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Abstract 

SCALING LAW FOR RADIAL FOIL BEARINGS 

 

Srikanth Honavara Prasad, M.S. 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Daejong Kim 

The effects of fluid pressurization, structural deformation of the compliant 

members and heat generation in foil bearings make the design and analysis of foil 

bearings very complicated. The complex fluid-structural-thermal interactions in foil 

bearings also make modeling efforts challenging because these phenomena are 

governed by highly non-linear partial differential equations. Consequently, comparison of 

various bearing designs require detailed calculation of the flow fields (velocities, 

pressures), bump deflections (structural compliance) and heat transfer phenomena 

(viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in 

extensive computational effort(time/hardware).  

To obviate rigorous computations and aid in feasibility assessments of foil 

bearings of various sizes, NASA developed the “rule of thumb” design guidelines for 

estimation of journal bearing load capacity. The guidelines are based on extensive 

experimental data. 

The goal of the current work is the development of scaling laws for radial foil 

bearings to establish an analytical “rule of thumb” for bearing clearance and bump 

stiffness. The use of scale invariant Reynolds equation and experimentally observed 

NASA “rule of thumb” yield scale factors which can be deduced from first principles. 

Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump 
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stiffness and bearing radius, are obtained. The clearance and bump stiffness values 

obtained from scaling laws are used as inputs for Orbit simulation to study various cases. 

As the clearance of the bearing reaches the dimensions of the material surface 

roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the 

rotor diameter increases (requiring larger bearing diameters), the load capacity of the 

fluid film should increase to prevent dry rubbing. This imposes limits on the size of the 

rotor diameter and consequently bearing diameter. Therefore, this thesis aims to provide 

the upper and lower bounds for the developed scale laws in terms of the bearing 

diameter. 
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Chapter 1  

INTRODUCTION 

A foil bearing is a device that supports rotating components in turbo-machinery 

systems through the action of fluid pressure generation between the rotating member and 

the bearing. The fluid pressurization could either be hydrostatic (using external pump) or 

hydrodynamic (self-acting). In hydrodynamic mode of operation, fluid pressurization 

occurs when there is asymmetrical relative motion between the rotor and the bearing top 

foil. Most commonly used fluid in foil bearings is air, though; any other process gas (e.g. 

helium, xenon) could be used depending on the application. In fact, these bearings could 

also be used in applications involving supercritical fluids (e.g. closed loop supercritical 

carbon dioxide S-CO2 Brayton Cycle). Therefore, the obvious benefits of gas foil 

bearings (GFB) include [1]: 

Low weight: The absence of bulky oil systems reduces the payload in aerospace 

applications such as air cycle machines, bleed air turbo-compressors and turbo 

expanders. 

High reliability: Hydrodynamic operation obviates potentially hazardous oil 

pressurization systems. Since fewer parts are required for operation, the maintenance 

and operating costs are reduced.  

High temperature range: GFB systems can operate efficiently at very low 

temperatures and at very high temperatures. Conventional oil lubricated bearings do not 

offer such a broad temperature range of operation due to degradation of the oil at those 

temperatures. 

High speed operation: GFB systems offer better efficiencies at higher operating 

speeds than conventional oil lubricated bearings. 
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In addition, due to tight tolerances in the design and assembly of foil bearings, 

the shaft assembly is restrained from excessive movement resulting in soft failures. 

However, the benefits of foil bearings can be fully exploited only when the bearing is able 

to demonstrate sufficient stability and competitive load capacity.  

A typical foil bearing is shown in the Figure 1. A smooth foil constitutes the 

bearing surface (top foil) and that is supported by a corrugated sheet of metal foil (bump 

foil) which provides structural stiffness. The top foil and the bump foil retract under the 

action of hydrodynamic forces and form the compliant structure which is encased in a 

rigid stationary shell (bearing sleeve). In Figure 1 the gaps between the bump foil and the 

bearing sleeve and the bump foil and the top foil have been greatly exaggerated for 

clarity. 

 

Figure 1 Typical foil bearing geometry for radial support (Journal Bearing) 

The rotor is initially in weak contact with the bearing. As the rotor crosses a 

certain threshold speed (lift off speed), the fluid surrounding the rotor is drawn into the 

Shaft

Bearing 

Sleeve
Top Foil

Bump Foil
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convergent-divergent wedge between the rotor and the top foil resulting in formation of a 

fluid film. This fluid film physically separates the two entities and provides lubrication. The 

film occurs due to the effects of hydrodynamic forces (due to fluid viscosity and inertia 

associated with the total radial acceleration) which manifest as an asymmetrical pressure 

profile within the surrounding fluid. Thus, it is the asymmetrical pressure profile that 

supports the weight of the rotor [2]. The load that can be sustained by the fluid film 

without breaking is called the load capacity of the bearing. Since gases have low 

viscosity, the resulting pressure field tends to have lower load carrying capacity than oil-

filled bearings.  

Dry rubbing during start/stop operations of the rotor result in reliability issues for 

foil bearings. Therefore, surface coating with lubricant (Teflon-S, polyamide) is normally 

used to reduce friction during start/stop. Coulomb type damping exists between the top 

foil and bump foil and also between the bump foil and the bearing sleeve. The relative 

motions between the solid structures result in heat generation due to friction. Heat 

generation also occurs during high speed operation of the rotor through the mechanism 

of viscous dissipation in the fluid. Due to the low specific heat capacities of gases, 

parasitic heat generation within the bearing could result in localized thermal gradients 

compromising structural integrity [3].  Consequently, efficient cooling methods are 

required for thermal management, i.e., to prevent thermal runaway.  

