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Abstract

VISCOELASTIC EFFECTS ON A,
POLYETHERIMIDE CYLINDER
WITH CONSTANT RADIAL

DEFORMATION

L. Edward Parkman Ill, MSME

The University of Texas at Arlington, 2015

Supervising Professor: Ashfaq Adnan

The relaxation of an axisymmetric radially crimped joint is analyzed with the inner
component being formed from the engineering grade polymer ULTEM™ 1000
polyetherimide. Creep and Relaxation tests were performed at several temperatures in
order to use Time Temperature Superposition theory to assemble a master curve for
predictions at long times based on short time testing.

The master curves for each test were fit to the appropriate Prony Series and all
coefficients are tabulated for re-use. The elastic theory for the classic thick walled
cylinder was reviewed and the conversion from elasticity to viscoelasticity was
demonstrated. Strength predictions are shown and compared to their elastic

counterparts. Finally, a non-dimensionalized model of strength over time is presented.
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Chapter 1

Problem Statement

1.1 Geometry

Different types of crimped joints have been used in several industries for many
years. Examples include metal caps on glass beverage bottles, lids for canned foods,
and cartridge attachment for ammunition. Radial crimping of tubular members is very
common for attaching fittings for various hydraulic & pneumatic applications as well as
attaching connectors to cables in the Telecommunications industry.

Figure 1-1 below shows a schematic view of a radially crimped joint. The yellow
metal cylinder is originally slip fit over the blue plastic cylinder. A tool is used deform the
outer cylinder radially inward until a press fit is developed between the cylinders. For the
press fit to remain after the crimp tool is removed, the outer ring material must be
deformed past its yield point. As the crimp tool is removed, the outer ring will expand
radially outward as the elastic stress in the part is relieved, leaving a press fit that is

related to the plastic strain induced in the outer crimp ring.
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Figure 1-1: Schematic View of Crimped Joint (x-section on left)

Crimping was originally used to join thin metal parts, but it has also been used to
join dissimilar materials, such as shown in Figure 1-1. This work is focused on examining
and developing a predictive model for the long term effects of choosing a plastic material
for the inner cylinder in a crimped joint. In this application, the prediction of the long-term
relaxation of the retention force F is the goal.

For the sake of this work, the initial retention force F; is assumed to be known
shortly after the crimping operation (t=0), and the specification for retention force F can
be expressed as a percentage of F;. Assuming an original design safety factor of 1.5
gives a specification for F,;, = 66% of F;. Radius a is assumed to be 1.0 mm and b is 1.5
mm. Radial deformation u, is assumed to be 0.075 mm, corresponding to 5% strain in
the radial direction.

For this work, the planned prediction time will be 20 years at 23°C. If possible,
prediction to 20 years at 40°C would be desirable to show the effects of temperature and

highlight the difference between products designed for indoor and outdoor applications.



1.2 Assumptions
In developing a material model, it's good practice to start simple, check against
reality, and then increase complexity. In this work, uniaxial properties are measured and

used to predict the effects of time on a simplified version of a crimp joint.

1.2.1  No Local Deformations

For this work, it will be assumed that the entire length of the outer ring is radially
deformed inwardly. End effects of the crimp are also not covered. By making this
assumption, the radial stress at the interface between the rings is constant and a 2D
approximation can be used.

This assumption ignores local deformations such as radial dimples and end
effects that act as a stress concentrator. For this reason, the methodology discussed
herein is focused on predicting relaxation and will not be a good tool for predicting local

failure modes such cracking at the ends due to localized stress.

1.2.2 Elastic Deformation Only

This model is intended to predict linear viscoelastic effects only. This
methodology should only be applied to stress/strain conditions below yield. One
exception would be if a linear elastic perfectly plastic (LEPP) material model fits the
material choice for the inner cylinder. If an LEPP model fits, then similar methods may be
useful for predicting the viscoelastic relaxation from yield. Because many plastic
materials have non-linear stress-strain behavior, this work was limited to viscoelasticity.
Any initial material yielding would very likely cause this model to predict artificially high

retention strengths over time (dependent on material yield behavior).



1.2.3  Ewmeta >> Epiastic

By assuming that the stiffness of the metal outer ring is much greater than the
stiffness of the inner plastic material, a constant radial deformation can be assumed
because the amount of extra deformation for every unit of relaxation is relatively small.
This methodology should not be used for applications where the total stiffness of the
outer ring is similar to the total stiffness of the inner ring (including the thickness of each).
If the two rings had similar stiffness, then as the inner ring relaxed, the outer ring would

deform it more (non-constant radial deformation).

1.2.4 Retention Force is a Function of Interface Pressure Only

Expressed as an equation,

Equation 1-1: Pull Force for Radially Deformed Cylinder

F= psAo.(r=>)

In Equation 1-1, F is the retention force as shown in Figure 1-1. The static
friction coefficient is represented by s and A is the circumferential contact area. The
pressure at the interface is identical to the radial stress at the outside diameter boundary,

which is represented by o,.



1.3 Simplified Problem
Using the assumptions discussed in section 1.2 above, the problem at hand can
be reduced to a cylinder under constant deformation, as seen in Figure 1-2. In Figure

1-2, u, is the strain in the radial direction and is considered to be constant at the outside

l Ur = Ug
@r=b

diameter boundary.

N

/! AN

Figure 1-2: Problem Simplified to a Cylinder with Constant Radial Deformation

1.4 Materials
Polyetherimide (PEI) is a widely used amorphous engineering grade
thermoplastic with high strength, high stiffness, high service temperature, inherent
flammability resistance, and good chemical resistance. ULTEM™ 1000 was chosen for
this study because it is PEI with no modifiers, fillers, or reinforcement. According to

SABIC’s website [1], ULTEM™ 1000 is used in the Aerospace, Transportation,



Healthcare, and Wire & Cable industries. According to the datasheet on the same

website, the T, of ULTEM™ 1000 is 217°C.

1.4.1 Stress/Strain Behavior

In Figure 1-3, both the engineering and calculated true stress-strain curves are
plotted. The engineering stress-strain data plotted in Figure 1-3 is courtesy of SABIC’s
website [2] and the true stress-strain was calculated. The equations for true stress and
strain are shown in Equation 1-2 (Ugural and Fenster [3]). True stress and strain are

denoted by ¢ and ¢, while the engineering stress and strain are gy and ¢,

Equation 1-2: Equations for True Stress and Strain [3]

e=In(1+ &)

o= 0-0(1 + 80)

ULTEM™ shows ductile stress-strain characteristics common in thermoplastics.
Bilinear approximations or assumptions of LEPP material models will have errors in the
neighborhood of yield, but may be acceptable for some applications, such as those that
have strain/displacement as an input or limit. The 5% strain corresponding to the
constant displacement discussed in the problem definition (section 1.1) shows to be in

the elastic region, meeting the assumptions in section 1.2.2 (linear viscoelastic).
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Figure 1-3: Stress-Strain Based on Data from SABIC's Website [2]




1.4.2 Tensile Creep Behavior

Figure 1-4 shows a plot created with Tensile Creep data from SABIC’s website
[2]. Atthe onset of this work, the number of datasets at equal stress was a concern, and
it was unknown how far into the future this data would enable prediction. Upon later re-
evaluation, the 14MPa set from SABIC overlaps nicely and would definitely predict farther
than 20 years into the future at 23°C. It was also believed that Relaxation data would be
more valuable due to its perceived ease in analytical solutions (see section 4.2 for more

details). In section 3.4, Creep results from this work are compared to SABIC’s data.

ULTEM™1000 Tensile Creep

Used with Permission

7 M

—e—7 MPa, 121°C

/ —8—7MPa, 176°C

5 —4—10 MPa, 121°C
—<—=14 MPa, 121°C

. ——14 MPa, 135°C

—8—14 MPa, 176°C

Strain - () (%)

—+—21 MPa, 176°C

——28 MPa, 23°C

=28 MPa, 121°C

—4—41MPa, 23°C

——41MPa, 80°C
62 MPa, 23°C

T T T T T |
0 20 40 60 80 100 120
Time (hrs)

Figure 1-4: Tensile Creep Based on Data from SABIC's Website [2]



1.4.3 Dynamic Mechanical Analysis

Figure 1-5 shows a plot created with data from SABIC’s website [2]. Dynamic
Mechanical Analysis inputs a cyclical load on a test sample and measures the output
cycles amplitude and frequency lag form the original input. E’ is the storage modulus, E”
is the loss modulus, and tan delta is the ratio E’’E”. The complex modulus E*(w) = E’(w)
+iE”(w). With this data, the viscoelastic behavior can be related in the Fourier domain
(see [4] for more info).

This data illustrates one method for determining T4. For reference 217°C ~
422°F. Alocal peak in E” can be seen at T,. The original intention was to use this data
for predictions, but scans of several frequencies over different temperatures are needed

to predict long time effects. This data was all taken at 6.28 Hz.
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Figure 1-5: Flexural DMA Based on Data from SABIC's Website [2]



Chapter 2

Background Information

Because the focus of this work was related to time effects, empirical data for the
structural properties of PEIl was needed to predict long-term effects. As collecting
information over several years is impractical, Time-Temperature-Superposition-Principle
(TTSP) methodology was chosen in order to collect short term data and make long term
predictions. As discussed by Brinson and Brinson [4], TTSP was proposed by H.
Leaderman in the early 1940’s and the method has been refined by several people over
the years. References to these works can be found in their book [4].

The Relaxation test was chosen due to the Relaxation Modulus E(t)’s similarity to
Young’s Modulus E and its simplicity with analytical solutions. The Creep test was
additionally chosen because of a desire to compare with SABIC’s data and because of a
misunderstanding of inputting D(t) data into commercially available Finite Element
Analysis (FEA) software (D(t) vs D*(t)). Figure 2-1 shows a comparison of the inputs and
outputs for each of these tests. Equation 2-1 and Equation 2-2 show the meanings of
E(t), D(t), and their relations. Equation 2-2 indicates that E(t) and D(t) are not inverses in
the time domain, but are inverses in the Laplace domain. Further explanation is supplied
by Brinson [4] and Christenson [5].

In these equations, E(t) is the Relaxation Modulus and D(t) is the Creep
Compliance. o(t) is the measured time dependent stress from an input constant strain €,
and ¢(t) is the time dependent strain from an input constant stress g,. E(s) and D(s) (with

bars above) are the Laplace transforms of E(t) and D(t).

10



Equation 2-1: Relaxation Modulus E(t) and Creep Compliance D(t)

E(t) = ? D(t) = g;—t)

Equation 2-2: Relation between Relaxation Modulus and Creep Compliance

1 _ 1
E(t) #+ ——=; E(s) = =
() DO (s) 50
Creep Input Creep Output
0 = 0o
g(t)
Time Time
Relaxation Input Relaxation Output
E=&
I o(t)
Time Time

Figure 2-1: lllustrated Comparison of Creep and Relaxation Tests
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Figure 2-1 shows the difference between the Relaxation and Creep tests. For
the Creep test, a constant stress is applied and the strain is measured over time, similar
to hanging a weight from a test specimen. For the Relaxation test, a constant strain is
supplied and the stress is measured over time. Note that the illustrations in Figure 2-1
assume a viscoelastic solid model (as opposed to a V.E. liquid). The long term behaviors
tend towards 0 or « if a V.E. liquid. Testing (discussed later), indicates that a much more
complicated mathematical model with multiple parameters is needed to characterize
ULTEM™ PEL.

From empirical data, a mathematical function is fit to the time dependent material
parameter (different functions for Creep or Relaxation, discussed later). Once expressed
as a function, the Laplace transform can be taken. If the elastic solution for the problem
is known, the Laplace transforms of the time dependent stress and strain are related by
that function, as seen in Equation 2-3 and Equation 2-4. In simple terms, the stress-
over-time answer to this problem is the inverse Laplace transform of the strain times s

(Laplace domain variable) times the Laplace transform of the Relaxation Modulus.

Equation 2-3: Relation of Stress and Strain in Viscoelasticity

g=E¢; &= D'o

Equation 2-4: Definition of Complex Moduli

12



Chapter 3

Testing

3.1 TestPlan

In planning to use TTSP, some information was needed to relate time and
temperature. Williams-Landel-Ferry (WLF) and Activation Energy methodologies were
investigated. According to Brinson [4], the slope of the curves generated by the
acceleration factors (ar) are discontinuous at Tg. The WLF equation works better above
T, and the Activation Energy equation (Equation 3-1) works better below T,. It was
observed that if the Arrhenius Activation Energy were known at some T, then the
acceleration factor for any temperature could be calculated using Equation 3-1. It's
worth noting that the E, used below is specific to this failure mode. Other E, values, such
as the E, for thermal decomposition, do not apply to this mode. Equation 3-1, R is the

universal gas constant.

