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Abstract 

A HMM-BASED PREDICTION MODEL 

FOR SPATIO-TEMPORAL 

TRAJECTORIES 

 

SAKTHI KUMARAN SHANMUGANATHAN, M.S. 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Ramez Elmasri 

Spatio-temporal trajectories are time series data that represent movement of an 

object over the time. As these data can represent a large number of phenomena, 

including weather and temperature pattern, providing them with the ability to model and 

predict future is an important task. Hidden Markov Models (HMM), a variant of Markov 

Models (MM), were first applied at a large scale to speech recognition but have also been 

used in time series prediction by analyzing trends in historical time series data. In this 

research, we propose a storm prediction model using a HMM built from overall storm 

trajectories derived from raw rainfall data. This HMM is built by assuming the states are 

associated with clusters created by clustering the locations of each storm from the overall 

storm trajectories. Then we learn the variation of transitional information and spatial 

information present in the given set of trajectories using the Baum-Welch algorithm. This 

learning is performed by building a HMM that for each cluster contains multiple state 

instances that represent this cluster and can learn to reflect variations in the information 

within a cluster. Results from experiments show that the prediction gets better when the 

number of state instances representing each cluster increases. For example, the average 

distance value between actual location and location predicted by a model with 5 clusters 
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and 5 state instances per cluster is approximately 15% smaller than the average distance 

value between actual location and location predicted by a model with 5 clusters and 3 

state instances per cluster, which means that the predicted location gets closer to the 

actual location with more state instances. It has also been found that the prediction gets 

better when the number of clusters increases. Apart from introducing a new prediction 

model for this type of data, we also propose a modified algorithm that creates overall 

storm trajectories much faster than existing algorithm. 
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Chapter 1  

Introduction 

In recent years, due to advancement in technology, there have been large 

volumes of data generated and used in various fields. These data are recorded at a 

single instant and provide instantaneous information of an entity .By ordering these data 

along with the time stamp we get a time sequence. By using the time sequence from the 

past as historical temporal behavior of an entity we can predict the future behavior of an 

entity. For example rainfall precipitation data measured over time can be used for 

predicting future rainfall occurrences in a region, which would help us in preventing 

floods. Hence predicting the future could help further the welfare of human beings as we 

can take the necessary precautions before any destruction occurs. Even though most of 

the predictions are not accurate they are still considered useful as they give a chance to 

make plans for the future. The accuracy of the prediction depends on the amount of 

information provided in the data. For example, rainfall occurrences can be predicted well 

if the wind speed and air pressure data are available in addition to the rainfall 

precipitation data. Since it is difficult collect all the possible information the prediction 

models provide probability for all possible outcomes. This would help us developing 

contingency strategies for future. 

The data sequences used as historical data for predicting the future is called time 

series data. In this research we use a more specific type of time series data called spatio-

temporal data which represents movement of an entity over time. We build a model for 

predicting the movement of a rainfall storm which can be used for rainfall forecasting. 

Even though there have been other prediction models, we use an approach that can 

provide better predictions by learning the transitional and spatial variations in the given 

set of trajectories. 
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Time series data represents the change of an entity over time. An example of 

time series data is the stock market price in which the price of a stock varies over time. It 

should be noted that time series data can be created in two approaches: by recording the 

data at regular specified time intervals or recording it only when there is a change in the 

data. The former approach provides only partial information as the data could have 

changed more than once within the specified time interval while the later approach 

provides complete behavior of the data. However, the later approach requires constant 

monitoring of the changes which is complicated to implement whereas the former 

approach requires only regular monitoring of the data, which can be easily implemented 

by using an automated timer based recording device.  

A specific type of time series data is spatio-temporal data which represents the 

change in spatial location over time. These data can also be considered as a time 

sequence of location of an object. A common example of spatio-temporal data is the GPS 

navigation data generated from cell phones or car GPS devices, which provides the 

location of the object at any given instant. Each location is associated with a timestamp at 

which the current location of the object was recorded. If these recorded data are sorted 

based on the time stamp then they can represent the movement of the object. Hence 

they are considered as spatio-temporal data. Usually spatial locations are represented 

using 2 different representations; a 1-dimensional point representation which can be an 

identification given to the location such as site Id, station id or region name, then a 2 

dimensional point that are given by a co-ordinate system such as latitude and longitude 

or any user defined system such as HRAP [1] [2] used in this paper. 

The movement of an object is given using a trajectory. Hence we can consider 

the spatio-temporal data as trajectories. Even though the trajectories are created by 

ordering the absolute time of the data, this absolute time is not required once a trajectory 
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is created. This means the trajectories are created by considering the location at any 

given time stamp as the starting location of the trajectory and then following it 

sequentially with the locations of the consecutive time stamps and ending with the 

location at a future time. Hence a single object can have more than one trajectory, each 

starting at different time. For example, a trajectory of a person can represents his 

movement on a single day and can be recorded for a week. This will give us 7 trajectories 

starting with different time stamps. The length of the trajectory is the number of points in 

the trajectory which are measured at regular intervals and is often given in time units 

such as seconds, minutes or hours depending on the units of the time interval between 

each point in the trajectory. 

As a spatio-temporal trajectory provides the movement information of an object 

and each object can have more than one trajectory, we can obtain the possible historical 

movement of the object by creating the trajectories from the data recorded in the past. In 

our research we build a prediction model for the storm trajectories created from the 

historical rainfall data which can be used for predicting the location of a rainfall storm. 

The historical rainfall data is converted into set of rainfall storm trajectories where each 

storm trajectory represents movement of rainfall storm over location. These storm 

trajectories were created by considering the rainfall in locations. Hence if there is no 

rainfall in a location then this location would not be part of any of the trajectories. Hence 

the model can predict the next possible location at which rainfall will occur given a 

sequence of locations at which rainfall has occurred so far. 

Apart from predicting spatial location of storms we have also used this approach 

for predicting direction of the storms. Also this approach can be extended to predict other 

non-spatial parameters such as speed or any other application specific parameters. The 

main aim of the research is to propose a prediction model for time series data by using a 
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learning approach that provides a better representation of transitional and spatial 

variations. 

.
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Chapter 2  

Related Works 

This chapter discusses about the existing time series prediction models, 

describes various applications of Hidden Markov Models and Markov Models along with 

their contribution to spatio-temporal data, and explains the adaptations of the current 

work from previous work. 

Time series prediction has been an important research over the years. Artificial 

Neural Networks (ANN) [3] , Hidden Markov Models (HMM) [4] , and Autoregressive 

Models (AR) [5] are among the most commonly used prediction models. These models 

predict the future based on the statistical or probabilistic information obtained from 

historical time series data. The application of time series predictions extends to various 

fields such as weather forecasting, stock market price prediction [6], object movement 

prediction [7], network traffic prediction [8], rainfall prediction [9] [10] [11] and so on. The 

works of Patrick et. al. [11] and Nugroho et. al. [10] use variants of Autoregressive 

models, such as Autoregressive Integrated Moving Average (ARIMA) and Autoregressive 

Moving Average (ARMA), respectively, for predicting rainfall precipitation over time in a 

given region. Both these models consist of 2 parts: Autoregressive part- given a time 

series, the current value of the series is linearly dependent on previous values in the 

series with a constant error; Moving average part - given a time series, the current value 

of the series is a mean of the previous values in the series. These models are used for 

predicting future values in a stationary time series (common variations between series 

value). Both authors, Patrick et. al. [11] and Nugroho et. al. [10], use rainfall precipitation 

time series data recorded in a region for predicting future rainfall precipitation in the same 

region using the ARMA model. However, Patrick et. al. [11] uses a modified ARMA model 

called ARIMA, which performs an extra step for converting a non-stationary time series 
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into a stationary time series. Ultimately our research performs prediction for time series 

data similar to these works. However we focus on performing probabilistic prediction 

while both these models use linear statistics, such as mean and variance between 

consecutive values of the series, for calculating the future rainfall precipitation. Abhishek 

et. al. [9] developed a model for predicting rainfall precipitation using ANN, which is more 

accurate in predicting rainfall, as neural networks use frequencies for prediction rather 

than predicting future rainfall precipitation from the linear statistics. In this work a 3-

layered feed forward artificial neural network is used for analyzing trends in temporal 

variations between humidity and wind speed in order to predict the amount of rainfall 

precipitation in a region. The 3 layers are input layer, output layer and hidden layer. The 

input layer consists of 2 variables humidity and wind speed, and the output layer is the 

future rainfall precipitation value. The middle layer is the hidden layer which learns the 

relationship between variations in humidity and wind speed and rainfall precipitation. This 

approach predicts rainfall by using the assumption that rainfall storms occur due to 

temporal variations in humidity and wind speed. Our approach is similar to this approach 

as we learn the trends in temporal variations of rainfall storm location data to predict 

future storm location. 

In our research we use Markov Models [12] and its variant Hidden Markov Model 

[4] for predicting time series data. A Markov Chain is a Markov Model from a single time 

sequence. An application of a Markov Chain is the page rank algorithm of Google [13] 

which is used for ranking the web pages based on the number of incoming page links. 

However, this perspective of page rank is applicable only if the internet web is considered 

as time series data of pages. Hidden Markov Models have been used in various fields. 

Rabiner et. al. [4] proposed an approach using HMM for speech recognition, in which 

words were predicted using the audio voice signal. This approach considers speech as 
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time series data of words or phonemes. The thesis work of Hassan et. al. [6] discusses 

the application of HMM for predicting stock price change over time using historical stock 

price variations. Also, in the field of image recognition Yamato [14] has used HMMs for 

predicting images from a time series of images. Another interesting work was done by 

Krishner [15] in which a hybrid of HMM [4] and AR [3] model called AR-HMM was created 

for predicting rainfall precipitation in different locations. It uses the AR model built from 

precipitation data recorded in each site combined with an HMM to create a network of 

dependent site precipitation variable, and then uses the change in precipitation value to 

predict the future precipitation amount and its corresponding site id. 

The above mentioned models are used for predicting temporal change of an 

entity. A time series is a time sequence of entity values. For example, in stock price 

prediction [6] the entity is the price of each stock, and in the work of Krishner [15] the 

entity consist of 2 dimensions; sites and precipitation. Hence, this work focuses on 

building HMMs for multi-dimensional observations. Our research focuses on building 

prediction models for spatio-temporal data which represents the temporal change in 

location of objects and can be considered as time series data with the entity being the 

location value in a geographical space. In other work Jeung et. al. [16] use HMMs for 

mining patters from object movement trajectories. In this work, the authors divide the 

given space into a grid and then use HMMs for identifying common movement patterns of 

each object by finding the frequent regions visited by the object. Even though this work is 

similar to our approach as it predicts the most frequent regions, in this work object 

movements are constrained within the grid system. The work by Gambs et. al. [7] uses 

Markov Chains for predicting an individual person movement using GPS data. This work 

is similar to our approach using Markov Models, except that the entities are location 

names such as “Home”, “Work” and “Others”, while we use a set of spatial clusters. In a 
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Prasad et. al. [17], has used HMMs for predicting the Access Point (AP) to which a 

current mobile user is connected to, given the location information of the APs and time 

series data of the geographical location of users. This problem is similar to our HMM 

approach, however we are more interested in predicting the exact locations while this 

model is interested in predicting the AP using the location information. The work of Lu et. 

al. [18] uses an AR-HMM similar to Krishner [15] for learning the temporal variation of 

various features of social websites and performs a wide variety of applications such as 

location prediction, friendship circle identification and place recommendations. Similarly 

our approach learns the spatio-temporal features of the rainfall storm data but restricts 

the focuses on location prediction. Another work similar to our research is by Mathew et. 

al. [19] in which the authors perform animal movement prediction, by building a HMM 

using Geo life data. In his approach Mathew et. al. [19] has divided the space into a 

triangular mesh and performs learning by considering one trajectory at a time. In contrast, 

our work uses clusters instead of a mesh and learns the transitional information between 

clusters from the given set of trajectories. Mathew et. al. [19] predicts the next possible 

location as the center of the triangular mesh while the HMM in our approach predicts a 

more precise location. 

The works of Mathew et. al. [19], Krishner [15] learn the transitional information 

present in the trajectories using Baum-Welch [4] but do not learn the spatial information 

present in the trajectories as they use discrete HMMs. In our approach, since we use 

clusters of points, spatial information in the clusters are learned by considering clusters 

as a Gaussian distribution of the spatial points. In his work, Paul [20] discusses the 

Expectation and Maximization step used for the Baum-Welch algorithm with a Gaussian 

distribution. Also, in the work by Mitra et. al. [21], the author uses a similar approach 

using the Baum-Welch algorithm with Gaussian mixture to perform regime calibration. In 
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our approach we use the same learning algorithm only with a Gaussian distribution rather 

than a Gaussian mixture. In his work, Paul [20] also explains restricted HMM network 

topologies that are similar to the methods used in works for speech recognition [22] [23] 

[24]. These works perform phoneme segmentation by considering a single HMM for each 

phone. Later Daines et. al. [25] proposed a constrained Baum-Welch algorithm used for 

improving phoneme segmentation by restricting the phoneme segments to a certain set 

of phones. This is achieved by having a binary relation between phone and phonetic 

segments. Similar to this approach we restrict each point of clusters only to the 

representations the clusters. However, each cluster can have more than one 

representation so that t the transitional and spatial variations present in the trajectories 

are represented much better. 

