
METHODS FOR HUMAN MOTION ANALYSIS FOR AMERICAN SIGN

LANGUAGE RECOGNITION AND ASSISTIVE ENVIRONMENTS

by

ZHONG ZHANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2015

Copyright c© by ZHONG ZHANG 2015

All Rights Reserved

To my mother Ping Lu and my father Shuoping Zhang

who set the example and who made me who I am.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Vassilis Athitsos for con-

stantly motivating and encouraging me, and also for his invaluable advice during the

course of my doctoral studies. I wish to thank my committee members Dr. Farhad

Kamangar, Dr. David Levine and Dr. Gian Luca Mariottini for their interest in my

research and for taking time out of their extremely busy schedules to serve in my

dissertation committee.

I would also like to extend my appreciation to all the members of Vision-

Learning-Mining research lab I worked with. When I first joined the lab, Haijing

provided much help for me both in study and in life. I wish also to thank Sajjad

for the helpful discussions on the hand shape registration project and designing the

annotation GUI which frees me from onerous and monotonous annotating work. I’m

especially grateful to Paul Doliotis and Alexios Kotsifakos for taking time to help me

improving my English including correcting my pronunciation and teaching me a lot

of native usages. I also owe other members a favor. Without your guys’ support, I

can not make it. I also want to thank the tens of students, professors, and staff that

I have interacted with in the Computer Science Department, for all the times they

have helped and supported me.

I am grateful to all my friends in and outside UTA. There is not enough time

and space to list everyone here. However, I should especially thank Yan Ma, Shanshan

Lv, Yanliang Liu, Miaomiao Zhang ,Shuo li and Linbing Yu. We’ve spent a great four

years together. And you guys help me throughout my PHD.

iv

Finally, I would like to express my deepest gratitude to my father and mother

for their unwavering support and encouragement for my PHD study.

April 2, 2015

v

ABSTRACT

METHODS FOR HUMAN MOTION ANALYSIS FOR AMERICAN SIGN

LANGUAGE RECOGNITION AND ASSISTIVE ENVIRONMENTS

ZHONG ZHANG, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Vassilis Athitsos

The broad application domain of the work presented in this thesis is human mo-

tion analysis with a focus on hand detection for American Sign Language recognition

and fall detection for assistive environments.

One of the motivations of the proposed thesis is a semi-automatic vision based

American Sign Language recognition system. This system allows a user to submit

as query a video of the sign of interest, or simply perform the sign in front of a

camera. The system then asks the user to annotate the hands’ locations in the sign.

Next, the hand trajectory of the query sign is compared with the models in a large

sign database to find the best matches. At last, the user reviews the top results to

verify which of them best matches the query sign. Towards making the system more

automatic, a novel hand detection method is introduced which is a combination of

four representative hand detection methods published in these years.

On the topic of fall detection for assistive environments, the work in this thesis

aims at improving the safety of patients and elderly persons living unaccompanied at

home. More specifically, this thesis proposes a fully automatic vision based fall detec-

vi

tion method which can serve as a component of a home monitoring system for elderly

people. The major contributions of the fall detection work can be summarized as:

(i) This thesis collects three kinds of fall datasets using Microsoft Kinect depth cam-

eras: non-occlusion dataset, partial occlusion dataset and complete occlusion dataset.

The non-occlusion dataset refers to the performer being always visible to the camera

when he/she falls down. A partial occlusion fall refers to a fall where part of the

body is occluded by a certain object when the person performs the fall action. When

the end of a fall is totally occluded by a certain object, like a bed, the fall is called

a complete occlusion case. All of these datasets are freely available online, together

with annotations marking the beginning and end of each fall event. As far as we

know, this is the first public fall datasets captured by depth camera. These datasets

will enable researchers to explore their own fall detection methods. (ii) This thesis

proposes a statistical fall detection method based on a single Kinect depth camera,

that makes a decision based on information about how the human moved during the

last few frames. Our method proposes novel features to be used for fall detection,

and combines those features using a Bayesian framework. The proposed method is

quantitatively compared with three most related publications which also use a single

depth camera on the collected datasets. Experimental results demonstrate that the

proposed method obtains much better detection accuracy than other competitors on

non-occlusion and partial occlusion datasets. As for the complete occlusion dataset,

although the proposed method does not get the best detection accuracy, the evalua-

tion between the proposed method and the competitors can be taken as a benchmark

for the assessment of more advanced fall detection method.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xviii

Chapter Page

1. INTRODUCTION . 1

1.1 Main Contributions . 3

1.1.1 Hand Detection for American Sign Language Recognition . . . 3

1.1.2 Fall Detection Using a Single Depth Camera 4

1.2 Overview of This Thesis . 6

2. A SEMI-AUTOMATIC ASL RECOGNITION SYSTEM 7

2.1 Introduction to American Sign Language (ASL) 7

2.2 Description of the Sign Recognition System 8

2.2.1 Dataset Description . 9

2.2.2 Flowchart of the Sign Recognition System 11

2.2.3 Hand Trajectory Extraction Algorithm 13

2.2.4 Features and Normalization 15

2.2.5 Hand Trajectories Matching Using DTW Algorithm 16

3. HAND DETECTION ON SIGN LANGUAGE VIDEOS 19

3.1 Related Work . 20

3.1.1 Appearance-Based Hand Detection 20

3.1.2 Hand Detection by Using Context Information 21

viii

3.1.3 Hand Tracking . 21

3.1.4 Hand Shape Detection . 24

3.2 Five Hand Detection Methods on Sign Language Videos 24

3.2.1 Skin and Motion Detector . 24

3.2.2 Motion Residue Detector . 28

3.2.3 Hand Detection Using Multi-proposals 29

3.2.4 Chains Model for Hand Detection 32

3.2.5 Combination of Four Hand Detectors 33

3.3 Dataset Description . 38

3.4 Hand Detection Experiments . 39

3.4.1 Experimental Protocol . 39

3.4.2 Measure of Accuracy . 41

3.5 DSTW Experiments . 44

3.5.1 Hand Detection and Feature Extraction 45

3.5.2 DSTW Algorithm . 45

3.5.3 Measure of Accuracy . 46

3.6 Discussion and Future Work . 46

4. FALL DETECTION USING A SINGLE, UNCALIBRATED RGB-D CAM-

ERA . 49

4.1 Introduction . 49

4.2 Related Work . 51

4.3 Scene Setup . 57

4.4 Image and World Coordinates . 58

4.4.1 Image and Kinect Coordinates 58

4.4.2 World Coordinates . 59

4.5 A Statistical Method to Detect Falls 61

ix

4.5.1 Person Detection . 61

4.5.2 Computing the Height of the Person 63

4.5.3 Features Extracted from Fall Event 64

4.5.4 Training Positive Models and Negative Models 65

4.5.5 How to Make a Decision . 67

4.6 Experiments . 68

4.6.1 Dataset Description . 68

4.6.2 Experimental Protocol . 70

4.6.3 Comparisons Between Two Background Modeling Methods . . 73

4.6.4 Comparisons with Existing Fall Detection Methods 75

4.6.5 Evaluating Individual Features 77

4.7 Discussion and Future Work . 79

4.8 Summary . 81

5. EVALUATING DEPTH-BASED COMPUTER VISION METHODS FOR

FALL DETECTION UNDER OCCLUSIONS 90

5.1 Introduction . 90

5.2 Scene Setup . 92

5.3 Four Existing Fall Detection Methods 93

5.3.1 Floor Plane Estimation . 93

5.3.2 Person Detection and Height Calculation 94

5.3.3 Fall Detection . 96

5.4 Experiments . 97

5.4.1 Dataset Description . 97

5.4.2 Results . 99

5.5 Discussion and Conclusion . 103

6. DISCUSSION AND FUTURE WORK . 105

x

6.1 Discussion of Contributions . 105

6.2 Future Work . 107

REFERENCES . 109

BIOGRAPHICAL STATEMENT . 121

xi

LIST OF ILLUSTRATIONS

Figure Page

1.1 The framework of the proposed sign recognition system. 3

2.1 Two examples of the sign ADOPT from the ASL Lexicon Video Dataset.

The top example is performed by signer Liz while the bottom is per-

formed by signer Tyler. From left to right, we show the first frame, a

middle frame and the last frame. 10

2.2 The flowchart of the proposed sign recognition system. 11

2.3 The video submission step in the proposed sign recognition system. . . 12

2.4 Hand tracking and correction step in the proposed sign recognition system. 13

2.5 The step of matching the query with models in the proposed sign recog-

nition system. 14

3.1 Various hand shapes in sign language videos. 20

3.2 The framework of the pictorial structure (This figure comes from [1]) . 21

3.3 An example frame from a video of a sign. 25

3.4 Skin score map of the image shown in Figure 3.3. 26

3.5 Motion score map of the image shown in Figure 3.3. 27

3.6 Skin and motion score map of the image shown in Figure 3.3. 28

3.7 Motion residue score map of the image shown in Figure 3.3. 29

3.8 Root filters for the three components of the hand shape detector. The

first two filters cover frontal pose and the third filter profile (This figure

comes from [2]). 30

xii

3.9 Context captured around the hand bounding box. The blue rectangle

shows the hand bounding box and the red rectangle shows the extended

box used to capture context around the hand. The context is captured

over a region having the same height and twice the width as the hand. 31

3.10 Detecting hand by extending from face. 33

3.11 From left to right, we show three frames with the top five hand bound-

ing boxes detected by skin and motion from G100, L100 and T100,

respectively. The hand bounding boxes are indicated by red rectangles. 35

3.12 Gradient score map of the image shown in Figure 3.3. 37

3.13 Video frames of two two-handed signs from L100 (top two rows) and

T100 (bottom two rows). 39

3.14 Video frames of two one-handed signs from L100 (top two rows) and

T100 (bottom two rows). 40

3.15 Accuracy vs Top k bounding boxes retrieval on the ASL100x3 dataset

using combination20 and other competitive methods. The left side is

the result of one-handed signs and the right side of two-handed signs.

The x-axis corresponds to the top k hand candidates, while the y-axis

corresponds to detection accuracy. 41

3.16 Accuracy vs Top k bounding boxes retrieval on the ASL100x3 dataset

using combination50 and other competitive methods. The left side is

the result of one-handed signs and the right side of two-handed signs.

The x-axis corresponds to the top k hand candidates, while the y-axis

corresponds to detection accuracy. 42

xiii

3.17 Accuracy vs Top k bounding boxes retrieval on the ASL100x3 dataset

using chains model, multiple proposals, and combination method with

user independent setting. The left side is the result of one-handed signs

and the right side of two-handed signs. The x-axis corresponds to the

top k hand candidates, while the y-axis corresponds to detection accuracy. 42

4.1 Our simulated apartment, seen from the two viewpoints that is used

to make EDF dataset. For each viewpoint we show a color image and

a depth image. Depth images are color-coded so that: white indicates

small depth values, and yellow, orange, red, green, blue indicate pro-

gressively larger depth values. Black indicates invalid depth. 57

4.2 Our simulated apartment, seen from the two viewpoints that is used to

collect partially occluded videos. For each viewpoint we show a color

image and a depth image. Depth images are color-coded so that: white

indicates small depth values, and yellow, orange, red, green, blue indi-

cate progressively larger depth values. Black indicates invalid depth. . 58

4.3 Kinect-centered world coordinate space. The origin is the center of the

Kinect sensor array. The xy-plane of that space is parallel to the depth

image plane and the z axis points to the camera view direction. 59

4.4 The floor plane, which is indicated by orange color, is detected by Mi-

crosoft Kinect SDK in four scenes. 61

4.5 Person detection using depth map. The white rectangle indicates the

bounding box of the person region. 63

4.6 Occlusion example, the person’s location is indicated by a white rect-

angle in the depth image. It can easily be seen that the centroid of the

detected person region is not the actual centroid of the person. 64

4.7 Kinect cameras setup for recording the EDF dataset 70

xiv

4.8 A person falls down along eight different directions in viewpoint one.

The top is for color images while the bottom is for depth images. . . . 71

4.9 A person falls down along eight different directions in viewpoint two.

The top is for color images while the bottom is for depth images. . . . 71

4.10 Partial occlusion fall examples . 72

4.11 The training and test procedure for one subject in the EDF dataset. . 73

4.12 Results of comparing the proposed method with the three most directly

related existing methods [3, 4, 5] on the EDF dataset, O25 dataset,

O50 dataset and O75 dataset. 75

4.13 Example frames from a false alarm, showing a person doing plank. . . 78

4.14 Example frames from a false alarm, showing a person lying down on the

floor. 78

4.15 Evaluating individual features on EDF dataset by measuring the effects

of leaving each feature out, and using only the remaining four features. 82

4.16 Evaluating individual features on EDF dataset by measuring the result

using each single feature in isolation, compared to using all five features

together. 83

4.17 Evaluating individual features on EDF0 dataset by measuring the ef-

fects of leaving each feature out, and using only the remaining four

features. 84

4.18 Evaluating individual features on EDF0 dataset by measuring the result

using each single feature in isolation, compared to using all five features

together. 85

4.19 Evaluating individual features on EDF45 dataset by measuring the

effects of leaving each feature out, and using only the remaining four

features. 86

xv

4.20 Evaluating individual features on EDF45 dataset by measuring the

result using each single feature in isolation, compared to using all five

features together. 87

4.21 Evaluating individual features on EDF90 dataset by measuring the

effects of leaving each feature out, and using only the remaining four

features. 88

4.22 Evaluating individual features on EDF90 dataset by measuring the

result using each single feature in isolation, compared to using all five

features together. 89

5.1 Our simulated apartment, seen from the two viewpoints that is used to

collect non-occluded fall videos. For each viewpoint we show a color

image and a depth image. Depth images are color-coded so that: white

indicates small depth values, and yellow, orange, red, green, blue indi-

cate progressively larger depth values. Black indicates invalid depth. . 92

5.2 Our simulated apartment, seen from the two viewpoints that is used to

collect occluded fall videos. For each viewpoint we show a color image

and a depth image. Depth images are color-coded so that: white indi-

cates small depth values, and yellow, orange, red, green, blue indicate

progressively larger depth values. Black indicates invalid depth. 93

5.3 Result of floor level detection. Top: a background depth image. Bottom:

the same image as on the top, with an orange color superimposed on

pixels with height value less than 2cm. 94

5.4 The left side shows an example of partial occlusion, while the right side

shows the person detection result with a red rectangle indicating the

person’s location in the depth image. It can easily be seen that the

centroid of the silhouette is not the actual centroid of the person. . . . 96

xvi

5.5 A person falls down along eight different directions 97

5.6 Examples of the occluded fall. The top row shows an occluded fall in

the first viewpoint while the bottom row shows an occluded fall in the

second viewpoint. 98

5.7 Results of four evaluated methods [6, 5, 3, 4] on EDF dataset. 100

5.8 Example frames from a false alarm, showing a person lying on the floor. 101

5.9 Results of four evaluated methods [6, 5, 3, 4] on OCCU dataset and

OCCU1 dataset respectively. The left side is about OCCU dataset

while the right side is for OCCU1 dataset 102

5.10 Example frames from a false alarm, showing a person lying down on the

floor. 103

5.11 The left side is an example of tying shoelaces and the right side is an

example of picking up something from the floor. 103

6.1 Two sign examples where one hand interacts with the other hand. . . . 108

xvii

LIST OF TABLES

Table Page

3.1 Description of datasets . 39

3.2 p-value between the method of combination20 and skin plus motion . . 43

3.3 p-value between the method of combination50 and skin plus motion . . 44

3.4 Comparisons between combination20 and alternatives 47

3.5 Comparisons between combination50 and alternatives 47

3.6 p-value table of DSTW . 47

3.7 Comparisons between the combination method with user-independent

setting and alternatives . 48

4.1 Summary of each dataset . 70

4.2 Result of person detection . 74

xviii

CHAPTER 1

INTRODUCTION

Researchers have been studying human motion analysis for several years, and it

is still one of the most active research topics in the computer vision community. This

topic has attracted such great interest from computer vision researchers due to its wide

spectrum of applications such as sign language recognition, assistive environments,

etc. The tasks involved in human motion analysis can be broadly divided into three

categories: human activity recognition, human motion tracking, and analysis of body

and body part movement. The focus of this thesis lies in recognizing human activities

from image sequences. More specifically, this thesis is motivated by a semi-automatic

vision-based American Sign Language recognition system and explores several hand

detections to make this system towards more automatic. In addition, a statistical-

based method using a Kinect depth camera is proposed for fall activity recognition

for assistive environments.

