
SIMULTANEOUS OPTIMIZATION OF PERFORMANCE, ENERGY, AND 

TEMPERATURE WHILE ALLOCATING TASKS 

 TO MULTI-CORES 

by 

 

HAFIZ FAHAD SHEIKH 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

DOCTOR OF PHILOSOPHY 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

May 2015 

 



ii 

Copyright © by Hafiz Fahad Sheikh 2015 

All Rights Reserved 

 



iii 

Acknowledgements 

I would like to express my deepest gratitude and appreciation to my supervisor 

Dr. Ishfaq Ahmad for his support and guidance through all these years. This dissertation 

would not have completed without his dedicated mentoring, outstanding supervision, and 

steadfast support.  

 I am also very thankful to all the members of my PhD committee, Dr. Gautam 

Das, Dr. Manfred Huber, and Dr. Khalili for reviewing my dissertation and for always 

being supportive and accommodating. 

 I am indebted to Dr. Khalili for his comprehensive and considerate advising 

during my entire period of study. I also enjoyed great support and help from all the 

technical and support staff at CSE, UTA. In particular, I would like to thank Pam Mcbride 

and Bito Irie for all of their help and efforts. 

I owe a big thanks to my whole family specially my parents Munawar Saeed and 

Suhela Munawar, for making education of children as their top priority and doing their 

best to provide all the possible help and support. Many thanks to my elder brother 

Faheem, for always being a listening ear to me and providing me with his honest and 

thoughtful advice. I would like to express my gratitude to my wife Marium and my son 

Faseeh for filling my life with happiness and for creating many moments of joy and 

laughter even during stressful times. 

Most of all, I thank Almighty Allah (God) for giving me the opportunity, strength, 

and ability to work on my dissertation and for showering his countless blessings on me 

that I can never thank fully. 

February 16, 2015 



iv 

Abstract 

SIMULTANEOUS OPTIMIZATION OF PERFORMANCE, ENERGY AND, 

TEMPERATURE WHILE ALLOCATING TASKS 

 TO MULTI-CORES 

Hafiz Fahad Sheikh, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Ishfaq Ahmad 

Multi-core processors have emerged as a solution to the problem of ever-

increasing demands for computing power. However, higher power dissipation levels 

resulting into thermal problems and increasing cooling costs are major factors limiting 

their scalability into larger systems. Therefore, dynamic thermal management (DTM) and 

dynamic power management (DPM) of multi/many-core systems have emerged as 

important areas of research.  

The existing resource management approaches are either energy-aware or 

thermal-aware. In this dissertation, we focus on a new problem of simultaneous 

performance (P), energy (E), and temperature (T) optimized scheduling (PETOS) for 

allocating tasks to multi-core systems. To allocate a set of parallel tasks to a set of cores, 

we propose a static multi-objective evolutionary algorithm (MOEA)-based task scheduling 

approach for determining the Pareto optimal solutions with PET-optimized schedules 

defining the task-to-core mappings and the corresponding voltage/frequency settings for 

the cores. Our algorithm includes problem-specific techniques for solution encoding, 

determining the initial population of the solution space, and the genetic operators that 

collectively work on generating efficient solutions in fast turnaround time. We also 

propose a methodology to select one solution from the Pareto front given the user 



v 

preference describing the related P, E, and T goals. We show that the proposed 

algorithm is advantageous in reducing both energy and temperature together rather than 

in isolation. We also propose a dynamic multi-objective optimization approach that can 

solve PETOS problem while taking into consideration the task and system model 

uncertainties.  

Another contribution of this dissertation is the design of efficient heuristic 

algorithms that can generate a set of solutions to the PETOS problem. Central to each 

heuristic are strategies for task assignment and frequency selection decisions. The 

proposed set of heuristics includes several iterative, greedy, random, and utility function 

and model based methods to explore the scheduling decision space for the PETOS 

problem. We describe and classify these algorithms using a methodical classification 

scheme. The methods developed in this dissertation obtain multiple schedules with 

diverse range of values for makespan, total energy consumed, and peak temperature, 

and thus present efficient ways of identifying trade-offs among the desired objectives for 

a given application and architecture pair. 
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CHAPTER 1 

Introduction 

Sustainability in computing has gained immense importance for managing the 

energy needs of the future cyber infrastructures. The building blocks of such 

infrastructures are often multi-core processors that continue to grow with enhanced 

complexity and ever-increasing number of cores on the same chip. With an emphasis on 

energy and thermal issues, the raw computational speed of these processors can only be 

harnessed with effective scheduling and mapping tools. Higher power dissipation levels 

resulting into thermal problems and higher cooling costs remains one of the major 

reasons for limiting the scalability of these systems. High power consumption can also 

cause unacceptably high temperatures that in turn can lead to the loss in performance, 

reliability and lifespan, and even total failures ([6], [7]). Most multi-core chips are now 

equipped with mechanisms to control their power. Software-based schemes for dynamic 

power and thermal management (DPM [49] and DTM [55]) can be designed to exploit low 

level control features such as frequency scaling, clock gating, and sleep states to 

improve the energy consumption and thermal profile of the system. To harness the full 

potential offered by these controls, several control parameters need to be decided at the 

task scheduling level. This additional onus of optimizing energy and thermal profile at 

scheduling level augments the complexity to an already known NP-hard task scheduling 

problem [50].  

1.1 Motivation and Challenges 

A resource management scheme for allocating tasks to cores for optimizing P, E, 

and T (PET quantities) has to consider a number of important factors: 

• The reported algorithms for task-to-machine mapping are primarily energy-aware 

[11], [22], or thermal-aware [8], [9], [10], but not both. The problem is often 
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formulated as a dual objective optimization problem. In energy-aware algorithms, 

one factor (e.g., energy or performance) is given as a constraint while the second 

factor is to be optimized [20]. Likewise, in temperature-aware optimization, either 

temperature or performance is given as constraint and the other factor is to be 

optimized. Since energy and performance are correlated, and temperature and 

performance are correlated as well, the resource management problem is 

essentially a triple-objective optimization problem wherein performance (P), 

energy (E) and temperature (T) (PET quantities) need to be considered 

simultaneously.  

• Despite the challenges encountered in DVFS, such as the inevitable static power 

(largely due to leakage currents) and associated overheads [31], [34]; it remains 

one of the predominant options for controlling the chip power. DVFS is also 

aggressively researched and is widely incorporated in emerging architectures 

[41], allowing both the hardware and software controls – the later leaving a large 

room for software designers to harness. 

• Both E and T must be controlled together and not in isolation. As confirmed by 

the experimental results shown in Section 5.3.2, scheduling algorithms focusing 

on temperature alone can incur high values of energy [8]. Only a few research 

efforts have reported thermal management techniques resulting in improved 

energy [11]. Even then, these improvements are only a side effect of these 

schemes and not a direct result of the joint optimization. Moreover, T cannot be 

ignored for energy saving because there are bounds and limitations on the 

temperature, which may vary from system to system. 

• The complexity of the optimization process should remain at an acceptable level 

in order to allow scheduling of large workloads within a reasonable amount of 
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time. However, the multi-objective prospect compounds the complexity of NP-

hard task scheduling problem [17].  

1.2 Contributions of Dissertation 

This dissertation addresses the problem of simultaneous three-way performance, 

energy, and temperature optimized scheduling (PETOS) of task graphs on a given multi-

core system with DVFS capability. For this problem, there can be various application 

scenarios. Typically, one or two of the PET factors may be given as a constraint while the 

third factor may need to be optimized. For example, a user may like to know performance 

level for certain energy and temperature constraints (and vice versa) for a given 

application and machine pair. The contributions of this dissertation are as follows: 

1.2.1 Formulation of the PETOS Problem 

We first present the dynamic thermal management and energy efficiency 

problem from the perspective of multi-objective optimization approach. The problem is 

formulated as mixed integer linear programing problem (MILP) while considering 

makespan, energy consumption, and peak temperature of the cores as the objective 

functions. The primary decision variables are the task to core mapping and the frequency 

of execution of each task.  

1.2.2 Multi-objective Evolutionary Approach  

Next, we propose a multi-objective evolutionary algorithm (MOEA)-based 

scheduling methodology for solving the PETOS problem. At the core of this methodology 

is an algorithm called E-FORCE (Evolutionary- Frequency ORchestration and Core 

allocation Equability) that aims to obtain multiple solution points (Pareto front) with trade-

offs among the PET quantities while allocating tasks on multi-core systems. Here, each 

point in the Pareto fronts represents a schedule for task allocations and frequency 

selections. Multiple schedules result in diverse range of values for makespan, total 
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energy consumed and peak temperature and thus present an efficient way of identifying 

trade-offs among the desired objectives. We also propose a methodology to choose a 

solution out of the Pareto front. E-FORCE achieves PET values comparable to ECSIdle 

[20] (performance-aware energy optimization approach) and PostTM [8] (a thermal-aware 

scheduling approach), and at the same time produces multiple schedules (trade-off 

points) instead of a single solution. The execution time of the proposed approach is 

comparable with other state-of-the-art energy- and thermal-aware scheduling (heuristic) 

schemes and scales better with increasing number of tasks. 

1.2.3 Dynamic Approach for PETOS Problem under Uncertainty 

Another contribution of this dissertation is to develop a dynamic multi-objective 

approach that can solve PETOS problem while taking into consideration the task and 

system model uncertainties. As an initial step, PET optimization scheduling problem is 

solved by obtaining a set of Pareto optimal solutions based on the available information 

of the tasks' execution times and the system model [8]. This set of solutions is then 

dynamically evolved periodically during the execution of the task graph to minimize the 

deviation from the Pareto optimal values. During this dynamic evolution, a set of decision 

variables governing the task allocation and frequency selection for the subset of 

upcoming tasks are updated to obtain the improved values of the PET quantities. Our 

scheme avoids regenerating the entire set of solutions in the following manner: A 

schedule is first selected from the possible solutions to start the execution of the tasks 

but the rest of the solutions in the population space are not discarded. The evolution of 

the scheduling scheme continues concurrently with the task execution. A selected set of 

solutions are updated continuously but the decision variables corresponding to the future 

tasks are preserved to maintain the diversity represented by each solution member. The 



 

5 

computational cost is kept in perspective by evolving the solutions for a smaller number 

of generations. 

1.2.4 Heuristic Methods  

Finally, we design a set of sixteen heuristic algorithms for solving the 3-way 

PETOS problem. While the PETOS problem can be solved by designing algorithms 

based on conventional multi-objective optimization approaches like Goal Programming 

[54] or Integer Linear Programming (ILP) [28], the time taken by such solvers is 

prohibitively high. For example, even for single objective (thermal) convex optimization 

problem, it takes hours to generate the solution for reasonably sized problem [10]. For a 

problem similar to PETOS but only with two objectives [28], the ILP-based solution is 

shown to be useful only for small problem sizes. Thus, fast and effective algorithms are 

required, which can solve the problem in short time and can scale to very large problem 

sizes.  Each of the presented algorithm yields a set of solutions, rather than one single 

solution. Each solution represents a complete static schedule for assigning the 

precedence-constrained tasks onto a multi-core system, deciding the start time of a task, 

and determining the frequency at which a core should execute each task. Therefore, a 

set of solutions generated by each algorithm presents trade-offs that exist between the 

PET quantities. 

An additional contribution of this dissertation is the categorization of the proposed 

heuristics using a multi-layered hierarchical classification scheme, and an extensive 

evaluation and comparison of the algorithms. Central to each heuristic are strategies for 

task assignment and frequency selection decisions. The algorithms are classified based 

on the search strategies employed for task assignment and frequency selection 

decisions. The heuristics are evaluated through an extensive assessment scheme using 

both application and synthetic workload tasks. The results assess the quality of trade-off 
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solutions generated by each algorithm. In addition, the assessment scheme quantitatively 

characterizes the strength of each heuristic using a set of statistical metrics.   

1.3 Organization of Dissertation 

This dissertation is organized as follows: Chapter 2 presents the literature review 

of thermal- and energy-aware scheduling schemes. We also present brief details of 

evolutionary techniques applied to different scheduling problems. Chapter 3 introduces 

the thermal-aware scheduling problem and presents a simplified case of the PETOS 

problem. Chapter 4 formulates the PETOS problem while Chapter 5 presents E-FORCE, 

a Multi-objective Evolutionary Approach (MOEA) for solving the PETOS problem. 

Chapter 6 explains a dynamic MOEA method for achieving a 3-way optimization between 

the PET quantities under uncertainty. Chapter 7 presents the details of the sixteen 

heuristics designed for solving the PETOS problem while Chapter 8 outlines some 

directions for future work.  
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CHAPTER 2 

Literature Review and Related Works 

The reported work for thermal management and temperature-aware scheduling 

can be classified in different aspects. One such classification based on the different 

implementations of core throttling and thread migration approaches has been presented 

in [76]. DVFS and Stop-Go schemes have been considered as core throttling 

mechanisms. Thread migration policies based on improved-counter-based migration, 

sensor-based migration and no-migration have been compared. Results were presented 

for each of these DTM schemes individually and for different combinations of core 

throttling and thread migration schemes. It has been shown that a distributed DVFS 

scheme combined with a migration scheme can result in 2.6 times increased throughput 

when compared with a distributed Stop-Go policy. This classification scheme, however, 

does not take into consideration different schemes which target to minimize the effect of 

temporal and spatial thermal gradients across the system. Additionally, the approaches 

discussed in [76] does not account for the difference between reactive and proactive 

DTM policies, overhead associated with DTM schemes and alternate methods of 

temperature estimation and prediction. This classification in [76] can be extended to 

cover new techniques used for controlling the temperature or performance and to 

incorporate upcoming DTM approaches. But such classification may not be generally 

applicable as new techniques keep emerging. Another important factor which needs to be 

incorporated in terms of classifying the thermal-aware scheduling schemes is the point at 

which the thermal impact is considered (that is, after generating the initial schedule or 

while making the scheduling decision).  
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We have classified the work on thermal-aware scheduling on the basis of the 

quantity being optimized by various proposed schemes. Generally, the quantities which 

have been given the main focus of interest are temperature, performance and energy. 

This kind of classification is better as it identifies thermal-aware scheduling and DTM in 

terms of the desired objectives. This kind of classification is independent of the 

underlying techniques used to address the problem and hence presents a more stable 

layout to the thermal-aware scheduling problem. Our classification divides the recent 

research results into four categories: 

1) Performance Optimization with Temperature Constraints (POTC) 

2) Temperature Optimization with Performance Constraints (TOPC) 

3) Performance Optimization and Temperature Optimization (POTO) 

4) Performance, Energy, and Temperature Optimization (PETO) 

There can be some variations from the categories defined above, as to how the 

overall problem is formulated in the methodology reported in a paper. However, most of 

the recent approaches can be classified into one of the above categories. The following 

sub-sections contain the review of different approaches based on the above 

classification. 

2.1 Performance Optimization with Thermal Constraints (POTC) 

The performance of a multiprocessor system can be measured in a variety of 

ways but the most common parameters, which are used for optimization are execution 

time for a given task set and throughput of the system. The task sets executed by multi-

core systems can be independent, dependent, soft real-time, or hard real-time. The 

POTC problem addresses the optimization of a performance metric under a specified 

thermal constraint like maximum allowable core temperature, average
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temperature of all cores or some other function related to the temperature of the cores. 

Some of the recent researches that focus on some form of POTC can be found in [11], 

[61], [63], [66], [70], [71], [75]. 

2.2 Temperature Optimization with Performance Constraint (TOPC) 

The TOPC problem refers to the scheduling of tasks on to multi-core processors 

such that the maximum temperature or the average temperature of the cores can be 

minimized under a given performance constraint. The performance constraint may be 

applied in terms of throughput, execution time or CPU utilization. In addition to the 

instantaneous or average temperature of the cores, other metrics like reduction of 

hotspots and thermal gradients have also been used in recent research.  However, all 

such metrics can be derived in terms of temperature of the cores and some additional 

conditions on the values of the temperatures. Some of the recent efforts for TOPC can be 

found in [28], [62], [64], [65], [67], [68], [72], [73], [74], [78], [81]. 

2.3  Performance Optimization and Temperature Optimization (POTO) 

The dual optimization of both performance and temperature can be viewed as 

multi-objective multi-constraint optimization problem. Recent works show the use of 

heuristic approaches to optimize the execution time and the average temperature 

achieved by the system [8], [9], [10], [38], [39], [58]. Next, we present brief details of 

some of the research efforts for POTO based scheduling.  

In [8], authors propose an approach based on look-up tables to allocate tasks to 

different cores dynamically to minimize the peak temperature and average times for real-

time tasks on homogeneous cores. The tables were pre-built for “1W” power activation at 

different locations in the core. These tables can then be transformed to predict the 

thermal situation for a given task so that the task is allocated accordingly. The overall 

approach maintains a candidate list comprising of all cores available for executing a task. 
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Post-thermal maps are created considering that task is allocated to each of the candidate 

cores individually. If for this allocation, a core does not result in the violation of the 

thermal threshold, then a placement weight is calculated for each core correspondingly. 

The weight can be calculated in two ways: First, considering the maximum temperature 

caused by the allocation of the task to a specific core. Second, by finding the sum of 

products of the remaining runtime and temperature of tasks for each core so that the 

effect of the allocation of long tasks on cores can be minimized. The first method aims at 

minimizing the maximum temperature on the CMPs while the second approach targets to 

ensure that thermal constraint is satisfied. These weights are then used to construct the 

look-up tables. The reported results indicate that the rejection ratio of tasks by cores 

under the thermally constrained environment decreases by 30% to 50% for different 

number of CMPs.  

The use of “Hardware/Software” co-design for the thermal management is 

explored in [38] to address several issues pertaining to the use of conventional DVFS 

including the impact on the overall performance of the system due to latency and 

overheads as well as the cost efficiency (as separate PLL and clock distribution network 

may be required for local actions) and scalability. The proposed scheme focuses on a 

scalable, distributed, temperature gradient based, low latency, and application adaptive 

approach to achieve better performance under thermal constraints. The approach has 

two parts: Hardware part which is composed of thermal sensors and a software part 

which runs on Virtual Machine Monitor (VMM) running under OS. The hardware platform 

is assumed to have reconfigurable fetch, issue, and retirement units, as well as tables, 

queues and buffers. Additionally, the hardware unit is assumed to have features similar to 

expanded isolation and a mechanism for efficient thread migration. The Virtual Thermal 

Manager (VTM) as used in this approach has successfully been able to keep the 
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temperature around thermal limit without exceeding it. The reported results indicate that 

50% improvement in performance can be obtained over a DTM technique based on 

DVFS.  Another coordinated hardware-software approach for DTM has also been 

proposed in [77] which uses a combination of hardware and software approaches for 

DTM. An OS-scheduler level time-slicing and dynamic priority assignment along with the 

conventional hardware based techniques like clock gating has been used to design a 

DTM solution with lesser performance overhead. This hybrid DTM (HybDTM) scheme 

was only tested on uni-processor and SMT environments and showed an average 

improvement of 9.9% over the conventional hardware based technique [77]. 

