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ABSTRACT

REDUCED MODELING OF LOW-TEMPERATURE GAS DISCHARGES IN

GLOW MODE

Esteban Cisneros, M.S.

The University of Texas at Arlington, 2014

Supervising Professor: Luca Massa

Gas discharge actuation of fluid dynamics phenomena has garnered significant

attention in recent years due to their low-power requirements and their geometrical

simplicity, amongst others. However, many of their actuation mechanisms and phys-

ical couplings are still not well-understood, calling for numerical efforts to address

many of these problems. Modeling and simulation of plasma-flow interaction is an

exhaustive task because of the multi-physics, multi-scale nature of the problem. One

particular concern is the appropriate modeling of the discharge detailed chemistry in

order to reduce the computational cost associated with it while capturing all of its

finest features.

Modern reduction techniques attempt to create reduced-order models of chemical

kinetics by identifying low-dimensional invariant attractors in phase space. These

attractors, or some forms of approximation, are parametrized and stored with the

intention of retrieval in time-intensive multiscale, turbulent, CFD simulations. Two

popular rational reduction techniques are applied to several electrical discharge sys-

tems in noble gases after addressing their appropriate modeling with the intention

v



of studying the structure and character of their one-dimensional invariant attractor

under a wide range of reduced electric fields. It is shown that the branches of the

manifold correspond to high and low ionization states and that a particular attractor

exists for a small range of low reduced fields. This is of great importance to the mod-

eling of flow actuation chemistry. Finally, it is demonstrated that electron runaway

is analogous to radical explosion in combustion.
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CHAPTER 1

INTRODUCTION

Plasma flow actuators have garnered significant attention in recent years as

potential candidates for assisting in boundary layer transition control, thrust gen-

eration, combustion mixing and ingition enhancement, amongst others [4–7]. These

actuators, when operating in glow discharge mode, generate nonequilibrium weakly-

ionized plasmas, which are preferred over the thermal plasmas generated by arc dis-

charges, due to their relative low power demand. A nonequilibrium, or non-thermal,

weakly-ionized plasma is that in which the ion and background gas temperatures

remain close at around room temperature but differ significantly from electron tem-

peratures, usually at 1-10 eV. The discharge occurs when a sufficiently large electric

field is applied by two separate electrodes to a gas such that charged particles are

created in electron-impact ionization. Ions and neutral particles collide, and thus

momentum and heat are transferred from the plasma to the background gas.

Of particular interest are dielectric barrier discharge (DBD) actuators, which

have shown promising flow-control capabilites [8–10]. These consist of top and bot-

tom electrodes separated by a dielectric material, which generate plasma in a self-

limiting process. Ionization occurs over the exposed electrode towards the covered

electrode when either high enough AC or pulsed voltages are applied. Surface charge

accumulation reduces the potential difference and thus terminates any further plasma

emission until the next AC cycle. The discharge’s structure is streamer-like during
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electrode positive polarity and diffusive during negative polarity and the base flow

is modified by momentum transfer. Another type of popular plasma flow actuator

is the surface direct currect discharge (DCD) actuator. This actuator generates a

dominant Joule heating effect and its actuation mechanism, i.e. the Townsend mech-

anism, is simpler than that of a DBD actuator. This configuration consists of the

two electrodes flush mounted onto the surface, and when a high enough DC voltage

is applied between them, the gas is heated [11,12].

Anode

DC Voltage

Flow

Cathode

Figure 1.1: Typical configuration of a DCD actuator.

Numerous recent flow control techniques based on DBD actuators, such as

pitch and roll control, have been investigated experimentally and numerically [13,14].

Furthermore, DBD actuators can modify a boundary layer by introducing optimal

perturbations or by changing its receptivity. The first approach is appropriate for

lower speed regimes because of its lower power demands and was shown to be effective

in amplified fluid systems [15]. The second approach, known as subcritical forcing,

requires careful matching between the forcefield lengthscale and the most receptive

region in order to reduce power demands. Compressibility effects on actuation by

such discharges result in a deeper excitation of the boundary layer. As the Mach
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number increases, the receptive region penetrates into the boundary layer [16]. How-

ever, the interaction of supersonic flows with weakly-ionized plasmas, their chemistry,

interactions with shocks, actuation mechanisms and their operational mode transi-

tion is yet to be completely understood.

Exposed Electrode

Buried Electrode

AC Voltage

Dielectric

Flow

Figure 1.2: Typical configuration of a DBD actuator.

Numerical studies of plasma discharges are typically based on moments of the

Boltzmann equation, being the most computationally viable alternative. Yet, these

continuum models tend to be very stiff due to disparate timescales and lengthscales.

Even more so, depending on the application, these models are coupled with at least

the Poisson equation and at most the full set of Maxwell Equations. A comprehensive

treatment of numerical modeling of plasma discharges is given in ref. [17]. Although

some contributions to computational cost may be aliviated by parallel computing,

operator splitting and novel patch adaptive mesh refinement solvers [18], the eval-

uation and integration of the detailed chemistry source term is very expensive, as

in any reactive flow simulation [19]. A common approach to plasma chemistry has

been the employment of three-species models, consisting of positive ions, electrons

and neutrals [20, 21]. These are useful because they are comparable to plasma dis-

3



charges in noble gases, which are well understood [22]. Four species models extend

this approach by including negative ions.

Discharges in atmospheric gases are commonly modeled with detailed chem-

istry. Kossyi et al. [23] present a large kinetic scheme of about 450 reactions for

discharges in N2 −O2 air-like mixtures. This model has been reduced for numerical

simulations of DBD applications either by rationally hand-picking only relevant re-

actions such as in [24] or by sensitivity analysis, as in [25]. Mahadevan [26] derived a

reduced N2−O2 mechanism in order to describe a surface DCD primarily from [24].

The resulting kinetic mechanisms’ sizes range from 8 to 23 species and 8 to 50 re-

actions. Other detailed kinetic mechanisms found in the literature for discharges in

air and air-like mixtures include the one used by Tsyganov and Pancheshnyi in [27]

for zero-dimensional DBD’s in N2 and the one developed by Castillo et al. [28]. A

complete treatment on plasma kinetics in atmospheric gases is given in ref. [29].

Modern automatic reduction techniques rely on the existence of lower dimen-

sional invariant attracting manifolds in phase space. Trajectories bundle upon these

manifolds of decreasing dimension forward in time towards physical equilibrium.

Furthermore, these attractors are associated with the system’s slowest timescales.

Modern dimension reduction methods are generally classified in two groups: lo-

cal timescale analysis methods and geometrical methods. Local timescale analy-

sis methods reinterpret the system’s timescale separation as a source of stiffness

by acknowledging that fast modes relax rapidly for slow modes to govern the sys-

tem’s dynamics thereafter. Prominent examples of these are computational singular

perturbation (CSP) method by Lam and Goussis [30] or instrinsic low-dimensional

manifold (ILDM) method by Maas and Pope [1] and have been thoroughly exploited
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in combustion modeling and simulation [31–33]. The ILDM method, a mathemat-

ically sound approach, approximates a stable geometrical invariant attractor with

a low-dimensional manifold. This manifold is parametrized by just a few reaction

progress variables, thus succesfully reducing the dimensions of the state space. In-

fomation can subsequently be stored and retrieved for reactive flow calculations.

The method also provides information on the hierarchy of the system and can be

extended to study coupling with transport processes [34, 35]. Geometrical methods

are instead based upon characterizing the attractors by properties like invariance,

slowness and smoothness. Amongst these methods are the invariant constrained equi-

librium preimage curve (ICE-PIC) method [36] and one-dimensional slow invariant

manifold (1D SIM) method by Al-Khateeb et al [37]. This recent method explores

the dynamical character of the system after removing all constraints in order to gen-

erate the branches of the invariant attractor by forward propagation. It allows for a

comprehensive study of the structure of the slow motions in phase space.

The application of formal reduction methods to plasma discharge kinetics has

been limited, despite their success in reducing and describing hydrocarbon systems.

Dauwe et al. [38] succesfully applied the ILDM method to reduce and investigate the

properties of a hydrocarbon mechanism immersed in a plasma chamber. Thus, the

present work is dedicated to the rational reduction of air plasma discharge kinetics.

The governing equations of plasma discharges, the mathematical formalization of

detailed chemical kinetics and the governing geometrical and timescale principles of

the reduction methods are presented in chapter 2. Chapter 3 deals firstly with the

numerical simulation of gas discharges so as to validate the models, and continues

with the numerical implementation of the 1D SIM method by Al-Kahteeb et al. [37]

and an efficient algorithm for computing, parametrizing and storing the ILDM. The
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reduced-order models are delived and compared in chapter 4 and their peculiarities

are pointed out. Chapter 5 cloncludes this thesis and states future work.
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CHAPTER 2

GOVERNING EQUATIONS

One of the main complexities of reactive flow problems is their multiscale na-

ture. Chemical processes introduce disparate timescales which, when coupled with

transport timescales, significantly increase the computational cost of flow simula-

tions. The chemistry of low-temperature discharges is no exception, as timescales

usually span up to eight orders of magnitude.

This chapters presents two reduction techniques which aliviate the stiffness

problem. Firstly, the equations that govern low-temperature discharges in abscense of

magnetic fields are derived as moments of the Boltzmann equation. This is followed

by a thorough analysis of the chemical source term. It is shown that composition

evolves in a reduced subspace of the composition space. Furthermore, slow modes

govern the dynamics of the system along lower-dimensional manifolds upon which

trajectories merge en route to equilibrium. Finally, with this knowledge at hand,

both reduction techniques are outlined, with their strengths, weakness and differences

highlighted.
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2.1 Plasma Discharge Continuum Model: The Moment Equations

The particle species velocity distribution function fs(x,v, t) is a probability

density function that measures the likeliness of finding particles from species s in a

differential element of six-dimensional phase space. It is normalized such that

∫
fs(x,v, t)d

3v = ns. (2.1)

The independent variables are particle position x, particle velocity v and time t.

