 10 sec, respectively.

Fig. 5.2 shows a comparison of simulation results of trajectory prediction of Aircraft-1
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Figure 5.2. Comparison of predicted and actual trajectories and prediction errors.
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in spatially varying wind according to Wind Model-4. Note that 4th order Runge-

Kutta method is used to propagate the aircraft states. Fig. 5.2-(a) shows the actual

trajectory and the predicted trajectories at 4 different points, i.e., (i) right before the

turn starts, t = 100 s, (ii) right after the turn starts, t = 110 s, (iii) right before the

turn ends, t = 200 s, and (iv) right after the turn ends, t = 250 s. Note that the

magnitude of the wind is approximately 13% of the aircraft speed at those points.

Note also that two predicted trajectories are shown for each of these four times.

The red ones are the trajectories predicted with the estimated wind field included

in the propagation while the black ones are the trajectory predictions done under

the assumption of no wind although the aircraft is subject to spatially varying wind.

Fig. 5.2-(b) shows the prediction errors in x- and y-axes. The prediction errors are

computed by comparing predicted aircraft position at a time with the position the

aircraft actually ends up at the specified time.

Fig. 5.2-(c) and 5.2-(d) show the same comparisons when the aircraft flies within

a stronger wind field. the magnitude of the wind vectors the aircraft experiences

are about 25% of the aircraft speed as opposed to 13% in Fig. 5.2-(a) and 5.2-(b).

The comparisons in both wind conditions show that the incorporating wind effect in

trajectory prediction improves the accuracy. Further, the degradation in prediction

accuracy is shown to be worse in stronger wind field when the wind field information

is not used in propagation of the equations.

Fig. 5.3 shows the prediction errors in xy-graph. The prediction error are com-

puted as the difference between the actual trajectory and the predicted trajectory

computed at 200 s, right before the turn ends. For each case, the prediction error

starts from the origin as that is the initial time for the prediction. As time progress,

the corresponding point in each curve moves away from the origin. The last points

in each curve represents the prediction error after 120 s as that is the look ahead
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Figure 5.3. Comparison of prediction error of Aircraft-1 at t = 200 s.

time. The most important observation from Fig. 5.3 is about the sensitivity of the

prediction to wind strength. When the trajectory prediction includes wind field in-

formation, the trajectory prediction is more robust as opposed to the cases where

trajectory prediction is done without wind considered. This can be seen by the fact

that “25%, wind ignored” curve moves very far away from “13%, wind ignored” curve

while “25%, wind included” stays relatively close to “13%, wind included.”

5.3.2 Utilization of Spatially and Temporally Varying Wind in TP

This section presents various simulation cases of trajectory prediction with both

intent and wind field information included.

5.3.2.1 Flight Plan and Intents

In the simulation cases presented below, the aircraft starts flying from point

A with coordinates (xA, yA) = (100,−100) with heading angle µA in a straight level

flight with constant speed and at constant altitude. The intent of the aircraft is

to start a steady level turn with a constant turn rate µ̇(B,C) when its x-coordinate
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Figure 5.4. Sketch of the intended flight trajectory.

reaches xB = 2.471× 105. The aircraft intends to continue on the steady turn with a

constant turn rate of µ̇c until its heading changes by ∆µ. After this point, the intent

of the aircraft is to switch back to steady straight level flight. The depiction of the

intended flight path is shown in Fig. 5.4 and the parameters of the intended flight

simulated in this section are given in Table 5.1.

Table 5.1. Details of flight plan and intents

Flight plan and intents
Flight segment Description Intents ([m/s], [m], [deg/s], [deg])
A → B Straight flight Constant speed, altitude, and heading

Vc = 190, zc = 7010, µc = 0
B → C Turning flight Constant speed, altitude, and turn rate

Vc = 190, zc = 7010, µ̇c = 0.4, ∆µ = 90
C → Straight flight Constant speed, altitude, and heading

Vc = 190, zc = 7010
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In all simulation cases, ten aircraft fly in the same airspace of operation, which

covers an area of 500× 500 km. All aircraft fly at a constant altitude of 7010 m with

constant speed of 190 m/s. The trajectory prediction is carried out for Aircraft-1.

The role of the other aircraft in the simulation is to provide local wind information

for wind field estimation, which is implemented by WLSE. The parameter used in

the mathematical model of Aircraft-1 represent KC-135 aircraft. The trajectory pre-

dictions are performed in four cases, as described in Table 5.2, depending on whether

the wind field estimation and/or intent information are included in trajectory prop-

agation. In all four cases, the “look ahead time” and “update rate” are set to be 120

sec and 10 sec, respectively.

Table 5.2. Four trajectory prediction cases based on whether wind field estimation
and/or intent information included in propagation

Case Wind field Estimation Intent Information
i NO NO
ii YES NO
iii NO YES
iv YES YES

5.3.2.2 Wind Field Model-1 Case

In the following simulation case presented, all 10 aircraft are exposed to a

spatially and temporally varying wind field as modeled by WM-1 as described in

Section 2.1 and shown in Fig. 5.5. The magnitude of the wind Aircraft-1 is exposed

to in simulation is approximately 13% of its airspeed. Fig. 5.5 also shows the paths

of the ten aircraft by dashed lines and directions by the airplane.

95



−1 0 1 2 3 4

x 10
5

−1

0

1

2

3

4

x 10
5

N
o
rt

h
(x

)
[m

]

East(y) [m]

 

 

20

40

60

80

100

120

140

Figure 5.5. Paths of ten aircraft in simulation. The path of Aircraft -1 is red dashed
line.

Figs. 5.6-(a) and 5.6-(b) show the comparison of the predicted trajectories in

the four cases described in Table 5.2 with the actual trajectory. Fig. 5.6-(a) shows

the trajectory predictions computed at t = 1320 sec. During this prediction period,

the aircraft switches from the first straight level flight mode to the turn mode. Fig.

5.6-(b) shows the same computed at t = 1580 sec and, during this prediction period,

the aircraft moves from turn flight mode to the second straight level flight mode.

Figs. 5.7-(a) and 5.7-(b) show the prediction errors during the prediction period

until the look ahead time (∆tLH = 120 sec), in terms of along-track and cross-

track errors, for all four cases. Fig. 5.7-(a) shows along-track and cross-track errors

computed at t = 1320 sec. Fig. 5.7-(b) shows the same prediction errors computed

at t = 1580 sec. This plots clearly show the benefit of including intent and wind

information in trajectory prediction.

Fig. 5.8 shows the prediction errors in xy-graph. The prediction errors are

computed as the difference between the actual trajectory and predicted trajectory at

t = 1320 and 1580 sec. For each case, the prediction error starts from the origin as
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Figure 5.6. Predicted trajectory cases versus actual trajectory.
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Figure 5.7. Trajectory prediction errors for all four cases.

that is the initial time for prediction. As time progresses, the corresponding point in

each curve moves away from the origin. The last points in each curve represents the

prediction error after 120 sec as that is the look ahead time. The most important

observation from Fig. 5.8 is about the sensitivity of the prediction accuracy to wind

and intent information. When the trajectory prediction includes wind field and intent
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information, the trajectory prediction is more accurate as opposed to the cases where

trajectory prediction is done without wind and with or without intent information

considered. For example, this can be seen in Fig. 5.8-(a) by the fact that “− wind, −

intent” and “− wind, + intent” and “− wind, − intent” curve moves very far away

from the origin while “+ wind, + intent” curve stay relatively close to the origin.
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Figure 5.8. Comparison of trajectory prediction error of Aircraft-1.

5.3.2.3 Wind Field Model-4 Case

In the following simulation case presented, all 10 aircraft are exposed to a

spatially and temporally varying wind field as modeled by WM-4 as described in

Section 2.4 and shown in Fig. 5.9. The magnitude of the wind Aircraft-1 is exposed

to in simulation is approximately 21% of its airspeed. Fig. 5.9 also shows the paths

of the ten aircraft by dashed lines and directions by the airplane.

Figs. 5.10-(a) and 5.10-(b) show the comparison of the predicted trajectories in

the four cases described in Table 5.2 with the actual trajectory. Fig. 5.10-(a) shows
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Figure 5.9. Paths of ten aircraft in simulation. The path of Aircraft-1 is red dashed
line..

the trajectory predictions computed at t = 1320 sec. During this prediction period,

the aircraft switches from the first straight level flight mode to the turn mode. Fig.