An OS level scheduling heuristic of executing a hot-Job before a cool-job has 

been proposed in [9] to effectively reduce the number of hardware level DTMs for a 

single core system running batch jobs. Different scheduling schemes have been 

compared in terms of the performance and thermal improvements. The proposed scheme 

has been implemented by modifying the Linux kernel scheduler. The presented solution, 

ThreshHot that always selects the job which results in the maximum temperature without 

violating the thermal constraint among the given set for scheduling has been shown to 

reduce the number of DTMS by 10.5% to 73.6%. ThreshHot has also been able to 

improve the performance in terms of throughput by up to 7.6% and 4.1% on average 

when compared with three other schemes that schedule jobs by priority, randomly and 

based on coolest job first approach. The work presented in [9] uses online power 

prediction and temperature estimation techniques which result in the reduction of the 

computational overhead of ThreshHot. The estimated values of the temperature were 

found to be up to 10% far from the actual values. The extended version of this paper in 

[80] quantifies the error in temperature and power estimation due to the use of simple 

power predictor. It has been argued that though the actual estimate of temperature may 
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be incorrect, the order of temperatures is more important. The presented results indicate 

that the proposed scheduling scheme has been able to make 90.16% correct scheduling 

decisions even while using these incorrect estimates. The work in [80] also discusses the 

computation overhead and scalability of technique used in ThreshHot. It has been shown 

that the overhead (0.93% on average) associated with ThreshHot is not related to 

number of jobs and hence is scalable to large number of tasks.  

A two-phase frequency allocation scheme for temperature control in high 

performance multi-core systems has been presented in [10]. The offline phase is applied 

at design time to find frequencies of different cores of the system under consideration at 

different workloads such that power consumption is minimized. This problem is solved 

using convex optimization with the constraints that the temperature of the cores should 

not exceed the given threshold along with the modification in the objective function to 

also account for the reduction in the hotspots. The frequency assignments are 

determined for different starting temperatures and average target frequencies of the 

cores. The proposed technique is targeted to address the inefficiency of the traditional 

DVFS-based schemes mainly due to its reactive and offline nature and also because of 

its inability to minimize thermal hotspots and gradients. The online phase applies DFS 

periodically in which it examines the current temperature and workload conditions of the 

cores as well as the workload associated with tasks waiting in the queue and then adjusts 

the frequency using the values determined in the offline phase to ensure that thermal 

constraint is not violated. This result in an improvement in the time spent over the 

threshold temperature and normalized waiting time as compared with basic-DVFS and 

No-DVFS schemes. It has been shown that 60% reduction in task waiting times (due to 

shut down of cores by DVFS) along with an improved spatial temperature profile and a 

guarantee to meet the thermal constraint can be achieved.  
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A predictive temperature-aware DVFS technique to minimize the overhead 

associated with conventional DVFS by using performance counters for temperature 

estimation has been presented in [39]. It has been shown that the readings of 

performance counters can be used along with regression analysis to accurately predict 

the temperature of different functional units of the multi-core systems. As it is difficult to 

put a large number of temperature sensors because of the area and design 

considerations, hence, this counter-based temperature measurement scheme can be 

used as an alternative to the sensor-based approach. The evaluation of the proposed 

scheme was done for the temperature control of the reservation station of a 2-Core 

machine while executing selected programs from SPEC CPU2000 benchmark suite. The 

reported results indicate that performance counter based technique can provide as good 

thermal control as the conventional schemes. However, a significant performance 

improvement may not be achieved due to discrete nature of allowable voltage and 

frequency levels.  

The joint optimization of performance and temperature under given constraint 

has been addressed in different ways in the above-mentioned research. However, a 

multi-objective optimization function of performance, energy, and temperature is yet to be 

solved as a whole. The above presented works do not explicitly address the problem of 

joint optimization.  

2.4 Performance, Energy, and Temperature Optimization (PETO) 

Simultaneously considering performance (P), energy (E) and thermal (T) factors 

makes the scheduling problem immensely challenging because of the 3-way complex 

relationship that exists between the PET factors. For a target scenario, one or two of PET 

factors may be given as a constraint while the third factor may need to be optimized. 

Recently, some research focuses on the optimization of the performance and energy with 
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thermal constraint or on the optimization of energy and temperature with a performance 

constraint for multi-core systems. For instance, the work in [11] presents a self-

configurable and self-optimizing “agent-based” power distribution approach for dynamic 

thermal management using DVFS for independent tasks, which aims to address the 

issue of scalability while applying online DTM to a large number of cores. The results 

attained with this agent-based approach are compared with other thermal management 

algorithms. This scheme achieves an improvement of 44.2% and 44.4% in performance 

and energy consumption respectively. This thermal management scheme also claims to 

result in less communication overhead. However, these improvements are only a side 

effect of an efficient DTM scheme and not due to the joint optimization.  

A software-based optimization method that takes into account all three PET 

quantities is proposed in [40]. However, this profiling scheme provides insight into the 

software’s structure specific to an application; it does not provide solution to the 

scheduling problem. Similarly, methods for identifying energy-performance Pareto fronts 

in dual-objective space [36] cannot be extended to solve the PET optimization scheduling 

problem because even their two-objective optimization has prohibitively high execution 

time.  

The work in [69] presents a mechanism to address the issue of sub-optimality 

(static DVFS cannot take the advantage of dynamic slack) and computational overhead 

of DVFS. The DVFS schemes used for reduction of energy consumption of processors 

normally assumes the maximum temperature (Tmax) to calculate the leakage power and 

maximum frequency fmax, which leads to suboptimal solutions. Furthermore, many DVFS 

approaches assume that tasks complete in worst case execution time, which is not 

always true. It has been shown that using real temperature of the core to calculate fmax 

and the leakage power, the dependence between temperature and frequency can 
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increase the overall efficiency of DVFS. A two-phase approach has been proposed to 

apply such a mechanism during run time. The authors first propose an off-line approach 

to preprocess the voltage/frequency settings for all tasks. The offline approach for 

obtaining the real temperature for a task begins with an initial temperature state Tmax, and 

then repeats the computation of voltage/frequency iteratively until convergence is 

achieved. An on-line approach for selecting the most appropriate configuration stored in 

look-up tables has been proposed. The number of entries in each look-up table is 

governed by the granularity in time and temperature (∆ti and ∆Ti which can be modified 

based on experiments). This dynamic approach reduces the energy consumption by 39% 

as compared to a static DVFS which does not include temperature / frequency 

dependency. 

An ideal optimization scheme for a multi-core system will be to improve the 

performance, energy and temperature simultaneously. However, such improvements 

among these quantities will be mutually conflicting and hence a good trade-off while 

meeting all the constraints can be considered as a good solution. Therefore, the goal 

should be to find configurations that help to achieve trade-offs between the PET 

quantities.  

We have briefly outlined some of the works in POTO and PETO classes. 

However, a detailed survey and classification of energy- and thermal-aware schemes can 

be found in [59] and [60] respectively. 

2.5 Evolutionary Methods based Scheduling  

Solving multi-objective problems is a daunting task because of its high 

complexity. Analogies with natural processes help in understanding complex systems 

and suggest new methods for solving problems. Evolutionary programming and 

evolutionary strategies are stochastic state-space search techniques, improving upon 
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traditional genetic algorithms (GAs), and drawing inspiration from natural evolutionary 

mechanisms. These methods maintain populations of individuals that represent potential 

solutions for the optimization problems. Traditional GAs are widely applicable weak 

methods, which do not always perform well in large instances of NP-complete problems 

because they do not use prior knowledge about the problem at hand. We exploit multi-

objective evolutionary algorithms (MOEAs) to find Pareto optimal solutions for the PET 

optimization scheduling problem. MOEAs are superior to conventional optimization 

schemes because of their low computational cost. In addition, application of conventional 

optimization techniques (for example, weighted sum approach or goal programming) will 

usually produce only one solution point (per each setting) and no information about the 

Pareto front can be obtained directly, while evolutionary algorithms provide a set of 

solutions in each generation (eventually Pareto front) allowing the decision makers to find 

the best solution for a desired trade-off among the quantities to be optimized.  

Several research efforts have used evolutionary algorithms to solve task 

scheduling and allocation problems for different settings. However, none of these 

addresses the issue of optimizing performance along with energy consumption and 

thermal profile. An evolutionary approach for scheduling batch tasks on a distributed 

system is presented in [1]. The approach targets both the static and dynamic task 

allocations to address the dynamic condition of the distributed system at the time of task 

scheduling. To address the multidimensional QoS issues in grid environment, an NSGA-II 

[42] based scheme is presented to schedule tasks in computational grids [2]. The 

approach targets to optimize the utility functions representing the time-benefit and 

secure-benefit while scheduling “n” tasks on “m” resources. Task scheduling in 

heterogeneous grid environments based on the security and reputation model of the 

nodes has been presented in [3].The goal of the optimization is to achieve minimum 
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execution time, maximum security benefit and improved reputation value of the nodes 

while executing a set of tasks on a grid. A task scheduling scheme aiming to optimize the 

throughput of the computational grids based on Globus environment has been proposed 

in [2]. An evolutionary scheme to schedule DAGs on multiprocessors for minimizing the 

task completion time has been proposed in [5]. Generalized Extremal Optimization (GEO) 

algorithm has been used to generate populations that can yield better schedules for 

minimizing the completion time. A fast and efficient task scheduling and voltage selection 

approach called Evolutionary Relative Slack Distribution Voltage Scheduling (ERSD-VS) 

is introduced in [4]. It optimizes energy consumption of a given task set by randomly 

selecting tasks based on their SDP (slow down probability) for decreasing their voltage 

levels while satisfying the precedence and deadline constraints. A method for combining 

various heuristic approaches with genetic algorithms for dynamically allocating tasks on a 

distributed system is reported in [4]. The main difference in our work and previous 

evolutionary algorithms based scheduling is that most of the above mentioned works use 

simplistic objective functions and do not aim to obtain Pareto fronts or trade-off solutions. 

The MOEA-approach presented in CHAPTER 5, is the first approach in solving the 3-way 

performance, energy and temperature optimization at the scheduling level for parallel 

task graphs. 
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CHAPTER 3 

Thermal-aware Scheduling 

In this chapter, we first present the related task and thermal models and then we 

will formulate the problem of minimizing performance degradation while satisfying a 

thermal constraint. The problem addressed in this chapter is a reduced/simpler form of 

the PETOS problem and will help to understand the complexity and fundamentals of the 

PETOS problem in a better way. The proposed methodology to solve this problem will be 

discussed in Section 3.3. 

3.1 Models 

3.1.1 Task Model 

We considered tasks with interdependencies represented by directed acyclic 

graphs (DAGs). The nodes in DAGs represent the tasks, whereas edges represent the 

dependency among tasks. The weight associated with each node represents its 

computation cost and the weight of each edge indicates the communication cost between 

two connected nodes. Within a DAG, tasks can be allocated to different cores; however, 

each individual task has to be executed on a single core. The nodes in the task graph 

can be classified based on their impact on the schedule length. The nodes on the longest 

path of a DAG are known as critical path nodes and the corresponding core on which 

they are to be executed is known as critical core [17]. The nodes which have a children 

node on critical path are called in-bound nodes. All other nodes are called out-bound 

nodes [16]. A sample DAG and the corresponding schedule are shown in Figure 3-1.  

3.1.2 Thermal Model 

For the determination of the temperature of the cores we have taken into 

consideration the effect of active power only. The power consumed due to switching 

activity can be given by:                                      
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 (a) (b) 

Figure 3-1 (a) A simple DAG, (b) Corresponding schedule. 
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where, Ceff is the value of switching capacitance and Vdd represents the operating voltage. 

The frequency of switching (f) can be related to operating voltage as: 
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where k is a constant that relates the values of voltages to the corresponding frequency 

level and Vt is the threshold voltage.  Now we can relate the power consumption of each 

core to the temperature based on the model in [37] as:  
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In the above equation, P∆t represents the power consumed during the interval ∆t and Rt 

represents the self-thermal resistance of the cores. Tinitial and Tambient correspond to the 

initial and ambient temperatures respectively. In order to incorporate the neighbor effect 

that is the effect of power consumption of the adjacent cores on the temperature of a 

selected core we have adapted the model from [13]. Using this model, the temperature of 
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each core can be related to power consumption of all the cores. Then based on the floor 

plan and manufacturing parameters we can adjust the values of the corresponding 

coefficients to get the temperature of each core at the end of interval ∆t as: 
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In the above equation, αi,j relates the temperature of ith core to a unit power consumed at 

jth core. In order to validate our work against different values of these coefficients we 

have performed a sensitivity analysis in Section 3.4.  

3.1.3 Scheduling Algorithms 

DCP [17] and LBL [16] are two efficient DAG scheduling algorithms. LBL 

schedules tasks on a level by level basis, whereas, DCP schedules the tasks by taking 

into consideration the length of the critical path in the resulting schedule. DCP can be 

used to generate schedules with shorter length and near-optimal makespan. However, 

the cost of scheduling is slightly higher than that of LBL. For a DAG of v vertices (nodes) 

and e edges, the costs of scheduling on m cores using LBL and DCP are ))(( mvvO + and 

)(
3

vO respectively. Details of LBL and DCP can be found in [16] and [17]. 

3.2 Problem Formulation 

 The objectives that can be used while optimizing performance may include total 

execution time, throughput, and Makespan. Due to the fact that our work focuses on the 

scheduling of DAGs, we have selected schedule length as our objective for improvement 

in performance. We minimize the increase in schedule length resulting due to the 

adjustments required to satisfy the thermal constraints. As our heuristics aim to minimize 
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the percentage increase in the schedule length with respect to the initial schedule, hence 

we can formulate the problem as:  
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The constraint in Equation (3.6) imposes the thermal limit on the system whereas 

constraint (3.7) enforces the dependency relation between the tasks. As for all pairs of 

tasks with ei,j =1, the start time of jth task should be greater than the end time of ith task. 

Next, we present the details of our three heuristics which are:  

• Performance Aware Voltage Deceleration (PAVD). 

• Ratio Aware Voltage Deceleration (RAVD). 

• Thermal Aware Voltage Deceleration (TAVD). 

3.3 Proposed Solution 

3.3.1 PAVD 

PAVD or performance aware voltage deceleration targets to minimize the 

performance degradation by selecting a task for voltage adjustment which results in the 

minimum increase in schedule length among all the tasks.  It starts by generating LBL 

and DCP based initial schedules with every task allocated the highest voltage level for 

execution. The peak temperature is then calculated and the corresponding thermal limit is 

evaluated. Now PAVD selects a task in each iteration for adjusting its voltage level while 

at the same time ensuring that the corresponding adjustment will yield minimum possible  

performance degradation. That is we select the tasks based on the performance penalty 

due to a potential change in its voltage level.  
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However, to improve the efficiency of the task search, tasks are prioritized in 

accordance to their category in the DAG. First, OBNs are considered for adjustment as 

they do not have any successor node. Then the non-critical nodes are considered for 

adjustment before the critical path nodes as the later will always have more impact on 

schedule length. Hence, for non-critical nodes we look for task which satisfies: 
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But there can be multiple tasks which upon adjustment will achieve minimum 

performance penalty. In that case we select the task with latest start time to minimize the 

possible adjustments to the schedule. In case no task satisfies Equation (3.9), then tasks 

scheduled on critical core are searched for finding a potential task for adjustment.  After 

task selection, the voltage level of the selected task is decreased by one level. This 

decrease in voltage level affects the execution time of the selected task and therefore, its 

impact on the tasks scheduled to run after it must be considered. So, followed by the 

adjustment in voltage level the start time of the tasks scheduled to run after the 

selected_task on the same core are increased by the amount of increase in the execution 

time of the selected_task. Similarly, the start times of successors of selected_task 

scheduled to run on other cores are also adjusted accordingly. The tasks which are 

allocated the minimum voltage level are removed from the list of potential candidates for 

selection and hence are not considered for selection in the next iteration. This process is 

continued until the thermal constraint is satisfied or until all the tasks have been allocated 

the minimum possible voltage level and therefore no further improvement is possible. 

Figure 3-2 represents the overall procedure followed in PAVD while Figure 3-3 and 

Figure 3-4 summarize the procedures for determining the impact of change in voltage 
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level of a task on the schedule and the compensation required after the adjustment. The 

details of DVFS parameters are presented in Section 3.4.  

 

 

Figure 3-2 PAVD. 

 

Figure 3-3 Procedure for finding the impact of tasks used in PAVD. 

PAVD 

  1: Schedule all tasks to the Highest Voltage Level 

  2: While (maximumTemperature > ThermalConstraint) 

  3:    get list of tasks scheduled on Non-Critical_Cores 

  4:    for all tasks ϵ list with  allocated_voltage_level != minimum 

  5:     candidate_task �find the task with minimum performance_impact  

  6:     break the ties by selecting task with latest starting time  

  7:    end for 

  8:    if list == Φ 

  9:       get list of tasks scheduled on Critical_Core 

10:       if for all tasks ϵ list, allocated_voltage_level != minimum 

11:       candidate_task � find the task with minimum_performance_impact  

12:     end if 

13:     if candidate_task = Φ 

14:         return 

15:      end if 

16:      else 

17:          decrease_Voltage_Level(candidate_task) 

18:          newSchedule = get the new schedule resulted due to decrease in voltage level 

19:          maximumTemperature = getMaximumTemperature(newSchedule) 

20:       end else 

21: end while 

Method Performance_Impact (Task potentialcandidate, Schedule schedule)  

  1: post_execution_tasks � get the list of all task scheduled to run after potentialcandidate  

  2: initial_exec_time � getExecutionTime(potentialcandidate) 

  3: decrease_Voltage_Level(candidate_task) 

  4: modified_exec_time � getExecutionTime(candidate_task) 

  5: compensation_interval � modified_exec_time - initial_exec_time 

  6: for each task ϵ post_execution_tasks 

  7:  apply compensation to successor tasks scheduled on same core 

  8:           apply compensation to the successor tasks scheduled on other cores 

  9: endfor 

10:  performance_impact � getSchedulelength(new_schedule) / initial_schedulelength 

11:  return performance 
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Figure 3-4 The Compensation procedure for tasks scheduled on other cores for PAVD. 

3.3.2 TAVD 

TAVD is a thermal aware voltage adjustment scheme where the adjustments to 

the schedule are done by targeting the tasks based on their thermal profile. In other 

words, in this approach we select the task which resulted in the maximum temperature 

and then decrease the allocated voltage level. However, such a direct selection can 

degrade the performance by a large value and at the same time may over penalize a 

single task by reducing its voltage by multiple levels. We address these inefficiencies by 

performing only one voltage reduction per selection and by prioritizing the task selection. 

TAVD starts searching for the task corresponding to the maximum temperature 

(MaxTemp) on the set of noncritical cores, which are defined as: 

 
}1,)(

&|{

mjMaxTempcoreTemp

recriticalcocorecorelCoresNonCritica

j

jj

≤≤∀=

≠=

 (3.10) 

 

If no task is found for adjustment on NonCriticalCores, we proceed to search on their 

neighboring cores. Where the neighboring cores can be defined as: 

Method compensation_SuccesorTasks 

  1: Successors �  get the list of dependent tasks assigned  to other cores(adjusted_task) 

  2: for each ti є dependentSuccessors 

  3:    data_arrivaltime�  getEndTime(adjusted_task) + communication_Time(adjustedtask, ti) 

  4:    delay_incurred � data_arrivaltime - getStartTime(ti) 

  5:    if (delay_incurred> 0) 

  6:        setStartTime(ti, getStartTime(ti) +delay_incurred) 

  7:        NextLevelSuccessors �  get the list of successor tasks of ti assigned to same core 

  8:        for each Task tj є NextLevelSuccessors 

  9:             setStartTime(tj, getStartTime(tj) +delay_incurred) 

10:             compensation_SuccessorTasks(tj) 

11:         endfor 

12:         compensation_SuccessorTasks (ti) 

13:    endif 

14: end for 
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In both Equations (3.10) and (3.11), m is the total number of cores and we search for the 

task executing at the time instant of maximum temperature. However, there can be a 

case when the peak temperature is the result of the power consumption of the critical 

core and the neighboring cores are either idle at the time of peak temperature or have 

just finished executing their last task but still have not been able to cool down. In this 

case, no task is available for adjustment on non-critical cores so we finally select a task 

on the critical core. It can be observed that task search in TAVD first looks up for the 

most appropriate core and then picks the appropriate task for adjustment. Followed by 

the task selection, we reduce the voltage level of the selected task and then perform the 

associated compensation to the schedule due to increase in the execution time of the 

task. Next step of adjustment is performed on the updated schedule and therefore, any 

change in the critical path helps us avoid the over penalization of single task or tasks on 

same core. The process is repeated until the imposed thermal constraint is satisfied or 

until all the tasks have been scheduled to run on the lowest voltage level. Figure 3-5  

 

Figure 3-5 TAVD. 