Therefore, the effects of fluid pressurization, structural deformation of the 

compliant members and heat generation in foil bearings make the design and analysis of 

foil bearing systems very complicated. The complex fluid-structural-thermal interactions in 

foil bearings make modeling efforts challenging because these phenomena are governed 

by highly non-linear partial differential equations. The hydrodynamic equation applicable 

to lubrication was first published by Osborne Reynolds in 1886 and is eponymously 
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called the Reynolds equation [4]. The Reynolds equation is obtained through 

simplifications of the Navier-Stokes momentum and continuity equations. The elastic 

deformations of the compliant structures are closely coupled to the stiffness and damping 

characteristics of the elastic members. The viscous heat generation and the temperature 

profile in the system are governed by the energy equation. These equations have to be 

simultaneously solved for specific geometries by using suitable initial and boundary 

conditions to analyze the performance of the bearing. The development of such models 

and their detailed numerical solutions require substantial effort and computational 

resources (time/hardware). 

Consequently, comparison of various bearing designs require detailed calculation 

of the flow fields (velocities, pressures), bump deflections (structural compliance) and 

heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature 

profile etc.,) which compound computational effort. To obviate rigorous computations and 

aid in feasibility assessments of foil bearings of various sizes, NASA developed the rule 

of thumb (ROT) design guidelines for estimation of journal bearing load capacity [5]. The 

guidelines are based on extensive experimental data and could be a useful starting point 

for developing other ROT’s, i.e., for estimation of bearing clearance, stiffness and 

damping characteristics. 

The scope of the current work is restricted to the development of scale laws for 

foil bearings using scale invariant Reynolds equation (non-dimensional) to establish a 

ROT for bearing clearance and bump stiffness. The non-dimensional Reynolds equation 

and the NASA ROT together yield scale factors which can be deduced from first 

principles. Power-law relationships between: a. Bearing clearance and bearing radius, b. 

bump stiffness and bearing radius, are obtained. The clearance and bump stiffness 
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values obtained from scaling laws are used as inputs for Orbit simulation to study various 

cases. 

As the clearance of the bearing reaches the dimensions of the material surface 

roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the 

rotor diameter increases (requiring larger bearing diameters), the load capacity of the 

fluid film should increase to prevent dry rubbing. This imposes limits on the size of the 

rotor diameter and consequently bearing diameter. Therefore, this thesis also aims to 

evaluate the upper and lower bounds for the developed scale laws in terms of the bearing 

diameter. 

The organization of this thesis is based on the following outline. Literature review 

on air foil bearings is presented in Chapter 2. The literature review focuses on previous 

modeling efforts and describes the challenges in those efforts to demonstrate the need 

for simpler modeling guidelines. Chapter 3 discusses the theory of foil bearing as relevant 

to self-acting journal bearings. Chapter 4 introduces the scale law analysis which is 

followed by the methodology used in the current study to test the scale laws. Chapter 5 

presents the results of the current study along with detailed discussion. Chapter 6 

presents the conclusions of the study and explores the possibility of future work in this 

field.   
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Chapter 2  

LITERATURE REVIEW ON FOIL BEARINGS 

A number of researchers have developed analytical methods for the estimation of 

steady state load capacity in gas bearings [6-8]. Gross [9] indicates that exact solutions 

are available for certain types of self-acting gas bearings such as the plain wedge film, 

step-film and the taper-flat film. In those cases, the gradient of pressure normal to the 

flow direction is ignored due to infinite bearing assumption. Some authors have 

developed analytical solutions of finite bearings by invoking similar simplifying 

assumptions. In 1957, Ausman [6] developed a first order perturbation solution for the 

estimation of pressure, attitude angle and bearing stiffness by neglecting products of 

pressure variations and film-thickness variations. In 1961, he proposed an improved 

analytical solution [7] in which the product of pressure and film-thickness was treated as 

the dependent variable. The “Linearized PH” solution overcame certain deficiencies in his 

previous work but showed some discrepancy at high eccentricity ratios. In the same year, 

Gross and Zachmanoglou [8] developed perturbation solutions for large and small 

bearing numbers applied to journal and plane wedge films. They established limiting 

values of pressure and load for steady, self-acting, infinitely long bearings. In the method 

of perturbations, the existence of a solution for the dependent variable is assumed as a 

power series resulting in a series of linear equations. A reasonable approximation of the 

dependent variable can then be obtained by solving only the first few terms of the series. 

Many of the approximate solutions are based on linearization of differential equations to 

enable eigenvalue analysis [2].  

With the advent of high speed digital computers, the use of numerical methods 

for solving the non-linear Reynolds equation applicable to the case of finite bearings 

gained impetus. Though the analytical solutions gave physical insight into the dominant 
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factors and general trends, numerical solutions offered much more accurate results.  

Raimondi [10] developed a series of numerical solutions for bearings of finite length 

based on the finite difference method (FDM). In the FDM, the governing equation is 

discretized and solved for a specified number of discrete points. A clear exposition of 

FDM in solving the lubrication problem along with several pertinent numerical procedures 

was provided by Michael [11]. Researchers elsewhere employed other numerical 

methods such as finite element method (FEM) or finite volume methods for obtaining 

solutions to the lubrication problem [12, 13]. 

In 1965, Cheng and Pan [14] used Galerkin’s method to resolve the difficulty in 

handling the time dependent term for the stability analysis of self-acting, finite length 

journal bearing. The application of Galerkin’s method allowed the reduction of the partial 

differential equation to a system of first order ordinary differential equations. The 

equilibrium solution was then obtained using Newton Raphson method. However, due to 

the limited terms employed in the Galerkin approximation, their results become erroneous 

in the high eccentricity ratio and low bearing number region.  