5.10-(b) shows the same computed at t = 1550 sec and, during this prediction period,

the aircraft moves from turn flight mode to the second straight level flight mode.
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Figure 5.10. Predicted trajectory cases versus actual trajectory.
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Figs. 5.11-(a) and 5.11-(b) show the prediction errors during the prediction

period until the look ahead time (∆tLH = 120 sec), in terms of along-track and cross-

track errors, for all four cases. Fig. 5.11-(a) shows along-track and cross-track errors

computed at t = 1320 sec. Fig. 5.11-(b) shows the same prediction errors computed

at t = 1550 sec.
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Figure 5.11. Trajectory prediction errors for all four cases.

Fig. 5.12 shows the prediction errors in xy-graph. The prediction errors are

computed as the difference between the actual trajectory and predicted trajectory

computed at t = 1320 and 1550 sec. For each case, the prediction error starts from

the origin as that is the initial time for prediction. As time progresses, the correspond-

ing point in each curve moves away from the origin. The last points in each curve

represents the prediction error after 120 sec as that is the look ahead time. The most

important observation from Fig. 5.12 is about the sensitivity of the prediction accu-

racy to wind and intent information. When the trajectory prediction includes wind

field and intent information, the trajectory prediction is more accurate as opposed to
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Figure 5.12. Comparison of trajectory prediction error of Aircraft-1.

the cases where trajectory prediction is done without wind and with or without intent

information considered. For example, this can be seen in Fig. 5.12-(a) by the fact

that “− wind, − intent” and “− wind, + intent” and “− wind, − intent” curve moves

very far away from the origin while “+ wind, + intent” curve stays close to the origin.
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Chapter 6

INPUT PREDICTION

Rapid growth in air transportation along with plans for integration UAS into

civilian airspace requires better situational awareness for both air traffic controllers

and onboard pilots in terms of flight trajectories of aircraft relative to each other. In-

formation about aircraft current positions and intended trajectories can help mitigate

the risk of conflict and collision between aircraft operating in the same airspace. In

the case of an emergency such as engine failure or loss of control surface effectiveness,

it becomes imperative to compute feasible trajectories in order to determine alterna-

tive landing fields. Accuracy and reliability of trajectory prediction enhanced by the

information of wind variation will improve the performance of various tasks such as

conflict detection and avoidance, and planning of emergency landing.

In some cases, instead of computing the trajectory of an aircraft, a predefined

trajectory is given to aircraft to fly. For example, when conflict with another aircraft

is detected, conflict avoidance algorithms compute new trajectories for the aircraft

to follow to avoid the conflict. Another example is the emergency landing situation

mentioned above. Once an emergency occurs and emergency landing is required, a

trajectory is prescribed for the aircraft to follow to the emergency landing site. There

are cases where military aircraft are required to follow a prescribed trajectory, for

example, in combat maneuvers or in rendezvous with other aircraft such as in aerial

refueling. The feasibility of such prescribed trajectories requires the control surface

deflections and engine thrust to be within their saturation and rate limits. This leads

to the problem of “input prediction” which is to compute the required control surface
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deflections and engine thrust for the aircraft to fly through the prescribed trajectory.

The feasibility of a given trajectory depends on atmospheric wind conditions as much

as the capabilities of the aircraft. Thus, in this problem, too, the information of wind

field will improve the prediction of required input variation.

The aircraft trajectory prediction, which can be considered as an application of

conventional (forward) simulation techniques. In that case, the equations of motion,

generally linear or nonlinear differential equations, are solved starting with initial con-

ditions for prescribed time variations of input variables, or forcing terms, as studied

in Chapter 5. In the problem of trajectory prediction, for prescribed future variation

of the input variables, the forward simulation techniques determine how the aircraft

states will vary in the immediate future by solving the differential equations starting

from the current aircraft states. In other problems, the inverse is desired. Namely, the

trajectory of the aircraft is prescribed and the question is to determine the required

input variation for the aircraft to follow the prescribed trajectory. Such methods are

referred to as “inverse simulation” or “input prediction” [63]. By using the concept of

inverse simulation, the feasibility of a desired trajectory can be determined in terms

of whether the variations of control variables will be within their saturation and rate

limits. This analysis can be made more precise by taking into account the effect of

wind on aircraft trajectory, which will benefit from knowledge of the wind variation,

i.e. the wind field, in the airspace of operation.

This chapter applies the iterative differentiation-based inverse simulation method

[98] to predict required input variation for a KC-135R aircraft to fly a prescribed

trajectory in the presence of spatially and temporally varying wind. The iterative

differentiation method is selected in this research because of its computational feasi-

bility. The input prediction procedure carried out in this research incorporates the
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wind field estimation as detailed in Chapter 4 into the inverse simulation to account

for the effect of the wind on the required control variation.

Two versions of input prediction are developed: (1) for offline implementation

and (2) online implementation. The simulation cases of both methods presented here

are to demonstrate the benefits of including estimated wind information in inverse

simulation for input prediction.

6.1 Prescribed Trajectory for Inverse Simulation

The first step of inverse simulation is to specify the desired trajectory, which

is the input to any inverse simulation model. There are various ways to prescribe

aircraft trajectory or flight maneuvers. The most common and natural method is to

specify the position of the aircraft with respect to the inertial frame as a function

of time, i.e., x(t), y(t) and z(t) [99]. This can also be done by specifying path of

the CM of the aircraft in the inertial frame and the speed of the aircraft along the

path or in terms of the heading angle µ(t) and flight path angle γ(t). Another aspect

of the prescribed trajectory is to specify or determine the variation of the aircraft

attitude or orientation, which influences the trajectory of the CM through changing

the direction of the applied forces and moments [100].

6.2 Off-line Case

Specific steps followed for input prediction are listed below.

1) The desired trajectory is defined, as depicted in Fig. 6.1, in terms of the

initial heading angle µ(0), the length of the first straight flight leg l1, the change in

heading ∆µ in a circular turn with a specified lateral offset hos and the length of

the 2nd straight flight leg l2. Note that for a race track maneuver, the heading angle

104



change ∆µ should be 180 degrees. This method facilitates the formulation of a path

in inertial frame.

Figure 6.1. Desired trajectory specification.

2) The aircraft speed VI(t) along the path from the first step is specified. Note

that VI is the speed relative to the inertial frame. Thus, the path and the resultant

trajectory are fixed in inertial frame regardless of the wind condition.

3) For the turn segment of the trajectory, the heading angle rate is computed

by

µ̇ =
VI
hos

[1− cos(∆µ)] (6.1)

where hos is positive for right turns and negative for left turns. Integration of Eq. (6.1)

will give the time variation of heading angle µ(t). For the straight flight legs, µ̇ = 0.

The translation between the straight flights and turns are managed by smoothing the

µ̇ through a first-order filter.

4) Setting the flight path angle γ(t) = 0, for flight at constant altitude, the

desired trajectory in terms of position (x(t), y(t), z(t)) within the inertial frame is

obtained by integrating Eq. (3.31)-(3.33) in Section 3.2.1.
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5) The attitude variation along the trajectory is determined as follows. First

of all, yaw angle is assumed to be equal to the heading angle, i.e., ψ(t) = µ(t). The

pitch angle is assumed to be constant. Specifically, for the flight cases considered,

θ(t) = 0. For the straight legs, the bank angle is set to be zero, ϕ(t) = 0. During the

turns, the bank angle is computed, with the assumption of steady-state coordinated

turn, by

ϕ = arctan
(V µ̇)

g
(6.2)

For the details of derivation, see in Ref. [101].

6) Once the Euler angles and their time-derivatives are specified, the angular

velocity components (p, q, r) are calculated by rotational kinematics such as in

Eq. (3.9)-(3.11).

7) Using all the variables specified or computed in the earlier steps in solving

algebraic equations given in Section 3.3.3 yields the angle of attack α, side slip angle

β, and more importantly the control/input variables (δe, δa, δr, δT ). Solution to

the nonlinear algebraic equations are obtained using MATLAB’s command fsolve.

The wind components and their derivatives needed for the solution of the algebraic

equations are obtained from the wind field model used in the simulations.

6.2.1 Simulation Results

Various simulation cases are run to predict the required control input variation

(aerodynamic control surface deflections and thrust setting) for a KC-135 aircraft to

fly through a racetrack maneuver with a specified speed within a spatially varying

wind field. Through this process, feasibility of a prescribed trajectory is determined.

The predicted input variations are compared against the saturation and rate limits of

the corresponding control variable. This reveals the feasibility if all control predictions
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are within saturation and rate limits. If a control variable is predicted to violate

saturation or rate limits, this can lead to concluding the infeasibility of the prescribed

trajectory. That is, the aircraft can not fly the desired trajectory.

In the following subsections, two different sets of simulation runs are presented.

The first set includes input predictions for different speed and turn rates of the race

track maneuver. The second set shows the effect of different wind fields on the

predicted input variations.