TAVD 

  1: Schedule all tasks to Highest Voltage Level 

  2: While (maximumTemperature > ThermalConstraint) 

  3:  noncriticalcores � get the list of all non-criticalcores 

  4:  neighboringcores � get the list of neighbors of all non-criticalcores 

  5: for any core ϵ selected by priority based on Equation (3.10) and (3.11) 

  6:  potentialtask = getTask(SelectedCore) 

  7:   endfor 

  8:   if(potentialtask==null){ 

  9:     potentialtask = criticalcore.getMaxTempTask(); 

10:   end if 

11:   adjustedtask = potentialtask; 

12: adjustTask(adjustedtask);  

13:   max_temperature=this.getMaximumTemperature(); 

14:end while 
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presents the algorithm followed by TAVD for task selection in a compact form. The 

compensation procedure is same as used by PAVD, illustrated in Figure 3-3 and Figure 

3-4. 

3.3.3 RAVD (Greedy Approach) 

As we are targeting an improvement in schedule which can guarantee 

satisfactory performance as well as the required temperature limit, therefore, it is 

important to analyze the effect of trade-off between these quantities while adjusting the 

initial schedule. Here, we present a greedy heuristic which selects the task based on the 

ratio of the percentage performance increase to the percentage decrease in the 

maximum temperature resulting due to a decrease in voltage level of that task. The 

selection of the task in this way ensures picking up a task in each step for which a 

decrease in voltage level results in the best trade-off between performance and 

temperature. In other words, the task picked up in each step is the one with the lowest 

value of trade-off, which can be defined as: 
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Hence based on the ratio defined by Equation (3.12), we select the task among 

noncritical tasks which satisfies: 
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In case of multiple suitable tasks we pick the one with latest start time and if no 

task is found among the NonCriticalTasks then we search over the tasks scheduled to 

run on critical core. Once the task is selected, its voltage level is decreased by one step 

which is followed by the maintenance of the schedule. During maintenance, the start time 

of all the successor tasks are adjusted according to the corresponding increase in the 
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execution time and the finish time of the selected task. Though, this method of task 

selection ensures adjusting the task which provides largest percentage change of 

maximum temperature per unit change in performance. However, this scheme may not 

always result in the lowest performance degradation in the schedule as it may select the 

task which maximizes trade-off ratio but achieves temperature lesser than the imposed 

thermal constraint. So, it can be assumed that for certain task selections this scheme 

may over-satisfy the thermal requirements. For example, consider a choice of picking up 

a task for voltage adjustment where a decrease in voltage level by one step for task1 

results in an 8% increase in schedule length and a 14% decrease in temperature and a 

similar change for task2 yields 6% increase in schedule length with 10% decrease in 

peak temperature respectively. Now if we suppose that a thermal constraint of 90% has 

to be satisfied then in the above case, task1 will be picked up as the trade-off value for 

task1 is 0.571, whereas for task2 it is 0.6 and therefore, RAVD will produce extra 

degradation as compared to PAVD.   

3.3.4 Computational Cost 

Each of the three heuristics that we have developed has a two-phase approach. 

In the first phase, task selection is performed over the whole schedule, whereas in the 

second phase, schedule maintenance is performed to update the schedule. In terms of 

computational cost, the complexity of maintaining the schedule is identical. However 

there are differences in the task selection criterions. Both PAVD and RAVD search for the 

task that minimizes a certain ratio, hence, after few adjustments they may have to look 

through all the tasks before selecting one for adjustment. It is important to note that the 

task selection will in fact require adjusting each task one by one and determining the 

value of the deciding ratio. Therefore, the complexity of task search on a DAG with v 

nodes in the task graph, which is scheduled to run on m cores with k voltage levels, is 
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O(v(v-βNL
)), where β is the branching factor, d is the depth of the task graph and NL is the 

level of the node in the graph. As there can be as much as O(v(k-1)) rounds of task 

selection, hence the overall complexity of both PAVD and RAVD is O(v
2
(k-1)(v-βNL

)). We 

can generalize the total computation cost in terms of number of nodes as O(v
3
). For the 

case of TAVD, we target the core with the maximum temperature which requires m 

search operations. If the core with maximum temperature is the critical core then we look 

for the task on the one of the noncritical neighboring cores which may take an additional 

constant number of steps. Therefore, the cost of task selection procedure for TAVD is 

O(m). Hence, the total complexity of the TAVD heuristic comes out to be O(v(k-1)(m+(v-

βNL
))). The reduction in task selection criteria from O(v

2
) to O(m) is a significant 

improvement not only due to the fact that exponent has reduced but also due to the fact 

that in general, the number of cores(m) will be quite less than the number of tasks(v). 

Thus we can generalize O(v(k-1)(m+(v-βNL
))) to O(v

2
) for TAVD in case we have to 

search over all tasks to meet the thermal constraint. 

 

3.4 Experimental Setup 

To test the algorithms developed in Section 3.3, both synthetic and real-

applications’ DAGs with varying attributes were used. Table 3-1 lists the attributes of 

DAGs changed during our simulation. In Table 3-1, alpha represents a factor which 

controls the shape of the task graph. As the total number of levels in each DAG were set 

to αx√n, hence with α =1, the shape of the DAG will be square. When α > 1, the length of 

the task graph will be more than the width and hence a rectangular shaped DAG is 

generated. The generated task graphs contained tasks ranging from 50 to 150. Similarly, 

the value of CCR was varied from 0.1 to 10. The imposed thermal constraint was varied 

from 90% to 70% of the maximum temperature achieved by the initial schedule. The 

thermal constraint can be defined as: 
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  (3.14) 

 

Table 3-2 summarizes the values of voltage levels, power dissipation by a core for each 

level and the execution time factor. This factor represents the fractional increase in the 

execution time as compared to the maximum voltage level. Though the maximum and 

minimum voltage levels were kept constant, however, we changed the number of voltage 

levels from 3 to 6 to validate the performance of our algorithms for systems where only a 

small number of voltage levels are available. 

3.4.1 System Model 

We considered a homogenous system, with cores arranged in a grid layout. That 

is for a system with n cores, the cores are arranged as an nxn  matrix form. We 

assumed that the voltage level of each core can be changed independently of others. In 

other words we used local-DVFS while updating voltage levels. For the synthetic task 

graphs, we have used a “4x4” floor plan. 

Table 3-1 Summary of Range of Values of Different Attributes 

Attribute Min. Value Change per step Max. Value 

Number of Tasks 50 50 150 

Alpha (α) 1 1 3 

CCR 0.1 X10 10 

 

Table 3-2 DVFS Parameters 

Voltage Level (V) Power (W) Execution time factor 

0.6 11.35 1.83 

0.7 18.03 1.57 

0.8 26.92 1.38 

0.9 38.33 1.22 

1 52.59 1.1 

1.1 70 1 

 

Thermal Constraint = 

ConstraintFactor * Maximum TemperatureInitial Schedule  
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3.4.2 Thermal Parameters 

To calculate the temperature of cores during the execution of DAGs we used the 

RC thermal model as defined in Equations (3.1) to (3.4). We used a thermal resistance 

equal to 0.7, whereas thermal time constant was set to the mean computation time of the 

tasks. We have incorporated the neighbor effect into the thermal model by scaling the 

power dissipation of the adjacent cores with a lateral thermal resistance. In other words, 

lateral thermal resistance in our case represents the change in the temperature of a core 

based on the power consumption profile of its neighboring core. We used the same value 

of lateral resistance for all cores while calculating the neighbor effect. Some details on 

varying the value of this thermal resistance and its impact on our algorithms have been 

presented in Section 3.5. Since our target is to reduce the peak temperature achieved 

during the execution of a DAG, therefore, the actual percentage decrease in temperature 

is of more significance than the absolute value of the temperature. Therefore, we believe 

that though simplistic yet our thermal model is effective. 

3.5 Results 

3.5.1 Performance Degradation for Generated Workload 

Figure 3-6 and Figure 3-7 present the comparison between the three heuristics 

that we have used to meet the given thermal constraint. Though all three heuristics have 

been able to meet the imposed thermal constraint, however, they differ significantly in 

terms of the corresponding performance degradation and the associated overhead. RA-

VD suffers the most performance degradation for initial schedules generated by both LBL 

and DCP. The main reason is the observation we made in Section 3.3 that the ratio 

aware scheme may present the best trade-off between decrease in temperature and 

performance degradation, yet may select a task which yields more performance 

degradation. For different number of tasks, the percentage performance degradation of 
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TA-VD(DCP) is  the least most of the times.  PA-VD(DCP) performs comparably with TA-

VD(DCP) in many cases, but that comes with a higher computational cost, so an 

improvement in performance degradation using PA-VD(DCP) may actually result in an 

overall performance loss. We observe the same trend for varying thermal constraints 

(Figure 3-7). TA-VD and PA-VD schemes outperformed RA-VD technique in terms of 

percentage performance degradation. In terms of initial schedules, performance 

degradation was lower for schedules generated by DCP than LBL most of the times.  

 

Figure 3-6 Percentage increase in schedule length with varying number of tasks. 

 

Figure 3-7 Percentage increase in schedule length with varying thermal constraints. 
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3.5.2 Performance Degradation for Application Workload 

We used the task graphs of Fast Fourier Transform (FFT) and Laplace equation 

from [14]  and [15] respectively to validate the effectiveness of our schemes for practical 

task graphs. In spite of the fact that the task graphs of these applications contains a small 

number of tasks (14 and 16 respectively), yet, our heuristics have been able to meet the 

required thermal constraint with a very small performance degradation. For the task 

graph of FFT, TA-VD(DCP) performs better than other heuristics most of the times. PA-

VD(DCP) performs comparably to TA-VD(DCP) and in fact yields lesser degradation for 

FFT when thermal constraint is set to 80% (Figure 3-8). However, this increase comes 

from an excessive overhead and therefore, an overall performance improvement over 

TA-VD(DCP) may not be possible. For the sake of clarity, we have not added the results 

of RA-VD for practical graphs, as it was outperformed by TA-VD and PA-VD most of the 

times. For Laplace equation, TA-VD(DCP) outperforms all the other heuristics in terms of 

performance degradation. Figure 3-9 compares the percentage schedule length 

degradation of TA-VD and PA-VD with different scheduling algorithms for the task graph 

of Laplace Equation. The thermal constraint was varied from 90% to 70%.  

3.5.3 Sensitivity Analysis  

Many thermal aware schemes are sensitive to the underlying assumptions and 

approximations related to the thermal model. Therefore, in order to evaluate the 

effectiveness of our algorithms under varying thermal parameters, we varied the value of 

lateral thermal resistance. Since this value relates the power level of the neighboring 

cores to the temperature of a selected core, therefore, the variations in lateral thermal 

resistance means varying the way in which cores interact with each other. Though 

variations in manufacturing parameter and floor plan can greatly change the thermal  
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Figure 3-8 Percentage increase in schedule length for the task graph of FFT. 

 

Figure 3-9 Percentage increase in schedule length with varying thermal constraint for the 

task graph of Laplace Equation. 

model, yet for many cases the impact of the power of adjacent cores can be incorporated 

by using a scalar multiplier. We can define coefficients in Equation (3.4) as:    
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=

∈

=

otherwise

jiifR
neighborsjifR
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ith

ji

0

.

,

γ

α

 

(3.15) 

The value of “γ” was varied from 0.1 to 0.5. A lower value means that the impact of the 

power consumption of the neighbors will be very small. Our results indicate that the 

performance degradation is independent of the value of γ. Figure 3-10 shows the 

0

5

10

15

20

90 80 70

In
cr

e
a

se
 in

 S
ch

e
d

u
le

 le
n

g
th

Thermal Constraint

Performance Degradation for FFT

TA-VD(DCP)

TA-VD(LBL)

PA-VD(DCP)

PA-VD(LBL)

0

2

4

6

8

10

12

90 80 70

In
cr

e
a

se
 in

 S
ch

e
d

u
le

 le
n

g
th

Thermal Constraint

Performance Degradation for Laplace Equation

TA-VD(DCP)

TA-VD(LBL)

PA-VD(DCP)

PA-VD(LBL)



 

34 

percentage increase in schedule length attained by PA-VD(DCP) for different number of 

tasks. For the set of 50 tasks, the performance degradation is minimum for γ =0.4 when 

subjected to a constraint factor of 0.9, whereas it is minimum at γ =0.5 and 0.3 for task 

set with 100 and 150 tasks respectively.  Similarly for constraint factor of 0.8 the 

performance 10 degradation is minimum at γ =0.3 for 50 tasks, whereas for task sets of 

sizes 100 and 150 the degradation is minimum at γ = 0.5 and 0.4. Therefore, we  

 

(a) 

 
(b) 

Figure 3-10 Percentage increase in schedule length for different values of Rth for adjacent 

cores (a) with Constraint Factor = 0.9, (b) with Constraint Factor = 0.8. 
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conclude that the relative performance of the presented algorithms are insensitive to 

variations in the thermal parameters due to alterations in floor plan design and 

manufacturing parameters and thus can perform effectively well on various architectures.  

 
3.6 Summary 

In this chapter, we have presented heuristics to solve the problem of minimizing 

the performance degradation while working under a given thermal constraint. We used 

initial schedules generated by efficient schedulers and then methodically decreased the 

voltage levels of the selected tasks so that the imposed thermal constraints can be 

satisfied. We presented schemes for task selection so as to achieve the minimum 

performance degradation. Our results indicate that the proposed approaches are able to 

meet even strict thermal constraints with marginal performance degradations. We also 

addressed the issue of overhead minimization while solving the above said problem. TA-

VD is a low overhead thermal management scheme as compared to the other heuristics. 

Though PA-VD is also able to meet the thermal constraints with negligible performance 

degradation, yet, the overhead associated with PA-VD is not negligible. 
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CHAPTER 4 

The PETOS Problem 

In this chapter, we will formulate the problem of performance, energy, and 

temperature optimized scheduling (PETOS) of tasks on multi-core systems. Parallel 

programs are commonly represented as DAGs [17]. Each node in the DAG represents a 

task where the weight associated with each node is the estimated execution time of the 

task (while executing at the highest frequency level). An edge in the DAG represents the 

dependency relationship between a pair of tasks and the corresponding weight is the 

estimated time required to complete the communication. The critical path is the path with 

the longest length in a DAG [17]. The nodes constituting a critical path are called critical 

path nodes (CPNs) and the cores on which these tasks are scheduled are called the 

critical cores. Nodes having successors on a critical path are known as In-bound nodes 

(IBNs). All other tasks are called out-bound nodes (OBNs) [17]. We initially obtain the 

scheduling order of tasks from a performance-aware scheduler called Dynamic Critical 

Path scheduler (DCP) [18]. Table 4-1 lists the scalars and parameters as well as 

additional variables and data structures used in the problem setup. For a DAG with N 

tasks that is to be allocated to M cores, we define our task allocation and voltage 

selection decision variables as follows: 

KkMjNi ≤≤≤≤≤≤∀ 1,1,1  

 




=
otherwise

corejthonexecutestaskithif
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Table 4-1 Scalars, Parameters, and Additional Variables 

  Symbol Description 

S
ca

la
rs

 a
n

d
 P

a
ra

m
et

er
s 

N Total number of tasks. 

M Total number of cores. 

K Total number of voltage levels. 

Ceff Effective capacitance. 

RTH Thermal Resistance. 

λth Threshold Temperature. 

γ Constant factor which relates voltage level and clock cycle time. 

CCR Communication to Computation ratio. 

A
d

d
it

io
n

a
l 

V
a

ri
a

b
le

s 

eti
o Execution time of ith task at the highest available frequency level.  

vi Voltage level selected for the execution of ith task. 

V {vi , ∀ 1 ≤ i ≤ N}(Set of voltage levels selected for all the tasks) 

fi Frequency at which the ith task will be executed.  

L Set of all available voltage levels. 

eti Time required for the execution of ith task. 

ET {eti , ∀ 1 ≤ i ≤ N}(Set of execution times of all tasks)  

pi Power consumption during the execution of ith task.  

P {pi , ∀ 1 ≤ i ≤ N}(Set of power levels of all tasks) 

sti Start time of ith task. 

ST {sti , ∀ 1 ≤ i ≤ N}(Set of starting times of all tasks)  

fti  Finish time of ith task. 

FT {fti , ∀ 1 ≤ i ≤ N}(Set of finish times of all tasks) 

 β(a,b) 
Constant factor which relates the power of a core (a) to the temperature of its neighboring 

core (b). 

B 
B=[ β(a,b)]  where β(a,b)=0 ∀ a=b, and 1 ≤ a,b ≤ M. (A symmetric matrix that contains all β(a,b) 

values) 

αi 
j 

Temperature of the jth core consequential to the allocation of ith task excluding "neighbor-

effect". 

Ti 
j 

Temperature of the jth core consequential to the allocation of ith task including "neighbor-

effect". 
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From the Equation (4.2), we can obtain the value of voltage level selected for each task 

as: 

Ni ≤≤∀1  

 ∑
=

=
K

k
kkii lyv

1
,   (4.3) 

where lk is the kth element of the set L. The corresponding frequency level (fi) can be 

obtained from the selected voltage level using .)( o

ii vf
γγ=  Here, γ and γo are technology 

dependent constants, which govern the scaling relationship between voltage level and 

frequency of a core (typical values of γo can vary from 1-2). Assume that the execution 

time of each task at the maximum frequency level is known. We can then use the scaling 

relationship [35] for CPU-bounded tasks to calculate the execution time of each task at 

the selected frequency as:  

Ni ≤≤∀1  

 ( ) o
iioi etffet /=   (4.4) 

In Equation (4.4), fo is the highest available frequency level while
o
iet  is the execution 

time of the ith task at fo (i.e. the weight on a DAG node). The power consumption of a 

core while executing the ith task is given by: 

 
')( γ

ieffstatici vCpp +=  (4.5) 

In the above equation, γ’
 is another technology dependent constant with typical value 

between 1-3). pstatic is the power dissipated by a core at idle due to the leakage current. 

Now, If PDi represents the set of all predecessors of ith task then the start time of the ith 

task can be given as: 

ij PDpred ∈∀  
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 ][max ),( ipredpred
pred

i jj
j

dftst +=  (4.6) 

where d(predj, i) is the time required to complete the data transfer between predj and the ith 

task. Based on the earliest possible start time of the ith task, we can determine the 

earliest completion time of the ith task as: 

 iii etstft +=  (4.7) 

In order to calculate the temperature of the cores, we define a variable for every task pair 

to determine their overlap in time while executing on their corresponding cores. 

jiNji ≠∧≤≤∀ ,1  

 


 ≤≤

=
otherwise

ftstst
z

jij
ji

0

1
,  (4.8) 

The variable zi,j is used for implementing the neighbor-effect [13]. Neighbor-effect is the 

impact of the power dissipation of the neighboring cores on the temperature of a 

particular core. First, we find the steady state temperature of all the cores without 

considering the neighbor-effect as: 

MjNi ≤≤≤≤∀ 1,1  

 Ajiith
j
i

TxpR += ,α  (4.9) 

where TA  is the ambient temperature and Rth is the thermal resistance of the system [37].  