American Sign Language (ASL) is used by millions of people in the U.S. [7, 8, 9].

Unfortunately, many resources taken for granted by users of spoken languages are not

available to users of ASL, given its visual nature and its lack of a standard written

form. One such resource would be the ability to look up the meaning of a sign.

This functionality is especially useful for ASL learners. Imagine this example: A

student learns many signs in class and goes back home to do homework. He forgets

the meaning of a sign but remembers how to perform it. This situation is similar

to knowing how to spell an English word but forgetting what it means, but we can

easily look up the meaning of the word in an English dictionary. However, this is not

1

the case for American Sign Language since a typical printed ASL/English dictionary

allows users to find out which sign corresponds to an English word but not to discover

the meaning of an unknown sign. A vision-based sign recognition system that allows

users to look up the meanings of ASL signs would be very useful to these ASL learners.

Figure 1.1 shows the framework of a semi-automatic vision-based American

Sign Language recognition system. A user submits a video of a sign of interest to

the system. The system then asks the user to annotate where the hands are in

each frame, which is the only user interaction step in the entire system. The hand

trajectory extracted from the query sign is then compared with models in a large sign

dataset to find the best matches. At last, the system presents the user with the top

matches so the user can review them one by one to verify which one best matches the

query sign.

We first evaluated four representative hand detectors on three sign language

datasets to determine whether it was possible to apply an existing hand detection

algorithm to the system. Unfortunately, none of these four detectors provided good

accuracy. Thus, a novel hand detection algorithm which combines the four represen-

tative methods has been proposed. The experimental results demonstrate that the

proposed algorithm obtains significantly better accuracy than these four representa-

tive methods on three sign language datasets.

Motion analysis can also be useful in detecting falls, which are a major cause of

fatal injury for the elderly population, and fear of falling prevents them from living

independently. According to the World Health Organization [10], approximately 28-

35% of people aged 65 and over fall each year increasing to 32-42% for those over 70

years of age. To improve the living quality of seniors, developing intelligent surveil-

lance systems with the functionality of automatic fall detection is becoming more

and more important. Research has already been done to design algorithms to detect

2

Figure 1.1: The framework of the proposed sign recognition system.

falls. Existing fall detection approaches can be broadly categorized into two groups:

using sensors (various accelerometers) and being exclusively vision based. This thesis

focuses on vision-based fall detection and proposes a Kinect depth camera-based sta-

tistical method, which determines whether a fall has occurred based on information

about how the person has moved during the last few frames. Novel features for fall

detection are proposed by our method, and these features are fused using a Bayesian

framework.

1.1 Main Contributions

In this section we briefly go over the main contributions of this thesis in the

aspects of hand detection and fall detection.

1.1.1 Hand Detection for American Sign Language Recognition

This thesis evaluates four hand detection methods [11, 12, 13, 2] on three sign

language datasets. Although hundreds of publications regarding hand detection have

been released in recent years, we are not aware of any work which evaluates the repre-

3

sentative hand detectors on public American Sign Language datasets. This evaluation

can serve as a benchmark for the assessment of more advanced hand detection meth-

ods on American Sign Language datasets.

A novel hand detection method is proposed by combining these four evaluated

hand detection methods. More specifically, the proposed method introduces a two-

stage hand detector. The first stage uses a simple skin and motion hand detector

to generate hand candidate boxes in each frame. Several features based on these

four hand detectors are then computed for each candidate box. Finally, a pre-trained

Support Vector Machine (SVM) classifier is applied to these features to obtain a final

decision. Experimental results with user-dependent experimental protocol demon-

strate the proposed method achieves much better detection accuracy than these four

detectors used individually.

1.1.2 Fall Detection Using a Single Depth Camera

The contributions of fall detection work lie in three aspects: (1) creating several

publicly available datasets, (2) proposing a novel vision-based fall detection method,

and (3) evaluating four fall detection methods on a complete occlusion dataset. We

have made one non-occlusion fall dataset, three partial occlusion datasets, and one

complete occlusion dataset. All of our datasets and annotations are publicly available

online. Researchers can use them as a benchmark to develop their own fall detection

methods. As far we know, these are the first publicly available fall datasets captured

by Kinect depth cameras.

The proposed statistical method detects falls based on depth images captured

using a Kinect camera. Using the depth images, we detect and track the person

in both image coordinates and world coordinates. From every frame, features are

extracted based on the position and velocity of the person. A Bayesian classifier is

4

built on top of those features. For each frame, the system uses this Bayesian classifier

to decide whether a fall event has just occurred. Compared to most existing vision-

based fall detection methods, the proposed method in this thesis has the following

properties:

• Modeling fall events using a camera-independent world coordinate system allows

our method to be viewpoint invariant and to be quite insensitive to the choice

of position and viewing direction for the camera.

• A key feature of the experiments is that they include evaluations where all of

the training data has been captured from one specific viewpoint, and all of the

test data has been captured from a different viewpoint. This experimental setup

highlights the fact that camera placement is really not important and that if the

camera is moved on purpose or by accident, minimal effort is needed to adjust

the system to the new viewpoint.

• The proposed method is also robust to partial occlusion falls, which refers to

part of the person being occluded by a certain object in each frame when he/she

is falling. As long as the head of the person is visible, the proposed method will

work as expected.

• Experimental results show that the proposed method has produced significantly

better accuracy than the three most related competitors on both non-occlusion

and partial occlusion datasets.

To test the proposed method’s capability for handling complete occlusion falls,

we evaluate the proposed method and three most related methods on the collected

complete occlusion dataset. This evaluation is one of the earliest to discuss handling

the complete occlusion falls.

5

1.2 Overview of This Thesis

In Chapter 2, we first briefly introduce American Sign Language and the overall

design of the system. Then the user interaction hand trajectory extraction step is pre-

sented in detail. Finally, the Dynamic Time Warping (DTW) based hand trajectory

similarity matching is discussed.

Chapter 3 discusses the research work on hand detection. We first evaluate

four representative hand detectors published recently on three sign language datasets

and then talk about how to combine these four methods to build the proposed hand

detector.

In Chapter 4, a novel vision-based fall detection method using a single depth

camera is proposed. More specifically, the person detection in both image coordinates

and world coordinates is introduced first. After the person detection step, five features

extracted from each frame are presented. A Bayesian classifier is then described

to combine these five features to decide whether a fall event has just happened.

The collected datasets, user-independent and viewpoint-independent experimental

protocol, and experimental results are discussed in the experiment section.

Chapter 5 evaluates the fall detection method proposed in chapter 4 and three

other related works on a complete occlusion fall dataset.

6

CHAPTER 2

A SEMI-AUTOMATIC ASL RECOGNITION SYSTEM

This chapter first provides a brief overview of American Sign Language (ASL)

and then describes a semi-automatic vision-based ASL recognition system, in which

a user is asked to annotate the locations of hands manually. This system motivates

the hand detection work described in Chapter 3.

2.1 Introduction to American Sign Language (ASL)

ASL, the predominant sign language of deaf communities in the United States

and English-speaking parts of Canada, is a visual-manual language with a structure

independent of and very different from spoken English. The sign order of ASL does not

always match the word order of spoken English. Signers also can convey grammatical

information with their faces, bodies, and the surrounding space.

Manual signs have five parameters or parts: the handshape, which is the specific

configuration of the hand; the location of the hand–on the body, on the head, in the

space in front of the body; the movement of the hand–up and down, side to side, in

an arc; the orientation of the palm–up or down, facing the signer or facing away from

the signer; and non-manual signals, which include obligatory facial expressions, eye

gaze, specific head positions, or particular body positions [14].

American Sign Language is used by 500, 000 to two million people in the U.S.

[7, 8]. Unfortunately, many resources that are taken for granted by users of spoken

languages are not available to users of ASL, given its visual nature and its lack of a

standard written form. One such resource is the ability to look up the meaning of

7

an unknown sign. When we encounter an English word that we do not understand,

we can look it up in a dictionary. Unfortunately, when an ASL user encounters an

unknown sign, it is anything but straightforward to find the meaning of that sign.

Using a typical printed ASL/English dictionary, one can easily find out which sign

corresponds to an English word, but this does not work in the other direction, to

discover the meaning of an unknown sign. Some dictionaries do allow look-up based

on articulatory properties of the signs. For example, the American Sign Language

Handshape Dictionary [15] arranges signs based on the initial handshape, from among

40 basic handshapes. However, even with this dictionary, substantial effort is needed

to find a specific sign from among the 1600 included.

A system that lets users search dictionaries of ASL to look up the meaning of

unknown signs would definitely be useful to ASL users. In the next section, we will

introduce a semi-automatic vision-based sign language recognition system.

2.2 Description of the Sign Recognition System

We describe a semi-automatic vision-based sign language recognition system in

this section [16, 17, 18, 19, 20]. In this sign recognition system, the user submits

a query of a video of the sign of interest or simply performs the sign in front of a

camera. The system then searches a large database of sign videos to find the best

matches for the query video and presents the top results to the user. The user can

then visually review the top results to verify which (if any) of them best matches the

query sign. The database of sign videos used in this recognition system is constituted

of a subset of the American Sign Language Lexicon Video Dataset (ASLLVD) [9]

(named TL1113) and a subset of the Gallaudet Video Dataset (GVD) [14] (named

G1113). ASLLVD is collected and maintained by Boston University and University

of Texas, Arlington while GVD is available with the book The Gallaudet Dictionary

8

of American Sign Language [14]. We will give a brief introduction of the ASLLVD

dataset, the GVD dataset and the created subsets in the next section.

2.2.1 Dataset Description

The subset of the dataset ASLLVD, named TL1113, and the subset of the

dataset GVD, named as G1113 together constitute the video database used for the

sign lookup system. With the help of this video database, the sign lookup system is

treated as a video database retrieval problem.

2.2.1.1 Introduction of the Dataset ASLLVD and Its Subset: TL1113

The ASLLVD dataset is introduced by Athitsos et al. [9] for researchers in sign

language recognition, gesture recognition, and human activity analysis. An important

aspect of this dataset is its comprehensiveness: it includes a set of signs similar in

scale and scope to the set of lexical entries in existing English-to-ASL dictionaries

[14, 15]. Each sign is performed by at least of one of five native ASL signers: Lana,

Dana, Liz, Tyler and Naomi. At this point, the ASLLVD dataset includes at least one

video example per sign from a native signer for almost all of the 3,000 signs contained

in the Gallaudet Dictionary of American Sign Language [14].

The video sequences for the ASLLVD dataset are captured simultaneously from

four different cameras, providing a side view, two frontal views, and a view zoomed in

on the face of the signer. For the side view, first frontal view, and face view, video is

captured at 60 frames per second, non-interlaced, at a resolution of 640x480 pixels per

frame. For the second frontal view, video is captured at 30 frames per second, non-

interlaced, at a resolution of 1600x1200 pixels per frame. The annotations include,

for each sign in a video sequence, information such as class label, type of sign (one-

9

Figure 2.1: Two examples of the sign ADOPT from the ASL Lexicon Video Dataset.
The top example is performed by signer Liz while the bottom is performed by signer
Tyler. From left to right, we show the first frame, a middle frame and the last frame.

handed or two-handed), start/end frame for that sign, signer ID and the locations of

the hands.

A subset of ASLLVD, named TL1113, was generated for the proposed sign

recognition system. The dataset TL1113 consists of 1,113 unique signs. Each sign

has one video example performed by the native signers Liz and Tyler separately; thus,

there are 2,226 video sequences in total. Out of the four camera views recorded, only

the 60fps, 640x480 frontal view is used in the dataset TL1113. Figure 2.1 shows two

examples of the sign ADOPT performed by signers Liz and Tyler separately in the

ASL Lexicon Video Dataset (ASLLVD).

2.2.1.2 Introduction of the Dataset GVD and Its Subset: G1113

More than 3,000 signs are contained in the Gallaudet Dictionary of American

Sign Language [14]. Each sign is performed by a signer once; thus, there are more

than 3,000 sign videos in total. These videos are recorded at 30 frames per second

10

Figure 2.2: The flowchart of the proposed sign recognition system.

and a resolution of 240x352 pixels per frame. We choose the same 1,113 unique signs

as the TL1113 dataset to generate the subset G1113.

The TL1113 and G1113 datasets together form the video database used for the

sign recognition system. Thus, the final database includes 1,113 unique signs and

each sign is performed by three signers.

2.2.2 Flowchart of the Sign Recognition System

Sign lookup is treated as a video database retrieval problem. The query sign is

compared with each sign in the database, and the most similar database matches are

returned to the user. The key problem is how to calculate the similarity between the

query sign and the model sign in the database accurately. The solution adopted by the

proposed sign recognition system is to match the hand trajectory of the query and the

model trajectory using the well-known Dynamic Time Warping (DTW) algorithm.

Following the system flowchart introduced in Figure 2.2, the proposed sign

recognition system can be further broken down into the following steps:

11

(a) Video submission (b) Marking start and end frames

Figure 2.3: The video submission step in the proposed sign recognition system.

• When a user encounters an unknown sign, the user can perform the sign in front

of a webcam or submit an existing video including that sign as a query to the

system. In Figure 2.3a, a sign (ADDRESS) video is submitted to the system.

• Then, the system asks the user to mark the start and end frames of the actual

sign in the video and to indicate whether the sign is one-handed or two-handed.