This research focuses on predicting the movement of a storm using overall storm 

trajectories [1] that were defined based on hydrology concepts given by Jitkajornwanich 

et. al. in the works [1] [26] [27]. These hydrology based storms are discussed in detail in 

Chapter 3. It should be noted that the previous works [7] [15] [19] use a discrete number 

of locations and can only perform approximate location predictions. Even though the raw 

rainfall data used in our research are measured in stations which are represented using 

Site Id, these stations can be converted into a specific grid co-ordinate using 

mathematical formulae which will be described later. These coordinates can be further 

can be mapped to latitude and longitude. Hence in this approach we predict precise 

location instead of stations. 
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Chapter 3  

Extracting Overall Storm Trajectories 

This chapter provides an overview on works of Jitkajornwanich et. al. [1] [26] [27] 

to convert raw rainfall data into meaningful storm trajectories. In this chapter we describe 

the raw rainfall data used, define basic hydrology-related storm concepts and explain the 

procedure to derive hydrology-related storms. 

The raw rainfall data that we use comes from the National Weather Service 

(NWS) -West Gulf River Forecast Center (WGRFC) [28] [29], a weather reporting 

organization and provides the rainfall data for the regions covering Texas, Lousiana, New 

Mexico, Colorado and part of Mexico. The regions are divided into 165,750 sites as a 

425x390 grid with sites approximately 4km apart from each other. The rainfall data are 

given in a file that contains the following fields: observation time, row id, site id, 

precipitation value. The precipitation value is recorded as the Multi-sensor Precipitation 

Estimates (MPE) [28] [29] value of sites, indicated by their siteID in the hour represented 

by observation time, which consists of 2 time stamps. Each data file contains the rainfall 

data of a single hour. The site id can be converted into a coordinate called 

HRAP(Hydrologic Rainfall Analysis Project) [28] [29] [2] using Equations ( 1 ) and ( 2 ).  

    ((        )      ) ( 1 ) 

    ((        )      ) ( 2 )  

Here, a is the minimum X coordinate value, b is the minimum Y coordinate value, 

c is the first siteID, and d is the difference between siteIDs in adjacent rows in the same 

column. The HRAP coordinate system considers values a, b, c, and d, of 290, 10, 15599, 

and 1701, respectively. Further, these HRAP coordinates can be converted into latitude 

and longitude by using the procedure routine provided by NWS [28] [29].  
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These raw rainfall data are converted into 3 different hydrology-related storm 

concepts defined below based on the informal definitions coined by Jitkajornwanich et. al 

[1]. All these storms can be derived from raw rainfall data using 2 approaches: a Depth 

First Search (DFS) [27] approach applied on database schema called CUHASI 

(Consortium of Universities for the Advancement of Hydrologic Science, Inc.) [27] [29]; a 

Map-Reduce approach [1] [30] which is much faster compared to the DFS [27] approach. 

Hence we will be using only the Map-Reduce approach which performs parallel 

computation using Key-Value pairs. Apache Hadoop [31], an implementation of Map-

Reduce framework [30] , consists of the following components: mapper and reducer, 

grouping comparator, sorting comparator, combiner and partitioner. 

Local Storm 

A new local storm occurs in a site when there are h consecutive hours with zero 

precipitation for the same site. Here h is the inter event time [32] [1] [26] and defines the 

number of zero precipitation hours to consider a separate local storm. If a site has h 

consecutive hours of zero precipitation then a single local storm is considered for the 

hours till the last non-zero precipitation before it, and a new local storm is considered 

starting from the next non-zero precipitation hour. A typical value of h is 6 hours. This is a 

site-specific storm and a site can have more than one local storm. The local storm 

defines the temporal characteristics of rainfall storms in a single location. The algorithm 

using Map-Reduce approach for local storm identification is provided in the work of 

Jitkajornwanich et al. [26]. 

Hourly Storm 

A new hourly storm occurs in an hour when n neighboring sites have zero 

precipitation in the same hour. Here n is the space tolerance [27] and defines the 

minimum number of neighboring sites with zero precipitation after which a new hourly 
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storm is created. If a site has non-zero precipitation in an hour, then an hourly storm is 

considered for those sites that have non-zero precipitation and are separated by at most 

n neighboring sites with zero precipitation. Then a new hourly storm is considered for 

those sites with non-zero precipitation and are away by more than n neighboring sites 

with zero precipitation from this current site. Neighboring sites are the sites that are 

adjacent to a site in the HRAP grid. If a HRAP co-ordinate of a site is given as (X,Y) then 

its neighboring sites are given by co-ordinates: (X-1, Y), (X, Y-1), (X-1, Y-1), (X+1, Y), (X, 

Y+1), (X+1, Y+1), (X-1, Y+1) and (X+1, Y-1). An hour can have more than one hourly 

storm but hourly storms in the same hour should not have common sites. 

The typical value of n is 0 which means hourly storms are considered only when 

the neighbors have non-zero precipitation. This is a time-specific storm and an hour can 

have any number of hourly storms. The hourly storms define the spatial characteristic of 

rainfall storms in an hour. 

An hourly storm consists of parameters such as: 

Storm coverage: Total number of sites covered by an hourly storm. 

Storm sites total: Sum of precipitation of the sites covered by an hourly 

storm. 

Storm average: The fraction of precipitation per site. Calculated by diving 

storm sites total by storm coverage  

Storm center: The HRAP co-ordinate of the site in an hourly that as 

maximum precipitation. If 2 or more sites have same precipitation then 

mean of the HRAP co-ordinates are taken. 

Storm centroid: The mean of the HRAP co-ordinates of the sites in an 

hourly storm. 
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Storm boundary: The minimum bounding rectangle that can be formed 

using the given set of sites in an hourly storm. This consists of 2 co-

ordinates: lowest values of x and y and highest values of x and y, of 

HRAP co-ordinates of the sites in an hourly storm. 

The algorithm using the Map-Reduce approach for hourly storm identification is provided 

in the work of Jitkajornwanich et al. [26]. 

This approach uses only mappers and no reducers. Hence the number of reduce 

tasks is set to zero. Each map task is assigned a single hourly file of raw rainfall data and 

outputs a file that consist of all the hourly storms computed for that hour. Hence for a 

non-leap year there are 8760 mappers while for leap year there are 8784 mappers. Each 

hourly storm is assigned an hourly storm id value. The mapper emits the hourly storm id 

as key, and the time stamp of the hour along with the hourly storm parameters defined 

above as value. A detailed description of various case scenarios for processing the 

hourly storm are provided by Jitkajornwanich et. al. [26]. 

Overall Storm 

An overall storm occurs when hourly storms within g hours overlap spatially by 

sharing s common sites. Here g is the grouping window [1] [27] which provides the 

minimum number of hours of overlap between 2 hourly storms to be considered merged 

to form a single overall storm, and, s is the spatial window [1] [27] which provides the 

minimum number of common sites shared between 2 hourly storm in order to be 

considered to be merged into a single overall storm. Hence an overall storm is created by 

merging one or more hourly storms. The typical value of s and g are 1 site and 1 hour 

respectively. An overall storm can be considered as a rainfall trajectory as it defines the 

spatial movements of rainfall over time. Hence it provides the spatio-temporal 
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characteristics of rainfall storms. An overall storm has various parameters defined in 

works by Jitkajornwanich et al. [1] [27]: 

Storm coverage: Sum of the storm coverage of all hourly storm that are merged 

Storm overall depth: Sum of the storm sites total of each hourly storm of every 

hour in an overall storm. 

Storm overall intensity: Average precipitation per hour of an overall storm. This is 

calculated by dividing the storm overall depth by number of hour the storm 

lasted. 

Storm overall average: Average precipitation per site of an overall storm. This is 

calculated by dividing the storm overall depth by storm coverage of overall storm. 

Storm path: Sequence of HRAP co-ordinates of storm centers or storm centroids 

formed by merging two or more hourly storms. If an hourly storm in a trajectory 

overlaps with more than one hourly storm in next  hour then the average of the 

storm centers or storm centroids of the hourly storms are calculated and included 

in the storm path. 

The overall storm identification algorithm using the Map-reduce approach is 

explained by Jitkajornwanich et. al. [1] with s=1 sites and g=1 hour values. The mapper 

reads the hourly storm data and merges the hourly storms iteratively. In the first iteration 

the mapper reads the hourly storm values and calculates the hour id for each hourly 

storm. The hour id is generated by considering hour id of 1st hour of the year as 0 and 

increasing the hour id value by 1 for each hour. This hour id value is emitted as key by 

the mapper while the parameters of the hourly storms are emitted as the value. The 

partitioner sends the 2 consecutive hours id to the same reducer. The reducer uses a 

data structure called OStorm that is used for merging the hourly storms and creates 

partial overall storms. The reducer emits (hour id/2) as key while the parameters of the 
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partial overall storms are emitted as value. In the next iteration the mapper will read the 

partial overall storm and emits the hour id of the partial overall storm as key and the 

partial overall storm parameters as value. Then the partial overall storm of consecutive 

hours is merged by the reducer. The mappers and reducers are iteratively repeated until 

all the hours are compared with each other. Since there are at most 8784 hours and in 

each iteration 2 consecutive hours are merged we would overall require l g      

    iterations. 

In the method proposed by Jitkajornwanich et. al. [1] the number of mappers 

required in the first iteration is 8760 or 8784 and it reduces logarithmically. Similarly the 

number of reducers for the first iteration is 4392 and reduces logarithmically. Even though 

the number of reducer tasks or mapper tasks decreases in each iteration there is always 

an overhead for creating tasks such as restarting JVM, updating job tracker etc. which 

will increase the computation time. Hence by making the number of tasks constant and 

reusing the existing task for different key groups we can improve the computation time of 

overall storm identification.  

The modified algorithm which process overall storm trajectories faster than 

existing approach is given in Algorithm 1. In this algorithm we reuse the existing map 

tasks by using a combination of (hour id/2) and hour id as key, and hour id and partial 

overall storm as value. The sorting comparator sorts the output from the mapper, based 

on the (hour id/2) key and the grouping comparator performs a secondary sort using the 

hour id key. The partitioner then sends all the records with (hour id/2) key to the same 

reducer. In the reducer two consecutive hours are identified using the hour id present as 

part of the composite value record. The number of reduce tasks is kept constant. The 

time taken for computing overall storms with 70 reduce tasks was approximately 45 
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minutes for a year and is better than the 3 hours taken by the earlier implementation. The 

algorithm uses the following. Functions:  

MarkAsFinal(cos) : Marks the overall storm cos as final so that they will not be 

compared further. 

IsFinal(cos) : Checks if an overall storm cos is final or not. A storm is final when it 

cannot grow further. 

cos.IsComparable(os) : Checks if the current storm cos is comparable with a 

given storm os. A storm os can be compared with cos if os starts in an hour 

consecutive to the ending hour of cos. 

cos.IsOverlap(os) : Checks if the current storm cos overlaps with the given storm 

os The storm cos overlaps with os when they share a common site in 

consecutive hours. 

Even though the new implementation speeds up the process, it can cause a 

node to run out of memory (JAVA Heap Space) when the total size of records processed 

by all the hour pairs in a node is greater than the RAM size, as the JVM is not restarted 

for each hour pair. However, this situation is very unlikely to occur as the overall storm 

identification is executed year by year and usually process less than 500 hourly storms in 

an hour. 

It should be noted that these overall storms contain the spatial HRAP coordinates 

that represent the location of an hourly storm in each hour. Hence by considering these 

HRAP coordinates as spatial parameters we get spatio-temporal trajectories that 

represent the rainfall storm movement. 
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Algorithm 1: Efficient Map-Reduce-based Overall Storm Identification 

Input:  
- hourly storm data text files  

Output:  
- overall storm data text file 

class MAPPER: 

function MAP(key object, value line): 

  if iteration i = 1://value is provided by the main function that creates the job 

   V= list of values in a line that are separated by space 

  hid = CalHourId(V[0])  

   hid1 = hid/2 

    key = (hid1, hid) 

   value = (hid, list of values of OStorm attributes) 

   Emit(key, value) 

  else: 

    key = (hid1, hid) 

   value = (hid, the remaining values, OStorm attributes) 

   Emit(key, value) 

end function: 

end class: 

class PARTITIONER: 

function PARTITION(key (hid1,hid), value (hid, OStorm)): 

  for each record: 

   tid = floor(hid1)  

   Emit (key, OStorm) to reducer task number tid  

  end for: 

end function: 

end class: 

class REDUCER: 

function REDUCE(key (hid1,hid), [(hid, OStorm1), (hid, OStorm2), …}): 

  for each key do: 

   if hid1 remains unchanged then: //when current call of reduce function has different hid1 value 

from the previous call. 

    for each (hid,os)  [(hid,OStorm1), (hid, OStorm2), …}: 

    if hid remains unchanged then:  //when current call of reduce function has different   

hid value from the previous call. 

       aList.add(os) 

     else: 

      for each storm cos  aList 

       if cos.IsComparable(os) and cos.IsOverlap(os): 

         mos =cos.MergeStormOrder(os)  

         aList.Add(mos, cos.pos 

         CompareWithin(cos.pos) 

       else: 

         if IsFinal(os):  

         MarkAsFinal(os) 

         end if: 

        Emit((hid1/2,hid1),os), to HDFS as input for next iteration 

      end for: 

    end if: 

     end for: 

   else: 

    for each storm cos  aList: 

      if IsFinal(cos) then  
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       MarkAsFinal(cos) 

     end if: 

     Emit((hid1/2,hid1),os), to HDFS as input for next iteration 

    end for  

   end if: 

  end for: 

end function: 

edn class: 

 

Thus the raw rainfall data recorded for each hour of each location is converted 

into a time series data. By considering spatial and time dimensions of a storm path, we 

get two different storm trajectories: one based on storm centers and another based on 

storm centroids. (Storm center considers the location with the highest precipitation for 

each hour.) Each point in a trajectory is a two-dimensional HRAP coordinate. The time 

interval between each point in a storm trajectory is one hour and the length of the 

trajectory is in hours.  
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Chapter 4  

Building the Prediction Model 

This chapter gives an overview of Markov Models (MM) and Hidden Markov 

Models (HMM), and, defines and discusses the procedure for building the prediction 

model along with the evaluation method used for testing the results. 