Equation 3-1: Acceleration Factors for TTSP (Arrhenius Model) [4]

Lo K11
A= TR\T T Ty

Foreman et al. [6] investigated creep in PEI and found the best fit Arrhenius
Activation Energy to be approximately 92 kJ/mol at 67°C. As shown in section 3.4, the
testing for this work resulted in similar E, for Creep. Using this information, the first test
plan (see Table 3-1) was set by simple trial and error using a simple spreadsheet. The
important parameters for the test are that the tests are short, all curves overlap each

other, and all tests must be conducted at less than T for Equation 3-1 to be applicable.

13



The test plan shown in Table 3-1 would have allowed for prediction of behavior in excess

of 20 years at 40°C.

Table 3-1: Original Test Plan

Time-Temp Superposition Time-Temp Superposition
Temp Start End End Temp a; (> ar(23°C ar(40°C Start End Time End Time Start Time End Time End Time
“0) Time Time Time ® 670 > > Time@ @23°C @23°C @ 40°C (s) @40°C  @40°C
(s)  (min) (sec) 67°C) 67°C) 23°C(s) (s) (yrs) (s) (yrs)
200 1 80 4800 473.2 9251.82 0.008 0.0607 1.16E+06 5.54E+09 175.68 1.52E+05 7.31E+08 23.17
160 1 10 600 433.2 1070.26 0.008 0.0607 1.34E+05 8.02E+07 2.54 1.76E+04 1.06E+07 0.34
120 1 10 600 393.2 79.8251 0.008 0.0607 9.97E+03 5.98E+06 0.19 1.31E+03 7.89E+05 0.02
80 1 10 600 353.2 3.3068 0.008 0.0607 4.13E+02 2.48E+05 0.01 5.44E+01 3.27E+04 0.00
23 1 15 900 296.2 0.00801 0.008 0.0607 1.00E+00 9.00E+02 0.00 1.32E-01 1.19E+02 0.00

During testing, it was discovered that the equipment was not capable of reliably
holding temperatures above 113°C, which is discussed further in section 3.3. For this
reason, the test plan needed to be quickly modified. The original spreadsheet was re-
used to re-plan the test with the new max temperature of 110°C. The resulting test plan
can be seen in Table 3-2. Unfortunately, predictions at 40C are not supported by the
revised test plan because Creep predictions of 20 years at 40°C would require testing for
approximately 2 weeks at 110°C (delivery of work would not be possible by the due date).
Note that an intermediate test at 40°C had to be added because there was no overlap in

the 23°C and 80°C test results.

Table 3-2: Revised Test Plan

Time-Temp Superposition Time-Temp Superposition
Temp Start End End Temp ay (> ar(23°C ar(40°C Start End Time End Time Start Time End Time End Time
Q) Time Time Time K 670) > --> Time@ @23°C @23°C @40°C (s) @40°C @40°C
(s)  (min) (sec) 67°C) 67°C) 23°C(s)  (s) (yrs) (s) (yrs)
110 1 2880 172800 383.2 38.3286 0.008 0.0607 4.79e+03 8.27E+08 26.20 6.31E+02 1.09E+08 3.46
80 1 10 600 353.2 3.3068 0.008 0.0607 4.13E+02 2.48E+05 0.01 5.44E+01 3.27E+04 0.00
40 1 10 600 313.2 0.06073 0.008 0.0607 7.58E+00 4.55E+03 0.00 1.00E+00 6.00E+02 0.00
23 1 15 900 296.2 0.00801 0.008 0.0607 1.00E+00 9.00E+02 0.00 1.32E-01 1.19E+02 0.00
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By observing the differences in the two test plans, the power of TTSP is evident.
In converting to 23°C, 12 minutes at 200°C gives the same future prediction as 48 hours

of testing at 110°C for PEI.

3.2 Test Samples
Samples were injection molded from ULTEM™ 1000 into a standard 1 mm thick
impact disk. Samples were then machined on a Computer Numerical Controlled Mill to
the design shown in Figure 3-1 and Appendix A. The sample were molded and
machined by Corning Optical Communications LLC (Corning) personnel using Corning

equipment with permission.

Figure 3-1: Test Samples
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The molded and machined test samples can be seen in Figure 3-1. This design
was optimized to allow it to be cut with a standard 1/32” diameter endmill. At the time
that these samples were designed, the amount of vibration in the cutting process was
unknown, so samples were cut at various widths with the intention of utilizing the smallest
size with good cut quality.

Figure 3-2 shows a magnified view of one of the smallest (0.5 mm) sample’s cut
surface, which was compared and found to be similar quality to all other sizes. Figure
3-2 was taken using a stereo microscope, and the smallest size was used for testing.

The test samples were left attached to the original impact disk, and this was found to be a
very effective way to protect the samples during shipping. Optical measurement of the

samples indicated a parallelism of approximately 0.020 mm.

Molded Surface

Figure 3-2: Magnified View of Cut Surface on 0.5mm Sample
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3.3 Equipment

The equipment used for this testing was a TA Instruments brand Dynamic
Mechanical Analyzer (DMA) model Q800. Full details on this model and all of the
machine specifications in this section are directly from TA Instruments’ website [7]. The
machine was set to apply static tension or strain for a standard Creep or Relaxation test
(not a dynamic measurement). The DMA used is property of Corning, was operated by
Corning personnel, and was used with permission.

The major machine specifications that drove testing parameters were the
advertised load cell rating of 18 N and the temperature rating of -150 to 600°C. The
Young’s Modulus from SABIC'’s literature [1] was used to ensure that the sample
geometry combined with the input strains for the Relaxation test would not overload the
load cell. For the Creep test, the equivalent initial stress was calculated using the same
Young’s Modulus and the design nominal geometry.

Originally, the test plan included samples tested at 200°C and shorter times. For
some reason, this machine would not reliably hold temperatures above 113°C.
Unfortunately, adequate time to troubleshoot was not available and the test plan was
modified to use a max temperature of 110°C for a longer time. In later troubleshooting, it
was observed that this machine is commonly used for materials with a low T4 and has
been upgraded with an aftermarket intercooler which limits the max temperature (not a

concern for the typical applications for this specific unit).
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3.4 Results

3.4.1 Creep

Figure 3-3 shows the results of measured Creep Compliance D(t) at four
temperatures. When evaluating the applicability of TTSP for Creep or Relaxation data,
one major need is for the curves to overlap when the data is moved through time. Note
that changes in density were not considered for this work adding a small amount of error,
but could be added in future works.

As can be seen graphically, the only overlap between the 23°C and 80°C curves
is between the first and last datapoints. This is problematic for two reasons. The first is
that TTSP should generate a smooth curve through time. If only single datapoints are
used, a discontinuity could exist that would not be obvious.

The second is related to this specific data. The first datapoint for each
temperature curve has a distinctive difference in curvature, including the appearance of
an unanticipated inflection point early in each curve. Because this datapoint is very
quickly collected after the test started and because realistic testing is unable to produce
instantaneous results as mathematically modeled by the Heaviside function, it is strongly
believed that the machine and sample have not achieved/steadied to the desired stress.
For this reason, the first datapoints will be neglected in later dealings with this data.

If the response at shorter times is needed for a different application, attempting to
push the equipment to measure at a faster measurement frequency is hot recommended.
Instead, running a sample set at a temperature less than T will cause that dataset to
have an acceleration factor at that is less than 1. In other words, a data point collected at
T<T,f ONne minute into the test may tell you how that material would respond after one

second at T (for illustration only).
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Creep Compliance (1e-6/MPa)

Creep Compliance, ULTEM™ 1000

1400
1200
o
A
A
A
A
A
1000 X -
A‘AA
add
A
Ak
800 e
asdt?
AMA 23C
M ®40c
M‘ W 30C
e00 —Aﬂ““?-
_M A 110C
o $600
400 *
200
0 T T T T T 1
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Time (min)

Figure 3-3: Creep Compliance Results
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Creep Compliance, ULTEM™ 1000
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Figure 3-4: Creep Compliance Results Compared with SABIC's Data [2]

For verification purposes, the test data was compared to SABIC’s Creep data as
seen in Figure 3-4. Unfortunately, these tests were run at different conditions. When
comparing the sets of 23°C data shown with blue lines, it is to be expected that the
observed time dependence would be “slower” with lower stress. SABIC’s data shows
lower compliance (higher effective stiffness) with lower stress applied. Without more data
at lower temperatures or shorter times, it's not possible to draw a solid conclusion, but
this relation is at least directionally correct.

The green curves show the higher temperature test results. SABIC’s test was
conducted at slightly lower stress and 11°C higher temperature than the test from this

work. The expected relation for this situation would be for the SABIC data to show a
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lower compliance at very short times due to the lower stress and a faster acceleration of
compliance at longer times due to the higher temperature. In fact, that is exactly what is
shown in Figure 3-4. This new test data can be said to be very similar to the original

data from SABIC.

3.4.2 Relaxation

The Relaxation test also showed some unexpected behavior at very short times.
As seen in Figure 3-5, unexpected curvature can be seen in the first few datapoints of
each set. This is believed to be the same settling phenomenon observed in section
3.4.1. Note that the additional 40°C test was requested after observing a gap in
information between the 23°C and 80°C curves. The 40°C test was planned using the
activation energy method from the tests by Foreman et al. [6] with the intention of filling
this gap. In the case of Relaxation, this 40°C test did not fill the gap and supplies less

long-term information than the 23°C test.
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Relaxation Modulus, ULTEM™ 1000

2500

L ]
i ] ...‘.“ .‘“.
2000 | By 0608044
A A.A. Semg,,
Aas A::...l.
A Aj Hmy

Ary,Umg

A
1500 Adas,

*23C
®40C

m80C
1000

A110C

Relaxation Modulus {MPa)

500

T T T T 1
1E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Time (min)

Figure 3-5: Relaxation Modulus Results

3.5 Time-Temperature Superposition
A fast and repeatable method was desired for aligning the curves in time. To

accomplish this, a simple program was written to linearly interpolate the shifted time of
the higher temperature compliance between the two nearest compliances of the lower
temperature curve. Once the first shift factor ay is found, the method can be repeated for
subsequent higher temperature tests to assemble the master curve. This program and
its results can be found in Appendix B. The error associated with a linear interpolation
instead of an exponential curve fit is limited by using the two nearest compliances. Note

that because of the apparent equipment stabilization behavior in the first datapoints, the
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fourth point was chosen due to its distance from the odd behavior and available overlap

between curves.
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Figure 3-6: Creep Compliance Results and TTSP Master Curve

As seen in Figure 3-6, the assembled Creep Master Curve allows predictions in
excess of 20 years. The acceleration factors and calculated activation energy E, are
shown in Table 3-3. It's important to note that the difference in the original acceleration
factors formulated by lining up curves visually on an automated graph and those
generated by linear interpolation varied by 3-14%, which may have a very large

difference at long times. The calculated activation energies (using Equation 3-1) for
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80°C and 110°C matched the results of Foreman et al. [6] (91.88 kJ/mol @ 67°C) nicely,

but the E, for the 40°C data did not.

Table 3-3: Factors for Shifting Creep Data to 23°C

Acceleration|Activation
Temperature |Factor Energy
(") ar (kJ/mol)
23 (1) -
40 72.97 194.58
80 438.72 92.81
110 23082 108.94

The assembled Relaxation Master Curve is shown in Figure 3-7. Surprisingly,
the exact same test lengths and temperatures that allow predictions of more than 20
years for Creep only allow predictions of approximately 2 years in Relaxation. Itis
believed that the reason for this difference is because the Creep Test inputs more work
into the test sample for a given time and temperature than its Relaxation counterpart that

starts at the equivalent stress-strain state.
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Figure 3-7: Relaxation Modulus Results and TTSP Master Curve

25




Table 3-4 shows the acceleration factors and calculated activation energy used
to assemble the Relaxation Master Curve shown in Figure 3-7. Note that all activation

energies are much lower than any Creep data.

Table 3-4: Factors for Shifting Relaxation Data to 23°C

Acceleration|Activation
Temperature |Factor Energy
(°C) ar (kJ/mol)
23 (1) -
40 1.33 12.94
80 154.65 76.90
110 519 67.80

This relaxation data will not allow predictions to 20 years at 23°C. With the data
in Table 3-4 and the test planning methodology discussed in section 3.1, it would be
relatively simple to plan a test that would allow predictions farther into the future, at
temperatures higher than 23°C, or both. For planning a Relaxation test with PEI, using

an activation energy of approximately 70 kJ/mol is recommended.
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Chapter 4

Analytical Solutions

4.1 Elasticitiy

As briefly explained in Chapter 2, the elasticity solution is used to find the
viscoelasticity function. Although well covered by literature, this exercise was repeated
for thorough understanding.