6.2.1.1 Simulation with Different Speed and Turn Rates

Two sets of simulations are presented in this section. (1) Two cases with speed

of 180 and 220 m/s. (2) Two cases with turn rates of 0.89 and 3.52 deg/s. The desired

trajectories have constant altitude of 7010 m. The flights will take place within spa-

tially varying wind fields generated by Wind Model-1. The paths within the inertial

frame are shown in Fig. 6.2-(a) and (b) along with the wind vector fields. Fig. 6.3

shows the input predictions in all four cases. Figs. 6.3 also shows the predicted input

in case of flying the same maneuver in the absence of wind. Figs. 6.3(a) and 6.3(b)

show the input predictions with the two different speeds. As expected, the figures

show that higher speed requires higher control surface deflections during the turns.

Further, the effect of wind exposure can be clearly seen through a comparison between

“wind” and “no wind” cases. Figs. 6.3(c) and 6.3(d) show the input predictions with

the two different turn rates. As also expected, shaper turns require larger control

surface deflections and higher thrust setting. Effect of the wind exposure can also be

clearly seen in these cases. However, certain behaviors observed in control predictions

in these cases are difficult to explain. For example, while the aircraft makes a right

turn with both 180 and 220 m/s, aileron and rudder deflections show opposite signs

in Fig. 6.3(a). Another example is in the thrust response. Fig. 6.3(b) shows thrust
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decrease during turn when speed is 180 m/s. These observations reveals the need to

investigate the solutions obtained from fsolve commands as fsolve command generates

solutions that are highly dependent on the initial guesses.
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Figure 6.2. Prescribed trajectories with different constant airspeed and turn rates.

6.2.1.2 Simulations with Different Wind Fields

In this section, aircraft is required to make a racetrack maneuver in different

wind fields. The desired speed along the racetracks is 190 m/s and the altitude is

7010 m. The turn rates are 3.52 deg/s. The racetracks are shown in Figs. 6.4(a)

and (b) overlaid on Wind Model-1 and Wind Model-3 wind fields, respectively. The

coefficients of Model-1 are D = 4 × 10−6, F1 = 3 × 10−4, F2 = 5 × 10−4, and

ζ = 5×10−7. The coefficients of Model-3 are A(z, t) = −2×10−5, B(z, t) = −2×10−5,

C(z, t) = 2× 10−5, and E(z, t) = −2× 10−5.
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Figure 6.3. Predicted input variables and aerodynamic’s angle.

Fig. 6.5 shows the input predictions for the aircraft flying in the absence of wind,

within Model-1 wind field and within Model-3 wind field. The plots clearly show the
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(b) Wind Model-3

Figure 6.4. Prescribed trajectories in different wind field model.

effect of the presence of wind and the structure of the wind field on the required inputs

for an aircraft to fly through a desired trajectory. Further, a stronger wind (Wind

Model-3 in this case) requires larger input variables to complete a turn. However,

the direction of the wind as much as the magnitude affects the input prediction. For

example, if the aircraft happens to be flying in a tail wind region, the required thrust

is lower as can be seen in Fig. 6.5(b) in the case of Wind Model-1.

If the same racetrack maneuver is to be executed in a much stronger wind field

such as the one shown in Fig. 6.6, the required control/input variation may exceed

the saturation limits. The wind field shown in Fig. 6.6 is generated by Wind Model-4

with parameters A = 1.5, B = C = D = 1, and E = 10×10−4. In this wind field, the

magnitude of the wind can go as high as 50% of the desired speed. Fig. 6.7 shows that

very large control surface deflections are required to execute the desired maneuver.

In fact, the required aileron and rudder deflections exceed their limits. Further, the
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Figure 6.5. Predicted control surface deflections comparison in Wind Model-1 and -3.
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Figure 6.6. Prescribed trajectory in strong Wind Model-4.

required thrust saturates at the lower limit. If the wind field is adequately estimated

and the estimated wind field is properly used in input prediction, this maneuver would

not be initiated because the control saturation would be accurately predicted.
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Figure 6.7. Predicted input in strong wind that would lead to input saturation.

6.3 Online Case

This section presents the details of online input prediction (IP) through inverse

simulation and its implementation in simulation. The particular emphasis is on in-

put prediction for aircraft flying in a spatially and/or temporally varying wind field.

The simulation cases presented investigate the feasibility of a KC-135 aircraft to fly

through (i) an accelerating-decelerating rectilinear trajectory and (ii) a racetrack tra-

jectory. While the aircraft flies through the prescribed trajectory, it will be exposed

to spatially and/or temporally varying wind vector. To account for this effect on the

input prediction, the inverse simulation procedure will process the estimated wind

field to compute the local wind vector along the prescribed trajectory.

6.3.1 Accelerating-Decelerating Rectilinear Trajectory

Accelerating-decelerating rectilinear trajectory represents a flight condition along

a straight line in the inertial frame with varying airspeed. This type of flight maneu-

112



ver needs to be executed for various reasons such as to maintain a desired separation

with other aircraft or to avoid conflict with aircraft while maintaining current heading

and altitude. The variation of the speed while the aircraft moving along a straight

line is modeled as [102]

V (t) =



V0 for t < t1 or t > t2 + T2

V0 +
V0

16 (cos(3π(
t−t1
T1

))− 9 cos(π( t−t1
T1

)) + 8) for t1 ≤ t < t1 + T1

V0 + Vd for t1 + T1 ≤ t ≤ t2

V0(1− V0

16 (cos(3π(
t−t1
T1

))− 9 cos(π( t−t1
T1

)) + 8)) for t2 ≤ t ≤ t2 + T2

(6.3)

where V0 is the ground speed of the aircraft at the start of IP precess, Vd is the total

increase (decrease if negative), and t1, T1, t2, and T2 are time parameters to specify

the times of start, duration and end of speed change. Fig. 6.8 shows a speed change

profile based on Eq. (6.3) when t1 = 5 s, t2 = 65 s, and T1 = T2 = 20 s, Vd = 20 m/s.
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Figure 6.8. Airspeed variation with time.

As depicted in Fig. 6.9, for an accelerating-decelerating prescribed trajectory

starting from point O at x0, y0, z0, the current aircraft states such as airspeed,

heading angle, flight path angle, position and altitude are used for initial conditions.
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Starting from these initial conditions and using the specified airspeed variation, the

translational kinematics equation is used to generate the prescribed trajectory within

the prediction period, specified by time horizon, tLH . For rectilinear trajectory, the

heading and flight path angles are kept constant at their current values.

Figure 6.9. Prescribed accelerating-decelerating rectilinear trajectory.

6.3.2 Curvilinear Trajectory

This type of trajectory is typical for aircraft performing a turn maneuver. There

are several ways to describe a turn maneuver such as, constant turn radius, constant

bank angle or constant turn rate. Turning maneuvers are part of normal aircraft

operation such as holding pattern for safe separation or flying a racetrack maneuver

in aerial refueling. They can also be part of a critical operation such as in conflict or

collision avoidance.
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In this research, the prescribed turning trajectory is modeled by specifying the

variation of heading rate as a function of time. This function is adopted from Ref.

[102], which used it to represent the roll angle variation with time for turn maneuvers,

µ̇(t) =



0 for t < t1 or t > t2 + T2

µ̇d

16 (cos(3π(
t−t1
T1

))− 9 cos(π( t−t1
T1

)) + 8) for t1 ≤ t < t1 + T1

µ̇d for t1 + T1 ≤ t ≤ t2

µ̇d(1− µ̇d

16 (cos(3π(
t−t1
T1

))− 9 cos(π( t−t1
T1

)) + 8)) for t2 ≤ t ≤ t2 + T2

(6.4)

where µ̇d is the maximum desired value of the heading angle rate, t1 and t2 are times

at the start and end of maneuver, T1 and T2 are time for transition from straight

flight maneuver to turning maneuver and from turning maneuver to straight flight

maneuver, respectively. The maximum turn rate µ̇d is computed by

µ̇d =
VI
hos

[1− cos(∆µ)] (6.5)

based on constant speed VI , desired heading change ∆µ and lateral offset hos during

the turn, where hos is positive for right turns and negative for left turns.

The curvilinear trajectory is used for defining a prescribed racetrack maneuver

as depicted in Fig. 6.10. As done in the previous section, the prescribed trajectory is

initialized using the current state variables of the aircraft. The turn is defined by the

pertaining parameters included in Eq. (6.4) and (6.5). An example of the heading

rate variation is shown in Fig. 6.11. For a racetrack maneuver, the heading angle

change ∆µ should be 180 degrees. Fig. 6.11 shows the heading rate variation with

time horizon of tLH = 350 s. The start and end times of the turn are t1 = 100 s

and t2 = 214 s, the transition time durations are T1 = T2 = 30 s. The lateral offset

hos = 2.747× 104 m and VI = 190 m/s.
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Figure 6.10. Prescribed racetrack trajectory.
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Figure 6.11. Heading rate variation with time.

