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Abstract 

OPTIMAL OPERATION OF MICROGRID UNDER  

A STOCHASTIC ENVIRONMENT 

 

 

Zhaohao Ding, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Wei-Jen Lee  

With its technological and regulatory innovation of scale and structure, microgrids 

have been developed all over the world as a mean to address the high penetration level 

of renewable generation, reduce the greenhouse gas emission, and provide economical 

solutions for the currently non-electrified area. The operation of microgrid requires 

resource planning for those fossil-fuel based generators, energy storage systems, and 

demand resources if demand side management is implemented. Due to the stochastic 

nature of renewable energy resources, load behaviors and market prices, enormous 

uncertainties are involved in the microgrid operation and scheduling problems for both 

short-term and longer term. These uncertainties may result in a non-optimal operation or 

even jeopardizing the reliability of the microgrid if they are not fully considered in the 

scheduling stage. 

This dissertation applies stochastic modeling and optimization techniques to 

address the challenges brought by uncertainties in the microgrid operation through. The 

microgrid day-ahead scheduling problem, demand side management scheduling 

problem, and medium-term operation scheduling problem are modelled via stochastic 

approaches to achieve the optimal operation decisions under an environment with high 
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degree of uncertainties. Meanwhile, a microgrid carbon emission co-optimized scheduling 

algorithm is also proposed to address the carbon emission in the microgrid operation. 

Correspondingly, the uncertainty models and solving methods for those formulations are 

also proposed by this dissertation and numerical results are presented for verification and 

illustration purpose. 
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Chapter 1  

Introduction 

1.1 Definition of Microgrid 

Demand for electricity is rapidly increasing thereby applying pressure to expand 

generation and distribution capacity worldwide. The expansion of traditional services not 

only imposes burdens on financial resources but also encounters many challenges from 

community who oppose the construction of new power generation plants or transmission 

facilities in their backyard. From the integrated resource planning point of view, a feasible 

and economical remedy is, therefore, to utilize existing dispersed generation capacity 

known as distributed generation (DG) and/or renewable energy resources that may exist 

in the vicinity of the load centers.  

DGs have existed in the market for many years. The main criteria for selecting 

the type of fuel source for a DG is its local availability, conversion system technological 

advancement, impact on the environment, and operating cost. Large diesel or gas 

powered generation sets are used in stand-by mode to power up vital services such as 

hospitals, financial and commercial compounds, telecommunication centers, and 

industrial premises. Wind turbines, photovoltaic (PV) energy sources, and fuel cells are 

new comers that are now competing in size, per kW cost, and efficiency with many 

standard generating sets. Today’s DGs cost rate ($/kWhr) is becoming more and more 

competitive as efficiency/technology behind the modern energy conversion units is 

continuously being improved and diversified. By combining a variety of dispersed DGs, a 

distributed energy resource (DER) domain is developed. Various mixtures of different 

energy sources are then controlled under a central energy management system (EMS) in 

order to improve efficiency and reliability of the operation. As incorporated the modern 

concept of DER and EMS theory, the microgrid concept is put forwarded [1]. 
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As newly created concept, there are various definitions existing for the microgrid. 

In 2002, Consortium for Electric Reliability Technology Solutions (CERTS), as one of the 

earliest organization conducting microgrid research, brought up the microgrid definition 

[2] as following. 

The Consortium for Electric Reliability Technology Solutions (CERTS) 
microgrid concept assumes an aggregation of loads and microsources 
operating as a single system providing both power and heat. The 
majority of the microsources must be power electronic based to provide 
the required flexibility to insure operation as a single aggregated system. 
This control flexibility allows the CERTS MicroGrid to present itself to the 
bulk power system as a single controlled unit that meets local needs for 
reliability and security. 

Department of Energy (DOE), which is another pioneer that conducts microgrid 

and DG research, also provided their perspective on the concept of microgrid. In a 

workshop held by DOE in 2012, DOE adopted the following statement as the definition of 

microgrid [3]. 

A microgrid is a group of interconnected loads and distributed energy 
resources within clearly defined electrical boundaries that acts as a 
single controllable entity with respect to the grid. A microgrid can connect 
and disconnect from the grid to enable it to operate in both grid-
connected or island-mode. 

As another important entity which leads lots of microgrid research, Department of 

Defense (DOD) also provided their specific definition of microgrid [4] as shown below. 

A DoD installation microgrid is an integrated energy system consisting of 
interconnected loads and energy resources which, as an integrated 
system, can island from the local utility grid and function as a stand-
alone system. 

It can be observed from those three definitions that although different entities 

have various perspectives on microgrid, the common concept can be extracted that 

microgrid is a bunch of electrical loads within certain geographic boundary powered by 

local distributed energy resources (DER) which include DGs and energy storage system 

(ESS). In such a system, wind turbines, PV panels and other renewable generations can 
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be used as DGs and the stability and reliability should be maintained by the system itself 

with the help of modern operation and control techniques. Furthermore, such a system 

can be either connected to the utility grid or operated in an islanded mode. In this 

dissertation, both operation modes are investigated and the corresponding decision-

making model is proposed respectively. 

1.2 Microgrid Facility Examples 

As an alternative approach to power up dispersed loads and to utilize renewable 

energy resources, microgrid has been investigated intensively and numbers of microgrid 

facilities have been designed and implemented all over the world. Research 

organizations and commercial entities are kept focusing on the development and 

implementation of microgrid to improve and strengthen the current power infrastructure. 

The experiment setting and operation objectives are various on a large span [5]. 

1.2.1 European Union (EU) 

EU pays lots of attention to the level of climate change thus there are certain 

targets has been set for the member states to achieve by 2020. The European 

Parliament has passed several directives such as 2001/77/EC, 2003/30/EC and 

2006/32/EC. Those documents gave certain reduction requirements for carbon 

emissions. Consequently, the renewable energy resources penetration level should be 

increased to compensate the reduced traditional fossil generation. Meanwhile, higher 

energy efficiency is also motivated by those directives. Since microgrid has been 

considered as a prospective approach to utilize renewable energy, there are several 

microgrid projects conducting in EU member states. 

From the EU international level, there are two major microgrid research projects. 

The first project funded by EU was the ‘Microgrids: Large Scale Integration of Micro-

Generation to Low Voltage Grids’ which was undertaken by a consortium led by National 
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Technical University of Athens (NTUA), included 14 partners from seven EU countries, 

including utilities such as EdF (France), PPC (Greece), and EdP (Portugal); 

manufacturers, such as SMA, GERMANOS, and URENCO; plus research institutions and 

universities such as Labein, the University of Manchester, and ISET Kassel. With €4.5 

million grant, this project was designed to investigate the dynamics of DGs in a microgrid 

and developing different control, operation and protection schemes. A test microgrid was 

installed on the Kythnos Island, Greece [6], as shown in Figure 1-1. Another microgrid 

study facility, as shown in Figure 1-2, was installed in ISET, Germany [5] to conduct 

control strategy researches. A microgrid prototype with Flywheel energy storage was 

installed in University of Manchester, for exploring the energy storage technologies. 

 

Figure 1-1 Test microgrid in Kythonos Island 
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Figure 1-2 Microgrid laboratory facilities at ISET 

As a follow-up, a project named ‘More Microgrids: Advanced Architectures and 

Control Concepts for More Microgrids’ was funded at €8.5 million. This project, again, 

was undertaken by a consortium led by NTUA. This project was intent to investigate 

alternative control and protection strategies along with plug-and-play concepts. A 

residential demonstration, which involved 1200-inhabitant ecological estate in Mannheim-

Wallstadt, has been prepared as a continuous long-term field test for this project [7]. 

1.2.2 Japan 

Japan is one of current world leaders in microgrid demonstration projects. 

Motivated by its limited natural resources, Japanese Government set ambitious target for 

utilizing more renewable energy resources. However, the intermittence characteristics of 

renewable energy might have a negative effect on Japan’s world-wide recognized power 

quality reputation. Microgrid is treated as a potential solution for this problem by Japan 

Government. Therefore, several microgrid projects are implemented in Japan. 
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Traditionally, the intermittent renewable energy sources make the residual purchases 

from utility varies a lot. In a microgrid with energy storage devices, the intermittent 

renewable supply can be compensate by itself so from the grid point of view, the 

microgrid become a constant/dispatchable load. Japan emphasized this principle a lot in 

its implementations. 

The New Energy and Industrial Technology Development Organization (NEDO) 

started to sponsor three microgrid demonstrations under its ‘Regional Power Grid with 

Renewable Energy Resources Project’ in 2003 [8].  

The first project started to operate in October 2005 World Exposition in Aichi and 

was moved to Tokoname City in 2006.  Its main feature is using fuel cells as the main 

sources. There are two (270kW and 300kW) molten carbonate fuel cells (MCFCs), four 

200kW phosphoric acid fuel cells (PAFCs), and a 50kW solid oxide fuel cell (SOFC).  

The second demonstration is the Aomori project in Hachinohe, which is 

undertaken by the Mitsubishi Research Institute and Mitsubishi Electric. This system has 

its private distribution line and consists of PV systems, wind turbines, gas engines and 

storage. The energy management system (EMS) developed through this project optimally 

meets combined heat and electric demand.  

The third project is installed in Kyotango, which has a biogas plant connected to 

two PV systems and a small wind turbine. This network operates with communication 

links by internet protocol to balance the supply and load. 

Also, there are some private microgrid projects. For example, Shimizu 

Corporation, cooperated with University of Tokyo, developed a microgrid testbed in 

Tokyo. Also, Tokyo Gas created an integrated DG control through simulations and 

experiments in Yokohama [8].  
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1.2.3 United States 

The United States, as the world-leading energy research country, has expanding 

microgrids research projects. Among all those microgrid research facilities, the most well-

known project is CERTS microgrid. It is a collaboration project undertaken by AEP, 

TECOGEN, Northern Power Systems, S&C Electric Co, Sandia National Laboratories, 

and the University of Wisconsin. It consists of several DGs and a thyristor based switch 

to allow isolation from the grid [2, 5, 9]. The CERTS microgrid is intended to achieve a 

seamless back up to continue the service from utility service interruption. CERTS 

microgrid tried to provide this kind of service for relatively small size (less 2MW peak 

load). Also CERTS tried to make the system as robust as possible which means there is 

no single device is essential for operation. The schematic example of CERTS microgrid is 

shown in Figure 1-3 [6]. 

 

Figure 1-3 Schematic of an example CERTS microgrid 

Besides CERTS project, there are some other research activities regarding 

microgrid. DOE also grants US$4 million to General Electric (GE) Global Research for 

microgrid research [5]. This project is aimed to develop and demonstrate a microgrid 
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energy management framework for various applications that provides a control, 

protection and operation platform. The energy management framework is designed to 

provide intelligent control for both generation and load considering the low inertia of those 

power electronics devices. 

Also, there are some campus microgrid facilities in US. Among those the largest 

one is installed at Illinois Institute of Technology (IIT) called ‘perfect power system’ [10]. 

This US$14 million project is undertaken by IIT cooperated with S&C Electric, Endurant 

Energy, and ComEd. A microgrid system is designed for IIT’s main campus. The 

objective of this project is to provide a flagship system for other universities, 

municipalities as a solution the nation’s energy crisis. The system schematic is shown in 

Figure 1-4 [10]. 

 

Figure 1-4 System schematic of microgrid in IIT campus 

In the University of Texas at Arlington (UTA) campus, another microgrid testbed 

is designed and installed with the DOE grant [5]. This project contains three sub-

microgrid which all equipped with hierarchical control systems. The control and 

communication are realized based on CompactRIO controllers from National Instruments 
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[11]. The optimal operation strategies and other research topics are investigated based 

on this microgrid testbed. The schematic of this microgrid is shown in Figure 1-5 and the 

layout of indoor part of this smart microgrid testbed is shown in Figure 1-6.  
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Figure 1-5 Architecture of the microgrid testbed in UTA campus 
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Figure 1-6 Indoor layout of microgrid testbed in UTA campus 

1.3 Benefits of Implementing Microgrid 

It can be summed up from the designing principle and all those on-going and 

demonstration projects that microgrid bring lots exciting benefits and opportunities. Those 

merits of implementing microgrid are summarized as the following. 

First of all, implementing microgrid has the potential to reduce the dependency 

on imported fuel sources and help in regulating prime fuel market competition. The 

increase interest in DERs, which including multiple types of energy sources, can 

influence the market and level of competition for prime sources of energy. Developing 

countries such as China and India have started to build a rapidly moving production 

infrastructure that needs more energy. This has resulted, among other factors, in pushing 

the global prime fuel market to a record high. With the public support and encouragement 

following the dynamically changing of fuel prices and environmental concern over global 

warming, current DG’s technologies can compete with the traditional generation facilities. 

Profitable DG’s are fueled by available local prime fuel sources rather than imported 

ones. The DG market thrust is obviously driven by the economic benefits to be gained by 

all involved parties along with the positive environmental impact of using local resources. 
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Secondly, implementing microgrid can improve the utilization of renewable 

generation resources. Although renewable energy conversion systems are characterized 

by their intermittent energy nature, they have minimal environmental impact and offer free 

replenishment of the prime fuel source. Many countries have an abundance of natural 

and renewable resources that can be effectively integrated to meet a portion of the 

demand. Due to its innovative architecture and intelligent interface, microgrid can be a 

good entity to integrate high penetration level of renewable energy. Also, the grid-

connected microgrid, which cooperated with ESS and responsive load, can make the 

power flow on the point of common coupling (PCC) smoother thus reduce the generation 

fluctuation caused by intermittence nature of renewable generation from the utility point of 

view.  

Moreover, implementing microgrid can enhance the demand side management 

(DSM). Considering the deployment of advanced meter infrastructure (AMI) and delicate 

communication system, microgrid is capable of optimally managing its demand side 

without requiring further investment. The AMI system installed in the microgrid can be a 

useful tool for load pattern recognition and demand forecasting [12]. Also, the relatively 

small scale makes microgrid system operators easier to categorize different load groups 

based on their load characteristics and price responsiveness. In such a manner, the 

managing of demand side for microgrid can be further improved. 

Furthermore, implementing microgrid can defer the construction or extension of 

transmission lines. Microgrid can be used to support demand during peak periods, thus 

eliminating the need for installing peak generation units and enhance security benefits 

[13]. Also, microgrid can be used to meet the heat and electricity demand for nearby 

industrial and commercial areas, thus relieving the centralized power plant from 
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dispatching power over long distances for heating purposes and improving the fuel/kWhr 

ratio. 

Last but not the least, implementing microgrid can help rural electrification, 

especially for the under-developed areas. Currently, many developing and third world 

countries are in need of a rural electrification resolution. Over 1.2 billion people are 

without accessing to electricity. About 2.8 billion people still use solid fuels for cooking 

and heating. African and southeastern countries in particular have the largest percentage 

of rural darkness [14]. Such countries do not have the capacity or resources to build large 

centralized generation plants or transmission infrastructure although the sector and its 

services are an important driver for the country’s economic development and welfare 

[15]. The opportunity for microgrid in various scales is evident when one considers with 

the availability of local renewable energy resources such as solar and wind. As 

incorporated with modern EMS system, dispersed microgrids can be a solution with less 

financial burden to meet the demand of those rural communities [16]. 