Next, the neighbor-effect can be incorporated to update the steady state temperature of 

each core as: 

 ( ) r
T

N

r
ri

j
i

j
i

pzT ri xx B∑
=

+=
1

,α   (4.10) 

where xi and xr are vectors representing the task-core allocation decisions of ith and rth 

task. Here, xi can be defined as xi = {xi,j , ∀ 1< j< K }. For experimental evaluations, we 

obtained power and thermal values by profiling an actual multi-core system (see Section 
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5.2.1). Using (4.1)-(4.10), the objective functions for performance, energy and 

temperature are as follows: 

 i
Ni
ftMinimize

≤≤1
max   (4.11) 

 ∑
=

N

i
ii etpMinimize

1

  (4.12) 

 j
i

MjNi

TMinimize
≤≤≤≤ 11

maxmax   (4.13) 

Equations (4.11), (4.12), and (4.13) refer to the minimization of the completion time 

(makespan), minimization of the total energy consumption, and minimization of the 

maximum temperature, respectively. We term this problem as PET optimized scheduling 

(PETOS) problem, which is formulated without any constraints on P, E, or T. However, 

after obtaining these fronts, a user may like to impose constraints during the solution 

selection phase (Section 5.1.6) to filter out only those solutions which satisfy the given 

requirements. 
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CHAPTER 5 

MOEA-based Technique for Solving the PETOS Problem 

For the PETOS problem with conflicting objectives (formulated in Chapter 4), the 

concept of optimality is transformed into that of Pareto optimality. Pareto optimality can 

be defined on the basis of the dominance relationship between two solutions to a multi-

objective optimization problem. Let us consider x1 and x2 to be two solutions to an m-

objective minimization problem, the domination of x1 over x2 ( 21 xx f ) is defined as: 

 
{ }

)()(

1

...,,2,1),()(|

21

21

21

xfxf

mjand

mkxfxfk

ifxx

jj

kk

≤

≤≤∀

∈<∃

f

 (5.1) 

where fj(x) represents the value of jth objective for solution x. Here, we assume F(x)={f1, 

f2, . . ., fm} represents the set of all objective functions and that each objective needs to be 

minimized. Then, x1 is said to dominate x2 if it achieves lower value at least along one 

objective while achieving equal or lesser values along all other objectives as compared to 

x2. Solutions that are not dominated by other solution members are known as Pareto 

optimal/non-dominated solutions [12]. A collection of such non-dominated solutions form 

a Pareto front. Figure 5-4 (Section 5.1.3) illustrates such Pareto relationship where the 

feasible region is defined by the deadline (D) and peak temperature constraint (Tmax). 

Figure shows that no single solution among points 1-7 is better than the other six 

solutions along both performance and temperature; rather each solution presents a 

different trade-off between performance and temperature. In order to achieve a better 

value of makespan we have to compromise temperature and vice versa.  

5.1 E-FORCE Algorithm 

The proposed E-FORCE algorithm aims to generate Pareto front between all 

three PET quantities at the scheduling level. The core of the proposed method is based 
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on the principles of a MOEA technique called Strength Pareto Evolutionary Algorithm [1].  

The generic evolutionary techniques, such as SPEA-II [1], have been utilized in various 

scientific and engineering problems. The basic SPEA-II technique iteratively updates a 

set of solutions population until a stopping criterion is achieved. In every 

iteration/generation, an elite population which is a set of best known solutions found so 

far is combined with a newly generated population. The new population is obtained by 

forming mating pairs among the elite population members and then applying genetic 

operations. The genetic operations for creating the offsprings have to be designed  

 

Figure 5-1 E-FORCE Algorithm. 
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appropriately for the given problem. 

The E-FORCE algorithm is designed on the principles of SPEA-II. The design of 

the algorithm for solving the PETOS problem includes several steps including techniques 

for determining the initial population of the solution space as well as genetic operators, 

specific to this problem. E-FORCE also includes a solution selection scheme, which is 

based on user’s preference, to select a solution from the Pareto front generated by the 

evolutionary process.  The pseudocode in Figure 5-1 describes the salient steps in E-

FORCE algorithm: systemmodel includes the given set of cores, available set of 

frequencies, as well as models required to calculate power and temperature of the 

system under different settings. The input argument params is the set of algorithmic 

parameters including those used during the genetic operations. Parameter p represents 

the preference vector provided by the user for selecting a solution from the generated 

Pareto front. The details of each step in E-FORCE are presented next.   

5.1.1 Solution Encoding 

In E-FORCE, each population member for a DAG with N tasks is a string of size 

2N. The indexes 1 to N correspond to the task allocation decisions, and indices N+1 to 

2N encode voltage/frequency selection decisions. Thus, each population member is a 

possible schedule. Figure 5-2a presents a DAG for FFT and Figure 5-2b shows the 

corresponding scheduling decisions including task-core mapping, frequency selection, 

and task ordering for each task. Figure 5-2c shows the corresponding Gantt chart. 
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(a) 

 

(b) 

 

 (c) 

Figure 5-2 (a) A 14-node FFT task graph. (b) A possible schedule with DVFS settings. (c) 

The Gantt chart of FFT task graph on a 4-core system. 
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5.1.2 Initial Population 

The initial population for the PETOS problem consists of three subsets each with 

size (η/3), where η is a user defined parameter representing the required size of Pareto 

front. Our methodology for the generation of these three subsets namely DCP-based, 

Random-Fixed, and Random-Random along with their significance is explained as 

follows:    

The population members in the DCP-based subset are generated using the DCP 

(Dynamic Critical Path) scheduler [18]. DCP is efficiently performance-aware and keeps 

track of the dynamic changes in the critical path of the DAG while scheduling tasks on a 

given system. All members of the DCP-based subset have the same task-core mappings 

but their frequency selection decisions are different. Since the size of each subset is η/3 

and assuming (η/3) > K (the total number of frequency levels), we assign kth frequency 

level to all the tasks in the kth member of the DCP-based subset. Therefore, the first 

solution in the DCP-based subset has task-core mappings from DCP while all tasks run 

at the first (lowest) frequency level. The second solution has the identical task-core 

mappings as of the first but each task is executed at the second lowest frequency level. 

Thus, there are K such solutions having the same task-core mappings from DCP and all 

tasks to be run at one of the kth frequency level. The remaining (η/3 - K) solutions have 

their task-core mappings from DCP, but their frequency levels are selected randomly 

using a uniform distribution defined over the interval [1, K].  This subset facilitates 

keeping performance as a major objective.   

For the solutions in Random-Fixed population, each task-core mapping is drawn 

from a uniform probability distribution defined over the interval [1, M], while the frequency 

of execution is fixed at k=1 (i.e., lowest frequency level). This population adds bias 

towards lowering peak temperatures. For the solutions in Random-Random, both task 
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allocation and frequency selection are random, adding general randomness into the 

population to enable search space not covered by the other two subsets. 

Table 5-1 summarizes the construction of each of these subsets while Figure 5-3 

shows a sample initial population for a task graph with N =14 and η=30.  

5.1.3 Fitness Assignment 

The algorithm works with two populations: the current population (G) and the 

elite/best population (G’). The algorithm starts by setting the initial population to G while 

Table 5-1 Initial Population Subsets 

Subset 
Task-Core  

mapping 
Frequency Selection 

DCP-based 
As generated by DCP 

scheduler. 

• First K members: All tasks run at the same level 

selected from {1, 2, ..., K}. 

• Remaining (η/3 - K) members: Randomly 

selected frequency level for each task (using 

uniform probability distribution defined over [1, 

K]). 

Random-Fixed 

Drawn from uniform 

probability 

distribution defined 

over [1, M]. 

• All tasks run at the lowest frequency level.  

Random-

Random 

Drawn from uniform 

probability 

distribution defined 

over [1, M]. 

• Randomly selected frequency level for each task 

(using uniform probability distribution defined 

over [1, K]). 

 

 

Figure 5-3 Initial population used by E-FORCE with N=14 and η=30. 
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G’ is empty. The algorithm iteratively updates the population to be G’ U G. The members 

of G’ U G are first evaluated to obtain the corresponding PET values for each solution 

using DAG’s information and system models. The fitness value of each solution is then 

obtained by using these PET values. There are many ways to assign fitness [12]. Our 

algorithm uses the fitness similar to the one reported in [1]. As compared to other 

methods, this fitness assignment scheme facilitates improved spacing among solutions 

for higher dimensional problems [42].  

GGi ′∪∈∀  

 )()()( iDensityifrailtyifitness +=  (5.2) 

The frailty of a solution i is the sum of the number of solutions dominated by the 

members that dominate i, where domination relationship is given by Equation (5.1). Now, 

if we define Domination Strength (DS) as the number of solutions dominated by a 

solution then frailty in Equation  

(5.2) is given as:  

GGkji ′∪∈∀ ,,  

 ∑ ==
k

kjkj kjiffuwhereujDS f1,)( ,,  (5.3) 

ij f∀  

 ∑=
j

jDSifrailty )()(   (5.4) 

The second component of fitness (Density) in Equation (5.2) is based on the distance 

between a population member and its kth nearest neighbor (kNN) calculated in the 

objective space.  Solutions with larger kNN distances are assigned a smaller value of 

density to prefer solutions in less dense regions of Pareto front. This density assignment 

also allows breaking ties between the solutions with equal frailty based on the density of 

solutions around them. The density value to a solution i ∈G’ U G, is [1]: 
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=

kNNi
d

iDensity  (5.5) 

where, di,kNN = ║i - kNN║ and kNN represents the kth nearest neighbor of the population 

member i in G’ U G. Typically, k=√(population size) can be used [33]. Consider a feasible 

region defined by deadline (D) and peak temperature constraint (Tmax) as shown in Figure 

5-4. The closest neighbors of solution 2 are 1, 3, 8, and 9 while the closest neighbors of 

solution 4 are 3, 5, 10, and 11. If we select k=3 for Equation (5.5), then the 3
rd 

nearest 

neighbor of solution 2 is solution 8. Therefore, the distance between solution 2 and 

solution 8 (d2,8) will be used to calculate the Density for solution 2. Similarly, the distance 

between solution 4 and 5 will be used to calculate the density value of solution 4 (d4,5) 

when k=3.  

The solutions with lower fitness values are considered better solutions. Lines 9-

12 of the pseudocode in Figure 5-1 highlight the fitness assignment.  

5.1.4 Population Selection  

Once all solutions in G’ U G has been assigned a fitness value, the algorithm selects the  

 

Figure 5-4 An example of density value estimation for Fitness Assignment. 
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Figure 5-5 Fitness Assignment, Selection, and Binary Tournament used in E-FORCE. 
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top ƞ solutions. For an example population in Figure 5-5, the shaded rows show the 

selected solutions. These solutions are assigned to set G’. From this updated G’, a 

mating pool is generated through a binary tournament, where each solution is allowed to 

take part in 2 matches. In each match a solution is compared with another solution based 

on their fitness values, the solution with lower fitness values wins and is copied to the 

mating pool. Every ith member of G’ competes with solution (i-1) mod ƞ and (i mod ƞ)+1 

where 1 < i < ƞ [30]. After ƞ matches are completed we get a mating pool of size ƞ. The 

tournament selection favors better solutions to become part of the mating pool. Figure 

5-5 demonstrates the population selection mechanism starting from the set G’ U G and 

illustrating the fitness assignment, update of G’ and tournament selection for mating pool 

generation.  

5.1.5 Genetic Operations 

The members of the mating pool generated above form pairs randomly and then 

each pair undergoes three genetic operations namely, uniform crossover, simulated 

binary crossover and mutation, each with a specified probability. Uniform crossover is 

applied to the population with a probability pc_uc. During uniform crossover, a starting 

index is randomly picked from the range [1, ... , 2N] for each pair. The members of that 

pair swap the values of their decision variables from that starting index up to the last 

index thus creating two child solutions. Figure 5-6 illustrates the uniform crossover 

applied to a mating pair (set of parents) from the mating pool.  

Next, we apply simulated binary crossover using binomial distributions to the 

child solutions generated after the uniform crossover. The simulated binary cross is better 

suited to the problems with non-binary decision variables [32]. For the PETOS problem, 

we construct two binomial distributions B(parentval, 2∆+1), where parentval represents 

the value of decision variable in the parent member and ∆ is the difference between the  
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Figure 5-6 Genetic operations used in E-FORCE. 

parent values for the decision variable being updated (Figure 5-6). We use such 

distributions because they allow an offspring to take values close to the parent values 

when the difference among the parents is small and at the same time provide the 

opportunity for an offspring to differ significantly from the parent members, when the 

difference among them is large [12]. Since simulated binary crossover is applied to each 

decision variable individually, there are usually two probabilities associated with it [30]. 

Let us represent the probability that a particular pair will undergo simulated binary 

crossover as pc_mem and the probability that a decision variable (from the range [1, ..., 

Uniform CrossOver

Simulated Binary CrossOver

Mutation

. . . . . .1 9 7 1 1 1 1 1 11

5 4 3 6 3 1 2 5 3

1 9 7 1 3 1 2 5 3

1 1 1 1 115 4 3 6

1 9 7 1 3 1 2 5 3

1 1 1 1 115 4 3 6

1 9 7 1 4 1 2 5 3



 

52 

2N]) is updated during simulated binary crossover as pc_dec.  For an example, we consider 

a task graph with 14 nodes, mating pool with 30 solutions/schedules, pc_mem=0.8 and 

pc_dec=0.5, then on average, there will be about 24 members/12 pairs undergoing 

simulated binary crossover(sbx) in each iteration. Each such sbx operation will result in 

the update of 14 out of 28 decision variables in each member on average (as pc_dec=0.5). 

Figure 5-6 shows the simulated binary crossover applied to a decision variable having 

values 3 and 1 in its parents. Two binomial distributions are generated one for each 

parent. For parent 1, the binomial distribution has its mean at 3, while for parent 2 the 

mean is set at 1. Both distributions have a size of 5 as ∆=2. The value of the 

corresponding decision variable in child 1 is drawn from the distribution B(3,5) whereas 

child 2 gets its value from B(1,5). In case, the value drawn from distribution is outside the 

lower and upper limits of a decision variable, it is rounded to nearest lower/upper limit 

value. Following sbx, each child member undergoes mutation individually. The probability 

that a particular member will undergo mutation is pm_mem while the probability with which 

each decision variable will undergo mutation within each member is given by pm_dec. 

During mutation, for each decision variable, we generate two uniform distributions with 

the range [low, value] and [value, high]. The low and high represent the lower and upper 

bounds for that decision variable. The lower and upper bounds (lower, upper) for task-

allocation and frequency selection decision variables are (1, M) and (1, K) respectively. 

Figure 5-6 shows the uniform distributions generated for different decision variables 

during mutation. We can then pick one distribution randomly and use it to draw the value 

of the decision variable to apply the mutation operation.  

Once all mating pairs complete the genetic operations; the iteration is complete 

and provides a new set of solutions/schedules, called offspring/current population (G). 

The offspring population (G) is combined with G’ and the whole process repeats for the 
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given number of iterations. Upon termination, the set G’ (defined as parent_pop in Figure 

5-1) will contain the required Pareto front. 

5.1.6 Solution Selection  

The evolutionary process yields multiple schedules (Pareto front) for scheduling 

given DAG on a target multi-core system. The next consideration is to pick a schedule 

from the Pareto front. Here, we use an aggregation scheme based on a preference 

vector. Let us define a preference vector p as: 

 








≤≤∀=∧≤≤= ∑ 31,110| iwww
i

iiip   (5.6)  

Now, before we use the vector p to select a solution, we need to apply the given system-

based constraints on the obtained Pareto front. For example, performance constraints in 

the form of task deadlines, energy constraints in the form of total energy budget and 

thermal constraints including the thermal limit of the system can be used to define the 

feasible Pareto space (Pfeasible).  Thus, Pfeasible contains those solutions from G’ for which 

the objective function values satisfy the imposed constraints. Now, if fm(x) represents the 

value of the mth objective function (for PETOS, 1<m<3) generated by the solution x then 

we can rank each solution in Pfeasible as: 

p∈∧∈∀ mfeasible wPx  

 ∑
=

=
3

1
*

)(

m m

m
mx

f

xf
wrank   (5.7) 

where  Gxxff mm ′∈∀= ),(min*  

Hence, we rank each solution based on the ratio of their objective function values 

to the minimum value along each objective and then scale each term with the 

corresponding weight from the preference vector. Now, the solution with minimum rank 

can be selected for execution: 
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feasiblePx∈∀  

 ( )x
x

selected rankx
∀

= minarg   (5.8) 

The selection scheme ensures that best trade-off solution is selected from the 

Pareto front and thus avoids excessive degradation in one quantity while trying to 

optimize the other two. Lines 23-26 in Figure 5-1 summarize the solution selection 

process of E-FORCE.   

5.2 Experimental Setup 

5.2.1 Power and Thermal Models 

To obtain power and thermal models for our evaluations, we collected sample 

values for power and temperature under different settings on a 16-core system (AMD 

Opteron-6272 [25]). We varied the number of active cores as well as their execution 

frequency across different settings. The power values were obtained by measuring 

current through the 12V supply lines to the CPU at regular intervals using the data 

acquisition card NI-USB6008 [23]. The temperature readings were collected from the on-

chip temperature sensors through lm-sensors [24]. Each setting was sampled for a period 

of 30 seconds to properly record the average power draw as well as to correctly capture 

the temperature transients. For each setting, we used the same initial setting of 

temperature i.e. 23
o
C, this allows to minimize the impact of temperature on power 

readings across different settings. In addition, we collected temperature data for longer 

durations under various settings to estimate the thermal RC-constant for the system. 

These data were then used to derive power and thermal models for the system using the 

regression tool in Matlab [27]. We used polynomials of the form: 
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− ffffTP n
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n

n L
  (5.9) 

where f represents the sum of frequencies of all the cores at any given time. We 

varied n to find its smallest value that can achieve an R
2
 > 0.95 to obtain the following 

equations for power and temperature: 

 Static
2 PffP(f) 1.831.8x102x10 0308 ++= −−

 (5.10) 

 As TffT += −0410x6)(   (5.11) 

In Equation (5.10), PStatic refers to the power consumed by CPU while idling at lowest 

frequency level with only one active core.  TA is the ambient temperature, in our case it 

was set to 23
o
C. It should be noted here that the temperature model based on Equation 

(5.11) was only used to find the expected steady state temperature for a given setting 

with a specific initial temperature. The transient temperature values were determined by 

using the RC model based temperature equation [37]:  

 ( ) [ ]τ/)(
)()()( itt

iss eTfTfTtT
−−−−=  (5.12) 

where ti is the time just before the system changed its setting to the current one and Ti is 

the temperature of the system at that instant. For ti=0, the value of Ti was set to 23
o
C. 

The steady state temperature values for a system under consideration can also be 

obtained using (4.10) instead of (5.11). However, it will require knowing the values of 

system parameters like Rth and B as well as power values of each core under different 

settings. Since such data is usually not available readily, we chose to obtain the thermal 

model from the sampled data.    