In the same year, Castelli and Elrod [15] proposed a general bearing analysis 

method known as an “orbit method” in which the complete nonlinear equations were 

numerically integrated to obtain the shaft center orbits. In principle, this method has the 

effect of an “idealized experimental rig” or a “numerical rig” in which the fluid and motion 

equations are together marched in time. They employed finite difference discretization 

and Crank-Nicolson method for time integration. Due to the high computational costs 

involved, the Orbit method was only used to spot-check the stability threshold produced 

by a semi-numerical method, also developed by the same authors. The steady state 

results from the orbit method were compared with the positions and pressures obtained 

by Elrod and Burgdorfer [16] to remarkable agreement. 
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 It is possible that the lack of sophisticated computers and the inability to perform 

quick calculations may have caused a general decline of research interest in the field of 

gas lubrication [17]. However, the interest in gas lubrication research was revived in the 

following decades due to the search for efficient slider bearing designs on computer 

peripheral devices [13] and through applications of foil bearings in Air Cycle Machines for 

aircraft pressurization and environment control [1]. In 1980, Adams [18] analyzed the 

response of a rotating flexible disk interacting with a read-write head. The coupled elasto-

hydrodynamic (EHD) problem required simultaneous solutions of both the elasticity 

equations and the non-linear Reynolds equation at each iteration. However, they 

developed a method to eliminate the need for solving the Reynolds equation at each step 

and obtained significant savings in computational time.  

Miller [19] notes that there are two distinct methods for the analysis of gas 

lubricated tribo-elements. The first method requires solutions of the equations of motion 

and the Reynolds equation at each time interval. This method is called the time-transient 

method and provides large amount of meaningful data. In the second method which is 

called the step jump approach, the gas film is assumed to exhibit linear response to 

successive, small step increases in the various degrees of freedom. Consequently, the 

Reynolds equation is solved only while generating the step response for each degree of 

freedom, while using analytic functions for the step response which yield closed form-

solutions. This method eliminates lot of iterations and provides savings on computation 

time. In the step jump approach, the use of Laguerre polynomials for approximating the 

step response was one of the popular methods. However, they [19] determined that the 

use of Laguerre polynomials for approximating the step response may be inadmissible in 

some cases. 
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The earliest gas foil bearing designs were “tension dominated” tape-type 

bearings. Subsequently, all the foil bearings employed elastic foundations to support a 

compliant membrane (“bending dominated”) [20]. These bearings were tested for “proof 

of concept” turbo-compressors and turbo-generators [21]. Heshmat et al. [22] evaluated 

the performance of a gas foil bearing with spring supported compliant foil. They solved 

the Reynolds equations to determine the effects of various parameters on bearing 

behavior in both single and multi-pad configurations. Their work also discussed the 

desirable design features with regard to the bearing arc, selection of load angle, number 

of pads and degree of compliance. 

Ku and Heshmat [23] presented a theoretical model of corrugated bump foil strip 

deformation considering the Coulomb damping between the bump foils and housing, the 

bump foils and the top foil, and also the local interactive forces between the bumps. They 

also investigated the effects of variable load distributions and the bump geometries on 

the stiffness of the bump foil strip and concluded that a high friction coefficient between 

top and bump foil results in increased coulomb damping and stiffness. 

The same year, Peng and Carpino [24] calculated the stiffness and damping 

coefficients of an elastically supported foil bearing using a finite difference formulation. 

Their structural model used a thin and extendable material for the foil surface (negligible 

bending and inertia effects) .The Reynolds equation was solved using a modified forward 

iteration finite element method (developed by the same authors) to obtain steady state 

solutions. The authors noted that their prediction of the dynamic coefficients did not 

match the results from Heshmat [22]. The discrepancy was attributed to contrasting 

approaches used by the authors. Subsequently, Carpino [25] developed another finite 

element perturbation approach for an arbitrary bearing geometry with general fluid 
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properties and a complete structural model. Theoretical predictions of dynamic 

coefficients were presented for an air lubricated corrugated foil bearing. 

 Faria and San Andres [13] studied the high speed hydrodynamic gas bearing 

performance for plane and Rayleigh step slider bearings using both finite element and 

finite difference methods. They note that the flow equations for high bearing numbers 

become parabolic and conventional numerical methods produce oscillations in the 

solution. One way of tackling this difficulty is by employing control volume method with 

special schemes for the convective-diffusive flows. Alternately, efficient schemes could 

be developed within the finite element and finite difference methods to handle the 

numerical instability. Due to these difficulties, the authors studied upwind finite difference 

and finite element procedures and developed a novel finite element formulation based on 

the Galerkin weighted residual for convection-diffusion problems.  

 High speed rotor systems require adequate support stiffness and damping 

characteristics to achieve stable and low vibration operation. For compliant frictional 

dampers used in such systems, Salehi et al [26] developed a semi empirical model of the 

dynamic friction coefficient. The friction and damping characteristics were first obtained 

as a function of static load, frequency and amplitude of imposed vibration. Then, the 

frictional coefficients were derived empirically using two separate data evaluation 

techniques. 

 Pan and Kim [27] investigated the stability characteristics of a rigid rotor 

supported by a gas lubricated spiral-groove conical bearing. They used the method of 

infinitesimal narrow groove analysis (INGA) for the dynamic analysis of spiral groove 

bearing under steady load and generated stability threshold maps for axial, cylindrical 

and conical modes as functions of bearing numbers.  
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Song and Kim [28], designed, constructed and tested the hydrostatic air foil 

bearing (HAFB). Their experimental studies measured the load capacity, cooling capacity 

of hydrostatic operation and the drag torques during start/stops.  They also developed an 

analytical model for top foil deflections using a 1-D analytical beam model and 

incorporated the effects of sagging under hybrid mode. The results were validated with 

experimental results in open literature. The top foil model was integrated with time-

domain orbit simulations for parametric studies to predict imbalance response. Their 

study indicated that the bearing could suppress trans-critical vibrations but not the onset 

of hydrodynamic instability.  