1.4 Challenges for Microgrid Operation 

As mentioned in the previous sections, there are numbers of benefits of 

implementing microgrid. However, it is necessary for the microgrid to maintain a stable 

and reliable operation to achieve those benefits. Due to its unique characteristics, there 

are multiple challenges for the microgrid operation. 

Considering the penetration level of renewable generation, the volatility of 

renewable energy resources can impact the operation of microgrid significantly, as shown 

in Figure 1-7 [17]. Those types of volatilities pose uncertainties in the microgrid operation, 

especially in the microgrid resource scheduling. Currently, most of the large power 

system operators try to use renewable generation forecasting to alleviate the 

uncertainties in their scheduling. However, because of the stochastic nature of renewable 
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energy resource, it is almost impossible to achieve a no-mismatch forecasting results 

with current techniques. For example, as shown in Figure 1-8 [18], for the hour ending at 

19:00, the day-ahead forecasting predicted about 1300 MW from the wind generation 

while the actual output was 400 MW during the operation hour. The shortage of 900MW 

may lead to severe reliability problems. Due to the geographic scale of microgrid, the 

prediction for the renewable generation in a microgrid are particularly difficult thus the 

forecasting errors are more significant than those for bulk power system. This kind of 

uncertainties brings considerable challenges for the resource scheduling of microgrid 

operation. 

 

Figure 1-7 Three consecutive day wind power output for a wind farm in Oklahoma 
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Figure 1-8 Wind forecasting mismatch in ERCOT on 02/26/2008 

Another challenge faced by microgrid operation is the mismatch between 

renewable generation and load pattern. This phenomenon is observed more in wind 

power production.  For example, as shown in Figure 1-9 [19], during the load peak the 

wind power production is low. However, the wind generation is high during the off-peak 

hours. In microgrid, similar type of mismatch occurs due to the same reason since the 

penetration level of renewable generation in microgrid might be even higher than bulk 

power system. This type of mismatch can lead to operational challenges when microgrid 

trying to integrate large amount of wind energy. Consequently, the utilization factor of 

renewable energy resources would be jeopardized. Also, this type of mismatch also 

shows uncertain behaviors. It can be difficult to fully capture the mismatch in the day-

ahead forecasting results [20]. 
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Figure 1-9 ERCOT load and wind power production in August, 2013 

Moreover, microgrid operation is challenged to optimally participate in the 

deregulated market under the current market framework. For a grid-connected microgrid, 

it is assumed as a ‘modern citizen’ from the bulk power system point of view [5]. 

Consequently, there are numbers of opportunities for microgrid to participate in the power 

market. For example, in current ERCOT market the offer price cap keeps increasing 

since the nodal market opened in 2010 [21], as shown inTable 1-1. Those scarcity price 

scenarios create financial opportunities for microgrid. The optimal operation scheme 

should be developed to help the stakeholders of microgrid harvest the maximum 

economic benefit by strategically participating in the power market. 

Table 1-1 Offer Price Cap in ERCOT since 2010 

Start Time 12/2010 09/2012 06/2013 06/2014 06/2015 

Price Cap in ERCOT 

Market ($/MWh) 
3000 4500 5000 7000 9000 
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1.5 Summary 

To sum up, microgrid is a promising electric infrastructure that has numbers of 

benefits from both economic and environmental perspectives. However, to achieve those 

exciting advantages of microgrid, there are several obstacles and challenges in the 

microgrid operation, such as uncertainties in the resource scheduling, mismatch in 

renewable power production and load curve, and deregulated market participation. In this 

study, operation schemes are proposed to address those challenges respectively. For 

those problems with uncertainties involved, the randomness is modeled by Monte Carlo 

simulation and solved by stochastic optimization method. For the mismatch of renewable 

generation and daily load curve, an internal pricing based demand side management 

scheme is proposed when considering the uncertainties parameters in the formulation. 

For the participation in the deregulated market, an optimal operation framework is also 

proposed.  

The rest of the dissertation is organized as follows. Chapter 2 presents the 

uncertainty models and mathematical methods that are used for stochastic optimization. 

Chapter 3 proposes general scheduling model for microgrid and Chapter 4 discusses the 

carbon emission co-optimized microgrid scheduling formulation. In Chapter 5, the 

demand side management model for microgrid is proposed and solved. Chapter 6 

presents the optimal medium-term operation portfolio for microgrid. Finally, conclusions 

and future works are discussed in Chapter 7. The nomenclatures of the mathematical 

formulations are presented in the Appendix A and Appendix B. 

  



 

17 

Chapter 2  

Modeling and Decision Making under Uncertainty Environment 

2.1 Uncertainty in microgrid operation 

The uncertainties in microgrid operation mainly come from the random mismatch 

between forecasting results and actual realizations of renewable generation and load 

demand. In the bulk power system, uncertainties may also associate with unexpected 

contingency scenarios such as generation and transmission outage. However, 

considering the geographic scale and simple topology of microgrid, those factors are not 

considered in this dissertation. Therefore, in the proposed operation model, the 

uncertainties are assumed coming from the forecasting errors in renewable generations 

and demand side of microgrid. 

Many researches have explored the probability distribution of forecasting errors. 

In [22], authors used statistical methods to evaluate the wind power and load forecast 

uncertainties. Both distribution fitting and empirical probability approaches were utilized in 

this paper. In [23], authors analyzed, modeled and compared the error distributions that 

arise from day-head wind power and load forecast systems that were used in three 

different ISOs in the United States. In [24], authors studied photovoltaic forecasting error 

models in different geographic and time scales. In [25], authors analyzed the frequency of 

occurrence of day-ahead wind power forecasting errors and used the results to generate 

an Auto Regressive Moving Average series (ARMA) to simulate the wind power 

production. In [26], authors proposed a heuristic simulation approach for wind power 

forecasting. In most of those literatures, the probability distribution of normalized day-

ahead forecasting errors of wind, solar power production and load are described as a 

Gaussian distribution. However, some recent studies [20, 27, 28] shown that the 

forecasting error distribution of wind, solar power forecasting and load forecasting fit 
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better on leptokurtic distributions. In this dissertation, the normalized forecasting error 

distribution are assumed to follow multivariate Gaussian distribution since it would be 

more conservative from operation point of view to overly consider the uncertainty and 

variance in the optimization. 

In the application of microgrid DSM operation, the uncertainties also come from 

the randomness in the price responsive patterns of the demand side. In [29], authors 

analyzed the price elasticity estimation for different pricing programs in multiple sectors. 

In [30], authors used the Electricity Market Complex Adaptive System (EMCAS) to 

simulate consumers’ price elasticity of demand. In [31], authors developed a tool to 

estimate the price elasticity using data from dynamic pricing pilots with different pricing 

programs. Elasticity values are derived from an augmented Constant Elasticity of 

Substitution model. In [32], authors conducted multiple pricing experiments for household 

consumers to estimate their price responsive patterns. Similar experiment was also done 

by [33] for South Australia. From the literatures, it can be summarized that estimation of 

price responsive pattern, or the price elasticity of the demand side, highly depends on the 

end-users’ marginal utility and opportunity cost. Consequently, the price elasticity is a 

time-variant function. For example it could change significantly between peak and off-

peak hours [33]. In this dissertation, the probability distribution of price elasticity for 

microgrid loads on each operation period is assumed to follow a uniform distribution to 

address the estimation error for the price responsiveness. And the mean value of the 

uniform distribution forms a time-variance function.    

2.2 Decision Making under Uncertainty Environment 

As discussed in the previous section, there are numbers of uncertainties 

associated with microgrid operation. Therefore, the decision making strategy under 

uncertainty environment becomes critical for microgrid to achieve an economic and 
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environmental-friendly operation. There are multiple approaches that are commonly used 

for decision making under uncertainty, as summarized in the following [34]. 

2.2.1 Worst-case Optimization Approaches 

This type of approach makes decisions to hedge against the worst-case 

outcome. In such type of approaches, the optimal operation decisions are supposed to 

achieve the optimal objective function G(x, ω) under the most extreme scenario 

(assuming the realization of random parameter vector ω is the extreme case, i.e. worst-

case scenario). The chosen decision x is obtained by solving the following optimization 

problem. 

    ,
x X

Max Min G x



 

 (2.1) 

2.2.2 Deterministic Optimization Approaches 

This type of approach makes decisions based on the expected realization of 

random parameter vector ω. In such a way, the problem is converted to a typical 

optimization one with no uncertainties, as shown in the following. 

    ,
x X

Max G x E 


 (2.2) 

The deterministic approach is one of the most commonly used decision making 

methods. For example, most of the current unit commitment algorithms are using the 

deterministic forecasting results for the uncertain parameters such as wind and hydro 

power generations. Those deterministic forecasting results are the expected realization 

for those random parameters.  

2.2.3 Stochastic Optimization Approaches 

This type of approach makes decisions to optimize the expected value of 

objective function G(x,ω) based on the probability distribution of random parameter vector 

ω. The chosen decision x is obtained by solving the optimization problem below. 
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    ,
x X

Max E G x 


 (2.3) 

One of the basic optimization approaches when uncertainties involved is to 

maximize/minimize the expected objective function.  Although the computational burden 

for the solving process might be increased depending on the chosen solving method, this 

kind of optimization approach does not introduce more complex model topology. 

According to the Jensen’s inequality, it is worth to mention that the objective 

function of the deterministic optimization (2.2) is biased upward relative to the objective 

function of the stochastic optimization formulation (2.3). The difference between those 

two approaches is the value of perfect information. 

2.2.4 Probabilistic Constrained Optimization Approaches 

This type of approach makes decisions to optimize the objective function G(x, ω) 

with a group of probabilistic constraints. The chosen decision x is obtained by solving the 

optimization problem shown in the following. 

 
  

  

,

. . Pr , 0,

x X

j

Max G x

s t f x j J p







  
 (2.4) 

This approach reflects the point that for a given decision, statistical hypothesis 

that  , 0jf x   is not necessary true for all the scenarios. As long as the probability of 

this statistical hypothesis is satisfied is larger than certain threshold, the decision would 

be treated as feasible solution. These approaches are typically applied for the 

optimization problems when high level of uncertainty is involved and reliability is a critical 

issue. 

2.3 Summary 

There are a large amount of uncertainties involved in the microgrid operation 

decision making processes. Instead of using the conventional deterministic approach, 
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different decision making approaches should to be used to address those stochastic 

parameters in those optimization problems. In this dissertation, both stochastic 

optimization approach and probability constrained optimization approach are utilized to 

handle the uncertainties in the microgrid operation. Also, the corresponding deterministic 

formulations are also presented to model the original problem. 
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Chapter 3  

Microgrid Generation Scheduling under Uncertainty Environment 

As an important entity to implement renewable generation technologies 

combined with conventional fossil-fuel based generators and ESS, microgrid is expected 

to operate optimally to minimize the use of fossil fuel. Therefore, the optimal generation 

scheduling under a stochastic environment is the primary operation problem for 

microgrid. 

3.1 Literature Review 

The economic generation scheduling for microgrid has been investigated by 

numbers of research papers. In [35], authors presented an optimal power sharing model 

among distributed generators in a microgrid. In [36], authors conducted a long-term 

operation optimization for an experimental microgrid based on an estimated profile of 

renewable generation. In [37], authors presented a microgrid economic operation model 

based 1-day-ahead power forecasting. In [38], authors presented an optimal operation 

model of a community-based microgrid. In [39], authors performed a optimization 

operation analysis for a Combined Heat and Power (CHP) microgrid. In [40], authors put 

forward a multi-objective optimization model for a radial CHP microgrid. In [41], authors 

presented a niching evolutionary algorithm to solve the operation scheduling of a 

microgrid. Most of those researches were conducted based on deterministic renewable 

generation profile. Due to the stochastic nature of renewable energy and microgrid 

demand, the forecasting error from those deterministic profiles may result in a non-

economic operation or other unintended consequences. 

The stochastic nature of wind power has been taken into consideration in some 

transmission-level wind generation integration studies. In [42], Meibom et al. considered 

the forecasting error by using hourly-based scenario tree model. In [43], Pappala et al. 
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used a particle swarm optimization (PSO) based operation planning. In [44], Saber et al. 

presented a PSO and 5-scenario based unit commitment model. In [45], Hargreaves et 

al. combined Markov chain and dynamic programming to achieve a stochastic unit 

commitment model. However, those studies did not fully consider the unique 

characteristics of microgrid, thus the proposed approaches might not be applicable to 

microgrid operation. In this dissertation, a stochastic generation scheduling scheme for 

islanded microgrid is proposed. Compared with grid-connected microgrid, the generation 

scheduling for islanded microgrid is more important since all the loads need to be 

balanced by the local generation. To address the uncertainties associated with the 

microgrid generation scheduling operation, Probabilistic Constrained Stochastic 

Programming (PCSP) and Sample Average Approximation (SAA) model are 

quantitatively consider the randomness. 

3.2 Mathematical Formulation 

3.2.1 Deterministic Problem Formulation 

The objective function of the deterministic microgrid generation scheduling 

problem can be formulated to minimize the overall operation cost over the entire 

scheduling horizon. The operation cost is composed of four parts: start-up cost, shut-

down cost, no-load operation cost, and incremental fuel cost. This optimization 

formulation can be modeled as follows: 

 
, , , , i i t i i t i i t i i t

t T i I

Min SU u SD v O o C p
 

      (3.1) 

Subject to 

  ,min , , ,max ,    ,i i t i t i i tP o p P o i I t T      (3.2) 

  , 1 , , 0  2 ( 1) , ,i t i t i k io o o k t MU i I t T             (3.3) 

  , 1 , , 1 2 ( 1) , ,i t i t i k io o o k t MD i I t T             (3.4) 
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  , 1 , , 0  ,i t i t i to o u i I t T         (3.5) 

  , 1 , , 0  ,i t i t i to o v i I t T         (3.6) 

      , , 1 , 1 , ,min , 1 ,2 1  ,i t i t i t i t i i t i t ip p o o P o o RU i I t T              (3.7) 

      , , 1 , 1 , ,min , 1 ,2 1  ,i t i t i t i t i i t i t ip p o o P o o RD i I t T             (3.8) 

  ,max , max +  Dischar Wind Pv Load

i i t Dischar t t t t

i I

P o P p p R p t T


       (3.9) 

 
max0     ( ) Dischar Dischar

t tp z P t T     (3.10) 

   max0  1    ( ) Char Char

t tp z P t T      (3.11) 

  min max     Stor Stor Stor

tE E E t T     (3.12) 

    
1

 -     
t

Stor Stor Dischar Char

t ini t t

l

E E p p t t T


      (3.13) 

   -      Stor Stor Dischar Char

final ini t t

t T

E E p p t


    (3.14) 

 

     

,

1 + 1    

Dischar Char Wind Pv

i t t t t t

i I

Load Char Dischar

t Char t Dischar t

p p p p p

p p p t T 



    

    


 (3.15) 

In the above formulation, the decision variables are the scheduled outputs of 

fossil-fuel generation units and ESS. The fossil fuel generators’ capacity constraints are 

defined in (3.2). The minimum up and down time for each generator is formulated in 

(3.3)-(3.4). Ramping rate constraints are defined in (3.5)-(3.8). The system spinning 

reserve constraint is defined in (3.9). The ESS of microgrid is modeled in (3.10)-(3.14). 