5.2.2 Workload  

The workload used for the evaluation of our proposed work comprises both 

synthetic and application task graphs. For synthetic task graphs, we used tgff-3.5 [20] to 

generate task graphs with varying number of nodes and communication to computation 
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ratio (CCR). For application task graphs, we selected diverse types of applications that 

include Fast Fourier Transform (FFT) [14], Gauss Elimination [14], Laplace Equation [16], 

as well as an application task graph from Standard Task Graph set (STG) [14] namely 

Fpppp. Table 5-2 presents the characteristics of the workload used for evaluations.  

Table 5-2 Characteristics of Task Graphs 

Task Graph Nodes (N) Edges CCR 

FFT 14 20 0.36 

Laplace 16 24 0.67 

Gauss 20 29 1.19 

Fpppp 334 1145 1.61 

100 96 134 0.1, 1.0, 10.0 

500 458 645 0.1, 1.0, 10.0 

1000 958 1393 0.1, 1.0, 10.0 

 

5.2.3 Algorithm/System Parameters  

The parameters used for genetic operations can impact the performance of 

evolution-based algorithms. Therefore, we thoroughly evaluated the performance of E-

FORCE under various parameter settings for different task graphs. Specifically, we varied 

the mutation and crossover probabilities from a low value of 0.2 to as high as 1.0; we also 

used different initial population biasing levels, as well as the task ordering approach to 

find the best parameter setting for E-FORCE. We obtained task ordering based on DCP 

generated schedule, bottom-level values of each task (b-levels [17]), and the critical path 

based classification of tasks (CPN, IBN, OBN) to generate priority lists. The priority list 

obtained using critical path based classification is usually termed as CPDS [17]. We 

found that E-FORCE performs best when DCP-based list is used for task ordering. 

(Please see [17] for more details on b-levels and CPDS.)  

The size of the population (η) was set to 30 whereas 50 generations/iterations of 

evolution were allowed while generating Pareto front for each application. A 16-core  
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Table 5-3  Evolutionary Parameters 

Parameter Min Max Best 

Member’s Sbx Probability (pc_mem) 0.2 1 1 

Member’s Mutation Probability (pm_mem) 0.2 1 0.2 

Variable’s Sbx Probability (pc_dec) 0.2 1 1 

Variable’s Mutation Probability (pm_dec) 0.2 1 0.2 

Uniform Crossover Probability (pc_uc) 0.2 1 1 

 
Possible values Selected 

Task Ordering B-levels, CPDS, DCP DCP 

DCP biasing in initial population 0%, 25%, ... , 100% 33% 

 

system with five frequency levels (1400, 1500, 1700, 1900, and 2100 MHz) was used for 

task graphs with N<300. For N>300, a system with 64 cores was assumed. The 

evaluations do not assume time-sharing and preemption of tasks.  

Table 5-3 presents the list of the parameters along with the value selected for 

each of the parameter. The best/selected in Table 5-3 corresponds to the value of the 

parameter that resulted in the maximum number of unique solutions along each axis and 

with Pareto front closer to the origin.  

5.3 Results 

The experimental evaluation and comparison consists of three parts. First, we 

simulated and compared E-FORCE with the solutions obtained by the mixed integer 

linear programs (ILPs) for small task graphs.  Second, we evaluated the proposed 

algorithm against energy- and thermal-aware scheduling algorithms on a real multi-core 

system. Third, we used simulation for very large tasks graphs which were not 

implemented due to practical limitations of the machine.   
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5.3.1 Comparison with ILPs 

We formulated mixed integer linear programs to obtain minimum makespan and 

minimum energy consumption for tasks graph with N < 20. These ILPs similar to those 

presented in [28] were solved using LPSolve3.5 [26].  

The setup and execution times of ILPs are extremely large even with P and E 

only (of the order of days [10], [28]). Thus T was not calculated through ILPs because of 

the prohibitively high complexity. For the same reason, we used simpler power- 

performance models for both simulations and ILPs in this set of experiments. Table 5-4 

shows the power-frequency settings used for this set of experiments. Figure 5-7 shows 

the Pareto fronts obtained by E-FORCE for FFT, Gauss, and Laplace Equation along  

 

Figure 5-7 Comparison of E-FORCE with solutions of ILPs for minimum makespan and 

minimum energy for different task graphs. 

 

Table 5-4 DVFS Parameters For ILP-based Comparison 

f (MHz) Power(W) 

1600 23.61 

2000 48.9 

2200 72.48 

2400 93.12 

2600 105 
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with the ILP solutions for minimum makespan (ILP (Min-Makespan)) and minimum 

energy (ILP (Min-Energy)). Each point in Figure 5-7 represents a pair (makespan, 

energy) corresponding to the schedules generated by the algorithms. We observe that E-

FORCE produces schedules that achieve the same minimum energy as that of ILP. The 

Pareto front generated by E-FORCE attained about 8.5% higher makespan value on 

average as compared to the ILP-based solution while this deviation was as low as 0.14% 

and as high as 18%.  These deviations are acceptable considering the solution time of 

ILPs as compared to the execution time of E-FORCE and also because E-FORCE tries 

to optimize all 3 objectives as compared to single objective in the case of ILP. Another 

important observation is that most of the points comprising the Pareto front present a 

unique trade-off between performance and energy and tend to balance the two 

extremities (i.e., min. makespan and min. energy).  

5.3.2 Comparison with Other Algorithms  

We compared E-FORCE with ECSIdle [20] (an energy-aware scheduling 

algorithm), and PostTM(maxTemp) [8] (a thermal-aware scheduling algorithm) by 

executing schedules on a 16-core system. Each core was allocated its corresponding 

busy and idle slots based on the schedules generated by these algorithms. During busy 

slots, each core executed the CPU cycles burning program [29] at the selected 

frequency, resulting in 100% core utilization for the specified period on that core. For idle 

slots, cores executed sleep command. The idle slots correspond to the time slots for 

which a core has to wait due to the dependency constraints among the tasks. We 

modified PostTM(maxTemp) to incorporate frequency selection and the precedence 

constraints among tasks. Figure 5-8 and Figure 5-9, where each point represents a 

possible schedule, show the Pareto fronts obtained by E-FORCE along with the PET 

values of ECSIdle and PostTM for both the application and synthetic task graphs. For 
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each task graph, the top row compares the algorithms in 3 dimensional objective-space 

while next two rows delineate performance vs. energy and temperature vs. performance, 

respectively. The synthetic applications in Figure 5-9 are represented by attributes pair 

(number of tasks, CCR). For most of the task graphs, PostTM(maxTemp) results in 

excessively large makespan making it difficult to compare it with  ECSIdle and E-FORCE 

along the three objectives. For such task graphs, we mapped PostTM point just outside 

the x- and y-axis with a filled nabla symbol while comparing them in 3D objective-space. 

The figures for performance vs. energy and performance vs. temperature depict the  

 

   

   

   
                          (a) FFT                           (b) Gauss                        (c) Laplace 

Figure 5-8 Comparison between the Pareto fronts generated by E-FORCE vs. ECSIdle 

and PostTM for real applications. 
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(a) (100,0.1) (b) (100,1) (c) (100,10) 

Figure 5-9 Comparison between the Pareto fronts generated by E-FORCE vs. ECSIdle 

and PostTM for synthetic task graph applications. 

 

actual values achieved by PostTM against those by E-FORCE and ECSIdle. Figure 5-8 

and Figure 5-9 indicate that for most of the task graphs, the Pareto fronts generated by 

E-FORCE contained solutions with comparable PET values to those by ECSIdle. While 

for some of the task graphs, E-FORCE achieved better values of peak temperature with 

identical or better values of performance and energy as compared to ECSIdle. On the 

other hand, PostTM generates schedules with the lowest peak temperatures; it does so 
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at the cost of excessively larger makespan; as much as 7 times greater than the 

minimum makespan generated by E-FORCE (see Figure 5-9a). In some cases, where 

PostTM results in comparable values of makespan (Figure 5-8b), E-FORCE achieves a 

temperature comparable to that of PostTM but with slightly better makespan. Although 

the proposed algorithm performs comparably with the other two algorithms on the two 

objectives alone, the point is that the other algorithms ignore the third objective and 

hence are limited in their scope and usefulness. In contrast, E-FORCE, allows 

simultaneous optimization of all three objectives without letting any one objective get out 

of control. 

Table 5-5 indicates that E-FORCE generates multiple schedules with a broad 

range of values in the objective domain. For example, the percentage difference between 

maximum and minimum values for E-FORCE is as high as 78.98%, 69.43%, and 29.71% 

in performance, energy, and temperature, respectively. In addition, the number of unique 

solutions along all objectives is mostly greater than 20 and usually close to 30 (which is 

the maximum allowed size of the solution set (η) used in our evaluations). Table 5-6 

shows the PET values and the solution selection quality in terms of rank (5.7) obtained by  

Table 5-5 Percentage Difference between Minimum and Maximum Values and Number 

of Unique Solutions 

Task 

Graph 

% Difference Unique Solutions 

P E T P E T 

FFT 71.35% 47.81% 6.76% 20 30 11 

Laplace 63.93% 64.10% 13.58% 29 30 20 

Gauss 70.54% 61.88% 12.24% 28 30 17 

(100,0.1) 64.40% 47.87% 25.34% 28 30 23 

(100,1) 76.46% 59.26% 29.71% 29 30 21 

(100,10) 78.98% 69.43% 26.58% 29 30 22 

Mean 70.94% 58.39% 19.04% 27.17 30.00 19.00 
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Table 5-6 PET Values and Rank of Solutions in (100,0.1)’s Pareto Front 

No

. 

P E T rank rank  

(ms) (J) (
o
C) 

p= 

{0.4,0.4, 

0.2} 

p= 

{0.1, 0.1, 

0.8} 

1 339 3.68E+04 39.1 1.04 1.15 

2 361 4.14E+04 40.9 1.12 1.21 

3 373 3.75E+04 36.5 1.07 1.10 

4 384 4.25E+04 40 1.16 1.20 

5 384 4.31E+04 41.8 1.18 1.25 

6 389 4.35E+04 41.4 1.18 1.24 

7 406 4.45E+04 40.9 1.21 1.24 

8 410 4.56E+04 40.4 1.22 1.23 

9 410 4.44E+04 40 1.21 1.21 

10 418 3.86E+04 34.9 1.13 1.08 

11 471 4.37E+04 32.9 1.23 1.06 

12 448 4.87E+04 40.8 1.31 1.26 

. . . . . . 

. . . . . . 

. . . . . . 

30 661 5.96E+04 33.5 1.63 1.17 

 

our algorithm for the given preference vectors – the selected solution for each case is 

shown in bold. 

We measured the percentage increase or decrease in the minimum PET values 

achieved by E-FORCE against the PET values of ECSIdle and PostTM along all 

objectives. The results in Figure 5-10 indicate that for almost all cases, E-FORCE 

achieved the minimum peak temperature significantly lower/better than that of ECSIdle 

(shown as % Improvement in Figure 5-10a). At the same time, it performs comparably 

along performance and energy objectives. Compared to PostTM, E-FORCE achieved 

peak temperatures higher than PostTM but at the same time resulted in mostly 40% or 

higher percentage decrease/improvement in performance and energy (Figure 5-10b).  
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(a) 

 

(b) 

Figure 5-10 Percentage improvement in minimum PET values achieved by E-FORCE 

over (a) ECSIdle and (b) PostTM on a 16-core system.  

Again, the output of E-FORCE is not a single schedule; rather it generates a whole 

Pareto front comprising multiple schedules that not only achieve better or comparable 

values than ECSIdle and PostTM but also facilitate choosing a trade-off point between 

the PET quantities. 

5.3.3 Simulation for Large Task Graphs  

These larger tasks graphs required either very long execution traces or needed a 

larger system than the available AMD-6200 platform, and hence were simulated. Figure 

5-11 shows that for these tests, E-FORCE produced schedules that perform comparably  
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(a) Fpppp        (b) (500, 0.1)              (c) (500, 1)                  (d) (1000, 10) 

Figure 5-11 Comparison between the Pareto fronts generated by E-FORCE vs. ECSIdle and PostTM for large task graphs. 
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(a) 

 

 (b) 

Figure 5-12 Percentage improvement achieved by E-FORCE in the minimum values of 

the PET quantities as compared to (a) ECSIdle and (b) PostTM. 

to ECSIdle along performance- and energy-axis while improving the peak temperature. 

Similarly, the relative comparison between E-FORCE and PostTM is also the same as 

noted in section 5.3.2. Figure 5-12 compares the minimum values of PET quantities 

achieved by E-FORCE with ECSIdle and PostTM. 

Table 5-7 presents the total execution times of each algorithm when executed on 

a single core running at 2100 MHz. Figure 5-13 shows the ratios of the runtimes of 

ECSIdle and PostTM over that of E-FORCE. For small task graphs, the compared  
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Table 5-7 Total Execution Times in Seconds 

Algorithm 
Task Graph 

FFT(14) Gauss(16) Laplace(20) (100,0.1) (100,1) (100,10) Fpppp(334) (500,0.1) (500,1) (500,10) (1000,0.1) (1000,1) (1000,10) 

E-FORCE 33 40 48 358 338 264 783 1580 1471 1260 5099 5146 3617 

ECSIdle 15 16 22 2450 2091 2667 13608 38741 38301 45521 167227 221304 270439 

PostTM 3 14 10 312 371 658 6146 2564 3024 6492 10776 13706 39619 

 

 

Figure 5-13 Execution times of ECSIdle and PostTM normalized with the execution time of E-FORCE for different task graphs. 
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algorithms show faster execution times but asymptotically, both of these algorithms 

exhibit extremely high complexity. In contrast, E-FORCE exhibits rich scalability and is at 

least an order of magnitude faster than ECSIdle for large task graphs. For 1000 node 

task graph, the maximum time taken by the proposed algorithm is about 1 hour 25 

minutes, while ECSIdle and PostTM take 75 hours and 11 hours, respectively. The 

reason for the slowness of the other algorithms is that they are essentially exhaustive 

while the proposed algorithm uses a systematic and efficient method of searching the 

solution space.  So E-FORCE not only generates multiple solutions to the PET 

optimization scheduling problem it achieves so in a much faster turnaround time.  

Another important aspect of the evaluation is the relationship between 

performance and energy. Figure 5-14 indicate that the schedules with the minimum 

makespan also achieved the minimum energy. This is due to two reasons: (a) static 

power in current/emerging multi-core systems constitutes a large part of total power draw 

[34]; (b) the modified schedules may potentially create additional or longer idle slots as 

compared to the minimum-makespan schedule thus consuming more energy in pursuit of 

reducing it, as also observed in [20]. However, note that we only measured the energy 

consumption for the duration of the execution of a schedule and did not include idle 

energy consumption of the machine if it has to sit idle after finishing earlier. We observe 

that by varying the relationship between static and dynamic power we obtain a different 

relationship between performance and energy. For example, assume that Pd (dynamic 

power) is the total amount of power that can be controlled by either disabling cores or by 

changing their frequencies and Ps (static power) represents the minimum power drawn by 

the processor while idling with only one active core. Figure 5-14 shows the impact of 

decreasing the ratio Ps/Pd on the relationship between performance and energy. We note 

that the relationship reverses at Ps/Pd =0.25 and the solutions generated by E-FORCE 
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now allow trading off performance to improve energy consumption. Regardless of the 

relationship between performance and energy, E- FORCE effectively explores the 

scheduling decision space for generating the multiple schedules while providing trade-off 

opportunities available for the given system.   

 

Figure 5-14 Impact of varying relationship between the static and dynamic power on 

Performance-Energy and Performance-Temperature trade-offs. 

5.4 Summary 

In this chapter, we proposed an efficient algorithm utilizing concepts from 

evolutionary computing to obtain a set of Pareto optimal solutions for the PETOS 

problem. Compared to the other energy- and thermal-aware scheduling schemes, E-

FORCE solves the PETOS problem by generating a set of schedules (Pareto front) with 

diversely spread PET values rather than a clustered schedule for the given requirements. 

This set of solutions can then be used in the solution selection phase of E-FORCE to pick 

a solution from the Pareto front based on user’s preference. E-FORCE achieved values 

as close as 0.14% to the global minimum values along performance, and energy. At the 

same time, E-FORCE attained comparable or better values of performance, energy, and 

temperature in comparison to energy- (ECSIdle) and thermal-aware (PostTM) scheduling 
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schemes. In addition, the execution time of E-FORCE scales better with increasing 

number of tasks as compared to ECSIdle and PostTM. 
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CHAPTER 6 

Dynamic MOEA Approach for Solving the PETOS Problem under Uncertainty 

In this chapter, we present a dynamic multi-objective approach that can solve 

PET optimization scheduling problem while taking into consideration the task and system 

model uncertainties. As an initial step, the PETOS problem is solved by obtaining a set of 

Pareto optimal solutions based on the available information of the tasks’ execution times 

and the system model as by the E-FORCE Algorithm. This set of solutions thus obtained 

before commencing the execution of tasks is dynamically evolved periodically to minimize 

the deviation from the Pareto optimal values. During this dynamic evolution, a set of 

decision variables governing the task allocation and frequency selection for the subset of 

upcoming tasks are updated to obtain improved values of PET quantities. Our scheme 

avoids regenerating the entire solutions in the following manner: A schedule is first 

selected from the initial set of solutions to start the execution of the tasks but the rest of 

the solutions in the population space are not discarded. The evolution of the scheduling 

scheme continues concurrently with the task execution. The computational cost is kept in 

perspective by evolving the solutions for a smaller number of generations  

6.1 Dynamic MOEA Approach 

The proposed dynamic MOEA approach works in two phases: A static 

optimization phase, similar to the work reported in Section 5.1, and a dynamic 

optimization/re-optimization phase to cater for the uncertainties associated with task and 

system model. The static optimization phase produces Ψ solutions, each representing a 

possibly different trade-off among the PET quantities [19]. In other words, the static 

phase generates a set of schedules that present the trade-offs between the PET 

quantities leveraging the available tasks’ information and the system model. Figure 6-1 

presents an example of such a Pareto front obtained for the task graph of Robot Control 
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application using E-FORCE. Once trade-off surfaces are produced by E-FORCE (For 

example, Figure 6-1), we assume that a preference vector is available to facilitate the 

selection of the solution. This preference vector defines the corresponding weight for 

each objective generating a weight vector of the form ]///[ λβλγλα=W with 

λ=α+ϒ+β. Using this preference vector we can either select the solution with the smallest 

deviation from the minimum possible values along all objectives (using W= [1/3 1/3 1/3]) 

or the one with minimum value of rank under the given preference vector(W). The rank 

can be defined as in (Section 5.1.6):   

 ∑
=

∈∈∀=
oN

m
mfeasible

m

m
mx WwPx

f

xf
wrank
1

*
,,

)(
  (6.1) 

In the above equation No=3, as we aim to simultaneously optimize performance, energy, 

and peak temperature. Pfeasible is the set of solutions from the initial Pareto front that 

satisfy any performance, energy, or thermal constrained as may be imposed in the form 

of task completion deadlines, total energy budget, or maximum tolerable temperature etc. 

fm
*
 represents the minimum value achieved by all the solutions of initial Pareto front along 

the mth-objective. 

 

Figure 6-1 Pareto front obtained for Robot Control application using E-FORCE. 
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Following the solution selection from the initial Pareto front, the tasks in the given 

DAG(N,E) commence execution. During the execution, the actual values of task 

execution times and the PET quantities become available and are compared with their 

estimates available prior to the execution using system model. If the difference is larger 

than the provided threshold then the schedule is re-optimized from the existing set of Ψ 

solutions in order to find a better schedule that should be used for the remaining tasks.  