Markov Models (or Markov Chains) and Hidden Markov Models are probabilistic 

models that are built assuming the Markov property. The Markov property states that, 

given a sequence of states, the probability of a next state depends only on the current 

state and not on any other previous states. Hence this property defines a memoryless 

property for creating the model. A state can represent any entity that changes over time. 

A MM is built using the state sequences in the training data while a HMM is built using 

observation sequences where the relationship between states and observations are 

given as part of the model. The Markov property can be extended by considering more 

than one previous state and the number of previous states considered is called as the 

“Order” of the Model. In this paper we use 1-Order Markov Models which means we 

consider only the previous state. Both models, HMM and MM, can be used to predict the 

movement of states by learning through a set of sequences that represent the historical 

transitions between states. The probabilities of the state transitions are learned from a set 

of sequences that represent the transitions between states. We will discuss more on the 

learning process and differences between these models and their advantages in more 

detail in the next few sections. 

In this work, the overall storm trajectories are used as the historical sequences 

for building the model. Each point in an overall storm trajectory, tr, is an hourly storm (or 

hourly storms that are merged together) and is represented as a point, Pt,tr,. Here, t 

represents the relative time of the point in the trajectory tr of length n and can take values 
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from 1 to n. Each point Pt,tr contains many attributes that define the state of the hourly 

storm at time t. Hence, by using these trajectories we can build a model for predicting the 

temporal state of the hourly storm. For now, we are interested only in the HRAP [2] [1] 

grid system co-ordinates that represent the location of the storm as a 2D point, (Xt , Yt) 

that can be mapped to a corresponding latitude-longitude pair using the subroutines 

provided by NWS [28] [29]. The model built using this 2D-point can be used to predict the 

next possible location of the rainfall storm. However, this method can also be extended 

for predicting the temporal state of other attributes.  

The attributes of a point are continuous-valued. Hence building a model with 

points as states would require an infinite state space. Therefore the state space has to be 

reduced to a finite number but with minimal loss of data. This is done by grouping similar 

points into a groups that can be used to approximately represent each point. In the next 

section, we discuss in more detail the grouping technique used for reducing the state 

space. 

Clustering the Points 

Clustering is an unsupervised learning technique that groups a given set of 

points based on the similarity of their features. Each group is called a cluster. A cluster 

consists of points that have similar feature values compared to points in the other 

clusters. This technique is unsupervised as the clustering algorithm is built only with the 

similarly metric of the features used for grouping, but not with associated cluster labels. 

After clustering, each point becomes a member of a single cluster. Hence a point can be 

represented using its cluster and thus a finite approximation of the continuous state 

space can be formed for building the model. The set of clusters created by clustering 

algorithm is called a cluster group. The cluster group size (CGS) represents the number 
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of clusters in a cluster group. The cluster size (CS) represents the number of points in 

each cluster. 

Even though there are many clustering algorithms available, we use the 

hierarchical clustering algorithm [33] to cluster the points. The main advantage of using 

hierarchical clustering is that it is much faster than EM-Clustering [34] or K-means [35] 

clustering which consume more time for convergence. Moreover, hierarchal clustering 

does not consider any points as outliers, which are ignored by density based clustering 

algorithms such as DBSCAN [36] or OPTICS [37]. In hierarchical clustering the resulting 

clusters are represented as dendrograms, which are trees of clusters in which each node 

represents a cluster and each level of the tree contains new clusters created by merging 

2 clusters in the previous level. Hence each level will have one cluster more or less than 

the previous level depending on the type of hierarchical clustering. This provides us 

flexibility of choosing cluster groups of different cluster group size in a single clustering 

process. 

There are 2 types of hierarchical clustering; Agglomerative and Divisive. The 

Divisive technique is a top-down approach in which all the points are part of a single 

cluster at the start and are then divided into the desired number of clusters iteratively. 

Agglomerative clustering is a bottom-up approach in which all points are considered as 

individual clusters at the start and then the most similar cluster pairs are combined in 

each iteration until the desired number of clusters is reached. In this work, we use 

Agglomerative clustering since it is the most commonly used technique and also simple 

to implement. An example dendrogram for Agglomerative clustering is shown in Figure 

4.1.  
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Figure 4.1 An example of a Hierarchical clustering process and dendrogram 

This figure illustrates the process of hierarchical clustering for 5 points A, B, C, D, 

E and F. In this figure solid circles represent the new clusters and solid lines represent 

the links between the new clusters. Hence solid lines and solid circles form the 

dendrograms. The dotted circles represent old clusters, i.e. clusters from previous 

iterations, and dotted lines represent the link between the old clusters and the new 

cluster. At the beginning of the process all points are considered as individual clusters. At 

iteration 0(1st iteration) the 2 clusters B and C are merged to form a new cluster, 

represent as solid circle BC. Hence a solid line is drawn from B and C to BC. In the next 

iteration clusters D and E are merged to get new cluster DE. Hence a solid line is drawn 
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from the clusters D and E present before iteration 0 to new cluster DE and a dotted line is 

drawn from clusters D and E present at  iteration 0. The dotted lines represent the 

iteration at which the clusters merged while solid line represents the link between clusters 

in the dendrogram. Similarly the other clusters are merged until we get only one cluster. 

Now the cluster group can be chosen from the results of each iteration. For example if 

the cluster group is chosen from iteration 1 then we get 4 clusters A, BC, DE, F. Hence 

we can choose a cluster group with the required number of clusters from the iteration of 

the process.  

In hierarchical clustering each cluster is considered to be linked with the others. 

The similarity measure between two clusters in agglomerative clustering is called linkage. 

There are 3 types of linkages: single linkage - the nearest distance between 2 clusters; 

complete linkage - the farthest distance between 2 clusters; average linkage - average 

distance between 2 clusters. We use the average linkage criterion as it provides an 

easier metric used for evaluating the clusters. The average linkage measured between a 

cluster pair is provided by Equation ( 3 ) 

𝑑𝐶(𝐶𝑖 , 𝐶𝑗)  
1

(  ∣∣𝐶𝑖∣∣×∣∣𝐶𝑗∣∣ )
× ∑ ∑ 𝑑𝑝(𝐿𝑖 , 𝐿𝑗) 𝐿𝑗∈𝐶𝑗𝐿𝑖∈𝐶𝑖

  ( 3 ) 

Here Ci and Cj are the 2 clusters with size | Ci | and | Cj |, and, Li and Lj are the 

points that are members of cluster Ci and Cj. The function dp(Li, Lj) represents the 

distance between 2 points Li and Lj. The point Li is represented as (Xi, Yi) and Lj is 

represented as (Xj, Yj) and distance between the spatial attributes of the points is 

calculated as the Euclidean distance measure given by Equation ( 4 ) 

𝑑 (𝐿𝑖 , 𝐿𝑗)  𝑑 (( 𝑖 ,  𝑖), ( 𝑗 ,  𝑗))  √( 𝑖   𝑗)
 
 ( 𝑖   𝑗)

 
   ( 4 ) 
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Clustering only the spatial attributes is straightforward as we can use the 

distance metric given by Equation ( 4 ) to find the distance between members of 2 

different clusters. But if the points contain other attributes apart from spatial attributes, 

then clustering is performed using a weighted distance metric. Let us consider an 

example for clustering with an extra parameter which represents the angular movement 

between 2 consecutive points in a trajectory. This parameter is only an example; hence, 

we do not discuss the derivation or any properties of the attribute for now. Equation ( 5 ) 

provides the weighted distance metric for 3D points, (Xi, Yi, θi) and (Xj, Yj, θj), with the 

third dimension θ representing the directional attribute. The function 𝑑 ( 𝑖 ,  𝑗) gives the 

distance between the directional attribute and WD is weight for directional distance, while 

WS is the weight for the spatial distance. The values for these weights are chosen such 

that WD+WS=1. With weights, WS=1 and WD=0, we get clusters that represents only the 

spatial regions. A value of WD>0 will provide clusters that have points that might not be 

spatially closer to points in the other clusters but have similar angular movements. This 

equation can also be extended for points with more dimensions by providing the weights 

for each dimension and their distance function. 

𝑑 (𝐿𝑖 , 𝐿𝑗)  (  × 𝑑 ( 𝑖 ,  𝑗))  (  × 𝑑 (( 𝑖 ,  𝑖), ( 𝑗 ,  𝑗)))  ( 5 ) 

To implement the algorithm, an M x M similarity matrix D, is created, where M is 

the total number of points from all the trajectories. Each entry of the matrix D i,j is the 

average linkage criterion value between the clusters Ci and Cj, calculated using Equation 

( 3 ). Since the value Di,j = Dj,i, the matrix D is restricted as an adjacency list to avoid 

redundant computation. Hence the distance metric Di,j is calculated only for all i<j and the 

remaining values are assigned infinity. Clustering is performed iteratively, by merging the 

clusters Ci and Cj that have least Di,j values. After merging, the matrix entries for merged 

cluster i; Di,k are updated for all i<k and Dk,i are updated for all k<i. Also, entries of column 
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and row j are changed to infinity. The complete pseudo code of the algorithm is given in 

Algorithm 2. 

The center point 𝐿 𝑖  of the cluster is calculated as the mean value of individual 

attributes of all the points Li in cluster Ci. If the center point is represented as (  𝑖 ,   𝑖), 

then the mean value of the spatial attributes,   𝑖  and   𝑖, is calculated as the linear 

average value using Equation ( 6 ). 

𝐿 𝑖  (  𝑖 ,   𝑖)=(  
1

|𝐶𝑖|
× ∑  𝑖 𝑖∈𝐶𝑖, 

 ,
1

|𝐶𝑖|
× ∑   𝑖 𝑖∈𝐶𝑖,  )  ( 6 ) 

Here 𝐶𝑖,  and 𝐶𝑖,  represents the X and Y values in cluster 𝐶𝑖 . 

 In this algorithm TRL is the list of trajectories. Each trajectory tr in this list 

consists of points Pt,tr at time t. Each point in the trajectory is added to list LST. Now each 

point in the list LST are considered as individual clusters with a one member. The 

distance between these clusters are calculated and entered in matrix D. Then at each 

iteration we merge clusters Ci and Cj with lowest distance value Di,j. In agglomerative 

clustering we can get cluster groups with different number of clusters in a single 

clustering process. Hence we maintain a list CGS that contains the list of numbers of 

clusters required so that we can get cluster groups with different number of clusters. 

In our approach we evaluate the clusters by assigning a point from testing data to 

a cluster 𝐶𝑖 with the lowest distance from center of each cluster 𝐿 𝑖 . The clusters created 

using the training data are used for building the prediction model. It should also be noted 

that the center point of clusters move as the clusters grow. This means a member 𝐿1 of 

cluster 𝐶1 can be closer to a point 𝐿    which is the center of cluster 𝐶  than to point 𝐿    

which is the center of cluster 𝐶1. To address this and provide a consistent way to assign 

new points to clusters, the clusters found are re-mapped into clusters with closest center 

corresponding. Hence each point in the training data is reassigned to a cluster 𝐶𝑖with  
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Algorithm 2: Hierarchical Clustering 

Input:  
Set of Trajectory of points- TRL 
set of required cluster group size- CGS 

Output: 
Trajectory of points along with clusters for each point- TRL 
 

function cluster (TRL, CGS) 
  
 for each trajectory tr in TRL: 
  for each point at time t of trajectory tr: 
   LST.add(Pt,tr) 
  end for: 
 end for: 
 for each Cluster Ci in L: 
  for each Cluster Cj in L and i<j: 
   Di,j = dc(Ci, Cj) 
  end for: 
 end for: 
 while LST.size==1: 
  for each Cluster Ci in LST: 
   min = infinity 
   for each Cluster Cj in L and i<j: 
    if Di,j <min: 
     k = i 
     h = j 
    end if: 
   end for: 
  end for: 
  Ck =Merge clusters Ck and Ch 

  for each Cluster Ci in LST and i<k: 
   Di,k = dc(Ci, Ck) 
  end for: 
  for each Cluster Ci in LST and k<i: 
   Dk,i = dc(Ci, Ck) 
  end for: 
  if CGS.contains(L.size): 
   for each Cluster Ci in LST: 

    Caculate 𝐿 𝑖  

   end for: 

   for each trajectory tr in TRL: 
    for each point at time t of trajectory tr: 
     min = infinity 
     for each Cluster Ci in LST: 

      dis = dp (𝐿 𝑖 , Pt,tr) 

      if dis<min: 
       k = i 
      end if: 
     end for: 
     tr.add(Pt,tr, k) 
    end for: 
    TRL.add(tr) 
   end for: 
  end if: 
 end while: 

 end function: 
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least distance value from center point 𝐿 𝑖 . This will give us new set of clusters that can be 

used for building prediction model. The average of points in these new cluster is 

considered to be centroid of the cluster. Hence a cluster consists of 2 points: Center and 

Centroid. 