The maximum charging and discharging power is defined in (3.10)-(3.11). The capacity 

constraints of ESS are defined in (3.12)-(3.14). The power balance is constrained by 

(3.15), considering the charging/discharging losses of ESS. It should be noted that the 

transmission related constraints and losses are neglected in this microgrid operation 
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scheduling model due to the small geographical size of microgrid. Also, the contingency 

constraints are not included considering the fewer number of components and simpler 

topology of microgrid. 

3.2.2 Stochastic Optimization Formulation 

In the deterministic formulation, the wind power generation, solar power 

generation, and system demand during the operation horizon are considered as 

deterministic parameters based on the assumption that there is no forecasting error for all 

those predicted results. However, this is not the case in real operation conditions. The 

stochastic nature of renewable generations and system demand would make the actual 

realizations of those parameters random values which follow probability distributions [26]. 

To take those random parameters into consideration, the deterministic objective function 

(3.1) is replaced by a two-stage stochastic programming formulation [34] as shown in the 

following. 

 
 

, , , ,

,

 

, , ,

i i t i i t i i t i i t

t T i I

Dischar Char

t t i t t t

t T

Min SU u SD v O o C p

E V p p p 

 



    

 
 




 (3.16) 

As shown in  (3.16), the objective function contains two parts. The first stage 

cost, which is composed of the generation fuel cost, is the same as the deterministic 

formulation.  The second stage cost indicates the penalty cost t for the unserved load 

caused by over-estimation of renewable generations or under-estimation of microgrid 

system demand. The penalty factor represents the value of lost load (VoLL) [46, 47] for 

the microgrid at operation period t. In this formulation, the second stage cost is an 

expected value based on the probability distribution of random parameters. Considering 

the probability distributions are continuous [25, 26], it is difficult to analytically address 

those uncertainties. To handle this difficulty, Sample Average Approximation (SAA) 
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method is applied to generate a certain number of scenarios to represent the probability 

distribution of random parameters [48]. Therefore, the objective function  (3.16) can be 

replaced by its approximation form. 

 

 

, , , ,

, , ,

 

1
, , ,

i i t i i t i i t i i t

t T i I

Dischar Char

t t s i t t t t s

s S t T

Min SU u SD v O o C p

V p p p
N

 

 

 

    






 (3.17) 

In this formulation, the scenario set S has N realizations of the random vector ξ. It 

has been proved by multiple studies that the optimal solution of  (3.17) will converge to 

its true counterpart  (3.16) if a sufficiently large number of scenarios are accounted 

[34]. In the SAA formulation, the deterministic power balance constraints (3.15) can be 

replaced by the penalty cost of the unserved demand as shown in the following. 

    , ,0,   ,t s t sV Max p t T s S      (3.18) 

 
   

 

, ,

, , ,

1 + 1

   ,

Load Char Dischar

t s t s Char t Dischar t

Dischar Char Wind Pv

i t t t t s t s

i I

p p p p

p p p p p t T s S

 



    

       
 (3.19) 

3.2.3 Probabilistic Constrained Formulation 

The SAA formulation discussed above takes the uncertainties in the microgrid 

operation scheduling into consideration by using the second stage penalty cost. The 

operation scheduling decision can be optimal if the estimation of VoLL is accurate on 

each operation period. However, it may be difficult to achieve a precise assessment for 

the VoLL especially when the composition of microgrid load is diversified. To overcome 

this drawback, this dissertation proposes a probabilistic constrained approach to optimize 

the operation scheduling of microgrid while restraining the risk of insufficient scheduled 

generation at certain level. 

The probabilistic constrained stochastic optimization generally has a constraint 

which is bounded a conditional probability of a certain event. Instead of concentrating on 
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the expected value, this type of formulation enforces the probability of realization of the 

particular event. Based on this principle, a probabilistic constraint can be imposed on the 

microgrid operation as shown in the following. 

 

   
 

,

Pr  1-      

1 + 1

Dischar Char Wind Pv

i t t t t t

i I

Load Char Dischar

t Char t Dischar t

p p p p p

r t T

p p p 



     
 

   
    


 (3.20) 

As demonstrated in (3.20), the probability that the DERs outputs satisfy the 

microgrid load on each operation period should be at least 1-r. In (3.20), r is defined as 

the operation risk for each operation period. 
,i tp , Dischar

tp and Char

tp are the decision 

variables. Wind

tp , Pv

tp and Load

tp are considered as random parameters. Since the level of 

risk in (3.20) is based on each operation period, this type of constraints is treated as 

separate probabilistic constraints (SPC) in this chapter.  

If the microgrid operator wants to guarantee a certain level of security over the 

entire operation horizon, another type of probabilistic constraint could be defined as the 

following. 

 

     

,

Pr  1-  

1 + 1      

Dischar Char Wind Pv

i t t t t t

i I

Load Char Dischar

t Char t Dischar t

p p p p p

r

p p p t T 



     
 

 
      


  (3.21) 

Note that the probability in (3.21) is actually a joint probability over the entire 

operation horizon. Therefore this type of constraints is considered as joint probabilistic 

constraints (JPC) in this chapter. 

In the probabilistic constrained formulation, the objective function is the same as 

deterministic formulation and constraints (3.2)-(3.14) are also applicable. The power 

balance constraint is replaced by (3.20) or (3.21), for SPC and JPC formulation 

respectively. 
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3.3 Solution Method 

To solve the stochastic problem formulations discussed above, the general 

principle is to convert stochastic models into deterministic problems. To achieve this 

conversion, the first step is modeling the uncertainties in microgrid operation. One of the 

challenges for uncertainty modeling is to find a relatively small amount of samples to 

properly represent the actual distribution of forecasting errors. The Monte Carlo 

Simulation method is used to generate those scenarios. To reduce the variance of the 

sample outcomes, the Latin hypercube sampling (LHS) method is applied in this chapter 

[49]. 

3.3.1 SAA Model  

After the scenarios generated by sampling techniques, combining all the 

constraints, the SAA formulation can be treated as a typical two-stage stochastic 

programming problem with recourse. 

It should be noted the second stage problem described in (3.18) is a non-linear 

formulation. It can be rewritten as the following form. 

 
   

 

, , , ,

, ,

1 + 1

      ,  

Load Char Dischar Dischar

t s t s t s Char t Dischar t i t t

i I

Char Wind Pv

t t s t s

p p p p p p p

p p p t T s S

  



        

    


  (3.22) 

 ,0     ( , ) t s t Maxp y p t T s S         (3.23) 

  ,0  1    ( , ) t s t Maxp y p t T s S          (3.24) 

Consequently, the objective function can be rewritten as shown below. 

  , , , , ,

1
 i i t i i t i i t i i t t t s

t T i I s S t T

Min SU u SD v O o C p p
N

 

   

          (3.25) 

In this way, the original two-stage programming problem can be converted to a 

large-scale linear programming problem, which can be solved by most commercial 

solvers. 
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3.3.2 Probabilistic Constrained Model 

As for the probabilistic constrained model, the following two different formulations 

come with different solving approaches. 

3.3.2.1 SPC Type Formulation 

It is assumed that the day-ahead forecasting errors for wind, solar and microgrid 

load (i.e. , ,Wind Pv Load

t t te e e ) follow Gaussian distributions at operation period t: 

  ~ 0,Wind Wind

t te N    (3.26) 

  ~ 0,Pv Pv

t te N    (3.27) 

  ~ 0,Load Load

t te N    (3.28) 

Then the probability distributions of the actual realization of those random 

parameters can be described based on the deterministic forecasting results (i.e. 

, ,Wind Pv Load

t t t    ) as shown in the following: 

  ~ ,Wind Wind Wind

t t tp N     (3.29) 

  ~ ,Pv Pv Pv

t t tp N     (3.30) 

  ~ ,Load Load Load

t t tp N     (3.31) 

Since the probability distributions of random parameters are multivariable 

Gaussian distributions, three independent random parameters (i.e. , ,Wind Pv Load

t t tp p p  ) can 

form a new variable 
t  that also follow a Gaussian distribution during the same operation 

period. 

    ,= + 2      Dischar Char Wind Pv Load

t i t Dischar t Char t t t t

i I

p p p p p p t T  


         (3.32) 

  ~ ,o o

t t tN     (3.33) 
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Therefore, the original probabilistic constrained can be replaced by the following 

constrains. 

    Pr 0  1-    t r t T       (3.34) 

According to the definition of multivariable Gaussian distribution, the mean o

t

and standard deviation o

t of  
t could be calculated: 

  ,= + 2     o Dischar Char Wind Pv Load

t i t Dischar t Char t t t t

i I

p p p     


       (3.35) 

      
2 2 2

o Wind Pv Load

t t t t        (3.36) 

It should be noted that the following variable follows a standard Gaussian 

distribution. 

  ~ 0,1
o

t t

o

t

N
 




  (3.37) 

Also, 0t  is equivalent to: 

 
o o

t t t

o o

t t

  

 


    (3.38) 

Based on the properties of Gaussian distribution, the probabilistic constrain can 

be replaced by the following constrain. 

   Pr  1-    ,  ~ 0,1
o

t

t to

t

r t T N


 


 
     

 
  (3.39) 

Given the Cumulative Probability Function (CPF) of standard Gaussian 

distribution is known as  x , the probabilistic constraint can be converted to a 

deterministic constraint. 

    1     
o

t

o

t

r t T





      (3.40) 
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It can be observed that the original SPC constraints have been replaced by 

explicit constraints. Combined with all those constraints, the SPC formulation has been 

rewritten as a deterministic linear programming problem which can be solved by most of 

the commercial solvers. 

3.3.2.2 JPC Type Formulation 

It should be noted that the solving method of SPC type formulation is not 

applicable to JPC type problem. That is because JPC contains joint constraints whose 

CPF are difficult to be described explicitly. By applying sampling techniques, constraint 

(3.21) can be rewritten as shown in the following. 

    , 2  Dischar Char

t i t Dischar t Char t

i I

g p p p t T 


        (3.41) 

  , , , ,=      ,Load Wind Pv

t s t s t s t sh p p p t T s S       (3.42) 

  , ,    ,t t s s t sg h x h t T s S       (3.43) 

 s

s S

x rN


   (3.44) 

With (3.41)-(3.44), the JPC type problem is reformulated as mix integer 

programming model. However, the continuous relaxation of this formulation makes the 

computational requirement impracticably large even for a linear objective function [50, 

51].  To speed up the solving process, the stronger JPC formulation can be constructed 

by adding tighter continuous relaxation gaps [52]. Without loss of generality, random 

vector th can be transformed to kt which has all the elements of th  sorted in a descending 

order. 

  ,1 , ,1 ,2 ,= , ,       t t t N t t t Nk k k k k k        (3.45) 
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After 
th  is replaced by kt, it can be noticed that 1sx   cannot be true for all 

1, , 1s l   in order to satisfy (3.44). Also, as long as there is one 0sx   for 1, , 1s l  , 

the following constraints would be redundant. 

 ( )l floor rN   (3.46) 

  , ,    , 1, ,t t s s t sg h x h t T s l N        (3.47) 

Therefore, the original JCP formulation of (3.41)-(3.44) can be tightened by 

replacing (3.43) with the following constraints. 

      , , 1 ,1

1

   
l

t t s t s ts
s

g k k x k t T



       (3.48) 

In (3.48), index [s] of  sx  means the index of 
,t sk  in the original random vector 

th . 

In some papers constraints similar to (3.48) are called star-inequalities [51]. Combining 

those star-inequalities constraints, the JPC type formulation can be solved efficiently by 

commercial optimization solvers. 

3.4 Numerical Study 

In this section, a sample microgrid system is used to examine and compare the 

proposed stochastic models. All system modeling and solving algorithms are coded in 

Matlab and solved by CPLEX 12.5.1[53]. All experiments are run on a computer with 

AMD X6 CPU@2.70 GHz and 8 GB memory. 

3.4.1 System Configuration 

The experiment microgrid is composed of three fossil-fuel units, one energy 

storage system, one aggregated wind farm, one aggregated solar station, and loads, as 

shown in Figure 3-1. To illustrate the effects of different types of fossil-fuel units on the 

generation fuel cost, three different types of generators, which are Coal, Gas Steam and 

Combined Cycle Gas Turbine (CCGT), are assumed in this microgrid. The assumed 
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characteristics for fossil-fuel generators are scaled down from ERCOT scheduling data 

as shown in Table 3-1 and Table 3-2. The ESS data is depicted in Table 3-3. To achieve 

a neutral energy impact on the whole operation scheduling horizon, both final storage 

level and initial storage level of the ESS are set to 50%. 

G3 Wind PV ESS

G1 G2

 

Figure 3-1 Experiment microgrid system 

As mentioned in the above, the uncertainties in the microgrid day-ahead 

operation scheduling problem are modeled based on forecasting error distributions. In the 

simulation, the mean and standard deviation of the day-ahead forecasting data is based 

on recent research [20, 23, 27, 28], as shown in Table 3-4. It should be noted that the 

normalized standard deviation of the day-ahead forecasting error is the actual mismatch 

value divided by the nominal rating. 

Table 3-1 Generator Operation Data 

Unit 
Fuel 

Type 

Max/Min Output 

(MW) 

Ramp Up/Down 

Rate (MW/h) 

Min Up/Down 

Time (h) 

G1 Coal 90/30 47/65 3/2 

G2 
Gas 

Steam 
40/5 28/35 1/1 

G3 CCGT 60/10 48/93 2/1 
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Table 3-2 Generator Fuel Data 

Unit  
Start-up Fuel 

Cost ($) 

Shut-down 

Fuel Cost ($) 

No-load Fuel 

Cost ($/h) 

Marginal Heat Rate 

(MMBtu/MWh) 

Fuel Price 

($/MMBtu) 

G1 28536 11849 1985 9.8 2.49 

G2 5384 2941 857 11.9 4.51 

G3 9375 3577 1162 5.4 4.51 

 
Table 3-3 Energy Storage System Data 

Storage Capacity (MWh) Max Storage Level  Min Storage Level 

100 90% 10% 

Max Discharge Rate (MW) Discharge  Efficiency Initial Storage Level 

10 85% 50% 

Max Charge Rate (MW) Charge Efficiency Final Storage Level 

15 85% 50% 

 
Table 3-4 Uncertainties in Microgrid Operation Scheduling 

Type 
Nominal 

Rating (MW) 

Normalized Standard Deviation of 

Day-ahead Forecasting Error 

Wind 75 11.90% 

Solar 40 5.10% 

Load 167.8 2.60% 

 
3.4.2 SAA Approach 

Based on the microgrid system configuration, the day-ahead operation schedule 

for the experiment microgrid is solved by SAA model with 50 scenarios. The penalty 

factor for the unserved load is assumed to be 9000$/MWh. The scheduling solution is 

shown in Figure 3-2. 