Specifying the value of threshold is non-trivial as it is not feasible to completely pre-

assess the uncertainty present in the task execution times or the inaccuracy associated 

with the system model. One alternative is to invoke the dynamic optimization process 

periodically that is, after the completion of every Tstep (tasks), the set of Ψ available 

solutions are re-optimized to achieve better values of PET quantities. This process is 

repeated until all the tasks in the given DAG are completed. This, in turn, raises the 

question as to what value of Tstep should be used. For this purpose, we evaluated the 

dynamic re-optimization process for varying values of Tstep (details are presented in 

Section 6.2.2) and observed that a trade-off exists between the value of Tstep and the 

percentage improvement in the PET quantities obtained as a result of the dynamic re-

optimization. Nevertheless, Tstep will always be bounded in the interval [1, N], where 

Tstep=1 refers to carrying out the dynamic re-optimization after every single task 

 

Figure 6-2 Overview of the dynamic re-optimization approach.  
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Figure 6-2 elaborates the overall optimization process. In Figure 6-2, SPET refers to the 

Pareto front obtained from the static optimization phase. Each member of SPET consists 

of task-core mapping as well as frequency at which each task should be executed. 

During the dynamic re-optimization these decision variables corresponding to the next 

Tstep tasks  (shown with red dotted arrow) are updated using SPEA-II (a multi-objective 

evolutionary algorithm). SPEA-II takes the current set of solutions as initial members and 

apply the required operations namely fitness assignment, population selection, genetic 

operations (cross over and mutation), and population maintenance for the given number 

of generations.  In order to avoid the destruction of “good” solutions in the dynamic re-

optimization phase, we allow the genetic operations to be performed on the decision 

variables corresponding to the next Tstep tasks only. We can also limit the number of 

generation as well as the population size for the dynamic re-optimization phase because 

now instead of the whole Pareto front, only the variations in the schedule that can help 

system achieve the desired PET values are sought. 

To elaborate the dynamic re-optimization scheduling process, Figure 6-3 

illustrates the application of dynamic re-optimization process using SPEA-II on the 

schedule for FFT task graph[16]. The DAG for FFT consists of 14 tasks. Therefore, each 

solution generated by E-FORCE in static optimization phase for FFT application is of size 

28. First 14 indexes represent the task-core mappings and the remaining indexes 

represent the voltage selection decision for each task. As an example, we consider a 

situation with Tstep= 4 such that dynamic re-optimization will take place after the 

completion of every 4 tasks. Figure 6-3 presents the schedule generated before and after 

each dynamic re-optimization step. The darkly shaded indexes represent the decisions 

which are either fixed or correspond to tasks which have already executed. The lightly 

shaded portions of the schedule correspond to the decisions which are updated using the 
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dynamic re-optimization phase at the start of each time step. For example, at the 

beginning of the execution of task set there is no information to carry out dynamic re-

optimization, therefore, the indexes 1-4 and 15-18 are fixed in iteration 1. However, once 

4 tasks are executed, we can re-optimize the schedule for the execution of the next 4 

tasks. Figure 6-3 shows the task allocation decisions for tasks 5-8 (column 5-8) and the 

corresponding voltage selection decisions (columns 19-22) change as a result of this 

dynamic re-optimization. Similarly, in iteration 2 and 3, the corresponding decisions for 

tasks 9-12 and 13-14 update accordingly. 

11 3 4 8 8 9 1 7 13 8 11 7 3 3 3 3 4 4 3 4 4 3 3 4 2 2 1 3

11 3 4 8 5 3 2 8 13 8 11 7 3 3 3 3 4 4 4 2 2 4 3 4 2 2 1 3

11 3 4 8 5 3 2 8 6 5 2 15 3 3 3 3 4 4 4 2 2 4 3 3 2 1 1 3

11 3 4 8 5 3 2 8 6 5 2 15 6 10 3 3 4 4 4 2 2 4 3 3 2 1 1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

 

Figure 6-3 Schedule update under dynamic re-optimization phase. 

 

6.2 Evaluation Details 

6.2.1 Task Model and Task Model Uncertainty 

We used several applications represented as DAGs with diverse characteristics 

like number of tasks and communication to computation time ratios. For details on 

system model and workload used for evaluation, please see 5.2.1 and 5.2.2. 

During the execution of each task the percentage variations in the execution time 

are assumed to be distributed probabilistically over the interval [-∆C, ∆C]. ∆C is the task 

uncertainty factor and defines the limit on the percentage variation allowed in the 

execution time of each task. The probability distribution for the variations in execution 

time can be given as follows: 
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  (6.2) 

where ∆T = (actual execution time) / (estimated execution time) and U(a,b) represents a 

uniform distribution defined over the interval [a,b]. The variable x in Equation (6.2) is 

assumed to have drawn from a uniform probability distribution defined over an interval 

[0,1], that is x ~ U(0,1). Briefly, for each task a random number x is drawn from a uniform 

probability distribution defined over [0,1]. ∆T is then picked up using Equation (6.2) based 

on the value of the random variable x.  Therefore, on average, for a task with an 

estimated execution time test, there is about 50% chance that its execution time will lie in 

the interval [(1-∆C)test, test], 33% chance that its execution time will be in the interval [test, 

(1+∆C)test] and about 17% chance that its execution time will be the same as its 

estimated time. The parameter ∆C was varied over wide range of values to establish the 

generality of the results. 

6.2.2 Simulation Parameters 

In the static phase, E-FORCE was run for 30 generations with population size of 

30. However, during the dynamic re-optimization phase the number of generations was 

decreased to 10 to reduce the computational burden of the re-optimization phase. Each 

task graph was tested under a number of settings with different values of ∆C, preference 

vector (W), and time period (Tstep). For varying the value of Tstep, we defined a parameter 

dynamic_itr (D_itr), which defines the number of times the dynamic re-optimization 

should be repeated during the execution of the application.  For example, for a task graph 

with N tasks, if dynamic_itr(D_itr) is set to 1 Tstep will be N/2; if its value is 3 then Tstep will 

be N/4, and so on. Each application was evaluated at least five times under each setting 

making a total of 240 evaluations per application. Table 6-1 lists the maximum and 

minimum values of various simulation parameters. 
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Table 6-1 Simulation Parameters 

Parameter Min Step Max 

W[0]* 0.3 0.3 0.9 

∆C 0.1 0.1 0.4 

D_itr 1 2 7 

No. of Generations (Static) 30 - 30 

No. of Generations (Dynamic) 10 - 10 

Crossover probability  0.8 - 0.8 

Mutation probability  0.1 - 0.1 

 

*W[0] refers to the weight associated with the performance/makespan in the weight vector. The weights corresponding to 

energy and temperature were both set as (1-W[0])/2. 

6.3 Results 

To evaluate the performance of the dynamic re-optimization method, we used 

two scenarios of the PET optimization scheduling problem. The first scenario assumes 

that all the PET quantities need to be optimized without an imposed constraint; and is 

referred to as PoEoTo Scenario. In the second scenario, it is assumed that there is a 

constraint on the peak temperature that should be satisfied during the execution of the 

application while seeking the optimal values for the PET quantities. This scenario is 

referred to as PoEoTc Scenario.  

6.3.1 PoEoTo Scenario  

For the PoEoTo Scenario, we measured the percentage improvements achieved 

by different task graph applications as compared to the static PET optimization 

scheduling case. Static PET optimization scheduling refers to executing the application 

under a schedule selected from the Pareto front obtained using E-FORCE at the start of 

execution of the tasks. The Pareto optimality achieved by this solution can only be 

guaranteed as long as the execution  times of the tasks remains constant and the system 

behaves exactly in accordance with the system models. However, this is usually not the 

case. Figure 6-4compares the percentage improvement in the PET quantities as 
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compared to the statically selected solution for different application task graphs. One can 

observe that for each of the task graph, the dynamic re-optimization resulted in better 

values of the PET quantities. For example, for the Gauss Elimination task graph, the 

average percentage improvement in makespan is 6.5% along with an average 

improvement of 6.0% in energy consumption. The percentage improvements in 

temperature are -0.2% which indicates that on average dynamically reconfigured 

solutions resulted in peak temperatures higher than statically selected schedule. This 

slight degradation in the temperature can be due to the method used as the solution 

selection scheme. The solution selection mechanism (Equation (6.1)) uses a weighted 

sum approach, which looks at the total deviation from minimum values and does not 

guarantee the closeness to the minimum possible value along each objective. 

Nevertheless, the percentage degradation in temperature is marginal as compared to the 

percentage improvements in the makespan and energy consumption. Another important 

observation from Figure 6-4 is that the average percentage improvements along the PET 

quantities generally increase with the increasing number of tasks in the application. A 

larger number of tasks provide comparatively more opportunities for adjusting the task  

 

Figure 6-4 Percentage improvement in PET quantities through dynamic re-optimization 

under PoEoTo Scenario. 
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allocation and voltage selection decisions in each invocation of the dynamic 

reconfiguration step. 

Figure 6-5 compares the average percentage improvement achieved by dynamic 

re-optimization phase over the statically selected schedule for varying values of the 

number of tasks and the number of dynamic iterations. We note that generally by 

increasing the number of D_itr, the percentage improvement in the PET quantities also 

increases. This is intuitive as increasing D_itr refers to smaller values of Tstep. As a result 

dynamic re-optimizations can be applied more often and thus the schedule can be timely 

adjusted according to the variation in the execution time of the tasks. From Figure 6-5 we 

observe that though large number of tasks may provide more opportunities for dynamic 

schedule corrections, however, the actual percentage improvement possible in the PET 

quantities is directly linked with a number of factors including comm/comp ratio, structure 

of the DAG, degree of parallelism, and no. of tasks. For example, Fpppp (N=334) 

achieves smaller percentage improvements in PET quantities as compared to Robot 

Control (N=88) because the comm/comp ratio for Fpppp is very high (1.61) as compared 

to Robot Control (0.21). Fpppp thus spends a large amount of time as inter-node 

communications and therefore, has a significantly smaller computation portion resulting 

into comparably lesser opportunities for processor based energy savings. However, it 

must be noted that dynamic re-optimization phase was able to significantly improve the 

values of PET quantities as compared to the statically selected schedule. 

6.3.2 PoEoTc Scenario 

In the PoEoTc Scenario, a thermal constraint is imposed before the execution of 

each application. The thermal constraint for each task graph was set to the 90% of the 

maximum value of peak temperature achieved by all the solution members of the static  
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Figure 6-5 Percentage improvement in (a) Performance, (b) Energy, and (c) Temperature 

achieved by dynamic re-optimization for increasing number of tasks and iterations of 

dynamic re-optimization(D_itr =1, 3, 5, 7). 
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optimization phase. This constraint value was used to make it as attainable as possible. 

A very lower value of thermal constraint may not be fulfilled by any schedule whereas 

allowing a very higher value of temperature as a constraint may make its own self 

ineffective.  Setting thermal constraint as 90% of maximum peak temperature does not 

guarantee that a large number of solutions constituting the Pareto front generated in 

static phase will satisfy the imposed constraint. However, we used this value, keeping in 

view that a 10% improvement in peak temperature is quite significant and usually 

requires judicious adjustments to avoid excessive performance degradation for task 

graph applications, as also reported in [44]. 

Figure 6-6 illustrates the performance of dynamic re-optimization as compared 

with the static PET optimization scheduling. The comparison is presented on the basis of 

average percentage improvement of PET quantities as well as the average percentage 

violation of the imposed constraint. Before we explain the results, it is important to outline 

how the thermal constraint was handled during the static and dynamic optimization 

phases. The constraint is imposed only during the solution selection phase after obtaining 

the Pareto front from either E-FORCE(static phase) or SPEA-II (dynamic phase). During  

 

Figure 6-6 Percentage improvement in PET quantities through dynamic re-optimization 

for PoEoTc Scenario. 
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solution selection, the rank (in Equation (6.1)) is evaluated for only those solutions that 

satisfy the imposed constraint. The solution with minimum rank is selected for executing 

the task graph. However, it is possible that no such solution exists in the generated 

Pareto front. For such a case, a subset of such solutions (Fsol) is obtained from the 

Pareto front, which violate the imposed constraint, by a defined violation_margin and a 

solution is selected based on minimum rank from this subset. The value of 

violation_margin is gradually increased (5% of the constraint value) until there is at least 

one solution in the subset Fsol. Obviously there can be other constraint handling 

mechanisms, specially the methods that can take into consideration all the imposed 

constraints during the optimization process itself. However, our goal was to evaluate how 

well dynamic re-optimization performs under different scenarios. Therefore, by separately 

handling the constraints, we can judge the benefits of dynamic re-optimization even for 

cases where constraints may be applied during the execution of task set. Figure 6-6 

shows that for FFT application the dynamic re-optimization resulted in poorer values of 

performance and energy, yet achieved some improvement in peak temperature. At the 

same time, we also observe form Figure 6-7 that FFT resulted in smaller percentage  

 

Figure 6-7 Percentage constraint violation by dynamically and statically selected 

solutions. 
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constraint violation for dynamic re-optimization as compared to the static case. Thus, 

dynamic re-optimization lost some performance at the cost of getting closer to the 

imposed thermal constraint. For other applications like Laplace Equation and Gauss 

Elimination, we recognize that the percentage constraint violation is almost identical to 

the static case. This reflects the case where the thermal constraint is too strict to be 

satisfied by any Pareto optimal schedule, though a schedule with a huge performance 

degradation (not Pareto optimal) will be able to meet the constraint. For applications with 

large tasks graphs (N > 50) dynamic re-optimization not only satisfied the imposed 

thermal constraint (where as statically selected schedule violated thermal constraint for 

all applications), but also achieved improved values of the PET quantities.  

Figure 6-8 compares the percentage constraint violation corresponding to the 

static and dynamic PET optimized scheduling cases for different applications and settings 

of D_itr. It is interesting to note that by increasing the value of D_itr, the constraint 

violation of dynamic re-optimization gradually decreases for large task graphs. For 

smaller task graphs, the percentage constraint violation is almost identical. This is mainly 

due to the fact that simply reducing the average power consumption does not guarantee 

the minimization of peak temperature. Minimizing peak temperature requires not only 

reducing the power consumption of individual cores but also the number and duration of 

“hot” tasks running concurrently. Figure 6-8 shows that with increasing number of tasks 

dynamic re-optimization successfully explored all the parameters affecting the peak 

temperature and reduced the percentage constraint violation. Indeed, the actual 

improvement in percentage constraint violation also depends on the characteristics of the 

application, but by increasing D_itr for large task graphs, we can notice that dynamically 

readjusted schedules met the imposed thermal constraints with a significantly better 

margin as compared to the statically selected schedules, which violated the thermal 
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constraint for all cases. The dynamic re-optimization uses the continuously updated 

information regarding the task execution times and the state of the system to update and 

 

Figure 6-8 Percentage thermal constraint violations for dynamic and static scheduling 

case with varying values of D_itr. 

modify the schedule for the remaining tasks. This enables the dynamic re-optimization to 

improve either the percentage constraint violation or the values of PET quantities or both. 

6.4 Summary 

In this chapter, we proposed a new task-to-core allocation methodology for 

dynamically achieving improved values of PET quantities under unpredictable tasks’ 

information and varying system conditions. The proposed dynamic re-optimization 

scheme employs a set of statically generated Pareto optimal solutions leveraging E-

FORCE and then methodically updates the task-core mappings and the 

voltage/frequency settings for the unexecuted tasks. These adjustments are carried out 

using SPEA-II for limited number of generations to keep the overhead of the scheme in 
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perspective. The proposed approach achieves up to 8% improvement as compared to 

the statically selected schedule for the unconstrained simultaneous optimization of 

performance, energy, and temperature. At the same time, for the constrained 

optimization case, our approach achieves up to 9.3% improvement in the PET quantities 

while guaranteeing the imposed constraint for the applications with large number of 

tasks.  
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CHAPTER 7 

Heuristic Methods for Solving the PETOS Problem 

This chapter focuses on fast and efficient heuristic algorithms including several 

iterative, greedy, random, and utility function and model based methods to explore the 

scheduling decision space for the PETOS problem (Chapter 4). We also propose a 

hierarchical scheme to classify heuristics for the PETOS problem that can be easily 

extended to incorporate future algorithms too. In addition, we show how to compare and 

gauge the performance of these heuristics quantitatively. 

7.1 Proposed Heuristics and their Classification 

The proposed heuristics are classified according to the strategies they employ for 

the task assignment and frequency selection decisions. Figure 7-1 illustrates this 

classification which is based on the premises that any heuristic will encompass a task-

core allocation scheme (whereby the next available task in the list would need to be 

allocated to a core) and the frequency selection scheme. Our classification is, therefore, 

a forest of two merging trees, with one tree representing the core selection and the 

second tree representing the frequency selection. Leaf nodes are shared between the 

two trees and represent a heuristic. The first layer of classification in these trees gives a 

global view and a broad perspective on the type of search and selection schemes that 

can be employed by a heuristic to make task assignment and frequency selection 

decisions. These schemes including iterative, model-based, and random search as well 

fixed strategies define the primary classification of the algorithms. We believe that this 

broad classification at first layer can accommodate any future heuristic. The subsequent 

layers of classification serve two purposes; identify the particular criterion/objective  
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Figure 7-1  A multi-layered classification of the proposed heuristic algorithms. 

function used by a heuristic and highlight the possible variations in the upper layer of as a  

set of classification. For example, iterative techniques can be further classified into 

schemes that iterate either over the task set or over a set of values for algorithmic 

parameters to generate multiple trade-off solutions. The proposed set of heuristics does 

not cover all the possible combinations, as some of them would be miniscule variations of 

the others. Instead, most of the algorithms are individually meaningful and are sufficiently 

diverse, rather than just different combinations of core selection and frequency selection 
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policies. However, for comparison purposes we have included some minor variations of 

heuristics to highlight the impact of such variations on the performance of heuristics.  

At the leaf level, the sixteen heuristics are clustered into six flat groups according 

to their common features. This clustered view enables a comparative explanation of the 

diverse design paths used by each algorithm while still maintaining their common feature.  

In the following, each subsection represents one of the groups from the flat classification. 

We explain the common design attribute of all algorithms in each group. Some algorithms 

are described in more details while the rest are explained by a high-level description to 

underscore their key features. 

7.1.1  Group-1 (Model-based Task Assignment) 

The common design feature of heuristics in this group is the task assignment 

phase that is based on a probabilistic model. The probabilistic model for task assignment 

constructs a probability distribution based on the state of the cores to decide task-core 

mappings. The three heuristics in this group Model-PET, Model-Model, and Model-Fixed 

heuristics differ significantly in terms of their approach for frequency selections. We will 

explain the details of these differences as well as the common probabilistic-model for 

task assignment while describing the working of each algorithm as below:  

7.1.1.1 Model-PET 

This algorithm employs a probabilistic task assignment strategy and a utility 

function based frequency selection scheme. The probabilistic model for task assignment 

defines a probability distribution over the given set of cores according to the available 

time of each core for the current task.  The available time of a core is the earliest time at 

which a task can start on that core. Let us assume that Cores represents the set of cores 

and ATj is the available time of the jth core for a given task, then we define a parameter 

coreAvailability for each core as: 
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This definition of coreAvailability results in smaller values for cores with larger 

values of AT and vice versa. At the same time, all the cores with latest available time get 

a zero value for coreAvailability making them completely non-selectable once probability 

distribution is defined based on coreAvailability. To adjust this, we update the 

coreAvailability values for all of the latest finishing cores as follows: 
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where latestCores and nonlatestCores are subsets of Cores containing cores with latest 

and non-latest available times. Using the coreAvailability values from Equation (7.1) and 

(7.2), we construct a probability distribution over Cores where each core has a probability 

value proportional to its coreAvailability. This probability distribution is then used to 

determine a core for the current task. For each task, the probability distribution is 

reconstructed because the available times of the cores change as tasks are allocated.   