Particle velocity can be split into average (or drift) velocity u and random (or ther-

mal) velocity u′. Relevant macroscopic properties that describe the flowfield are

statistical averages, or moments, of the velocity distribution function. The k − th

moment φk of fs is given by

φk =

∫
ms(vs)

kfsd
3v. (2.2)

Species mass ms, momentum msus and total energy 1
2
ms(us ·us) are the zeroth, first

and second order moments respectively, and, following (2.2), are given by:

msns =

∫
msfsd

3v (2.3a)

msnsus =

∫
msvsfsd

3v (2.3b)

1

2
msns(us · us) =

1

2

∫
ms(vs · vs)fsd3v (2.3c)

Another relevant moment, associated with the thermal velocity of species s, is the

scalar pressure given by:

ps =

∫
ms(v

′
s · v′s)fsd3v (2.4)
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The translational kinetic energy can be further split into drift and thermal contri-

butions. While the former corresponds to the average particle motion, the latter is

associated with the translational temperature of species s, which by close inspection

is also proportional to the scalar pressure, i.e.

es =
3

2
kBTs (2.5a)

ps = kBnsTs (2.5b)

where kb is the Boltzmann constant.

The Boltzmann gas kinetic equation governs the evolution of the velocity dis-

tribution function and as such, a system consisting of a Boltzmann equation for each

species coupled to the Maxwell equations would yield the most meticulous represen-

tation of a plasma [39]. This approach is unviable due to its high computational

cost. However, moments of the Boltzmann equation and their appropriate closures

constitute a strong and accurate description of plasmas as a continuum.

The Boltzmann equation reads:

∂fs
∂t

+ vs · ∇fs + as · ∇vfs = C[f ] (2.6)

where C[f ] is the collision operator, which indicates the rate of change in fs due to

collisions. Eq. (2.6) describes the time evolution of particles during their trajecto-
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ries in phase space. Their appearance or disappearance depends only on collisions.

Charged particles are accelerated by electric and magnetic effects, i.e.

as =
zsq

ms

[E + vs ×B] (2.7)

where q is the elemetary charge and E is the electric field, determined by solving the

Poisson equation for the electric potential φ:

E = −∇φ (2.8a)

∇2φ = − q
ε0

ns∑
i=1

zini (2.8b)

where ε0 is the permittivity of the background gas.

There are two common approaches to derive the moments of eq. (2.6). The

first approach consists of the direct derivation of the first three moments by applying

eq. (2.2) to every term in eq. (2.6). The second approach succeeds through a gen-

eralized transport equation, where the desired moments are substituted to yield the

continuum model. The resulting set of conservation laws is known as the five-moment

model of plasmas as a continuum, but will be omitted here for brevity. However,

this model can be found in [17], along with their derivation and a sound description

of its source terms and closure models.
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Assuming no magnetic effects and disregarding all inertia terms in the resulting

momentum equations of the five-moment model, a two-moment model is obtained.

These conservation equations are:

∂

∂t
(msns) +∇ · (msnsus) = Fs

nsus = nsun ± µsnsE −
Ds

kBTs
∇ps

∂

∂t
(msnses) +∇ · (msnsesus) = −∇ ·Hs − ps∇ · us + F̃s

(2.9)

where µs is the mobility of species s, Ds its diffusivity given by Einstein’s relation,

Hs is the heat flux vector given by Fourier’s law and Fs and F̃s are the species and

energy source terms, respectively. The flux expression is also known as the drift-

difussion approximation. This approach was adopted in [26] and [4].

A one-moment model, called the local field approximation (LFA), consists of

the continuity equation, the drift-diffusion approximation and an algebraic relation

between the reduced field and the electron temperature, i.e.

f(E/Ng, Te) = 0. (2.10)

When employed, it is assumed that electrons are in equilibrium with the electric

field, and has been used extensively, see for example [12].

2.2 Mathematical Formalism of Chemical Kinetics

Operator splitting techniques such as Godunov’s split allow for direct integra-

tion of the chemical source over a half-time step ∆t/2 with second order accuracy.
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The final step of an operator splitting techinque consists of directly integrating the

chemical source term by itself, yielding a non-linear initial value problem (IVP):

dψ

dt
= F (ψ) (2.11a)

ψ(0) = ψi. (2.11b)

The resulting ODE represents a closed homogeneous system in each one of the

discretized region’s cells. Two further assumptions, namely that the system is also

isothermal and that the LFA applies, are made to simplify modeling and computa-

tions.

Consider the ns-dimensional composition vector ψ = (ψ1, ψ2, ..., ψns) in units

of kmol/m3. The components of this vector are the specific mole numbers, but it

could be extended to include electron, gas and ion temperatures, or any other passive

scalar, without loss of generality. The evolution of this vector within composition

space Ψ is described by mass-action kinetics, which will be outlined henceforth. Any

chemical reaction mechanism of size nr can be expressed as:

ns∑
s=1

ν ′srMs �
ns∑
s=1

ν ′′srMs, r = 1, 2, ..., nr (2.12)

where Ms is the chemical symbol of species s, ν ′sr is the forward stoichimetric co-

efficient of species s in reaction r and, similarly, ν ′′sr is the backward stoichimetric

coefficient of species s in the same reaction such that the sth component νsr of the

reaction vector νr of reaction r is given by:

νsr = ν ′′sr − ν ′sr. (2.13)
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These vectors form a ns × nr reaction matrix ν. There are ne quantities that are

conserved in closed, spatially homogeneous systems, such as element composition

and, as is the case in quasi-neutral plasmas, charge. These quantities can be orga-

nized in a vector ξ and are related to the composition vector through the element

composition matrix µ:

ξ = µTψ. (2.14)

Each entry µse represents the amount of conserved quantity e in species s. Conser-

vation of these quantities means that, given a basepoint state ψo:

ξ = µTψ = µTψo, (2.15a)

µTν = 0, (2.15b)

i.e. µ are the left eigenvectors of ν corresponding to ne zero eigenvalues. Therefore,

ν is rank deficient, i.e. rank(ν) ≤ ns − ne.

Two consequences follow immediately. Firstly, composition space Ψ can be

solely described by ν or, alternatively, µ. Conservation further implies that compo-

sition evolution is restricted by eq. (2.15) to an affine subspace

Ξ = {ψ | µTψ = ξ,ψ ∈ Ψ} (2.16)

of dimensions no larger than ns − ne. Furthermore, not all possible states are actu-

ally physically realizable, and thus transistion between states is confined by species

positivy, resulting in a convex polytope called the realizable region:

Ξ+ = {ψ | ψs ≥ 0,µTψ = ξ,ψ ∈ Ψ} (2.17)

13



Thus, the solution to (2.11) is of the form:

ψ(t) = ψo + mTDz(t) (2.18)

where mT is the total mass of the system, z(t) ∈ Ξ is the reduced composition vector

of dimensions no larger than ns− ne in units of mol/m3 − kg and D is a non-unique

constant linear operator.

ψ1

ψ3

ψ2

µ

ν1

ν2

Figure 2.1: Schematic illustration of composition space for a ns = 3, ne = 1 system.
Adapted from ref. [1].
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Even though there are different ways to construct the linear operator D, a nat-

ural option is through the singular value decomposition of ν. Consider the chemical

source term in eq. (2.11), given by:

Fs(ψ) =
nr∑
r=1

νsr

(
kr

ns∏
s=1

ψν
′
sr
s

)
(2.19)

i.e.,

F (ψ) = νR(ψ) (2.20)

where kr is the reaction rate coefficient of reaction r and R(ψ) is the reaction rate

function. By taking the singular value decomposition of the reaction matrix ν and

substituting eq. (2.20), eq. (2.11) becomes:

dψ

dt
= usvTR(ψ) (2.21)

where u and v are the left and right singular vectors of ν corresponding to its ns−ne

singular values in s. Since both u and v are orthogonal, the above becomes:

d

dt
(uTψ) = svTR(ψ) =

f(ψ)

0

 , (2.22)

but also

d

dt
(uTψ) = uTF (ψ). (2.23)

Note that f is the ns − ne reduced chemical source term, and if

uT =

ur
T

uc
T

 (2.24)
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where ur
T is the upper (ns − ne)× ns block of uT , then from eq. (2.22)

d

dt
(ur

Tψ) = f(ψ). (2.25)

Finally, by differentiating eq. (2.18) in time:

d

dt
(D+ψ) = mT

dz

dt
(2.26)

where D+ is the right inverse of D. By comparing the above with eq. (2.25), not only

can D be fully defined, but also an evolution equation for the reduced composition

z can be found. Knowing that,

D = ur (2.27a)

D+ = DT = ur
T (2.27b)

and by eq. (2.23) it results that

dz

dt
= f(z) (2.28)

where

f(z) =
1

mT

DTF (ψ). (2.29)

The second consequence of (2.15) pertains to the eigenspectra of both physical

and reduced systems. The jacobian Fψ of the physical system (2.11) reads:

Fψ =
∂F

∂ψ
= ν

∂R

∂ψ
= νRψ (2.30)
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such that, by (2.15), µ are also the left eigenvectors of Fψ corresponding to ne zero

eigenvalues. Its eigenspectrum is then the union of two separate sets:

σ1(Fψ) =
ne

{0, ..., 0}

σ2(Fψ) =
ns−ne

{λne+1, ..., λns}

σ(Fψ) = σ1 ∪ σ2.

(2.31)

Thus, Fψ is rank deficient, i.e. rank(Fψ) ≤ ns − ne. This means that finding

steady state conditions, i.e. physical equilibrium, which is key to the construction of

low-dimensional manifolds, is not a quite straigh-forward task. Conventional tools

such as Newton’s method are not so readily applicable. However, the jacobian fz of

the reduced system (2.28)

fz =
∂f

∂z
=
∂f

∂ψ

∂ψ

∂z
= DTFψD (2.32)

is obtained by a similarity transformation of the physical jacobian, and its eigenspec-

trum can be shown to be:

σ(fz) = σ2, (2.33)

such that the reduced system (2.28) inherits the timescale structure from the physical

system (2.11), since timescale τi is realted to the eigenvalue λi by:

τi =
1

|λi|
. (2.34)

Nevertheless, the reduced system is non-singular. This proves an advantage, as will

be shown, in order to construct reduce models for chemically reactive systems in
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general and plasma discharges in particular.