Since the uncertainties of the operation scheduling in SAA formulation are 

accounted by the cost of unserved load, the penalty factor plays an important role in 

determining the total objective cost of the optimal scheduling solution. To illustrate the 

effect of the penalty factor on the objective cost, the SAA model is investigated with 

different penalty factors, as shown in Figure 3-3. It can be observed that the objective 

operation cost increased as the penalty factor increased. This is because a higher 
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penalty factor indicates that a higher penalty will be imposed if a certain amount of load 

cannot be served. Consequently, the SAA scheduling model would increase the 

scheduled generation to reduce the risk of unserved load. As a result, the objective 

operation cost will increase as the penalty factor increases. For a certain microgrid, the 

penalty factor in the SAA model should be determined by the value that local customers 

would like to pay for a reliable electricity service [54], which is known as VoLL. 

 

Figure 3-2 Operation schedule for DERs for SAA model 

 

Figure 3-3 Operation schedule cost vs penalty factor for SAA model 

3.4.3 SPC Approach 

In the SPC model, the operation risk level is accounted for each operation period. 

Figure 3-4 presents the day-ahead operation schedule for the experiment microgrid 

solved by SPC model with r = 0.1. 
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Figure 3-4 Operation schedule for DERs for SPC model (r = 0.1) 

To investigate the effect of operation risk level on the total operation cost, the 

problem is solved by SPC model with different operation risks, and results are reported in 

Figure 3-5. It can be observed that objective operation cost is reduced as the operation 

risk level increased from 0.1 to 0.9. This is expected since a higher risk level in microgrid 

SPC model indicates there is a greater possibility that microgrid load will not be served by 

the scheduled DERs output. In other words, a higher operation risk level indicates that 

the operation schedule has a lower reliability. Therefore, it should be noted that the 

reduction of operation cost in SPC model comes at the expense of reducing the reliability 

of microgrid operation. 

 

Figure 3-5 Objective operation cost vs risk for SPC model 
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It also should be noted that when the operation risk r equals 0.5, the SPC model 

is equivalent to the deterministic model. This is because the probability constraints of 

SPC model would impose the mean values of stochastic parameters if r = 0.5, which are 

equal to those corresponding parameters in the deterministic formulation. 

3.4.4 JPC Approach 

As discussed above, JPC formulation can be modeled as a mixed integer 

programming problem. Figure 3-6 presents the day-ahead microgrid operation schedule 

solved by JPC model with risk level r = 0.1 and 50 scenarios. The time resolution of 

operation schedule for all the fossil-fuel generators and ESS are hourly basis, as reported 

in the following.   

 

Figure 3-6 Operation schedule for DERs for JPC model (r = 0.1) 

Figure 3-7 presents the optimal results solved by JPC model with different 

operation risk levels. Similar to the SPC model, the operation cost of JPC model is 

monotonically decreasing as the level of operation risk increases. The results imply that 

minimizing operation cost in JPC model may jeopardize the security of microgrid 

operation. 
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Figure 3-7 Objective operation cost vs risk for JPC model 

3.4.5 Model Comparison 

To illustrate the impact of the scenario number on the optimal solution of SAA 

model and JPC model (note that there is no scenario generation in SPC model, therefore 

it does not involve any scenario-related analysis for SPC model), the microgrid 

scheduling problem is solved by both models with different scenario number N. As 

presented in Figure 3-8, the objective operation cost of JPC model is always lower than 

the cost of SAA model when considering same amount of scenarios. This is because the 

SAA model tries to schedule the DERs operation to satisfy the microgrid load unless the 

marginal cost of serving additional load becomes larger than the VoLL. In contrast, the 

JPC model only guarantees a certain probability (i.e. 1-r) that the microgrid load can be 

served by DERs. Another observation from Figure 3-8 is that JPC model converges to its 

true counterpart faster than SAA model as scenario number increases. This is because 

when the scenario number increases, the probability of extreme samples also increases. 

Those extreme scenarios (i.e. worst-case scenarios) have larger impacts on the 

operation cost of SAA model since it requires the operation schedule to satisfy the 

microgrid load in all the scenarios otherwise it gets a penalty based on the VoLL. 

Compared with that, the probability distribution of scenarios does not change 
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substantially when the number of scenarios increases. Consequently, the objective 

operation cost of JPC model is not affected as much as it is in the SAA model. 

 

Figure 3-8 Objective operation cost of JPC model (r = 0.1) and SAA model (π = 

9000$/MWh) at different scenario numbers 

To further assess the impact of scenario number on SAA and JPC models, the 

scheduling problem is solved by both models 100 times with each particular scenario 

number. For each scenario number, the Kolmogorov-Smirnov (KS) test indicates that 

Gaussian distribution provides a good fit to the 100 run results. The standard deviation of 

100-run results for each particular scenario number is compared in Figure 3-9. It can be 

observed that JPC model always has a smaller variance than SAA model when the same 

amount of scenarios are considered in the optimization. The reason is that JPC model is 

constrained by a probability, and the probability distribution of different times of sampling 

would not change significantly. In contrast, different times of sampling may result in 

different extreme scenarios. Those extreme scenarios have larger impacts on the 

objective value of SAA models, as explained above. Therefore, JPC model tends to have 

a smaller variance than SAA model. 
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Figure 3-9 Standard deviation of 100-run optimal solutions for JPC model (r = 0.1) and 

SAA model 

 

Figure 3-10 Objective Fuel Cost Comparison between JPC model and SPC model 

Figure 3-10 presents a comparison between SPC model and JPC model under 

different operation risks. It can be observed that objective operation cost of JPC model is 

always higher than SPC model for the same operation risk level. This is reasonable since 

JPC model is defined by a stronger constraint that the operation schedule of DERs 

should satisfy for the entire operation horizon while SPC model is defined over each 

operation period. In other words, the feasible region of JPC model is a subset of SPC 

model’s feasible region. Therefore, optimal operation schedule of JPC model has a 
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higher operation cost. It should also be noted that operation schedule of JPC model has 

a higher reliability than the one obtained by SPC model. 

With all the results discussed above, the characteristics of SAA model, SPC 

model and JPC model are illustrated and compared. Among those three stochastic 

scheduling approaches, the SAA formulation has the highest reliability if the same level of 

randomness (same number of scenarios) is considered and proper VoLL is included. This 

is because the SAA model tries to satisfy the microgrid load in all scenarios unless the 

marginal cost of the DERs’ scheduled operation is higher than the VoLL of microgrid local 

demand. Correspondingly, the operation cost of SAA model is the highest among those 

formulations. Another feature of SAA model is that the effectiveness of this approach 

highly depends on the estimation accuracy of VoLL. The estimation of VoLL for islanded 

microgrids could be easier than for bulk power systems, but it still depends on many 

factors such as the number of consumers, the composition of the system demand and 

the time of the interruption [54].  

For probability constrained approaches, one of their major advantages is that the 

operation risk level can be dynamically adjusted by the operator. For example, r can be 

intentionally set to a smaller value if the microgrid operator knows that the reliability 

requirement for certain period of time is increased. As discussed above, solutions of JPC 

model usually have a higher reliability than SPC model solutions with the same r. 

However, JPC model also has greater operation cost as shown in Figure 3-10. 

Conversely, the SPC model has a unique feature in that that it can set the operation risk 

dynamically for the day-ahead operation schedule since its probability constraints can be 

set separately for each operation period. This can also benefit microgrid operation 

scheduling by increasing the reliability for critical periods and reducing generation fuel 

cost for other non-sensitive periods. 
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3.5 Summary 

In this chapter, a stochastic day-ahead scheduling scheme is proposed to 

address uncertainties in microgrid operation. Both SAA and PCSP approaches are 

utilized for modeling the microgrid operation scheduling problem and three different 

stochastic models are presented in this chapter. The corresponding solution methods are 

developed and numerical case studies are conducted to compare those models. The 

results compare and illustrate characteristics of different models. 
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Chapter 4  

Microgrid Generation Scheduling considering Carbon Emission under Uncertainty 

Environment 

As the concerns of climate change are mounting, it is the responsibility of the 

entire society, including the power industry, to control and reduce the carbon emission. 

Many countries have proposed rules and regulations to lower GHG/carbon emissions [55, 

56]. In March 2010, the EU committed to reducing its carbon emissions to 20% below 

1990 levels by 2020 [57]. In June 2014, the U.S. Environmental Protection Agency (EPA) 

also released a long-anticipated proposal to reduce America’s carbon dioxide emissions 

30% from 2005 levels by 2030 [58]. Those facts offer the motivation for microgrid to 

achieve a low carbon emission operation. Meanwhile, as one of the most effective 

methods for carbon emissions reduction, implementing renewable generation 

technologies also bring uncertainties to microgrid operation. In this chapter, the microgrid 

generation scheduling co-optimized with carbon emission is studied and solved. 

4.1 Literature Review 

Many studies have been performed on bulk power systems to achieve a low 

carbon emission target. In [59], Muslu discussed the conflict nature between minimizing 

generation fuel cost and carbon emissions. In [60], Zhen et al. put forward a low-carbon 

co-optimization dispatch model considering carbon capture power plants. In [61], Norouzi 

et al. presented a multi-objective optimization model to achieve the Pareto solutions to 

consider both generation fuel cost and emission cost. In [62], Abido presented a particle 

swarm optimization based carbon/economic co-dispatch model. In [63], Wang et al. 

presented a day-ahead unit commitment model including carbon emission cost for a 

wind-coal intensive power system. In [64], Lu et al. proposed a cultural algorithm based 

scheduling model to achieve low carbon dispatch. Most of those greenhouse gas (GHG) 
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/carbon emission scheduling models are based on deterministic approaches. Due to the 

stochastic nature of renewable generation resources and system demand, the 

uncertainties in the operation scheduling may result in a non-optimal schedule or even 

jeopardize the security of system operation. In this chapter, a microgrid operation 

scheduling scheme is proposed to co-optimize the generation fuel cost and carbon 

emissions via a carbon emission price. Similar to Chapter 3, multiple stochastic 

optimization techniques are utilized to model and solve the proposed scheme. 

4.2 Problem Formulation and Solving Method 

4.2.1 Mathematical Formulation 

The objective of the deterministic microgrid day-ahead carbon emission co-

optimized scheduling problem can be formulated to minimize the overall operation cost 

over the entire scheduling horizon. Compared with the objective function in (3.1), the 

carbon emission co-optimized objective can be divided in two parts: generation fuel cost 

and carbon emission cost. The generation fuel cost part is similar to the conventional 

deterministic problem, which is shown in (3.1). The carbon emission cost can be induced 

by emission-related policies, such as carbon tax or carbon cap-and-trade mechanism [60, 

65]. Thus the objective function can be modeled as shown in the following. 

 
, , , ,

, , , ,

 i i t i i t i i t i i t

t T i I

E E E E

i i t i i t i i t i i t

t T i I

Min SU u SD v O o C p

SU u SD v O o C p

 

 

    

     




  (4.1) 

In this formulation, the objective function contains the generation fuel cost and 

carbon emission cost. The start-up, shut-down, no-load operation and incremental 

operation cost are all associated with the carbon emission. The penalty factor π is the 

carbon emission price. Similar to the microgrid scheduling problem described in Chapter 

3, the decision variables are the scheduled outputs of fossil-fuel units and ESS. The 
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constraints for this formulation are also the same with (3.2)-(3.15), which are defined for 

the microgrid scheduling problem in Chapter 3. 

To address the uncertainties in the operation scheduling process, the car-

emission co-optimized problem is also modeled via SAA approach. The stochastic 

parameters are considered in the formulation based on their probability distribution. 

Therefore, a stochastic programming based objective function is the presented as shown 

in the following. 

 

 

, , , ,

, , , ,

,

 

, , ,

i i t i i t i i t i i t

t T i I

E E E E

i i t i i t i i t i i t
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Dischar Char

t t i t t t

t T
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SU u SD v O o C p

E V p p p



 

 

 
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

  (4.2) 

Applying Monte Carlo simulation, the continuous probability distribution can be 

discretized. Then the objective function (4.2) can be replaced by its approximation form. 
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  (4.3) 

In the above formulation, the violation 
,t sV is defined the same way which is 

described in (3.18) and (3.19). 

Meanwhile, the probability constrained formulations are also proposed in this 

chapter. If the power-balance constraint is replaced by (4.4) and (4.5), the SPC and JPC 

formulation for carbon-emission co-optimization can be established respectively. 

 

   
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     

,

Pr  1-  

1 + 1      

Dischar Char Wind Pv

i t t t t t

i I

Load Char Dischar

t Char t Dischar t
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p p p t T 
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 

 
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
 (4.5) 

4.2.2 Solution Method 

The principle for solving those stochastic formulations is converting the random 

parts to deterministic realizations. Similar to the microgrid operation scheduling problem 

in Chapter 3, the randomness in carbon-emission co-optimized problem is characterized 

by scenarios generated by Monte Carlo simulations. The solving approaches for each 

individual stochastic formulation have already been discussed in Chapter 3.  

4.3 Numerical Study 

A sample microgrid is utilized to verify and illustrate the proposed stochastic 

microgrid operation scheme to co-optimize the carbon emission and generation fuel cost. 

The configuration information of the sample microgrid is depicted in Table 3-1 to Table 

3-4 and the schematic of microgrid is shown in Figure 3-1. To analysis the carbon 

emission of the generation mix of this sample microgrid, the emission data is listed in 

Table 4-1. 

Table 4-1 Generator Emission Data 

Unit  
Start-up CO2 

Emission (ton) 

Shut-down CO2 

Emission (ton) 

Non-Load CO2 

Emission (ton/h) 

Marginal CO2 

Emission (ton/MMBtu) 

G1 1375 746 125 0.1085 

G2 91 59 11 0.0545 

G3 107 68 14 0.0561 

 

4.3.1 SAA Approach 

To illustrate the impact of carbon emission price on actual carbon emissions, the 

problem formulation is solved with different carbon emission prices, as shown in Figure 

4-1. The corresponding generation fuel cost is also shown in that figure for comparison 

purpose. 
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Figure 4-1 Carbon emission and generation fuel cost vs carbon emission price for SAA 

model 

As shown in Figure 4-1, the carbon emissions are reduced when the carbon 

emission price increases. The corresponding generation fuel cost also increases. This is 

because minimizing carbon emissions and minimizing generation fuel cost are conflicting 

objectives for the microgrid operation scheduling problem [66]. In the proposed SAA 

formulation, those two conflicting objectives are co-optimized via the carbon emission 

price. As the carbon emission price increases, the weight of minimizing carbon emission 

objective increases. As a result, carbon emissions of the optimal operation schedule are 

reduced when the generation fuel cost increases. 