6.3.3 Calculation of Prescribed Trajectory Variables

In the previous section, the prescribed trajectory is defined in terms of time

variation of ground speed, heading and flight path angles as well as their derivatives.

This section details the procedure to calculate the other variables of the prescribed

trajectory.
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In Eqs. (3.61)-(3.63) and (3.67)-(3.69), the variables are V , β, α, ψ, θ, ϕ, δa,

δe, δr, and δT . Given a prescribed trajectory, four of these ten variables should be

computed and then the six equations will be solved for the remaining six variable.

Since the objective herein is to predict the input variable, four should be the control

variables and the other two are selected to be β and α. This means that V , ψ, θ and

ϕ should be determined from the prescribed trajectory. In the six equations, values

of the variables needed from the previous discrete time V(n−1), β(n−1), α(n−1), ψ(n−1),

θ(n−1), ϕ(n−1) are known at current discrete time from the computation of the previous

discrete time.

1) The prescribed trajectory is defined and calculated from the translational

kinematics equation as

ẋ = VI cos γI cosµI (6.6)

ẏ = VI cos γI sinµI (6.7)

ż = −VI sin γI (6.8)

where ẋ, ẏ, ż are the aircraft ground velocity components expressed in the inertial

frame, VI is the speed relative to inertial frame, γI is the flight path angle, µI is the

heading angle.

2) For the turning segment of the trajectory, the heading angle rate is computed

by

µ̇I =
VI
hos

[1− cos(∆µI)] (6.9)

where hos is positive for right turns and negative for left turns. Integration of Eq. (6.9)

will give the time variation of heading angle µI(t). For the straight flight legs, µ̇I = 0.

3) For flight at the constant altitude, γI = 0, the desired trajectory in terms of

position (x(t), y(t), z(t)) within the inertial frame is obtained by integrating Eq. (6.6)-

(6.8).
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4) Differentiating Eq. (6.6)-(6.8) in order to obtain the inertial acceleration as

ẍ = V̇I cos γI cosµI − VI γ̇I sin γI cosµI − VI µ̇I cos γI sinµI (6.10)

ÿ = V̇I cos γI sinµI − VI γ̇I sin γI sinµI + VI µ̇I cos γI cosµI (6.11)

z̈ = −V̇I sin γI − V γ̇I cos γI (6.12)

where ẍ, ÿ, z̈ are the acceleration components of the aircraft’s CM with respect to the

inertial frame.

5) As stated earlier, V , ψ, θ and ϕ should be determined from the prescribed

trajectory. In the following, the procedure to calculate these variables are explained.

5.1) The components of aircraft ground velocity in inertial frame, formulated

in Eqs. (6.6)-(6.8), can also be written in terms of the velocity with respect to air and

the wind velocity vector as Eq. (6.13)
ẋ

ẏ

ż

 = RT
WG


V

0

0

+


Wx

Wy

Wz

 (6.13)

which leads to

ẋ−Wx(x, y, z, t) = V cos γ cosµ (6.14)

ẏ −Wy(x, y, z, t) = V cos γ sinµ (6.15)

ż −Wz(x, y, z, t) = −V sin γ (6.16)

where ẋ, ẏ, ż are computed from Eqs. (6.6)-(6.8) and Wx,Wy,Wz from the approxi-

mate model of the wind velocity vector field. Thus, these equations are solved to lead

to

tanµ =
ẏ −Wy

ẋ−Wx

(6.17)

sin γ =
−(ż −Wz)

V
(6.18)
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V =
√
(ẋ−Wx)2 + (ẏ −Wy)2 + (ż −Wz)2 (6.19)

5.2) With V computed in the previous step, the following steps are to compute

the other three variables ψ, θ, ϕ from the prescribed trajectory. This will be done

first by determining the angles of the wind frame, (µ, γ, ξ) with respect to the inertial

frame. Note that µ and γ are already computed in the previous step. Thus, only ξ,

“the roll angle of the frame” is left to be computed. For this, a method introduced

in [103, 104] is used. The applied force vector for atmospheric flight consists of two

parts, which are the aerodynamic/propulsive force and the weight as

f
¯
= A

¯w +mg
¯

(6.20)

where f
¯
is the resultant force acting at the aircraft CM, A

¯w is aerodynamic/propulsive

force, which will be represented later in wind frame and g
¯
is the gravitational force

vector, which will be represented in local frame. Note from the definitions of the

reference frames in Appendix A, the local frame, which is moving with the aircraft,

is always parallel to the inertial frame. Newton’s 2nd Law implies that

f = macw (6.21)

where f is the representation of the applied force vector in wind frame, m is the mass

of aircraft and acw is the representation of acceleration of aircraft’s CM in wind frame.

Since (ẍ, ÿ, z̈), computed in Eqs. (6.10)-(6.12), are the components of the acceleration

vector in the inertial frame and acw is the representation of the same vector in the

wind frame, they are related through the rotation matrix from local frame (always

aligned with the inertial frame) to the wind frame as

acw = RWG


ẍ

ÿ

z̈

 (6.22)
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where RWG the rotation matrix from local frame to wind frame is expressed in terms

of (µ, γ, ξ) as

RWG =



cos γ cosµ cos γ sinµ − sin γ

− cos ξ sinµ cos ξ cosµ sin ξ cos γ

+sin ξ sin γ cosµ sin ξ sin γ sinµ

sin ξ sinµ − sin ξ cosµ cos ξ cos γ

+cos ξ sin γ cosµ +cos ξ sin γ sinµ



(6.23)

which is the rotation matrix constructed using 3-2-1 sequence of elementary rotations

with angles µ around the 3rd axis, γ around the 2nd axis and ξ around the 1st axis.

Note that the 1st axis of the wind frame is, by definition, along the “air velocity”

vector. Note that (µ, γ, ξ) are the angles of the wind frame, which is attached to

the velocity of the aircraft with respect to the air, they depend on the wind velocity

vector as well as the orientation (ψ, θ, ϕ) of body frame with respect to the inertial

frame rotation matrix. The representation of aerodynamic/propulsive force vector

A
¯w in the wind frame is

Aw = −


D

S

L

+RWB


Tx

Ty

Tz

 =


Ax

Ay

Az

 (6.24)

where D, S, L are drag, side force and lift, and Tx, Ty, Tz are the thrust components

in the body frame, Ax, Ay, Az are the aero/propulsive force components in wind

frame and RWB is the rotation matrix from body frame to wind frame.
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Eq. (6.20) written in terms of the vector representations becomes

f = Aw +mRWG


0

0

g

 (6.25)

which yields

f =


Ax

Ay

Az

+mg


− sin γ

sin ξ cos γ

cos ξ cos γ

 (6.26)

Differentiation of Eq. (6.13) leads to
ẍ

ÿ

z̈

 = ṘT
WG


V

0

0

+RT
WG


V̇

0

0

+


Ẇx

Ẇy

Ẇz

 (6.27)

Rotational kinematics for rotational matrix from the local frame to wind frame implies

ṘWG = S(ωWG)RWG (6.28)

where ωWG is the angular velocity of the wind frame with respect to the local frame

represented in wind frame as

ωWG =


pw

qw

rw

 (6.29)

Taking transpose yields

ṘT
WG = RT

WGS
T (ωWG) = −RT

WGS(ωWG) (6.30)
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where ST (ωWG) = −S(ωWG) since it is a skew-symmetric matrix. Substituting

Eq. (6.30) in Eq. (6.27) leads to
ẍ

ÿ

z̈

 = −RT
WGS(ωWG)


V

0

0

+RT
WG


V̇

0

0

+


Ẇx

Ẇy

Ẇz

 (6.31)

where

S(ωWG) =


0 rw −qw

−rw 0 pw

qw −pw 0

 (6.32)

Multiplying both side of Eq. (6.31) with RWG, yields

RWG


ẍ

ÿ

z̈

 = −S(ωWG)


V

0

0

+


V̇

0

0

+RWG


Ẇx

Ẇy

Ẇz

 (6.33)

which, along with Eqs. (6.22), (6.23) and (6.32), implies

acw =


V̇

V rw

−V qw

+RWG


Ẇx

Ẇy

Ẇz

 (6.34)

Implementation of rotational kinematics in terms of the 3-2-1 Euler’s angles, formu-

lated in Eqs. (3.12)-(3.14), for the rotational motion of wind frame yields
pw

qw

rw

 =


1 0 − sin γ

0 cos ξ sin ξ cos γ

0 − sin ξ cos ξ sin γ



ξ̇

γ̇

µ̇

 (6.35)

which gives the angular velocities components of wind frame relative to local frame

expressed in wind frame, especially qw, rw components, as

rw = −γ̇ sin ξ + µ̇ cos γ cos ξ (6.36)

qw = γ̇ cos ξ + µ̇ cos γ sin ξ (6.37)
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where µ and γ are already computed in the previous steps. Differentiating Eqs. (6.17)-