Further, Kim [29] conducted parametric studies on air foil bearings of two 

different configurations, i.e. circular and three-pad air foil bearings. The study indicated 

that the rotor-dynamic characteristics are much more sensitive to the overall bearing 

configuration than the stiffness and damping distribution in the elastic foundation.   

It is very clear from the discussion that the modeling efforts of gas foil bearings 

are extremely difficult due to the highly non-linear nature of fluid-solid-thermal 

interactions. Consequently, some researchers have attempted to provide design 

guidelines that would obviate the need for detailed modeling and simulations. DellaCorte 

and Valco [5] related the load capacity of the bearing to the bearing size and operating 

speed from available data to obtain an empirical “Rule of Thumb”. This guideline allowed 

direct comparison of load capacities between various bearing designs without having to 

actually perform detailed simulations.  
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Chapter 3  

FOIL BEARING THEORY 

In Chapter 1, a brief introduction to foil bearings was presented. This chapter 

provides further insight into the theory of foil bearings using the example of a radial gas 

bearing. Figure 2 shows the cross section of a typical gas journal bearing under normal 

operating conditions. The shaded region represents the shaft of radius R and the outer 

circle represents the bearing which is separated by a thin fluid film of thickness h .  

 

 

Figure 2 Schematic cross section of a typical journal bearing 

In Figure 2,   denotes the rotational speed in the direction of circumferential 

coordinate .  The offset of the shaft center from the bearing center is denoted by the 

eccentricity e  which is generally normalized by the clearance C and expressed as 

e

W



R

R + h

C

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“eccentricity ratio” . The bearing and the journal are fully concentric for 0  and the 

rupture of film resulting in physical contact is described by 1 . The attitude angle   is 

defined as the angle between the direction of bearing reaction force or applied load W

and the eccentricity [2]. 

In Figure 2, the clearance between the shaft and the bearing has been greatly 

exaggerated. Though the clearance is a design feature, it is normally not observed in 

practice. Upon insertion of the shaft into the bearing, a weak contact (low contact 

pressure) is established between the foil assembly and the shaft. The dry friction 

experienced when the shaft is manually rotated, is the result of this weak contact which is 

often misinterpreted as a mechanical pre-load to the shaft. The existence of the weak 

contact can be traced to the unavoidable elastic spring back during cold forming and heat 

treatment despite the use of ideal tooling curvatures. However, if the bearing is subjected 

to a small hydrostatic force to gently push the loose foil assembly back to the bearing 

sleeve without causing deflection of the bumps, a finite bearing clearance is formed. This 

is the value of clearance used in numerical simulations. 

The use of uniform clearance in bearing causes the rotor to become dynamically 

unstable at high rotation speeds. These instabilities result from large values of cross-

coupled stiffness observed in lightly loaded gas bearings [30]. The instabilities are 

prominent in small diameter foil bearings and are amplified with the reduction in bearing 

size. The use of external loading to increase direct stiffness with respect to cross-coupled 

stiffness is not practical in very small rotating machines. Therefore, one of the methods 

employed in reducing the rotor instabilities is to design non-uniform bearing clearance.  

This is done by introducing multiple top and bottom foil structures or “multiple pads” 

within a single bearing sleeve shown in Figure 3. 
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Figure 3 Three pad radial foil bearing 

 

In Figure 3, a cross section of a multi-pad radial foil bearing consisting of 3 sets 

of top and bump foils within the sleeve is shown. The distance between the centers of the 

bearing Obrg and the top foils is called the hydrodynamic pre-load pr  which is 

associated with the hydrodynamic wedge effect described in Chapter 1. The amount of 

hydrodynamic preload is a design parameter based on the performance requirement of 

the bearing. 

 The determination of pressure profile is the most important step in bearing 

analysis. That is because the pressure profile reveals all other parameters of interest 

such as, the load capacity of the bearing, the forces and deflections in the elastic 

foundations, the friction forces, leakage etc. The governing equation for obtaining the 

pressures in gas foil bearing is the Reynolds equation for a compressible fluid. The 

equation is derived from simplifications of the Navier-Stokes equation substituted into the 

continuity equation. Therefore, a single partial differential equation with just two 

Leading Edge
Trailing Edge

Pad 1

Pad 2 Pad 3

brgO top foil1O

top foil2Otop foil3O
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dependent variables (pressure, channel height) represents all the three momentum 

equations and the continuity equation.  

The following assumptions are common in the derivation of Reynolds equation 

[15] : 

 Continuum flow of Newtonian fluid with constant viscosity 

 Isothermal flow because of thin film and metallic boundaries 

 Pressure variation across the film is not a dominant factor 

 Viscous forces dominate over gravity and inertia 

The non-dimensional compressible Reynolds equation in polar coordinates is 

written as [31]: 

    3 3P P
PH PH PH PH

Z Z


   

        
      

        
 (1) 

Where, 

 

/ /

/ /

aP p p x R

Z z R H h C

t



 

 

 



 (2) 

Atmospheric pressure ap , bearing radius R , clearance C and rotation speed 

are used in the non-dimensionalization of the governing equation. The non-

dimensionalized Reynolds equation (1) reveals two important parameters, the bearing 

number  and the squeeze number  which are defined as: 

 

2
6

a

R

p C

  
   

 
 (3) 

 

2
12

2
a

R

p C




 
   

 
 (4) 
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The compressibility effects on bearing performance are captured by the bearing 

number (compressibility number) and the squeeze number. Bearing number relates the 

fluid compressibility and the sliding speed (describing the translational film 

characteristics) for hydrodynamic gas bearings.  Similarly, the squeeze number describes 

the effect of squeeze film characteristics [9, 13, 32, 33]. Therefore, it has become 

customary to present the load capacities in terms of bearing number. 