4.3.2 SPC Approach 

The SPC model are also solved with multiple carbon emission price to illustrate 

the trade-off relations between carbon emission and generation fuel cost, as shown in 

Figure 4-2. Concurrent with previous results, it can be observed that carbon emissions 

are reduced as the corresponding generation fuel cost increases along with the carbon 

emission price. 
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Figure 4-2 Carbon emission and generation fuel cost vs carbon emission price for SPC 

model (r = 0.1) 

To explore the impact of operation risk level on the carbon emission, the SPC 

formulation is solved with different operation risk levels, as shown in Figure 4-3. As 

expected, the carbon emission level decreases as the required operation risk level 

increases. This can be explained that higher risk level indicates the larger possibility that 

the load will not be fully served by the scheduled microgrid. Consequently, the scheduled 

generation produces less carbon emission. 

 

Figure 4-3 Carbon emission vs risk for SPC model 
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4.3.3 JPC Approach 

Similar to the SPC model, JPC formulation is also solved with multiple carbon 

emission price and results are reported in Figure 4-4.  

 

Figure 4-4 Carbon emission and generation fuel cost vs carbon emission price for JPC 

model (r = 0.1) 

Meanwhile, the JPC formulation is solved with different operation risk levels, as 

shown in Figure 4-5. Similar result is achieved that the carbon emission level decreases 

as the required operation risk level increases. 

 

Figure 4-5 Carbon emission vs risk for JPC model 
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4.3.4 Model Comparison 

To compare two PCSP approaches, Figure 4-6 is presented to show the carbon 

emission difference with the same operation risk level setting. It can be observed that 

JPC formulation has a higher emission amount than that of SPC formulation. This is 

expected because the feasible set for JPC is subset of SPC’s thus JPC is stronger 

constraint, as summarized in Chapter 3. In other words, the schedule solution of JPC 

formulation is more reliable compared with that of SPC model. 

 

Figure 4-6 Carbon emission comparison between JPC model and SPC model 

4.4 Summary 

In this chapter, the microgrid operation scheduling problem is co-optimized with 

carbon emission. Three stochastic formulations are proposed to address the 

uncertainties in this process. Numerical results illustrates the trade-off among carbon 

emission, generation fuel cost and operation risks. 
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Chapter 5  

Microgrid Demand Side Management under Uncertainty Environment 

The intermittence nature of distributed renewable generation presents significant 

challenges for microgrid operation. The variable pattern of renewable generation, 

especially on-shore wind generation, sometimes does not match with typical daily load 

profiles [15, 67]. During the peak demand, the output of wind power may be low while the 

wind power may need to be curtailed during the off-peak hours. The conventional 

solutions are using marginal cost fossil-fuel units or integrating more energy storage to 

balance the generation and demand in the microgrid [16]. However, both approaches 

may result in a high environmental and financial cost. 

Considering the deployment of advanced meter infrastructure (AMI) and delicate 

communication system, it provides an alternative solution for microgrid to balance the 

generation and demand by optimally managing the demand side. Generally, the demand 

side management (DSM) can be divided into two types: incentive based program and 

pricing based program [68]. Incentive based programs include direct load control 

programs and interruptible load programs. System operator secures the curtailable 

capacity prior to the operation period. Participating customers receive a capacity payment 

for selling the interruptible capacity and an energy payment if the demand response is 

deployed upon system operator’s request. Incentive based DSM program can be used for 

frequency regulation and peak demand shaving. Consequently, extra capacity cost 

required by system operation can be reduced by implementing these types of programs. 

Pricing based program is using the dynamic price signal to affect the consumption pattern 

based on the end-users’ price responsiveness. The time-variant pricing program offers 

higher rates during peak periods and lower rates during off-peak periods. The responsive 

loads can be adjusted in both direction based on the system real-time price and their 
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elasticity. In this way, the demand peak can be shaved and demand can be optimally 

shifted based on the system generation cost with little sacrifice of consumers’ utility [69]. 

Compared with conventional bulk power system, microgrid, with its technological 

and regulatory innovation of scale and structure, has advantages to encourage its 

customers to participate in pricing based DSM programs. With AMI and smart control 

system installed, it is also easier for microgrid to learn the responsive pattern (i.e. price 

elasticity) of different groups of loads at different operation periods [70]. 

5.1 Literature Review 

Several researches have explored the application of DSM programs in microgrid. 

Palma-Behnke et al. [71] proposed an energy management system (EMS) based rolling 

horizon strategy and online signals to manage the microgrid demand. Adika et al. [72] 

used a consumer appliance scheduling model to optimally rescheduling the demand in a 

residential microgrid. Gouveia et al. [73] utilized direct load control strategies to improve 

microgrid resilience following islanding operation. Pourmousavi et al. [74] presented a 

demand management model for frequency regulation purpose by directly manipulating 

loads. Wang et al. [75] proposed a demand response strategy to smooth the tie-line 

between microgrid and utility grid by optimally coordinate the thermal appliance and 

energy storage. Tasdighi et al. [76] coordinated the thermal and electrical loads directly to 

optimize the operation of a CHP microgrid. Farzan et al. [77] and Shahidehpour et al. [78] 

discussed the capability of grid-tie microgrids participating incentive based DSM 

programs offered bulk power system operator. 

Most of the microgrid DSM approaches focused on incentive based DSM 

programs. This kind of applications requires the capability of directly control of end-users’ 

appliances. To achieve such kind of capability, microgrid needs to equip with an energy 

management system which is capable of directly controlling and metering all participating 
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appliances. The installation of all the control and meter devices can be costly. Besides, it 

also involves agreements signed by both customers and microgrid operator to permit this 

kind intrusive load control, which is not desirable from system operation point of view. 

In this chapter, a stochastic internal pricing based demand side management 

(IPDSM) model is presented. Instead of controlling end-users’ loads directly, this model 

proposes a dynamic internal pricing strategy to optimally reschedule the microgrid 

demand based on customers’ price responsive patterns. Combining unit commitment and 

DSM, the model provides an optimal operation schedule and price policy for next day 

operation. In this way, both peak shaving and load shifting can be achieved so that the 

utilization factor of renewable energy can be improved and start-up of additional units can 

be avoided. Incentives for implementing this IPDSM model for both generation resources 

and consumers are also provided by incorporating generation resource revenue 

constraints and bill protection constraints. The price responsiveness of the microgrid 

demand is addressed by multiple load groups thus the financial equality among different 

types of consumers with different price response patterns can be guaranteed. To address 

the stochastic nature of uncertainties of consumers’ responsive patterns and renewable 

energy generation, stochastic optimization techniques are applied to model and solve this 

problem. 

5.2 Model Description 

In the proposed microgrid IPDSM model, the objective is to minimize the 

microgrid total operation cost while satisfy all the constraints from both demand side and 

operator side. In this model, microgrid operator is assumed to run the model based on 

updated renewable generation forecasting and estimated consumers’ responsive 

patterns to achieve the optimal pricing policy. This pricing policy should be published to 

all the end-user customers through microgrid communication systems prior to the next 
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day’s operation. Assuming there are sufficient numbers of participated consumers, the 

total consumption adjustment based on the published pricing policy can be projected by 

the estimated price responsive patterns (i.e. price elasticity). 

To model the price responsive patterns, microgrid loads are categorized into J 

load groups according to load owners’ price responsive patterns. For example, 

households with similar incomes and consumption habits might be aggregated into the 

same load group if their responses to price change are similar. The price elasticity for a 

certain load group is a function of time. Similar to the forecasting of renewable energy 

generation, the price elasticity can be dynamically estimated prior to the next day’s 

operation [79]. Through this approach, the price responsive patterns of different load 

groups can be addressed separately as time-variant parameters in the microgrid IPDSM 

model. 

The optimal dynamic pricing policy is obtained based on the flat base price and 

base load profiles. In the presented model, the flat base price is calculated based on long 

term microgrid operation cost which also includes a recovery rate for capital investment 

and other types of costs. The base load profile is formed by forecasted demand of each 

given load group under the flat base price policy. After the dynamic internal pricing policy 

achieved from the IPDSM model is published, each load group would adjust their 

consumption pattern according to the published price policy. Consequently, the optimal 

demand side management can be achieved. 

5.3 Mathematical Formulation 

5.3.1 Deterministic IPDSM Model 

In deterministic IPDSM model, the objective function is formulated to minimize 

the operation cost for the whole operation horizon, which is the same with (3.1) as shown 

in Chapter 3. Also the IPDSM model shared the generation capacity constraints, 
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minimum up and down time constraints, units ramping rate constraints, system reserve 

constraints, ESS related constraints, renewable energy generation constraints and 

system power balance constraint as shown in (3.2) - (3.15). 

As the dynamic pricing policy is published, the demand side would response to 

the price change. The responsive pattern of load group j at operation period t can be 

modeled by its corresponding price elasticity [80], which is shown in (5.1). 

 

  , , , , /    ,Load Load Load

j t j t base t j t basep p j J t T        (5.1) 

To encourage the adoption of the proposed dynamic internal pricing strategy on 

the consumer end, additional constraints for bill protection mechanism [81] are 

implemented in the model. With those constraints, even if an average consumer (i.e. the 

consumption pattern is similar with its load group’s profile) fails to response to dynamic 

price change, there would be no increase in his/her bill. The mathematical formulation of 

those constraints is shown in the following. 

  , , , ,( )    Load Load

j t base base t j t base base

t T t T

p p j J  
 

       (5.2) 

Moreover, price range constraints are also applied to internal price strategy to 

protect consumers from receiving too dramatic price change, as shown in below. 

  ( )   Min base t Max t T          (5.3) 

The constraints to guarantee the revenue adequacy of the microgrid operators 

should also be included [82]. The total revenue collected by microgrid operator should be 

able to cover operation cost and a fair return for resource investment. With IPDSM model 

implemented, the revenue of microgrid operator should not be less than the value they 

can collect without IPDSM. Those constraints, as modeled by (5.4), give the incentive for 

the operator to adopt IPDSM model. 
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, , ,( )Load Load

j t base t j t base base

j J t T j J t T

p p  
   

    (5.4) 

For the internal pricing policy generated by IPDSM model, it is important to 

ensure the financial equality among different load groups. To achieve this goal, cross-

subsidizations [83] among different load groups should be prevented. The payment 

collected from a given load group should be sufficient to cover the operation cost induced 

by this group. Those constraints are defined by (5.5). 

  , , ,( )   Load Load

j t base t j t base base

t T t T

p p j J  
 

       (5.5) 

Combining the microgrid formulations defined in (3.1) - (3.15) with the IPDSM 

formulations defined in (5.1) - (5.5), the deterministic IPDSM model for microgrid can be 

formulated as mixed integer quadratic constrained quadratic programming (MIQCQP) 

problem. The solution method will be discussed in the following part. 

5.3.2 Stochastic IPDSM Model 

Considering the stochastic nature of renewable energy generation, there are a 

significant amount of uncertainties in the microgrid operation scheduling process. The 

under-estimate of those uncertainties may lead to insufficient system reserve while over-

estimation can result in uneconomical operation. Also, because the behavior patterns of 

human being sometimes are too complex to be modeled perfectly, the estimation of price 

elasticity for a given load group will also bring randomness into microgrid operation 

scheduling. Therefore, the stochastic formulation can be helpful here to achieve more 

robust solution [34, 84]. 

Taking all these random parameters into consideration, the objective function of 

stochastic IPDSM model can be formulated into two-stage stochastic programming 

problem as shown in (3.16) in Chapter 3. 
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The stochastic objective function can be divided into two parts. The first part is 

the same as the deterministic formulation while the second part is the recourse cost of 

resource storage due to a certain operation schedule represented by a mathematical 

expectation with the consideration of the probability distributions of all the random 

parameters. Applying all the constraints defined in the deterministic model, the stochastic 

model can be formulated. Considering the fact that available renewable generations and 

price elasticity of each load group have continuous probability distributions. Therefore, it 

is not a trivial task to obtain an analytical solution for the stochastic IPDSM model. The 

solution technique for this type of stochastic program is discussed in the following 

section. 

5.4 Solution Approach 

5.4.1 Deterministic IPDSM Model Solution Method 

Aforementioned, the deterministic IPDSM model is formulated as MIQCQP 

problem. This type of problem can be written in the following form (for notation brevity, x 

is used to represent the decision variables.). 

  0.5 TMin x Hx fx   (5.6) 

Subject to 

   T

j j jx Q x q x r j J    (5.7) 

 
ineq ineqA x b   (5.8) 

 
eq eqA x b   (5.9) 

From computational complexity point of view, it is desired to have all the Qj as 

positive semi-definite matrix in this formulation. If this statement is true, then quadratic 

constrained problem is a convex programming problem, which can be solved in 

polynomial time. Otherwise, the problem becomes a NP-Hard problem [52, 85]. There are 
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multiple choices of commercial off-the-shelf solvers that are able to solve convex 

quadratic constrained programming problem. However, if the problem is non-convex, 

then heuristic method can be used as a solving approach. 

In the deterministic IPDSM formulation, the quadratic constraints are formed by 

(5.4) and (5.5). The Qj in (5.5) is shown by (5.10). It is reasonable to assume that the 

price elasticity for load group j will always be non-positive [79]. Thus the Qj in (5.5) is 

always positive semi-definite. Note that constraint (5.5) actually is a sufficient condition 

for (5.4).  Therefore, it can be concluded that all the quadratic constraints in the 

deterministic IPDSM model are positive semi-definite. Thus the formulation is convex 

programming problem, which can be solved by multiple commercially available solvers. 
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  (5.10) 

5.4.2 Stochastic IPDSM Model Solution Method 

As mentioned above, the continuous probability distribution of the random 

parameters in stochastic formulation would generate infinite number of realizations to 

completely represent the expectation, which make the problem impractical to solve. To 

overcome this difficulty, sampling average approximation (SAA) method is applied [34] to 

solve this problem. 

The uncertainty modeling for the renewable generations has been discussed in 

Chapter 2. The estimation error of price responsive patterns depends on the randomness 

of end-users’ utility and opportunity cost during different operation periods [30-32, 79]. In 
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this chapter, the price elasticity of different load groups is estimated separately. 

Customers with similar price responsiveness are categorized into the same load group. 

Through this approach, the price elasticity estimation can achieve a better accuracy [33, 

86]. For each load group, the probability distribution of price elasticity is assumed to 

follow a uniform distribution. 