For frequency selection, Model-PET uses a multi-objective utility function. Since 

PET optimization scheduling involves multiple objectives, therefore, generating a scalar 

utility value to properly represent all the PET quantities is not simplistic, primarily due to 

the difficulty in obtaining the most suitable weights for each objective. Therefore, in order 

to better explore the objective space for all PET quantities we use a dynamic weight 

vector. This preference/weight vector represents the relative importance of each objective 

and enables the utility function to sweep across the whole objective space by varying the 

relative weights for each objective. Note that in addition to the weight vector, separate 

normalization coefficients are also required for each objective. This stems from the large 

differences among the range of possible values for each objective. Using the weighing 
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and normalization coefficients, we design a utility function to select the frequency of 

execution for the ith task as: 

 KknTempMaxwEnergy
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LFTk represents the latest finish time of the cores when the current task is 

executed at kth frequency level. Energyk is the total energy of current schedule and 

Max.Tempk is the maximum temperature attained by the system when the current task 

executes at kth voltage level. n1 represents the latest finish time of the core when current 

task runs at the highest available voltage level, n2 represents the total energy of the 

current schedule, and n3 is the maximum temperature attained by the system during the 

execution of the current task at highest frequency level. The utility function in Equation 

(7.3) is evaluated for all the available voltage levels for each task and the level 

corresponding to the minimum utility value is selected for the execution of the current 

task (lines 15-21 in Figure 7-2). Note that a utility function with only the normalization 

coefficients cannot explore the possible trade-offs between the objective functions. 

Therefore, once the whole schedule is generated for the current weight vector, it is 

modified with new weights for each objective. A new schedule is then obtained based on 

this updated weight vector. This iterative update of weight vector is repeated such that 

each objective can have the corresponding weight coefficient in the range 0.0-1.0. Figure 

7-2 illustrates the procedure followed by Model-PET where the input argument wts 

defines the weight vector to be used while calculating the utility values in Equation (7.3) 

In addition to the dynamic construction of the probability distribution for task assignment, 

different weight vectors used for evaluating Equation (7.3) contribute to the generation of 

multiple trade-off solutions. During task assignment, Model-PET may have to evaluate all  
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Figure 7-2 Model-PET. 

M cores for their available time. So, if there are N tasks in the DAG, the computational 

cost of task assignment phase is O(NM). If “τ” different weight settings are used during 

frequency selection, the overall complexity of Model-PET is O(τ N(M+K)). 

7.1.1.2 Model-Model  

Model-Model uses probabilistic models for both task assignment and frequency 

selection – the models for task assignment and frequency selection are different. Tasks 

are assigned to the cores based on the values drawn from a probability distribution 

constructed based on the available time of cores from Equation (7.1) and (7.2). For 

frequency selection, a different probabilistic model [45] is used. While former works with a 

single distribution that changes dynamically as tasks are scheduled the later uses a set of 

probability distributions as explained below: 
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Model-based frequency selection method generates two sets of probability 

distributions where each member of these sets can be used to select the frequency of 

execution of every task in the given task graph. The sets of distributions are obtained by 

starting from a uniform distribution and then gradually transforming the distribution to 

either increase the probabilities associated with higher frequency levels or increase the 

probability values for lower frequency levels in a specific way. Specifically, each set starts 

with a uniform distribution defined over the available frequency levels and then a series of 

transformation steps are carried out to determine a set of distributions. For the first set, 

the probabilities associated with the lower frequency levels are decreased by a defined 

value, which is then redistributed to the higher frequency levels. For second set, the 

transformation is reversed and now the probabilities corresponding to the higher 

frequency levels are reduced and distributed to lower frequency levels. A pivot point over 

the given set of available frequency levels is used to define the higher and lower 

frequency levels. Typically, the mid-point of the set of frequencies can be used as the 

pivot point. Every transformation results in a different probability distribution and every 

distribution when used for the frequency selections results in a different task graph. More 

details about the generation of these distributions can be found in [45]. Figure 7-3 shows 

the sets of distributions that can be used to select the frequency of execution for every 

task in a given task graph. Each probability distribution is defined over 5 frequency levels. 

Model-Model has to define a probability distribution for each task during task assignment 

phase while for frequency selection it has to draw from a given distribution. Assuming 

there are τ probability distributions for frequency selection the computational complexity 

of Model-Model is O(τ NM). 
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Figure 7-3 Set of probability distributions used for Model-based frequency selections. 

7.1.1.3 Model-Fixed 

 Model-Fixed uses the same task assignment method from Model-PET but uses a 

different frequency assignment method.  For a given set of K available frequency levels, 

Model-Fixed assigns one of the K levels to all the tasks for each schedule. In other 

words, Model-Fixed generates K schedules where in each schedule has all tasks running 

at the same frequency level. Since computational complexity of model-based task 

assignment is O(NM) and same frequency level is assigned to each task, the overall time 

complexity of Model-Fixed is O(NMK). 

7.1.2 Group-2 (Iterative Frequency Adjustment) 

The heuristics in this group use an iterative frequency adjustment method while 

leveraging performance-aware schedulers for task-core mappings.  This group includes 

DCP-FreqAdj, DLS-FreqAdj, and MCP-FreqAdj. DCP, DLS, and MCP correspond to the 

names of the performance-aware scheduler used by each heuristics while FreqAdj 

represents the iterative method for frequency adjustment. FreqAdj works on an initial 

schedule where all tasks are assigned to run on highest available frequency level. In 

each iteration, FreqAdj selects a task/set of tasks for frequency adjustment to improve 

the energy and thermal profile of the schedule. The details of the heuristics in this group 

are presented next.  
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DCP-FreqAdj obtains task-core mapping by using the Dynamic Critical Path 

(DCP) scheduler [18] while MCP-FreqAdj uses the algorithm called Modified Critical Path 

[16]. Both DCP and MCP keep track of the resulting critical path while scheduling each 

task. The critical path in a task graph is the longest path from an entry node to an exit 

node [18]. In contrast to MCP, DCP also takes into account the start time for the child 

nodes of the selected node that are on the critical path. This helps DCP to generate 

schedules with near-optimal makespan for the given task graph. Another important 

difference is that DCP uses unbounded cores while MCP can generate schedules for 

arbitrary number of cores. DLS-FreqAdj assigns tasks to cores by computing dynamic 

level for each task [47]. The dynamic level of a task for a core is calculated by taking the 

difference between the b-level of the task and its earliest start-time on that core. The 

bottom-level or b-level of a node n in a task graph is the sum of the weights of the nodes 

and edges along the longest path from that node to an exit node [17]. The weights of 

node n as well as that of the exit node are included while calculating the b-level. The 

task-core mapping with highest value of dynamic level among all the ready-tasks is 

scheduled in each scheduling step. Ready-tasks are the tasks whose all parent tasks 

have already been scheduled. A detailed comparison of DCP, DLS, and MCP can be 

found in [17]. Briefly, frequency adjustment methods first generate an initial schedule 

using a performance-aware scheduler and then iterate through it to find opportunities for 

frequency adjustments.  

Next, we explain the iterative frequency adjustment method used by DCP-

FreqAdj, DLS-FreqAdj, and MCP-FreqAdj. The developed iterative frequency adjustment 

scheme works similar to other thermal- and energy-constrained performance optimization 

methods like Stretch-Compress [46], and TAVD (3.1.3). However, the proposed 

frequency adjustment method has several key differences in terms of how tasks are 
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Figure 7-4 Iterative frequency adjustment approach. 

selected and how constraints are dynamically adjusted to generate multiple trade-off 

solutions. The proposed frequency adjustment scheme attempts to find the candidate 

tasks for the frequency level adjustments to reduce the peak temperature of the system. 

While doing so it not only looks at tasks executing on the core with maximum 

temperature but also at the tasks which preceded the execution of “hot tasks” on 

respective cores.  
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The frequency adjustment approach performs multiple adjustments to the 

schedule while working for different values of performance and temperature margins 

(Pmargin and Tmargin, respectively). The Pmargin and Tmargin can be defined as: 
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where makespano is the makespan of initial schedule and Tmax is the maximum 

temperature achieved by the system while executing the given task graph. maxPmargin and 

maxTmargin are user specified parameters and control the maximum allowable fractional 

increase in makespan and maximum allowable fractional decrease in peak temperature 

of the schedule. Let us assume tmax represents the time instant at which system achieved 

the temperature Tmax, then for every value of Pmargin, the frequency adjustment approach 

picks all the tasks (let’s say a set tasklist) running at tmax and for which the temperature of 

the system is in the range [Tmargin, Tmax] (Figure 7-4, line 12). The frequency level of 

execution for each task (in the set tasklist) is reduced one by one until the temperature of 

the system decreases by a specified threshold (∆Tth). Once the maximum temperature 

achieved by the schedule decreases by ∆Tth, the current schedule is added to the set of 

trade-off solutions (Figure 7-4, lines 23-26).  A task becomes un-adjustable if it is running 

at the lowest frequency level. For any iteration, if there are no tasks available for 

adjustment, the value of Tmargin is decreased to allow selecting even those tasks that are 

not executing at the instant of peak temperature(Tmax) but may have contributed to Tmax 

by running at higher frequency levels prior to tmax. It should be noted however that for 

each value of Pmargin, Tmargin is initialized as Tmax to first focus on only those tasks that are 
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directly resulting in Tmax. The process is repeated for different values of Pmargin for user 

defined iterations (Psteps) to obtain as many trade-offs as possible. 

The computational cost of frequency adjustment phase can be controlled through 

parameters Psteps and Tsteps. The values for these parameters used in our evaluations are 

listed in Section 7.2.2 (Table 7-1).  For a given DAG of size N, the computational 

complexity to search and adjust the task within a defined temperature range ([Tmargin, 

Tmax]) is O(N
2
). If we represent Psteps and Tsteps as τP and τT, respectively, then the 

complexity of frequency adjustment method can be given as O(τP τT σ N
2
) where σ is the 

average size of tasklist and is usually a fraction of N. The other cost contributing to the 

frequency adjustment methods is the cost of the performance-aware scheduler used to 

generate initial schedule. Substituting the complexity of each performance-aware 

scheduler, the overall complexity for DCP-FreqAdj will be O(N
3
), while for MCP-FreqAdj 

and DLS-FreqAdj is O((M log N + τP τT σ) N
2
) and O((M + τP τT σ) N

2
), where M is the 

number of cores in the given system. Figure 7-4 illustrates the frequency adjustment 

method applied to a given schedule by DCP-FreqAdj, DLS-FreqAdj, and MCP-FreqAdj. 

7.1.3 Group-3 (Model-based Frequency Selection) 

This group includes four algorithms namely DCP-Model [45], DLS-Model, MCP-

Model, and PowerPerf-Model. The four algorithms use different methods for task 

assignments including performance-aware schedulers (DCP, DLS, MCP) and a dual 

objective utility function approach. However, they share the same frequency selection 

method that is Model-based frequency selection as explained in Group-I (Model-Model). 

It is important to note here that even when sharing the same probabilistic model based 

frequency selection approach; there can still be variations in how it is used in the overall 

design process of the heuristic. The explanation below will further clarify this point.  
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7.1.3.1 DCP-Model, DLS-Model, and MCP-Model  

DCP-Model, DLS-Model, and MCP-Model use different performance-aware 

schedulers during task assignment namely DCP, DLS, and MCP, respectively. However, 

the model-based frequency selection approach is identical. Here it is important to note 

that in contrast to most of the methods that perform frequency selection for each task 

after the task assignment phase, these methods pre-adjust the given task graph before 

leveraging a performance-aware scheduler. This pre-adjustment modifies the execution 

time of each task based on its execution frequency drawn from a selected probability 

distribution Figure 7-5, lines 6-9). Figure 7-3 shows the two sets of probability 

distributions (each with 12 distributions) used for generating the variations of task graph. 

For each probability distribution we get a different task graph, for which the task 

assignments are then obtained by using DCP, DLS, and MCP schedulers. Figure 7-5 

outlines the overall procedure followed by DCP-Model, DLS-Model, and MCP-Model, 

where the corresponding DCP, DLS, and MCP schedulers are employed in line 10.  The 

cost of generating a single schedule using DCP is O(N
3
). If there are τ probability 

distributions the overall complexity of DCP-Model can be given as O(τN3
). Similarly, for 

DLS-Model and MCP-Model, the overall complexity is O(τMN
2
) and O(τMN

2 
log N). 

7.1.3.2 PowerPerf-Model [45] 

PowerPerf-Model uses a utility function for task assignments and a probabilistic 

model for frequency selections. For task assignments, PowerPerf-Model uses a criterion 

that takes into account available time as well as power dissipation of each core. In other 

words, for each task, we evaluate the product of total power consumption of each core 

and its available time for allocating the current task. The task is allocated to the core with 

minimum value of this product. So for allocating ith task we select the core (j) with 

minimum PT (power-time product) which is defined as: 



 

99 

 NiMjHPPT
j
i

j
i

j
i ≤≤∀≤≤∀= −− 1,1,11   (7.6) 

where, j
iP 1− is the total power dissipation of the jth core after allocating i-1 tasks and

j
iH 1−

represents the earliest available time of the jth core. For each task, PowerPerf-Model 

iterates over all cores during allocation phase but for frequency selections, it simply 

draws a frequency level from the given probability distribution. Therefore, ignoring the 

cost of generating and drawing from the probability distributions, the computational 

complexity of PowerPerf-Model for a single schedule is O(NM). Since a schedule is 

generated by PowerPerf-Model for each distribution in the given set of probability 

distributions, its total complexity is O(τNM). 

 

Figure 7-5 Model-based frequency selection. 

7.1.4 Group-4 (Performance-aware Task Assignment with Constant Frequency) 

The sole algorithm in this group is DLS-Fixed which uses DLS scheduler for the 

task assignment phase where each task is selected to execute at a fixed frequency. In 

other words, instead of varying the execution frequency among tasks, a single frequency 

level is selected and all tasks are assigned that frequency. For a set of K frequency levels 

(available on a given system), K distinct schedules are generated for a given task graph.  
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The computational complexity of DLS-Fixed for M cores and K frequency levels 

is O(MKN
2
). 

7.1.5 Group-5 (All Utility) 

This group includes algorithms that use different utility functions for task 

assignments and frequency selections to solve the PET optimized scheduling (PETOS) 

problem. While plenty of utility functions can be used, we have designed those which are 

more meaningful to the PETOS problem without losing generality. Nevertheless, we have 

explored the design space of utility function for PETOS by using separate as well as 

identical utility functions for task assignment and frequency selection decisions.  

7.1.5.1 Perf-Perf, Energy-Energy, and Temp-Temp  

Perf-Perf, Energy-Energy, and Temp-Temp are greedy approaches each working 

on different possible values of one of the PET quantities to explore the PETOS decision 

space. The performance-greedy method (Perf-Perf) exhaustively evaluates all the cores 

and all the available frequency levels for each task to select the task-core mapping and 

frequency of execution for each task that results in the minimum finish time of all the 

cores. The energy-greedy approach (Energy-Energy) searches over all cores and 

frequency levels to minimize the total energy consumption of all the scheduled tasks. The 

temperature greedy approach (Temp-Temp) similar to [8] selects the core and frequency 

level for each task to minimize the maximum temperature achieved by the system. All 

greedy approaches were executed with different number of allowed cores to obtain 

multiple schedules for executing a task graph on a given system with large number of 

cores. All greedy approaches evaluate the allocation of each task on every core for all the 

available frequency levels. For a system with M cores and K frequency levels, the cost of 

generating a schedule for a DAG of size N is O(NMK). Assuming γ different settings of  
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Figure 7-6 PowerPerf-PET. 

allowed cores are used, the overall complexity of greedy methods comes out to be O(γ 

NMK). 

7.1.5.2 PowerPerf-PET  

In contrast to greedy methods, PowerPerf-PET uses separate utility functions for 

task assignments and frequency selections. For task assignments, it uses the criterion 

that takes into account available time as well as power dissipation of each core as 

defined in Equation (7.6) while for frequency selection phase it leverages the weighted 

objective function in Equation (7.3). For scheduling each task, PowerPerf-PET has to 

evaluate Equation (7.6) over all cores to decide task-core mapping and then evaluate 

Equation (7.3) for selecting the frequency of execution. Therefore, computational 

complexity for scheduling a DAG of size N on a system with M cores and K frequency 

levels is O (N(M+K)). If “τ” weight settings are used to generate multiple trade-off points, 
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the overall cost of PowerPerf-PET is O(τ N(M+K)). For greedy methods, the 

computational complexity is O(τNMK). Figure 7-6 shows the pseudocode for PowerPerf-

PET. 

7.1.6 Group-6 (Random-Random) 

The algorithm in this group employs a random scheduling method which uses 

two uniform distributions defined over the intervals [1, allowedCores], and [1, K] to draw 

task-core mapping and frequency of execution for each task. The allowedCores refers to 

the number of cores that are allowed in scheduling and K is the total number of frequency 

levels available for the system. The random-random scheduling method is repeated for 

different number of allowedCores to obtain multiple schedules.  

Ignoring the cost of generating the distributions and the cost of drawing a value 

from them, the computational cost of single schedule for a DAG of size N is O(N). If “γ” 

different settings of allowed cores are used, the overall complexity of random method is 

O(γN). 

7.2 Experimental Setup and Evaluation Methodology 

7.2.1 Evaluation Methodology 

The performance of algorithms for solving a multi-objective optimization problem 

is evaluated based on different characteristics of the trade-off front that it generates. The 

trade-off front comprises non-dominated solutions where the dominance is defined as 

follows: 

Definition 5.1 (Dominance between two solutions/non-dominated solutions): For 

a multi-objective optimization problem with m objectives, a solution s1 will dominate s2 if 

and only if:  

• Solution s1 has better value than s2 along at least one objective.  

• Solution s1 has equal or better value than s2 along all objectives.  
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A set of solutions that do not dominate each other are called non-dominated/ 

Pareto-optimal/ trade-off solutions.  

Since, for multi-objective optimization problems with conflicting objectives (For 

example, PET optimization scheduling problem) no single solution can be strictly best 

along all objectives, therefore, a set of non-dominated solutions is sought for the solution 

of such problems. Figure 7-7 illustrates the dominated and non-dominated solutions for 

an example scenario of PETOS problem. Let us consider a feasible scheduling space 

defined by deadline td and peak temperature To, where each point in Figure 7-7 is a 

schedule represented by its corresponding (makespan, peak temperature) pair. The 

solutions 2, 4, and 8 are dominated by 3, 5, and 7. All other solutions in Figure 7-7 are 

non-dominated and form the Pareto/trade-off front. 

 

Figure 7-7 Dominated and non-dominated solutions for an example scenario of the 

PETOS problem. 

In a given Pareto/trade-off front the spread of solutions along each objective and 

the distribution of solutions with in the generated trade-off front are two important 

parameters of evaluation [48], [52]. We evaluate the performance of heuristics discussed 

Õ Ö × Ø Ù Ú Ö ÛÜ ÝÞßÝàáâ ãàÝ
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in Section 4 along these lines. An overview of some of the quantitative measures that are 

commonly used to gauge the performance of multi-objective optimization algorithms can 

be found in [52]. It should be noted here that many such metrics require the knowledge of 

a global trade-off front. Due to the large decision space and complexity of PETOS 

problem, it usually takes a prohibitively large time to obtain such trade-off fronts. On the 

other hand, absence of a baseline trade-off front can limit the detailed evaluation of 

algorithms. Keeping this in view, we define a customized metric that aim to measure the 

spread of solutions in a given trade-off front similar to [56] but makes a distinct choice 

about the baseline to be used for comparison. Specifically, we use two metrics called 

NDCσ (number of distinct choices choices [51], [52]) and HFV (Hyper front volume). 