In the START/END FRAME part of the GUI (Figure 2.3b), we can see that

the submitted sign starts from the 3-th frame and ends at 28-th frame.

• At the next step, the system first asks the user to annotate the locations of the

hands at the first frame and then track the hands in the remaining frames. The

left side of Figure 2.4 shows the hands initialization step. After the initialization,

the user clicks the HAND DETECTION button, and the system will generate

the hand tracking results shown in the right side of Figure 2.4. The hand

detection/tracking is still an open problem in the computer vision community,

and no method guarantees 100% detection accuracy. Thus, the system allows

the user to correct the false detections manually.

12

Figure 2.4: Hand tracking and correction step in the proposed sign recognition system.

• After hand detection results have been approved by the user, the system com-

putes the similarity between the query sign and all database signs using the

Dynamic Time Warping (DTW) similarity matching algorithm. The system

ranks all 1,113 distinct signs in the database in decreasing order of similarity

to the query. Once the signs have been ranked, the system presents the user

with an ordered list of the best matching signs. The user then views the results,

starting from the highest-ranked sign, until encountering the video displaying

the actual sign of interest. Figure 2.5 shows the most similar matching sign is

ADDRESS which is exactly the query sign.

• When the user identifies the correct database sign, the user can readily view

any additional information associated with that sign. Currently, our signs are

labeled with very rough English glosses.

2.2.3 Hand Trajectory Extraction Algorithm

As far as we can determine, detecting hands automatically is still an open

problem in the computer vision community. So the proposed system resorts to the

13

Figure 2.5: The step of matching the query with models in the proposed sign recog-
nition system.

user interaction to achieve the hands’ locations. The system first requests the user

to annotate the hands’ locations in the first frame. Then a tracking algorithm is

adopted to search the hands’ locations in the rest of the frames. Finally, the user’s

corrections are accounted for failed tracking cases. In this section, we describe the

tracking algorithm, which is shown in Algorithm 1, used in the system.

In Algorithm 1, the similarity measure between two rectangular areas is defined

by the correlation coefficient. Given two matrices A and B, the correlation coefficient

is calculated using the following equation:

r =

∑

m

∑

n(Amn − Ā)(Bmn − B̄)
√

(

∑

m

∑

n(Amn − Ā)2
)

∑

m

∑

n(Bmn − B̄)2
)

(2.1)

where Ā =
∑

m

∑
n
Amn

mn
and B̄ =

∑
m

∑
n
Bmn

mn
.

14

Algorithm 1 Hand Tracking Algorithm

Input: A sequence of images V = (I1, ..., Im).

Output: A sequence of hand locations L = (L1, ..., Lm).

Initialization: the user annotates the hands’ location in 1-th frame I1.

for i = 2 to m do

extract the hand area, indicated as hi−1, in the previous frame Ii−1.

search the most similar area to hi−1 in the current frame Ii and assign this area

to Li.

end for

2.2.4 Features and Normalization

Let X be a video of a sign. We denote by |X| the number of frames in the

video, and by X(t) the t-th frame of that video, t ranging from 1 to |X|. From sign

X we extract the following location features:

• Ld(X, t) and Lnd(X, t): The (x, y) centroid respectively of the dominant hand

and non-dominant hand of the signer at frame t.

• Lδ(X, t): The relative position of the dominant hand with respect to the non-

dominant hand at frame t. Lδ(X, t) = Ld(X, t)− Lnd(X, t)

For notational convenience, all features referring to the non-dominant hand are

set to zero vectors for one-handed signs. In defining location features, the choice of

coordinate system is important. To account for differences in translation and spatial

scale between the query video and the matching training videos, we use a face-centric

coordinate system. We use the face detector provided by OpenCV to detect the face

of each signer at the first frame of the sign. The coordinate system is defined so that

the center of the face is at the origin, and the diagonal of the face bounding box

has length 1. The same scaling factor is applied to both the x and the y direction.

15

Features Ld(X, t), Lnd(X, t), Lδ(X, t) are all defined in this normalized coordinate

system.

2.2.5 Hand Trajectories Matching Using DTW Algorithm

Let X be a video of a sign. We can represent X as a time series (X1, ..., X|X|),

where each Xt is simply a concatenation of the features extracted at frame t:

Xt = (Ld(X, t), Lnd(X, t), Lδ(X, t)). (2.2)

As a reminder, features Lnd(X, t), Lδ(X, t) are set to 0 for one-handed signs.

Dynamic Time Warping [21] is a commonly used distance measure for time

series. Given two sign videosQ andX, DTW computes a warping pathW establishing

correspondences between frames of Q and frames of X:

W = ((q1, x1), ..., (q|W |, x|W |)), (2.3)

where |W | is the length of the warping path, and pair (qi, xi) means that frame qi of

Q corresponds to frames xi of X. A warping path must follow two constraints:

• boundary constraints: q1 = 1, x1 = 1, q|W | = |Q|, x|W | = |X|.

• monotonicity and continuity: 0 ≤ qi+1 − qi ≤ 1, 0 ≤ xi+1 − xi ≤ 1.

The cost C(W,Q,X) of a warping path W is the sum of individual local costs

c(Qqi , Xxi
), corresponding to matching each Qqi with the corresponding Xxi

:

C(W,Q,X) =

|W |
∑

i=1

c(Qqi , Xxi
). (2.4)

As local cost c, we use a combination of the individual Euclidean distances

between the three features extracted from the two frames:

16

c(Qqi , Xxi
) = ||Ld(Q, qi)−Ld(X, xi)||+||Lnd(Q, qi)−Lnd(X, xi)||+||Lδ(Q, qi)−Lδ(X, xi)||

(2.5)

The DTW distance DDTW (Q,X) between sign videos Q and X is defined as

the cost of the lowest-cost warping path between Q and X:

DDTW (Q,X) = min
W

C(W,Q,X) (2.6)

The optimal warping path and the distance DDTW (Q,X) can be computed

using dynamic programming, with a time complexity of O(|Q||X|).

17

Algorithm 2 DTW Algorithm

Input: A sequence of model feature vectors M = (M1, ...,Mm), and a sequence of

query feature vectors Q = (Q1, ..., Qn).

Output: A global matching cost D∗.

Initialization: D(1, 1) = d(1, 1)

for i = 2 to m do

D(i, 1) = D(i− 1, 1) + d(i, 1)

end for

for j = 2 to n do

D(1, j) = D(1, j − 1) + d(1, j)

end for

for i = 2 to m do

for j = 2 to n do

D(i, j) = d(i, j) + min(D(i− 1, j), D(i, j − 1), D(i− 1, j − 1))

end for

end for

D∗ = D(m,n)

18

CHAPTER 3

HAND DETECTION ON SIGN LANGUAGE VIDEOS

In the computer vision community, hand detection has been a subject of study

for several years due to its obvious applicability in domains such as sign language

recognition, gesture recognition, and human-computer interfaces. Accurate detection

of hands in still images or videos is still a challenging problem because of the variability

of hand appearance. Hands do not have a fixed shape (Figure 3.1); thus, their shape

is hard to describe computationally. This is in contrast to faces, for example, which

have a well-defined shape (with two eyes, a nose, a mouth), and thus can be detected

these days by commercial products such as cameras and cell phones. Colored gloves

and magnetic trackers can give accurate detection results, but they are expensive and

inconvenient (users have to wear special equipment).

In this chapter, we first review the classic hand detection work published in

recent years and then choose four representative methods ([2, 13, 11, 12]) which are

evaluated on three ASL datasets. These four methods are based on different sources

of information: the appearance of the hand, the context parts which surround the

hand and the motion information happening in sign videos. By combining these four

methods, we propose a novel hand detector which fuses all of these different sources

of information.

19

Figure 3.1: Various hand shapes in sign language videos.

3.1 Related Work

Methods for detecting hands in the computer vision community can be catego-

rized into four groups: (1) appearance-based hand detection, (2) hand detection by

using context information, (3) hand tracking and (4) hand shape detection.

3.1.1 Appearance-Based Hand Detection

Color information has been used in computer vision community for a long time

[22, 23, 24]. Some methods use skin color information to localize and track hands in

signing videos [25, 26]. Mittal et al. [2] describe a method for detecting hands and

their orientation using skin color, hand shape, and context. Kölsch et al. [27] study

view-specific hand posture detection with an object recognition method proposed by

Viola and Jones [28]. Ong et al. [29] present a novel, unsupervised approach to train

an efficient and robust detector which is capable of not only detecting the presence

of human hands in an image but also of classifying the hand shape. Zhong et al. [30]

evaluate four features for hand detection: color, temporal motion, gradient norm, and

motion residue.

20

Figure 3.2: The framework of the pictorial structure (This figure comes from [1])

3.1.2 Hand Detection by Using Context Information

Karlinsky et al. [13] develop a chains model in which the relation between

context features and the object of interest is modeled using an ensemble of feature

chains. Pictorial structure models, originally introduced by Fischlet and Elschlager

[31], provide a statistical model of objects. Using these pictorial structure models,

objects in an image can be recognized and their constituent parts can be located in the

image. Figure 3.2 shows the typical process of using pictorial structure to register the

interest object. Buehler et al. [32, 1] use a generative model for upper body detection

and propose a complete model which accounts for self-occlusion of the arms. Kumar

[33] shows how this seemingly difficult problem can be solved by reducing it to an

equivalent convex problem with a small, polynomial number of constraints. Pfister

et al. [34] present a hand and arm tracker that detects joint positions in continuous

sign language video sequences. Their method does not require manual annotation

and performs tracking in real-time using a frame-by-frame random forest regressor.

3.1.3 Hand Tracking

Hand tracking can be categorized into two groups: 3D and 2D hand tracking.

21

3.1.3.1 2D Hand Tracking

Yuan et al. [11] propose a temporal filtering framework for hand tracking. In

each frame, simple features such as color and motion residue are exploited to identify

multiple candidate hand locations. The temporal filter then uses the Viterbi algorithm

to select among the candidates from frame to frame. Trinh et al. [35] use binary

quadratic programming to integrate appearance, motion and complex interaction

between the hands. Morariu [36] describes a framework that uses probabilistic and

deterministic networks and their AND/OR search space to detect and track the hands

and feet of multiple interacting persons from a single camera view.

3.1.3.2 3D Hand Tracking

Zhou et al. [37] introduce the concept of eigen-dynamics and propose an eigen

dynamics analysis (EDA) method to learn the dynamics of natural hand motion from

labelled sets of motion captured with a data glove. Based on the EDA mode, a

dynamic Bayesian network (DBN) is constructed to analyze the generative process of

an image sequence of natural hand motion. Using the DBN, a hand tracking system

is implemented. Martin et al. [38] present a novel model-based approach to 3D

hand tracking from monocular video. The 3D hand pose, the hand texture and the

illuminant are dynamically estimated through minimization of an objective function.

Derived from an inverse problem of formulation, the objective function enables explicit

use of texture temporal continuity and shading information, while handling important

self-occlusions and time-varying illumination. Stenger et al. [39] set out a tracking

framework, which is applied to the recovery of three-dimensional hand motion from

an image sequence. The method handles the issues of initialization, tracking, and

recovery in a unified way. Chen et al. [40] present a head and hands tracking method

22

using a monocular camera for human machine interaction (HMI). The targets are

tracked independently when they are far from each other; however, they are merged

with dependent likelihood measurements in higher dimensions while they are likely to

interrupt each other. Oikonomidis et al. [41] present a novel solution to the problem

of recovering and tracking the 3D position, orientation and full articulation of a

human hand from markerless visual observations obtained by a Kinect sensor. They

treat this as an optimization problem, seeking for the hand model parameters that

minimize the discrepancy between the appearance and 3D structure of hypothesized

instances of a hand model and actual hand observations. The optimization problem

is effectively solved using a variant of Particle Swarm Optimization (PSO). Sudderth

et al. [42] develops probabilistic methods for visual tracking of a three-dimensional

geometric hand model from monocular image sequences. Wang et al. [43] propose an

easy-to-use and inexpensive system that facilitates 3D articulated user-input using

hands. Their method uses a single camera to track a hand wearing an ordinary cloth

glove that is imprinted with a custom pattern. The pattern is designed to simplify

the pose estimation problem, allowing employment of a nearest-neighbor approach

to track hands at interactive rates. Oikonomidis et al. [44] propose a method that

relies on markerless visual observations to track the full articulation of two hands

that interact with each other in a complex, unconstrained manner. They formulate

this as an optimization problem whose 54-dimensional parameter space represents

all possible configurations of two hands, each represented as a kinematic structure

with 26 degrees of Freedom (DoFs). To solve the problem, they employ PSO, an

evolutionary, stochastic optimization method with the objective of finding the two-

hands configuration that best explains observations provided by an RGB-D sensor.

23

3.1.4 Hand Shape Detection

Shape is a very important information for vision-related tasks [45, 46, 47]. Athit-

sos el al. [48] propose a method for detecting shapes of variable structure in images

with clutter. Variable structure means that some shape parts can be repeated an ar-

bitrary number of times, some parts can be optional, and some parts can have several

alternative appearances. A new class of shape models is introduced, called Hidden

State Shape Models, that can naturally represent shapes of variable structure. A

detection algorithm is described that finds instances of such shapes in images with

large amounts of clutter by finding globally optimal correspondences between image

features and shape models. Thayananthan el al. [49] compare two methods for object

localization from contours: shape context and chamfer matching of templates.

3.2 Five Hand Detection Methods on Sign Language Videos

Although several hand detection methods have been published, a general solu-

tion for the hand detection problem still does not exist. Most of the existing hand

detection methods focus on still images. Thus, they do not take advantage of the

motion information which happens in almost every frame of the sign language videos.

As far as we know, these methods’ capabilities on ASL videos have not yet been

discussed in any literature. Thus, in this chapter, we briefly introduce four represen-

tative hand detection methods and evaluate them on three ASL datasets. We also

propose a novel hand detector by combining these four methods and compare the

proposed method with the four detectors on the American sign datasets.

3.2.1 Skin and Motion Detector

This section introduces a skin and motion detector proposed in [12].

24

Figure 3.3: An example frame from a video of a sign.

3.2.1.1 Detecting Skin

Since human skin is relatively uniform in color, a statistical color model can

be employed to compute the probability of every pixel being skin color. In [50],

a skin color likelihood distribution and a non-skin color distribution, denoted as

P (r, g, b|skin) and P (r, g, b|¬skin), respectively, are proposed, in which the RGB color

space is quantized to 32 × 32 × 32 values. Based on these two distributions, the

probability of a pixel, whose color vector is [r, g, b], being skin is defined using Bayes

rule:

P (skin|r, g, b) = P (r, g, b|skin)P (skin)

P (r, g, b)
(3.1)

Figure 3.4 shows an image visualizing the P (skin|r, g, b) score computed for

every pixel of the video frame shown on Figure 3.3.