By implementing Monte Carlo sampling method, N realizations of random vector 

(composed by all the random parameters) can be generated. Each realization of random 

vector is a microgrid operation scenario. Considering the Law of Large Number, the 

stochastic objective function can be re-written as the SAA form. Similarly, constraints that 

contain random parameters can also be reformulated. It can be observed that the 

stochastic IPDSM model can be converted to a deterministic MIQCQP problem by 

applying SAA method and Monte Carlo sampling. Considering the fact that the stochastic 

price elasticity parameters are non-positive, the Q matrices of quadratic constraints will 

also be positive semi-definite. Therefore, the stochastic IPDSM model is a convex 

formulation thus can be solved by commercially available solvers. 

5.5 Numerical Study 

In this section, a six-bus sample microgrid is presented to illustrate and compare 

the proposed IPDSM models. Also, the proposed models are implemented to a 30-bus 

microgrid for scalability study purpose. The models are coded in Matlab and solved by 

CPLEX 12.5.1[53]. All the experiments are implemented on a computer with AMD X6 

CPU@2.70 GHz and 8 GB memory. 

5.5.1 System Configuration 

The sample microgrid is composed of three fossil-fuel units, one energy storage 

system, one aggregated wind farm, one aggregated solar station, and loads. The detailed 

fossil-fuel generator data is scaled from ERCOT operation scheduling, as shown in Table 

mailto:CPU@2.70
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5-1. The energy storage system data is shown in Table 5-2. The wind and solar power 

data is obtained from a generation site in Oklahoma. The topology of the microgrid is 

shown in Figure 3-1. 

As mentioned above, the dethe demand side of microgrid is modeled by J 

different load groups. It should be noted that J should be determined by the 

characteristics of all microgrid loads, which can be estimated through the techniques 

discussed in [30-32]. In the sample microgrid, the system demand, which includes 

industrial, commercial and residential loads, is categorized into three groups based on 

their price responsive patterns. Load group 1 is assumed to be composed of loads that 

do not have price sensitivity. Load group 2 is composed of loads that have medium price 

responsiveness. Load group 3 is composed of loads that have high price sensitivities. 

Since loads with different responsiveness are addressed separately, a better 

comprehensive demand side response to the price change can be achieved. Also, the 

financial equality among different types of consumers with different price response 

patterns therefore can be protected. The detailed configuration of loads is illustrated by 

Figure 5-1 and Figure 5-2. It should be noted that the probability distribution of price 

elasticity is modeled as a uniform distribution within the ± 30% of the deterministic 

estimation. 

Table 5-1 Generator Operation Data 

Unit 
Max/Min 

Output (MW) 

Ramp Up/Down 

Rate (MW/h) 

Min Up/Down 

Time (h) 

G1 120/15 47/65 4/5 

G2 70/15 27.5/35 3/3 

G3 40/10 20/42.5 2/3 
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Table 5-2 Energy Storage System Data 

Storage Capacity (MWh) Max Storage Level  Min Storage Level 

100 90% 10% 

Max Discharge Rate 

(MW) 
Discharge  Efficiency Initial Storage Level 

10 85% 50% 

Max Charge Rate (MW) Charge Efficiency Final Storage Level 

15 85% 50% 

 

 

Figure 5-1 Aggregated profiles of each load group 

 

Figure 5-2 Deterministic estimation of load elasticity for each load group 

5.5.2 Deterministic IPDSM Model 

Initially, the deterministic IPDSM model is implemented to achieve optimal 

internal price strategy and operation schedule. The solutions are shown in Figure 5-3 to 

Figure 5-6. It can be observed that fossil units operation schedule under dynamic internal 

pricing strategy are able to avoid starting up the expensive generator 3. Also, the 
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operation hours of generator 2 are reduced comparing with the schedule under flat 

pricing strategy. Figure 5-5 and Figure 5-6 show that the microgrid demand peak is 

effectively reduced by increasing the price during those hours. 

 

Figure 5-3 Deterministic optimal operation schedule of fossil-fuel units  

 

Figure 5-4 Deterministic optimal operation schedule of energy storage system  

 

Figure 5-5 Microgrid aggregated load profile under flat and dynamic pricing 

strategy, deterministic model 
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Figure 5-6 Normalized dynamic price policy versus flat base price, deterministic model 

Table 5-3 Microgrid Operation Cost for Deterministic IPDSM Model 

 Pricing Strategy Flat  Dynamic  

Microgrid Operation Cost ($) 36807.3 35572.1 

Total Consumption (MWh) 29013.6 29100.9 

CPU Time (sec) 0.11 3.85 

 

As depicted in Table 5-3, the total microgrid operation cost under dynamic pricing 

strategy is reduced while its total load consumption remains the same, comparing with 

flat pricing strategy. Therefore, it can be concluded that deploying IPDSM model 

effectively benefits the microgrid operation by optimally reallocating the responsive 

demands. Another observation is that the total consumption is not reduced significantly. 

This was expected since the consumption is restrained by constraints that are included to 

guarantee the generation revenue adequacy and prevent the cross-subsidization among 

different load groups. 

5.5.3 Stochastic IPDSM Model 

To address the uncertainties in microgrid operation, operation schedule is solved 

by the Stochastic IPDSM model with 50 scenarios. The solutions are depicted in Figure 

5-7 to Figure 5-10 and Table 5-4. 
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Figure 5-7 Stochastic optimal operation schedule of fossil-fuel units  

 

Figure 5-8 Stochastic optimal operation schedule of energy storage system  

 

Figure 5-9 Microgrid aggregated load profile under flat and dynamic pricing policy, 

stochastic model 
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Figure 5-10 Normalized dynamic price policy versus flat base price, stochastic model 

Table 5-4 Microgrid Operation Cost for Stochastic IPDSM Model 

 Pricing Strategy Flat  Dynamic  

Microgrid Operation Cost ($) 47444.7 45924.1 

Total Consumption (MWh) 29013.6 29091.3 

CPU Time (sec) 0.31 8.62 

 

Comparing Table 5-3 and Table 5-4, it can be observed that the total operation 

costs of stochastic IPDSM model are higher than deterministic model for both flat and 

dynamic pricing strategy. This was expected since the optimal value of a convex 

deterministic optimization is biased upward relative to one of corresponding stochastic 

optimization, according to Jensen’s inequality [34]. The difference between the optimal 

values of deterministic and stochastic models is the value of perfect information. 

To further exploring the stochastic parameters’ effects on the optimal solution, 

sensitivity analysis of renewable energy forecasting standard deviation is conducted. In 

Figure 5-11, the wind power sensitivity test is performed by changing the normalized 

standard deviation while keeping other stochastic parameters constant as depicted in 

system configuration part. Similar tests are also performed for solar power. It can be 

observed that as the variance of wind and solar power forecasting increasing, the 

objective total cost is also increasing. In other words, a less deviated stochastic 
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renewable generation forecasting result will lead to a less costly solution through 

stochastic IPDSM model. This was expected because a larger variance implies there is a 

larger probability to have a lower realization of renewable generation with a constant 

number of scenario samplings. Consequently, the recourse cost will result in a higher-

cost operation schedule. It should also be noted the sensitivity of wind power is more 

significant than solar power. This is because the installed capacity of wind power in the 

example microgrid is much larger than solar power. 

 

Figure 5-11 Total microgrid operation cost versus normalized standard deviation of 

renewable generation forecasting error 

Figure 5-12 shows sensitivity test for price elasticity estimation error. As the 

estimation error increasing, the objective total operation cost does not monotonically 

increase. This is because constraints related to price elasticity (i.e. constraints defined by 

(5.2), (5.3) and (5.4)) are different from the constraints related renewable generation. We 

have to apply both upper bound and lower bound to the IPDSM model. Thus the variance 

level of price responsiveness estimation is neither positively nor negatively correlated to 

total operation cost. 
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Figure 5-12 Total microgrid operation cost versus estimation error of price elasticity of 

loads 

Figure 5-13 depicts the relationships between the number of scenarios 

considered in the stochastic model and total microgrid operation cost. If infinite large 

number of scenarios are considered in the stochastic IPDSM model, SAA formulation 

would be an unbiased and consistent estimator of original formulation [34]. From Figure 

5-13, it can be noted that the total operation cost is converging as the number of 

scenarios increasing. Another observation from Figure 5-13 is that the objective operation 

cost is larger if more scenarios are considered. This is because more scenarios imply 

there would be a higher probability for the operation schedule to be bounded by more 

rigorous constraints. However it also means the operation schedule is more robust with 

respect to variations of the stochastic parameters. 

 

Figure 5-13 Total microgrid operation cost versus number of scenarios 
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5.5.4 Scalability Test on 30-Bus Microgrid 

A 30-bus microgrid modified from IEEE 30 bus test case is used to test the 

computational burden of proposed IPDSM models on a larger system. There are 18 

fossil-fuel generators, one energy storage system, one aggregated wind farm, one 

aggregated solar station considered in this 30-bus microgrid. Similar to the previous 

case, the data for the fossil-fuel units is also scaled from ERCOT operation scheduling. 

The energy storage system data is scaled from a lithium-ion battery system project in 

China and the wind and solar power data is obtained from a generation site in Oklahoma. 

Table 5-5 30-Bus Microgrid Operation Cost for Deterministic IPDSM Model 

 Pricing Strategy Flat  Dynamic  

Microgrid Operation Cost ($) 216877.7 208535.3 

Total Consumption (MWh) 154065.6 154223.5 

CPU Time (sec) 0.33 75.65 

 

Table 5-6 30-Bus Microgrid Operation Cost for Stochastic IPDSM Model 

 Pricing Strategy Flat  Dynamic  

Microgrid Operation Cost ($) 267430.1 256925.8 

Total Consumption (MWh) 154065.6 154186.5 

CPU Time (sec) 0.58 188.57 

 

Both deterministic and stochastic IPDSM models are implemented on this 

microgrid system and computational results are reported in Table 5-5 and Table 5-6. In 

the stochastic model, 50 scenarios are considered in the solving process. Comparing 

those two tables with Table 5-3 and Table 5-4, it can be noted that solving 30-bus 

microgrid case takes longer CPU time than solving 6-bus system. This was expected 
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since the increased number of fossil-fuel generators implies increased number of integer 

decision variables that indicates the states of fossil-fuel units. Another observation is 

dynamic pricing strategies for both deterministic and stochastic models take longer times 

to solve. This is because dynamic pricing formulation is a MIQCQP problem while flat 

pricing formulation is a mixed integer linear programing (MILP) problem. To sum up, the 

proposed models can solve the day-ahead resource scheduling problem within an 

acceptable time considering the typical dimension of microgrid. Therefore, it can be 

concluded that the proposed IPDSM models are scalable to solve large-scale microgrid 

resource scheduling problems. 

5.6 Summary 

This chapter proposes a stochastic resourcing planning model to optimize 

microgrid operation. By reallocating the price responsive demands through a dynamic 

internal price signal, the operation cost of microgrid can be reduced. The stochastic 

characteristics of renewable generations forecasting and demand price responsiveness 

estimation are addressed in the proposed model. Also, the incentives for implementing 

this IPDSM model for both microgrid system operator and end-user customers are 

included in the constraints. Case study results illustrate that stochastic IPDSM model can 

reduces the microgrid operation cost while provides a robust operation schedule. Further 

analysis for the characteristics of stochastic solution is also discussed. In this chapter, the 

IPDSM model is formulated via a centralized approach since multiple constraints, such as 

resource revenue adequacy and financial equality, are considered in a globalized 

manner. Considering the further developments of smart grid technologies and increased 

privacy concerns on the demand side, a future development of this work can be 

implementing the proposed IPDSM model via a decentralized approach.  



 

70 

Chapter 6  

Medium-term Operation of Microgrid in a Deregulated Power Market 

6.1 Literature Review 

Under a deregulated market environment, grid-connected microgrids can 

participate in multiple markets with different time scales [87-92], such as forward market, 

day-ahead market and real-time market, to procure electricity for their loads. The 

procurements settled by different markets may involve different levels of cost 

uncertainties and risks [93]. For example, a microgrid can sign a bilateral forward contract 

to reduce the risk associated with volatility of future electricity purchase price. However a 

lower risk level contract typically comes with a higher procurement cost which can be 

considered as a risk premium [94]. On the other hand, settlements on day-ahead market 

or real-time market may lead to a lower average cost however they also result in a higher 

level of volatility on the procurement expense, which is undesired. Therefore, an 

microgrid has to comprise its procurement portfolio by determining its involvements in 

different types of market. To balance this potential trade off, a medium-term energy 

procurement portfolio problem becomes critical to microgrids to minimize their costs and 

manage their risks. 

Though the medium-term energy procurement models for electricity retailers 

have been addressed in numbers of research papers, limited efforts have been devoted 

to developing a medium-term decision making model for microgrids. Liu et al. [94] 

proposed an optimal energy purchase allocation and demand bidding scheme for an 

electric energy service provider. Woo et al. [95] presented a risk-constrained 

procurement model for a distribution company. The risk level was measured by value-at-

risk (VaR) in [3]. Xu et al. [96] proposed a medium-term procurement portfolio 

optimization model for a load serving entity (LSE) which used semi-variance of spot 
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market transactions as risk term. Kettunen et al. [97] established a multi-stage stochastic 

model to minimize the procurement cost subject to a set of risk constraints.  Woo et al. 

[98] derived a set of Pareto-optimal solutions for the purchase allocation of a distribution 

company. Carrion et al. [99] presented a risk-constrained stochastic model for  

procurement decision and price determination of a electricity retailer. The pool price was 

characterized using time-series model in this paper. Carrion et al. [100] also proposed a 

bi-level programming approach to solve the medium-term decision making problem faced 

by a retailer. Those reviewed literatures have provided effective studies for the medium-

term energy procurement model for retailers or distribution companies. However, the day-

ahead market settlements and real-time market settlements have not been distinguished 

when modeling the pool price in most cases. As an important tool designed for hedging 

the volatility in real-time market price, the characteristics of day-ahead market settlement 

price play a critical role in determining the medium-term energy procurement portfolio for 

grid-connected microgrids. 

Considering the unique operating characteristics of microgrids, it is possible to 

incorporate the DSM into the medium-term operation decision making model. Although 

the DSM, or demand response (DR), for microgrids have been studied in multiple papers 

as mentioned in Chapter 5, their capability for hedging the variance on the real-time 

settlement price has rare been considered in the medium-term operation model. As the 

operators of those microgrid facilities have better knowledge of the economic 

responsiveness of each load sector, microgrids can utilize DSM to manage the volatility 

risks of their energy procurement cost.   

Taking all above into consideration, this chapter proposes a medium-term 

operation model for a grid-connected microgrid. Multiple market settlements, which 

include forward contract settlement, day-ahead market settlement, and real-time market 
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settlement, have been considered in this model. Also, the DSM of microgrid is 

implemented in this model as a hedging tool to reduce the risks. The model is formulated 

as a stochastic quadratic programming (SQP) problem which can be efficiently solved by 

commercial solvers. The risk term is measured by mean-variance risk model in the 

proposed formulation. The uncertainties in the formulation are characterized by 

stochastic day-ahead and real-time price models which are generated from historical 

ERCOT data. It should be mentioned that the load considered in this chapter are the net 

effective load from the bulk power system point of view. In other words, the load 

considered is the net load which has been subtracted by the microgrid distributed 

generations. For simplification purpose, the scheduling of the microgrid generation has 

not been considered in this chapter. The details of scheduling operation for microgrid can 

be referred to Chapter 3 in this dissertation. 