Even though clustering is performed using individual points from trajectories, we 

make sure that the trajectories of points are retained, so that we can get the trajectory of 

points along with the cluster of each point. This provides the trajectories of clusters, 

which can be used in computing the model parameters. This trajectory of clusters is 

presented in Figure 4.2  

 

Figure 4.2 An example trajectory of points plotted over a map visualizing the clusters 
(left) and correponding output trajectory with the clusters of each points (right) 

 
A trajectory of points, P1, P2, P3, P4, P5, P6, P7, is plotted on the ArcGIS Map [38] 

and is given on the left side of Figure 4.2. Also the points of 5 clusters C1, C2, C3, C4 and 

C5 are plotted on the map and are differentiated using different colors. The output from 

the clustering algorithm for this trajectory is shown in the figure on the right side and 

contains the clusters corresponding to each point on the trajectory. 
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Building Prediction Model Using Markov Model (MM) 

Markov Model [12] is a mathematical model that uses a set of probabilistic 

parameters and a predefined set of states to represent a set of sequences, where each 

sequence is made up of one or more transitions between states. In our work the states of 

the Markov Model corresponds to the clusters of the points that were created in the 

previous section. Hence the transitions between clusters in the set of cluster trajectories 

that were obtained in the previous section correspond to state transition and can be used 

for calculating the model parameters. Throughout this work the states are represented 

using notation Si. Hence in a MM cluster Ci corresponds to state Si. Also, the notation St,tr 

represents the state corresponding to an observation Pt,tr at time t in a trajectory tr. 

A Markov Model has two sets of parameters as described below. 

Initial probability (Πi): The probability that a trajectory starts in a given state, Si. 

Since the states correspond to clusters this value can be calculated from the cluster 

trajectories as the probability of each cluster Ci to be present at time t=1 in any of the 

trajectories in the given set of trajectories. This is given by Equation ( 7 ). 

 𝑖  
∑ (  ,  ∈ 𝑖)  

∑ ∑ (  ,  ∈ 𝑗)𝑗  
  ( 7 ) 

Here  1,   represents a point at time t=1 in trajectory tr and  1,  ∈  𝑖 gives the 

binary boolean value, either 0 or 1, representing that a point at time t=1 in a trajectory tr 

belongs to cluster Ci. If the point  1,    belongs to cluster Ci it gives a value 1 else it gives 

a value 0. As mentioned, cluster Ci is represented using state Si since clusters uniquely 

correspond to states. 

Transition probability (Ai,j): The probability of moving from one state to another 

state. This is represented as a (CGS x CGS) matrix, A, where CGS is the number of 

states (clusters). Each entry Ai,j represents the transition from cluster Ci to Cj and is 
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calculated from cluster trajectories as the probability of seeing cluster Ci at time t and Cj 

at time t+1 in each trajectory tr and is given by Equation ( 8 ) 

 𝑖,𝑗  
∑ ∑ ((  ,  ∈ 𝑖) (    ,  ∈ 𝑗))   

∑ ∑ ∑ ((  ,  ∈ 𝑖) (    ,  ∈ 𝑘))𝑘   
  ( 8 ) 

The transition probability matrix provides a probability distribution of cluster- to-

cluster transitions. Also the initial probability provides the probability of a trajectory 

beginning from a cluster. Let us consider a trajectory tr as  1,  ∈ 𝐶𝑖 ,   ,  ∈ 𝐶𝑘 ,   ,  ∈ 𝐶𝑗 

Now the probability of the trajectory tr can be obtained by applying the chain rule as given 

in Equation ( 9 ) 

P (tr) = 𝑖 ×  𝑖,𝑘  ×  𝑘,𝑗  ( 9 ) 

Hence from the transition probability the likelihood of a cluster at time t can be 

predicted if the cluster at time t-1 is known.  

 

a) 

 

 

b) 

Figure 4.3 a) Sequence of observations (points) along with the cluster of each point in the 
sequence. b) Sequence of states in which states corresponding clusters representing the 

Markov Model for the observation sequence given in a) 
 

In this figure a dotted circle represents a point along with the cluster of the point 

and a solid circle represents a state in the Markov Model. As mentioned, each state 
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corresponds to one cluster we can see that the cluster C1 corresponds to state S1. The 

Figure 4.3 b) provides a state sequence in a Markov Model corresponding to an 

observation sequence provided in Figure 4.3 a). This state sequence is created for all the 

trajectories in given set of trajectories of points and then used for calculating the model 

parameters using Equations ( 7 ) and ( 8 ).  

Prediction using MM 

The model is built using training data and the experiments are carried out using 

testing data. To test a transition we choose a point Pt at time t from a given trajectory and 

assign it to the closest cluster, Ccl. This is done by finding the distance between the point 

Pt and the center of cluster 𝐿 𝑖  using Equation ( 3 ). The same procedure is followed to 

find the cluster of the next point Pt+1 in the trajectory as Cactual. From the transition 

probability matrix we can find the probability distribution for reaching all the clusters from 

cluster, Ccl. Now we choose the cluster with higher transition probability as the cluster 

Cpredicted. Then the difference between the center of the cluster Cpredicted and the cluster 

Cactual is found using Equation ( 4 ). We will discuss about the results in the Chapter 5. 

The Markov Model predicts the cluster at time t+1 given the cluster at time t. 

Since the clusters are created using the attributes of hourly storms, they represent the 

state of the storms (either spatial or spatio-directional). Hence we predict the state of the 

rainfall storms. However, the cluster provides only the closest state of the storm but not 

the actual attribute values. Moreover we need to be very careful when choosing the 

number of clusters since a Markov Model with a single cluster will provide 100% correct 

predictions in terms of cluster identities but is not helpful. Hence to get a better prediction 

model that is much more useful. We use a Hidden Markov Model (HMM) that provides a 

better representation of the transitional and spatial variation in the given set of trajectories 

by learning the hidden information present in the set of trajectories. 
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Building Prediction Model Using Hidden Markov Model (HMM) 

A Hidden Markov Model [4] is similar to a Markov Model except that the states 

are hidden. Each state is associated with a set of observations that are visible. Hence we 

use sequences that represent observation transitions rather than state transitions. In this 

work, observations are the 2D points and the states correspond to the clusters. The main 

aim of using HMM is to learn the spatial and transitional information present in the given 

set of trajectories. This can be achieved by having more than one state for representing 

each cluster so that each state can represent different information in the cluster. A 

representation of a cluster is considered as the state instance and is assigned with a 

partial contribution value from each member of the cluster. However the sum of this 

contribution value over all the state instances for a given observation will be 1. If the 

number of the instances is 1, then each observation will contribute to only one state 

which is the cluster itself, thereby making the model similar to a MM. 

Since each cluster corresponds to more than one state, the state Si will no longer 

represent the cluster Ci and the identifier of the state representing an cluster depends on 

the number of instances. If INS is the number of instances for each cluster Ci, the states 

corresponding to this cluster are given as S(1+INSx(i-1)), S(2+INSx(i-1)), S(3+INSx(i-1))… S(INS+INSx(i-1)). 

Since each member of a cluster provides only a partial contribution to each state instance 

a state can have only a fraction of each observation which makes the amount of 

observations in a state as the sum of fractions of all observations contributing to this 

state. This amount of observation provides the weight of the state. 

A HMM uses both the parameter sets of the Markov Model; transition 

probabilities and initial probabilities; along with a new parameter set called observation 

probability, which provides the relationship between the state and the observation. We 
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have already discussed transition probability and initial probability calculations in the case 

of a Markov Model. Hence, we define only the observation probability here. 

Observation probability ( Bi (Pt,tr) ): This parameter provides the conditional 

probability of obtaining an observation Pt,tr in state Si. This probability is also called 

emission probability as it is considered that a state emits the given observation. A single 

state can emit more than one observation and one observation can be emitted by more 

than one state. However in our research an observation can be emitted only by the state 

instances that represent the cluster corresponding to the observation. An emission 

probability of 1 for a given observation represents that the state Si emits only this 

observation and not any other observation while a value of 0 represents that the state Si 

do not emit this observation. In the HMM used in our approach the states correspond to 

clusters of points. Each dimension of a point are continuous and are dependent on each 

other. Hence, to make the model learning feasible it will have to be assumed that the 

observations of each state follow a Multivariate Gaussian distribution [39]. The probability 

density function of a Multivariate Gaussian distribution, for an observation Pt,tr, is given by 

Equation ( 10 ). 

 (  ,    𝑖  𝑖)  
1

√  ( 𝑖)
 
×  

  

 
×(  ,    𝑖)

 
 𝑖
  (  ,    𝑖)  ( 10 ) 

Here, μi and Vi, are the mean and covariance of the state Si, and, D is the 

number of dimensions, which is the number of attributes of a point,   ,  . 

An example of HMM with 3 state instances for each cluster is given in Figure 4.4 

This figure depicts the relationship between observations and the states for an 

observation sequence, (P1,tr ……Pt-1,tr, Pt,tr, Pt+1,tr ……. Pn,tr), where n is the length. In this 

figure, the observations are represented using dotted circles and the states are 

represented using solid circles. The dotted lines represent the observations emitted by 



 

33 

each state while the solid line represents the transitions. It should be noted that there are 

no solid lines between observation which means the HMM considers only state 

transitions obtained from observation transitions as we assume that observations are 

emitted by the states. The states S1, S2, S3 can emit more than one observation given as 

Pt,tr and Pt+1,tr. These observations are the members of a cluster which is represented 

using three states S1, S2, S3. For the observation sequence, (……Pt-1, tr, Pt,tr, Pt+1,tr …….), 

state sequences are created for all possible combinations of states. 

 

Figure 4.4 Sequence of states represnting HMM for the seuqnece of observations given 
in Figure 4.3 a) 

 
This is done by keeping track of all states that emit an observation at each time t in the 

given trajectory, tr. In our approach an observation can be emitted by the states 

corresponding to a cluster and a cluster is represented by its state instances. Hence for 

each observation we keep track of its state instances.  
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The point Pt-1,tr  belongs to cluster C1 .Hence state instances corresponding to 

these clusters are given by states S1,S2, S3. Similarly the active states for points Pt,tr and 

Pt+1,tr are states S1,S2, S3 and S7,S8, S9 , respectively. From these states we get 

3x3x3=27 state sequences. Now the probability of a trajectory is calculated using the 

model parameters from all possible state sequence combinations. The number of state 

sequences corresponding to a single observation sequence is exponential in the number 

of state instances representing each cluster and is given as INS. Hence calculating the 

probability of a trajectory by considering all the state sequence combinations increases 

space and time complexity. However this complexity is reduced by using the Forward or 

Backward algorithm which uses a dynamic programming approach. We discuss on these 

algorithms in detail later. For now we discuss the use of the algorithm. Both Forward and 

Backward algorithms are combined as Forward-Backward algorithm, which finds the 

probability of being in state, Si, at time, t in trajectory tr and is represented as P ( St,tr=Si ), 

for a given observation trajectory. 

Our main aim is to find model parameters that maximize the sum of the 

probability of all trajectories in the given set of trajectories. To achieve this, the model 

parameters for each state are initialized using randomly generated P(St,tr=Si) values and 

then maximized by a learning algorithm called Baum-Welch [4]. Baum-Welch is an EM 

algorithm that maximizes the generative precision of the HMM model by modifying its 

parameters through learning using a given set of trajectories.  

The calculation of the starting values for the model parameters can be explained 

using the following example. Let us consider a trajectory tr of length n. The observations 

Pt,tr and Pt+1,tr of the trajectory tr, belong to clusters Ci and Cj respectively. The number of 

state instances for representing each cluster in the model is given as INS. Now, for each 

observation, Pt,tr , INS number of random probability values are generated and used as 
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the probability value P (St,tr=Si). This probability represents the weight of state Si at time t 

in a trajectory tr and is used for calculating the starting values of the model parameters.  

The Initial probability Πi of state Si is calculated as the average weight of a state 

Si starting any trajectory in the given set of trajectories. 

 𝑖  
∑    (  ,     )  

∑ ∑   (  ,     )𝑗  
  ( 11 ) 

A single transition from one observation, Pt,tr to another observation, Pt+1,tr in 

trajectory tr contributes to INS x INS transitions between states. Since the number of 

instances in the example is give as INS=3 we generate (INS x INS)=9, transition 

probabilities for a single observation transition, Pt,tr. If P (St+1,tr =Sj | St,tr=Si ) represents 

the randomly generated value for a point Pt,tr in states Si and point Pt+1,tr in state Sj, then 

the transition probability is given as: 

 𝑖,𝑗  
(∑ ∑  (    ,      |  ,      )   )

∑ ∑ ∑  (    ,     |  ,     )𝑘   
   ( 12 ) 

The mean of observation distribution of state Si, μi is a point given by the 

following equation. 

 

 𝑖  
∑ ∑   (  ,     )   ×  ,  

∑ ∑   (  ,     )    

   ( 13 ) 

If the observation Pt,tr is given as {Xt, Yt}, then the mean of spatial values 

is calculated using Equation ( 14 ) and Equation ( 15 ). 

  𝑖  
∑ ∑   (  ,     )    ×  

∑ ∑   (  ,     )  
   ( 14 ) 

  𝑖  
∑ ∑   (  ,     )    ×  

∑ ∑   (  ,     )  
   ( 15 ) 

The covariance of the distribution of observations in state Si is a (D x D) matrix, 

Vi, which is calculated using the following equation. 