3.2.1.2 Temporal Motion

Motion information is another useful cue for hand detection in gesture videos

since a user needs to move at least one hand to perform a hand gesture.

25

Figure 3.4: Skin score map of the image shown in Figure 3.3.

To detect motion, we used a simple method based on frame differencing. Other

more sophisticated background subtraction methods such as Mixtures of Gaussian

(MoGs) [51, 52] can be used instead, but the simple frame differencing method has

worked sufficiently well in our experiments.

Frame differencing works as follows: let I(x, y, i) denote the intensity value

at pixel (x, y), at the i-th frame. By comparing I(x, y, i) with I(x, y, i − z) and

I(x, y, i+ z), we compute a motion indicator value M(x, y, i). Motion indicator value

M(x, y, i) is defined using the following equations:

I1(x, y, i) = |I(x, y, i)− I(x, y, i− z)|

I2(x, y, i) = |I(x, y, i)− I(x, y, i+ z)|

M(x, y, i) = min(I1(x, y, i), I2(x, y, i)) (3.2)

We compute the motion indicator value for each pixel and thus obtain the mo-

tion score image, referred to as M . Figure 3.5 shows a motion score image computed

for the video frame shown in Figure 3.3.

26

Figure 3.5: Motion score map of the image shown in Figure 3.3.

3.2.1.3 Detecting Hands Based on Skin and Temporal Motion

For every pixel in a frame, we can compute the skin indicator value and motion

indicator value of the pixel using the methods described above. Let S(x, y, i) denote

the skin indicator value at pixel (x, y), in the i-th frame and M(x, y, i) denote the

motion indicator value at pixel (x, y), in the i-th frame. The combined skin and

motion indicator value for this pixel is defined using the following equation:

A(x, y, i) = S(x, y, i) ∗M(x, y, i) (3.3)

The skin and motion indicator value is computed for each pixel, and thus we

obtain the skin and motion score image. Figure 3.6 shows a skin and motion score

image computed for the video frame shown in Figure 3.3.

The most likely hand candidate is defined as the region which has the largest

summation of values in image A. Once we find a candidate region, before we identify

the next most likely region, we overwrite with value zero the skin color probabilities

of all pixels in the candidate region we have just identified. This helps to avoid

identifying multiple candidate regions with significant mutual overlap. To determine

27

Figure 3.6: Skin and motion score map of the image shown in Figure 3.3.

the hand region’s size, at every frame, the size of the hand is adjusted according to

the size of the face. Faces are detected using the Viola-Jones method [28].

3.2.2 Motion Residue Detector

Hands typically undergo non-rigid motion because they are deformable articu-

lated objects. This means that hand appearance changes more frequently from frame

to frame compared to the appearance of other background objects. We can use this

property to detect hands by identifying regions in each frame that have no good

matches (in terms of appearance) among regions in the next frame. This is an idea

proposed in [11].

Following the approach of [11], for every two consecutive frames, the first frame

is partitioned into blocks (8x8), and then we try to find the best match for each block

in the next frame by translation. Based on the best match for each block, motion

residue is defined as the summation of differences in intensity level between the block

and its best match in the next frame. Let A denote the one block in current frame and

28

Figure 3.7: Motion residue score map of the image shown in Figure 3.3.

B denote the best match of A in the next frame. We can use the following equation

to calculate residue:

R =
∑

i∈block

(Ai −Bi)
2 (3.4)

Every pixel in the block will be assigned as this residue. Because hands move

nonrigidly in most cases, the blocks in a hand region tend to have high residues;

therefore, we can use residue as a feature to detect hands. Hand candidates are

identified as rectangular areas with the largest residue value.

Figure 3.7 shows a motion residue score image computed for the video frame

shown in Figure 3.3.

3.2.3 Hand Detection Using Multi-proposals

Mittal et al. [2] describe a two-stage method for detecting hands and their ori-

entation in unconstrained images. The first stage uses three complementary detectors

(shape, context, and skin color) to propose hand bounding boxes. Each bounding box

is then scored by the three detectors independently, and a second stage classifier is

29

Figure 3.8: Root filters for the three components of the hand shape detector. The
first two filters cover frontal pose and the third filter profile (This figure comes from
[2]).

learned and used to compute a final confidence score for the proposals using these

features.

3.2.3.1 Hand Shape Detector

The hand shape detector uses the deformable part model proposed by Felzen-

szwalb et al. [53], which is based on histogram of oriented gradients (HOG) features

[54], to propose hand bounding boxes. In calculating bounding box scores, the de-

tector uses a mixture model comprised of three complimentary components (Figure

3.8) that represent different properties of the hand. The set of bounding boxes BHD

in any given image is composed of the bounding boxes for which the hand detector

score βHD(b) [53] is above a threshold th: BHD = {b ∈ B|βHD(b) > th}, where B is

the set of all detected hand bounding boxes, and the threshold th is chosen so that

the detector achieves 90% recall on the training set.

3.2.3.2 Context Detector

The context detector examines the surrounding area, or context, of a potential

hand location when proposing bounding boxes since areas surrounding the hand may

be more easily recognized than the hand itself. As with the hand shape detector

30

Figure 3.9: Context captured around the hand bounding box. The blue rectangle
shows the hand bounding box and the red rectangle shows the extended box used to
capture context around the hand. The context is captured over a region having the
same height and twice the width as the hand.

described in section 3.2.3.1, this detector also uses the deformable part model of [53]

to learn the context and is trained by expanding the annotated hand bounding boxes

in training examples to include the surrounding area (Figure 3.9). The final hand

bounding boxes are shrunk by the context boxes. For any given image, the set of

context box proposals BCD is comprised of those whose score βCD(b) [53] is above a

threshold tc: BCD = {b ∈ B|βCD(b) > tc}, where B is the set of all detected hand

bounding boxes. As with the above hand shape detector, the threshold is chosen so

that the detector achieves 90% recall on the training set.

3.2.3.3 Skin-Based Detector

The third component in the multiple proposal method is a skin-based detector,

which involves two steps: identification of skin regions and use of those regions to

generate hand hypotheses. In the first step, a face detector is used to locate the face,

and a histogram of face pixel colors is used to create a simple classifier of color likeli-

hood. Doing so helps account for unusual, image-specific lighting conditions or color

balances. To create the classifier, two confidence thresholds for likelihood, similar

31

to hysteresis in canny edge detection, are first learned. Pixels whose skin likelihood

falls above the upper threshold are classified as skin. Those whose likelihood falls

between the thresholds are only classified as skin if a neighboring pixel’s skin likeli-

hood is above the upper threshold. The authors use cross validation on ground truth

segmentation to learn the two thresholds. A bootstrapping stage is then performed

to update the color likelihood classifier by using the color of the neighboring pixels,

and the process is repeated.

The second step involves fitting lines to skin regions by using a Hough transform.

Hands are then hypothesized at both ends of these lines. If the skin region resembles

a blob, such as when the hand is visible but not the arms, the whole skin region is

hypothesized as a hand instead of each end. The face skin pixels are ignored and not

included in any hypotheses. The detection score is given by the proportion of skin

pixels to other pixels in the largest super-pixel [55] within the hypothesized box.

3.2.3.4 Candidate Boxes Classification

The second stage of hand detection is the classification of hypotheses. All hand

bounding boxes proposed in the first stage are scored by all three hand proposal

methods, and the three scores are combined into a score vector. A linear support

vector machine (SVM) classifier is then used to generate a final confidence score. The

three hand proposal methods ensure good recall, and the discriminative classification

ensures good precision.

3.2.4 Chains Model for Hand Detection

When the appearance information of the target is not reliable, such as low

resolution hands, the target cannot be accurately recognized by the appearance of

itself. For this case, the context information becomes the only valuable source. The

32

Figure 3.10: Detecting hand by extending from face.

chains model is proposed to take advantage of the context information of the target

to detect the target object, which describes an assembly of feature chains of arbitrary

length that start at some known reference point on the object, such as an automat-

ically detected face, and terminate at the detection target, such as the hand. More

specifically, the chains model method first detects the face and extracts some context

features of the target image and then calculates the posterior probability of seeing the

hand at a certain position by marginalizing over chains of context features. Thus, the

hand posterior probability image can be determined by computing the hand posterior

probability of seeing the hand at each position in the target image.

3.2.5 Combination of Four Hand Detectors

The previous four hand detection methods are complementary: residue [11] uti-

lizes the fact that hands are articulated objects and thus undergo non-rigid motion

which means that hand appearance changes more frequently from frame to frame,

compared to appearance of the clothes, the face and background objects; the skin

and motion detector [12] combines skin and temporal motion features to detect the

hand; instead of directly exploring the features of the hand itself, the chains model

[13] uses the context supplied by surrounding parts of the hand; and [2] combines

the hand shape detector, hand context detector and skin-based detector. A natural

33

improvement is to fuse these four complementary methods. The proposed hand de-

tector describes a two-stage method for detecting hands on sign language videos. The

first stage uses a simple hand detector based on skin and temporal motion features

to generate hand candidate boxes in the target image. Then several feature scores

are computed for each candidate box based on these four hand detection methods

[11, 12, 13, 2]. Finally, the feature scores associated with each candidate box are fed

to a pre-trained classifier to compute a final score for each box.

3.2.5.1 Skin and Motion Detector

Sliding window classification is a dominant paradigm in object detection. How-

ever, scanning each window in the target image is time consuming. To increase the

efficiency, a commonly used skill in real life is to exclude as many unlikely candidate

windows as possible in the preprocessing step. In the proposed method, we use a

simple skin and motion [12] detector to exclude the non-skin and static areas in the

target image. The background areas in sign language videos are quite clean and dif-

ferent from the skin color so they can be easily eliminated by skin feature. Since the

only moving object in the videos is the upper body of the performer, a temporal mo-

tion filter removes the static areas. More specifically, the skin detector computes for

every image pixel a skin likelihood term. The motion detector computes a score map

by frame differencing. The hand likelihood image is the multiplication of the motion

score map and skin likelihood image. Using the integral image [28] of the hand likeli-

hood image, we efficiently compute for every subwindow of some predetermined size

the sum of pixel likelihoods in that subwindow. Then we extract the K subwindows

with the highest sum such that none of the K subwindows may include the center

of another of the K subwindows. K is set to 30 in the proposed method. From our

experience, 30 candidates are enough to cover the real hands. In this way, we reduce

34

the candidate boxes in a target image from tens of thousands to 30. In Figure 3.11,

we show the top five hand bounding boxes detected by the skin and motion detector.

We can see that the top five candidates include the real hand in these frames.

Figure 3.11: From left to right, we show three frames with the top five hand bounding
boxes detected by skin and motion from G100, L100 and T100, respectively. The
hand bounding boxes are indicated by red rectangles.

3.2.5.2 Hypothesis Classification

The hypotheses proposed by the skin and motion detector are evaluated using

a second stage classifier. We calculate twelve features for each hypothesized bound-

ing box, and then a pre-trained SVM [56] classifier is applied to calculate the final

confidence score for the hypothesis. Assuming there is a hypothesized bounding box

B with the position [l, t, w, h], where [l, t] are the coordinates of the left-top point

and [w, h] is the width and height of the box, respectively, twelve features associated

with this hypothesis are computed as follows:

Skin feature. We use a generic skin color histogram [50] to compute the skin

likelihood image, referred to as S. The skin feature of the hypothesized bounding box

B is calculated as the average of the sum of pixel likelihoods in the bounding box,

which can be expressed in the following equation:

35

Fskin =
1

wh

∑

x∈[l,l+w−1]
y∈[t,t+h−1]

S(x, y) (3.5)

Motion features. Motion information is another discriminant cue for hand

detection in sign videos since a user needs to move at least one hand to perform a hand

gesture. The calculation of the motion score image has been introduced in Section

3.2.1.2. LetM denote the motion score image. The motion feature of the hypothesized

bounding box B is calculated as the average of the sum of motion indicator values in

the bounding box, which can be expressed in the following equation:

Fmotion =
1

wh

∑

x∈[l,l+w−1]
y∈[t,t+h−1]

M(x, y) (3.6)

By choosing different values of the frame gap z in Equation 3.2, we can calculate

multiple motion indicator images, thus giving us multiple motion features for the

bounding box. The value of z spans from 1 to 5 in our experiments, so there are 5

motion features for one hypothesis.

Gradient feature. Before computing the gradients, we use a Gaussian mask

to smooth each frame. Then the gradients are computed using a simple 1-D [−1, 0, 1]

mask. Let I(x, y, i) denote the intensity value at pixel (x, y), at the i-th frame. The

gradient at this pixel, G(x, y, i), is computed using the following equations:

dx = I(x− 1, y, i)− I(x+ 1, y, i)

dy = I(x, y − 1, i)− I(x, y + 1, i)

G(x, y, i) = 2
√

dx2 + dy2 (3.7)

After calculating the gradient for every pixel in the frame, we thus have the

gradient score image (Figure 3.12), referred to as G. The gradient feature of the

36

Figure 3.12: Gradient score map of the image shown in Figure 3.3.

hypothesized bounding box B is calculated as the average of the sum of gradient in-

dicator values in the bounding box, which can be expressed in the following equation:

Fgradient =
1

wh

∑

x∈[l,l+w−1]
y∈[t,t+h−1]

G(x, y) (3.8)

Residue feature. The calculation of the residue score map is introduced in

Section 3.2.2, so we will not repeat it here again. Let R denote the residue score map,

and the residue feature of the hypothesized bounding box B is calculated using the

following equation:

Fresidue =
1

wh

∑

x∈[l,l+w−1]
y∈[t,t+h−1]

R(x, y) (3.9)

Chains model feature. The intuition of the chains model [13] is to detect

a difficult part (hand) by extending from an easy reference part (face). We use the

source code provided by Karlinsky et al. to compute the hand posterior probability

image (indicated as C), which is introduced in section 3.2.4. The chains model feature

of the hypothesized bounding box B is calculated using the following equation:

37

Fchain =
1

wh

∑

x∈[l,l+w−1]
y∈[t,t+h−1]

C(x, y) (3.10)

Hand shape and context features. Let Bshape denote the hand bounding

boxes set returned by the hand shape detector. In order to calculate the hand shape

feature of the hypothesized bounding box B, we first compute the overlap between

B and every box in the set Bshape and then the hand shape feature is assigned as

the score of the box in Bshape with the maximum overlap with B. The calculation

of the hand context feature is the same as the hand shape feature.

3.3 Dataset Description

The ASL1113x3 dataset includes three components: G1113, L1113 and

T1113. Each component contains same 1113 distinct signs and each sign has one

video example. All of them include two kinds of signs: one-handed signs and two-

handed signs (Figure 3.14 and Figure 3.13). L1113 and T1113 are single signer

datasets while G1113 is a multi-signers dataset. Annotations for hand regions and

face regions are also available for all videos.