6.2 Medium-term Operation Framework 

As aiming to establish a medium-term operation framework for a microgrid, 

multiple operation decisions, which include energy procurements and DSM, should be 

made within a medium time span. Without loss of generality, a time span of one week is 

considered in this chapter. The decisions made by the microgrid can be classified into 

two categories: medium-term decisions and day-ahead decisions, as shown in Fig. 1. 

D1

Medium-term Operation Timeline

Medium-term decisions: energy procurements from forward contracts

Day-ahead decisions: energy procurements in day-ahead markets and 

DSM scheduling

D2 D3 Dn

 

Figure 6-1 Medium-term operation timeline for a microgrid 
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In the proposed medium-term operation framework, a microgrid is assumed to 

make multiple decisions at different time points. The available information for different 

time points also vary therefore decisions would be made under different level of 

uncertainties. In this paper, the uncertainties of the information are characterized by 

stochastic price models, which will be discussed in details in the following part of this 

chapter. 

6.2.1 Medium-term Decisions 

The microgrid is assumed to be able to participate in forward market to obtain 

energy for its loads. Therefore the medium-term operation decisions would be made to 

determine the amount of energy purchased through forward contracts. Three different 

types of forward contracts are considered: peak weekday (PWD), peak weekend (PWE), 

and off peak (OP). Since those medium-term decisions are made at the beginning of the 

time span, the information available at that time point would be imperfect.  Therefore the 

realizations of day-ahead settlement price and real-time settlement price during this time 

span are treated as random parameters while the settlement prices and specifications for 

those forward contracts are assumed as known in this model. The microgrid would select 

the optimal offers from the forward markets for different contract types and make the 

decisions for the amount of procurement. In this chapter, the base load of microgrid is 

assumed as perfect information for medium-term decision making. 

6.2.2 Day-ahead Decisions 

After signing the procurements contracts in the forward markets, the microgrid 

needs to participate in the day-ahead market and determine the DSM schedule prior to 

every operation day. Figure 6-2 shows the timeline for making day-head decisions. It 

should be noted that the time points shown in Figure 6-2 are adopted from current 
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ERCOT market protocol [101], however the proposed day-ahead decision making model 

can be modified and adapt to other market protocols. 

T1 06:00

  T1: Day-ahead Market Open

  T2: Day-ahead Market Clearing Process begin

  T3: Day-ahead Market Results Posted

  T4: Next-day DSM Schedule Determined

T2 10:00 T3 13:30 T4 20:00

Day-ahead Operation Timeline

 

Figure 6-2 Day-ahead operation timeline for microgrid 

As shown in Figure 6-2, the day-ahead market is assumed to be open at 06:00 

AM and close at 10:00 AM. The microgrid should submit its bid to purchase through the 

qualified scheduling entity (QSE) during this period. The bid should be determined based 

on procurements on the forward market, the updated forecasting result for the next-day 

real-time settlement price, and the anticipation of the next-day load baseline. After 10:00 

AM the independent system operator (ISO) would run the day-ahead market clearing 

engine and post the market clearing results at 13:30 PM [101]. Based on this result, the 

microgrid would know the quantity of energy that has been purchased in the day-ahead 

market and determine its DSM schedule for the next operation day. After all those 

decisions made, the difference between actual demand realization and its procurement 

amount would be compensated by real-time market and settled by corresponding prices. 

6.2.3 Demand Side Management 

For microgrids, curtailments of non-critical loads and rescheduling some of their 

production processes are typically feasible [102, 103]. In this chapter, the microgrid is 

assumed to have a clear knowledge of the long-term economic impacts of the curtailment 
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or rescheduling of its loads. Consequently, the financial impacts of those interruptible 

loads can implicitly define the responsiveness of those loads to the electricity price. In the 

proposed model, the loads of this microgrid are categorized into different load classes 

based on their price responsiveness. Through this approach, the responsive pattern of 

each load class can be addressed separately considering the fact that the monetary 

value of interruptible load for each load class may change along with time thus their price 

responsiveness would be time-variant parameters. 

Considering the characteristics of microgrid, it can be difficult to achieve 

curtailment of non-critical loads and rescheduling of production processes in a real-time 

manner [104]. Therefore, in the proposed model, the schedule of DSM for the microgrid is 

determined prior to the next-operation day. It should also be noted that the 

responsiveness of each load class is determined by the effective settlement price. At the 

time point for making DSM decisions, the effective settlement price is determined by the 

procurements in forward and day-ahead market, the settlement prices in forward and 

day-ahead market, and the forecasting result of next-day real-time settlement price. 

Combining this effective settlement price with price elasticity (i.e. price responsiveness) 

of each load group, final DSM schedule can then be determined 

6.2.4 Risk Management 

Considering that the realizations of day-ahead settlement price and real-time 

settlement price are random parameters for medium-term operation model, microgrid 

may experience extreme volatility for its total energy purchase cost. To explicitly quantify 

this risk term for energy procurement portfolio, mean-variance risk model [105] is 

implemented in this chapter. As one of the fundamental theories for modern portfolio 

theory [106], mean-variance risk model is a quantitative tool to achieve trade-off between 

expected cost (or return) and risk. Based on this principle, multiple operation options, 
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which include purchase via forward contracts, purchase in day-ahead market, purchase 

in real-time market and DSM, form a decision portfolio and can be optimized to minimize 

the total energy procurement cost and the corresponding volatility risk. The mathematic 

formulation of this portfolio optimization problem is discussed in details in the following 

sections. 

6.3 Price Modeling and Uncertainty Characterization 

In order to optimize the medium-term energy procurement portfolio for the 

microgrid, the price uncertainties in the day-ahead and real-time markets need to be 

considered. The study of price modeling has been reviewed in [107]. The stochastic price 

can be determined by normal distribution [108, 109]. However, taking the price spike 

scenarios in deregulated market environments into consideration, the price uncertainty 

sometimes may follow the lognormal distribution [110]. In this paper, two stochastic price 

models are formulated based on 2011 ERCOT market price data [111] to characterize 

the randomness of day-ahead and real-time settlement prices, respectively. For 

comparison purpose, both summer and winter cases are considered in this paper to 

demonstrate different price scenarios and their impacts on the energy procurement 

portfolio. 

In the proposed formulation, the decisions are made on an hourly basis. 

Considering that ERCOT publishes the real-time settlement price for every 15-minute 

interval, the real-time market in this paper is evaluated by a load-weighted average 

settlement price. Since the forward markets are separated into three different time period, 

the day-ahead and real-time prices are also analyzed separately for PWD, PWE, and OP. 

In the proposed model, PWD is defined as hours ending in 07:00 AM to 10:00 PM for 

weekday excluding NERC holidays. PWE are hours ending in 07:00 AM to 10:00 PM for 

weekend and NERC holidays. OP is the rest hours [101]. 
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Table 6-1 Characteristics of 2011 ERCOT North Load Zone Price Data 

  Summer Winter 

Mean ($/MWh) PWD PWE OP PWD PWE OP 

Day-ahead 133.82 75.39 27.89 43.64 31.69 32.07 

Real time 116.87 55.87 28.21 45.92 27.25 37.79 

Variance ($/MWh)^2 PWD PWE OP PWD PWE OP 

Day-ahead 114427 19271 32 5587 72 2329 

Real time 137411 7943 294 26636 162 25928 

 

Table 6-1 illustrates the mean and variance of day-ahead and real-time market 

prices in both summer and winter cases. It can be observed that the day-ahead 

settlement prices are higher than the real-time in most cases. Meanwhile, the variances 

of the day-ahead settlement prices are greater than the real-time one. This is expected 

since the purpose of establishing day-head market is to hedge the volatility risks in the 

real-time market. The mean price difference can be treated as the mean risk premium the 

market would like to pay for this hedge. 

Table 6-2 Probability Distributions of Settlement Price for Specific Time 

  
Day-ahead 

Summer 

Real-time 

Summer 

Day-ahead 

Winter 

Real-time 

Winter 

Time WD WE WD WE WD WE WD WE 

0:00 N N LN LN LN N N LN 

1:00 N N N N LN N N N 

2:00 N N N N LN N N N 

3:00 N N N N LN N LN N 

4:00 N N N N LN N LN N 

5:00 N N N N LN N LN N 

6:00 N N N N LN LN LN LN 

7:00 N N N N LN N LN N 

8:00 N N N N LN N LN LN 

9:00 N N LN LN LN LN LN LN 

10:00 N LN N N LN N LN LN 

11:00 N N N N LN N LN N 

12:00 N N LN N LN N LN LN 

13:00 LN LN LN LN LN N LN N 

14:00 LN LN LN LN LN N LN N 

15:00 LN LN LN LN LN N LN N 
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16:00 LN LN LN LN LN N LN N 

17:00 LN LN LN LN LN N LN N 

18:00 LN LN LN LN LN LN LN LN 

19:00 LN LN LN LN LN N LN N 

20:00 LN LN N N LN LN LN LN 

21:00 LN LN LN N LN N LN N 

22:00 N N LN LN LN N LN LN 

23:00 N N LN LN LN N N N 

 N is Normal Distribution and LN is Lognormal Distribution 

Considering these different characteristics, the realization of day-ahead and real-

time settlement prices during these time periods should be modeled separately. In this 

paper, the price distributions for specific time period are evaluated on an hourly basis by 

ARENA [112] as reported in Table 6-2. From the analysis results, it can be observed that 

the price distributions for different time period fit with either normal distribution or 

lognormal distribution according to the results of Kolmogorov-Smirnov test. For the same 

hour of a day in different seasons, the price distribution may follow different types of 

probability distribution. For example, Figure 6-3(a) shows the settlement price distribution 

in day-ahead market PWE in summer at the period ending by 9:00 AM.  The 

characteristic of this time period price model can be represented by normal distribution 

with 31.7 and 2.41 of mean and standard deviation, respectively. Meanwhile, as shown in 

Figure 6-3(b), the PWE settlement price distribution model in day-ahead market at the 

same hour of a day in winter is comparatively distinguished to the summer price by fitting 

with a lognormal distribution with mean and variance of 34.7 and 59.92, respectively. 

Table 6-2—Continued       
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(a) 

 

(b) 

Figure 6-3 Price distribution for day-ahead PWE at 9:00 AM (a) Summer (b) Winter 

6.4 Mathematical Formulation 

Aforementioned, the proposed medium-term operation model for microgrid is 

formulated as a SQP problem, as shown in the following. 
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Energy volume constraints for forward contracts 

 ,min , ,max 
PWD

F F F

PWD PWD t PWD

t T

E p E


    (6.2) 

 ,min , ,max 
PWE

F F F

PWE PWE t PWE

t T

E p E


    (6.3) 

 ,min , ,max 
OP

F F F

OP OP t OP

t T

E p E


    (6.4) 

Energy consumption constraints for forward contracts in each operation period 

  ,min , ,max    F F F

PWD PWD t PWD PWDp p p t T      (6.5) 

  ,min , ,max    F F F

PWE PWE t PWE PWEp p p t T      (6.6) 

  ,min , ,max    F F F

OP OP t OP OPp p p t T      (6.7) 

Mean-variance constraints 

  , , , ,

DA DA RT RT

s t s t s t s t s

s S t T

Var Var prob p p 
 

 
  

 
   (6.8) 

Power balance constraints 

  , , , ,=    , ,F DA RT Loadi

PWD t t s t s t s PWD

i I

p p p p t T i I s S


        (6.9) 

  , , , ,=    , ,F DA RT Loadi

PWE t t s t s t s PWE

i I

p p p p t T i I s S


        (6.10) 

  , , , ,=    , ,F DA RT Loadi

OP t t s t s t s OP

i I

p p p p t T i I s S


        (6.11) 

DSM constraints 

      , , , ,/ /   ,Loadi Loadi Loadi Loadi Eff Loadi Loadi

t s t base t base t t s base basep p p t T i I           (6.12) 
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  (6.13) 
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  
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  (6.15) 

  ,min , ,max    , ,Loadi Loadi Loadi

t t s tp p p t T s S i I        (6.16) 

6.4.1 Objective Function 

The objective function (6.1) in the proposed formulation contains two parts: the 

total energy procurement cost and quantified risk term. The risk coefficient is used to 

describe the tradeoff between the procurement cost and risk. The value of β represents 

the level of risk aversion for the microgrid. In other words, the larger β is, the more 

conservative procurement portfolio the microgrid would choose. Correspondingly, the 

total energy procurement cost would be higher. Depending on the risk aversion level of 

the microgrid, a proper value of β should be chosen and implemented in the proposed 

model. The details on how to determine this β are beyond the scope of this paper, 

however there are numbers of economic papers have conducted effective research on 

this topic [113-115]. 

6.4.2 Constraints for Forward Contracts 

In this paper, the forward contracts are defined on different time period: PWD, 

PWE, OP. The upper and lower energy volume bounds for forward contracts of different 

time periods are defined by (6.2)-(6.4), respectively. Meanwhile, the energy consumption 

bounds for each operation periods are defined by (6.5)-(6.7), respectively. 
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6.4.3 Risk Measurement Constraints 

As mentioned above, the risk term is quantified by mean-variance model. In this 

paper, the procurement volatility risk comes for the uncertainties in the day-ahead market 

and real-time market. To calculate this value, the covariance matrix among those prices 

in both market need to be calculated. Based on this covariance matrix, the mean-

variance of total procurement cost can be obtained as shown in the following. 
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  (6.17) 

It can be observed from (6.17) that the variance is composed of four parts: the 

self-variance of price in both markets, covariance between different time period in day-

ahead market, covariance between different time period in real-time market and 

covariance between two markets. 

6.4.4 Power Balance Constraints 

The power balance constraints are implemented by (6.9)-(6.11). The loads in 

chapter are assumed as net loads from the bulk power system point of view, which the 

total microgrid loads minus the internal generation behind the point of common coupling. 

It should be noted that the energy procurement settled in real-time market would be 

determined by the purchases made in forward and day-ahead market and the actual 

realization of total demand which is determined by the DSM.  
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6.4.5 DSM Constraints 

In this paper, the price responsiveness of each load group is synthesized from 

the long-term economic impact of the corresponding interruption and represented by 

price elasticity, as shown in (6.12). Each load group would response to the effective 

prices which are defined by (6.13)-(6.15). The upper and lower bounds of the demand 

response are defined by (6.16). 

Combining all those constraints, the medium-term operation model for microgrid 

is formulated as a SQP problem. By applying Monte Carlo simulation method [34], the 

SQP problem can be converted as deterministic quadratic programming, which can be 

efficiently solved by commercial available solvers. 