 𝑖  
∑ ∑   (  ,     ) (  ,    𝑖)

 
(  ,    𝑖)   

∑ ∑   (  ,     )   
  ( 16 ) 
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The value (Pt,tr – μi) is a point obtained by subtracting each dimension of point Pt,tr 

from the corresponding dimensions in the mean point μi and is given as: 

(  ,    𝑖)  ((     𝑖), (     𝑖))  ( 17 ) 

The model parameters are learned such that the probabilities of the trajectories 

are maximized. This algorithm involves 2 steps. 

Expectation Step: In this step we calculate the probability for each trajectory from 

the given distribution of the states. As we mentioned earlier the probability of a trajectory 

can be calculated either using the Forward algorithm or the Backward algorithm. 

The calculation of forward and backward probabilities is explained using a given 

trajectory tr of length n represented as,( P1,tr, P2,tr, P3,tr....Pn,tr ). The Forward algorithm 

finds the forward probability of state Si at time t in a trajectory tr as αi,t,tr. This probability is 

defined as the joint probability of being in state Si at time t and seeing the observation 

sequence (P1, P2...Pt-1 ). Equation ( 18 ) gives the forward probability of state Si using a 

single observation, Pt+1,tr .  

 𝑗,  1,     𝑗(   1,  )∑ ( 𝑖, ,  ×  𝑖,𝑗)𝑖   ( 18 ) 

The forward probability for the observation at time t=1 is given as:  

 𝑖,1,    𝑖 ×  𝑖( 1,  )  ( 19 ) 

The backward algorithm provides the backward probability of a state Si at time t 

in a trajectory tr as βi,t,tr, and is calculated as the conditional probability of ending an 

observation sequence as (…Pt+1,tr, Pt+2,tr, Pt+3,tr....Pn,tr ) given a state Si at time t. This 

probability is calculated by the following Equation. 

 𝑖, ,   ∑  𝑗,  1,  ×  𝑖,𝑗 ×  𝑗(   1,  )𝑗   ( 20 ) 

The backward probability for of state Si at time t=n in a trajectory tr, where n is 

the length of the trajectory tr, is gives as: 
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 𝑖,𝑛,      ( 21 ) 

The probability of the trajectory can be calculated, either by using the forward 

probability or the  backward probability and is given as: 

 (  )  ∑ ( 𝑖,𝑛,  )𝑖   ( 22 ) 

The probability P (St,tr = Si) is calculated as the product of both the forward and 

the backward probability. 

 (  ,     )  
 𝑖, ,  × 𝑖, ,  

 (  )
  ( 23 ) 

The calculation of forward and backward probability can be explained using 

Figure 4.5. 

 

Figure 4.5 Forward and Backward probability 

This figure illustrates forward probability and backward probability calculation for 

state S1 at time t in a given trajectory tr. The forward probability,  1, ,  , of the state S1 is 

calculated by moving left to right from all possible states at time t-1 to state S1 at time t. 

The backward probability,  1, ,   is calculated by moving right to left from all possible 

states at time t+1 to state S1 at time t. The forward probability is calculated using the 
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observation seen at time t while the backward probability is calculated using observation 

at time t+1 as we have not seen the observation at t. 

Maximization Step: In this step the model parameters are calculated so that the 

sum of the probabilities of all trajectories in the given set of trajectories is maximized 

given the model parameters calculated in the Expectation step. The model parameters 

Πi, μi, Vi are calculated using the following equations. 

 𝑖  
∑

 𝑖, ,  × 𝑖, ,  
 (  )  

∑
∑  𝑗, ,  × 𝑗, ,  𝑗

 (  )  

  ( 24 ) 

 𝑖  
∑

∑ ( 𝑖, ,  × 𝑖, ,  )×  ,   

 (  )  

∑
∑ ( 𝑖, ,  × 𝑖, ,  ) 

 (  )  

  ( 25 ) 

 𝑖  
∑

∑ ( 𝑖, ,  × 𝑖, ,  )×(  ,    𝑖 )
 
 (  ,    𝑖) 

 (  )   

∑
∑ ( 𝑖, ,  × 𝑖, ,  ) 

 (  )  

  ( 26 ) 

The calculation of the transition probabilities is given by Equation ( 27 ). 

 𝑖,𝑗  
∑ ∑

 𝑖, ,  × 𝑖,𝑗× 𝑗(    ,  )×  𝑗,   ,  

 (  )   

∑ ∑ ∑
 𝑖, ,  × 𝑖,𝑘× 𝑘(    ,  ) × 𝑘,   ,  

 (  )𝑘   

  ( 27 ) 

Both steps are repeated until the model parameters converged. The pseudo 

code of the Baum-Welch algorithm is given as Algorithm 3.  
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Algorithm 3: Building HMM 

Input: 
 Trajectories of points along with corresponding clusters-TRL 
 Number of instances-INS 
Output:  

Model parameters- {  ̂ ,  ̂ ,  ̂ ,  ̂ } of maximized model 
  

function Model parameters HMM(TRL): 
 
 Obtain set of clusters CS from the trajectory TRL 
 Create set of states M as set with INS instances for each cluster in CS 

Create set of states STSt,tr for each point   ,   containing instances of cluster Ci where 

 1,  ∈ 𝐶𝑖 
 for each trajectory tr in TRL: 

Generate random values by restricting   ,   to states in set STSt,tr 

for each state Si: 
Calculate the starting values of model parameters as 
{  𝑖 ,  𝑖,𝑗 ,  𝑖 ,  𝑖} 

end for: 
 end for: 
 do : 
  for each trajectory tr in TRL: 

    ̂(  ) = (  ) 
  end for: 
  for each trajectory tr in TRL: 

Calculate forward and backward probability,     and    , by restricting 
  ,   to states in set STSt,tr 

Calculate the probability of trajectory   ̂(  ) 
for each state Si in M: 

Calculate the new values of model parameters as 

{  ̂𝑖 ,  ̂𝑖,𝑗 ,  ̂𝑖 ,  ̂𝑖} from  𝑖,  and  𝑖,   

   end for: 
  end for: 

  {  𝑖 ,  𝑖,𝑗 ,  𝑖 ,  𝑖}= {  ̂𝑖 ,  ̂𝑖,𝑗 ,  ̂𝑖 ,  ̂𝑖} 

 while (    ̂(  )      (  ))    : 

  return {  ̂ ,  ̂ ,  ̂ ,  ̂ }: 
 end function: 

One common problem in these calculations is that the probability for a longer 

trajectory may go lower than the minimum floating point value supported by the machine. 

To avoid this issue the probabilities are represented as log likelihood values and 

multiplication and division operations are converted into addition and subtraction 

respectively. 

The Baum-Welch algorithm provides only local maximum values depending on 

the starting values of the model parameters. Hence the results of the learning process is 

different for different starting values. The converged model parameters provide us with a 
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new representation for states that gives a better representation for observations. For 

example, after learning, a State Si which is an instance of cluster Ck, can represent hourly 

storms that occurred in a single region of the cluster Ck, or hourly storms that are moving 

in same direction, or hourly storms that move towards the same region or any other 

representation depending on the learning process. This new representation of clusters is 

obtained by modifying (or weighing) the relevant parts of the cluster to each state 

instances based on the spatial and transitional variations. In other words, clusters are 

further diversified based on the space and movement. Hence this approach looks similar 

to clustering or classification. But it should be noted that this learning is different from 

clustering since in HMM learning an observation may not be represented by a single 

state while in most clustering techniques each strictly observation belongs to one cluster. 

Moreover, clustering does not consider transitions between observations but only the 

observations, while HMM learning uses transition probabilities apart from the observation 

probabilities. 

Smoothing the Gaussian Using Uniform Distribution 

Some of the state distributions are created using few points. For example, a state 

distribution could be created using a single point which will lead to a zero covariance 

matrix which will give a density value of infinity if the point is same as the mean and of 

zero for all other points. This state with zero covariance is not useful as we may not get 

any observation identical to the mean in the future. Hence this distribution is modified by 

adding noise to the existing state distribution. 

This is done by generating random observations within the given range (actually 

by generating values for each dimension of an observation from a random number 

generator limited within the range of the dimension) and assigning them to the closest 
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cluster. For example if the range of X and Y values in a co-ordinate system is (Xmin, Xmax) 

and (Ymin , Ymax) then a random observation Lrand is given as below. 

𝐿  𝑛   (   𝑛 ,    𝑛 ) 

 ( ( 𝑚𝑖𝑛      𝑑() ×  𝑚  ), )( 𝑚𝑖𝑛      𝑑() ×  𝑚  ) )  ( 28 ) 

The point Lrand is assigned to a cluster Ci for which the distance between random 

point Lrand and the center of cluster 𝐿 𝑖 is the minimum. In this work we generate n random 

observations and assign them to the closest cluster. Then the mean and variance for 

these uniformly distributed random observations of each cluster is calculated.as    𝑛 𝑖 

and      𝑖  , respectively for each cluster Ci. These random distributions are added to 

each state instance of the cluster Ci by performing weighted addition with mean   𝑘 and 

variance  𝑘, ,   of the states Sk for all states that represent cluster Ci and is given by 

Equations ( 29 ) and ( 30 ). 

 𝑘     𝑛 𝑖 ×   𝑛 𝑖    𝑘 × (     𝑛 𝑖  )  ( 29 ) 

 𝑘, ,         𝑖 ×   𝑛 𝑖    𝑘, , × (     𝑛 𝑖  )  ( 30 ) 

Here d represents a dimension identifier and    𝑛 𝑖 is the weight for the 

uniformly distributed samples of the cluster Ci and is calculated using Equation ( 31 ). 

   𝑛 𝑖   𝐾/(  𝑛𝑖 𝑜 𝑚𝑖   𝑘)  ( 31 ) 

Here,  𝑘 represents the weight of the state, Sk, which is a state instance that 

represents the cluster Ci. It should be noted that state, Sk is assumed to follow a 

Gaussian distribution of observations present in the given set of trajectories and belong 

to cluster Ci.   𝑛𝑖 𝑜 𝑚𝑖  is the weight of the cluster Ci created by uniformly distributed 

random observations and is the number of random observations which are closer to the 

center of the cluster Ci than any other cluster. Also K represents the number of uniformly 

distributed random observations added to the Gaussian distribution. A value  𝑘 < 𝐾 will 
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make the state biased towards randomly generated uniformly distributed observations 

while a  𝑘 > 𝐾 will make the state biased towards observations from the input data that 

follow a Gaussian distribution. Hence we need to be careful in choosing the K value. We 

discuss experiments for different values of K in Chapter 5. 

Prediction using HMM 

Once the model is created, we can predict the behavioral attributes of the next 

possible observation in any given trajectory. In a HMM the next possible observation 

depends on the entire trajectory and not only on the current state, unlike in a MM. Let us 

consider a trajectory tr as (P1,tr, P2,tr, P3,tr.... Pn+1,tr). In order to evaluate the model we 

predict the observation Pn+1,tr given the trajectory (P1,tr, P2,tr, P3,tr.... Pn,tr) and compare the 

predicted location with the actual location. The probability of this trajectory is calculated 

using the forward algorithm. Since the observation probability of the next possible 

observation Pn+1,tr is unknown, the forward probability at time t=n is calculated and then 

the transition probability is used for calculating the probability of being in state Si at time 

t=n+1 for all states Si in the model. This is given by Equation ( 32 ). 

 𝑗   ∑  𝑖,𝑛,   ×  𝑖,𝑗𝑖   ( 32 ) 

Now, by using the probability as weights, the observation, Pn+1,tr, is predicted 

based on the weighted sum of all the states. Since each state observation is assumed to 

follow a Gaussian distribution, the weighted sum of all the states will result in an 

observation following a Mixture of Gaussians and the predicted observation is the mode 

of the mixture. The PDF of a Gaussian Mixture with M component, and, weights Wi for 

each component i, for a point   ,   is given by Equation ( 33 ) 

 (  ,    1    1    1  )  ∑  𝑖 ×  (  ,    𝑖  𝑖)
 
𝑖 1   ( 33 ) 

Here, ∑  𝑖   
 
𝑖 1 . The value of  (    𝑖  𝑖) is calculated using the multivariate Gaussian 

PDF given in Equation ( 10 ). 
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Figure 4.6 visually illustrates the difference between the PDF of a 2D-Gaussian 

and a 2D Gaussian mixture with 5 components and different weights for each 

component. 

 

Figure 4.6 a) PDF of a 2D Multivariate Gaussian b) PDF of 2D Multivariate Gaussian 
mixture with 5 compnenst and unequal weights. 

 
The mode of a distribution is the point with the maximum probability in the 

distribution. Hence, for a Gaussian distribution with no skewness, the mean is equal to 

the mode. The mode of a Gaussian mixture depends on the weight and mean of each 

component in the mixture. The mean of the mixture is the weighted sum of the means of 

the individual components of the mixture. But this mean is not the peak point (mode) of 

the mixture. In order to find the mode of a mixture we need to search for the peak of the 

mixture. There are many methods to perform mode search. We use the Gradient-

Quadratic Mode Search method proposed by Miguel A. [40]. This method uses the 

quadratic maximization technique (Newton's method) combined with a gradient ascent  

method to search for a peak point in a mixture. 