NDCσ quantifies the quality of the distribution of solutions and HFV measures the 

closeness of the generated trade-off fronts from the global min-solutions. Before we 

define these metrics let us explain how PET values of trade-off schedules are processed 

for comparison. 

For each task graph, we first combine the trade-off fronts generated by all 

algorithms to obtain a collective trade-off front. It must be noted that trade-off front for 

each algorithm contains only the non-dominated solutions, however, once the trade-off 

fronts of different algorithms are combined, a schedule generated by one algorithm may 

dominate a solution in another algorithm’s trade-off front. Therefore, after combining all 

trade-off fronts, we recheck all the points and remove the dominated solutions. The 

maximum values along each objective from the collective trade-off front are then used to 

normalize the PET values of all solutions for each algorithm. These normalized PET 

values of algorithms are used for the evaluations. Next, we define the two metrics of 

comparison that is NDC and HFV.   
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Definition 7.1 (NDCσ [51]): NDCσ splits the whole objective space in grids based 

on the parameter σ, we used σ =0.1, which splits the objective space in 10x10x10 grids. 

For each grid, it is evaluated if any of the solutions generated by an algorithm have PET 

values within the region covered by that grid. All grids that have at least one 

schedule/solutions falling into the region are counted to give the value of NDCσ for that 

algorithm. It must be noted that a grid with only one solution and a grid with multiple 

solutions both are counted as one distinct choice, therefore, if an algorithm generated too 

many solutions within a narrow range, it will have a lower value of NDCσ. The heuristics 

with higher values of NDCσ are considered better. 

Definition 7.2 (HFV): HFV measures the closeness of the given trade-off front 

with a set of global min-points. The set of global min-points is generated by first obtaining 

the combined trade-off front, as explained above. The minimum values of makespan, 

energy consumption, and temperature in the combined trade-off front are used to 

generate the BoundaryP, BoundaryE, and BoundaryT points. All BoundaryP points have 

energy and temperature values fixed at minimum energy consumption (minE) and 

minimum temperature (minT), respectively, while the makespan values vary in uniform 

steps from the minimum value of makespan(minP) to maximum value of 

makespan(maxP) from the combined trade-off front. BoundaryT points have fixed values 

of makespan and energy at minP and minE, respectively, while temperature values vary 

from minT-maxT. Similarly, BoundaryE points get fixed values of makespan and 

temperature as minP and minT, respectively, with energy values varying between minE 

and maxE. The three set of boundary points form the global min-points. For every point in 

global min-points, the linear distance from the closest solution in the given trade-off front 

is obtained. HFV is then the sum of the closest solution distances of all points in the 

global min-point solutions. Figure 7-8 shows the combined trade-off front obtained by 
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Figure 7-8 Boundary solutions used in HFV. 

integrating solutions generated by DCP-Model, DLS-Model, PowerPerf-PET, and 

PowerPerf-Model, along with the BoundaryP and BoundaryT points. The lower the value 

of HFV for a given heuristic the better is the quality of its trade-off front. 

7.2.2 Algorithmic Parameters 

The allowedCores parameter is used to determine the number of cores to be 

used by the scheduler on the given 16-core system. The max_attempts parameter is 

used by algorithms leveraging a probability distribution and defines the maximum number 

of schedules for which each probability distribution can be used. Φ defines the size of the 

probability distribution sets used by model-based methods for frequency selection. 

Table 7-1 Algorithmic Parameters 

Parameter Values 

allowedCores 2 to 16 (increment: +2) 

max_attempts 5 

Φ 20 

maxPmargin 1 

maxTmargin 0.30 

Psteps 10 

Tsteps 7 
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Table 7-1 presents the values for each of these parameter including maxPmargin and 

maxTmargin for iterative frequency adjustment methods. For details on system model and 

workload used for evaluation, please see 5.2.1 and 5.2.2. 

7.3  Results 

Figure 7-9 presents the performance-energy and performance-temperature 

trade-offs generated by each algorithm for selected task graphs. Each point in Figure 7-9 

represents the performance-energy and performance-temperature values corresponding 

to a complete schedule. We observe that most of the algorithms outlined in Section 7.1 

generated multiple solutions with diverse values along all objectives thereby presenting 

several opportunities for trade-offs among PET quantities according to a given 

 

      

   
(a)  (b) (c) 

 

Figure 7-9 Performance vs. Energy (top row) and Performance vs. Temperature (bottom 

row) for (a) FFT (b) Robot Control Application (c) (100, 0.1) (A task graph with N=100 and 

CCR=0.1). 
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requirement. Next, we present the details on the performance of each algorithm in terms 

of range, diversity, and quality of solutions comprising the trade-off fronts. 

7.3.1 Range or Extent of Trade-off Fronts 

The box plots in Figure 7-10 present the minimum, maximum, and median values 

as well as the first and third quartile along P, E, and T for each algorithm. Since PET 

optimization scheduling problem is a min-min-min optimization problem, therefore, the 

minimum values obtained by each algorithm along performance, energy, and 

temperature are of significant importance. We note that temperature-greedy approach 

(Temp-Temp, labelled as 10 in Figure 7-10) achieves the lowest values of peak 

temperature for all task graph applications. However, the same is not true for the energy- 

and performance- greedy methods (Energy-Energy and Perf-Perf labelled as 8, and 9 in 

Figure 7-10), as they do not achieve the lowest values of makespan and energy 

consumption for all task graphs. Instead, we note that the best values of performance 

and energy are attained by methods that use a performance-aware scheduler as a part of 

their approach (DCP, DLS, and MCP-based algorithms labelled as 1 through 7 in Figure 

7-10). This is primarily because scheduling of task graphs on multiple processors require 

taking into account the dependence relationship between the task to be scheduled, its 

parent tasks, and its child tasks. Greedy methods make scheduling decisions based on 

only the current task without evaluating the impact of decision on child nodes / upcoming 

tasks. Therefore, they are not guaranteed to generate best results for performance and 

energy. Note that usually the algorithms with lowest makespan also resulted in obtaining 

schedules with lowest energy consumption. This performance-energy relationship results 

because a) the static power in modern multi-core system constitutes the major portion of 

power dissipation [34] and b) schedules with larger makespan keep the system active for 

longer duration and thus consuming more energy [20].  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 (e) 

Figure 7-10 Min, max, and quartiles of PET values obtained by each algorithm for (a) FFT 

(b) Laplace (c) Robot Control Application (d) Task graph with N=100 and CCR=0.1 (e) 

Task graph with N=500 and CCR=1. 

(Note: The labels on x-axis correspond to 16 different algorithms: 1=DCP-FreqAdj, 2=DCP-Model, 3=DLS-
FreqAdj, 4=DLS-Model, 5=DLS-Fixed, 6=MCP-FreqAdj, 7=MCP-Model, 8=Perf-Perf, 9=Energy-Energy, 
10=Temp-Temp, 11=PowerPerf-PET, 12=PowerPerf-Model, 13=Model-PET, 14=Model-Model, 15=Model-
Fixed, 16=Random-Rnadom) 
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Figure 7-10 shows that greedy approaches did not obtain multiple solutions for 

smaller task graphs (e.g., FFT and Laplace) and generated only a single solution. These 

methods aim to generate multiple schedules by varying the number of cores allowed for 

execution while smaller task graphs may have lesser degree of parallelism available. 

Therefore, increasing the number of cores neither impacts the scheduling decisions nor 

the resulting values of PET quantities. For several applications, Temp-Temp resulted in 

performance and energy values significantly larger than all other methods. For such 

cases, the Temp-Temp point has been omitted in Figure 7-10 to highlight the comparison 

between other algorithms.   

Heuristics that leverage probabilistic model for frequency assignment while using 

performance-aware schedulers for task assignment performed consistently well as 

compared to all other classes of heuristics. DLS-Model and MCP-Model (labelled as 4 

and 7) achieved PET values closest to the minimum along each objective. In addition, 

they generated schedules covering a range of values better or comparable to other 

algorithms. Among other performance-aware scheduler based methods, DCP-FreqAdj 

and DCP-Model also generated schedules with minimum values of performance and 

energy very close to the lowest values along these objectives. However, they did not 

generate schedules with range comparable to that of DLS- and MCP-based frequency 

adjustment and model methods. On the other hand, the utility-based methods obtained 

trade-off schedules with diverse PET values but did not achieve minimum values 

comparable to DLS- and MCP-based heuristics. 

It is also interesting to note from Figure 7-10 that for some algorithms, the 

maximum values achieved along energy and temperature exceeds 1. However, as 

explained in Section 7.2.1, we normalized the PET quantities of each algorithm with the 

maximum values in the “non-dominated combined solution set” along each objective and 
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not with the absolute maximum. In other words, let us assume that algorithm-A generates 

a schedule with PET values tuple (100, 2x10
2
, 34) while algorithm-B generates a 

schedule with PET values (100, 2x10
2
, 33.5). Upon combining, the schedule generated 

by algorithm-B will dominate the one generated by algorithm-A, as it achieves the same 

values of performance, and energy but improves the temperature from 34 to 33.5. So 

(100, 2x10
2
, 34) will be removed from the combined population and therefore, the 

maximum values of combined solution set along each objective may not be a global 

maximum over all solutions. Hence, an algorithm may have normalized PET values 

greater than 1 indicating that those solutions were dominated by better solutions in the 

combined population.  

Next, we compare the performance of each algorithm against the global 

minimum values along each objective. These global values were obtained by solving 

mixed integer linear programs (MILPs) for task graphs with N<10. The solution time for 

MILP’s is of the order of days for these smaller task graphs and become very impractical 

as we increase the number of tasks beyond 10. We calculated the percentage increase in 

the minimum values of performance and temperature achieved by each heuristic as 

compared to the MILP solutions (Table 7-2). We were unable to do a similar comparison 

for energy values because for energy formulations, we could not obtain final solutions of 

MILPs even after about 200 hours of execution time. Some of the algorithms exhibit as 

low as 6.32% deviation from the global optimal values of performance. At the same time, 

most of the algorithms yielded an average deviation of less than 20%. Along temperature 

axis, the minimum deviation was as low as 0.04% with maximum deviation of 7.44%. It is  

important to note here that the percentage increase in the PET values of various 

heuristics from the global minimum points also differ significantly across algorithms due 
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Table 7-2 Average Percentage Increase in the Minimum PET Values for each Heuristic 

Compared to the ILP Solutions. 
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P 9.5% 6.3%  7.7% 14.5% 7.7% 7.7% 6.3% 7.7% 7.7% 114% 21.8% 19.3% 14.8% 16.9% 17.9% 44.5% 

E * * * * * * * * * * * * * * * * 

T 7.4% 7.3% 5.0% 4.9% 7.6% 5.1% 5.3% 5.7% 5.7% 0.2% 6.5% 6.1% 1.6% 4.3% 5.2% 3.1% 

 

 

to their inherent design. Nevertheless, the deviations in Table 7-2 are small for most of 

the algorithms when compared with the scale of difference between the execution time of 

heuristics and the solution time of MILPs.  

7.3.2 Distribution of Solutions along PET Objectives 

In order to evaluate how schedules in trade-off fronts are distributed in the 3-

dimensional objective space, we use the metrics defined in Section 5. For some of the 

task graphs, utility-based heuristics and utility-model hybrid methods resulted in small 

values of NDC. This is because solutions outside the maximum of combined population 

along each objective were discarded while calculating NDC as they do not present 

efficient trade-offs between PET quantities. Evidently, the value of NDCσ is strongly 

linked with the value of σ, however, for PET optimization scheduling problem, σ =0.1 

seems a reasonable choice without biasing towards one algorithm or the other. Figure 

7-11 illustrates the values of NDC0.1 achieved  by  each  algorithm  for different task 

graphs. Figure indicates that  MCP-FreqAdj, DLS-FreqAdj, DLS-Model, and MCP-Model 

(labelled as 5, 6, 8, and 9 along x-axis in Figure 7-11 and Figure 7-12) attained higher 

values of NDC as compared to all other heuristics. Although, for smaller task graphs (i.e. 
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N<50), DCP-FreqAdj and DCP-Model also achieve comparable values of NDC, however, 

as the number of tasks increases, the number of distinct choices (NDC) for DCP-based 

methods does not match up with DLS and MCP-based methods. This is primarily 

because DCP scheduler works with an unrestricted number of processors and does not 

accept the number of cores/processors as input. Therefore, while searching for several 

trade-off schedules it has a smaller degree of freedom as compared to DLS- and MCP-

based iterative and model methods. While a larger value of NDC represents the strength 

of a heuristic to maintain diversity in the solution set, the quality of the generated trade-off  

 

(a) 

 

(b) 

Figure 7-11 Number of distinct choices (NDC) for (a) Application Task graphs with N 

<100 and (b) Task graphs with N>=100. 

front is measured by the HFV metric. Figure 7-12 presents the HFV values of each 

algorithm for different task graphs. MCP-FreqAdj, DLS-FreqAdj, DLS-Model, and MCP-

Model achieve the lowest values of HFV for all the task graphs with Model-based 

ò ó ô õ ö ÷ ø ù ú û ü ýò ó ô õ ö ÷ ò ó ô õ ö û þ ýò ó ô õ ö ÷ ÿ � � õ ô û � ý � � ø ÷ ÿ � õ � � ô � û 	 ýò � ø ÷ ÿ � õ � � ô � û 
 ý� � � ÷ ÿ � õ � � ô � û 
 ý � � ø ÷ ò ó ô õ ö û � ý� � � ÷ ò ó ô õ ö û � ýò � ø ÷ ò ó ô õ ö û � ý ø ó � õ � ø õ � � ÷ ò ó ô õ ö û ü � ý� � � ÷ ÿ � � õ ô û ü ü ýø õ � � ÷ ø õ � � û ü þ ý ù � õ � � � ÷ ù � õ � � � û ü � ýú õ � � ÷ ú õ � � û ü 	 ýø ó � õ � ø õ � � ÷ ø ù ú û ü 
 ý � � � ô ó � ÷ � � � ô ó � û ü 
 ý
0

2

4

6

�101214 � � � � �  ! � " # $ � % & & ' ( ) ( *+,-
1 3 5 7 9 11 13 15

2 4 6 . 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 . 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 . 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 . 10 12 14 16

0

2

4

6

/10121416 0 1 2 2 3 2 1 4 0 1 2 2 3 1 4 0 1 2 2 3 1 2 4 0 5 2 2 3 2 1 4 0 5 2 2 3 1 4 0 5 2 2 3 1 2 4678
1 3 5 7 9 11 13 15

2 4 6 9 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 9 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 9 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 9 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 9 10 12 14 16

1 3 5 7 9 11 13 15

2 4 6 9 10 12 14 16



 

114 

variations achieving slightly better (lower) values than the FreqAdj approaches. We 

previously noted that the same algorithms obtained higher values of NDC for most of the 

algorithms. Therefore, in terms of the distribution of solutions in the trade-off fronts, MCP-

FreqAdj, DLS-FreqAdj, DLS-Model, and MCP-Model are comparatively better than all 

other heuristics.  

Figure 7-13 presents the log of execution time of each algorithm normalized to 

the execution time of Model-Fixed. Model-fixed has the lowest execution time for most of 

 

 

(a) 

 

 (b) 

Figure 7-12 Hyper front volume (HFV) values for (a) Application Task graphs with N <100 

and (b) Task graphs with N>=100. 
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Figure 7-13 Log normal execution time of each heuristic. 

the task graphs. For small and medium task graphs (N < 100), the execution time of 

DCP-FreqAdj is lowest. However, for larger task graphs PowerPerf-Model and Model-

Model generated the trade-offs in the smallest time. DCP-FreqAdj achieved execution 

time comparable to PowerPerf-Model and Model-Model methods for larger task graphs. 

Therefore, for cases where time over-head of scheduling process is critical, DCP-FreqAdj 

can be leveraged to still obtain moderate-sized trade-off fronts. 

7.3.3 Execution on Actual System 

We profiled the execution of Laplace Equation program for matrices of different 

sizes (100x100, 300x300, and 600x600) on an actual 16-core system. We obtained the 

time spent by each core in computations as well as in data transfers while executing 

Laplace Equation. Using this timing information, we constructed the task graphs for 

Laplace Equation and obtained schedules from each heuristics. Next, we estimated the 

corresponding power- and thermal-profile of the system for each schedule using 

Equations (5.10) and (5.11). DCP-based methods (DCP-Model and DCP-FreqAdj) did not 

generate schedules that fit onto 16 cores because DCP works with unbounded number of 

cores. Most of the other heuristics exhibited the same relative behavior as noted in 

Section 7.3.2. To illustrate the comparison among heuristics, Figure 7-14 shows the HFV  
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Figure 7-14 NDC and HFV values for task graph obtained from the execution of Laplace 

Equation on a 16-core system. 

and NDC values for each heuristic. The Figure shows that MCP-based heuristic as well 

as DLS-FreqAdj heuristics performed consistently better than the rest, thus, concurring 

with the observations from the simulation results. 

7.4 Summary 

The presented heuristics generate schedules with diverse values of PET 

quantities. Therefore, a set of schedules generated by each algorithm is in fact a set of 

possible trade-offs that exists between the PET quantities for the possible execution of a 

given task graph. The algorithms differ in the way they explore the scheduling decision 

space. We evaluated all of the algorithms in terms of the range, and the diversity of trade-

offs that they generated. We found that heuristics employing a performance-aware 

scheduler along with a model-based frequency assignment approach produce the most 

practical trade-off solutions while maintaining diversity among them. Utility function based 

approaches as well as model-based methods achieved better diversity for smaller task 

graphs but do not maintain the same characteristic for larger task sets. 
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CHAPTER 8 

Future Research 

8.1 Heterogeneous Systems 

In an extension to the work presented in Chapter 5 and Chapter 7, a second 

version of these algorithms for heterogeneous platforms can be developed. 

Heterogeneity in cores/processors at the architecture level will add another horizon to the 

decision space of the PETOS problem while possibly offering more opportunities for 

making trade-offs between the PET quantities.  

8.2 Performance Benchmarking and Improvements 

We plan to carry out a comprehensive evaluation of different algorithms 

presented in this dissertation for solving the PETOS problem. One of the key challenges 

is to design and select quantitative measures for gauging the performance of algorithms. 

Therefore, first, we will develop a methodology to compare PETOS techniques. Then, we 

would carry out a set of evaluations to gauge the performance of these algorithms based 

on the developed comparison technique. We also plan to parallelize several of the 

proposed heuristics from Chapter 7. 

8.3 Large Scale Systems 

In future, I also plan to work on data center load-placement and scheduling 

strategies for exploring the performance-pricing-energy trade-offs. In particular, I would 

like to investigate the impact of Open Automated Dynamic Response (OpenADR) system 

[82] on the performance and energy consumption of the data centers. Another important 

research area where I am planning to contribute is the exascale computing initiative. One 

of the key challenges limiting exascale computing is the required power [79]. My research 

focus will be to incorporate specific scenarios of exascale computing to minimize 

power/energy usage via task scheduling. For such large scale systems, a scalable and 



 

118 

all-inclusive mechanism will be required that can take into account multitude of models to 

obtain a complete set of trade-offs available at task scheduling level. 
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