(6.19), leads to

µ̇ =
[(ÿ − Ẇy) cosµ− (ẍ− Ẇx) sinµ]

V cos γ
(6.38)

γ̇ = −(z̈ − Ẇz + V̇ sin γ)

V cos γ
(6.39)

V̇ = [(ẍ− Ẇx) cosµ+ (ÿ − Ẇy) sinµ] cos γ

− (z̈ − Ẇz) sin γ (6.40)

Substituting Eq. (6.39) in Eq. (6.36) and (6.37), yields

rw =
(z̈ − Ẇz + V̇ sin γ)

V cos γ
sin ξ + µ̇ cos γ cos ξ (6.41)

qw = −(z̈ − Ẇz + V̇ sin γ)

V cos γ
cos ξ + µ̇ cos γ sin ξ (6.42)

From Eq. (6.21) and (6.25), implies

acw =
1

m


Ax

Ay

Az

+RWG


0

0

g

 (6.43)

where the rotation matrix is written as the product of three elementary rotation

matrices as

RWG = Rx(ξ)Ry(γ)Rz(µ) (6.44)

such that

acw =
1

m


Ax

Ay

Az

+Rx(ξ)Ry(γ)Rz(µ)


0

0

g

 (6.45)

Multiplying both sides with RT
x (ξ) gives

RT
x (ξ)acw =

1

m
RT

x (ξ)


Ax

Ay

Az

+Ry(γ)Rz(µ)


0

0

g

 (6.46)
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where

Rx(ξ) =


1 0 0

0 cos ξ sin ξ

0 − sin ξ cos ξ

 (6.47)

Ry(γ) =


cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ

 (6.48)

Rz(µ) =


cosµ sinµ 0

− sinµ cosµ 0

0 0 1

 (6.49)

Substituting acw from Eqs. (6.34), and elementary rotation matrices from (6.47)-(6.49)

in (6.46) leads to

Ax − g sin γ = V̇ + Ẇx cos γ cosµ

+ Ẇy cos γ sinµ− Ẇz sin γ (6.50)

Ay cos ξ − Az sin ξ = V rw cos ξ + V qw sin ξ

− Ẇx sinµ+ Ẇy cosµ (6.51)

Ay sin ξ + Az cos ξ = V rw sin ξ − V qw cos ξ + Ẇx sin γ cosµ

+ Ẇy sin γ sinµ+ Ẇz cos γ − g cos γ (6.52)

Rearranging Eqs. (6.50) gives

Ax = V̇ + (g − Ẇz) sin γ

+ (Ẇx cosµ+ Ẇy sinµ) cos γ (6.53)

Substituting Eq. (6.41) and (6.42) in Eq. (6.51) and (6.52), yields

− Az sin ξ + Ay cos ξ = K1 (6.54)

Ay sin ξ + Az cos ξ = K2 (6.55)
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where

K1 = µ̇V cos γ + (Ẇy cosµ− Ẇx sinµ) (6.56)

K2 =
z̈ − g + Ax sin γ

cos γ
(6.57)

Where µ, γ, and V are computed in Eqs. (6.17), (6.18), and (6.19), respectively, and

(Ẇx, Ẇy, Ẇz) are computed from the approximation of the wind velocity vector field

in Eq. (2.2). This means, there are three unknowns in Eqs. (6.54) and (6.55): Ay,

Az, and ξ. Recall that the goal is to compute ξ. Eqs. (6.54) and (6.55) are solved to

obtain

sin ξ =
K2Ay −K1Az

A2
y + A2

z

(6.58)

cos ξ =
K1Ay +K2Az

A2
y + A2

z

(6.59)

which leads to

tan ξ =
K2

Ay

Az
−K1

K1
Ay

Az
+K2

(6.60)

where Ay

Az
is assumed to be negligible since Ay is usually much smaller than Az, which

leads to

tan ξ = −K1

K2

(6.61)

If Az is desired to be computed, Eqs. (6.54) and (6.55) can be solved for Az as

Az = K2 cos ξ −K1 sin ξ (6.62)

6) The Euler’s angles and theirs time derivatives, which describe the orientation

of body frame with respect to the [ Î ] or [ Ĝ ] frame, need to be formulated in terms of

variables computed in the previous steps and the six variables that Eqs. (3.61)-(3.63)

and (3.67)-(3.69) are solved for. To do this, the matrix relation between the three

rotation matrices is written as

RGB = RT
WGRWB (6.63)
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By using trigonometric identity and algebra to manipulate Eq. (6.63), the Euler’s

angles are expressed in terms of µ, γ, ξ, α, and β as

tanϕ =
cosβ sin ξ cos γ − sinβ sin γ

(cosα cos ξ − sinα sinβ sin ξ) cos γ − sinα cosβ sin γ
(6.64)

sin θ = cosα cosβ sin γ + (sinα cos ξ + cosα sinβ sin ξ) cos γ (6.65)

tan(ψ − µ) =
sinα sin ξ − cosα sinβ cos ξ

cosα cosβ cos γ − (sinα cos ξ + cosα sinβ sin ξ) sin γ
(6.66)

where note that Euler angles ψ, θ and ϕ depend on α and β, which are to be computed

from the solution of Eqs. (3.61)-(3.63) and (3.67)-(3.69). However, in this research,

Eqs. (6.64)-(6.66) are simplified by setting β = 0 and calculating α independently by

α = α0 −m
Az

QSCLα

(6.67)

where α0 is the current value of angle of attack, S is the wing reference area, Q is the

dynamic pressure, and CLα is the derivative of life coefficient with respect to angle of

attack. With these simplifications, Eqs. (6.64)-(6.66) becomes

ψ = µ+ tan−1(
sinα sin ξ

cosα cos γ − sinα cos ξ sin γ
) (6.68)

θ = sin−1(cosα sin γ + sinα cos ξ cos γ) (6.69)

ϕ = tan−1(
cos γ cos ξ

cosα cos γ cos ξ − sinα sin γ
) (6.70)

which can calculate values of the Euler angles to be used in the solution of Eqs. (3.61)-

(3.63) and (3.67)-(3.69).
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7) The angular accelerations components can be obtained by differentiation of

Eqs. (3.12)-(3.14) as

ṗ = ϕ̈− ψ̈ sin θ − ψ̇θ̇ cos θ (6.71)

q̇ = θ̈ cosϕ− ϕ̇θ̇ sinϕ− ψ̇θ̇ sin θ sinϕ

+ ψ̇ϕ̇ cosϕ cos θ + ψ̈ sinϕ cos θ (6.72)

ṙ = ψ̈ cos θ cosϕ− ψ̇θ̇ sin θ cosϕ− ψ̇ϕ̇ cos θ sinϕ

− θ̇ϕ̇ cosϕ− θ̈ sinϕ (6.73)

8) Using all the variables specified or formulated in the earlier steps in solv-

ing the six nonlinear algebraic equations given in Eqs. (3.61)-(3.63) and (3.67)-(3.69)

yields the angle of attack α, side slip angle β, and more importantly the control/input

variables (δe, δa, δr, δT ). Solution to the nonlinear algebraic equations are ob-

tained using MATLAB’s command fsolve. The wind components and their derivatives

needed for the solution of the algebraic equations are obtained from the estimated

wind field. Note that Eqs. (6.68)-(6.70) are simplified equations with the approxima-

tion of β = 0 and α calculated by Eq. (6.67). However, the solution of Eqs. (3.61)-

(3.63) and (3.67)-(3.69) will yield different values of β and α, which means Euler

angles will also be different along the prescribed trajectory as they are determined

by Eqs. (6.64)-(6.66).

6.3.4 Input Prediction Procedure

The algorithm of input prediction process through inverse simulation (differential-

based technique) is summarized as follows.
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Algorithm : Input Prediction with Incorporated Estimated Wind Field

1: Initialization.

Read Initial States :

x0, y0, z0, V0, γ0, µ0

Read Initial Input/Control Variables : set them as the initial guess values

δT0 , δe0 , δa0 , δr0 , α0, β0

2: Trajectory Determination.

Generate prescribed trajectory for specify time horizon :

Prescribe VI , γI , µI and µ̇I then calculate

x(t), y(t), z(t)

Calculated the velocity and acceleration components:

ẋ(t), ẏ(t), ż(t)

ẍ(t), ÿ(t), z̈(t)

3: Local Wind Determination.