2.3 Reduced Models for Chemically Reactive Flows

This section builds upon the previously described properties of a closed homo-

geneous reactor in order to provide the necessary tools for lower-dimensional manifold

construction. After a discussion on the dynamical character of the non-linear reac-

tive system, the method for constructing a one-dimensional slow invariant manifold

(1D-SIM) by generating heteroclinic orbits is presented. Finally, the classical method

of instrinsic low dimensional manifolds (ILDM) by Maas and Pope of approximating

the invariant attractor by a local timescale analysis is revisited yet again.

2.3.1 Fast and Slow Dynamics

It has been shown that the evolution of the composition ψ of a mixture is re-

stricted to a lower-dimensional subspace of composition space Ψ. This is already ad-

vantageous, but the question remains as to how the latter evolves within the former.

If chemical reactions are thought of as trajectories in phase space, certain geomet-

rical trends can be identified. The chemical source term usually introduces a wide

range of timescales, causing severe stiffness associated with reactive flow problems.

However, the sparsity between timescales also forces an anisotropic phase volume

contraction: trajectories in phase space relax upon successively lower-dimensional

manifolds until they reach physical equilibrium, a zero-dimensional manifold. Move-

ment along these lower-dimensional attractors is governed by slow modes, such that

as soon as trajectories bundle upon them, fast transients exhaust [40]. Physically,
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this means that some species are in quasi-steady state and some reactions in partial

equilibrium. Hence, the key idea behind mechanism reduction consists of capturing

the system dynamics by modeling the fastest timescales instead of resolving them.

The dimension up to which the manifold is to be modeled is determined by the cou-

pling with transport timescales [41].

5 10 15 20 25
−2

0

2

4

6

8

10

z1 [mol /kg − m 3]

z
2
[m

o
l/

k
g
−

m
3
]

24.85 24.9 24.95 25
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

z1 [mol /kg − m 3]

z
2
[m

o
l/

k
g
−

m
3
]

Chemical
Equilibrium

Fast Transients

Invariant
Attractor

Figure 2.2: Phase diagrams of a discharge simulation in Ar as per appendix A,
clusters 1 and 2, with operating conditions 3.1. Trajectories bundle upon a one-
dimensional attractor in phase space.
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Figure 2.3: Phase diagrams of a discharge simulation in N2 as per appendix A, with
operating conditions 3.1. Trajectories bundle upon a one-dimensional attractor in
phase space. This behavior is not only observable in reduced space, but also in
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20



10
−20

10
−15

10
−10

10
−5

10
0

10
−30

10
−20

10
−10

10
0

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

e
−

M ole F r a c t i on
N M ole F r a c t i on

N
+ 2

M
o
l
e

F
r
a
c
t
i
o
n

Figure 2.4: Phase diagrams of a discharge simulation in N2 as per appendix A, with
operating conditions 3.1. Trajectories bundle upon a one-dimensional attractor in
phase space. This behavior is not only observable in reduced space, but also in
composition space.

21



2.3.2 Slow Invariant Manifold

Geometrically, a SIM is an invariant manifold on which slow dynamics govern

and which is attractive along its entirety [42]. Constructively, and based on the

conjecture put forth by Al-Khateeb et al. [37], the SIM is a heteroclinic orbit of at

most two branches, which connect unphysical to physical equilibria. By anisotropic

phase volume contraction, reactive systems present SIMs of different dimensions, de-

termined by the number of dominant slow modes. Nearby trajectories are attracted

to the SIM and fast transient decay rapidly. Indeed, it is by finding or approximating

the SIM that the mechanism reduction problem is effectively solved.

2.3.2.1 Geometrical Properties of the SIM

There has been substantial disagreement on the definition of slow invariant

manifolds in the past [43]. However, Creta et al. [44] provide a strong geometrical

definition of the 1D SIM based on global properties for two dimensional phase spaces,

and extend it to larger systems and manifolds in [45]. The authors acknowledge that

the most common properties of a SIM are invariance and exponential attractiveness,

and formalize their definition with a sound mathematical treatment of slowness and

the decay ratio of normal-to-tangential perturbations along the manifold. Some of

these properties will be briefly addressed below.

An invariant manifold (IM)M⊂ Ξ is defined as follows. Consider the reduced

reactive system (2.28) with initial condition zi ∈M and solution z(t). M is said to

be invariant if z(T ) ∈ M for a small T > 0. This is equivalent to the source term

vector f being tangent to M. Invariance thus refers to the tangency of f to the
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manifold along its entirety.

Attractiveness is a key geometrical property of the SIM. For the sake of sim-

plicity, attractiveness will be given as in [37]. An invariant manifold is exponentially

attractive everywhere if:

|λs|
|λi|

< 1

λi < 0

{λs, λi} ∈ σ2, i = 2, ..., (ns − ne)

(2.35)

where λs is the the most positive eigenvalue (and by the above also the slowest) and

λi every other negative eigenvalue of (2.32) at zeq.

A IM is also 1D slow if it is associated with the system’s slowest timescale. By

the Hartman-Grobman theorem [46], the behavior of the non-linear system (2.28)

around a critical point of f (see sec. 2.3.2.2), zeq, is identical to that of its linearized

system:

dz

dt
= fz(zeq)(z − zzeq). (2.36)

Thus, as is the case with linear systems, the 1D SIM at zeq will be tangent to the

slowest eigenspace given by:

Es = span(vs) (2.37)
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where vs is the eigenvector associated with the slowest eigenvalue λs in σ2. This

vector is obtained by an eigendecomposition of the jacobian at zeq:

f z(zeq) = V Λ V−1 =

(
vs Vf

)λs 0

0 Λf


 ṽTs

ṼT
f

 . (2.38)

If λs > 0 and all other eigenvalues in Λf are negative, then Es is said to be unstable.

On the other hand, if all the eigenvalues in σ2 are negative, then Es is said to be

stable. Therefore, geometrical slowness of a 1D SIM is an asymptotic behaviour.

A 1D SIM Ms
1 is an IM which asymptotically converges to the system’s equilibria

tangentially to their slowest eigenspace Es as t → ±∞. Specifically, a 1D SIM

converges to physical equilibrium as t → ∞ and to those unphysical equlibria with

an unstable slowest eigenspace Es spanned by the slowest eigenvector vs as t→ −∞.

Now consider the solution F(zi, t) to the nonlinear system (2.28), where zi is

its initial condition. Function F is known as the system’s flow. By all of the above

and in the spirit of [36], the 1D SIM is thus defined by

Ms
1 = {z | z = F ′(zeq, t), t ≥ 0, zeq ∈ ∂Ms

1} (2.39)

where zeq are trajectory-generating critical points of f with an unstable slowest

eigenspace, such that ∂Ms
1 is the set of at most two zero-dimensional critical solutions

zeq of f that satisfy criterion (2.35). Furthermore, F ′ is the flow originating from

zeq ∈ ∂Ms
1 perturbed along their slowest direction forward in time, i.e.

F ′(zeq, t) = F(zeq + ε vs,eq, t), ε << 1, t ≥ 0 (2.40)
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Equation (2.39) provides a constructive definition of the 1D SIM and is based upon

its geometrical properties.

2.3.2.2 Hyperbolic Critical Points: Finite and Infinite Equilibria

By the above geometrical properties, it is evident that the critical points of the

reduced source term f(z) are key to the construction of the SIM. A finite critical

point zeq of reactive system (2.28) is that for which

f(zeq) = 0. (2.41)

Furthermore, zeq is hyperbolic if none of the eigenvalues of fz(zeq), i.e. (2.33), have

zero real part. These finite hyperbolic critical points can be classified according to

the eigenspectrum of fz(zeq) as follows. If all of the eigenvalues in (2.33) are real

and negative, then zeq is said to be a sink. It is, thus, a stable zero-dimensional

manifold. If all of the eigenvalues in σ2 are real and positive, then zeq is said to be

a source. Therefore, it is an unstable zero-dimensional manifold. Finally, if at least

one eigenvalue in σ2 is real and positive and another is real and negative, zeq is said

to be a saddle. There is an unstable manifold emmanating from a saddle, as well

as a stable manifold converging into this type equilibrium point. It is immediately

evident that ∂Ms
1 is the set of at most two saddles that satisfy criterion (2.35). Note

then that by the slowness property of the 1D SIM, its branches stem from saddles.

As shown in [46], (2.29) also has critical points at infinity. These are accessible

by a compactification of phase space, which can be achieved by applying several dif-

ferent methods. A popular method is Poincare’s sphere method, by which the phase
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space is mapped onto a unit sphere. This yields an understandable and graphic rep-

resentation of phase space, but it is not unique [46]. Another popular technique is

the projective space method, through which infinite equilibria are found by a change

of variables. The projective space method results in a new polynomial system, which

is solved for its finite equilibria. These points are precisely the reduced source term’s

infinite equilibria. This method is brefiely described in the remainder of this section.

For more detail on the derivation, advantages and disadvantages of this technique,

the reader is referred to [47].

The projective space method consists of a simple transformation of the state

variables z such that the polynomial system is mapped onto a different problem. To

start with, a new set of variables is found by:

yk =
1

zk
, k ∈ {1, 2, ..., ns − ne}

yi =
zi
zk
, i 6= k

(2.42)

such that y ∈ Y ⊂ Rns−ne , where zk is arbitrarily selected. The above equations

map infinite equilibria upon the line yk = 0 [47]. Next, it is important to identify

the original polynomial system’s maximum degree as d. Finally, by substituting the

above into (2.28), a new polynomial system is obtained:

g(y) = ydk



f1(y1, . . . , yns−ne)− y1fk(y1, . . . , yns−ne)

...