6.5 Numerical Study 

The proposed medium-term operation model is applied to an assumed microgrid 

based on ERCOT electricity market. Both summer and winter cases are studied to 

illustrate its performance for different price scenarios. The formulation is coded in Matlab 

and solved by CPLEX 12.5.1 [53]. All the models are implemented on a computer with 

AMD X6 CPU@2.70 GHz and 8 GB memory. 

6.5.1 Case Configuration 

Without loss of generality, the microgrid is assumed to have three load classes 

based on long-term financial impacts of the interruption of their services. Load class 1 is 

assumed to be critical loads which cannot be interrupted so that they do not have price 

responsiveness. Load class 2 is composed of loads that have medium financial 

interruption impact therefore they have medium price elasticity. Load class 3 has relative 

low financial impact for interruption so that they have low price elasticity. A weekly load 

profile for this microgrid is illustrated in Figure 6-4 and the corresponding price 

responsiveness is shown in Table 6-3. 
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Table 6-3 Price Elasticity of Each Load Class 

Load Class Peak Weekday Peak Weekend Off Peak 

1 0 0 0 

2 -0.1 -0.05 -0.025 

3 -0.2 -0.1 -0.05 

 

 

Figure 6-4 Weekly load profile for each load group 

In this paper, the microgrid is assumed as a price taker, i.e. it has no influence on 

the final realization of market prices. At the beginning of the medium-term decision 

making time frame, the microgrid operator would compare the options in the forward 

market and choose the best available. The detailed information of the forward contracts is 

reported by Table 6-4 and Table 6-5. 

Table 6-4 Energy Consumption Bounds for Forward Contracts 

  
Energy Consumption Upper 

Bounds (MWh) 

Energy Consumption Lower 

Bounds (MWh) 

Peak Weekday 5000 1500 

Peak Weekend 2000 500 

Off Peak 2000 500 

 

Table 6-5 Weekly Forward Contract Settlement Price for Summer and Winter Case 
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Peak Weekday 137.41 60.33 

Peak Weekend 83.23 53.75 

Off Peak 37.02 35.48 

 

To compare and illustrate the medium-term operation model in different price 

scenarios, summer and winter of year 2011 data are applied to generate the stochastic 

price model in the case study. The prices of the forward contracts are modified from the 

historical settlement data for ERCOT north load zone in 2011[111]. 

6.5.2 Simulation Results Analysis 

The total procurement cost and volatility risk (i.e. the variance of the total 

procurement cost) results of summer and winter week for the microgrid are reported in 

Figure 6-5 and Figure 6-6. It can be observed that the procurement cost increases as 

long as the risk coefficient increases. In contrast with that, the volatility risk decreases 

while the risk coefficient increases for both cases. This is because when the risk 

coefficient increases, the stake-holder of microgrid is more risk-averse. Consequently, in 

the trade-off between expected cost and risk, the microgrid operator would rather reduce 

the risk at the cost increasing the expected procurement cost. As a result, the 

procurement cost decreases while the volatility risk increases. 

 

Figure 6-5 Energy procurement cost versus volatility risk in summer for the microgrid 
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Figure 6-6 Energy procurement cost versus volatility risk in winter for the microgrid 

To further explore the impact of risk coefficient, Figure 6-7 is presented to 

illustrate the difference in the procurement portfolio for different risk preference. The blue 

column represents a risk-neutral microgrid (i.e. its risk coefficient beta equals to 0) while 

the red column represents a risk-averse one (i.e. its risk coefficient beta equals to 1). It 

can be observed that in the procurement portfolio of the risk-neutral microgrid, the 

percentages of energy procured via forward contracts, via day-ahead market and via 

real-time market are increasing monotonically. This is because the average settlement 

prices from those options are decreasing monotonically, as shown in Table VI. Compared 

with that, the procurement portfolio of the risk-averse microgrid indicates that the 

percentages of energy purchased via forward contracts, via day-ahead market and via 

real-time market are decreasing monotonically.  This is because the volatility risks 

associated with those options are increasing monotonically. Due to the risk coefficient 

beta the risk measurement part carries a large weight in the decision making objective. 

Consequently the microgrid would prefer the less risky options (i.e. the procurement 

options with less variance for the price distribution) even though the average settlement 

prices for those options might be higher. 
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Figure 6-7 Energy procurement portfolio comparison (risk-neutral versus risk-averse) 

Table VI shows weighted average settlement prices in different markets for both 

cases (based on the portfolio solution with risk coefficient beta equals to 1). As 

mentioned in the section III, the average settlement prices in forward market are the 

highest and those in real-time market are the lowest. The price differences can be treated 

as the risk premium [116] which microgrid is willing to pay to reduce the volatility risk of 

its energy procurement cost. However, it is worth mentioning that the real-time market 

might be the highest under certain severe weather situation. However, this is considered 

as outlier case and the procurement decisions are supposed to be made based on 

medium-term statistical forecasting. 

Table 6-6 Weighted Average Settlement Price ($/MWh) 

Average Settlement 

Price  

Forward 

Contracts 

Day-ahead 

Market 

Real-Time 

Market 

Summer Case 91.73 82.51 72.69 

Winter Case 49.87 40.37 36.41 

 

Figure 6-8 demonstrates the load shifting and peak shaving capability by 

applying DSM in the day-ahead operation. From the results reported by Table 6-7, it can 
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be observed that the industry customer can achieve a lower average energy procurement 

cost by implementing DSM. This can be explained that as the microgrid operator 

rearranges its next-day operation schedule based on the real-time settlement price 

forecasting, its consumption during the peak-price hours would be reduced and shifted to 

lower-price hours. Consequently, the average procurement cost would be reduced. 

Another observation can be made from Table 6-7 that the consumption reduction in the 

summer case is more effective than winter case. This is because the average price in 

summer is higher than winter. Therefore, based on the same price responsiveness, the 

microgrid should achieve more consumption reduction in the summer scenario as the 

corresponding incentive is larger. 

 

Figure 6-8 Weekly load profile with and without DSM (Summer Case) 

Table 6-7 Total Procurement and Consumption with and without DSM 

    With DSM Without DSM 

Summer Week 

Total Procurement Cost ($) 545837.47 588890.18 

Total Consumption (MWh) 6241.21 6412.83 

Average Price ($/MWh) 87.46 91.83 

Winter Week Total Procurement Cost ($) 284262.11 291527.25 
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Total Consumption (MWh) 6377.88 6412.83 

Average Price ($/MWh) 44.57 45.46 

 

6.6 Summary 

In this chapter, a medium-term operation model is proposed to for microgrid to 

optimize its operation portfolio. The purchase allocation problem in forward market, day-

ahead market and real-time market and demand side management (DSM) are 

considered to minimize procurement cost and volatility risk faced by the microgrid. The 

uncertainties in this process are characterized by stochastic price models generated from 

historical ERCOT data. Then proposed model is formulated and solved by stochastic 

quadratic programming approach. The case study results illustrate that the proposed 

medium-term operation model can help the microgrid achieve an optimal procurement 

portfolio while restraining the volatility risk. Also, implementing DSM help the microgrid 

reduce the total consumption and achieve lower average price, thus reduce the total 

procurement cost. 

  

Table 6-7—Continued       
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Chapter 7  

Conclusions and Future Work 

With its technological and regulatory innovation of scale and structure, microgrids 

have been developed all over the world as a mean to address the high penetration level 

of renewable generation, reduce the greenhouse gas emission, and provide economical 

solutions for the currently non-electrified area. The operation of microgrid requires 

resource planning for those fossil-fuel based generators, energy storage systems, and 

demand resources if demand side management is implemented. Due to the stochastic 

nature of renewable energy resources, load behaviors, and market prices, enormous 

uncertainties are involved in the microgrid operation scheduling problems for both short-

term and longer term. Those uncertainties may result in a non-optimal operation or even 

jeopardizing the reliability of the microgrid operation if they are not fully considered. 

In this dissertation, the uncertainties in the microgrid operation are addressed by 

stochastic modeling and optimization techniques. The microgrid day-ahead scheduling 

problem, demand side management scheduling problem, and medium-term operation 

scheduling problem are modelled via stochastic approaches to achieve the optimal 

operation decisions under a stochastic environment. Meanwhile, a microgrid carbon 

emission co-optimized scheduling problem is also proposed to address the carbon 

emission in the microgrid operation. Correspondingly, the uncertainty models and solving 

methods for those formulations are also proposed and numerical results are presented 

for verification and illustration purpose. 

Considering the development of smart grid technologies, the microgrid can act as 

a role model from the bulk power system point of view. There are still rooms for 

improvement between the interaction of microgrid and bulk power system in the current 

deregulated power market. In this dissertation, the procurement portfolio optimization for 
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microgrid has been discussed while treating the day-ahead market and real-time market 

as stochastic price scenarios. A future study regarding the microgrid operation can be the 

optimal offering and bidding strategy to participate in the wholesale power market. 

Moreover, considering the characteristics of stochastic optimization techniques, a 

dynamic security constrained operation scheduling problem for microgrid can be further 

explored. For a microgrid which has their value of lost load as a time-variant function, this 

formulation and dynamic load shedding scheme can be effective approaches to improve 

the operation efficiency of the microgrid.  

Furthermore, the uncertainty modeling techniques for different type of microgrid 

require further investigation. The estimation of the probability distribution of the 

renewable generation for different scales, the price responsive patterns of end users from 

different load classes and the value of lost load for different operation periods play critical 

roles in the optimal operation of microgrid. It will benefit the microgrid operation 

significantly if those forecasting and estimation accuracy can be improved based on the 

current development of smart meter installation and big data techniques. 
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Appendix A 

Nomenclature for Chapter 3, Chapter 4 and Chapter 5 
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Indices and Sets 

I  Set of all fossil-fuel generators, index by i 

S Set of all scenarios of random parameters, index by s 

T Set of all operation period, index by t 

System Parameters and Functions 
Wind

tp  Aggregated wind generation output in t 

Pv

tp  Aggregated solar generation output in t 

Load

tp  Aggregated microgrid total demand  in t 

,

Wind

t sp  Aggregated wind generation output in t for scenario s 

,

Pv

t sp  Aggregated solar generation output in t for scenario s 

,

Load

t sp  Aggregated microgrid load  in t for scenario s 

,miniP  Minimum power output of fossil-fuel generator i 

,maxiP  Maximum power output of fossil-fuel generator i 

max

CharP  Maximum charging power of energy storage system 

max

DischarP  Maximum discharging power of energy storage system 

min

StorE  Minimum storage level of energy storage system 

max

StorE  Maximum storage level of energy storage system 

Stor

tE  Storage level of energy storage system at the end 

operation period t 
Stor

iniE  Initial storage level of energy storage system at the 

beginning of the operation horizon 
Stor

finalE  Final storage level of energy storage system at the end 

of the operation horizon 

Dischar  Discharge efficiency of energy storage system 

Char  Charge efficiency of energy storage system 

t  Penalty cost for unserved load in t 

tV  Amount of unserved load in t 

,t sV  Amount of unserved load in t for scenario s 

iRD  Ramp-down rate for fossil-fuel generator i 

iRU  Ramp-up rate for fossil-fuel generator i 

iMU  Minimum-up time for fossil-fuel generator i 

iMD  Minimum-down time for fossil-fuel generator i 

iSU  Start-up cost for fossil-fuel generator i 

iSD  Shut-down cost for fossil-fuel generator i 

iO  No load cost for fossil-fuel generator i 

iC  Marginal cost of fossil-fuel generator i in t 

tR  Microgrid operation reserve requirement 

E

iSU  Start-up carbon emission for fossil-fuel generator i 

E

iSD  Shut-down carbon emission for fossil-fuel generator i 

E

iO  No load carbon emission for fossil-fuel generator i 
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E

iC  Marginal carbon emission of fossil-fuel generator i in t 

  Carbon emission price 

r  Probability of scheduled generations do not meet 

microgrid demand (operation risk) 

N Total number of scenarios in set S 

Decision variables 

,i tp  Power output of fossil-fuel generator i in t 

DisChar

tp  Discharging power of energy storage system in t 

Char

tp  Charging power of energy storage system in t 

,i to  Binary variable to indicate if fossil-fuel generator i is 

on in t 

,i tu  Binary variable to indicate if fossil-fuel generator i is 

started up in t 

,i tv  Binary variable to indicate if fossil-fuel generator i is 

shut down in t 

tx  Binary variable to indicate if probabilistic constraint is 

satisfied in t 

ty  Binary variable to indicate if there is positive amount 

of unserved load in t 

tz  Binary variable to indicate if energy storage is 

discharging in t 

t  Price change from the base price in t 

.
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Appendix B 

Nomenclature for Chapter 6 
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Indices and Sets 

 I  Set of all load classes, index by i 

 S Set of all realizations of random vector, index by s 

 T Set of all operation periods, index by t 

TPWD Set of peak weekday operation periods, index by t 

TPWE Set of peak weekend operation periods, index by t 

TOP Set of off peak operation periods, index by t 

Parameters 
F

PWD  Price of peak weekday forward contract 

F

PWE  Price of peak weekend forward contract 

F

OP  Price of off peak forward contract 

,max

F

PWDE  Upper energy volume bound for peak weekday 

forward contract 

,min

F

PWDE  Lower energy volume bound for peak weekday 

forward contract 

,max

F

PWEE  Upper energy volume bound for peak weekend 

forward contract 

,min

F

PWEE  Lower energy volume bound for peak weekend 

forward contract 

,max

F

OPE  Upper energy volume bound for off peak forward 

contract 

,min

F

OPE  Lower energy volume bound for off peak forward 

contract 

,max

F

PWDp  Upper bound of energy consumption in operation 

period for peak weekday forward contract 

,min

F

PWDp  Lower bound of energy consumption in operation 

period for peak weekday forward contract 

,max

F

PWEp  Upper bound of energy consumption in operation 

period for peak weekend forward contract 

,min

F

PWEp  Lower bound of energy consumption in operation 

period for peak weekend forward contract 

,max

F

OPp  Upper bound of energy consumption in operation 

period for off peak forward contract 

,min

F

OPp  Lower bound of energy consumption in operation 

period for off peak forward contract 

sprob  Probability of scenario s 

,

DA

t s  Settlement price of day-ahead market at t for scenario 

s 

,

DA

t s  Settlement price of real-time market at t for scenario s 

  Risk coefficient 

,

Loadi

t sp  Demand for load class i at t for scenario s after 

demand side management 

,

Loadi

t basep  Base demand for load class i at t before demand side 

management 
Loadi

t  Price elasticity for load class i at t 

,

Eff

t s  Effective price for the demand side management at t 

for scenario s 
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Decision variables 
F

PWDp  Energy procurement from peak weekday forward 

contract 
F

PWEp  Energy procurement from peak weekend forward 

contract 
F

OPp  Energy procurement from off peak forward contract 

,

DA

t sp  Energy procurement settled in day-ahead market at t 

for scenario s 

,

RT

t sp  Energy procurement settled in real-time market at t 

for scenario s 
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