Once pressure is computed using equation(1), the load carrying capacities can 

be calculated:  

 

 

 

2 /
2

0 0

2 /
2

0 0

, cos

, sin

L R

X a

L R

Y a

F p R P Z d dZ

F p R P Z d dZ





  

  

 

 

 

 

 (5) 

The film thickness observed during normal operation is the summation of the 

assembly clearance and the bump deflection  ,z  : 

      , cos sin ,x yh z C e e z          (6) 

Equation (6) can be normalized using the nominal bearing clearance to yield: 

 1 cos sinX XH S        (7) 

Where, 
e

C
  and S

C


 represent the eccentricity and normalized bump 

deflection respectively. 
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Chapter 4  

SCALING LAWS AND METHODOLOGY 

Development of Scaling Laws for Bearing Clearance 

 DellaCorte et al.[5] suggested from empirical observation of load capacities of 

various-sized foil bearings available to their research group that the load capacity of a 

bearing could be estimated based on the length L (in), diameter D (in) and shaft speed 

N (kilo-rpm) using the formula: 

 
2F D LN  (8) 

Where,  is called the bearing capacity coefficient and it is a constant with the 

units  3lbs in krpm .  

The load carrying capacity of a bearing in general case is given the integration of 

pressure over the bearing area: 

 F PdA   (9) 

This can be re-written in terms of pressure, bearing length and diameter as: 

 avgF p LD  (10) 

We re-write the non-dimensional Reynolds equation using 

21

2

P P
P

Z Z

 


 
 as: 

    
2 2

3 31 1
2

2 2

P P
H H PH PH

Z Z   

         
                    

 (11) 

Clearly, the LHS has pressure terms that are of order 2 and the RHS has 

pressure terms of order 1. Therefore, we can conclude: 

 P  (12) 
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It can also be concluded that integration of equation (11) over the domain of 

entire bearing would produce: 

 avgp   (13) 

Therefore, the average bearing pressure can be re-written in terms of bearing 

number(3): 

 

2
6

avg
a

R
p

p C

  
     

  
 (14) 

Equation (14) can be modified by expressing rotation speed in terms of rpm: 

 

2 2
6 2

60 5
avg

a a

N R R
p N

p C p C

        
       

      
 (15) 

The result of (10) and (15) can be combined to express the load capacity as: 

 

2
2

25 10
avg

a a

R R
F LDp N LD N

p C p C

       
        

      
 (16) 

The term 
10 ap

 
 
 

 consists of constants and can be lumped under fk which is 

the constant of proportionality. Therefore, the load capacity of the bearing can be 

expressed as: 

 
2

2f

R
F k LD N

C

 
  

 
 (17) 

For (17) to match the experimental scaling law suggested by DellaCorte et. al.[5] 

(8) 

 
2 2

2 2f f

R R
D LN k LD N k

C C
 

   
     

   
 (18) 
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A very important conclusion can be drawn from equation(18).  The ratio of the 

bearing radius to the square of the clearance is a constant value. 

That is  

 
2

constant
R

C
  (19) 

From (19) the estimation of clearance for different sized bearings using known 

values can be found: 

 
1 2 2

2 12 2
11 2

R R R
C C

RC C
    (20) 
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Development of Scaling Laws for Bump Stiffness 

Bumps are modeled as a series of inertia-less linear springs; 

 b b b

d
f k c

dt


   (21) 

In(21), the bump stiffness and equivalent bump viscous damping coefficient are 

,b bk c  and the pressure force on the bump is given by 0bf pA . The effective area 

covered by the bump is 0 2 bumpA RL N  where, bumpN represents the total number of 

bumps and L represents the length of the foil. If structural damping model is adopted for 

the foil structure, structural loss factor of bump , bump stiffness bk  and the frequency of 

shaft motion s yield the equivalent viscous damping coefficient: 

 b
b

s

k
c 


  (22) 

Equation (21) can be written in terms of pressure force on the bump and the 

structural loss factor as: 

 0
b

b
s

k d
pA k

dt


 


   (23) 

Equation (23) can be written in normalized form as: 

 

0 0 0

b b b
b

a a s a

k CS k C k CdS dS dS
P S K S

p A p A d p A d d


  

   

   
        

   
 (24) 

Where, 

a

p
P

p
 , S

C


 , t




 and 

0

b
b

a

k C
K

p A
 . 

Consider equation(24), the steady state relation between non dimensional 

pressure and the scale invariant bump deflection becomes: 

 bP K S  (25) 
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The non-dimensional stiffness can be re-arranged as shown: 

 

2 2

0 2 4

bump bumpb b b
b

a a a

N Nk C k kC C
K

p A p R CL p R CR 

   
        

   
 (26) 

 In equation(26), 2L D R  has been assumed. Using the result of(19), we 

can conclude that the right hand side of (26) is equal to product of constants (because

bK const ). Therefore: 

 constantbk

CR
  (27) 

Modification of (27) using the result of (19) yields: 

 
1.5constant constant kb b

b

k k C
R

CR CR R

 
     

 
 (28) 

From (28) the estimation of bump stiffness using known values is very straight 

forward: 

 

3

2,1 ,2 2
,2 ,11.5 1.5

11 2

k k
k k

b b
b b

R

RR R

 
    

 
 (29) 

 
The results from (20) and (29) are used for evaluating clearance and bump 

stiffness values for various bearing sizes based on a reference design. The values from 

scaling laws are used as input for Orbit simulation to find the zeroth order solution.  
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Chapter 5   

RESULTS AND DISCUSSION 

This chapter presents the details of reference design used for scaling laws. The 

results of Orbit simulations are also presented which include plots of stiffness, damping 

and eccentricity for various rotation speeds. Further, the pressure and film thickness 

profiles for highest rpm cases along with data on the maximum pressure and minimum 

film thickness for each test case is presented. 

Reference Design 

The turbo-machinery model used in the estimation of the total load on the 

bearing is shown in Figure 4. The model consists of compressor and turbine impellers (of 

equal mass), thrust runner, a hollow shaft and two sets of 3-pad radial foil bearings 

(preload 0.6 and offset ratio 0.5) that support the total load. The material of each 

component is assumed to be stainless steel of density 7850 kg/m
3
.  