−ykfk(y1, . . . , yns−ne)

...

fns−ne(y1, . . . , yns−ne)− yns−nefk(y1, . . . , yns−ne)


. (2.43)
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Note that the Hartman-Grobman theorem also holds for a dynamical system

dy

dt
= g(y) (2.44)

such that the critical points of g(y) can be classified according to the eigevalues of

gy(yeq). Furthermore, all finite critical points of g maintain their dynamical char-

acter when mapped back to Ξ, i.e. a finite saddle of g is an infinite saddle of f and

so on.

2.3.3 Intrinsic Low-Dimensional Manifold

The ILDM method proposed by Maas and Pope [1] is one of the many re-

duction techniques based on the slow-fast decomposition of system dynamics, along

with computational singular perturbation (CSP) method [30] and flamelet-generated

manifolds (FGM) method [48], amongst others. This popular method attempts to

find the invariant attractor in phase space by decoupling fast and slow dynamics. It

is by a suitable change of basis that the problem at hand is recast into a singular

perturbation form and the two distinct motions are segregated [35, 40]. The fast

modes, assumed extinct, are then solved as functions of a few slow progress vari-

ables zθ, which parametrize the manifold for subsequent storage and retrieval. The

parametrized manifold has an inherent error however, and as such it is not invariant.

Thus the intrinsic low-dimensional manifold is only an approximation to the SIM.

The approximation error is a function of the problem’s spectral gap and the SIM’s

curvature [49].
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The eigenspectrum (2.33) of the jacobian matrix fz can be partitioned into

slow and fast sets σs and σf provided that there exists a spectral gap ε << 1, i.e.

the fastest eigenvalue in σs is still significantly smaller that the slowest eigenvalue in

σf . With this at hand, consider the invariant decomposition of fz:

fz =

(
Zs Zf

) T s 0

0 T f


Z̃s

Z̃f

 (2.45)

where the matrices Z and Z̃ span the right and left invariant subspaces of the

jacobian fz, such that

Z̃ = Z−1. (2.46)

The (ns − ne)×ms partition Zs spans the ms-dimensional slowest eigenspace Es
ms

.

Similarly, the (ns − ne) × mf block Zf spans the mf -dimensional fast eigenspace

Ef
mf

. Hence, these spaces previously introduced in section 2.3.2 can be redefined as:

Es
ms

= span(Zs)

Ef
mf

= span(Zf )

(2.47)

but could well be represented by an equivalent basis such as the orthogonal Schur

vectors, or the eigenvectors of fz themselves. The square matrices T s and T f are

quasi-upper-triangular matrices with the real parts of the ms slowest eigenvalues

λi,s ∈ σs, i = 1, . . . ,ms (2.48)

and mf fastest eigenvalues in their diagonals

λj,f ∈ σf , j = ms + 1, . . . ,ms +mf (2.49)
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respectively. Since fast modes are assumed extinct and slow modes govern the sys-

tem’s dynamics, the ms-dimensional ILDM is given by:

Z̃ff(z) = 0. (2.50)

By the above, the source term vector f(z) lies entirely on the ms-dimensional slowest

eigenspace, i.e.

f(z) ∈ Es
ms
. (2.51)

For nonlinear systems, the slowest eigenspace is not aligned with the tangent space

TM of the manifold, as illustrated in fig. 2.5. The ILDM is not an invariant attractor

in the affine subspace and hence the inherent error between the SIM and the ILDM.

System (2.50) provides a constructive definition of the ILDM, i.e.

MILDM = {z | Z̃ff(z) = 0, z ∈ Ξ+}. (2.52)

It is however numerically challenging to solve for the ILDM because (2.50) is a highly

nonlinear underdetermined system of equations. This has motivated numerous works

on the efficient calculation [41], refinement [34] and practical implementation [19] of

the ILDM. Further works concerning the ILDM’s numerical peculiarities regard par-

allelization and dynamic dimension reduction [50], adaptive tabulation strategies and

coupling of transport processes [51] and reaction-diffusion extensions [52].

Finally, note that the above definitions could be formulated in composition

space Ψ for system (2.11) without loss of generality. It is in the method’s implemen-

tation that constructing the ILDM in reduced phase space Ξ becomes advantageous,
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since σs will be rid of all zero eigenvalues related to conserved quantities.

zθ

z`
MILDM

TM

NM

Zs Z̃f

f(zM)

zM

Figure 2.5: Geometrical picture of the ILDM MILDM . Adapted from ref. [2] and
ref. [3].
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CHAPTER 3

NUMERICAL IMPLEMENTATION

The efficient calculation and refinement of reduced descriptions of chemicals

kinetics has come to stand as a branch of computational fluid dynamics by itself.

Amongst the different available techniques and algorithms, three common require-

ments are identified: the system’s linear dependencies, the reaction operating con-

ditions and rate coefficients correct evaluation. This chapter presents how to build

upon this essential problem information to numerically solve for the slow invariant

and intrinsic low-dimensional manifolds.

Gas discharge kinetics is challenging because transport and rate coefficients of

free electrons derive from the electron energy distribution function. BOLSIG+ is

used to solve for and parametrize these coefficients, which are validated in a physical

discharge simulation by a variable-order implicit ODE solver. Then, a particularly

simple method from the literature for finding the 1D SIM is synthesized. Its imple-

mentation crosses several computational tools, but can be successfully carried out in

a single one for moderate-size systems. Finally, the celebrated ILDM method and its

implementation details are given.
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3.1 Reaction Rate Coefficients and Glow-Mode Non-Equilibrium Gas Discharge

Validation

The physical reactive system (2.11) is stiff because of the presence of timescales

that differ by several orders of magnitude. For computational efficiency a solver that

can handle stiff problems is desired. There are several available routines with this

capability, including MATLAB’s ode15s and Octave’s LSODE. SUNDIAL’s CVODE

was chosen to perform the integration of the system because of its powerful implicit

methods and the fact that it is implemented within the adaptive mesh refinement

(AMR) plasma-flow solver described in [18]. CVODE implicitly integrates stiff systems

using backward-differencing formulae (BDF) of up to fifth order accuracy combined

with Newton iterations. It solves the resulting linear system by direct methods, al-

though Krylov methods are available and readily applicable for large stiff systems,

where direct methods are unfeasible.

When the physical system (2.11) is discretized by variable order BDF, the

resulting scheme reads:

G(ψn) =
K∑
i=0

αi,nψn−i + hnβnF (ψn) = 0, (3.1)

where α0,n = −1, K is the integration order and h is the integration step size. All

coefficients are determined by the solver structure and the recent history of step

sizes. The mth Newton iteration is thus given by:

[I − hnβnFψ(ψm
n )]∆m

n = G(ψm
n ) (3.2)
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which, along with an initial guess based on data from previous iterations, yields the

next iteration level state

ψm+1
n = ψm

n + ∆m
n . (3.3)

Convergence is achieved when

R ‖ ψm+1
n −ψm

n ‖ < 0.1ε (3.4)

where R is a convergence rate constant and ‖ · ‖ is the weighted root-mean-square

norm. The weights are based on the user-provided absolute and relative tolerances. A

maximum of three Newton iterations is permitted, although this can be adjusted [53].

The solver’s structure is preset so that the linear system is solved with a direct dense

method. As such, the first matrix of the left-hand side of (3.2) is never updated

throughout an iteration. This choice is rooted in the fact that the models under

analysis are of moderate size, but if a substantially larger system was to be studied,

a Krylov method could readily substitute the current configuration.

The CVODE-based solver was implemented within a C++ physics class [54],

which formally defines the system, its inputs, outputs and its solution. This class can

in turn be incorporated to the aforementioned AMR plasma-flow solver. The physics

class is also suited for reduction techniques as it incorporates LAPACK routines [55]

that allow for slow-fast decomposition of f z, singular value decomposition of ν, and

other relevant operations.

The plasma physics class contains a routine that evaluates the reaction rate

coefficients for each discharge mechanism considered. Electron rate and transport pa-

rameters depend on electron energy distribution function (EEDF), i.e. the isotropic
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term in the velocity distribution function of electrons. It generally is non-Maxwellian

[29]. As such, the Boltzmann equation for electrons (BEE) must be solved for a given

range of reduced electric fields. BOLSIG+ [56] is a BEE solver that provides steady-

state solutions under the presence of uniform electric fields and outputs rate and

transport coefficients, amongst other capabilities. Its only input is a set of collision

cross-sections, promptly available in various databases. For the two gases consid-

ered in this study, the cross-sections were retrieved from the Phelps database [57,58]

through the LXcat website [59]. The reaction rate coefficients are fitted assuming

that the mean electron energy is in local equilibrium with the reduced electric field.

Thus, the rate coefficient is given by a sixth-order polynomial of the electron tem-

perature:

kr,e = exp

[
6∑
i=0

(
ai

Te
i

)]
(3.5)

where Te is the electron temperature in eV. The reduced mobility of electrons is

fitted by:

µeNg = exp

[
8∑
i=0

biln
i(Te)

]
(3.6)

Fitting against mean energy is a well-established practice [60] which gives acceptable

results in continuum plasma modeling, although BOLSIG+ itself provides fits for

the rate coefficients as functions of the reduced field. Figures 3.1, 3.2, 3.3 and 3.4

show the polynomial fits for reaction rates and reduced mobility for discharges in Ar

and N2. Furthermore, fig. 3.5 shows mean electron energy against electric field for

discharges in both background gases. Note that electrons are more energetic in Ar

than they are in N2. All BOLSIG+ runs were configured so that electron-electron

collisions were considered for ionization degrees Ne/N ≥ 10−3, i.e. weakly ionized

plasmas.
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Simulation results are presented along with the aforementioned BOLSIG+ data

in figures 3.6,3.7,3.9, while operating conditions for these benchmark cases are given

in table 3.1. The systems ignite and reach equilibrium after a short transient, where

production processes (e.g. ionization, excitation) are balanced by loss processes (e.g.

recombination, de-excitation). The simplest Ar system perfectly exemplifies neutral-

ity in a plasma column. Positive ion and electron concentrations are equal and con-

siderably smaller than neutral concentration. The N2 system requires a significantly

higher reduced electric field to ignite, but achieves similar electron concentration and

ionization fraction.