Calculate Estimated Local Wind :

Ŵx, Ŵy, Ŵẑ̇W x,
̂̇W y,

̂̇W z

4: Euler’s Angles Determination.

Calculate Euler’s angles from V , µ, γ, ξ, β and α

ψ(t), θ(t), ϕ(t)

5: Angular Velocity and Acceleration Determination.

Calculate angular velocity and acceleration

p(t), q(t), r(t)

ṗ(t), q̇(t), ṙ(t)

6: Aerodynamics Forces and moments Determination.

Calculate aerodynamic forces and moments.

7: Input Prediction.

Solve nonlinear algebraic equation

F (x) = 0

8: End Prediction.

Output the predicted control inputs
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6.3.5 Simulation Results

Various simulation cases are run to predict the required control input variation

(aerodynamic control surface deflections and thrust setting) for a KC-135 aircraft to

fly though the desired trajectory within the spatially and temporally varying wind

fields. Through this process, feasibility of the prescribed trajectory is determined.

The predicted input variations are compared against the saturation and rate limits

of the corresponding control variable. This reveals the feasibility if all control pre-

dictions are within saturation and rate limits. If a control variable is predicted to

violate saturation or rate limits, this can lead to the conclusion of infeasibility of the

prescribed trajectory. That is, the aircraft can not fly the desired trajectory.

In the following subsections, two different sets of simulation runs are pre-

sented. The first set includes input predictions for the aircraft to fly though acceler-

ating/decelerating straight line flight path. The second set includes input predictions

of the aircraft to fly though a racetrack maneuver with a specified speed and turn

rate. In each set, three cases of the input prediction are carried out: (1) no wind

assumption in prediction, (2) actual wind field used in prediction, and (3) estimated

wind field used in the prediction. The second case is not realistic since the actual

wind cannot be known. It is conducted nevertheless to understand how much of a

prediction error can occur due to the difference between the actual wind and the

predicted wind from the estimated wind field. The comparison between the first and

the third cases will show the benefit of incorporating wind field estimation into the

input prediction process.

6.3.5.1 Accelerating Straight Flight Trajectory

The first simulation experiment is to investigate the feasibility of the KC-135

aircraft to follow an accelerating/decelerating rectilinear trajectory, calculated from
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Eq. (6.3). There are 10 aircraft flying at the same altitude of 7010 m with the same

speed of 190 m/s within a spatially and temporally varying wind field generated by

Wind Model-1. The feasibility of Aircraft-1 to follow the accelerating/decelerating

rectilinear trajectory is evaluated at t = 1100 s. The roles of the other aircraft are

to provide estimated or measured local wind for wind field estimation, which will be

utilized in the IP process.

Figures. 6.12 (a) and (b) show the ground speed variation with time, which are

generated by specified total increasing and decreasing velocities of Vd = 20 m/s and

50 m/s at time t = 1100 s, when the IP process is activated. Note also that in these

simulation cases, the input prediction is carried out within tLH = 120 s. Figures.

6.12 (c) and (d) shows the prescribed paths and the wind velocity vector along the

trajectory during the periods of input prediction.

The estimated local wind information i.e., estimated local wind components

and their time derivatives, are obtained from the estimated wind field parameters.

Figs. 6.13 (a) and (b) show the predicted and actual wind components that Aircraft-

1 is exposed to during the prediction period starting at 1100 s. The wind is in the

South-West direction with increasing magnitude. In average, it is about 8% of the

aircraft speed. During this prediction period, the estimated wind is very close to the

actual wind. As a result, no visible difference is expected between the cases with

estimated wind and actual wind.

Fig. 6.14 shows the results of the input prediction with three cases in each set of

simulation. Figs. 6.14 (a) and (b) show the input prediction results when the ground

speed is desired to be increasing for 20 s from 190 to 210 m/s and later on decreasing

back to 190 m/s while Figs. 6.14 (c) and (d) show the results for 190−240 m/s cases.

As expected, the figures show that the higher acceleration and deceleration

requires higher thrust setting and lower elevator upward deflections, and results in
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Figure 6.12. Aircraft velocity variation with time, paths in inertial frame and wind
velocity vectors along the paths during the prediction period.

lower angle of attack as shown in the subfigures. Additionally, the effects of wind

exposure can be clearly seen through predicted thrust setting comparison between

the cases with or without wind included. As expected, When wind is not included in

the input prediction procedure, the required thrust setting is lower compared to the

case with wind included as shown in subfigures (a) and (c). Fig. 6.14 (c) shows that
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Figure 6.13. Actual and estimated local wind along prescribed trajectory at t = 1100
s.

the required thrust setting exceed its limit. If wind field is adequately estimated and

the estimated wind field is properly used in IP, this maneuver would not be initiated

because the control saturation would be accurately predicted.

6.3.5.2 Racetrack Trajectory

The second simulation experiment is to investigate the feasibility of the KC-135

aircraft to follow a racetrack trajectory, with two different turn rates of 0.4 and 0.8

deg/s, calculated from Eq. (6.4). There are 10 aircraft flying at the same altitude of

7010 m with the same speed of 190 m/s within a spatially and temporally varying

wind field generated by Wind Model-1. The feasibility of Aircraft-1 to follow the

racetrack trajectory is evaluated at two times at t = 500 and 1100 s. The roles of the

other aircraft are to provide estimated or measured local wind information for wind

field estimation, which will be utilized in the IP process.
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Figure 6.14. Comparison of predicted input variables and aerodynamic angles of all
three simulation cases.

Figures. 6.15 (a) and (b) show the turn rates variation with time, which are

generated by specified ∆µ = 180 degree, VI = 190 m/s and two different lateral offsets

hos = 5.494 × 104 and 2.747 × 104 m at times t = 500 s and t = 1100 s, when the

input prediction process is activated. Note also that in these simulation cases, the

input prediction is carried out within tLH = 120 s. Figures. 6.15 (c) and (d) show the
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prescribed paths and the wind velocity vector along the trajectory during the periods

of input prediction.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

µ̇
(t

)
[d

eg
/
s]

(a) µ̇d = 0.4 deg/s

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]
µ̇
(t

)
[d

eg
/
s]

(b) µ̇d = 0.8 deg/s

0 0.5 1 1.5 2 2.5 3

x 10
5

−5

0

5

10

15

20
x 10

4

East (y) [m]

N
o
rt

h
(x

)[
m

]

 

 

Actual Trajectory

t=500 s

t=1100 s

(c) Racetrack trajectory 1

0 0.5 1 1.5 2 2.5 3

x 10
5

−5

0

5

10

15

20
x 10

4

East (y) [m]

N
o
rt

h
(x

)[
m

]

 

 

Actual Trajectory

t=500 s

t=1100 s

(d) Racetrack trajectory 2

Figure 6.15. Heading rate variation with time and paths in inertial frame and wind
velocity vectors along the paths during the prediction period.

The estimated local wind information i.e., estimated local wind components

and their time derivatives, are obtained from the estimated wind field parameters.
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Figs. 6.16 (a) and (b) show the predicted and actual wind components that Aircraft-1

is exposed to during the prediction period starting at 500 s. Similarly, Figs. 6.17 (a)

and (b) show the same for t = 1100 s. The prediction period starting at t = 500 s, the

wind is the South-West direction and in average, is about 8% of the aircraft speed.

For the prediction period starting at t = 1100, the wind is in the same direction and

in average, is about 10% of the aircraft speed.

0 50 100 150 200 250 300 350 400 450
−40

−30

−20

−10

0

10

W
x

[m
/
s]

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

t[s]

W
y

[m
/
s]

 

 

Actual

Estimated

(a) µ̇d = 0.4 deg/s

0 50 100 150 200 250 300 350
−40

−30

−20

−10

0

W
x

[m
/
s]

0 50 100 150 200 250 300 350
5

10

15

20

25

t[s]

W
y

[m
/
s]

 

 

Actual

Estimated

(b) µ̇d = 0.8 deg/s

Figure 6.16. Actual and estimated local wind along prescribed trajectory at t = 500
s.

Fig. 6.18 shows the results of the input prediction in each set of simulation.

Figs. 6.18 (a) and (b) show the input prediction results when the turn is executed

with 0.4 deg/s constant turn rate while Figs. 6.18 (c) and (d) show the results for 0.8

deg/s cases.

As expected, the figures clearly show the effect of the presence of wind and

the structure of the wind field on the required inputs for an aircraft to fly through a

desired trajectory. Further, a stronger wind requires larger input variables to complete
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Figure 6.17. Actual and estimated local wind along prescribed trajectory at t = 1100
s.

the turn. However, the direction of wind as much as the magnitude affects the input

prediction. For example, if the aircraft happens to be flying in a tail wind region,

which is to complete the right turn racetrack maneuver case, the required thrust is

lower as can be seen in Fig. 6.18 (a) and (b). Additionally, as expected, sharper turn

requires higher control surface deflections as can be seen in Fig. 6.18 (c) and (d).