The expressions for stress distributions and associated deformations were
derived by G. Lamé in 1833 and are very well covered by Timoshenko and Goodier [8] as
well as Ugural and Fenster [3]. This classic thick walled cylinder problem starts with a
definition similar to Figure 1-2, with a and b referring to the inner and outer radii while p,
and p; stand for the outer and inner pressures on those surfaces. Equation 4-1 can be
arrived at via manipulation of the Compatibility Equation or by use of Airy’s Stress
Function converted for polar coordinates. To use Airy’s Stress function, observation of

axisymmetry is key in choosing the appropriate functions.

Equation 4-1: General Solution to the Thick Walled Cylinder Problem

® = Alogr = Br?logr + Cr> + D

From here, the general equations for the stresses in the rand 6
directions are shown in Equation 4-2 by taking the appropriate partial derivations for

polar coordinates.
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Equation 4-2: General Stress and Displacement Solutions

for the Thick Walled Cylinder

_10e_ A+B(1+21 )+ 2C

) o= Yer - 12 o8
52 A
b) Og = WZ —r—2+B(3+210gT')+2C
c) 09 =0
A

d) 2Gu, = —?+B[(K—1)rlogr—r]+C(K—1)r
e) 2Gug = B(k + 1)r6

Equation 4-1 and Equation 4-2 were also crosschecked with the work by
Timoshenko and Goodier [8], which has a much more detailed discussion. Equation
4-2d above, the B term causes a 6 direction displacement that is dependent on 6 itself.
Since the problem is axisymmetric in nature, B must be equal to zero. Equation 4-3

shows the boundary conditions to be applied.

Equation 4-3: Boundary Conditions for Elastic Solution
o,(r=a)=0

u(r =b) = ug

Solving the general radial stress equation with the applied boundary conditions

yields the equations for stresses in the r and 0 directions shown in Equation 4-4.
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Equation 4-4: Stresses in the Thick Wall Cylinder with Constant Deformation (G,k)

4uyGh a?
Or = 53 izl =
2a’>+ (k—1)b r

B 4uyGh - a?
% = 342 + (k—1)b? r2

By converting G and k to E and v, the stresses in Equation 4-4 can be shown to
be equivalent to the stress functions found by algebraic manipulation of the original Lamé

functions, shown in Equation 4-5.

Equation 4-5: Stresses in the Thick Wall Cylinder with Constant Deformation (E,v)

oy = il <a_2 - 1)
' [(1 —r+( +v)“72] r®

0g = uOE <—2 + 1)
[(1 W+ (14 ) “72] r?

While the stress in the 6 direction is not the primary focus of this work, it is worth
noting that any failure, yielding, other plasticity, viscoplasticity, or embrittlement effects
will initiate at the inner radius and will be driven by stresses in the 6 direction. Figure 4-1
shows non-dimensionalized stresses in the r and 0 direction as well as the equivalent
Von Mises stress (as compared to the yield strength for failure prediction). In elasticity,
constant deformation and constant stress in the radial direction are equivalent to each

other.
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Non-dimensionalized Stress vs Radius in Cylinder (a/b = .5)
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Figure 4-1: Non-dimensionalized Stresses in a Thick Walled Cylinder

with Constant Radial Deformation

4.2  Viscoelasticity
One with a strong background in elasticity and new to viscoelasticity might see
examples such as the constant stress cylinder presented by Christenson [5] and attempt
to manipulate the solution in ways similar to those demonstrated in section 4.1. Upon re-
evaluation of the problem statement diagram in Figure 1-2 and comparison with the
illustrations in Figure 2-1, it becomes clear that these problems are as dissimilar as the
Creep and Relaxation tests themselves. In this section, a function will be fit to the Master

Curve and then the complex modulus will be combined with the Elasticity solution.
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4.2.1 Prony Series Approximation for Creep

To fit a function to the assembled Master Curve data from section 3.5, Prony
Series approximation was used. A short program was written and can be seen in
Appendix C. The intention of this program is to fit a finite number of coefficients to
Equation 4-6. The Prony Series representation of D(t) is effectively a generalized Voigt-
Kelvin mechanical model, wherein a spring element is in series with infinite Voigt-Kelvin

elements.

Equation 4-6: Prony Series Representation for Creep Compliance [9]

n
1 1
D(t) = — Z— 1— et/
O=g* L1
i=

The program was written to utilize a least squares approach as described by
Brinson and Brinson [4]. Sign control methodology was added as detailed by Bradshaw
and Brinson [9] to force all moduli to be positive in matching with physics. As
recommended by Bradshaw and Brinson [9] , the time constants were chosen
logarithmically spaced, with the minimum and maximum time constants outside the
dataset range. Instead of scaling the range by an arbitrary constant, the time constants
were chosen at each decade and ranged to 1 decade outside the available test data.
Refer to Table 4-1.

Unfortunately, the standard least squares fit routine built into Matlab® version
R2013b was not able to simultaneously fit this many constants. Fits with 3 and 5
constants had very poor R” values. Instead, the program returns the same values for E;
that were originally input, but will also give goodness-of-fit calculations that can be used

for a manual fitting routine.

31



As a side note, investigation using a later version of Matlab had a different type
of fitting routine. The code in Appendix C experienced trouble in Matlab® version
R2014a. The alternate methods for the later versions were not tried, but may offer

improvements over this code.
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Figure 4-2: First Step in Manual Prony Series Fit (All E; = 1.5e10)

The simple manually fitting routine that was developed starts by using the
Young’s Modulus as reported by the material manufacturer or from a standard tensile test
for Eo. All other E; terms are set equal to each other and the fit is plotted with the test
data as seen in Figure 4-2. All E; terms are scaled up and down equally until both curves

are of the same order of magnitude. Figure 4-2 shows the output from this rough

32



optimization with Eg; = E and E; = 1.5e10. Next, the scale is adjusted to view the

comparison of the two curves over the first decade of data. The first E; is adjusted, noting
inverse sensitivity with the curve fit, until the first few points are roughly equal. The scale
is then adjusted to show the next decade of information and the next E; term is adjusted.
It was found that rechecking the previous E; term before moving forward will save time

and allow fine tuning as needed. The final result of this routine with this data (r2 = .9999)

is shown in Figure 4-3.
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Figure 4-3: Plot Used for Manual Fitting of Creep Prony Coefficients
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Figure 4-4: Log Plot of Creep Prony Series Fit

Figure 4-4 shows the same curve fit data in a log plot similar to all the plots from
Chapter 3. Figure 4-5 and Table 4-1 show the coefficients used to achieve this Prony
series fit. As discussed by Brinson and Brinson [4], the curvature seen in Figure 4-5
smoothed as the fit was refined. Although the Prony Series approximation presented
here has time coefficients ranging from 1e-2 to 1e8 minutes, the model is only valid within
the range of the assembled Master Curve. This representation is calculated to be valid
from 2 minutes to approximately 120 years, but due to the wide spacing of data at long
times and the sensitivity to the linear interpolation methods for TTSP used, it is
recommended to limit the use of this approximation to 20-30 years. Collecting more

datapoints from short tests at low and high temperature would reinforce this model.
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Figure 4-5: Prony Series Coefficients for D(t) of PEI
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Table 4-1: Time Constants and Moduli for Prony Series Representation of D(t) of PEI

Time
Modulus
Constant
) E (MPa)
T(min)
(N/A) 3580
1E-02 6900
1E-01 40000
1E+00 45000
1E+01 38000
1E+02 26000
1E+03 24000
1E+04 19000
1E+05 16000
1E+06 7600
1E+07 6100
1E+08 2850

4.2.2 Prony Series Approximation for Relaxation

Techniques very similar to those described in section 4.2.1 were also employed
for the Relaxation Master Curve. Prony Series approximation for Relaxation has a
different form from Creep, as seen in Equation 4-7. The Prony Series representation of
E(t) is mathematically the Wiechert Model, with one spring in parallel with infinite Maxwell
elements (generalized Maxwell model with one additional spring in parallel). Figure 4-6

shows the results of this curve fit.

Equation 4-7: Prony Series Representation for Relaxation Modulus [9]

n
E(t) =E, + Z E;et/mi
i=1
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Figure 4-7: Log Plot of Relaxation Prony Series Fit

Figure 4-7 shows the same Prony Series fit for Relaxation Modulus in the more

familiar log plot form. It is also worth noting that the fit function in Matlab® version

R2013b did automatically optimize the Moduli used in the fit. Figure 4-8 and
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Table 4-2 show the coefficients both graphically and in tabular format. The lack
of smoothness in the curve in Figure 4-8 indicates that the fit could be refined by adding
more terms, but as indicated in Figure 4-6, the r* value was .9997, indicating a good

enough fit for the scope of this work.
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Figure 4-8: Prony Series Coefficients for E(t) of PEI
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Table 4-2: Time Constants and Moduli for Prony Series Representation of E(t) of PEI

Time
Modulus
Constant
) E (MPa)
T(min)
1E-02 300
1E-01 255.6
1E+00 111.9
1E+01 92.4
1E+02 160
1E+03 150.8
1E+04 186
1E+05 178.3
1E+06 235.2
1E+07 174.2
(Inf) 914.5

4.2.3 Utilizing the Elastic Solution
To convert Equation 4-5 for use in viscoelasticity, the elastic modulus and
Poisson’s Ratio must be replaced with their complex counterparts. This conversion is

shown for clarity in Equation 4-8.

Equation 4-8: Radial Stress Distribution in the Laplace Domain

. —uoSE a?
g, = a2 T_Z -1
(1—s7)b + (1 +s7) 7]
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For this work, the Poisson’s Ratio will be assumed to be constant. As discussed
by Brinson and Brinson [4], assuming a constant Poisson’s Ratio is effectively assuming
that the Shear Modulus G and Bulk Modulus K scale equally through time (K(t)/G(t) =
constant). If v(t) is constant, then the Laplace transform of v, is vo/s. Substitution and

rearrangement of the terms in Equation 4-5 yields Equation 4-9.

Equation 4-9: Radial Stress Distribution in Laplace Domain with Constant v

_ —uE a? __ Cu
o, = 22 - 1) =CusE = —5
(1 =vo)b + (1 +v) |\ :

According to Equation 4-9, if the Laplace inverses of the right hand terms can be
found, then that solution can be multiplied by a constant representing all of the geometric

effects. The Laplace transforms and their inverses are covered in section 4.2.4.
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424

Laplace Transforms

Because the displacement is a constant for this problem, the time dependent

displacement is modeled by Equation 4-10. As commonly encountered, the Laplace

transforms for E(t) and D(t) are easily found. Both are shown in Equation 4-11. Note the

use of the Heaviside function H(t) to indicate an instantaneous crimp operation, when in

reality this step would happen over some small time.

Equation 4-10: Laplace Transform for Constant Displacement

u(®) = ugH(t) and u(s) = %

Equation 4-11: Laplace Transforms for Creep and Relaxation

Cu  Cuy Cu,

5_525=i+2n S _§yn SZ/EL'
E, i=1F; =1 1/1_.
2

_ = Uy — _
Cusk = C?SE = CuogE

Matlab was once again employed (see Appendix D) to symbolically solve the

inverse of the compliance function in Equation 4-11. The Creep function code for 1 or 2

parameters can be executed in less than a minute on a typical laptop. A solution to the 3

parameter inverse failed using a typical laptop (out of memory), took approximately 40

minutes to execute on a modern multiprocessor workstation with excess memory, and is

approximately 4.5 pages long. All attempts to solve the 11 parameter equation failed. It

is clear from this exercise that obtaining the data that fits the application best is much

easier than converting types.
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The solution for time dependent stress using the Relaxation Modulus is relatively
straightforward for this set of assumptions, and is shown in Equation 4-12. It's worth
noting that for this simple static case, the viscoelastic solution is effectively the elastic
solution with the Relaxation Modulus substituted for Young’s Modulus. Brinson and
Brinson [4] covered a similar example of an axially loaded bar and came to a similar

conclusion for the simplified static case by using the convolution integral.