Table 3.1: Operating conditions for benchmark simulation cases.

Background Gas P [kPa] Tg [K] V [V] L [mm]

Ar 75 300 500 1

N2 50 300 1000 1

The mechanisms of N2 and Ar are presented in appendix A. The Ar discharge

mechanism consists of three reaction clusters, through which reactions and species

are added to itensify the complexity of the discharge. The first cluster is a basic

ionization-recombination mechanism with neutrals, ions and electrons. The second

cluster adds excitation reactions and metastables, while the third cluster adds bi-

molecular Ar ions.
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Figure 3.1: Electron collision reaction rate coefficients of a Ar discharge. The solid
lines correspond to BOLSIG+ values while the markers correspond to the polynomial
fits evaluated at certain electron temperatures.
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Figure 3.3: Electron reduced mobility in Ar. The solid lines correspond to BOL-
SIG+ values while the markers correspond to the polynomial fits evaluated at certain
electron temperatures.
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Figure 3.4: Electron reduced mobility in N2. The solid lines correspond to BOL-
SIG+ values while the markers correspond to the polynomial fits evaluated at certain
electron temperatures.
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discharges in different backgroung gases Ar and N2. Coefficients are fitted assuming
ee is in local equilibrium with E/N .
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Figure 3.6: Discharge in Ar for E/N = 27.13 Td. The reaction mechanism is cluster
1 in table A.1.
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Figure 3.7: Discharge in Ar for E/N = 27.13 Td. The reaction mechanism are
clusters 1 and 2 in table A.1.
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Figure 3.8: Discharge in Ar for E/N = 27.13 Td. The reaction mechanism are
clusters 1, 2 and 3 in table A.1.
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Figure 3.9: Discharge in N2 for E/N = 82.84 Td. The reaction mechanism is given
in table A.2.
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Figure 3.10: Evolution of the eigenspectra of the physical jacobian in a Ar discharge
at E/N = 27.13 Td. A spectral gap always exists.
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Figure 3.11: Evolution of the eigenspectra of the physical jacobian in a Ar discharge
at E/N = 27.13 Td. A spectral gap always exists.
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Figure 3.12: Evolution of the eigenspectra of the physical jacobian in a N2 discharge
at E/N = 82.84 Td. A spectral gap always exists.
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3.2 One-Dimensional Slow Invariant Manifold Method

The method reported hereafter was introduced in ref. [37] and exploits the

geometrical properties of the SIM by forward propagation of slow trajectories from

saddle equilibria. It has been recognized for its simplicity and effectiveness, and all

of its stages fall within two categories: identifying the systems equilibria and con-

necting slow trajectories.

Since the 1D SIM consists of at most two branches, it suffices to generate two

heteroclinic orbits that asymptotically converge to physical equilibrium. Recall that

these orbits are to stem from saddles, which are specific roots of the reduced system’s

source term. At this point, there is enough information about the 1D SIM to synthe-

size an elementary procedure for efficiently constructing it. This procedure consists

of four different stages that can span different computational platforms or can be

carried out alternatively with a single tool according to the system’s dimensions.

The first stage, of analytical character, consists of constructing the reduced

source term. The computational stage comes second, where all the isolated solutions

of the reduced source term, finite and infinite, are found. These are classified or

discarded according to the eigenvalues of the reduced jacobian matrix at each root

in the processing stage. Finally, the reduced system is integrated along the slowest

direction at each candidate saddle in the generation stage. If the emmanating branch

converges to physical equilibrium, its attractiveness is evaluated. The procedure ends

when two branches have been generated. The remainder of this section elaborates

on each stage, its inputs, outputs and other implementation details.
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To set up the problem accordingly in the analytical stage, it is important to

note that both the physical (2.20) and reduced (2.29) source terms are polynomial

systems of ψ and z, respectively. These polynomial systems are determined by

the physical system’s linear dependecies ν, operating conditions and reaction rates

only. Mathematica’s analytical capabilities can be exploited to build these polyno-

mials following the constructive nature of section 2.2 as long as the above require-

ments are provided. However, these polynomials will be poorly scaled because of the

sparse magnitudes of their coefficients, rendering any root finding algorithm ineffi-

cient. Once the reduced source term has been constructed, its polynomial structure is

passed through MATLink to HomLab [61], a MATLAB library for solving moderate-

size polynomial systems. HomLab will scale the polynomial and return two vectors

α and β of size ns − ne such that:

f̂i(ẑi) = αifi(βizi), i = 1, 2, ..., ns − ne (3.7)

where f̂(ẑ) is a new scaled polynomial system. This scaled system is the one that

is actually solved for in the computational stage. To terminate the first stage, the

size of the system must be pondered upon. Mathematica, like HomLab, can solve

moderate-size systems such as those that model noble gas discharges, but under-

performs with larger systems, such as those that model air and air-like mixtures

discharges. If Mathematica is to solve for the roots of (3.7), then it proceeds to

stage two. Otherwise, it generates an input file for a different software in the second

stage.

The computational stage is preferably performed using a solver that offers the

possibility of running on multicore computer architectures. Bertini [62] is a robust
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homotopy continuation software for finding all the roots, zero-dimensional and multi-

dimensional, of a polynomial system with such capability. It only requires an input

script containing the polynomial system and will deliver several output files, amongst

which only one containing the real finite solutions is of interest. For the present work,

the software has been built on the TACC Stampede system.

The real finite solutions are exported into either Mathematica or MATLAB

with the intention of finding the eigenspectrum of fz(zeq) and classifying sources,

sinks and saddles. Sources are immediately discarded. Only one sink is kept, which

lies on physical space. Since the SIM is one-dimensional, only saddles with one

unstable direction are kept. A further criterion imposed on saddles is that they im-

mediately satisfy attractriveness (2.35). Note that the eigenspectrum is not obtained

by the usual eigendecomposition, but rather by the Schur decomposition of fz(zeq)

fz(zeq) = Q T QT . (3.8)

This is more convinient because the Schur vectors form an orthogonal basis. The

eigenvalues appear in the diagonal of the Schur matrix T and are ordered by de-

scending real part with a similarity transformation [63]. The slowest eigenspace of

the system is spanned by the leftmost Schur vector of Q.

Finally, the last stage consists of generating trajectories from candidate saddles.

The reduced system (2.28) is numerically integrated for each of the neq candidate

saddles with initial condition

z(0) = zeq,i + ε qs, ε << 1, i = 1, 2, ..., neq (3.9)
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Figure 3.13: Typical structure of the 1D SIM. Trajectories are generated from saddles
with an unstable one-dimensional slowest eigenspace.

i.e. the system is slightly perturbed in the direction of its slowest Schur vector. This

task can be carried out in a wide variety of frameworks. Since (2.28) retains the

timescale structure of (2.11), an ODE solver suite that can handle stiff problems is

required. SUNDIALS Implicit Differential-Algebraic (IDA) solver is implementable

in Mathematica through NDSolve, allowing for a backward Euler scheme with

Newton iterations, similar to the integration scheme of the physical system (2.11) in

section 3.1. MATLAB’s ode15s is also a good alternative in case the roots where

found using Bertini. This procedure is looped until at most two trajectories have

been found to converge to the only realizable sink of the system. Finally, their at-

tractiveness is verified and the manifold is stored.

3.2.1 Validation

The procedure described above and the scripts generated according to it were

validated against the Zel’dovich test case that appears in [37]. Consider the two-

reversible-reactions Zel’dovich mechanism for nitric acid production given in table
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3.2. The backward reaction rate kb,r of reaction r is a function of the equilibrium

constant Kr, which in turn is a function of reaction temperature T . The former two

are given by

kb,r =
kf,r
Kr

(3.10a)

Kr = exp

(
− νr ·G

◦

RuT

)
(3.10b)

where kf,r is the forward reaction rate, shown in table 3.2, νr is the rth vector in the

reaction matrix ν and G◦ is the vector of the involved species’ standard Gibbs free

energies at reaction temperature T . This vector is created by using the Shomate

equations

H◦s −H◦s,f = A T +
B

2
T 2 +

C

3
T 3 +

D

4
T 4 + E T −1 + F −H (3.11a)

S◦s = A ln(T ) +B T +
C

2
T 2 +

D

3
T 3 − 2E T −2 +G (3.11b)

where T = T × 10−3, H◦s and S◦s are the standard enthalpy and entropy of species s,

in kJ/mol and J/mol−K, respectively, H◦s,f is the enthalpy of formation of species

species s, in kJ/mol, and by definition

G◦s = H◦s − T S◦s (3.12)

The Shomate coefficients were retrieved from the NIST reference database no. 69 [64].

In the case where the curvefits were not available through this database, the JANAF

tables were used [65].

This is enough to set up the problem. Note that, even though ns = 5 and

ne = 2, there is a further constraint, namely that all reactions are bimolecular, and
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Table 3.2: Zel’dovich mechanism for nitric acid formation, intended for 1D SIM
method validation. Reaction rate coefficients are given in units of cm3/mol− s.

No. Reaction Forward Rate Coefficient Ref.

(1) N +O2 
 NO +O 5.841× 109T 1.01exp(−6195.6RuT
) [37]

(2) N +NO 
 N2 +O 21.077× 1012 [37]

as such the reduced phase space Ξ is two-dimensional. The manifold was found for

a reaction temperature of 4000 K and a volume of 103 cm3. The reduced source

term contains several roots both finite and infinite, but only three are relevant to the

construction of the manifold. These are shown in table 3.3. Of all the roots, shown

or not, only R1 lies within the physically realizable region and thus is the system’s

physical equilibrium. The manifold, depicted in fig. 3.15, consists two branches, one

stemming from a finite saddle R2 and another stemming from an infinite saddle I1.