We randomly selected 100 signs from the G1113 dataset to generate the G100

dataset. We also picked the same 100 signs from the L1113 and T1113 datasets

to create the L100 and T100 datasets respectively. G100, L100 and T100 are

combined together to generate ASL100x3. Information about the number of videos

and the number of frames for these subsets, separated into one-handed and two-

handed instances, can be found in Table 3.1.

38

Figure 3.13: Video frames of two two-handed signs from L100 (top two rows) and
T100 (bottom two rows).

3.4 Hand Detection Experiments

3.4.1 Experimental Protocol

We evaluated five methods on the ASL100x3 dataset. The first one is the

multiple proposals method [2], which combines a skin detector, context detector, and

hand shape detector. We use the model which is trained by the authors on an external

dataset to do the test.

Table 3.1: Description of datasets

G100 L100 T100

of one-handed videos 42 42 42

of one-handed frames 902 1276 1197

of two-handed videos 48 48 48

of two-handed frames 1337 1945 1735

39

Figure 3.14: Video frames of two one-handed signs from L100 (top two rows) and
T100 (bottom two rows).

The second method is the chains model method [13], which detects the hand by

linking a path from the face to the hand. Each component in ASL100x3 is tested

separately, using one of the others as a training set. T100 was used to train the model

for both the G100 and L100 datasets while L100 was used as training dataset for

T100.

The skin and motion detector and residue detector do not require a training

step, so all videos are used for testing.

The combination of four methods is tested with two experimental settings.

The first one is called user-dependent setting where the training and test come from

the same dataset. This user-dependent setting can be further categorized into two

groups, combination20 and combination50 based on the number of sign videos used

as training. Take combination20 as an example, to test dataset G100 we randomly

choose 20 signs from G100 and the rest is used for test. The second one is called

40

user-independent setting. The test dataset is trained on the other two datasets; for

example, to test dataset G100, the training datasets consist of L100 and T100.

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

number of hand candidates

pe
rc

en
til

e
of

 d
et

ec
tin

g
ac

cu
ra

cy

chains:independent
multiproposals:independent
combination:independent
skin+motion
residue
combination20:dependent

2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

number of hand candidates

pe
rc

en
til

e
of

 d
et

ec
tin

g
ac

cu
ra

cy

chains:independent
multiproposals:independent
combination:independent
skin+motion
residue
combination20:dependent

Figure 3.15: Accuracy vs Top k bounding boxes retrieval on the ASL100x3 dataset
using combination20 and other competitive methods. The left side is the result of
one-handed signs and the right side of two-handed signs. The x-axis corresponds to
the top k hand candidates, while the y-axis corresponds to detection accuracy.

3.4.2 Measure of Accuracy

The hand detection is considered to be correct if it is within half-face width

from the ground-truth location of the hand. We report the detection performance

within the top k (k is from 1 to 20 for one-handed cases and from 2 to 20 for two-

handed cases) hand candidates per frame. So if the ground truth is within half the

face width of one of the top k candidates, it is considered accurately located. The

one-handed and two-handed test cases are examined separately.

Figure 3.15, 3.16, and 3.17 show the evaluation results on the ASL100x3

dataset. The left side is the result of one-handed sign videos, and the right side

is the result of two-handed sign videos.

41

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

number of hand candidates

pe
rc

en
til

e
of

 d
et

ec
tin

g
ac

cu
ra

cy

chains:independent
multiproposals:independent
combination:independent
skin+motion
residue
combination50:dependent

2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

number of hand candidates

pe
rc

en
til

e
of

 d
et

ec
tin

g
ac

cu
ra

cy

chains:independent
multiproposals:independent
combination:independent
skin+motion
residue
combination50:dependent

Figure 3.16: Accuracy vs Top k bounding boxes retrieval on the ASL100x3 dataset
using combination50 and other competitive methods. The left side is the result of
one-handed signs and the right side of two-handed signs. The x-axis corresponds to
the top k hand candidates, while the y-axis corresponds to detection accuracy.

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

number of hand candidates

pe
rc

en
til

e
of

 d
et

ec
tin

g
ac

cu
ra

cy

chains
multiproposals
combination+independent

2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

number of hand candidates

pe
rc

en
til

e
of

 d
et

ec
tin

g
ac

cu
ra

cy

chains
multiproposals
combination+independent

Figure 3.17: Accuracy vs Top k bounding boxes retrieval on the ASL100x3 dataset
using chains model, multiple proposals, and combination method with user indepen-
dent setting. The left side is the result of one-handed signs and the right side of
two-handed signs. The x-axis corresponds to the top k hand candidates, while the
y-axis corresponds to detection accuracy.

42

Table 3.2: p-value between the method of combination20 and skin plus motion

number of candidate p-value of combination20 vs skin+motion
one-handed signs two-handed signs

1 2.9e-28 5.2e-51
2 2.9e-24 1.9e-10
3 5.7e-16 8.6e-4
4 4.4e-12 2.9e-21
5 1.7e-10 3.5e-35
6 6.6e-8 1.5e-38
7 3.2e-6 6.1e-34
8 4.1e-4 8.4e-24
9 7.1e-3 8.4e-15
10 5.4e-3 1.1e-8
11 1.3e-1 1.1e-4
12 3.8e-1 1.4e-2
13 4.5e-1 2.0e-1
14 6.5e-1 7.0e-1
15 6.2e-1 7.5e-1
16 2.5e-1 6.0e-1
17 9.6e-2 4.5e-1
18 1.0e-1 8.8e-2
19 8.3e-2 1.6e-1
20 1.6e-1 2.5e-1

In figure 3.15 and 3.16, we compare the combination methods with the ex-

perimental settings of combination20 and combination50 with other competitors re-

spectively. Both of them show that the combination methods with user-dependent

setting (combination20 and combinatino50) work worse than skin and motion detec-

tor on one-handed signs but better than skin and motion detector on two-handed

signs. Table 3.2 show the p-values between the methods of combination20 and skin

plus motion, while table 3.3 is about combination50 and skin plus motion.

We have three methods with user-independent training in Figure 3.17. These

three methods are: chains model, multiple proposals, and the combination method

43

Table 3.3: p-value between the method of combination50 and skin plus motion

number of candidate p-value of combination50 vs skin+motion
one-handed signs two-handed signs

1 1.7e-19 7.3e-59
2 7.2e-5 2.5e-11
3 3.9e-1 2.0e-3
4 4.7e-2 1.1e-21
5 7.2e-5 5.6e-29
6 9.3e-5 6.6e-35
7 4.6e-4 2.4e-31
8 3.9e-3 1.9e-20
9 2.0e-2 9.5e-13
10 2.5e-2 1.1e-11
11 4.5e-2 6.8e-8
12 8.3e-2 8.1e-5
13 1.6e-1 1.7e-3
14 1.6e-1 1.5e-3
15 1.6e-1 2.2e-2
16 3.2e-1 1.1e-1
17 NaN 2.1e-2
18 NaN 1.0e-1
19 NaN 1.8e-1
20 NaN 3.2e-1

with user-independent setting. Our combination method gives best result on both

one-handed sign videos and two-handed sign videos.

3.5 DSTW Experiments

Sign lookup can be treated as a video database retrieval problem. When the

user encounters an unknown sign, the user provides a video example of that sign as a

query, so as to retrieve the most similar signs in the database. A necessary component

of such a sign lookup system is a similarity measure for comparing sign videos. Given

a query video of a specific sign, the similarity measure should assign high similarity

values to videos from the same sign, and low similarity values to videos from other

44

signs. This paper evaluates a state-of-the-art video-based similarity measure called

Dynamic Space Time Warping (DSTW) for the purposes of sign retrieval. Dynamic

Space-Time Warping (DSTW) is an extension of Dynamic Time Warping (DTW),

designed explicitly to work with multiple candidate hand locations per frame.

3.5.1 Hand Detection and Feature Extraction

The DSTW algorithm has been designed to accommodate multiple hypotheses

for the hand location in each frame. Therefore, we can afford to use a relatively simple

hand detection scheme. The hand detectors used in this experiments are introduced

in Section 3.2. They are: chains’ model, multi-proposals, skin and motion, residue,

and the combination of previous four methods. Each hand detector generates K hand

candidates for each frame. K is set as 5 in this experiment.

As described above, for every frame j of the query sequence, the hand detector

identifies K candidate hand regions. For every candidate k in frame j a 2D feature

vector Qjk = (xjk, yjk) is extracted. The 2D position (x, y) is the region centroid. To

account for differences in translation and spatial scale between the query video and

the matching training videos, we use a face-centric coordinate system. We use the

face detector provided by OpenCV to detect the face of each signer at the first frame

of the sign. The coordinate system is defined so that the center of the face is at the

origin, and the diagonal of the face bounding box has length 1.

3.5.2 DSTW Algorithm

Let M = (M1, ...,Mm) be a model sequence in which each Mi is a feature

vector. In our experiment, Mi is the 2D centroid position of the dominant hand. Let

Q = (Q1, ..., Qn) be a query sequence. In the regular DTW framework, each Qj would

be a feature vector, of the same form as each Mi. However, in dynamic space-time

45

warping (DSTW), we want to model the fact that we have multiple candidate feature

vectors in each frame of the query. For example, if the feature vector consists of the

position of the hand in each frame, and we have multiple hypotheses for hand location,

each of those hypotheses defines a different feature vector. Therefore, in DSTW, Qj

is a set of feature vectors: Qj = Qj1, ..., QjK , where each Qjk, for k ∈ 1, ..., K, is

a candidate feature vector. K is the number of feature vectors extracted from each

query frame. In our algorithm we assume K is fixed, but in principle K may vary

from frame to frame. The detailed algorithm for calculating the similarity between

Q with M can be found at [57].

3.5.3 Measure of Accuracy

The ASL100x3 dataset includes three subsets: G100, L100 and T100. Each

subset contains 100 signs and each sign has one video example. To test the sign in

the subset G100, the L100 and T100 datasets are used as database videos. The

same procedure applies to testing the L100 and T100 subsets.

Table 3.4, 3.5 and 3.7 show the results. In these tables, the first column specifies

different values of rank of correct sign. For each such value, x, for each of the three

hand detectors, we show the percentage of test signs for which the correct sign is

among the top x matches. We choose for each class its highest-ranking exemplar.

We then rank classes according to the score of the highest ranking exemplar for each

class. Table 3.6 shows the p-values between combination20 and skin plus motion and

combination50 and skin plus motion.

3.6 Discussion and Future Work

This chapter has compared four hand detection methods [11, 12, 2, 13] on

three sign language datasets. Comparing these four popular hand detection methods

46

Table 3.4: Comparisons between combination20 and alternatives

rank of correct sign percentage of queries
combination+combination20 skin+motion residue

1 27.9 27.0 17.9
4 54.2 53.8 37.9
10 72.5 72.1 55.4
20 89.6 88.8 75.0

Accuracy statistics for using the combination method with the experimental setting
of combination20, skin and motion, and residue. The first column specifies values of
rank of correct sign. For each such value, x, for each of the three hand detectors, we
show the percentage of test signs for which the correct sign class is among the top x

matches.

Table 3.5: Comparisons between combination50 and alternatives

rank of correct sign percentage of queries
combination+combination50 skin+motion residue

1 33.3 37.3 25.3
4 64.0 65.3 42.0
10 86.0 84.7 69.3
20 97.3 96.7 83.3

Accuracy statistics for using the combination method with the experimental setting
of combination50, skin and motion, and residue. The first column specifies values of
rank of correct sign. For each such value, x, for each of the three hand detectors, we
show the percentage of test signs for which the correct sign class is among the top x

matches.

Table 3.6: p-value table of DSTW

rank of correct sign p-value
comb20 vs sm + dstw comb50 vs sm + dstw

1 7.5e-1 2.4e-1
4 8.8e-1 7.4e-1
10 8.6e-1 6.6e-1
20 6.6e-1 6.6e-1

47

Table 3.7: Comparisons between the combination method with user-independent set-
ting and alternatives

rank of correct sign percentage of queries
combination+user-independent skin+motion residue

1 15.0 14.3 12.7
4 33.3 32.0 25.0
10 52.0 48.7 35.7
20 68.3 67.7 48.3

Accuracy statistics for using the combination method with the user-independent
setting, skin and motion, and residue. The first column specifies values of rank of
correct sign. For each such value, x, for each of the three hand detectors, we show
the percentage of test signs for which the correct sign class is among the top x

matches.

show that the skin and motion based method provides the best results on our sign

language datasets. It is also clear, however, that its performance on two-handed

signs drops considerably. We can also tell that the multi-proposals method gives the

worst results from the comparisons. The possible reason is that the models used for

the multi-proposals method are trained on an external dataset. The proposed hand

detector, which combines these four methods, achieved significantly better detection

accuracy than all of its components under user-dependent experimental protocol. In

future work, we will use our sign language datasets to train the models for the multi-

proposals method. At the same time, we will utilize tracking algorithms to ensure

hand candidate temporal consistency across frames, rather than relying on single

frame detection.

48

CHAPTER 4

FALL DETECTION USING A SINGLE, UNCALIBRATED RGB-D CAMERA

4.1 Introduction

Over the past few years, several researchers have focused on designing robust

algorithms to understand and recognize human actions in videos. This is a challeng-

ing research area, and progress in that area can be directly applicable in real-world

applications. As an example, smart monitoring systems that recognize human actions

and events can be helpful for improving the safety of elderly people and patients living

unaccompanied at home. A useful functionality of such a home monitoring system is

fall detection, i.e., the ability to automatically detect cases where a human falls and

may have been injured.

In this paper, we propose a statistical method to detect falls based on depth

images captured using a Kinect [58] camera. Using the depth images, we detect and

track the person in both image coordinates and world coordinates. From every frame,

features are extracted based on the position and velocity of the person. A Bayesian

classifier is built on top of those features. At each frame, the system uses this Bayesian

classifier to decide whether a fall event has just concluded.

Modeling fall events using a camera-independent world coordinate system al-

lows our method to be viewpoint invariant, and to be quite insensitive to the choice

of position and viewing direction for the camera. Using observations from a single

camera, and requiring minimal effort to adjust the system once the camera has been

moved, are key differentiating features from most existing computer vision methods

for fall detection, which are typically either viewpoint-dependent, or require multi-

49

ple cameras and a careful and time-consuming calibration process. Especially for

calibrated multi-camera systems, we should have in mind that the calibration pro-

cess needs to be repeated every time a single camera is intentionally or accidentally

removed.

A key feature of our experiments is that we record all training data from a

specific camera position, and all test data from another specific camera position, dif-

ferent from the position used to record the training data. Our results show that

moving the camera to a new position does not affect accuracy. Several methods

have been proposed in the literature that use 3D features, and thus in theory such

methods are viewpoint invariant. However, we are not aware of other methods that

have been explicitly evaluated using such a protocol, where the viewpoint (or over-

all multi-camera setup, for multi-camera systems) for the test data is ensured to be

different than viewpoint used for the training data. While 3D features are theoret-

ically viewpoint-invariant, training and testing using the same viewpoint does not

allow identification of systematic errors that may occur when the viewpoint or cam-

era arrangement changes. Such systematic errors may be caused by discrepancies

in calibration, ground-floor estimation, or any other parameters that need to be re-

estimated when the viewpoint or multi-camera arrangement changes. Such errors will

not be detected when the same camera placements are used for both training data

and test data, and when calibration parameters do not need to be recomputed for

the test data.