Moreover, the desired racetrack trajectories with sharper turn are not feasible for

aircraft because of deflection of ailerons exceeds their limits as shown in Fig. 6.18 (d).

In contrary, the aircraft would be feasible to perform racetrack maneuver in this wind

field, if it flew through shallower turn or lower turn rate as shown in Fig. 6.18-(b).

As state earlier, the direction of wind as much as the magnitude affects the

variation of input required for aircraft to follow the prescribed trajectory. In order

to better demonstrate this, a new simulation case is run. In this case, everything is

the same as the previous cases except the initial heading of the aircraft is set to be
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Figure 6.18. Comparison of predicted input variables and aerodynamic angle of all
simulation cases.

-85 deg. This means that the aircraft will turn in a different direction relative to the

wind and be exposed to different wind variation as the wind is spatially varying.

Figures. 6.19 (a) and (b) show the turn rates variation with time. Figs. 6.19 (c)

and (d) show the prescribed paths and the wind velocity vector along the trajectory

during the periods of input prediction.

137



0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

µ̇
(t

)
[d

eg
/
s]

(a) µ̇d = 0.4 deg/s

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

µ̇
(t

)
[d

eg
/
s]

(b) µ̇d = 0.8 deg/s

−2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
5

−10

−8

−6

−4

−2

0

2
x 10

4

East (y) [m]

N
o
rt

h
(x

)[
m

]

 

 

Actual Trajectory

t=500 s

t=1100 s
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Figure 6.19. Heading rate variation with time and paths in inertial frame and wind
velocity vectors along the paths during the prediction period.

The estimated local wind information i.e., estimated local wind components

and their time derivatives, are obtained from the estimated wind field parameters.

Figs. 6.20 (a) and (b) show the predicted and actual wind components that Aircraft-1

is exposed to during the prediction period starting at 500 s. Similarly, Figs. 6.21 (a)

and (b) show the same for t = 1100 s. The prediction period starting at t = 500
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Figure 6.20. Actual and estimated local wind along prescribed trajectory at t = 500
s.
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Figure 6.21. Actual and estimated local wind along prescribed trajectory at t = 1100
s.

s, the wind is the South-West direction and in average, is about 14% of the aircraft

speed. For the prediction period starting at t = 1100 s, the wind is in the South-West

direction with increasing magnitude.
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Fig. 6.22 shows the results of the input predictions with and without wind

included in each set of simulation. Figs. 6.22 (a) and (b) show the input prediction

results when the turn is executed with 0.4 deg/s constant turn rate while Figs. 6.22

(c) and (d) show the results for 0.8 deg/s cases.
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Figure 6.22. Comparison of predicted input variables and aerodynamic angle of all
simulation cases.
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As expected, the figures clearly show the effect of the presence of wind and

the structure of the wind field on the required inputs for an aircraft to fly through a

desired trajectory. Further, a stronger wind requires larger input variables to complete

the turn. However, the direction of wind as much as the magnitude affects the input

prediction as well as the accurate estimated wind information. For example, if the

aircraft happens to be flying in a tail wind region, which is to complete the right

turn racetrack maneuver case, the required thrust is lower as can be seen in Fig. 6.22

(a) and (c). Additionally, as expected, sharper turn requires higher control surface

deflections as can be seen in Fig. 6.22 (b) and (d). Moreover, the desired racetrack

trajectories with sharper turn are not feasible for aircraft because the deflection of

ailerons exceed the saturation limits as shown in Fig. 6.22 (d). On the contrary, the

aircraft would be able to perform racetrack maneuver in this wind field, if it flew

through shallower turn or lower turn rate as shown in Fig. 6.22 (b).

More importantly, Fig. 6.22 (a) shows that without wind information included,

the engine thrust would be predicted to stay within its saturation limits. However,

when wind information included, it is predicted that the engine thrust saturation will

occur at about t = 130 sec. Thus, the aircraft should not execute the maneuver to fol-

low the prescribed racetrack trajectory. The fact that prediction is never perfect, for

example, at time t = 500 s where the input prediction start, the inaccurate estimated

wind information is utilized in the input prediction process this results in inaccurate

and unreliable prediction. Thus, the accurate wind information is important to know.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

This chapter sums up the research work, presents the conclusions and suggests

directions for future work.

7.1 Conclusions

The influence of wind on aircraft can be detrimental or beneficial. Whether

detrimental or beneficial, information about the wind aircraft is exposed to is im-

portant to know. This will help avoid or reduce risk associated with wind exposure

or increase the benefit obtained from wind exposure. Various methods have been

developed to estimate the local wind vector or some properties of it. Additionally,

many applications may further benefit from the knowledge of spacial and temporal

variation of wind within the airspace of operation. This information is referred to

as wind field, which consists of wind velocity vector representation as a function of

position and time.

This research has successfully developed on board wind field estimation method.

A Weighted Least Square Estimation (WLSE) technique is developed to determine,

based on local wind vector “measurements”, the best functional approximation to

represent the variation of wind vector over an airspace of interest, from a list of

candidate models that are mathematical representations of spatial and/or temporal

variations of different types of wind velocity vector field structures. The “measure-

ments” for the estimation are obtained by multiple aircraft flying in the same airspace

of operation considering as mobile sensors measuring wind vectors. The local wind
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velocity vectors that each aircraft exposed to are computed using various local wind

estimation methods and are shared among the aircraft through a common commu-

nication protocol like the ADS-B system. This enables each aircraft to have access

to local wind information from other aircraft as well as its own for onboard wind

field estimation. The weighting of the measurements in the WLSE are done based

on the predicted or intended point of interest where each aircraft will be. That is,

measurements coming from other aircraft flying closer the point of interest are given

more weighting than the measurements from its own aircraft.

Simulation experiments have shown that, as compared to the LSE, the WLSE

produces better estimations in the sense that error between the estimated wind and

the actual wind along a trajectory is usually smaller. However, the WLSE meth-

ods result in more frequent switching between the estimation models, which causes

discontinuity in the estimated local wind components.

Further, this research has successfully employed this wind field estimation method

in aircraft trajectory prediction. The trajectory prediction is achieved by initializing

aircraft point-mass-model with the current states of the aircraft and the propagating

the model using aircraft intent information as well as the wind field approximation

computed by the wind field estimation system. Simulation experiments have demon-

strated that, when the trajectory prediction includes wind field and intent informa-

tion, the prediction accuracy as well as its robustness against wind disturbance are

improved. Finally, the wind estimation method is also successfully used to improve

the prediction of input variables required for the aircraft to fly through a prescribed

trajectory in the presence of spatially and/or temporally varying wind field. An in-

verse simulation method based on nonlinear 6-DOF equations of motion is employed

that uses the estimated spatially and/or temporally varying wind field in solving non-

linear algebraic equations. The simulation experiments have shown that inclusion of
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estimated spatially and/or temporally varying wind information in inverse simulation

improves the accuracy and reliability of input prediction. For example, magnitude

and rate saturations of control variables can be predicted for prescribed maneuvers in

spatially varying wind when the wind information is included in inverse simulation.

Such accurate predictions are crucial for determining feasibility of a prescribed tra-

jectory before initiating the maneuver, which in turn enables aircraft not to go into

an infeasible maneuver due to the presence of spatially temporally varying wind.

7.2 Future Work

The wind field estimation uses multiple aircraft flying in the same airspace as

local wind vector sensors to collect data for the least squares estimation method to

compute the parameters of various wind field estimation models. The trajectories that

the aircraft fly along are not set for improving wind field estimation performance.

There has been no effort made to determine the “optimal” number of aircraft or

the optimal trajectories for purpose of wind field estimation. The future work may

consider a situation where the sole purpose of multiple aircraft is to improve the wind

field estimation. Thus, an optimal trajectory (speed, heading and flight path angles)

planning algorithm can be carried out to determine the trajectories of a given number

of aircraft to minimize the estimation error.

The spatially and temporally varying wind fields considered in this study are

assumed to have only horizontal wind components. Also, the multiple aircraft are

assumed to be flying at the same altitude. An extension of this work should be con-

sidered to estimate a 3-dimensional wind field from aircraft flying different altitudes.

The wind field estimation method developed in this research relies on local wind

vector information coming from multiple aircraft. The local wind vector information

received from other aircraft is assumed to be completed, i.e., all three components
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available, and time-stamped. Further, no measurement noise or communication de-

lay is considered in the local wind vector information. Future work should include

investigation of incomplete and noisy local wind data and investigation of the effect

of such wind data on wind field estimation.