This last point is nonhyperbolic, and as such, the Hartman-Grobman theorem cannot

be used to analyze its dynamical character. For more details on this peculiarity, the

reader is referred to ref. [37].

Table 3.3: Relevant roots of the Zel’dovich mechanism reduced source term. R1 and
R2 are finite points, while I1 is a root at infinity.

Root (z1, z2) or (y1, y2) (λs, λf ) Type

R1 (3.042× 10−3, 2.943× 10−5) (−2.387× 105,−2.509× 107) Sink

R2 (−4.185× 10−3,−2.663× 10−5) (3.700× 105,−1.613× 107) Saddle

I1 (0, 0) (0,−1.275× 109) Saddle
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Figure 3.14: Spatially homogeneous 1D SIM for the system described by the
Zel’dovich mechanism. The red marker corresponds to physical equilibrium, while
black and blue markers correspond to finite saddles and sources, respectively. An
irrelevant source is marked in blue. The light blue region is the physically realizable
space, i.e. ψ(z) ≥ 0.

Figure 3.15: A closer look of the SIM’s leftmost branch. Generated from saddle R2,
it converges to physical equilibrium R1.
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3.3 Intrinsic Low-Dimensional Manifolds Method

The ILDM equation is traditionally solved by predictor-corrector continuation

methods. Originally, pathfollowing codes such as PITCON [66], supplemented with

manifold boundary evaluation routines, were used to solve for and parametrize the

ILDM [1]. Eventually, detailed procedures suited to the inherent characteristics of

the problem were developed. The methodology presented in this section follows that

proposed by Maas in [41].

The ILDM method described below has been implemented in both MATLAB

and C++. The C++ version of the code relies on the PlasmaPhysics class created

for discharge simulations. Furthermore, it is linked to the LAPACK library for all

matrix operations. The algorithm starts at a point known to reside in the ILDM, such

as physical equilibrium, and runs a predictor-corrector continuation process until it

meets the system’s boundaries determined by its constraints, i.e. mass possitivity

and mole fraction unity. The first step consists of computing and partitioning the

real Schur decomposition of the local jacobian fz at a point zM on the manifold

fz(zM) =

(
Qs Qf

) T s T sf

0 T f


QT

s

QT
f

 (3.13)

rewritten here for clarity. The block sizes are determined by the user’s desired ILDM

dimension. The rest of the study however, concerns 1D manifolds. The above is

obtained using LAPACK’s DGEES, while DTREXC is iteratively used to sort the

eigenvalues in descending order of their real parts along the diagonal of the quasi-
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upper-triangular matrix T by an orthogonal similarity transformation [55]. The same

routine solves the Sylvester equation

T sM −MT f = −T sf (3.14)

using DTRSYL to construct the invariant decomposition (2.45), where the local right

and left invariant subspaces are given by:

Z̃ =

I −M
0 I

 QT (3.15a)

Z = Q

I M

0 I

 . (3.15b)

It is with the above, along with suitable a parametrization of the manifold, that the

algorithm tracks the ILDM in phase space.

3.3.1 Manifold Parametrization

By providing a parametrization P (z) of the ILDM, the otherwise underdeter-

mined system of equations (2.50) is complete. Furthermore, dimension reduction is

succesfully achieved by representing all phase variables by a smaller set of parametriz-

ing variables zθ, also called reaction progress variables. The new parametrized system

reads

G(z) =

Z̃ff(z)

P (z)

 = 0. (3.16)
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The parametrization function is significantly more complex if the ILDM were to be

solved in composition space Ψ because it has to account for conserved scalars. Thus,

it can be split into conservation parametrization and reaction progress functions

P =

P ξ

P θ

 . (3.17)

Since this work deals with manifolds in reduced space Ξ, there will be no further

insight into P ξ and only the parametrization of progress variables will be pondered

upon. This function indicates the direction in which the pathfollowing algorithm

searches for a new point on the manifold. Note that there is no physical motivation

for the parametrization, motivating a routine that updates it after every predictor-

corrector step. This has not been implemented however, as a simpler parametrization

algorithm was preferred. Thus, the parametrization of the manifold is:

P θ(z) = P θM[z − zM] (3.18)

where P θM is a ms× (ns− ne) matrix, which in this particular one-dimensional case,

i.e. ms = 1, is given by

P θM = eTi (3.19)

where ei is the ith unit vector such that zθ = zi.

3.3.2 Continuation Procedure

The continuation process implemented as per ref. [41] is a predictor-corrector

algorithm which tracks the manifold in a user-specified direction δ with a user-
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specified stepsize ζ. Since the objective is to track a one-dimensional manifold, the

direction vector δ is chosen to be a unit vector ei to satisfy

P θMvp = ζδ. (3.20)

The predictor step is based upon the fact that, by definition, the tangent subspace

of the manifold is approximated by the slowest eigenspace, such that a predictor

vp = ζZs[P
θ
MZs]

−1δ (3.21)

yields a predicted point zp in the following manner:

zp = zM + vp. (3.22)

The corrector step is a Newton solver for the augmented nonlinear system

H(z) =

 Z̃ff(z)

P θM[z − zp]

 = 0 (3.23)

with initial guess z0 = zp. The mth general Newton iteration, given by:

Hz(z
m)∆m = −H(zm) (3.24)

yields the next iterate

zm+1 = zm + ∆m (3.25)
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where the augmented system’s jacobian matrix Hz is approximated by:

Hz ≈

Z̃ffz

P θM

 . (3.26)

The corrector step was implemented using NLEQ1, a robust Newton solver for hi-

hgly nonlinear problems. This procedure converges to a corrected point zc, which

is then submitted to a boundary-check. If the value lies within physically realizable

space, it is stored and a new overall ILDM iteration is carried on. Consequently,

each ILDM iteration consists of a fast-slow decomposition, a parametrization step,

a predictor-corrector step, a boundary check and a final storage phase. A simple

MATLAB implementation of the ILDM method can be found in appedix B. It in-

cludes a routine for evaluation the reduced source term (2.29) and reduced jacobian

(2.32) for the benchmark discharge in Ar modeled by reaction clusters 1 and 2 of

table A.1.

3.3.3 Validation

The ILDM for the Zel’dovich mechanism was found in order to validate the

method’s implementation. Starting from physical equilibrium, denoted as R1 in table

3.3, the predictor-corrector continuation procedure was carried out in two directions

until each branch met the boundaries of the realizable region. The manifold is

parametrized by zθ = z1 and it closely approximates the 1D SIM. The manifold is

shown in fig. 3.16
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Figure 3.16: ILDM for the system described by the Zel’dovich mechanism. The blue
marker corresponds to physical equilibrium
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CHAPTER 4

REDUCED-ORDER MODELS OF GAS DISCHARGES

The 1D SIM and the ILDM may serve different purposes despite both being

reduced-order models of chemical reaction dynamics. While the former brings in-

sight into the structure and behavior of the slow motions in phase space, the latter

is practical and readily implementable in large multi-dimensional CFD codes. These

manifolds are thus potential tools to study the intrinsic complexities of gas discharges.

This chapter features the 1D SIM and ILDM, found with the previously exposed

methods, of simple discharges in noble gases. The structure of the manifolds is briefly

addressed and relevant critical points are tabulated. A bifurcation analysis of DC

discharges in Ar is carried out to explain the system’s behavior when subjected to an

increasing electric field.
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4.1 Slow Invariant Manifolds of Noble Gas Electrical Discharges

Consider the spatially homogeneous electrical discharge in Ar at benchmark

operating conditions, given in table 3.1, and modeled by clusters 1 and 2 of table A.1.

This is a ns = 4, ne = 2, nr = 6 system, where mass and charge are conserved, so

that the reduced subspace Ξ is two-dimensional. The physically realizable region is

shown within Ξ in fig. 4.1 as a shaded polygon. The phase flow already suggests the

existance of an attractor along the upper boundary of the physically realizable region.

The linear operator that transforms from physical to reduced space for this

particular problem is:

D =



0.7236 0.2764

−0.2764 −0.7236

−0.4472 0.4472

−0.4472 0.4472


. (4.1)

Thus, the reduced source term is a third-order polynomial system, which can be

expressed as:

f(z) =


∑3

j=0

∑3
i=0 ai,j z

i
1 z

j
2∑3

j=0

∑3
i=0 bi,j z

i
1 z

j
2

 . (4.2)

Similarly, by applying the projective space method with k = 1, i.e.

y1 =
1

z1
, y2 =

z2
z1

(4.3)
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a new function, whose roots are the infinite equlibria of eq. (4.2), is formulated:

g(y) =


∑3

j=0

∑3
i=0 ci,j y

i
1 y

j
2∑3

j=0

∑3
i=0 di,j y

i
1 y

j
2

 . (4.4)

Recall that only saddles with one positive eigenvalue and physically realiz-

able sinks are relevant to the 1D SIM’s construction. These were found using

Mathematica because of the system’s moderate size. Finite roots, denoted as Ri,

and all relevant infinite critical points, denoted as Ii are shown in table 4.1, along

with the corresponding eigenvalues of the jacobian fz. R1 is immediately identified

as physical equilibrium, matching the value obtained with physical discharge simu-

lations shown in fig. 3.7. Futhermore, R2, R3 and I2 are all candidate generators.

All of these points meet attractiveness criterion (2.35).

The first generated orbit stems from I2 since it has the slowest of all corre-

sponding eigenvalues. This orbit is successful, converging into physical equilibrium.