A gradient is the first derivative of the given function. For a Multivariate Gaussian 

the first derivative is given by Equation ( 34 ). 
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   𝑑       𝑑
 (  ,    1     1     1   )

𝑑 
 

=∑  𝑖 ×  (  ,    𝑖  𝑖) × ( 𝑖)
 1 × (  ,    𝑖)

 
𝑖 1   ( 34 ) 

Gradient ascent [40] is a local optimization technique used for finding the local 

maximum in a given function. We describe the gradient ascent technique used by Miguel 

[40] for performing mode search. In this technique, we start from a point Pstart and move 

to a point which is certain number of steps away from Pstart. The number of steps moved 

is given as step size, SZ. This movement is repeated by reducing the step size value by 

half until a point with higher probability than the probability of Pstart is reached. 

Quadratic search proposed by Miguel [40] for mode finding, is similar to gradient 

ascent except that the step size is not constant but is given as the ratio of the second 

derivative (Hessian function) and the first derivative (gradient function). The second 

derivative of the Multivariate Gaussian is given by Equation ( 35 ). 

          𝑑  
 (  ,    1     1     1   )

𝑑 
 

 ∑ 𝑖 ×  (  ,    𝑖  𝑖)

 

𝑖 1

 

×  𝑖
 1 ((  ,    𝑖)(  ,    𝑖)

 
  𝑖)  𝑖

 1     ( 35 ) 

To address resolution in use with small probabilities, Miguel A. [40] uses log 

density of these functions, lg and lh, is given by Equation ( 36 ) and Equation ( 37 ) 

respectively. 

   
1

𝑝
   ( 36 ) 

   
1

𝑝 
    

1

𝑝
   ( 37 ) 

The prediction algorithm is given in Algorithm 4.  
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Algorithm 4: Predicting Observation 

 Input: 
Trajectory of points tr,( P1,tr, P2,tr, P3,tr....Pn,tr),  

Model parameters- *  ̂ ,  ̂ ,  ̂ ,  ̂ } 
 Output: 
  Observation Pn+1,tr 
 

function PO( tr, {  ̂ ,  ̂ ,  ̂ ,  ̂ ): 
 

for each state Si: 
Calculate the weights Wi using forward probability and transition probability A 

end for: 
for each state Si: 

 Pold= ̂𝑖 
 do: 

prold=  ( 𝑜𝑙          ) 
  Calculate lg and lh 
  if lh < 0: 
   Pnew = Pold + lg/lh 

prnew =  ( 𝑛          ) 
  else 
   prnew= -1 
  end if: 
  while prnew< prold: 
   Pnew = Pold + (SZ x lg) 

prnew =  ( 𝑛          ) 

   SZ= SZ/2 
  end while: 
  Pold= Pnew 
 while (lg>0) : 
 if prnew>min : 
  Ppredicted=Pnew 
 end if: 
end for: 
return Ppredicted: 

 end function:  

The mode search starts from a point μi, the mean of the observations of state Si of the 

mixture. The Hessian, lh, and gradient, lg, for this point are calculated using Equations     

( 37 ) and ( 36 ) respectively. A value of lh>0 represents that we are on the hill cap of the 

mixture and a new point is reached by moving through 
𝑙 

𝑙 
 steps. But if the value of lh<0 is 

reached then the current point is not on the hill cap of a peak in the mixture and a new 

point is reached by gradient ascent. If the new point has a probability lower than the 

current point then we reach another new point by reducing the step size value. Then the 

lg and lh values are calculated for this new point. Ideally the process stops when we 

reach a point with g=0, which means the peak of the mixture is reached. But experiments 
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have shown that condition g=0 is never reached. Hence the process stops when g 

reaches a threshold value close to zero or when a certain number of iterations has been 

processed. The process is repeated by starting from the mean of all the remaining 

components of the mixture hence giving more than one point. We choose the point with 

the highest probability as the predicted point, Ppredicted. 

Once the observation is predicted the model is evaluated by finding the distance 

between the predicted observation point Ppredicted and the actual observation point Pn+1,tr in 

the trajectory from the testing data. The distance is measured separately for each 

attribute, so that the prediction accuracy of each attribute can be analyzed separately. 

We discuss the results more in Chapter 5. 

Predicting More Than One Step in the Future 

Both MM and HMM models can also be extended to predict more than one step 

in the future. This can be done by modifying the transition probability matrix  𝑖,𝑗 using the 

Chapman-Kolmogorov Equation given as Equation (38). 

 𝑖,𝑗
(𝑛 )

 ∑  𝑖,𝑘
(𝑚)

×  𝑘,𝑗
(𝑛  𝑚)

  𝑘
  ( 38 ) 

Here, m represents the number of steps transitioned so far and nx is the number 

of steps to be predicted in the future. The probability  𝑖,𝑗
(𝑛 )

 gives the probability of 

transitioning from state Si to Sj, nx steps in the future. The probability of transitioning from 

state Si to Sj in 3 steps,  𝑖,𝑗
  is calculated from the value  𝑘,𝑗

  which is further calculated 

from the value  𝑖,𝑘
1 , which is the transition probability  𝑖,𝑘   This means that the probability 

of transitioning from state Si to Sj after nx transitions, depends on the transition probability 

of all the states at steps 1 to nx-1. 

From Equation ( 38 ) we can see that the value  𝑖,𝑗
(𝑛 )

 is the same as the entry of 

a matrix at row i and column j which was obtained by multiplying the transition probability 
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matrix Ai,j n times with itself. Hence by multiplying the transition probability matrix  , nx 

times we get the new transition probability matrix  (𝑛 ) which can be used for predicting 

nx steps in the future. Given a trajectory ,( P1,tr, P2,tr, P3,tr....Pn,tr ), this matrix can be used 

for a MM to predict the most probable cluster at time (n+nx) similar to predicting the 

cluster at n+1 as explained earlier. In a HMM the forward probability of a trajectory is 

calculated using the transition matrix A and then the weights for each cluster at time n+nx 

are obtained using the transition matrix  (𝑛 ). These weights can be used for finding the 

most probable observation using mode search explained earlier for predicting a single 

step transition.  

Directional attribute 

Apart from the spatial attribute, we also use an attribute that represents the 

directional movement between each point in the trajectory. The direction attribute is the 

direction taken by a storm at time t from position ( Xt , Yt ) in trajectory tr to reach a 

position ( Xt+1 , Yt+1 ). This direction is then calculated by considering the point ( Xt , Yt ) as 

the origin of a unit circle and the angle between the x-axis of the circle and a line drawn 

from the origin of this circle to a point given as ((    1    ), (   1     )) and is given as 

line ln. The direction is given as the angle between the x-axis and this line ln and is 

represented in degrees. We consider only anti-clockwise rotation and restrict the 

directional parameters to [0,360) degrees. Figure 4.7 shows the direction parameter at 

time t=4 calculated as angle between point at time t=3 and t=4 in a given trajectory. 
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Figure 4.7 Caculating the angle between 2 points in a trajectory. 

This angle is calculated using Equation ( 39 ) 

   1       ((    1    ), (   1    ))  ( 39 ) 

where ( Xt , Yt ) and( Xt+1 , Yt+1 ) are the points Pt,tr and Pt+1,tr at time t and t+1, 

respectively, and the angle θt+1 represents the directional attribute at time t+1 in a 

trajectory tr. The atan2 function provides the angle value in radians between (-π, π] 

which is then converted into degrees in the range [0,360). The starting point of a 

trajectory, P1, will have a directional attribute value of -1, representing an unknown angle. 

This directional attribute is included as the 3rd dimension of each point, Pt,tr, in 

the trajectory. Hence the point, Pt,tr, is given as a 3D point, ( Xt , Yt, θt ).  

 

Figure 4.8 Calculating the diffrence between 2 angles 

It should be noted that angles are restricted to lie.in the range [0,360) and any 

angle above or equal to 360 is considered to start from 0 again. For example, a value of 
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720 is the same as 0 or 360 or 1080. Hence angles are considered wrapped parameters 

as they repeat after 360 is reached .Since angles are wrapped, the distance measure for 

the directional attribute is a special case. Angles can be well understood by considering a 

unit circle as provided in Figure 4.8. In this circle the origin is given as (0,0) and to find 

the difference between angles θj and θi we draw 2 lines, inclined relative to the x-axis of 

the circle at angles θj and θi and represent them as lnj and lni respectively. The difference 

between these 2 angles is given as the angle between these 2 lines. This angle is 

calculated as the minimum angular rotation required for lnj.to reach line lni. In a circle a 

line can rotate either clockwise or anti-clockwise. An anti-clockwise rotation is considered 

to give a positive angle while clock wise rotation gives a negative angle. The linear 

difference between these 2 angles,    (  𝑖   𝑗), gives the unwrapped difference and 

(       (  𝑖   𝑗)) gives the wrapped difference. The distance between the angles is 

the minimum of the absolute value of these rotational angles. Distances do not consider 

direction hence only the absolute value is considered. This distance measure is given by 

Equation ( 40 ) 

𝑑 ( 𝑖 ,  𝑗)     (    ( 𝑖   𝑗), (       (  𝑖   𝑗)) )  ( 40 ) 

In this equation abs is the absolute function which considers only the total 

amount and not the sign. This distance metric is used in Equation ( 5 ) for creating 

clusters with both spatial and directional attributes. 

Once the clusters are created a HMM is created using these clusters. It should 

be noted that the HMM is built considering the assumption that the clusters follow a 

multivariate Gaussian distribution. Since clusters have both spatial and directional 

attributes we need to use a Gaussian distribution that includes both attributes. 
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The directional attribute in the clusters follows a special distribution called a 

wrapped distribution. If   𝑖 and   𝑖 are the mean and variances of the wrapped 

distribution, then the PDF of a wrapped Gaussian is given as: 

  (     𝑖   𝑖)  ∑  (         𝑖   𝑖)
 
      ( 41 ) 
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    ( 42 ) 

Since the summation of the values between (+∞, -∞) is computationally 

impossible, we use an approximation of this distribution called Mixture of Approximated 

Wrapped Gaussian (MoAWG) distribution proposed by Balham [41] . The density function 

of a MoAWG distribution with M components is given in Equation ( 43 ). 

  (     𝑖   𝑖)  ∑  𝑖 ×
1

√    𝑖
 
×  

(
  
 ×∣∣

∣(     𝑖
)     ∣ )

  𝑖
  

𝑖 1   ( 43 ) 

Here   𝑖 and   𝑖 are the mean and standard deviation of the component Si and 

Wi is the weight of the component Si in the mixture. 

This distribution was proposed considering the angles are in radians in the range 

(-π, π]. The function (θt -   𝑖) mod 2π is modified to make sure that the directional 

difference is in the range (-π , π]. However, we represent the angles in degrees and use 

(θt -   𝑖)mod (360) instead. Here, (θt -   𝑖) mod (360) represents displacement between 

the angle and the mean of the state and lies in the range (-180, 180]. The displacement 

measure for two given angles is similar to the distance measure provided by Equation      

( 41 ) except that the displacement includes direction also. Hence displacement between 

2 angles θt and   𝑖 is given by Equation ( 44 ). A negative displacement value represents 

a clockwise rotation while positive displacement represents anti-clockwise rotation. 

𝑑    (  ,   𝑖)               g (((     𝑖), (  –   𝑖–    ), (  –   𝑖     ))) ( 44 ) 
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In this equation, the function             g  finds the absolute minimum value 

among the input values given but also retains the sign of the value. 

The approximated mean,   𝑖, of state Si is calculated in the maximization step or for 

starting value using the Equation ( 45 ). 

  𝑖       (
∑ ∑  (  ,     )   ×   (   )

∑ ∑  (  ,     )   
,
∑ ∑  (  ,     )   ×    (  )

∑ ∑  (  ,     )   
)  ( 45 ) 

Also, by the modified Equation ( 46 ) we get the mean of angular attribute of the 

points in cluster Ci; 

  𝑖       (
1

|𝐶𝑖|
× ∑    ( 𝑖) 𝑖∈𝐶𝑖, 

,
1

|𝐶𝑖|
× ∑    ( 𝑖) 𝑖∈𝐶𝑖, )  ( 46 ) 

MoAWG represents a univariate wrapped distribution while our model is built by 

assuming that spatial and directional attributes are dependent on one other. Hence, we 

need to use a distribution which is a combination of both wrapped and unwrapped 

components. Simone Calderara [42] proposed a semi-directional distribution by 

combining MoAWG with a multivariate Gaussian. The difference between the density 

function of this multivariate Gaussian and a linear multivariate Gaussian is only the 

calculation of the displacement value (Pt,tr – μi). The proposed method uses the new 

displacement value given by Equation ( 47 ). This equation is also used for calculating 

the covariance matrix Vi using the directional parameter as a dimension. 

(  ,    𝑖)  ((     𝑖), (     𝑖), 𝑑    (  ,   𝑖))  ( 47 ) 

Also, by modifying the observation Pt,tr using Equation ( 48 ) we can find the 

probability density of the 3D point (Xt, Yt, θt) using the multivariate Gaussian density 

function defined in Equation ( 10 ). 

  ,   (  ,   , 𝑑    (  ,   𝑖)    𝑖)  ( 48 ) 
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Chapter 5  

Experimental Results 

In this chapter we describe the data sets used for performing experiments, 

discuss the results of clustering, and, compare and analyze the results of MM and HMM 

models using statistics. 

Overall storm trajectories were obtained for each year separately, from years 

between 2004 and 2008. Each of these years contains at least 200,000 trajectories with 

lengths varying from 1 to 200 hours. Trajectories with very small length are not temporal. 