It has been shown that the WLSE (Weighted Least Squares Estimation) im-

proved wind field estimation accuracy but results in more frequent switching between

wind estimation models based on the least residual errors. The switching causes

discontinuity in local wind prediction along the predicted trajectory or along the

prescribed trajectory for input prediction. It has been observed that some of the

switching occur when the residual errors are very small and thus does not leads to

any improvement. As a future work, a better switching algorithm should be inves-

tigated to prevent unnecessary switching. An example of such a modification could

be to add a threshold to determine whether a switching between estimation models

should be carried out.

For trajectory prediction, in this study assumed only intended trajectory of

aircraft at constant altitude. An extension of this work should be considered to

predict a 3-dimensional flight trajectory.

In the input prediction procedure, the prescribed trajectory is defined in terms

of time variation of ground speed, heading and flight path angles. The prediction

of the inputs required to fly the aircraft through the prescribed trajectory in terms

of ground speed, heading and flight path angles is computed by the solution of six

nonlinear algebraic equations obtained from 6-DOF translational and rotational dy-

namics. The number of state variables and control variables is larger than six, the

number of equations. That is, some of the state variables should be determined from

the prescribed trajectory and some are computed from the solution of the algebraic

equations. Which state variables are determined from the prescribed trajectory and
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which ones from the solution of the algebraic equations is a matter of choice. In this

study, airspeed and three Euler angles are computed from the prescribed trajectory

while angle of attack and sideslip angle along with the control variables are computed

by the solution of the algebraic equations. This led to prescribed trajectories with

nonzero slide slip angles, especially during turns. These two sets state variable can

be chosen differently in a future work. For example, sideslip angle can be specified as

zero, which would led to a different set of state variables to be included along with

the control variables to be solved from the nonlinear algebraic equations. Another

item of future work is about the solution of the nonlinear algebraic equations.

Another item of future work is about the solution of the nonlinear algebraic

equations. The nonlinear algebraic equations are solved using a MATLAB-provided

solver. The performance of the solver heavily depends on the initial guesses, there

is no guarantee that the solver will converge to a solution and there might be multi-

ple solutions, of which the solver can only find one depending on the initial guesses.

A more robust method for solving the nonlinear algebraic equations should be in-

vestigated for realtime implementation of the input prediction algorithm. Lastly,

a verification method for predicted input variables should be developed and imple-

mented to investigate the feasibility and robustness of the procedure developed herein.
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Appendix A

Reference Frames
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In this appendix, the reference frames, which are required for the derivation of

aircraft equation of motion, are presented.

A.1 Reference Frames

Fig. A.1 illustrated the relations between the reference frames and variables

quantifying these relations. [ Î ], [ Ĝ ], [ B̂ ], and [ Ŵ ] refer to inertial, local, body

and wind frames, respectively, and also shows the aircraft trajectory or flight path,

and velocity vector, which are relevant to the definition of these frames. These frames

play an important role in calculation of forces and moments acting on the aircraft.

Additionally, the aircraft orientation with respect to the inertial frame is described

by using these frames.

Figure A.1. Reference frames and theirs transformation angles.
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A.1.1 Inertial Reference Frame

An Earth-fixed frame is considered as the inertial reference frame, with the

origin located at an arbitrary point on the surface, OIZI is directed vertically down-

ward. OIXIYI is the local horizontal plane, OIXI is directed local north, and OIYI

is directed to the local east. This frame is denoted as [ Î ].

A.1.2 Local Frame

The local frame is defined such that it is always aligned with the inertial frame

while its origin moves with the CM of the aircraft. This frame is denoted by [ Ĝ ].

A.1.3 Body Fixed Frame

The Body fixed frame, which is fixed to the aircraft, is translating and rotating

with it. The origin of this frame is located at CM of aircraft, with OBXB pointing

forward along the longitudinal axis. Axis OBYB points to the right, and axis OBZB

is directed downward. This frame is denoted by [ B̂ ].

A.1.4 Wind Frame

The wind frame, moves with the aircraft, but rotates based on the velocity

vector. The origin of this frame is located at CM, with OWXW coincide with the

velocity vector of the aircraft relative to the atmospheric wind, OWZW lies in the plane

of symmetry of the aircraft, and OWYW points to the direction that is orthogonal to

the OWXWZW so as to complete the orthogonal triad. This frame is denoted by

[ Ŵ ].
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Appendix B

Derivation of Wind Estimation Model-2
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In this appendix, the details of the derivation of the introduced wind field

model-1 in order to obtain the appropriated from, i.e., wind estimation model-2 or

EM-2, for implementing in LSE method are presented.

B.1 Derivation of Wind Estimation Model-2

Wind Estimation Model-2 : This model has the same structure as Wind

Model-1 in Section 2.1.

Wx(x, y, z, t) = Wx0(z, t) +
1

2

{[
D(z, t) + F1(z, t)

]
(x− x0)

+
[
− ζ(z, t) + F2(z, t)

]
(y − y0)

}
(B.1)

Wy(x, y, z, t) = Wy0(z, t) +
1

2

{[
ζ(z, t) + F2(z, t)

]
(x− x0)

+
[
D(z, t)− F1(z, t)

]
(y − y0)

}
(B.2)

The model can be further simplified as

Wx(x, y, z, t) = Wx0(z, t) + A(z, t)(x− x0) +B(z, t)(y − y0) (B.3)

Wy(x, y, z, t) = Wy0(z, t) + C(z, t)(x− x0) + E(z, t)(y − y0) (B.4)

where A(z, t) = [D(z, t) + F1(z, t)], B(z, t) = [−ζ(z, t) + F2(z, t)], C(z, t) = [ζ(z, t) +

F2(z, t)], and E(z, t) = [D(z, t)− F1(z, t)], respectively.

Rearrange, Eq. (B.3) - (B.4) as

Wx(x, y, z, t) = W x0(z, t) + A(z, t)x+B(z, t)y (B.5)

Wy(x, y, z, t) = W y0(z, t) + C(z, t)x+ E(z, t)y (B.6)

where

W x0(z, t) = Wx0(z, t)− A(z, t)x0 −B(z, t)y0 (B.7)
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W y0(z, t) = Wy0(z, t)− C(z, t)x0 − E(z, t)y0 (B.8)

Let’s consider the horizontal wind field model, which represent the spatially

and temporally varying wind at z m altitude and all the temporal variation model as

A(z, t) = a0 + a1t (B.9)

B(z, t) = b0 + b1t (B.10)

C(z, t) = c0 + c1t (B.11)

E(z, t) = e0 + e1t (B.12)

Substitute all the parameters in Eq. (B.9)-(B.12) into Eq. (B.5)-(B.8), such that

Wx(x, y, z, t) = Wx0(z, t)− (a0 + a1t)x0 − (b0 + b1t)y0

+(a0 + a1t)x+ (b0 + b1t)y (B.13)

Wy(x, y, z, t) = Wy0(z, t)− (c0 + c1t)x0 − (e0 + e1t)y0

+(c0 + c1t)x+ (e0 + e1t)y (B.14)

Further simplify, so we can obtains

Wx(x, y, z, t) = Wx0(z, t)− a0x0 − b0y0 − (a1x0 + b1y0)t

+a0x+ b0y + a1tx+ b1ty (B.15)

Wy(x, y, z, t) = Wy0(z, t)− c0x0 − e0y0 − (c1x0 + e1y0)t

+c0x+ e0y + c1tx+ e1ty (B.16)
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Consider changing of variable by define

X0 = Wx0(z, t)− a0x0 − b0y0 (B.17)

X1 = −a1x0 − b1y0 (B.18)

X2 = a0 (B.19)

X3 = b0 (B.20)

X4 = a1 (B.21)

X5 = b1 (B.22)

and

Y0 = Wy0(z, t)− c0x0 − e0y0 (B.23)

Y1 = −c1x0 − e1y0 (B.24)

Y2 = c0 (B.25)

Y3 = e0 (B.26)

Y4 = c1 (B.27)

Y5 = e1 (B.28)

Finally, the EM-1 can be expressed as

Ŵx(x, y, z, t) = X̂0 + X̂1t+ X̂2x+ X̂3y + X̂4tx+ X̂5ty (B.29)

Ŵy(x, y, z, t) = Ŷ0 + Ŷ1t+ Ŷ2x+ Ŷ3y + Ŷ4tx+ Ŷ5ty (B.30)
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The EM-1 has the basis function of the form

h1(x, y, z, t) = 1 (B.31)

h2(x, y, z, t) = t (B.32)

h3(x, y, z, t) = x (B.33)

h4(x, y, z, t) = y (B.34)

h5(x, y, z, t) = tx (B.35)

h6(x, y, z, t) = ty (B.36)
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