Equation 4-12: Inverse Laplace Solution for Relaxation Modulus

—uoE(t) <a2

L7HCuoE} = CuoE(t) = 27\ 72
| =vop + 1 +v 5|\

— 1) = o(t)
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4.3 Results
All of the previous information was combined, and the Relaxation Modulus was
re-examined with respect to the Young’s Modulus. This is shown graphically in Figure

4-9.

x 10° Effective Modulus over Time
4 F L L L

3.5 -

w
]
1

Effective VE Modulus ||
Elastic Modulus

Effective Modulus (Pa)
N
(03]

N
I

15

1 C r r r
10 10° 10° 10" 10°
Time (min)

Figure 4-9: Comparison between Relaxation and Young's Modulus
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x 10" Relaxation Stress at Outside Radius
2 r r T i

r

Sigma_ (Pa)

_8 C r L L
10 10° 10° 10" 10°
Time (min)

Figure 4-10: Pressure (Stress) at the Crimp Interface (outside radius)

As discussed previously, the interface pressure is equal to the stress at the
outside radius of the plastic cylinder. This pressure was calculated and plotted over time
in Figure 4-10. Note that the stress is negative because the material at the interface is in
compression and the stress tends toward zero at long times due to viscoelastic

relaxation.
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Non-dimensionalized Relaxation Stress
120+ T T T

nu = .36
nu = .50
Elastic

110~
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1

% Retention
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10 10° 10° 10" 10°
Time (min)

Figure 4-11: Stress Non-dimensionalized by the Stress Predicted at t = 1 minute

Last, the data was non-dimensionalized in order to view relaxation as a
percentage. The data was non-dimensionalized by the elastic stress and by the stress
after 1 minute of relaxation. Figure 4-11 shows the non-dimensionalized stress as
compared to the 1 minute stress. As can be seen, the stress in the neighborhood of 1
minute is very similar to that predicted by elastic theory. The 1 minute stress was chosen

because it is more easily empirically tested.
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In Figure 4-11, the stress at each Poisson’s Ratio was non-dimensionalized by
its own stress at 1 minute. Figure 4-11 shows that the ring is predicted to lose nearly
half of its retention strength after a little more than 2 years and reaches its specification
strength of 66% in less than 6 weeks and that Poisson effects over time have very little
effect.

By this non-dimensionalization technique, all geometric effects are removed.
Because of that, Figure 4-11 is effectively a plot of E(t)/E(t=1) vs time. By non-
dimensionalization, the plot in Figure 4-11 can be shown to theoretically stand for the
non-dimensionalized viscoelastic stress at any point within the thickness and for any size

thick wall cylinder over time.
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Chapter 5

Numerical Solutions

The original plan was to import the Creep or Relaxation data into a commercially
available finite element analysis (FEA) package and to compare the analytical results
with the numerical results. Unfortunately, commercially available software from ANSYS
and Dassault Systémes (Abaqus) rely heavily on time measurements of Shear Modulus
G and Bulk Modulus K. Neither package easily accepts standard tensile Creep or
Relaxation data.

It is worth noting that ANSYS APDL does support use of E* and v* data from
DMA testing. To utilize this feature, storage modulus E’ and loss modulus E” (or tand)
data is needed over several decades of frequency. It appears that frequency
temperature superposition is also supported, but this was not tested.

Both of these systems can be fitted with custom solutions, but building a custom

material model would have delayed the delivery of this work.
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Chapter 6

Conclusions

Although the Relaxation test data does not allow prediction to 20 years, it does
predict the decay in retention force, including the point of interest when the product falls
below specification. The importance of this work lies in the ability to predict the
performance of the product well into the future before it ever leaves the virtual drawing
board. This prediction shows a faster delay than expected, spurring higher interest in

even longer term effects.

6.1 Key Learnings

Several critical pieces of information were discovered along this journey. The
first is a deep appreciation for the various material tests available at this point in time. So
many test methodologies are available and so much analysis is done automatically with
modern equipment that it takes a good deal of study just to understand and appreciate
the results. Misunderstanding of the DMA data presented earlier in this work caused
approximately one month delay even though the data was readily available.

Along those lines, it is appropriate to acknowledge an early shortcoming. In
common mechanical engineering, it is easy to become most comfortable and reliant upon
Young’s Modulus and Poisson’s Ratio. In the world of elasticity, these two take care of a
majority of applications, and easy conversion between E, v, G, K, and A means that we
can pick favorites and convert as needed. In viscoelasticity, the selection of mechanical
property type drives the testing and form of the results, as seen by the inability to convert
Creep data for this application. Even though the Creep data gives the ability to predict

longer term effects, it is much more complicated to use for this application. Other
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applications will readily use D(t) and experience troubles with any of the other time
dependent material properties.

The last item to mention was the difference in activation energies
between Creep and Relaxation. This really closes the section where it began —
understanding the test methodology at a deep level. Upon discovery of an activation
energy and reference temperature for Creep, the times and temperatures test plans for
Creep and Relaxation were calculated using the Creep information. Due to this
misunderstanding, this work is not able to predict as far into the future as requested by

the original problem statement.

6.2  Future Work

6.2.1 Longer Term Prediction

As discussed in the previous section, the desire for this work was originally to
predict 20 years into the future at temperatures up to 40°C. With the Relaxation test
better understood, it would not be a major work to put together a second Relaxation test

plan to achieve those results.

6.2.2 Internal Pressure

If the elasticity solution was solved including internal pressure, then this solution
could be better applied to hydraulic and pneumatic applications. For static internal
pressure applications, the Laplace inversion in section 4.2.4 could be directly applied.
This would also allow the effects of cyclical internal pressures to be examined, but the

Laplace transformations and inversions would need to be repeated for p(t).
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6.2.3 Direct Testing
An original desire for this work was to confirm the results with some additional
empirical testing of the application itself. An axial pull test could be assembled to show

correlation between theoretical predictions and reality.

6.2.4 Local Effects

In reality, local effects are commonly used in crimping. Localized radial
deformations increase axial retention forces dramatically. When parts fail, the location is
commonly at the edge where the very stiff outer crimp band terminates. Both of these
highly important effects are not covered by this work. Due to the complexity of these

topics, it is believed that advanced numerical (finite element) models will be needed.

6.2.5 Viscoplasticity

In a manufacturing environment, process variation can cause quality concerns if
not controlled. To qualify a crimping process for small components, it may be noted that
initial retention forces vary more in the elastic region than if the material is crimped into
the plastic region because the output stress for the additional strain is negligible. But

what happens at long times?

6.2.6 Composite Effects

A common solution for injection molded applications needing higher stiffness
and/or strength is to reinforce the plastic with short glass fiber. With this reinforcement
comes a three dimensional distribution of anisotropic material properties. Where the
manufacturer introduces the material to the mold may have as much to do with

performance as the original part design.
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6.3 Final Remarks

This work did not accomplish all of the goals that were originally desired, but it
set the groundwork to answer those concerns. A material was analyzed, compared with
data from the manufacturer, and the analysis routine was itself observed for
improvements. The calculated values for others to utilize this material analysis were
delivered. The operations to apply this material model to the thick walled cylinder with
constant deformation were discussed and the results were shown, enabling others to
apply some of this information to other applications. The only deliverable that was
missed was the prediction to at least 20 years at 23°C, but the goal to predict time to
specification pull strength was met and all the information needed to plan an effective test
to get 20-year data is contained herein. Last, a non-dimensionalized model that
theoretically predicts the viscoelastic stresses at any point in a PEI thick wall cylinder of
any size with constant radial deformation was presented, showing a 1/3 drop in retention

strength within 6 weeks and a drop of nearly % after 2 years at 23°C.
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Appendix A

Drawing for Test Samples
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Figure A-1: Drawing for Test Samples.



Appendix B

Linear Interpolations for Acceleration Factors
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Linear Interpolation

%Linear Interpolation.m
$By Eddie Parkman
8MSME Student, University of Texas at Arlington

$Dr. Ashfaq Adnan, Advising Professor
clear

$This program linearly interpolates needed acceleration factor needed
$for higher temp curves to line up with the previous temp curve

$Point 0 is placed between 1 and 2.

$Input all the times and Compliances/Moduli as an array, then run all
$calculations serially

$First 3 are for Creep, 0 to separate, Last 3 are for Relaxation.

£l = [ 59195
54.91256
3123531
0
.334166
14.80017
206..326392]

D1 = [ 485.9186
517.8164
593.7625
0
2178.299
1996..282
1829.728];

t2 = [[ ¥.11967
67.07476
3752.359
0
.400833
15.00016
247.591608] ;
D2 = [ 488.2282
520.632
598.3316
0
2167.386
1995.849
1.877+534] ;

t0 = [ .085834
- 11525
<1525
0
2675
2675

file://F\MSME\Thesis\Calculations\htmI\Linear Interpolation.html
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Linear Interpolation Page 2 of 2
.459166];
DO = [ 486.5808
520.5926
596.6436
0
2174.757
1938.759
1820.231];
8Loop through the calcs
for i = 1l:length(tl)
t_cale(i) = t1(i) + (DO(i) - D1(i))*(t2(i) - t1(i))/(D2(i) - D1(i)):
aT(i) = t_calc(i)/t0(i);
end
aT
aT =
1.0e+04 *
0.0073 0.0439 2.3082 NaN 0.0001 0.0155 0.0519
Published with MATLAB® R2013b
file://F:\MSME\Thesis\Calculations\html\Linear Interpolation.html 3/26/2015
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Appendix C

Prony Series for Creep
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Master Curve Creep

8Master Curve

CregpLa

$By Eddie Parkman

$MSME Student, University of Texas at Arlington

$Dr. Ashfaq Adnan, Advising Professor

clear

$Input Shifted Test Data by Original Temp
439.
4414 .

Data, 23 = [ 0.

o

B S R O B S B S R i = e S o B oo S oo N oo S oo B oo Y oo S oo BN an

8.
10
1.2
14
14

Data 40 = [ 6.
8.

1l
13.
15
20
255
30.
B
45.
54.
67.
SHIE
98.

file://F\MSME\Thesis\Calculations\html\Master Curve Creep.html

085834

» 1191167
-1525
.185833
.219166
289832
- 3525
-419166
.519166
.619168
7525
.919166
.119168
«3525
0619332
.952666
.352668
.819334
=386
.086166
.919501
«9:1.95
.11967

553
.2865
-351:67
-8185
98517

263607399
696033075
12845875
56086443
9193311071,

85816145
72315875
5880101

8853601

18285605
91255875
0747601

66960605
69665875

9492
5102

447.4824

449.
451.
454,

7602
607
3812

456.5306

458.
460.
462.

3008
4355
0984

464.0085

466.
467.

0088
978

469.8692

471.
473.
475.
477.

6274
5435
499

4022

479.3058

481.
483.

44
6121

485.9186
488.2282
490.7148
493.4102

496.

1006

499.0798

499.2644];

486.
492.
496.
498.
504 .
504.
507.
509.
5452 .
5105 .
e
520.«
528+
526

5808
3194
1266
898

2393
9072
6726
9853
8914
1882
8164
632

4959
226
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Master Curve Creep

118.
142.
Tl
205.
247.
298.
358
431.
519
624.
728.

Data 80 = [ 37.65696373 508.
52.28076749 515
€66.90457125 520.
81.52837501 524.
96.15217877 527.

125.
154+
183.
227«
2
3304
403.
490.
593.
710
856.

1032.
1236
1485.
1792
2158.
2596.
123,
37152
4381.

Data 110 = [

file://F:\MSME\Thesis\Calculations\html\Master Curve Creep.html

16832
49287
68241
73666
08827
18183
99320
96663
54723
14234
74985

39978
64827
89587
76772
64045
13567
25512
99970
36677
43090
67069
1589
8939
5008
6766
2760
9941
5309
3593
2623

1981.
27750,
3520.
4289.
5058.
6597
8136.
9675.

11983
14291.
17369.
21216.
25832.

37 529
24 531.
83 534.
%96 538.
it 541.
i6 545.
62 B9,
33 552.
87 557 .
55 561.
78 565.
63 53d.
13 535
88 538.
88 541.
62 544.
13 548.
88 551.
62 554.
13 358.
6 561 =
85 565.
76 568.
83 572.
41 546,
18 580.
99 584.
61 589.
43 593.
31 598
602.
220388
612694
005 596.
397306
789612
574224
405 615.
189612
38961
63578
205 632.
18961
63578

0061
9762
9744
1713
5826
1824
0268
9013
149

4778

3276]:

6378
8608
5926
2074
3
6894
187
1074
7307
6438
038
3838
8897
3302
6566
1864
8534
5772
4226
5289
7679
1675
7625
3316

37977 ¢

6436

06l

4307

582

590.

601.

604.

610.

618.

627.

63 %%
642.

.1805
8518

0408
6435
4559

8059
.6533
7462

2422
3848
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Master Curve Creep

31218.4
37377.4
45071.4
54304.2
65075.8
78155.6
94316.8
113551,
136633.
164336.
197420.
237432.
285101.
342040.
410520.
492850.
5913475
709837.
852145.

1022963.
1227639
1473054.
1767753~
2121663.
2546399.
3055738.
3667415.

4401391

5281604.
6337982.
7605962.
9127049.

1095284
1:31:4:331
1577236
1892692
2271235
2725487
3270608
3924754
4709692
5651871
6647583

05 647.4106
2122

3661

8278

6739

52 675.9482
8361

9221

899 696.824
2229

346 712.649
993 721.0808
2469

617 738..9705
9871

7879

6819

0529

1999

541

252

924

897

048

315

268

885

.17 896.1837
774

514

174

817

0.63

0.89

9.16

3.78

5. 62

0587

6.06

T 95

8.28

5516

6.85

652.
657

669.

682.
689.

704.