 

Figure 4 Turbo-machinery system considered for scaling 

The reference model of turbo-machinery system was developed using 

commercial CAD software (SolidWorks) by adopting bearing OD 100 mm. All the 

remaining models were scaled up for higher bearing diameters and scaled down for lower 

Turbine 
Impeller

Compressor 
Impeller

Thrust Runner

Shaft
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values of bearing diameter. A sectional view of the turbo-machinery system is shown in 

Figure 5 and the model of compressor impeller is shown in Figure 6. 

 
Figure 5 Sectional view of the turbo-machinery 

 

 
Figure 6 Compressor Impeller 

Turbine 
Impeller

Compressor 
Impeller

Thrust Runner

Hollow Shaft

Compressor 
Impeller
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The mass of the turbine impeller was chosen to be equal to the mass of the 

compressor impeller. The mass of turbine shaft was neglected in comparison to the total 

mass of rotor. The model of the turbine impeller and the turbine shaft is shown in Figure 7 

 
Figure 7 Turbine with turbine shaft 

Based on available literature, the geometric relationships between component 

size and bearing size were assumed. Assuming bearing and the shaft OD to be D, the 

remaining geometric parameters were calculated based on the following assumptions:  

 Bearing length is equal to the bearing OD 

 Shaft inner diameter (ID) and the thrust runner ID = 0.66D 

  Thrust runner OD = 2.2 D  

 Thrust runner thickness/ thrust runner OD = 0.1  

 Compressor impeller OD = 1.25 thrust runner OD 

Therefore, for the case of Bearing OD = 100 mm (D), shaft OD = 100 mm (D), 

Bearing Length = 100 mm (D), shaft ID = 66mm (0.66 D), thrust runner ID = 66mm (0.66 

D), thrust runner OD = 220mm (2.2 OD), thrust runner thickness = 22 mm, compressor 

impeller OD = 275 mm, Shaft length = 350 mm (3.5D). By suitable scaling of the solid 

Turbine Impeller

Turbine Shaft
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model, the dimensions of all components for various values of the diameters were 

obtained. The results are tabulated in Table 1. 

Table 1 Dimensions of turbo-machinery components 

Journal 
OD [mm] 

Thrust 
Runner OD 

[mm] 

Thrust 
Runner ID 

[mm] 

Thrust Runner 
Thickness 

[mm] 

Compressor 
Impeller OD 

[mm] 

Shaft 
Length 
[mm] 

20 44 13.2 4.4 55 70 

50 110 33 11 137.5 175 

75 165 49.5 16.5 206.25 262.5 

100 220 66 22 275 350 

150 330 99 33 412.5 525 

200 440 132 44 550 700 

250 550 165 55 687.5 875 

300 660 198 66 825 1050 

 

The mass of individual components and the total load (Table 2) was computed 

using the density information in the CAD software. The total load acting on both the 

bearings is due to the sum of thrust runner mass mT , compressor and turbine impeller 

masses mC  and the shaft mass mS . Therefore, the total load acting on each bearing

BrgM  is half the sum of the total load acting on both the bearings.  

 
2

2

m m m
Brg

C T S
M

 
  (30) 

The unit pressure unitP  on bearing defined as the rotor weight per bearing over 

projected area (D
2
) i.e., 

2

9.81
= 

101325

Brg
unit

M
P

D




 is also shown in Table 2.  
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Table 2 Mass estimation through scaling 

Journal 
OD 

[mm] 

Thrust 
Runner 

Mass [kg] 

Compressor 
Impeller Mass 

[kg] 

Shaft 
Mass 
[kg] 

Total 
rotor 

mass [kg] 

Rotor 
mass per 
bearing 

[kg] 

Unit 
Pressure  

on bearing 
[bar] 

20 0.05 0.13 0.1 0.41 0.205 0.050 

50 0.75 2.01 1.52 6.29 3.145 0.122 

75 2.52 6.78 5.14 21.22 10.61 0.183 

100 5.97 16.06 12.18 50.27 25.135 0.243 

150 20.16 54.21 41.1 169.68 84.84 0.365 

200 47.79 128.5 97.43 402.22 201.11 0.487 

250 93.34 250.98 190.3 785.6 392.8 0.608 

300 161.3 433.69 328.84 1357.52 678.76 0.730 

 

 

Figure 8 Unit pressure and Rotor mass per bearing versus bearing size 
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The unit pressure is a very important design criterion for bearings. From Figure 8, 

the unit pressure is a linear function of the bearing diameter. In contrast, the relationship 

between the rotor mass and bearing diameter is exponential.  

 
Table 3 Clearance and Stiffness from the scaling laws 

Journal OD [mm] Clearance [ m ] Bump Stiffness [MN/m] 

20 53.67 1.79 

50 84.85 7.07 

75 103.92 12.99 

100 120.00 20.00 

150 146.97 36.74 

200 169.71 56.57 

250 189.74 79.06 

300 207.85 103.92 

 

Table 4 Speed data for test cases 

Journal OD [mm] RPM_MIN     RPM_MAX 

20 35000 63000 91000 119000 147000 175000 

50 14000 25200 36400 47600 58800 70000 

75 9333 16800 24267 31733 39200 46667 

100 7000 12600 18200 23800 29400 35000 

150 4667 8400 12133 15867 19600 23333 

200 3500 6300 9100 11900 14700 17500 

250 2800 5040 7280 9520 11760 14000 

300 2333 4200 6067 7934 9800 11667 
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For the case of bearing OD=100 mm, the clearance was chosen to be 120 m

and the bump stiffness was assumed to be 20 MN/m. Similar values of clearance and 

bump stiffness can be found in literature for large bearing diameters. The values of 

clearance and bump stiffness for other bearing diameters shown in Table 3 were 

evaluated using the scaling laws developed in Chapter 5.  