Our experiments include simulated falls by several subjects. They are performed

in a user-independent setting, where, for each test video, the subject appearing in the

test video does not appear in any of the training data used to detect falls in that video.

Another key feature in our experiments is that our data include several confounding

events, such as lying down on the floor, picking up an object from under the bed,

50

tying shoelaces, etc. Overall, the experiments demonstrate robust performance, with

good accuracy on detecting falls and minimal false alarms.

4.2 Related Work

Several approaches have been proposed for fall detection. We refer the reader to

[59, 60, 61, 62] for some recent reviews. With respect to the method proposed in this

paper, existing methods can be categorized as using (exclusively or partially) sensors,

or being exclusively vision-based. Furthermore, vision-based methods can be charac-

terized based on 3D-based methods using multiple calibrated cameras, appearance-

based methods using one or more (but uncalibrated) color cameras, and 3D methods

using depth cameras.

Several existing methods use a variety of non-vision sensors to make a decision

[63, 64, 65, 66, 67]. The most commonly used sensor is the accelerometer. Chen et al.

[68] use low-cost and low-power MEMS accelerometers to detect falls. Zhang et al.

[67] embed a tri-axial accelerometer in a cellphone, whereas [65] set accelerometers

behind the person’s ear.

In [63, 64], the authors propose fall detection algorithms based on thresholds

on both signals from a tri-axial accelerometer and a biaxial gyroscope. In [69], three

different sensors are used: a 3D Time-Of-Flight range camera, a wearable MEMS

accelerometer and a microphone. In Luo et al. [70], the input comes from waist-

mounted accelerometry. Lai et al. [71] use several triaxial acceleration sensor devices

for joint sensing of injured body parts, when an accidental fall occurs. Li et al. [72]

use both accelerometers and gyroscopes to detect falls. Kangas et al. [73] show that

triaxial accelerometric measurements at waist and head have potential to distinguish

between falls and normal daily activities. Hwang et al. [74] use an accelerometer

to measures kinetic force and tilt sensor and a gyroscope to estimate body posture.

51

They design rules based on signals from these sensors to determine whether a fall has

occurred. Lee et al. [75] implement a wireless accelerometer sensor module and an

algorithm to determine the wearer’s posture, activity, and occurrence of fall events.

The methods described above, that use wearable sensors, have all made valuable

contributions by demonstrating the accuracy and reliability of such technology for

fall detection. At the same time, requiring subjects to wear sensors can also have

potential disadvantages. People may not be willing to wear such sensors, and even

if the subjects are willing, it may be difficult to ensure that they wear these sensors

throughout the day. Wearing these sensors at night can also be an issue, as falls can

occur in the dark during a night visit to the restroom or to the kitchen for a drink

of water. The key differentiating aspect of our method compared to wearable sensor

methods is that our input device is a camera. Once the camera is placed, the subjects

can be oblivious to the camera’s functioning, and thus they do not need to actively

cooperate with the system by accepting to wear/carry sensors or altering in any other

way their daily routine.

An alternative to both wearable sensors and cameras is proposed by Rimminen

et al. [76], where falls are detected using a floor sensor based on near-field imaging.

The floor sensor detects the locations and patterns of people by measuring impedances

with a matrix of thin electrodes under the floor.

Similar to our method, several other vision-based methods have been proposed

for fall detection. A first categorization of vision-based methods is based on the

type and number of cameras that are used, and the need or not for external camera

calibration. We first consider multi-camera calibrated systems.

An example of a method using multiple cameras is the method of Cucchiara et

al. [77], that is used for detecting and tracking people and recognizing fall events.

Multiple cameras are used to cover different rooms and the camera handoff is treated

52

by warping the person’s appearance in the new view by means of homography. Au-

vinet et al. [78, 79] use a network of multiple calibrated cameras. Fall events are

detected by analyzing the volume distribution along the vertical axis, and an alarm

is triggered when the major part of this distribution is abnormaly near the floor.

Anderson et al. [80] use multiple cameras and a hierarcy of fuzzy logic to detect

falls. Overall, using multiple cameras offers the advantage of allowing 3D recon-

struction and extraction of 3D features for fall detection. [81] propose using the

measures of humans’ heights and occupied areas to distinguish three typical states

of humans: standing, sitting and lying. Two relatively orthogonal views are utilized,

in turn, simplifying the estimation of occupied areas as the product of widths of the

same person, observed in two cameras. At the same time, setting up those cam-

eras requires careful and time-consuming external camera calibration. When a single

camera is moved, whether by accident or intentionally, the system needs to be re-

calibrated. The method proposed in this paper detects falls using observations from

a single camera, and robust performance is demonstrated in cases where the camera

is moved.

Another category of vision-based methods for fall detection is appearance-based

methods, which can be applied even with a single camera, but can also benefit from

multiple cameras so that they cover larger areas. Nait-Charif et al. [82] use ceiling-

mounted, wide-angle cameras with vertically oriented optical axes. Miaou et al.

[83] uses an omni-camera and identifies falls based on the width to height aspect

ratio of the person. Tao et al. [84] use a computer vision method to detect and

track moving people and an event-inference module to parse observation sequences

of people features for possible falling behavior signs. Similar to [83], the width to

height aspect ratio of the person is the feature used for identifying falls. Nater et

al. [85] present an approach for unusual event detection based on a tree of trackers.

53

Each tracker is specialized for a specific type of activity. Falls are detected when none

of the specialized trackers for “normal” activities can explain the observation. [86]

use variations in silhouette area that are obtained from only one camera and SVM

classifier to detect fall. [87] use adaptive background Gaussian mixture model (GMM)

to segment object. An ellipse shape has been built from the segmented object for

body modeling. And then five features are extracted from this ellipse model and fed

into two Hidden Markov Models(HMM) to classify fall and normal activities.

Rougier et al. [88] use a shape matching technique to track the person’s sil-

houette along the video sequence. The shape deformation is then quantified, and

falls are detected from normal activities using a Gaussian mixture model. Zweng et

al. [89] detect falls using multiple cameras. Each of the camera inputs results in a

separate fall confidence (so no external camera calibration is needed). These confi-

dences are then combined into an overall decision. Fu et al. [90] use an asynchronous

temporal contrast vision sensor which features sub-millisecond temporal resolution.

A lightweight algorithm computes an instantaneous motion vector and reports fall

events.

One attractive feature of appearance-based methods is that they do not require

camera calibration. The disadvantage is that they are viewpoint-dependent, and

moving a camera to a different viewpoint (especially a different height from the floor)

would require collecting new training data for that specific viewpoint. In contrast,

our method does not require new training data for each viewpoint.

Lustrek et al. [91] use an infrared-based motion capture system. The fall detec-

tion system considers locations of body parts and the angles between adjacent body

parts. They compare eight machine learning algorithms, and the highest classification

accuracy of over 95% is achieved by Support Vector Machine used on the reference

attributes and angles. Use of a motion capture system provides highly informative

54

information about articulated 3D body pose, but such a solution can be prohibitively

expensive for adoption by consumers.

Depth cameras provide 3D information about the scene, thus allowing extrac-

tion of viewpoint-invariant features without the need to externally calibrate multiple

cameras. Diraco et al. [3] use a wall-mounted Time-Of-Flight 3D camera to monitor

the scene. The system identifies a fall event when the human centroid gets closer than

a certain threshold to the floor, and the person does not move for a certain number of

seconds after getting close to the floor. In a related approach, Leone et al. [4] employ

a 3D range camera. A fall event is detected based on two rules: (1) the distance of

the person’s center-of-mass from the floor plane decreases below a threshold within

a time window of about 900ms; (2) the person’s motion remains negligible within a

time window of about 4s. Rougier et al. [5] use a Kinect camera to obtain depth

images. Thresholds on the human centroid height relative to the ground and the

body velocity are used to determine if a fall has occurred.

Those three fall detection methods using a single depth camera [3, 4, 5] are

the most related to our method, which also detects falls using observations from a

single depth camera. There are three main differences between our method and those

three methods. The first difference is that in all three methods [3, 4, 5] the decision

is made by applying thresholds to individual features. In our method, decisions are

made probabilistically, which allows all information to be considered before making

a hard decision. Furthermore, the probability threshold for making a decision is a

tunable parameter in our method, allowing different trade-offs between sensitivity

and false alarms. Another difference is that our method proposes additional features

in addition to distance from the floor and acceleration. We also use the duration

of the candidate fall event, the total change in height between the beginning and

the end of the candidate event, and the percentage of frames in the candidate event

55

where the person’s height decreases. Another contribution of our method compared

to the three related methods of [3, 4, 5] is, as mentioned earlier, our experimental

protocol, whereby all training data are collected from a specific viewpoint, and all

the test data are collected from another viewpoint, several meters away from the

training viewpoint. We believe that this new evaluation protocol is a useful approach

for measuring the robustness of the system to displacements of the camera.

In our own prior work, we proposed a method for identifying falls using a single

color camera [92], and using a single RGB-D (Kinect) camera [6, 93]. This paper is

an extended journal version of [6]. At the same time, this paper contains significant

improvements compared to [6]. First, the method in [6] was not fully automatic, as

it required the user to click on two points on the depth image to specify the vertical

orientation in world coordinates. That had to be done each time the Kinect camera

moved. Our current method estimates the vertical orientation automatically. Second,

the evaluation dataset is significantly expanded, including over 220,010 frames, and

300 examples of falls, compared to 10,400 frames and 12 examples of falls in the

experiments of [6]. Instead of just concluding frontal and lateral fall directions, the

expanded dataset has more varied fall directions. There are eight fall directions

in total in the expanded dataset, which is named as EDF in this paper. Third, in

addition to creating the EDF dataset, we also make available three partially occluded

fall datasets. A partially occluded fall refers to a fall where part of the body is

occluded by a certain object when the person performs the fall action. We use this

dataset to verify that the proposed method is robust to partial occlusions. Four, in

this paper we evaluate our approach against several existing methods [3, 4, 5], whereas

no such comparisons were included in [6].

56

Figure 4.1: Our simulated apartment, seen from the two viewpoints that is used to
make EDF dataset. For each viewpoint we show a color image and a depth image.
Depth images are color-coded so that: white indicates small depth values, and yellow,
orange, red, green, blue indicate progressively larger depth values. Black indicates
invalid depth.

4.3 Scene Setup

The experimental data for this paper come from experiments run in the Hera-

cleia Human Centered Computing Laboratory at the University of Texas at Arlington.

In that lab, a simulated apartment has been set up. Two Kinect cameras were set up

at two corners of the apartment, and were set to monitor the apartment. The reason

of setting up two Kinects is that the range of the Kinect’s depth sensor is from 0.5m

to 4m, which means that one Kinect is not enough to cover the whole apartment.

In addition, this setup allows us to validate our claim that the proposed method

is to a large extent viewpoint-invariant, and automatically adapts when moving the

camera from one place to another. Figure 4.1 and Figure 4.2 show the scene setups

for recording the eight directions dataset (EDF) and the partial occlusion datasets

respectively.

57

Figure 4.2: Our simulated apartment, seen from the two viewpoints that is used to
collect partially occluded videos. For each viewpoint we show a color image and a
depth image. Depth images are color-coded so that: white indicates small depth
values, and yellow, orange, red, green, blue indicate progressively larger depth values.
Black indicates invalid depth.

4.4 Image and World Coordinates

In this section we describe how to compute the transformation from image

coordinates to world coordinates.

4.4.1 Image and Kinect Coordinates

Let us consider a pixel i on a depth image obtained by the Kinect camera. The

pixel’s image coordinates are denoted as [xi, yi], and the depth value at that location

is zi. We combine the image coordinates and depth value into vector xi = [xi, yi, zi].

We define a Kinect-centered world coordinate space, whose origin point is the

center of the Kinect sensor array. The xy-plane of that space is parallel to the depth

image plane and the z axis points to the camera view direction. Figure 4.3 provides

an illustration of this coordinate system.

Let [w, h] be respectively the width and height of the image in pixels, and mx

and my be camera calibration values describing scaling factors along the x and y

58

Figure 4.3: Kinect-centered world coordinate space. The origin is the center of the
Kinect sensor array. The xy-plane of that space is parallel to the depth image plane
and the z axis points to the camera view direction.

axis respectively (mx and my are specified in the Kinect documentation provided by

Microsoft). Then, the Kinect-centered world coordinates [xk, yk, zk] corresponding to

image coordinates [xi, yi] and depth value zi can be computed by Equation 4.1 as

follows:

xk = (
xi − 1

w − 1
) ∗mx ∗ zi

yk = (
yi − 1

h− 1
) ∗my ∗ zi

zk = zi

(4.1)

4.4.2 World Coordinates

The Kinect coordinates refer to the 3D world, but the y axis in those coordinates

is not necessarily the world vertical axis (which points up and down in the real world).

In our setting, it is important to compute the real-world y value corresponding to each

pixel in the depth image. Thus, we define a world coordinate system, where:

• The y axis points up and down.

• The zero value on the y axis corresponds to the floor.

59

• Positive values on the y axis corresponds to locations above the floor.

In order to calculate the real-world y value for depth image pixels, we first need

to estimate the floor plane of the scene in Kinect-centered world coordinates. Then,

the real-world y value of a certain pixel can be computed as a simple point-to-plane

distance.

4.4.2.1 Calculating the floor plane in Kinect-centered world coordinates

To compute the floor plane, we must estimate parameters A, B, C in the

following equation:

Ax+ By + Cz +D = 0 (4.2)

For the correct values of A,B,C,D, any floor point [x, y, z] (expressed in Kinect

coordinates) satisfies the above equation. We obtain parameters A,B,C,D directly

using the Microsoft Kinect SDK, which has built-in floor estimation functionality.

Furthermore, the Kinect SDK provides normalized values for parameters A,B,C,D

so that the physical interpretation of D is the height of the camera from the floor.

Figure 4.4 shows four examples of floor detection. The pixel is classified as floor if its

height value is less than 2cm in our method.

4.4.2.2 Calculating the world y-axis of a certain pixel

Given a pixel’s Kinect coordinates, [xk, yk, zk], the distance from this point

to the floor ground can be directly obtained by a simple point-to-plane distance

calculation:

yw =
|Axk + Byk + Czk +D|√

A2 + B2 + C2
(4.3)

60

Figure 4.4: The floor plane, which is indicated by orange color, is detected by Mi-
crosoft Kinect SDK in four scenes.