748.
758
767.
T8
788.
g cicn
810.
82

844.
856.
869.
882.

909.
924.
939.

970.
986.
1006

1022.
1042.
1:0'62:
1080.
1098.
1119.

1138
1158

$Assemble all of the Data into one set

Time = [Data 28i{:,1)
Data 40(:,1)
Data 80(:,1)
Data 110(:,1)1;

file://F\MSME\Thesis\Calculations\html\Master Curve Creep.html

gminutes

3765
8697

.5909

4141

5407
4864

5363

= 9109

3828
0481
992

3349
8784
5098
2859
5697

7821

7162
9668
6588
9201

7368
0216
2694

.6051

6253
3844
.486
705
026
536
394
587
107
.88
.549];
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Master Curve Creep Page 4 of 8

D & = |[Datd 28z »2)
Data 40(:,2)
Data 80(:,2)
Data 110(:,2)].*le-12; %convert to 1/Pa
8Double Check as needed

gplot (Time, D t)

gneed to fit t = le-2 : le8

g = fittype('1l/E0 + 1/E0L1l* (l-exp(-x/1le-2))+ 1/E02* (l-exp(-x/le-1))+ 1/E03* (l-exp(-
x/1e0))+ 1/E04* (l-exp(-x/lel))+ 1/E05* (l-exp(-x/1le2))+ 1/E06* (l-exp(-x/lel3))+ 1/E07*
(l-exp(-x/1led) )+ 1/E08* (l-exp(-x/1eb5) )+ 1/E09* (l-exp(-x/1e6))+ 1/EL10* (1-exp(-x/1e7))
+ 1/E11* (1-exp(-x/1e8)) ")

StartValues = [ 3580e6 % EO
6.9e9 %
4el10 %EO
4.5el0 &

.8el10 %

.6e10 %

4el0 %

.9el10 8

.6e10 %

.6e9 %E

.1e9 2E

2.85e9 %E11

1 ™3

Lower = zeros(l,11); %Avoid negative values

SN R RN W

[f,gof] = fit(Time, D t, g, 'StartPoint', StartValues, 'Lower', Lower)
Values = coeffvalues(f);

plot (£, Time, D &)

% change the time scale to check match at each decade
$ axis([0 1.1e7 3.5e-10 10e-101)

xlabel ('Time (min) ")

ylabel ('Creep Compliance (1/Pa)')

title('Linear Plot Used to Manually Fit')

legend('Test Data', 'Curve Fit', 'Location', 'Northwest")

E(1) = Values(1l);
for 1 = 1:(length(Values)-1)

E(i+1l) = Values (i+1);
tau(i) = 10"~ (-3+1);

end

D fit = 1/E(1) + 1/E(2)*(l-exp(-Time/tau(l)))...

file://F\MSME\Thesis\Calculations\html\Master Curve Creep.html 3/31/2015
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Master Curve Creep

+ 1/E(3)* (l-exp(-Time/tau(2)))+ 1/E(4)* (l-exp(-Time/tau(3)))...

+ 1/E(5)* (l-exp(-Time/tau(4)))+ 1/E(6)* (l-exp(-Time/tau(5)))...

+ 1/E(7)* (l-exp(-Time/tau(6)))+1/E(8)* (l-exp(-Time/tau(7))) ...

+ 1/E(9)* (1-exp(-Time/tau(8)))+ 1/E(10)* (l-exp(-Time/tau(9)))

+ 1/E(11)* (l-exp(-Time/tau(10)))+ 1/E(12)* (l-exp(-Time/tau(ll)));

$Make a log plot for comparision with TTSP plots
figure

semilogx(Time,; D £, "x",Time, D fit, "£")
xlabel ('Time (min) ")

ylabel ('Creep Compliance (1/Pa)')
title('Prony Series Fit to Creep Data')

legend('Test Data', 'Curve Fit', 'Location', 'Northwest')

$Plot the coefficients to evaluate for smoothness
figure

semilogx (tau,E(2:12), 'o--")

xlabel ('"Time Constant (min) ")

ylabel ("Modulus (Pa)"')

title('Moduli Used in Prony Series Representation')

General model:

Page 5 of 8

g(E0,E01,E02,E03,E04,E05,E06,E07,E08,E09,E10,E11,x) = 1/E0 + 1/E0L* (1-exp (-

x/le-2))+ 1/E02* (l-exp(-x/le-1))+ 1/E03* (l-exp(-x/1e0)

)+ 1/E04* (l-exp(-x/lel))+ 1/E05* (l-exp(-x/le2) )+ 1/E06* (1-
exp(-x/1e3) )+ 1/E07* (l-exp(-x/led))+ 1/E08* (1-exp(—
%/1eb5) )+ 1/E09* (1-exp(-x/1le6))+ 1/E10* (1-exp(-r/1le7)

)+ 1/E11* (1-exp(-x%/1e8))

General model:

f(x) = 1/E0 + 1/E01* (l-exp(-x/le-2))+ 1/E02* (l-exp(-x/le-1))+ 1/E03* (l-exp(-

%/1e0) )+ 1/E04* (1-exp(-x/lel))+ 1/E05* (1-exp(-x/1le2)
)+ 1/E06* (1-exp(-x/1le3) )+ 1/E07* (l-exp(-x/leld))+ 1/E08* (1-
exp(-x/1eb) )+ 1/E09* (1-exp(-x/1e6))+ 1/E10* (1l-exp(—

x/1e7))+ 1/E11* (l-exp(-x/1e8))
Coefficients (with 95% confidence bounds) :
EO0 = 3.58e+09 (-2.505e+11, 2.576e+11)

EOL = 6.9e+09 (=9.371&6+11; 9.5096+11)
E02 = 4e+10 (2.225e+10, 5.775e+10)
EO3 = 4.5e+10 (3.752e+10, 5.248e+10)
EO04 = 3.8e+10 (3.38e+10, 4.22e+10)
E0S = 2.6e+10 (2.432e+10, 2.768e+10)
E06 = 2.4e+10 (2.255e+10, 2.545e+10)
E07 = 1.%9e+10 (1.794e+10, 2.006e+10)

file://FA\MSME\Thesis\Calculations\html\Master Curve Creep.html
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E08 = l.6e+l0 (1.519e+10, l.68le+l0)
E09 = 7.6e+09 (7.40le+09, 7.799e+09)
E10 = 6.le+09 (5.909e+09, 6.291e+0%)
Ell = 2.85e+09 (2.763e+09, 2.937e+09)
gof =
sse: 3.2946e-22
rsquare: 0.9999
dfe: 122
adjrsquare: 0.9399
rmse: l.6433e-12
%10 Linear Plot Used to Manually Fit
12 T T T T
¢+ Test Data
1 Curve Fit

10

Creep Compliance (1/Pa)
o

file: iF M SMENThesis\Calcul ati onsthtm [\ aster Curve Creep html

Time (min)
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Master Curve Creep

Page 7 of 8

Prony Series Fit to Creep Data

%10
12 T T T T
% Test Data
11H Curve Fit -
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o
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5k il
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Master Curve Creep Page 8 of 8

Published with MATLAB® R2013h

file://F:\MSME\Thesis\Calculations\html\Master Curve Creep.html 3/31/2015
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Inverse Laplace Transforms
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Inverse Laplace Page 1 of 7

%Inverse Laplace.m
$By Eddie Parkman
8MSME Student, University of Texas at Arlington

$Dr. Ashfaq Adnan, Advising Professor
clear

$Input Function in Laplace Domain
syms s EO E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E1l taul tau2 taul tauld tau5 taué tau7
tau8 tau9 taulld taull C

o

k)
Functionl = 1/(s/E0 + s/E1 + s72/El/(s+1/taul))
Inversel = ilaplace(Functionl)

Function2 = 1/(s/E0 + s/El + s/E2 + s~2/El/(s+1l/taul) + s~2/E2/(s+1/tau2))
Inverse2 = ilaplace (Function2)

Function3 = 1/(s/E0 + s/El1 + s/E2 + s/E3 + s"2/El/(s+1/taul) + s"2/E2/(s+l/tau2) +

s"2/E3/ (s+1/tau3))
Inverse3 = ilaplace (Function3)

o

§ Functienll = 1/(s/E0 + 8/El # s/BE2 ¥ 8/E3 + s/EL + =8/E5 4+ S5/E6 + 8/B? ¥ s8/E8 +
S/E9 + s/EIQ + s/E11 + s”2/El/{s+1l/taul) + 872/E2/ (s+1l/tau2) + s%2/E3/ (s+1/taud) +
5”"2/E4/ (s+1/taud) + s~2/E5/ (s+1/taub) + s”2/E6/(s+1/tau6) + s72/E7/(s+1l/tau7) +
s"2/E8/ (s+1/tau8) + s"2/E9/ (s+1/tau9) + s”2/E10/(s+1l/taull) + s72/E11l/(s+1/taull))

o

% Inversell = ilaplace(Functionll)

Functionl =

1/ (s/EQ + s/EL + 882/ (Elx{s + 1/teul)))

Inversel =

(EO*E1)/ (E0 + E1) - (E0”2*El*taul*exp(-(t*(E0 + E1))/(2*EO0O*taul + El*taul)))/
((2*EO0*taul + El*taul)*(EQ0 + El1))

Function2 =

1/ (8/EQ + S/El + S/E2 + 572/ (E1¥{(5 + l/taul)) + 72/ (E2¥ (s + 1/tau2)))

Inverse2 =

(EO*E1*E2)/ (EO*El + EO*E2 + E1*E2) - (exp(-(t*(EO*El*taul + 2*E0*El*tau2 +
2*E0*E2*taul + EO0*E2*tau2 + E1*E2*taul + E1*E2*tau2))/ (4*E0*El*taul*tau2 +
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4*EQ0*E2*taul*tau2 + 2*El*E2*taul*tau2))* (taul*tau2*E0"2*E1"2*E2 +

taul*tau2*E0”2*E1*E272)* (cosh( (t* ((E0"2*E1"2*taul"2)/4 - E0"2*El"2*taul*tau2 +
E022*ELl"2*tau2”2 + E0"2*El1*E2*taulr2 =
E0”2*EL*E2*tau2”2 + E072*E2"2*taul”2 - E0"2*E2"2*taul*tau2 +

(EQ*E1"2*E2*taul”2)/2 -

(BE1A2+E202%taul A2} /4 =

(3*E0”2*El1*E2*taul*taul)/2 +

(3*E0*E1~2*E2*taul*tau2) /2 + EQ*E172*E2*tau2”2 +
EO*EL*E2"2*taul”2 — (3*EO*E1*E2"2*taul*tau2)/2 +

(E172*E272*taul*tau2) /2 +

(EO*E1*E2"2*tau2”2)/2 +
(BEIAZ2+E20 2> a2t 2} LIPS 2 5/

(taul*tau2* (2*EQ0*ELl + 2*E0*E2 + E1*E2))) - (taul*tau2*sinh((t*
(LEQR2*ElA2* taulr2) /4 = EQf2+EL22%taul*tau2 + EQ0/2*EL1%2%tau2sZ + E0/M2*E1*E2*taulnr2 =
(3*E0"2*E1*E2*taul*tau2)/2 + E0"2*E1*E2*tau2”2 + E0"2*E2"2*taul”2 -

EQ0”2*E22 2% aul*tau2 + (BOAZ*E242*tau2?2) /4 +

(BO*ELA2*E2* Eaul®2) /2 =

(3*EO*E1"2*E2*taul*tau2) /2 + EQ*E1"2*E2*tau2”2 + EQ*E1*E2"2*taul”~2 -

(3*EQ*EL*E2~2*taul*tau2) /2 +

(E1"2*E2"2*taul*tau2) /2

+

(EO*E1*E272*tau2”2) /2 +
(EL™2FE27 2% a2/ 8) ~(1/2)) /- (taul*Cai2* (2*EQXEL, +
2*EQ*E2 + E1*E2)))* ( (EO*El*taul + 2*E0*El*tauZ + 2*EQ0*E2*taul + EQ*E2*taul2 +

(ELAZFE2* 2 taul® 2/ 4, =

El*E2*taul + E1*E2*tau2)/ (4*E0*El*taul*tau? + 4*E0*E2*taul*tau? +
2*E1*E2*taul*tau2) - (tau2*E0"2*E1"2*E2 + taul*E0"2*E1*E2"2)/
(taul*tau2*E0”2*E172*E2 + taul*tau2*E0"2*E1*E272))* (2*E0*El + 2*EQ*E2 + E1*E2))/
((E0”2*E1"2*taul~2)/4 - E072*El1"2*taul*tau?2 + E0"2*E1"2*tau2”2 + E0"2*E1*E2*taul”2 -
(3*E0"2*E1*E2*taul*tau2)/2 + E0"2*E1*E2*tau2”2 + E072*E272*taul”2 -