Assuming the DN number (product of diameter in mm and speed in RPM) = 3.5 

million, the upper limits of the speed (RPM_MAX) were computed for the various cases of 

bearing diameters. The lower bound speeds (RPM_MIN) were assumed to be 5 times 

smaller than the respective upper limits. Therefore, the Orbit simulation was conducted 

48 times for various bearing diameter and RPM values shown in Table 4. The simulations 

yielded values of stiffness, damping, eccentricity, pressures and film thickness for various 

bearing diameters.  

Figure 9 and Figure 10 show the stiffness values plotted against speeds for 

various bearing diameters. It is clear from the plots that the values of direct stiffness xxk

increase considerably with increase in the size of bearing.  A large bearing corresponds 

to a large (heavier) shaft. Therefore, higher xxk is observed for large diameter bearings. 

In small bearings Figure 9 (a. and b.), the relative contributions of all the stiffness 

components are of comparable magnitude. However, with increasing bearing size the 

xxk value becomes much larger than the other stiffness counterparts. The slope of the 

direct stiffness xxk continuously increases with increasing speeds for low bearing 

diameters (OD 20 mm). With increasing bearing diameter, the slope of the curve slowly 

begins to taper and at high bearing diameters (>OD 150 mm) the curve slopes 

downwards (Figure 10).  
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Figure 9 Stiffness versus Speed (Journal OD 20 mm – 100 mm) 

 

This phenomenon is explained due to the effect of fluid pressurization and the 

relative contributions of the bearing stiffness for small and large bearings. The total 

stiffness of the bearing comes from the series stiffness effect of fluid film and the 

compliant structure. Consider the following cases using Table 6, Figure 13 and Figure 14 

as reference: 
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(H_min) decreases. The displacement of journal also increases as indicated by higher 

eccentricity. This is easily attributable to the increase in mass of the journal. 

Case 2: Diameter is constant 

The effect of increasing journal rotation speed at a constant journal diameter is 

that the maximum film pressure decreases and the minimum film thickness increases. 

The displacement of the journal also decreases as indicated by decreased eccentricity. 

This result is attributed to increase in fluid being drawn into the wedge with increasing 

speed. 

Case 3: Diameter and Speed are increasing  

Finally, if the journal diameter and the speed are both increased from a reference 

value, competing effects between case 1 and case 2 decide the peak pressure, minimum 

film thickness and eccentricity values as shown in Table 5.  

Table 5 Effects of journal diameter and speed 

Journal OD [mm] Speed [kRPM] Eccentricity  P_max [bar] H_min [ m ] 

Increase Constant Increase Increase Decrease 

Constant Increase Decrease Decrease Increase 

Increase Increase Compete Compete Compete 

 

The total direct stiffness is the effect of the film pressure and the bump foil in 

series. The stiffness of the bump foil is almost constant and the stiffness is therefore 

dependent on the pressure. Clearly, for larger journal, the maximum pressure decreases 

with increasing speed (Table 6) which results in reduced stiffness. But it has to be noted 

that the absolute values of the direct stiffness for larger journal are still substantially 

larger than the smaller journal. It is only the trend that is shows decreasing stiffness 

values. 
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Figure 10 Stiffness versus Speed (Journal OD 150 mm – 300 mm) 

 

The effects of increasing bearing size on direct stiffness yyk  and the cross 

coupled stiffness components xyk and yxk are less dramatic. However, it can be 

observed that their values continuously increase with increasing bearing size, as 

expected. The cross coupled components are of significance in foil bearings. This is 

because their presence and relative contributions to stiffness and damping determine the 

bearing instability. The cross coupling of two mutually perpendicular directions is 

explained for clarity. 
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force on the rotor is directed such that there are force components in the radial and 

tangential directions.  

When the rotor has finite mass, the pressure profile is such that any rotor 

displacement in horizontal direction produces a force in vertical direction or if there is a 

displacement in vertical direction, a force in horizontal direction is produced. This is the 

coupling of two mutually perpendicular directions and the presence of this coupling drives 

the rotor into orbit around the static equilibrium position. 

But this orbit is limited by the clearance that exists between the rotor and the 

bearing. If the accelerations produced by the cross coupled force components become 

significantly large, the rotor might make physical contact with the bearing. Tilting pad 

bearings are known to mitigate these issues. 

The cross coupled components of stiffness and damping can be positive or 

negative depending on the direction of reaction forces they produce relative to the 

direction of the coordinate axes. 
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Figure 11 Damping versus Speed (Journal OD 20 mm – 100 mm) 

The damping versus speed plots for various bearing sizes are shown in Figure 

11 and Figure 12. Damping is the mechanism by which kinetic energy is dissipated. In 

dynamical systems such as foil bearings, damping occurs through various types of 

deformation, dissipation and chemical effects.  

The trend observed for damping coefficient xxd is similar to that of direct stiffness 

coefficient xxk . Large values of xxd  are observed for low rotation speeds. However, as 

the rotation speeds increase, the direct damping coefficient shows a decreasing trend. 
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Figure 12 Damping versus Speed (Journal OD 150 mm – 300 mm) 
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Figure 13 Eccentricity plot (Journal OD 20 mm – 100 mm) 

 

The plots of eccentricity versus rotation speeds for various bearing sizes are 

shown in Figure 13 and Figure 14. It is observed that the eccentricity values are higher 

for larger diameter shafts. This is because the “squeeze effects” of large shafts strongly 

deform the film resulting in increased journal eccentricity. However, the eccentricity 

decreases with increasing rotation speed in each case. This is attributed to higher 

quantities of fluid being drawn into the wedge. 
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Figure 14 Eccentricity plot (Journal OD 150 mm – 300 mm) 