Hence we derive a data set for each year that contains trajectories that are at least 10 

hours long. The experiments are performed for each year separately by considering any 

given year as training data and  the remaining years as testing data. Training data are 

used for building the prediction model while the testing data are used for evaluating the 

model. Even though the testing data set consists of trajectories from more than one year, 

we perform evaluation for each year separately. Moreover, training data is also evaluated 

so that we can analyze the prediction accuracy of the model by comparing evaluation 

results of training data with the evaluation results of testing data. 

Before analyzing the results of the experiments conducted we will define terms 

and abbreviations that will be used. 

Cluster Group (CG) : Set of clusters obtained for the given trajectories. 

Cluster Group Size (CGS) : Number clusters in a Cluster Group 

Cluster Size (CS) : Number of points in a cluster. 

Mean Cluster Size (MCS) : Mean of Cluster Size of all the clusters in a Cluster 

Group. 

Distance Accuracy (DA) : The distance between actual point and predicted point. 

Diameter : The distance between the 2 farthest points in a cluster. 
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Mean Diameter Distance (MDD) : The mean of the diameter of each cluster in a 

given Cluster Group. 

INS : number of state instances representing each cluster in a HMM 

Mean Distance Accuracy (MDA) : Mean of the distance between actual point and 

predicted point for given set of evaluated distances for the training data. 

Training Data Year (TrDY) : Year of the training data used to create the model 

Testing Data Year (TDY) : Year of the testing data used for evaluating the model. 

Log Likelihood (LL) : sum of log likelihoods of the trajectories in a given set of 

trajectories using HMM. 

Analyzing clusters 

Experiments are performed with 2004 trajectories as training data and the data 

from years between 2005  to 2008 as testing data. The training data set, year 2004, 

consist of 713 trajectories with 14,831 points in them. The points are clustered into 

cluster groups with 5, 10, 25, 50, 75 and 100 clusters. The number of clusters in a cluster 

group is called cluster group size and the number of points in each cluster is called the 

cluster size. The maximum distance between any 2 points in the cluster is called the 

diameter of the cluster. The clusters of the points are visualized using ArcGIS maps [38] 

and are presented in the Figure 5.1, Figure 5.2 and Figure 5.3 for clusters groups with 5, 

25 and 100 clusters respectively. The members of the clusters are differentiated using 

different colors. However, due to limitation of colors some colors either repeat or are a 

slightly modified version of colors used for other clusters. 
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Figure 5.1 Visualizing cluster group with 5 clusters. 

 

Figure 5.2 Visualizing cluster group with 25 clusters. 
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Figure 5.3 Visualizing cluster group with 100 clusters. 

Apart from the members, each cluster contains 2 points; the blue colored point 

represents the center of the cluster and the red colored point represents the centroid of 

the cluster. These 2 points have already been defined in Section 4.1. Also, we can see 

that the points of a cluster do not overlap with any other cluster. Table 5.1 provides the 

mean cluster size for cluster groups with different cluster group size and shows that the 

mean cluster size decreases when the cluster group size increases. 

Table 5.1 Mean Cluster Size (MCS) for different clusters groups 

TrDY CGS MCS 

2004 5 343.6 

2004 10 245.9 

2004 25 157.16 

2004 50 102.46 

2004 75 76.70 

2004 100 63.13 
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Table 5.2 Mean Diameter Distance (MDD) for different clusters groups 

TrDY CGS MDD 

2004 5 1059.45 

2004 10 699.97 

2004 25 428.97 

2004 50 296.60 

2004 75 236.12 

2004 100 198.91 

 

Also, from Table 5.2, which provides Mean Diameter Distance for cluster groups 

with different cluster group size, we can see that of the average diameter decreases 

when the cluster group size increases.This is because in hierarchical clustering at each 

iteration clusters are created by merging two existing clusters which represent 2 spatially 

closer regions. Since the clusters do not overlap, the cluster size of the new cluster will 

be the sum of the cluster size of the individual clusters that were merged to create the 

new cluster. This is also evident from the map visuals as we can see that each cluster in 

Figure 5.1 can be spatially broken down to get the set of clusters in Figure 5.2 and in 

Figure 5.3. 
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Figure 5.4 CS for CGS with a) 5 clusters b) 10 clusters c) 25 clusters d) 100 clusters 

The histograms of cluster size for cluster groups with different cluster group size 

are provided in the Figure 5.4 . From these histograms we can see that in the cluster 

group with 100 clusters almost all the clusters have the same cluster size but one of the 

cluster sizes is less than 10. But in the cluster group with 25 or less clusters the minimum 

cluster size is always greater than 50. Also, from these histograms we can see that 

cluster size is not uniformly distributed for clusters with smaller cluster group size. Also, 

the cluster visualization in Figure 5.1, Figure 5.2, Figure 5.3 shows that the cluster group 

with 25 clusters and 100 clusters have more than one cluster that is less dense while 

cluster group with 5 clusters has no significantly less dense clusters. 

We should remember that the prediction model is built by learning through the 

information present in the clusters. A cluster with fewer points contains less internal 

structure information, which will require more external information that can be obtained 

from the transition between clusters. We will discuss prediction results in more detail by 
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comparing the results of models built using cluster groups with 5, 10 and 25 clusters. We 

do not choose larger cluster groups size values because cluster groups with 50 or more 

clusters have at least one cluster with cluster size less than 100. 

Analyzing Prediction Results 

The MM and HMM are built using the cluster trajectories obtained from these 

cluster groups. The procedure for building the prediction models has already been 

discussed in Chapter 4. In the MM the distance between the center of the predicted 

cluster 𝐿     𝑖     and the point Pn+1 is used to evaluate the model, while in the HMM 

evaluation is performed by using the distance between the point Ppredicted and point Pn+1. 

This distance is called Distance Accuracy (DA). A lower DA value means the predicted 

observation is closer to the actual observation and represents a good prediction while a 

higher distance value represents a bad prediction. This distance value is found for each 

transition in all the trajectories of the testing data. Then the mean of these distances is 

calculated as Mean Distance Accuracy (MDA). Table 5.3 provides the number of 

transitions evaluated for each year. For example, while evaluating year 2008 the DA 

value for 13,231 transitions are found and their average is considered as the MDA value 

of that year. 

Table 5.3 Number of transitions (NT) evaluated in each year 

TDY NT 

2004 14138 

2005 13408 

2006 13026 

2007 14717 

2008 13231 

 

Analyzing MM Prediction Results  

Table 5.4 provides the results obtained using a MM with cluster group sizes of 5, 

10 and 25. Figure 5.5 provides histograms for the prediction results obtained by 
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predicting the storms of the year 2005 using the Markov Model built from data of the year 

2004 for different cluster groups. 

Table 5.4 Mean Distance accuracy for MM built using different CGS values 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.5 Histogram of distance accuracy for predicting 2005 data using MM built with 
2004 data with a) 5 b) 10 c) 25 clusters 

 

From Table 5.4 we can see that the MM with a cluster group with 5 clusters has a 

mean distance value of 310 km for year 2005 while the cluster group size of 25 clusters 

has a mean distance value of 122 km for the same year. Also, from the histogram we can 

see that the peak distance value decreases for the cluster group with larger cluster group 

size. The peak for MM built using 5 clusters is around 300 while for the one built using 10 

clusters and 25 clusters it is around 150. This is because the diameter of the clusters 

CGS=5 CGS=10 CGS=25 

TDY MDA TDY MDA TDY MDA 

2004 309.22 2004 225.83 2004 166.94 

2005 316.08 2005 221.83 2005 158.81 

2006 314.50 2006 220.00 2006 162.68 

2007 319.00 2007 235.56 2007 176.83 

2008 340.41 2008 230.52 2008 169.28 



 

60 

decreases with cluster group size. This means predictions are better for cluster groups 

with more clusters. However, it should also be noted from the histograms that a distance 

value greater than 1000 km can still be found for all groups with almost the same 

frequency. The main reason for these distance values is that certain storms move fast 

occasionally and could be considered as outliers. The prediction model can never predict 

outliers since the probability of these longer movements is very low as we can see from 

the histogram. 

Analyzing HMM Prediction Results 

The main aim of using HMMs is to increase the prediction accuracy by increasing 

the probability of all trajectories in the given set of trajectories. This can be achieved by 

increasing the number of states. Table 5.5 provides the log likelihood values of models 

with different cluster group sizes and different INS values. 

Table 5.5 Sum of log likelihood of trajectories for HMMs with different CGS and INS 
values 

 

TrDY CGS INS LL 

2004 5 1 -165225.9622 

2004 5 3 -151794.8092 

2004 5 5 -146218.3089 

2004 10 1 -157799.4102 

2004 10 3 -145722.2486 

2004 10 5 -140674.7263 

2004 25 1 -149333.5611 

2004 25 3 -138114.3425 

2004 25 5 -134002.1491 

 

It can be seen from the table that the log likelihood value increases with the 

number of instances. For example, the log likelihood value of a cluster group with 10 

clusters and 1 instance is -157799.4102 which increases with 3 instances to -145722.24 

and further increases to -140674.72 with 5 instances. Similarly with larger clusters groups 
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sizes the log likelihood values increases with number of instances. This means with more 

number of instances the probability of trajectories increases. This could be because the 

observation probability of an observation increase with more states as the distribution of 

observations in each state would have been created using fewer observations that are 

closer to each other. From the table we can see that the log likelihood of the model with 

10 clusters and 3 instances is greater than the log likelihood of the model with 5 clusters 

and 5 instances or 25 clusters and 1 instance. 

Table 5.6 provides the results obtained for experiments using a HMM with 

Cluster Group Sizes of 5, 10, 25, INS values of 1, 3, 5 for each cluster groups and K=5. 

Table 5.6 Mean Distance accuracy for HMM with different CGS and INS with K=5 

 

 

 

 

 

 

 

 

 

 

 

From Table 5.6 we can see that the results of a HMM with a single state instance 

(INS=1) is similar to the results of the MM for the same cluster group. This is because in 

a HMM with a single instance, the states represent the clusters, which means the states 

are observable, thereby making the model identical to a MM. Figure 5.6 provides the 

CGS=5 CGS=10 CGS=25 

TDY INS MDA TDY INS MDA TDY INS MDA 

2004 1 304.15 2004 1 221.96 2004 1 165.77 

2005 1 306.62 2005 1 217.89 2005 1 158.21 

2006 1 305.95 2006 1 217.02 2006 1 161.98 

2007 1 309.06 2007 1 232.76 2007 1 175.36 

2008 1 328.08 2008 1 227.52 2008 1 167.61 

2004 3 198.57 2004 3 163.56 2004 3 133.69 

2005 3 193.69 2005 3 158.11 2005 3 128.03 

2006 3 196.37 2006 3 159.93 2006 3 132.67 

2007 3 209.66 2007 3 171.11 2007 3 145.78 

2008 3 204.64 2008 3 164.70 2008 3 138.18 

2004 5 168.40 2004 5 146.27 2004 5 125.99 

2005 5 163.23 2005 5 140.54 2005 5 122.35 

2006 5 163.44 2006 5 143.87 2006 5 126.91 

2007 5 178.91 2007 5 157.16 2007 5 136.33 

2008 5 172.19 2008 5 150.80 2008 5 132.71 
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histograms for the prediction results obtained by predicting the storms of the year 2005 

using the model built from data of the year 2004 for cluster groups with 5 clusters and 

different numbers of instances. 

 

 

Figure 5.6 Histogram of distance accuracy for predicting 2005 data using HMMs built 
from 2004 data with a) CS=5 and INS=1 b) CS=5 and INS=3 c) CS=5 and INS=5 d) 

CS=25 and INS=1 e) CS=25 and INS=3 f) CS=25 and INS=5 
 

However, the distance measurements are different for MM and HMM. The HMM 

with 5 clusters and 1 instance has a mean distance of 309 km while the HMMs for the 

same cluster group size with 3 and 5 instances have mean distance of 198 km and 165 

km, respectively. Hence with more instances, the HMM provides better prediction. 
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However, there are still distance values greater than 1000 km with almost the same 

frequency even for larger INS values. This means that outliers are still not predictable 

even with a large number of instances. Table 5.7 provides the results obtained using the 

same values of INS and Cluster Group Size but with a value of K=100.  

Table 5.7 Mean Distance Accuracy for HMMs with different CGS and INS values with 
K=100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

From this table we can see that the HMM built using 25 clusters and 3 instances 

has almost the same results as a HMM built using the same cluster group size and 5 

instances. This is evident from the table as we can see the MDAs of the HMMs with 25 

clusters and 5 instances and 3 instances for testing year 2005 are 138.471 km and 

140.1061 km respectively. On the other hand the same experiment with K=5 shows 

improvement in prediction when the number of instances is increased. This is because 

with a larger cluster group size the weights of certain states become low and the uniform 

distribution dominates the Gaussian distribution of the states. Hence for larger Cluster 

Group Size and higher K values, the instances of the clusters are dominated by the 

CGS=5 CGS=25 

TDY INS MD TDY INS MD 

2004 1 304.178 2004 1 166.0644 

2005 1 306.7934 2005 1 158.3079 

2006 1 305.8073 2006 1 162.2134 

2007 1 309.0883 2007 1 175.4753 

2008 1 327.9021 2008 1 167.8482 

2004 3 200.3555 2004 3 143.3752 

2005 3 196.3853 2005 3 138.471 

2006 3 199.7797 2006 3 142.7885 

2007 3 212.306 2007 3 156.9269 

2008 3 209.4565 2008 3 148.1394 

2004 5 187.6726 2004 5 142.9421 

2005 5 184.3579 2005 5 140.1061 

2006 5 185.5374 2006 5 144.2488 

2007 5 199.1041 2007 5 158.7434 

2008 5 193.1906 2008 5 149.7333 
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uniform distribution. This means the instances do not contain any structural information 

from the cluster, hence reducing the benefit of a larger number of instances. 