E0"2*E2"2*taul*tau2 + (E0"2*E2"2*tau2”2)/4 +

(EO*E1"2*E2*taul”2)/2 -

(3*EQ*E1~2*E2*taul*tau2) /2 + EQ*EL"2*E2*tau2”2 + EO*E1*E272*taul”2 -

3*EQ0*E1*E2"2*taul*tau2)/2 +

(
(E1"2*E2"2*taul*tau2)/2
(

Function3 =

1/ {(s/E0 + s/El1 + s/E2 + s/E3 + s”2/(El*({(s + 1/taul))

(E3* (s + 1/taud)))

Inverse3 =

i

(EO*E1*E2"2*tau2”2) /2 +

(E1"2*E2”2*taul~2) /4 -

Page 2 of 7

(E0"2*E2~2%tau2~2) /4 +

(EL?"2*¥E272%Lau2”2)/4)~(1/2)))y/ ((EO*ELl + EO*E2 + EI*E2)*
2*E0*El*taul*tau2 + 2*E0*E2*taul*tau2 + El1*E2*taul*tau2))

+ s72/ (E2* (s + 1/tau2))

(EO*E1*E2*E3)/ (EO*E1*E2 + EO*EL1*E3 + EOQ*E2*E3 + EI*E2*E3) -

(E0~2*E1*E27~2*E3"2*taul*sum(exp (r3*t)/ (EO*E1*E2*taul + EO*E1*E2*tau2 +
EO*E1*E3*taul + 2*EQ0*E1*E2*taul + 2*EQO*El1*E3*tau2 + 2*EQ0*E2*E3*taul + EO*E1*E3*taul
+ EO*E2*¥E3*tai2 + EI*E2*E3*tail + EO*E2*E3*¥tail +

2*E0*E1*E2*r3*taul*tau2
4*EQ*E1*E2*r3*tau2*taul
1*EQ*E1*E3*r3*tau2*taul
2*EO*E2*E3*r3*tau2*taul

g
;
i
N

A*EO*E1*E2*r3*taul*taul
2*E0*EL*E3*r3*taul*taud
4*EO*E2*E3*r3*taul*taul
2¥ELHE2YES¥EFEaul ¥ a3

+ s72/

EI*¥E2*E3*tati2 + EI*¥E2*E3*tauld +

&
+
i
+

4*EO0*E1*E3*r3*taul*tau2
4*EQ*E2*E3*r3*taul*tau2
2*E1*E2*E3*r3*taul *tau2
2¥EI*E2¥EI*E3I¥ tau2¥taud

6*EQ*E1*E2*r3*2*taul*tau2*taud + 6*E0*EL*E3*r3*2*taul*tauz*taud +

GFEQXE2*¥E3* 3" 2 taulFtau2¥taus + SFEIFE2YEIF 3 2¥ taul*tduz*tausd) ;

(2*EQ*E2*E3*s3”3*taul*tau2*taul + 2*EO0*E1*E3*s3”3*taul*tau2*taul +
2*EQXE1¥E2* 53" 3 taul*tau2¥tauld + EI¥E2*E3*s3"3¥taul*tau2*tauld +

2*E0*E2*E3*s372*taul*taul3 + 2*E0*E1*E3*s372*tau2*tauld + 2*E0*E2*E3*s3”2*taul*tau2 +
2*EQ*E1*E2*53"2*¥tau2*taul + 2*EQ*E1*E3*5372*taul*tau2 + 2*E0*E1*E2*s3”2*taul*tau’ +
El*E2*E3*s3/2*tauz2*taud + EI*E2*¥E3*s3°2*taul*taud + EO¥E2*E3*s372*tau2*tauld: +
E1*E2*E3*s3"2*taul*tau2 + EO*EL1*E3*s372*taul*tauld + EQ*E1*E2*s3"2*taul*tau2 +
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2*EQ0*E2*E3*s3*taul + 2*E0*E1*E3*s3*tau2 + 2*E0*E1*E2*s3*tau3 + E1*E2*E3*s3*tau3 +
E1*E2*E3*s3*tau2 + EO*E2*E3*s3*taul + E1*E2*E3*s3*taul + EO0*E2*E3*s3*tau2 +
EO*E1*E3*s3*tauld + E0*E1*E3*s3*taul + EO*EL*E2*s3*tau2 + EO0*E1*E2*s3*taul +
E1*E2*E3 + EO*E2*E3 + EO*E1*E3 + EO*E1*E2, s3)) + E0”2*E1"2*E2*E3"2*taul*sum(exp
(r3*t)/ (E0*EL1*E2*taul + EO0*E1*E2*tau? 4+ EO0*E1*E3*taul + 2*E0*E1*E2*tau3 +
2*EQ*E1*E3*¥tau2 + 2*E0*E2*E3*taul + EO*EL*E3*taul + EO0*E2*E3*tau2 + EL1*E2*E3*taul +
EO0*E2*E3*tauld + E1*E2*E3*tau2 + E1*E2*E3*tauld + 2*E0*El*E2*r3*taul*tau2 +
4+*EQ*E1*E2*r3*taul*tauld + 4*E0*E1*E3*r3*taul*tau2 + 4*EQ*ELl*E2*r3*tau2*taul +
2*EQ*E1*E3*r3*taul*taul + A¥EQ*E2*E3*r3*taulttau? + 4*EQ*ELXE3*r3*tau2*tauld: +
1+*EQ*E2*E3*r3*taul*tauld + 2*E1*E2*E3*r3*taul*tau2 + 2*EQ*E2*E3*r3*tau2*taul +
2*B1*E2*E3*r3*taul*tauld + 2*EL*E2*E3*r3*tau2*taul + 6*E0*E1*E2*r3”2*taul*tau2*tauld
+ G6*EQO*E1*E3*r372*taul*tau2*tau3 + 6*E0*E2*E3*r372*taul*tau2*taud +
3*E1*E2*E3*r372*taul*tau2*tauld), r3 in RootOf (2*E0*E2*E3*s3”3*taul*tau2*tauld +
2*EO*E1*E3*s373*taul*tau2*tauld + 2*E0*E1*E2*s373*taul*tau2*tauld +

BElr B2 E3rsdfsttaulrbauZ2ttan? + 2RO E2*YE3*s3f 2 tanlttaud +
2FBEOFEI¥EI* 53728 Lau2Ftaud + 2XEQ¥E2XE3* 58" 2¥tatul¥tdnu2 + 2*EOFEI*E2* 5372 tau24taus +
2*EQ*E1*E3*s5372*taul*tau2 + 2*E0*E1*E2*s3"2*taul*tauld + E1*E2*E3+*s372*tau2*taul +
E1*E2*E3*s372*taul*taud + EO0*E2*¥E3*s372*tau2*taul + E1*E2*E3*s372*taul*tau2 +
EO*E1*E3*s3"2*taul*tauld #+ EQ*E1*E2*s372*taul*tau2 + 2*E0*E2*E3*s3*taul +
2¥EO*E1*E3*53*%tau2 + 2*BO*E1*¥E2*s3*tauld + EI*E2*E3*s53*taud -+ EI*E2*¥E3*s3*tau2 +
EO*E2*E3*s3*taul + E1*E2*E3*s3*taul + EO*E2*E3*s3*tau2 + EO*E1*E3*s3*taul +
EO*E1*E3*s3*taul + EO*E1*E2*s3*tau2 + EO*E1*E2*s3*taul + EL1*E2*E3 + EQ*E2*E3 +
EO*E1*E3 + EO*E1*E2, s3)) + E072*E1"2*E272*E3*taul*sum(exp(r3*t)/(E0*E1*E2*taul +
EO*E1*E2*tau2 + EO*E1*E3*taul + 2*E0*E1*E2*taul + 2*E0*E1*E3*tau2 + 2*E0*E2*E3*taul
+ EO*E1*E3*taul + EO*E2*E3*tau2 + E1*E2*E3*taul + E0*E2*E3*tau3 + E1*E2*E3*tau2 +
E1*E2*E3*taul + 2*E0*E1*E2*r3*taul*tau2 + 4*EQ*E1*E2*r3*taul*taul +
4*EO*E1*E3*r3*taul*tau2 + 4*E0*E1*E2*r3*tau2*taul + 2*EO0*E1l*E3*r3*taul*taul +
L+EO*E2*E3*r3*taul*tau? + 4*EQ0*E1*ES*r3*fau2*taud + 4A*E0*E2*E3*r3*taul*taud +
2*E1*E2*E3*r3*taul*tau2 + 2*E0*E2*E3*r3*tau2*taul + 2*E1*E2*E3*r3*taul*tau3d +
2*EI*E2*E3* e3*tauZ*taul + 6XEQFE1*E2* 372 taul*taul*taul +
6*E0*E1L*E3*r3"2*taul*tau2*taul + 6*E0*E2*E3*r3”2*taul*tau2*taul +
IYEI*E2*E3*r372*taul *tau2*tauld), r3 din RootOf (2*E0*E2*E3*s343*taul*tau2*taul +
2*EO*E1*E3*s3"3*taul*tau2*tauld + 2*E0*E1*E2*s373*taul*tau2*tauld +
BEI¥EZ2*E3* s34 3 baul *tau2*tauld + 2*E0*E2%E3*s3 2% taul *taul +
2*EO*E1*E3*5372*%tau2*tauld + 2*E0*E2*E3*5372%¥taul*tau2 + 2*E0*E1*E2*s53”2*tau2*tauld +
ZX¥BEO*E1*E3%s37 2% caul*tau? + 2*E0*EL*E2*s3f2 taul*taud + El*E2*E3*s322*tau2*taud #
E1I*E2*E3* 53 2% taul*talld + EQ*E2*ES*53™2%tau2¥tauld + EI*XE2HESHS3"2¥ taulrtau +
EO*El*E3*s322*taul*taud + EO*ELl*E2*s3”2*taul*tau? + 2*E0*E2*E3*s3*taul +
2*EOFELI*E3*83%tau2 + 2*E0*EI*¥E2+453*taild + EI*E2*E3*s53*taul + EI*E2*E3*§3¥tau2 +
EO*E2*E3*s3*tauld + EL1*E2*E3*s3*taul + E0*E2*E3*s3*tau2 + E0*E1*E3*s3*tau3 +
EO*E1*E3*s53*taul + EO*ELl*E2¥s53*tau2 + EO*E1*E2%53*taul + E1*E2*#E3 + EOQO*E2*E3 +
EO*E1*E3 + EO*E1*E2, s3)) + E072*E1*E272*E3”2*taul*tau2*sum( (r3*explr3*t))/
(E0*E1*E2*taul + EO0*E1*E2*tau2 + E0*E1*E3*taul + 2*E0*E1*E2*taul + 2*EO0*El*E3*tau2
+ 2*EQ*E2*E3*taul + EQ*El*E3*taul + EQ*E2*E3*tau2 + EI*E2*E3*taul + EQ*E2*E3*taul +
E1*E2*E3*tau2 + E1*E2*E3*taul3 + 2*EQ*E1*E2*r3*taul*tau2 + 4*E0*E1*E2*r3*taul*taul +
4*EO*E1*E3*r3*taul*tau2 + 4*EQ*E1*E2*r3*tau2*tauld + 2*EO0*E1l*E3*r3*taul*taul +
1*EO*E2*E3*r3*taul*tau2 + 4*EQ*E1*E3*r3*tau2*taud + 4*EQ*E2*E3*r3*taul*taul +

2* Bl*F2*E3 r3*taul>tauZ * 2FEQ*EZXES* 3 tau2ttaud & Z2*El*E2FE3*e3rtanl aud: <+
2F¥EI¥E2¥ES* r3*tau2rtaud + GYEQXE1YE2#r3"2¥taulxtauz*taus +
6*EQ0*E1*E3*r3”2*taul*tau2*tauld + 6*E0*E2*E3*r372*taul*tau2*taul +
3*E1*E2*E3*r3”2*taul*tau2*taud), r3 in RootOf (2*E0*E2*E3*s373*taul*tau2*tauld +
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2*EO0*E1*E3*s373*taul*tau2*taul + 2*E0*E1*E2*s3”3*taul*tau2*taul +
EI#E2¥ESY 53 S taul¥tau2staud + 2¥EOFE2HEIXEI 2R Eaulstaus +
2*EQ*E1*E3%s 32 tau2¥taud: =+ 2*E0YE2*E3 5322 taul *tau2 + 2*EQ0*E1*E2%s372*tau2*taud +
2*E0*E1*E3*s53”~2*taul*tau2 + 2*EQO*EL*E2*s53"2*taul*taul + E1*E2*E3*s5372*tau2*tauld +
El#*E2*E3*s3f 2% baulrtaud + EO*E2*E3*s32*tau2*kaud =+ E1*E2*E3*s3 2 taul*tauz; +
EOXEIX¥E3*5372%taul*tai3 + EOFEL1*¥E2*¥53™2%taul*tau? + 2¥E0*E2¥E3*53+gaul