 

The maximum pressure and minimum film thickness are plotted for highest rpm 

values for each bearing size (Figure 15 through Figure 30). The film pressures increase 

with increasing bearing size. Three distinct profiles are observed because of 3-pad 

configuration. As the bearing size increases, the asymmetry of loading results in dramatic 

pressure increase in the vertical direction. Therefore, the resulting profile is dominant in 

the center which corresponds to the bottom pad. The location of the minimum film 

thickness also corresponds to the bottom pad. Table 6 shows the values of minimum film 

thickness and maximum pressure for all the cases. The results are provided without any 

further comments. 
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Figure 15 Pressure profile (Journal OD 20 mm and Speed 175 krpm) 

 

 
Figure 16 Pressure profile (Journal OD 50 mm and Speed 70 krpm) 
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Figure 17 Pressure profile (Journal OD 75 mm and Speed 46.67 krpm) 

 
Figure 18 Pressure profile (Journal OD 100 mm and Speed 35 krpm) 
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Figure 19 Pressure profile (Journal OD 150 mm and Speed 23.33 krpm) 

 
Figure 20 Pressure profile (Journal OD 200 and Speed 17.5 krpm) 
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Figure 21 Pressure profile (Journal OD 250 mm and Speed 14 krpm) 

 

 
Figure 22 Pressure profile (Journal OD 300 mm and Speed 11.67 krpm) 
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Figure 23 Film thickness (Journal OD 20 mm and Speed 175 krpm) 

 

Figure 24 Film thickness (Journal OD 50 mm and Speed 70 krpm) 
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Figure 25 Film thickness (Journal OD 75 mm and Speed 46.67 krpm) 

 

Figure 26 Film thickness (Journal OD 100 mm and Speed 35 krpm) 
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Figure 27 Film thickness (Journal OD 150 mm and Speed 23.33 krpm ) 

 

Figure 28 Film thickness (Journal OD 200 mm and Speed 17.5 krpm) 
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Figure 29 Film thickness (Journal OD 250 mm and Speed 14 krpm) 

 

Figure 30 Film thickness (Journal OD 300 mm and Speed 11.67 krpm)
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Table 6 Minimum film thickness and maximum pressure for all test cases 

20 mm H_min [ m ] P_max [bar] 
 

50 mm H_min [ m ] P_max [bar] 

35000 12.86 1.19 
 

14000 12.69 1.43 

63000 15.88 1.21 
 

25200 17.68 1.41 

91000 17.35 1.24 
 

36400 20.80 1.42 

119000 18.21 1.27 
 

47600 22.92 1.44 

147000 18.76 1.29 
 

58800 24.36 1.45 

175000 19.12 1.32 
 

70000 25.42 1.47 

       
75 mm H_min [ m ] P_max [bar] 

 
100 mm H_min [ m ] P_max [bar] 

9333 11.78 1.64 
 

7000 10.86 1.84 

16800 17.18 1.60 
 

12600 16.28 1.78 

24267 20.89 1.59 
 

18200 20.25 1.76 

31733 23.57 1.59 
 

23800 23.26 1.75 

39200 25.59 1.60 
 

29400 25.59 1.75 

46667 27.12 1.61 
 

35000 27.45 1.76 

       
150 mm H_min [ m ] P_max [bar] 

 
200 mm H_min [ m ] P_max [bar] 

4667 9.38 2.24 
 

3500 8.23 2.62 

8400 14.39 2.15 
 

6300 12.77 2.51 

12133 18.37 2.11 
 

9100 16.53 2.46 

15867 21.58 2.08 
 

11900 19.64 2.42 

19600 24.20 2.07 
 

14700 22.27 2.39 

23333 26.36 2.06 
 

17500 24.51 2.37 

       
250 mm H_min [ m ] P_max [bar] 

 
300 mm H_min [ m ] P_max [bar] 

2800 7.43 2.98 
 

2333 6.81 3.34 

5040 11.43 2.86 
 

4200 10.42 3.20 

7280 14.85 2.79 
 

6067 13.49 3.13 

9520 17.81 2.75 
 

7934 16.19 3.07 

11760 20.35 2.71 
 

9800 18.56 3.03 

14000 22.56 2.69 
 

11667 20.66 3.00 
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Chapter 6  

CONCLUSIONS AND FUTURE WORK 

A brief introduction to foil bearing technology was presented in Chapter 1. 

Review of pertinent literature was presented in Chapter 2 followed by the discussion on 

theoretical aspects of foil bearings in Chapter 3. The development of scaling laws and the 

methodology used for simulating the various test cases were presented in Chapter 4.  

Finally, the results of the simulations and the implications of scaling laws were presented 

in Chapter 5.  

Scaling laws for radial foil bearings were developed using the scale invariant 

Reynolds equation and the NASA guideline for load capacity estimation [5]. From 

fundamental first principles, it was shown that the bearing radius is proportional to the 

square of the nominal clearance. Similarly, a power law relationship between the bearing 

radius and the bump stiffness was derived. It was found that bump stiffness is 

proportional to the bearing radius to the power of 1.5.  

The implication of these scaling laws is that bump stiffness and nominal 

clearance for radial foil bearings can be estimated without resorting to detailed 

calculations. This thesis uses design guidelines from NASA [5] to establish functional 

relationship between bump stiffness and clearance with respect to the bearing radius. 

Similar concepts may be used in establishing bearing dynamic characteristics which 

would potentially accelerate the development of oil-free turbo-machinery systems.  

This thesis was based on static analysis of foil bearings. Therefore, the results 

from this study serve as a guideline for bearing designers in making quick calculations of 

static parameters. In practical applications, the dynamic parameters including instability 

analysis play a vital role in the selection of bearings. Consequently, future work should be 

focused on development of scale laws related to dynamic parameters.  
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