4.5 A Statistical Method to Detect Falls

In this section, we describe our statistical method for fall detection. First, we

describe how to detect the person in every frame, and then how to extract features

from a sequence of depth video frames. Once we obtain features from training exam-

ples of falls and non-falls, we can train positive (fall) models and negative (non-fall)

models from these features. Finally, we describe how to make a decision to determine

whether the current frame corresponds to the end of a fall event or not.

4.5.1 Person Detection

We assume that the only moving object in the scene is the person. To detect the

person, we use background subtraction method. The background can be identified

by the following two methods.

4.5.1.1 Static Background Model

The static background map B is obtained by averaging the last few frames

where no significant motion was observed.

61

4.5.1.2 Adaptive Background Model

The algorithm proposed by Stauffer and Grimson [51] is the representative adap-

tive background model method which uses a mixture of Gaussian (MoG) distributions

to model a multimodal background image sequence. For each pixel, each normal dis-

tribution in its background mixture corresponds to the probability of observing a

particular intensity or color in the pixel.

We choose the static background model in this paper because: (1) it is simpler

than the adaptive background model; (2) it gets better detection result on the depth

videos which is shown in the experiment section.

Let Dn(x, y) denote the value at pixel coordinates (x, y) for the n-th depth

frame. Through comparing Dn(x, y) with the background depth map B(x, y), the

moving parts of the current frame can be extracted easily. In particular, using a

system-specific threshold for T (T = 200 in our implementation), a pixel is consid-

ered to belong to a moving object if its depth value differs from the corresponding

background value by more than T :

Mn(x, y) =

1 if |Dn(x, y)− B(x, y)| > T

0 otherwise
(4.4)

Once Mn(x, y) has been computed for all pixels of frame n, connected com-

ponent analysis is used to identify the largest connected component with values

Mn(x, y) = 1. We call that component the person region.

An example result of this simple person detection method is shown on Figure

4.5. Overall, we have found that this method produces near-perfect results.

We should note that the proposed method would not work well in cases where

multiple people are visible. However, we consider that a fall detector is most needed

when a person is alone in the apartment, as that is the case when an automated system

62

Figure 4.5: Person detection using depth map. The white rectangle indicates the
bounding box of the person region.

is most needed to call for help. We also note that the background in an apartment

may change every now and then, for example due to motion of chairs and desks. Our

method can easily accommodate that, because it defines the background image as the

average of the last few frames where no significant motion was observed. Thus, the

background model is quickly updated when furniture configurations change.

4.5.2 Computing the Height of the Person

We have found that an important feature for fall detection is the distance from

the top of the person to the floor. We use the term “top” instead of the term “head”,

because in various cases the head is not the part of the body that is the farthest from

the floor, e.g., when a person is tying their shoelaces.

To estimate the distance from the top of the person to the floor, we first calculate

the world y-axis value of every pixel in the person region. These world y-axis values

are sorted in descending order. The 2.5 percentile world y-axis value is considered as

the height of the person’s top.

We note that, instead of using the top of the person as a feature, it is also

possible to use the height of the centroid of the person region [3, 4, 5]. We have

63

Figure 4.6: Occlusion example, the person’s location is indicated by a white rectangle
in the depth image. It can easily be seen that the centroid of the detected person
region is not the actual centroid of the person.

found, however, that using the centroid may not be accurate in cases where the

person is partially occluded, as shown on Figure 4.6.

4.5.3 Features Extracted from Fall Event

When there is a fall, the y-axis value of the top of the person decreases rapidly

over a few frames. There are several possible features one can use to distinguish

between fall events and non-fall events. In this section, we describe the features that

we found to be the most useful.

Given a specific start frame i and end frame j , we treat the video subsequence

between frame i and frame j as a candidate fall event. Let the sequence of person

height in every frame be denoted as [hi, ..., hj]. In order to decide if this candidate is

indeed a fall or not, we extract from the video subsequence the following five features:

Duration. The duration of a fall in frames, denoted as k, is defined simply as:

k = j − i+ 1.

Smallest person height. Denoted as l, this is defined simply as:

l = min(hi, ..., hj).

64

Maximum speed. This is the largest drop in person height, from one frame

to the next, denoted as m, and defined as: m = maxn∈{i+1,...,j}(hn−1 − hn).

Total person height decrease. This is the total change of person height

during the fall, denoted as t, and defined as: t = hi − hj.

Fraction of frames where person height drops. Denoted as p, this is

simply the percentage of frames, between i+ 1 and j, where the height has a smaller

value than in the previous frame.

In [92] , we did not use feature p, i.e., the percentage of frames where the y value

of the height has decreased. Instead, we force the fall event to be a process where

the person height must decrease frame-by-frame. We have found that condition to be

too strict, leading occasionally to false negatives, where a true fall event fails to get

detected, due to the fact that computing the person height may lead to a noisy result.

This is why, in the method described here, we opted to remove this hard constraint,

and replace it with this new feature p.

4.5.4 Training Positive Models and Negative Models

We perform training in a user-independent and camera independent manner.

We split our recorded videos into two big sets: view 1, which has been recorded

from a specific viewpoint, and view 2, which has been recorded from another specific

viewpoint, different to that of view 1. In each view, the data is split into sixteen

sets, where each set includes all videos from a specific subject. This way, for each

view, each human subject appears in only one of the sets. Then, each set in one

view is used, in turn, as a test set. To detect falls on that test set we apply the

statistical model constructed using as training data the remaining fifteen sets (i.e.,

all sets that do not include the human subject appearing in the test set) from the

other view. Fall events(start and end frames are manually annotated in all videos,

65

and this information is used during training and also to measure the accuracy on the

test data.

Our system makes a decision at each frame of each test video. The decision is

on whether that frame is the last frame of a fall event. If it is determined that a fall

event has occurred, the start frame for the fall event is also determined. At a later

stage, fall detection events that overlap in time are merged as a single event.

At each frame n, we go back from ten to fifty frames. This choice was made

based on the time it takes for a person to fall. We note that our videos are recorded

at about 25fps, and thus ten frames correspond to about 0.4 seconds and fifty frames

correspond to about 2 seconds. We did not see any need to consider shorter or longer

intervals. In this way, we get 41 candidate fall events at each frame n, each such

candidate event starting at frame n − i (i ranging from ten to fifty) and ending at

frame n.

For every candidate fall event, five features are extracted, as described in Sec-

tion 4.5.3. We assume that the five features are conditionally independent, given the

class of the event, where the class can be positive (fall) or negative (non-fall). For

the positive examples, we model each feature distribution as a Gaussian, as we have

few positive samples. For the negative examples, we model each feature distribution

nonparametrically as a histogram, since we have tens of thousands of negative exam-

ples, a number that is quite adequate for estimating a nonparametric one-dimensional

distribution. While assuming conditional independence is less realistic, it allows us

to build statistical models using much fewer training examples than we would need

to account for conditional dependencies.

66

4.5.5 How to Make a Decision

As discussed in Section 4.5.3, at each frame n we consider 41 frame intervals of

length 10 to 50 frames, ending at frame n, and we decide separately for each interval

if it constitutes a fall event or not. Here we describe how to make that decision. For

the interval in question, we compute a feature vector [k, l,m, t, p]. Using Bayes rule,

the probability of a fall having occurred at this interval can be computed as:

P (f | k, l,m, t, p) =
P (k, l,m, t, p | f)P (f)

P (k, l,m, t, p)
(4.5)

In Equation 4.5, all quantities can be computed based on the training data and

the probability distributions that we have constructed. P (f) is the prior probability of

the candidate frame interval being a fall, which is easily computed from the frequency

of falls in the training data. To reduce the complexity of the probability distributions,

we assume that each feature is conditionally independent of all other features given the

true label (fall or non-fall) of the event. Then, P (k, l,m, t, p) = P (k | f)P (l | f)P (m |

f)P (t | f)P (p | f)P (f) + P (k | ¬f)P (l | ¬f)P (m | ¬f)P (t | ¬f)P (p | ¬f)P (¬f).

All these quantities can be determined using P (f) and the conditional probability

distributions we have computed for each feature for the positive and negative samples.

Therefore, Equation 4.5 can be rewritten as:

P (f | k, l,m, t, p) =
P (k | f)P (l | f)P (m | f)

P (k, l,m, t, p)
∗

P (t | f)P (p | f)P (f)

P (k, l,m, t, p)
(4.6)

To determine whether the interval constitutes a fall event, we simply compare:

P (f | k, l,m, t, p) ≥ θ (4.7)

67

Setting different values of θ we get different rates of fall detections and false

positives, as shown in the experiments. This way, by adjusting θ the system can be

easily tuned to trade off between detecting more fall events and reducing the number

of false alarms.

If the system determines that a fall has occurred for two or more intervals that

are temporally overlapping, then only one detection is reported, that corresponds to

the interval with the highest probability of fall. The other detections are suppressed.

More specifically, if an interval (n− i,. . . ,n) is classified as a fall event, it is likely that

highly overlapping frame intervals will have similar features and will also be classified

as fall events. To account for that, we cluster the neighboring candidate falls and

then reject all the candidates in a cluster aside from the one with the highest score.

4.6 Experiments

4.6.1 Dataset Description

We use Kinect for Xbox 360 and the Microsoft Kinect for Windows SDK Beta to

build the recording system and the programming language is C#. All the experiment

datasets are collected by this system at a frame rate of about 30fps.

The first created dataset, named EDF, includes eight fall directions. Figure 4.7

illustrates the setup of the two cameras (viewpoints) for recording this dataset. The

blue arrows indicate the fall directions (8 directions in total). The two viewpoints were

recorded at the same time, and thus every event was recorded simultaneously from

both viewpoints. Each of the 10 subjects performed two falls along each direction in

each viewpoint in the EDF dataset. So, there are 160 falls in each viewpoint and

320 falls in total. Figure 4.8 and 4.9 show one fall example in each direction in the

viewpoint 1 and viewpoint 2 respectively.

68

To verify that the proposed method is robust to occlusions, we have collected

three partial occlusion datasets: O25, O50 and O75. In the O25 dataset, 25%

percent of the person’s body is occluded by a certain object when the person falls

down. In the O50 dataset, 50% percent of the person’s body is occluded by a certain

object when the person falls down. In the O75 dataset, 75% percent of the person’s

body is occluded by a certain object when the person falls down. Each of the 5

subjects performed five partially occluded falls in each viewpoint in theO25,O50 and

O75 datasets respectively. There are also two viewpoints in these partial occlusion

datasets. Each viewpoint was recorded at separate times from the other viewpoint,

and thus we had no instances where the same events were recorded simultaneously

from both viewpoints. Figure 4.10 show one fall example in each viewpoint in the

O25, O50 and O75 datasets respectively.

Table 4.1 gives the summary of each dataset. The EDF dataset includes 110,774

frames and 160 real falls in videos from the first viewpoint, and 109,236 fra mes and

160 real falls in videos from the second viewpoint. The O25 dataset includes 17,402

frames and 25 real falls in videos from the first viewpoint, and 17,061 frames and

25 real falls in videos from the second viewpoint. The O50 dataset includes 18,613

frames and 25 real falls in videos from the first viewpoint, and 17,264 frames and

25 real falls in videos from the second viewpoint. The O75 dataset includes 16,699

frames and 25 real falls in videos from the first viewpoint, and 15,992 frames and 25

real falls in videos from the second viewpoint.

In the EDF dataset, our subjects also performed a total of 100 actions that tend

to produce features similar to those of a fall event, namely: 20 examples of picking

up something from the floor, 20 cases of sitting on the floor and 20 examples of lying

down on the floor, 20 examples of tying shoelaces and 20 examples of doing plank.

Each partial occlusion dataset includes a total of 40 actions that tend to produce

69

Table 4.1: Summary of each dataset

of subjects # of frames # of falls # of non-fall actions

viewpoint 1 viewpoint 2 viewpoint 1 viewpoint 2 viewpoint 1 viewpoint 2

EDF 10 110,774 109,236 160 160 50 50

O25 5 17,402 17,061 25 25 20 20

O50 5 18,613 17,264 25 25 20 20

O75 5 16,699 15,992 25 25 20 20

Figure 4.7: Kinect cameras setup for recording the EDF dataset

features similar to those of a fall event, namely: 10 examples of picking up something

from the floor, 10 examples of sitting on the floor, 10 examples of tying shoelaces,

and 10 examples of lying down on the bed.

Our entire dataset and annotations are publicly available at: https://sites.

google.com/site/kinectfalldetection/.

4.6.2 Experimental Protocol

Our experiments are both user-independent (to recognize the actions of the

user, no training data from the same user is used) and viewpoint-independent (to

recognize actions observed from a specific viewpoint, no training data from the same

viewpoint is used). We divide our videos into two big groups (one per viewpoint),

and each big group includes one small group per subject. Each small group is used

as a test set, for which we apply models learned using only videos from the other

viewpoint and other subjects (different than the subject in the test set).

70

Figure 4.8: A person falls down along eight different directions in viewpoint one. The
top is for color images while the bottom is for depth images.

Figure 4.9: A person falls down along eight different directions in viewpoint two. The
top is for color images while the bottom is for depth images.

71

(a) Two 25% occluded fall examples. The top images
are from viewpoint 1 while the bottom images are from
viewpoint 2. The left is the first frame, the middle is
the middle frame and the right is the last frame.

(b) Two 50% occluded fall examples. The top images
are from viewpoint 1 while the bottom images are from
viewpoint 2. The left is the first frame, the middle is
the middle frame and the right is the last frame.

(c) Two 75% occluded fall examples. The top images
are from viewpoint 1 while the bottom images are from
viewpoint 2. The left is the first frame, the middle is
the middle frame and the right is the last frame.

Figure 4.10: Partial occlusion fall examples

72

Figure 4.11: The training and test procedure for one subject in the EDF dataset.

Figure 4.11 illustrates the training and test procedure for one subject in the

EDF dataset. To test subject 1 in the viewpoint 1, the training data come from all

subjects but not subject 1 in the viewpoint 2. This training and test procedure is

also applied to the occlusion datasets.

4.6.3 Comparisons Between Two Background Modeling Methods

The MoG based method (adaptive background model method) [51] has been

implemented in the computer vision toolbox of Matlab. We use this Matlab imple-

mentation. The following are four parameters used in the implementation.

Number of initial video frames for training background model. This

parameter is the number of training frames at the start of the video sequence and it

is set to 150 in this experiment.

Learning rate for parameter updates. This parameter, which is set to

0.005, controls how quickly the model adapts to changing conditions.

Number of Gaussian modes in the mixture model. This parameter

specifies the number of Gaussian modes in the mixture model and it is set to 3.

Threshold to determine background model. This parameter represents

the minimum of the apriori probabilities for pixels to be considered background values

and it is set to 0.7 in this experiment.

73

4.6.3.1 Measure of Accuracy

We randomly choose 281 frames from a depth image sequence and a color

image sequence. An aligned rectangle is used to annotate the person in each frame.