2*EQO*E1*E3*s3*tau2 + 2*E0*E1*E2*s3*tau3 + E1*E2*E3*s3*taul + E1*E2*E3*s3*tau2 +

EO*E2¥E3*s3*%taud + BIXE2*¥E3¥53¥taul + EO*E2¥E3¥53*tau2 + EQ*EI*E3*s3*taud +

EO*E1*E3*s3*taul + EO*E1*E2*s3*tau2 + E0*E1*E2*s3*taul + E1*E2*E3 + EO*E2*E3 +

EO*EI*ES + EQ*E1*E2; s53))
(EO*E1*E2*taul + EO*El*E2*tau2 + EO*EL1*E3*taul + 2*E0*El*E2*taud + 2*E0*E1*E3*tau2

+ 2XEO0*E2*¥E3¥tail + EO*E1*E3*taid: + EO*E2*E3*tai2 + EI*E2*E3*tail + E0*E2*E3*taus: +
E1*E2*E3*tau2 + E1*E2*E3*taul + 2*EO*E1*E2*r3*taul+*tau2 + 4*EO*El*E2*r3*taul*tauld +

4*EQ0*E1*E3*r3*taul*tau2
4*EO*E2*E3*r3*taul*tau2
2XEIXE2FEI* r3*taul*tau2
2*E1*E2*E3*r3*tau2*taul

4
i
%
"

+ E0”2*E172*E2*¥E3"2*taul*tau2*sum( (r3*exp(r3*t))/

1*EQ*E1YE2*¥r3*tau2*taud + 2#EQ*E1*E3*r3*¥taul*taud +
4*EO0*E1*E3*r3*tau2*taul + 4*EQ*E2*E3*r3*taul*tauld +
2¥EO¥E2Y¥E3X¥ 3 tau2¥tausd: + 2¥E1 ¥ E2¥ E3* r3xtaul*taus +
6*EQ0*E1*E2*r3"2*taul*tau2*taul +

6*EO0*E1*E3*r372*¥taul*tau2*taud + 6*EQ0*E2*E3*r372*taul*tau2*tau3 +

I EL+E2XEI*E3 2 taulvEau2 tauldy,

2*¥EO0*E1*E3*s373*taul*tau2*tauld + 2*E0*E1*E2*s373*taul*tau2*taud +
E1*E2*E3*s3"3*taul*tau2*tauld + 2*E0*E2*E3*s372*taul*taul +
2¥EOXE1¥E3*s372¥ L au2¥tand + 2¥EQFE2*ES¥s3n2* taul ¥tau2 + 2¥E0XE1I*E2*s372¥Lau2¥taud +
2*EQ*E1*E3*s372*taul*tau2 + 2*E0*E1*E2*s3"2*taul*taul + E1*E2*E3*s372*tau2*taul +
BEI¥E2¥EZ*s322¥Latul*tauld + EOXE2¥E3*s372¥tau2*taud -+ E1*E2*¥*E3*s372*¥taul*tau? +
EO*E1*E3*s3”2*taul*tauld + EQ*E1*E2*s3"2*taul*tauz + 2*EQ0*E2*E3*s3*taul +

2*EO0*E1*E3*s3*tau2 + 2*E0*EI*E2*s3*tau3d + EI*E2*E3*s3*tauld + E1*EZ2*E3*s3*tauZ +

EO*E2*E3*s3*tauld + E1*E2*E3*s3*taul + EO*E2*E3*s3*tau2 + EO*E1*E3*s3*taul +

EQO*E1*E3*s3*taul + E0*E1*E2*s3*tau2 + EO*E1*E2*¥s3*taul + E1*E2*E3 + EOQ*EZ2*E3 +

EO*E1*E3 + EO*E1*E2, s3))
(EO*E1*E2*taul + EO*El*E2*tau2 + EO*E1*E3*taul + 2*E0*El*E2*tauld + 2*E0*E1*E3*taul

+ 2*EO0*E2*E3*taul + EO*E1*E3*taul3 + EO*E2*E3*tau2 + E1*E2*E3*taul + EO0*E2*E3*taul +
E1*E2*E3*tau2 + E1*E2*E3*taul + 2*EO0*E1*E2*r3*taul*tau2 + 4*EQ*EI1*E2*r3*taul*taul +

4*EQO*E1*E3*r3*taul*tau2
4*EO*E2*E3*r3*taul*tau2
2 EIFE2XEIF ¥ UL £ U2
2*E1*E2*E3*r3*tau2*taul

"
4
N
4

+ E0”2*E1*E272*E372*taul*tauld*sum( (r3*exp(r3*t))/

4*EQO*E1*E2*r3*tau2*tauld + 2*E0*E1*E3*r3*taul*taul +
4*EQ*E1*E3*r3*tau2*tauld + 4*E0*E2*E3*r3*taul*taul +
2*¥EO*E2*E3¥r3*tau2*tauld + 2*E1*E2¥E3*r3*taul*taud. +
6*EQ*E1*E2*r372*taul*tau2*tau3 +

GXEO¥ELIYEIW IR 2 EEWIF EEU2Y¥ AUl * 6X*EOYE2F E3¥ 3™ 2¥ taul*tau2* taus +

IFEL+E2YE3* 32 taul*tau2*tauly,

2*¥EO*E1*E3*s3"3*taul¥tau2*¥taud + 2¥*EO0*E1Y¥E2¥s3"3*taul*tau2*tauld +
E1*E2*E3*s323*taul*tau2*taul + 2*E0*E2*E3*s3"2*taul*tauld +
2¥EOFE1¥ES¥S3™ 24 tau2#taud + 2¥EOFE2¥E3*E3n2¥taul¥tauz + 2¥EOF¥E1IXE2XS3™2xtau2¥taus +
2*EQ*E1*E3*s32 taul*Eau2: ~+ 2*E0YEl* E2Ys3f 2 taul ¥*bauld + E1*E2*E3*s302%bauZ*taud +
EI#E2¥ES¥ 532X taul*tail + EO¥E2XESHS ¥ tau2¥taus + BELHE2¥ES¥53 ¥ taul tatg +
EO*E1*E3*s3 2*taul*tau3 + EQ0*E1*E2*s3”2*taul*tau? + 2*E0*E2*E3*s3*taul +

2*EQ*E1*E3*s3*tau2 + 2*BEO*EI*E2*53*taud + EI*E2*E3*s3*taud + E1*E2*E3*s53¥tauz +

EQ*E2*E3*s3*tauld + E1*E2*E3*s3*taul + EO*E2*E3*s3*tau2 + EO*E1*E3*s3*tau3 +

EO*E1*E3*s3*taul + EQO*E1*E2*s53*tau2 + EQ*E1*E2*53*taul + E1*E2*E3 + E0*E2*E3 +

EQO*EL*E3 + EO0*E1*E2, s3))
(E0O*E1*E2*taul + EO0*E1*E2*tau2 + EO*E1*E3*taul + 2*EQO*E1*E2*taul + 2*EO0*E1*E3*tau2

+ 2*EO0*E2*E3*taul + EO*E1*E3*taul3 + EO0*E2*E3*tau2 + E1*E2*E3*taul + E0*E2*E3*taul3 +
E1*E2*¥E3*tau2 + EL1*E2*¥E3*tauld + 2YEQ0*E1*E2*r3*taul*tau2 + 4*EQ*EL*E2*r3*taul*taud +

+ EO0~2*E1A2+E272*E3*taul* tauld*sum( (r3*exp(r3*t) )/
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r3 in RootOf (2*EQ0*E2*E3*s3”3*taul*tau2*taul3 +

r3 in RootOf (2*E0*E2*E3*s3”3*taul*tau2*tau3 +
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4*+*EO*E1*E3*r3*taul*tau2 + 4*E0*EL*E2*r3*tau2*tauld + 2*EQ0*E1*E3*r3*taul*taul +
L+EQ*E2*E3*r3*taul*tai2 + L*EO0*EL*E3¥r3*tau2*tauld + 4*EO*E2*E3*r3+taul*taud +
2*E1*E2*E3* a3  baulrtau? + 2*E0*E2*E3*rd*tauZ*taud: ~+ 2*E1*E2*E3¥r3*tanl *waud: +
2*EI*E2*E3¥r3*tau2* talid + G*EO*ELX¥E2#r37~2¥taul*tau2*taus +
6*E0*E1*E3*r372*taul*tau2*taud + 6*E0*E2*E3*r372*taul*tau2*taul +
3*E1*E2*E3*r3”2*taul*tau2*taul), r3 in RootOf (2*E0*E2*E3*s373*taul*tau2*tauld +
2*EQ*E1*E3%s3" 3% tanl*tau2*taul + 2*EQ0*E1*E2*s3 3 baul*tau2*tauld +
E1*E2*E3*s373*taul*tau2*tauld + 2*E0*E2*E3*s3”2*taul*taud +

2+ B0+ Bl *E3Fs 37 2  tau2*taud -+ 2*E0*E2*E3*s3" 2 taul*au?Z + ZHEQ*E1*E2*s3 2% tauz2*taus! +
2*EQ*E1*E3*s53~2*taul*tau2 + 2*EQ*E1*E2¥53"2*taul*taul + E1*E2*E3*53"2*taul2*taul +
BEl*E2*E3*s3 2  baulttaud + E0+R2*EZ g3 2 tau2ttaus + ELYE2*E3*s3% 2 banl*tau2 +
EQ*E1*¥E3* 53" 24taul*taud + EQXEI*E2*s3"2 taul*tai2 + 2¥EQY¥EZ*E3¥g3%taul +
2*EQ*E1*E3*s3*tau2 + 2*EO*E1*E2*s3*tau3 + EI+*E2*E3*s3*taud + E1*E2*E3*s3*tau2 +
EO*E2¥E3*53*taud + EI*¥E2¥E3*33*%taul + EOQ*E2*E3*53*tau2 + EQ*EI*E3*53*taud +
EO0*E1*E3*s3*taul + EQ*E1*E2*s3*tau2 + EQ0*E1*E2*s3*taul + E1*E2*E3 + EO0*E2*E3 +
EO*E1*E3 + EO*E1*E2, s3)) + E0"2*E1"2*E2*E3"2*taul2*taul*sum( (r3*exp(r3*t))/
(EO*E1*E2*taul + EO*E1*E2*tau2 + EO*E1*E3*taul + 2*EO0*El*E2*taul3 + 2*E0*E1*E3*tau2
+ 2*EQ0*E2*E3*taul + EO*E1*E3*tauld + EO0*E2*E3*tau2 + E1*E2*E3*taul + E0*E2*E3*taul +
E1*E2*E3*tau2 + E1*E2*E3*taul3 + 2*E0*E1*E2*r3*taul*tau2 + 4*EO0*El*E2*r3*taul*taul3 +
L¥FOXE1*E3*r3*taul*tau2 + 4*EQ¥E1*E2*r3*tau2*tauld + 2¥EO*EI*E3*r3*taul*taud +
4+*EQ0*E2*E3*r3*taul*tau2 + 4*EQ0*E1*E3+*r3*tau2*taul3 + 4*E0*E2*E3*r3*taul*taul +
2*E1*E2*E3*r3*taul*tau2 + 2*EQ*E2*E3*r3*tau2*taul + 2*E1*E2*E3*r3*taul*tauld +
2*E1*E2*E3*r3*tau2*taul + G*EO0*E1*E2*r3”2*taul*tau2*taul +
6*E0*E1*E3*r372*taul*tau2*tauld + 6*EQO*E2*E3*r372*taul*tau2*tauld +
3*E1*E2*E3*r3”2*taul*tau2*taul), r3 in RootOf (2*E0*E2*E3*s373*taul*taul*tauld +
2*FO¥E1*E3*s 303 taul *tau2*taul + Z2*EQ*E1*E2*53%3 *baul*tau2*taud +
E1*E2*E3*s3”3*taul*tau2*tauld + 2*E0*E2*E3*s372*taul*taul +
2*BEO*E1*E3*5372*tau2*tauld + 2*E0*E2*E3*s372*taul *tau? + 2*E0*E1*EZ2*s372*taul2*taul +
2*EQO*E1*E3*s3"2*taul*tau2 + 2*EQ0*E1*E2*s372*taul*tau3 + E1*E2*E3*s372*tau2*tauld +
E1*E2%E3* 53 2%baul ¥taud + EO¥E2*ES*s32 tan2*tauld -+ EI*E2*E3*s3%2 ¥ taul*tau? +
EO*E1*E3*s372*taul*tau3 + EO*E1*E2*s372*taul*tau2 + 2*EO0*E2*E3*s3*taul +
2*E0*E1*E3*s3*tau2 + 2*E0*E1*E2*s3*tau3 + E1*E2*E3*s3*tauld + E1*E2*E3*s3*tau2 +
EO*E2*E3*s3*tauld + E1*E2*E3*s3*taul + E0*E2*E3*s3*tau2 + EO*E1*E3*s3*taul +
EO*E1*E3*s3*taul + EO0*E1*E2*s3*tau2 + E0*E1*E2*s3*taul + E1*E2*E3 + E0*E2*E3 +
EO*E1*E3 + EO*E1*E2; 53)) + E0~2*E1"2*E2"2*E3*tau2*taul*sum( (r3*exp(r3*t))/
(E0*E1*E2*taul + EO0*El*E2*tau2 + EO0*El*E3*taul + 2*EO0*El*E2*tau3 + 2*E0*E1*E3*tau2
+ 2¥EQ*E2¥E3*taul + EO*EL*E3*taul + EO*E2*E3*tau2 + E1*E2*E3*taul + EO*E2*E3*tau3 +
E1*E2*E3*tau2 + E1*E2*E3*taul + 2*E0*E1*E2*r3*taul*tau2 + 4*EQO*El*E2*r3*taul*taul +
L+ EO*E1+E3*r3*taul*tati2 + 4+*EO0*EL*E2¥r3*tau2*tauld + 2*E0*E1+E3*r3*taul*taud. +