Furthermore, it passes through R3, such that it would be redundant to perturb the

system from its slowest direction. The second branch is obtained by slightly per-

turbing the system from R2. The manifold is shown in fig. 4.2, while its detailed

structure can be found in fig. 4.3. By inspection, the submerged section of the lower

branch corresponds to weak ionization, while the upper branch corresponds to higher

ionized states. Thus, for problems such as DBD actuation, the lower branch would

be of key interest. As for the upper branch, recombination must dominate this region

because any deviation from equilibrium is immediately damped [18]. Another pecu-

liarity of the manifold is that the high ionization branch not only behaves linearly,
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but lies entirely in R1’s, and consequently R2’s, slowest eigenspace, as shown in fig.

4.4.

The existence of a high ionization SIM branch motivates a bifurcation analy-

sis, whereby structural changes of the SIM are investigated under increasingly large

electric fields. In other words, this analysis seeks to answer the following question:

what happens to the SIM under severe electric fields? The same ns− ne = 2, nr = 6

system was subjected to a wide range of reduced fields under the same background

gas temperature Tg = 300K and pressure pg = 75kPa. The manifold shown in fig.

4.2 and 4.3 exists for a small range of low fields from 10 Td to 28 Td. This means

that all R1, R2 and I2 remain around the same location in phase space and their

corresponding eigenspectra does not change qualitatively. This fact is interesting

because this low range corresponds to moderate electron temperatures present in

flow control applications. However, as the reduced electric field is increased, R2 and

I2 remain fixed saddles in phase space but R3 disappears and R1 shifts along the

higher ionization states towards R2. Moreover, their corresponding eigenspectra be-

gin to change quantitatively towards a qualitative change, i.e. a bifurcation. After a

threshold reduced field, R2 becomes a sink and R1, which by then has shifted signif-

icantly along the high ionization states, becomes a saddle. The system’s equlibrium

point becomes unphysical, and it runs away. This behavior is analogous to that of

explosion models in combustion previously reported [44] and can be observed in fig.

4.7 and 4.8.
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Table 4.1: Relevant roots of the Ar discharge mechanism reduced source term at
E/N = 27.13 Td. Ri are finite critical points zeq, while Ii are infinite critical points
yeq.

Root (z1, z2) or (y1, y2) (λs, λf ) Type

R1 (24.944, 0.0176) (−8.186× 106,−9.296× 109) Sink

R2 (−15.451, 15.451) (6.215× 109,−7.052× 1012) Saddle

R3 (25, 6.526× 10−8) (4.138× 106,−4.590× 106) Saddle

I1 (0,−0.382) (−3.806× 106,−3.803× 106) Sink

I2 (0, 1.002) (7.351× 103,−7.356× 103) Saddle

Figure 4.1: Phase flow in reduced space Ξ. The blue region is the physically realizable
space, i.e. ψ(z) > 0. The reaction mechanism are clusters 1 and 2 in table A.1.
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Figure 4.2: Slow invariant manifold for a homogeneous discharge in Ar for E/N =
27.13 Td. The reaction mechanism are clusters 1 and 2 in table A.1.

Figure 4.3: SIM structure for a homogeneous discharge in Ar. This structure is
prevalent for a moderate range of reduced fields. The reaction mechanism are clusters
1 and 2 in table A.1.
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Figure 4.4: 1D SIM (upper branch only) and the slowest eigenspace of both R1 and
R2. The upper branch of the manifold behaves linearly.
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Figure 4.5: Eigenvalue ratio along the upper branch of the SIM.
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Figure 4.6: Eigenvalue ratio along the lower branch of the SIM.
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Figure 4.7: Slowest eigenvalue of fz at both R1 and R2. Plasma runaway occurs
when the slowest eigenvalue of unphysical state R2 becomes negative and R1 becomes
a saddle.
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Figure 4.8: Different manifolds for the same system subject to increasing reduced
fields E/N . While sink R1 shifts along phase space, saddle R2 remains fixed.
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4.2 ILDM of Noble Gas Electrical Discharges

This section shows the one-dimensional ILDM of two Ar systems of increasing

complexity. The first system comprises clusters 1 and 2 of table A.1 and its behavior

is already well-known from the previous section. The second system is all of table

A.1, i.e. clusters 1 through 3, whose evolution and eigenspectra under a constant

electric field E/N = 27.13 Td are shown in fig. 3.8 and 3.11. As expected, the 1D

ILDM, bounded by physical constraints, matches the 1D SIM. Starting from physical

equlibrium, it tracks the high and low ionization branches until the edge of phys-

ical space. The ILDM’s upper branch is parametrized by θ = z2, while the lower

branch is parametrized by θ = z1. Recall that there is no physical meaning for the

parametrization choice.

The ILDM of the larger system shows a qualitatively similar structure. It

consists of a linear high ionization branch and a considerably smaller nonlinear weak

ionization region. This weakly ionized gas branch is not as extensive as that of the

smaller Ar system modeled by clusters 1 and 2 because it is embedded in a 2D

ILDM. The manifold is shown in fig. 4.10. Since the timescale separation does not

span one order of magnitude even, the ILDM will substantially deviate from the

SIM. By finding the roots of the reduced source term, it is clear that the linear

branch of the ILDM tends toward a saddle R2 = (−2.026, 25.206,−22, 567), while

the smaller nonlinear weak ionization branch tends toward a saddle R3 = (25, 4.374×

10−7, 3.289× 10−8) [67].
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Figure 4.9: ILDM of an Ar discharge at E/N = 27.13 Td. The marker indicates
physical equlibrium.
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Figure 4.10: ILDM for Ar discharge mechanism in table A.1. Left: Upper branch of
the manifold corresponding to high ionization. Right: lower branch of the manifold
corresponding to weak ionization.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This work has focused on reduced-order models of detailed kinetics for electrical

gas discharges in noble gases. Starting from the mathematical modeling of chemical

kinetics, a linear subspace where a mixture composition evolves was identified and

the appropriate linear transformation to access it was provided based on the prob-

lem’s conservation constraints. This was followed by the mathematical background

and numerical implementation of two popular dimension reduction techniques which

have been extensively used in combustion modeling and simulation and had yet to

be exploited in plasma-flow solvers. The appropriate modeling of nonequilibrium

electrical discharges was also shared and tested for both noble gases and air-like

mixtures. Local timescale analysis is a key component of both methods, such that

extensive use of linear algebra packages was required to perform invariant subspace,

eigen and Schur decompositions, as well as other operations, throughout this work.

The results show interesting and useful phenomena that indicate that reduce-order

modeling of gas discharges could be applicable to full CFD simulations and coupled

to transport phenomena. Furthermore, a bifurcation analysis with the reduced field

as the variation parameter was carried out with satisfying results. Electron runaway

behaves like an explosion, and this could potentially help studying ignition assistance.

The techniques outlined here were also partially applied to the N2 mechanism

found in table A.2. Despite the correct determination of all of the system’s critical
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points, this analysis was not successful however, as the algorithms were not able to re-

solve a small region close to physical equilibrium. It is known that the ILDM method

performs poorly in regions where the corresponding eigenspectra includes complex

eigenvalues and that may be the reason behind this method’s inability to resolve the

aforementioned troublesome region. It is still however not known why the 1D SIM

method fails, as it appears that the generated orbit meets a singularity on its way to

physical equilibrium. Future work will partly consist on identifying the problem and

constructing both manifolds. Finally, in order to study plasma-assisted ignition, it is

desired to couple ISAT [68], a tabulation storage-retrieval code, and ZDPlasKin [69],

a zero-dimensional plasma solver with an integrated BOLSIG+ module, and inte-

grate them to a full CFD plasma-flow solver with AMR framework.
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APPENDIX A

DISCHARGE MECHANISMS
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Table A.1: Argon discharge chemistry system. Two-body and three-body rate coef-
ficients are given in m3s−1 and m6s−1 respectively.

No. Reaction Rate Coefficient Ref.

(1.1) Ar + e− → Ar+ + e− + e− BOLSIG+ [56]

(1.2) Ar +Ar+ + e− → Ar +Ar 8.50× 10−39 T−4.5e
[69]

(2.1) Ar + e− → Ar? + e− BOLSIG+ [56]

(2.2) Ar? + e− → Ar + e− 2.00× 10−13 Te exp(−2.70/Te) [70]

(2.3) Ar? + e− → Ar+ + e− + e− 1.16× 10−16 T 3
e exp(−4.16/Te) [70]

(2.4) Ar? +Ar +Ar → Ar +Ar +Ar 1.40× 10−44 [69]

(3.1) Ar+2 + e− → Ar +Ar? 8.50× 10−13 T−0.67e
[69]

(3.2) Ar +Ar+2 → Ar +Ar +Ar+ 6.00× 10−12 T−1g
[69]

(3.3) Ar? +Ar? → Ar+2 + e− 6.00× 10−16 [69]

(3.4) Ar +Ar +Ar+ → Ar +Ar+2 2.20× 10−43 [69]
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Table A.2: Nitrogen discharge chemistry system. Two-body and three-body rate
coefficients are given in m3s−1 and m6s−1 respectively.

No. Reaction Rate Coefficient Ref.