Analyzing Prediction Capability Over Years 

The main reason for evaluating each year separately is to analyze the prediction 

capability of the model over years. From Table 5.4 and Table 5.6 we can see that both 

models, MM and HMM, built using 2004 data, for the same values of INS, K and CGS, 

provide very almost similar results for all the years, including 2004. HMM built using 5 

clusters, 3 instances and K=5 gives a mean of 198 km for the year 2004 while the mean 

for 2005 using the same model is 198.5 km. Also, the mean distance values obtained 

using a HMM and a MM with the same CGS, INS values and K value are in the range of 

198-210 km for all the years. 

. 

Figure 5.7 Histograms of distance accuracy measured for predicting years a) 2004 b) 
2005, c) 2006 d) 2007 e) 2008 using the HMM built from the 2004 data with 10 clusters 

and 5 instances 
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This similarity is found for all the cluster group sizes and INS values, in both the 

MM and HMM. Figure 5.7 provides the histograms of mean distance values predicted by 

HMM with INS=5, cluster group size=10 and K=5, for different years. From this histogram 

we can see that the peak values and the height of the peak values are in the range of 50-

100 km for all the years including 2004 ( training data ). Also, the distribution of the 

values is almost equal for all the years since they have a similar bell curve. Hence, from 

these results it seems that the model trained using a single year has similar prediction 

ability for all the years, including the training year. However, we would need more results 

of other years to derive a conclusion on the prediction capability of the model over years. 

Prediction With No Intra-Cluster Transitions 

It should be noted that the storms were moving very slow, which resulted in very 

high intra-cluster transition probabilities. A prediction model with higher intra-cluster 

transition will predict the next probable observation as an observation which belongs to 

the cluster of the current observation. This means that the model predicts that a storm did 

not move out of the cluster. Hence, in order evaluate the movement of storms better we 

are performing experiments with zero intra cluster transitions. This approach is similar to 

the works [7] [19], in which only the transitions that move out of the cluster are 

considered and all the transitions that remain in the same cluster are thrown out. This is 

done by preprocessing the cluster trajectories by replacing the consecutive observations 

that belong to the same cluster with one single observation in the cluster. While this 

removes the intra-cluster transitions, it also results in significant loss of data since most of 

the transition remain in the same cluster. The reduction in the number of transitions for 

each year is given in Table 5.8. For example, preprocessing the trajectories for data of 

the year 2004 with 5 clusters gave us in almost 89.76% reduction in data. This reduction 

in data reduces when the number of clusters in a cluster group increases. This is 
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because with more clusters the diameter of the cluster decreases and hence more 

storms move into other clusters. 

Table 5.8 Loss of data for each year for different CGS 

TDY CGS NT RNT %Reduction 

2004 5 14138 1447 89.7651719 

2004 10 14138 2115 85.0403169 

2004 25 14138 3453 75.5764606 

2004 50 14138 4563 67.7252794 

2004 75 14138 5164 63.4743245 

2004 100 14138 5709 59.6194653 

 

The results for the prediction with no intra cluster transitions are given in Table 

5.9 for the Markov Model and in Table 5.10 for the HMM. It can be seen that the mean 

distance value for MM still decreases with increase in cluster size however the value is 

greater than the value with intra-cluster transitions. Table 5.9 shows that the value for a 

cluster group with 5 clusters is 700-750 for all the years whiles the values for the same 

cluster group is 300-330 in the Table 5.4.The same results can be found for different 

cluster groups. 

Table 5.9 Mean Distance Accuracy for a MM with no intra cluster transition 

 

 

 

 

 

 

From Table 5.10 we can find that the mean distance value decreases with 

increase in the number of instances too. However the prediction using an HMM with no 

CGS=5 CGS=10 CGS=25 

TDY MDA TDY MDA TDY MDA 

2004 731.58 2004 564.15 2004 340.00 

2005 735.81 2005 560.99 2005 341.42 

2006 756.95 2006 578.15 2006 342.23 

2007 741.22 2007 572.20 2007 353.84 

2008 767.29 2008 589.62 2008 353.05 
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intra cluster transitions is worse than the one with intra cluster transitions as found in 

Table 5.6. The main reason for this is that most storms move slow and they stay in the 

same cluster. Hence when the intra transition probability is zero most predictions are not 

accurate due to loss of data. However, the prediction improves with a larger number of 

clusters and instances. 

Table 5.10 Mean Distance Accuracy for HMM with no intra cluster transition 
 

 

 

 

 

 

 

 

 

 

 

 

Predicting 10 Hours in the Future 

We also conducted experiments for predicting the location of a storm after 10 

hours. This is done using Equation ( 38 ) explained in Section 4.4. It should be noted that 

in order to predict 10 hours in future the point at the10th hour is required. In a given 

trajectory of length n we can evaluate only n-10 transitions. Hence the number of 

transitions evaluated for every year is reduced and is given in Table 5.11. 

 
 
 
 

CGS=5 CGS=10 CGS=25 

TDY INS MDA TDY INS MDA TDY INS MDA 

2004 1 734.55 2004 1 497.75 2004 1 327.19 

2005 1 756.46 2005 1 499.75 2005 1 326.34 

2006 1 783.84 2006 1 502.62 2006 1 330.72 

2007 1 764.47 2007 1 507.85 2007 1 340.30 

2008 1 789.18 2008 1 528.16 2008 1 348.46 

2004 3 436.34 2004 3 315.37 2004 3 220.32 

2005 3 441.79 2005 3 309.17 2005 3 211.61 

2006 3 464.29 2006 3 310.95 2006 3 216.33 

2007 3 462.85 2007 3 312.84 2007 3 232.13 

2008 3 463.76 2008 3 325.16 2008 3 223.69 

2004 5 415.02 2004 5 285.50 2004 5 213.38 

2005 5 419.98 2005 5 280.94 2005 5 205.84 

2006 5 430.82 2006 5 284.43 2006 5 210.92 

2007 5 433.25 2007 5 293.46 2007 5 228.22 

2008 5 428.41 2008 5 300.61 2008 5 218.89 
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Table 5.11 Number of transitions evaluated for each year 

 

 

 

 

The results for predicting 10 hours in the future are provided in Table 5.12 for the 

Markov Model and Table 5.13 for the HMM. 

Table 5.12 Mean Distance Accuracy of MM for predicting in 10 hour future 

 
 
 
 
 
 
 
 
 

 

Table 5.13 Mean Distance Accuracy of HMM for predicting in 10 hour future 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TDY NT 

2004 7721 

2005 6820 

2006 6645 

2007 7976 

2008 6994 

CGS=5 CGS=10 CGS=25 

TDY MDA TDY MDA TDY MDA 

2004 432.71 2004 402.69 2004 391.97 

2005 412.34 2005 390.15 2005 377.34 

2006 423.79 2006 375.49 2006 365.19 

2007 448.39 2007 415.04 2007 396.20 

2008 464.57 2008 408.60 2008 365.69 

CGS=5 CGS=10 CGS=25 

TDY INS MDA TDY INS MDA TDY INS MDA 

2004 1 392.61 2004 1 350.12 2004 1 327.97 

2005 1 382.69 2005 1 337.99 2005 1 308.26 

2006 1 374.31 2006 1 326.81 2006 1 306.22 

2007 1 392.19 2007 1 353.18 2007 1 336.88 

2008 1 406.36 2008 1 338.40 2008 1 316.16 

2004 3 338.83 2004 3 330.14 2004 3 320.64 

2005 3 321.11 2005 3 313.34 2005 3 301.92 

2006 3 317.67 2006 3 305.40 2006 3 297.62 

2007 3 347.39 2007 3 331.95 2007 3 328.91 

2008 3 333.06 2008 3 314.89 2008 3 312.46 

2004 5 328.14 2004 5 323.14 2004 5 317.90 

2005 5 307.99 2005 5 304.80 2005 5 298.90 

2006 5 304.77 2006 5 298.28 2006 5 297.57 

2007 5 338.98 2007 5 333.39 2007 5 329.01 

2008 5 316.8 2008 5 313.72 2008 5 311.61 
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From Table 5.12 and Table 5.13 we can still find that prediction improves 

significantly for larger values of cluster group size and INS values. The mean distance 

value for predicting 10 hour in the future is very high compared to the mean distance 

value of predicting 1 hour in the future, which means that predicting further in the future 

does give less precise results. This is because the uncertainty in predicting further hours 

in the future is higher than predicting the next hour. 

Prediction Using Directional Attribute 

The directional parameters were calculated as explained in Section 4.5. The 

directional parameters were included so that we can differentiate between storms that 

move in different directions and hence improve prediction. However, it was found from 

our experiments that the directional parameters were not improving prediction. We 

discuss more on the reasons about this problem in this section. 

First, clusters were created using weights as WS=0.7 and WD=0.3 in Equation      

( 5 ). Then the HMM was created assuming a 3D multivariate Gaussian distribution. This 

model predicts a 3D point that consists of both the directional and spatial parameters and 

the model is evaluated by finding the spatial distance for the spatial parameters and 

linear modular difference for the directional parameter. These experiments were 

conducted by assuming the directional attribute as a wrapped parameter as well as an 

unwrapped parameter. 

By assuming the directional parameter as an unwrapped parameter the average 

spatial distance between the actual position and predicted position was found as 320-340 

km and the average angular difference between the actual angle and predicted angle 

was found as 100-104 degrees for a HMM built with a cluster group of 5 clusters and 1 

instance for all the years. Also, the average spatial distance was 220 km for a model with 

5 clusters and 3 instances while the average angular difference remained almost the 
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same. Similarly, for different cluster groups and different numbers of instances there was 

no improvement in directional prediction while the spatial prediction improved. By 

assuming the directional parameter as a wrapped parameter, the average spatial 

distance improved while the angular difference remained the same for different cluster 

groups and numbers of instances. However the value of the directional difference 

lowered only to 74 degrees. 

It should be noted that the clusters created using the above mentioned weights 

were spatially biased. Hence we gave more weights for the directional attribute by 

creating clusters using weights WS=0.2 and WD=0.8 in Equation ( 5 ) and then create a 

HMM using these clusters. Even with this more angular biased cluster the average 

directional distance did not improve for models with a larger number of clusters or more 

instances. One reason could have been the number of instances used was relatively 

small. This is because the range of the spatial attributes is very large compared to the 

angular value range of 0-360 degrees and the instances could represent the directional 

variations only after representing the spatial variations present in the cluster. However, 

we keep further investigation of this for future work. 

The main aim of the research is to show the importance of learning the spatial 

and transitional information present in the clusters created using points in the storm 

trajectories, which is done by the Baulm-Welch algorithm. 
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Chapter 6  

Conclusion and Future Work 

In this research we propose a model for predicting rainfall storm movement using 

HMMs by considering states that are related to clusters obtained by clustering points in 

the overall storm trajectories. We then learn the spatial and transitional information 

present in these states using the Baum-Welch algorithm. First we build a simple Markov 

Model in which states correspond to clusters and then extend it to HMMs in which a 

cluster is represented using multiple state instances. From the results of clustering we 

understand that the clusters in cluster groups with larger numbers of clusters are more 

dependent on external information provided by transitions, as they have a smaller 

number of points than clusters in cluster groups with a smaller number of clusters. We 

compare the prediction results of models with different numbers of clusters. The 

prediction results are evaluated by finding the average distance between the actual point 

and the predicted point for all the transitions present in the training data. From the 

prediction results of the Markov Model we can see that the prediction gets better with a 

large number of clusters. The prediction results of HMMs shows that prediction improves 

when the number of state instances representing each cluster increases and also when 

the number of clusters increases. However, for a larger value of K, which decides the 

proportion of noise added to the observation distribution of each state, there was no 

improvement in prediction for HMMs built using a larger number of clusters. A 

comparison between prediction results of MMs and HMMs shows that the MM is similar 

to a HMM with one instance. The improvement in prediction with a larger number of 

instances and clusters is also found when predicting a point 10 hours in the future 

However, the accuracy is not as good as predicting 1 hour in the future as the uncertainty 

increases as we move further into the future. Also, the same improvement in prediction is 
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found for a model built using trajectories that only contain storms that move to another 

cluster but do not stay in the same cluster. However these models are not suited for 

performing prediction as most of the storms stay in the same cluster resulting in huge 

loss of data. The prediction results of HMM and MM show that a model built using one 

year of data can predict the storm movement in all the years with similar prediction 

accuracy. 

Apart from predicting location we have also conducted experiments for predicting 

the direction of the storms. However the results of HMMs and MMs show that the 

direction prediction did not improve either with an increased number of instances or 

clusters  

In addition to introducing a HMM-based prediction model we also propose an 

approach for deriving the overall storm trajectories form hourly storms that is much faster 

than the existing overall storm approach proposed by Jitkajornwanich et. al. [1]. 

In the future we would like to develop better methods for predicting directional 

parameters by building models from more than one year of data with a larger number of 

clusters and instances so that there are enough states to represent the directional 

variations. Also, we will perform experiments by considering a semi-wrapped distribution 

instead of an approximated wrapped Gaussian. We can also extend this approach for 

predicting non-spatial parameters such as precipitation, the number of sites, and so on, 

since we can get better prediction with more information. 
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