4 BEO*E2*E3*r3*taul*ttau? + 4*E0*EL*E3*r3*tau2*tauld + 4+*EQ0*E2*E3*r3*taul *taud: +
2ZHEIFE2XESHESHEaul¥ tauz + 2¥EOXE2YESHE3HEaUZ2¥taus + 2¥ELY EZ2XESREX taul¥taud. +
2*EI*E2*E3*xd*baud®taud + G*E0ELFEZ*r3r2*taul tau2*tend: +
GHEOFEIXESH 32  aulF Eau2¥ taul + GHEOVERXEZFEI2¥ taulrtau2rtais +
3*E1I*E2*E3*r372*taul*tau2*tauld), r3 in RootOf (2*E0*E2*E3*s3”3*taul*tau2*tauld +
2*E0*E1*E3*s3"3*taul*tau2*taul + 2*E0*E1*E2*s3"3*taul*tau2*tauld +
E1*E2*E3*s373*taul*tau2*tauld + 2*E0*E2*E3*s372*taul*taul +
2XBEOXE1*EI*S3" 2 tau2¥taud: + 2¥EQYE2¥EZF 3 2¥taul ¥tau2 + 2*EQXE1*E2%s3" 2 tau2¥tais: +
2> E0*E1*E3*5372*taml*tauz + 2*E0*E1l*E2*s3%2*taul*tauld + El*E2*E3*s3f2*tau2*taud +
ET*E2¥E3*s3"2%taul*taud + EQXE2*ES*s3"2%tau2¥taisd + EI*E2FE3*¥s3"2*¥taul*tauz +
EQ*E1*E3*s3 2 baul*tansd + EO*E1+*E2*s372*taul*tau2 + 2*E0*E2*E3*s3*taul *
2XEOXE1I*EI*S3*tau2 + 2¥EOFEIXE2X53F U8 + EIXE2FYES* 3% Laud + EIYE2* E3%53%tau2 +
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EO*E2*E3*s3*tauld + E1*E2*E3*s3*taul + E0*E2*E3*s3*tau2 + E0*E1*E3*s3*taul3 +
EO*E1*E3*s3*taul + EO*E1*E2*s3*tau2 + EO0*E1*E2*s3*taul + E1*E2*E3 + EO*E2*E3 +
EO*E1*E3 + EO*E1*E2, s3)) + EO072*E1*E272*E372*taul*tau2*tauld*sum( (r3”2*exp(r3*t))/
(EO*E1*E2*taul + EO*E1*E2*tau2 + EO0*E1*E3*taul + 2*EO0*E1*E2*taul + 2*E0*E1*E3*tau2
+ 2*EQ*E2*E3*taul + EO*E1*E3*tauld + EO0*E2*E3*tau2 + EI1*E2*E3*taul + E0*E2*E3*taud +
E1*E2*E3*tau2 + E1*E2*E3*taul + 2*EO*E1*E2*r3*taul*tau? + 4*EO0*E1*E2*r3*taul*tauld +
4+ BEO*E1*E3*r3*taul*tau2 + 4*EQ0*E1*E2*r3*tau2*tauld + 2*E0*EL*E3*r3*taul*taul +
4*FEO¥E2*E3*r3*taul*tau2 + 4*E0*E1*E3*r3*tau2*taud + 4*EQ*E2*E3*r3*taul*tausd +

2* B+ EZ2*E3*r3*taul*tauZ + 2*EQ0*E2*E3*r3*tau2*teaud + 2Z2*BE1*E2*E3*r3*taul*tausd: +
2*E1*E2*E3*r3*tau2*taud + 6*EQ0*E1*E2*r372*taul*tau2*taul +
6*E0*E1*E3*r3”2*taul*tau2*tauld + 6*E0*E2*E3*r3”2*taul*tau2*tauld +
3*E1*E2*E3*r372*taul*tau2*taud), r3 in RootOf (2*E0*E2*E3*s3”3*taul*tau2*tauld +

2> E0*E1*E3*5323*taul+tau2rtaud + 2*E0*E1*E2*s53" 3 taul*tauz*taud +
E1*E2*E3*s3"3*taul*tau2*tauld + 2*EQ*E2*E3*s3”2*%taul*taul3 +

2* B0+ E1+ES 837 2% taudrtaus & 2HEIFE2XE3* s 2 taultanZ 4 2FEO*EL*E2* 302 au2ttaud
2 EOFE1*E3* 5372 taul*tai2 + 2¥EQ*E1¥E2%¢ 53" 2 taul*taud + EL*¥E2*¥ER*s372%tau2*tauld +
E1*E2*E3*s3"2*taul*tauld + E0*E2*E3*s372*tau2*tauld + E1*E2*E3*s3"2*taul*tau2 +
EQO*E1*E3*s372*taul*taud + EO*E1*E2*s372*%taul*tau2 + 2*EQ*E2*E3*s3*taul +
2*E0*E1*E3*s3*tau2 + 2*E0*E1*E2*s3*tau3 + E1*E2*E3*s3*tauld + E1*E2*E3*s3*tauz +
EO*E2*¥E3*s3*taud + EI*E2¥E3*s3*taul + EQ¥E2*E3*53*tau? + EO*E1*E3*s3*tauld -+
EO*E1*E3*s3*taul + EO*E1*E2*s3*tau2 + EO*EL1*E2*s3*taul + EL1*E2*E3 + EO*E2*E3 +
EG*EI*EZ + EC*EL1*E2; s53)) + E0P2¥E1A2¥E2¥E372*taul*tau2*tauld*sum((e322%exp(£3*t))/
(EO*E1*E2*taul + EO*E1*E2*tau2 + EO*E1*E3*taul + 2*E0*E1*E2*taul + 2*E0*E1*E3*tau2
+ 2*E0*E2*E3*taul + EO0*E1*E3*taud + E0*E2*E3*tau2 + E1*E2*E3*taul + E0*E2*E3*taud +
E1*E2*E3*tauz + E1*E2*E3*taul + 2*EO*E1*E2*r3*taul*tau? + 4*E0*El1*E2*r3*taul*taud +
4*EO*E1*E3*r3*taul*tau2 + 4*EQ0*E1*E2*r3*tau2*taul + 2*E0*E1*E3*r3*taul*tauld +
4*EO*E2*E3*r3*taul*tau2 + 4*EO0*E1*E3*r3*tau2*tauld + 4*EO0*E2*E3*r3*taul*taul3 +
2XEI*E2*E3*r3*taul*tau2 + 2*EQ*E2*E3*r3*tau2*tauld ++ 2*E1*E2*E3*r3*taul*tauld +
2*E1*E2*E3*r3*tau2*taud + 6*E0*E1*E2*r372*taul*tau2*tau3 +
6*EO0*E1*E3*r372*taul*tau2*tauld + G*E0*E2*E3*r3”2*taul*tau2*taul +
3*E1*E2*E3*r372*taul*tau2*taul), r3 in RootOf (2*E0*E2*E3*s373*taul*tau2*taul +
2*EO0*E1*E3*s303*taul*tau2*bauld + 2*EO0*E1*E2*s323*taul*tauz2*taud +
E1*E2*E3*s3”3*taul*tau2*tauld + 2*E0*E2*E3*s3”2*taul*taul +
2*EOYE1*E3*s3%2¥tau2rtauld + Z2*EQ*E2XE3*s302* taul *tau? 4+ Z2*EO*EI*EZ*s302%kau2*taud +
2FEOFEIXESX S22 AU 4 2¥EOY BEIAE2HE3 2 EEulF Eand £ EIYE2FERH 53 2%t au2¥Eals +
El# E2*E3*s32 2* taul*taud + EO*E2*E3*s3f2%tau2*tausd + EI*E2*E3*sd372*taul*tauz; +
EO*E1*E3* 53 2¥aul*taud + EOF*EI*E2¥s3™2*taul*tau? + 2¥EO*E2XE3¥E3¥taul +

2+ BO*E1*E3*s3*tau? + 2¥E0*El*E2*s3*taud + El*E2*E3*s3*taud + EI*E2*E3*33*tau2 +
EO*E2¥E3*53*tauld + E1I¥E2*E3*s3*taul + EO*E2*E3*53*tau2 + EO*EI*E3*s53*taul +
EO*E1*E3*s3*taul + EO0*E1*E2*s3*tau2 + EO0*EL1*E2*s3*taul + E1*E2*E3 + EO*E2*E3 +
EO*EL*E3 + EO*EL1*E2; 53)) + E0"2*EL"2*E2"2*E3*taul*tau2*taud*sum((r3~2*exp(r3*t))/
(E0*E1*E2*taul + EO*E1l*E2*tau2 + EO0*E1*E3*taul + 2*EO*El1*E2*tau3 + 2*EO0*El1*E3*tau2
+ 2*E0*E2*E3*taul + EO*E1*E3*tauld + EO0*E2*E3*tau2 + E1*E2*E3*taul + EO0*E2*E3*taul +
El*E2*E3*tau2 + El*E2*E3*tauld + 2*EO0*EL1*E2*r3*taul*tau? ¥ A*EQ0*EL*E2*r3*taul*taud +
4*EO*E1*E3*r3*taul*tau2 + 4*E0*E1*E2*r3*tau2*taud + 2*EQ*E1*E3*r3*taul*taul +
4*EO*E2*E3*r3*taul*tau2 + 4*EQ0*E1*E3*r3*tau2*taud + 4*E0*E2*E3*r3*taul*tau3 +
2XEI¥E2XEZ* 3% taul*tau2 + 2¥EQXE2*E3*r3*¥tau2+taisd + 2¥F1F¥E2FEZ*r3*rtaulrtausd +

2> Bl*E2*E3*r3*tau2*taud # G*EQ*EL*E2*r3*2*taul*tau2*taud +
6*EQ*E1*E3*r3"2*taul*tau2*tauld + G*EQO*E2*E3*r3"2*taul*tau2*tauld +
3*E1*E2*E3*r3”2*taul*tau2*tauld), r3 in RootOf (2*E0*E2*E3*s3”3*taul*taul2*taul3 +
2*EO¥E1*E3* 5373 taul*taiz2¥taus + 2*E0*E1*E2¥53"3*taul*tau2*taud +
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E1+E2*E3*s3”3*taul*tau2*tauld + 2*E0*E2*E3*s372*taul*tauld +

2XBOFELXESHs32X tau2¥Eaus: + 2VEOFE2XEZNEIM2FLEUIYEaUZ + 2¥EOF¥EIXE2XEB2FLEUZ¥EEUS. +
2+ EQ*E1*E3%s 302 el ¥taul + 2%E0 bl E2*sd3f 2 taul* taud + E1*FE2*E3*s32 2% bauldtauld +
EIXE2*ESH 53" 2¥Eaul*tauld + EOHE2XEZHSB 2¥taul2ttauld + BINE2*ES¥s3 2¥taul¥taus. +
EQ#E1*E3*s3” 2% baul*taud + EO*E1*E2%s3%2*taul*taud + 2*E0*E2*E3*s3*taul +
2ZXBEOFEIXESHs3HEaU2 + 2HEOXEIFE2X 53X LUl + EIFE2XESHS3¥Eauld + BIYE2XES¥EI¥Eau2 +
EQ+E2*E3 53 taud + E1*E2*E3*s3*taul + EQ*E2*E3*s3*tau? + EO*E1*E3*s3*taud +
EO*E1*E3*s3*taul + EO0*E1*E2*s3*tau2 + E0*E1*E2*s3*taul + E1*E2*E3 + E0*E2*E3 +
EO*EL*E3 + EO*E1*E2, 53)) )/ (EO*EL*E2 + BOXEI*ER ¥ EQ*E2*EZ + BE1*E2*E3)
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