(01) N2 + e− → N2(A,V = 0− 4) + e− BOLSIG+ [56]

(02) N2 + e− → N2(A,V = 5− 9) + e− BOLSIG+ [56]

(03) N2 + e− → N2(A,V = 10) + e− BOLSIG+ [56]

(04) N2 + e− → N2(B) + e− BOLSIG+ [56]

(05) N2 + e− → N2(C) + e− BOLSIG+ [56]

(06) N2 + e− → N2(a′) + e− BOLSIG+ [56]

(07) N2 + e− → N+
2 + e− + e− BOLSIG+ [56]

(08) N2 +N+ + e− → N +N2 6.00× 10−39(Te/300)−1.50 [69]

(09) N+
2 + e− → N +N 1.80× 10−13(Te/300)−0.39 [69]

(10) N3+ + e− → N +N2 2.00× 10−13(Te/300)−0.50 [69]

(11) N4+ + e− → N2 +N2 2.30× 10−12(Te/300)−0.53 [69]

(12) N2 +N2 +N+ → N2 +N3+ 1.70× 10−41(Teff/300)−2.10 [69]

(13) N +N+
2 → N2 +N+ 7.20× 10−19(Teff/300) [69]

(14) N +N2 +N+
2 → N2 +N3+ 9.00× 10−42exp(400/Teff ) [69]

(15) N2 +N2 +N+
2 → N2 +N4+ 5.90× 10−41(Teff/300)−2.20 [69]

(16) N2 +N4+ → N2 +N2 +N+
2 2.10× 10−22exp(Teff/120) [69]

(17) N2(A)→ N2 5.0e-01 [69]

(18) N2(B)→ N2(A) 1.0e+05 [69]

(19) N2(a′)→ N2 1.0e+02 [69]

(20) N2(C)→ N2(B) 2.5e+07 [69]

(21) N2(A) +N2(a′)→ N4+ + e− 4.0e-12 [69]

(22) N2(a′) +N2(a′)→ N4+ + e− 4.0e-11 [69]

(23) N2(A) +N+
2 → N +N3+ 3.0e-10 [69]

(24) N +N3+ → N2 +N+
2 6.6e-11 [69]

(25) N +N4+ → N2 +N2 +N+ 1.0e-11 [69]

(26) N +N2(A)→ N +N2 2.0e-12 [69]

(27) N2 +N2(A)→ N2 +N2 3.0e-16 [69]

(28) N2(A) +N2(A)→ N2 +N2(B) 3.0e-10 [69]

(29) N2(A) +N2(A)→ N2 +N2(C) 1.5e-10 [69]

(30) N2 +N2(B)→ N2 +N2 2.0e-12 [69]

(31) N2 +N2(B)→ N2 +N2(A) 3.0e-11 [69]

(32) N2 +N2(a′)→ N2 +N2(B) 1.9e-13 [69]

(33) N2 +N2(C)→ N2 +N2(a′) 1.0e-11 [69]

(34) N +N2 +N+ → N2 +N+
2 1.0e-29 [69]

(35) N +N +N2 → N2 +N2(A) 1.7e-33 [69]

(36) N +N +N2 → N2 +N2(B) 2.4e-33 [69]
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APPENDIX B

ILDM MATLAB IMPLEMENTATION
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function X = ILDM(x,n,i,stp,dir,maxiter)

PlasmaParameters;

% Function ILDM : Computes ILDM for F(x)

% I (x) : Equilibrium Point

% I (n) : ILDM-dim

% I (i) : Reaction Progress Variables Indices

% I (stp) : Initial Continuation Process Step Size

% O (X) : Parametrized Manifold

X = [x’];

[F,J] = source(x);

[ZR,ZL,D] = rschur(J,n);

[P,d] = parametrize(n,i,dir);

[ZRS,ZRF,ZLS,ZLF] = split(ZR,ZL,n);

for( j = 1:maxiter )

[xp,vt] = predictor(x,ZRS,P,d,stp);

[xc,flag] = corrector(xp,n,P);

[bound,stp] = checkBoundaries(xc,stp);

if (bound)

disp([j])

disp([x vt xp xc])

disp(’’)

x = xc;
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[F,J] = source(x);

[ZR,ZL,D] = rschur(J,n);

[P,d] = parametrize(n,i,dir);

[ZRS,ZRF,ZLS,ZLF] = split(ZR,ZL,n);

X = [X;x’];

end

end

end

%% Continuation Process

% [1] Predictor

% [2] Corrector

% [3] Boundary Check

%

function [xp,vt] = predictor(x,ZRS,P,d,stp)

PlasmaParameters;

% Function parametrize : Finds Tangent Vector & Predicted Point

% I (x) : State Vector

% I (ZRS) : Right-Slow-Invariant Matrix

% I (stp) : Step Size

% O (xp) : Predicted Manifold Point

% O (vt) : Predictor (Tangent Vector)

% Tangent Vector (Not Normalized)

vt = stp*ZRS*((P*ZRS)\d);
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% Predicted Point

xp = x + vt;

end

function [xc,flag] = corrector(xp,n,P)

par.xp = xp;

par.n = n;

par.P = P;

load varscale.mat;

xs = varscale;

rtol = 1E-2;

opt = [];

wk = [];

[xc,info,˜] = nleq1(@manifold,xp,xs,rtol,opt,par,wk);

flag = info.ierr;

end

function [bound,stp] = checkBoundaries(xc,stp)

PlasmaParameters;

% Function checkBoundaries : Check Boundedness of Solution

% I (xc) : Corrected Point
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y = xo + MT*L*xc;

if ( sum(y < 0) > 0 )

stp = (1E-2)*stp;

bound = false;

else

bound = true;

end

end

%% Functions & Jacobians

% [1] Parametrization

% [2] Manifold Equations & Jacobian

% [3] Chemistry Source & Jacobian

%

function [P,d] = parametrize(n,i,dir)

PlasmaParameters;

% Function parametrize : Sets Up Param. Equations & Direction

Vector

% I (n) : ILDM-dim

% I (i) : Reaction Progress Variables Indices

IP = eye(nvars);

ID = eye(n);

P = zeros(n,nvars);

d = zeros(1,n);
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% Conservation of Mass Parametrization

% P(1:nelem,:) = A;

% Reaction Progress Parametrization

P(n,:) = IP(i,:);

% Direction Vector

d = dir*ID(:,n);

end

%

function [out,fail] = manifold(x,flag,par)

PlasmaParameters;

% Function manifold : Computes the Manifold Equations

% I (x) : Newton Iterate

% I (xp) : Predicted Manifold Point

% I (n) : ILDM-dim

% I (P) : Parametrization Matrix

xp = par.xp;

n = par.n;

P = par.P;

[F,J] = source(x);

[ZR,ZL] = rschur(J,n);

[˜,˜,˜,ZLF] = split(ZR,ZL,n);

if ( strcmpi(’’,flag) )
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GF = [ ZLF*F ; P*(x - xp) ];

out = GF;

fail = 0;

else ( strcmp(’jacobian’,flag) )

GJ = [ ZLF*J ; P ];

out = GJ;

fail = 0;

end

end

%

function [F,J] = source(x,varargin)

% Function source : Chemical Source Term

% I (x) : State Vector (Chemical Concentration)

% O (F) : Chemical Source Term

% O (J) : Chemical Jacobian

% Variable Input Argument List

% varargin : Empty

PlasmaParameters;

Te = 3.8827 * eV;

Te = Te/eV;

% Physical Space
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x = xo + MT*L*x;

x = NA*x;

% Reaction Rates [mˆ-3 sˆ-1]

ratecoef = zeros(nreac,1);

rates = zeros(nreac,1);

jacrates = zeros(nreac,nspec);

for r = 1:nreac

Coef = reacRateCoef(r,:);

if (Coef(1) == 0)

Coef = Coef(2:end);

Tep = Te*ones(size(Coef’));

Tep = (1./Tep).ˆ((0:6)’);

ratecoef(r) = exp(Coef*Tep);

else

Coef = Coef(2:end);

A = Coef(1);

B = Coef(2);

C = Coef(3);

E = Coef(4);

ratecoef(r) = A*((Te/B)ˆC)*exp(E/Te);

end
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R = reactant(r,:);

R = R’;

S = x(1:eindex);

rates(r) = ratecoef(r)*prod(S.ˆR);

for (s = 1:nspec)

R = reactant(r,:);

R = R’;

R(s) = R(s) - 1;

if (R(s) == -1)

jacrates(r,s) = 0;

else

jacrates(r,s) = (R(s)+1)*ratecoef(r)*prod(S.ˆR);

end

end

end

% Reaction Source Terms [mˆ-3 sˆ-1]

F = zeros(nspec,1);

J = zeros(nspec,nspec);

F = netReac*rates;

J = netReac*jacrates;

F = F./NA;

F = D*F;

J = D*J*L;
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F = F/MT;

end

%% Linear Algebra

% [1] Invariant Decomposition

% [2] Split

%

function [ZR,ZL,D] = rschur(J,n)

PlasmaParameters;

% Function rschur : Orders Schur Decomposition

% Re(eigv(J)) in Descending Order

% I (J) : Chemical Jacobian

% O (ZR) : Right-Invariant Matrix

% O (ZL) : Left-Invariant

% O (D) : Block-Triangular Invariant Matrix

[Q,T] = schur(J);

ilst = 1;

for ( i = 1:nvars )

ifst = ilst;

for ( j = ilst+1:nvars )

if ( T(j,j) > T(ifst,ifst) )

ifst = j;
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end

end

if ( ifst ˜= ilst)

C = lapack(’dtrexc’,’V’,nvars,T,nvars,Q,nvars,...

ifst,ilst,zeros(nvars,1),0);

[T,Q] = C{[3,5]};

end

ilst = ilst + 1;

end

TS = T(1:n,1:n);

TF = T(n+1:nvars,n+1:nvars);

TSF = T(1:n,n+1:nvars);

X = lyap(TS,-TF,TSF);

XR = eye(nvars);

XL = eye(nvars);

XR(1:n,n+1:nvars) = X;

XL(1:n,n+1:nvars) = -X;

ZR = Q*XR;

ZL = XL*Q’;

D = zeros(nvars,nvars);

D(1:n,1:n) = TS;

D(n+1:nvars,n+1:nvars) = TF;
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end

%

function [ZRS,ZRF,ZLS,ZLF] = split(ZR,ZL,n)

PlasmaParameters;

% Function split : Splits Invariant Matrices

% I (ZR) : Right-Invariant Matrix

% I (ZL) : Left-Invariant Matrix

% O (ZRS) : Right-Slow-Invariant Block

% O (ZRF) : Right-Fast-Invariant Block

% O (ZLS) : Left-Slow-Invariant Block

% O (ZLF) : Left-Fast-Invariant Block

ZRS = ZR(:,1:n);

ZRF = ZR(:,n+1:nvars);

ZLS = ZL(1:n,:);

ZLF = ZL(n+1:nvars,:);

end
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