The detection is considered to be correct if the overlap ratio between the annotated

rectangle and the detected rectangle is larger than a certain threshold. The adaptive

background model method is tested on both color and depth image sequences while

the static background model method is only tested on depth image sequence. Table

4.2 shows the result. In table 4.2, method1 represents using adaptive background

model on the color image sequence, method2 represents using adaptive background

model on the depth image sequence, and method3 represents using static background

model on the depth image sequence.

Table 4.2: Result of person detection

method1 method2 method3

>0.3 46.26% 41.99% 100%

>0.4 38.08% 37.01% 93.24%

>0.5 30.60% 28.11% 81.14%

The adaptive background model method works worse than the static back-

ground model method for the following two reasons: (1) The background scene does

not change in the video, which is the case for all of our test videos. The static back-

ground model method creates a background map from couple of starting frames of the

video, where there is no moving object (the person). (2) The adaptive background

model method suffers from the temporal background clutter problem while the static

background model method does not. If a person stays in a place for a while, then

this person will be considered as background in the following couple of frames, which

74

leads to poorly background subtraction results for the following several frames. In

contrast, the static background model method does not suffer from this issue.

4.6.4 Comparisons with Existing Fall Detection Methods

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

true falls

fa
ls

e
fa

lls

method of [34]
method of [35]
method of [36]
the proposed method

(a) comparison result on the EDF

dataset

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

true falls

fa
ls

e
fa

lls

method of [34]
method of [35]
method of [36]
the proposed method

(b) comparison result on the O25

dataset

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

true falls

fa
ls

e
fa

lls

method of [34]
method of [35]
method of [36]
the proposed method

(c) comparison result on the O50

dataset

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

true falls

fa
ls

e
fa

lls

method of [34]
method of [35]
method of [36]
the proposed method

(d) comparison result on the O75

dataset

Figure 4.12: Results of comparing the proposed method with the three most directly
related existing methods [3, 4, 5] on the EDF dataset, O25 dataset, O50 dataset
and O75 dataset.

Here we compare the proposed method with three recent fall detection methods

that are the most directly related to our method, as they also use a single RGB-D

camera [3, 4, 5].

75

• In method [5], the human height relative to the ground, indicated as T1, is used

to detect (non-occluded or partially occluded) falls. When the end of an action

is totally occluded by furniture, an analysis of the 3D body velocity prior to

occlusion allows detection of the fall. All the datasets used in this paper do not

include completely occluded cases. So the 3D body velocity feature does not

help in this paper.

• The method of [3] uses two rules to describe a fall: the distance of the top

of the person to the floor plane, which is indicated as T2, being lower than

a prefixed value, and an unchangeable situation (negligible movements of the

person), which is indicated as U2, lasting for at least 4 seconds.

• The method of [4] is also based on two rules: the distance of the top of the

person to the floor plane, which is indicated as T3, decreasing 0.40m within a

time window of about 900ms (We refer the length of the time window as W3),

and the person’s silhouette movement remaining negligible for a time window

of about 4s (the length of the time window for negligible movements is referred

as U3).

We have implemented all these three methods. Since the thresholds provided

by the authors may not be the best choice for our data, we searched and identified

the best thresholds for each method. Figure 4.12 shows the results. We see that the

proposed method is significantly more accurate than those three related methods on

all datasets.

Take the EDF dataset (Figure 4.12a) an example, to detect 306 of the ac-

tual falls (about 96 percent of all falls in our dataset), our method produces 2 false

positives, compared to 45 false positives by the method of [4], which is the best

of the competitors here. The corresponding thresholds for the proposed method

and the method of [4] are θ = −11.3265 (the logarithm of the probability) and

76

T3 = 490mm,W3 = 160(frames), U3 = 140(frames) respectively. A false positive,

which is reported by the method of [4] while rejected by the proposed method, in the

EDF dataset is shown on Figure 4.13. Figure 4.13 shows a person doing plank on

the floor. The height of the person in this false positive keeps low for a long time so

that the competitive method, which relies on the height of the person and how long

the height is lower than a threshold, can not make the correct decision. However,

in addition to using the feature of the lowest person’s height, the proposed method

also considers other features, like the maximum speed, which help rejecting these two

false positives.

Based on Figures 4.12b, 4.12c and 4.12d, we can see that to detect all the true

falls, the proposed method reports zero false positives on the O25 and O50 datasets

and 2 false positives on the O75 dataset. These results indicate that the proposed

method is robust to partial occlusions and also achieves better accurate than other

competitors on these partial occlusion datasets. A false positive, which is reported

by the method of [3] while rejected by the proposed method, in the O75 dataset

is shown on Figure 4.14. Figure 4.14 shows a person lying down on the floor. The

reason of the proposed method beating the competitive method on the case of lying

down on the floor is the same as doing plank introduced in the previous paragraph.

We should note that the proposed method would not work well in cases where

the end of the fall is completely occluded by a certain object, like a bed. We refer

these cases as complete occlusions. A possible solution to the complete occlusions is

to set up multiple cameras so that there is no hidden area in the apartment.

4.6.5 Evaluating Individual Features

We analyze the contribution of each descriptor for detecting falls on the EDF

dataset in this section. We also study the contribution of each descriptor versus

77

Figure 4.13: Example frames from a false alarm, showing a person doing plank.

Figure 4.14: Example frames from a false alarm, showing a person lying down on the
floor.

the kind of a fall. All falls in the EDF dataset are further categorized into three

subgroups: falls with direction of 0 degrees, direction of 45 degrees and direction of

90 degrees. Figure 4.8 and 4.9 illustrate how to generate the subgroups. We name

these three subgroups as: EDF0, EDF45 and EDF90. The EDF0, EDF45 and

EDF90 datasets include 80, 160, and 80 falls in total respectively, and also inherit

all other non-fall actions from the EDF dataset.

In this section, we performed two sets of experiments on the dataset EDF,

EDF0, EDF45 and EDF90. In the first set, we evaluated the accuracy we obtain

by leaving each feature out and using the remaining four features. In the second set

78

of experiments, we evaluated the accuracy we obtain by using each of the five features

by itself.

The positive and negative models, which are used in this section, are trained on

the original EDF dataset using a user-independent and camera independent protocol

introduced at section 4.5.4 and 4.6.2.

The results on Figure 4.15, 4.17, 4.19, 4.21 illustrate that all five features con-

tribute somewhat towards the accuracy of the overall system. Features k, m and p

make a relatively small contribution, and leaving each of them out does not change

significantly the overall accuracy. Feature l, indicating the smallest height of the per-

son during the video subsequence, reduces significantly the number of false detections

that we obtain when we set the detection threshold low enough to detect all actual

fall events. Leaving out feature t leads to the largest drop in accuracy.

The results on Figure 4.16, 4.18, 4.20, and 4.22 illustrate that features k, l,

m, p used in isolation do not give very good performance. Feature t gives the best

performance, and used in isolation is still comparable to the methods of [3, 4, 5] which

are shown on Figure 4.12a. At the same time, using all five features instead of using

just t eliminates several false positives for a broad range of detection thresholds.

4.7 Discussion and Future Work

The proposed method produces good results in the experiments, and offers

significantly better accuracy than the most directly related methods for this problem.

At the same time, it is worth emphasizing that the proposed method is not meant to

be a standalone system for fall detection, but rather to be a computer vision module

that is part of a more general system. The overall fall detection system may contain

additional modules, both to improve accuracy, and to include additional functionality,

such as actually sending an alert about the detected fall. We believe that including

79

sound processing and speech recognition would help significantly towards obtaining

a robust system. Sound processing may produce additional features to be used for

classifying a candidate fall event. Speech recognition can be used so that the system

initiates a dialog with the subject, in the case where a fall has been detected. For

example, the system can ask “Are you OK?” and the user can respond to indicate

that there was no actual fall and no need to issue an alert. However, the focus of this

paper has not been in proposing such an end-to-end system, but rather proposing a

computer vision method that can be part of such an end-to-end system.

We should also note that a single RGB-D camera is clearly not sufficient to

monitor the area of an entire apartment. For a real system, we anticipate that several

cameras would be deployed, so as to cover most or all of the apartment area. In that

scenario, we believe that the proposed method (that detects falls using observations

from a single RGB-D camera) holds significant advantages over existing multi-camera

systems, that detect falls using observations simultaneously recorded from multiple

cameras, and require careful calibration each time a camera is moved. We note that,

to cover an entire apartment, this calibration process would need to be even more

complicated, or repeated several times, compared to using multiple cameras to observe

a single part of the apartment. At the same time, the proposed method would also

be more convenient to use compared to existing viewpoint-dependent appearance-

based methods, because in our method training data does not need to be collected

separately from each viewpoint.

Regarding the use of computer vision in an end-to-end system, an interesting

direction is to explore the use of a mobile camera-carrying robot. Such a robot can be

dispatched when a fall is detected, to approach the person and observe from a close

range to verify the status of the person. Such a robot could make additional visual

observations about the position and pose of the person, that can be used to increase

80

confidence that a fall has occurred. At the same time, successful deployment of such

a robot would require advances not only in computer vision, but also in robotics,

regarding accurate and safe navigation of robots in a domestic environment.

4.8 Summary

In this chapter, we have proposed a method that detects falls based on obser-

vations from a single RGB-D camera. In our experiments, the proposed method has

produced significantly better accuracy than existing methods that also use a single

RGB-D camera. At the same time, using a single RGB-D camera allows our method

to be viewpoint-invariant, without requiring the type of time consuming and com-

plicated calibration process that existing multi-camera viewpoint-invariant methods

require. We also show that the proposed method is robust the partial occlusions.

We believe that the proposed method can be useful as the basis of a computer vi-

sion module for a broader end-to-end fall detection system, in conjunction with other

sensors and modules. For example, even the system primarily relies on wearable ac-

celerometers for fall detection, the computer vision module can still serve to improve

accuracy, and also to be a fallback option for the case where the subject is not actu-

ally wearing the required sensors. The proposed method can thus be combined with

such non-vision methods, that use wearable sensors, sound, and/or smart floors, for

even higher accuracy and robustness.

81

0 50 100 150 200 250 300 350
0

5

10

15

20

25

true falls

fa
ls

e
fa

lls

leaving k out
using all features

(a) leaving k out

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

true falls

fa
ls

e
fa

lls

leaving l out
using all features

(b) leaving l out

0 50 100 150 200 250 300 350
0

5

10

15

20

25

true falls

fa
ls

e
fa

lls

leaving m out
using all features

(c) leaving m out

0 50 100 150 200 250 300 350
0

50

100

150

200

250

true falls

fa
ls

e
fa

lls

leaving t out
using all features

(d) leaving t out

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

true falls

fa
ls

e
fa

lls

leaving p out
using all features

(e) leaving p out

Figure 4.15: Evaluating individual features on EDF dataset by measuring the effects
of leaving each feature out, and using only the remaining four features.

82

0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

800

900

true falls

fa
ls

e
fa

lls

using k only
using all features

(a) using k only

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450

true falls

fa
ls

e
fa

lls

using l only
using all features

(b) using l only

0 50 100 150 200 250 300 350
0

50

100

150

200

250

true falls

fa
ls

e
fa

lls

using m only
using all features

(c) using m only

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

true falls

fa
ls

e
fa

lls

using t only
using all features

(d) using t only

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

true falls

fa
ls

e
fa

lls

using p only
using all features

(e) using p only

Figure 4.16: Evaluating individual features on EDF dataset by measuring the result
using each single feature in isolation, compared to using all five features together.

83

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

true falls

fa
ls

e
fa

lls

leaving k out
using all features

(a) leaving k out

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

true falls

fa
ls

e
fa

lls

leaving l out
using all features

(b) leaving l out

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

true falls

fa
ls

e
fa

lls

leaving m out
using all features

(c) leaving m out

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

true falls

fa
ls

e
fa

lls

leaving t out
using all features

(d) leaving t out

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

true falls

fa
ls

e
fa

lls

leaving p out
using all features

(e) leaving p out

Figure 4.17: Evaluating individual features on EDF0 dataset by measuring the effects
of leaving each feature out, and using only the remaining four features.

84

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

true falls

fa
ls

e
fa

lls

using k only
using all features

(a) using k only

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

true falls

fa
ls

e
fa

lls

using l only
using all features

(b) using l only

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

true falls

fa
ls

e
fa

lls

using m only
using all features

(c) using m only

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

true falls

fa
ls

e
fa

lls

using t only
using all features

(d) using t only

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

true falls

fa
ls

e
fa

lls

using p only
using all features

(e) using p only

Figure 4.18: Evaluating individual features on EDF0 dataset by measuring the result
using each single feature in isolation, compared to using all five features together.

85

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

true falls

fa
ls

e
fa

lls

leaving k out
using all features

(a) leaving k out

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

true falls

fa
ls

e
fa

lls

leaving l out
using all features

(b) leaving l out

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

true falls

fa
ls

e
fa

lls

leaving m out
using all features

(c) leaving m out

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

true falls

fa
ls

e
fa

lls

leaving t out
using all features

(d) leaving t out

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

true falls

fa
ls

e
fa

lls

leaving p out
using all features

(e) leaving p out

Figure 4.19: Evaluating individual features on EDF45 dataset by measuring the
effects of leaving each feature out, and using only the remaining four features.

86

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

900

true falls

fa
ls

e
fa

lls

using k only
using all features

(a) using k only

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

450

true falls

fa
ls

e
fa

lls

using l only
using all features

(b) using l only

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

true falls

fa
ls

e
fa

lls

using m only
using all features

(c) using m only

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

true falls

fa
ls

e
fa

lls

using t only
using all features

(d) using t only

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

true falls

fa
ls

e
fa

lls

using p only
using all features

(e) using p only

Figure 4.20: Evaluating individual features on EDF45 dataset by measuring the re-
sult using each single feature in isolation, compared to using all five features together.

87

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

true falls

fa
ls

e
fa

lls

leaving k out
using all features

(a) leaving k out

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

true falls

fa
ls

e
fa

lls

leaving l out
using all features

(b) leaving l out

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

true falls

fa
ls

e
fa

lls

leaving m out
using all features

(c) leaving m out

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

true falls

fa
ls

e
fa

lls

leaving t out
using all features

(d) leaving t out

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

true falls

fa
ls

e
fa

lls

leaving p out
using all features

(e) leaving p out

Figure 4.21: Evaluating individual features on EDF90 dataset by measuring the
effects of leaving each feature out, and using only the remaining four features.

88

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

true falls

fa
ls

e
fa

lls

using k only
using all features

(a) using k only

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

true falls

fa
ls

e
fa

lls

using l only
using all features

(b) using l only

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

true falls

fa
ls

e
fa

lls

using m only
using all features

(c) using m only

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

true falls

fa
ls

e
fa

lls

using t only
using all features

(d) using t only

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

true falls

fa
ls

e
fa

lls

using p only
using all features

(e) using p only

Figure 4.22: Evaluating individual features on EDF90 dataset by measuring the re-
sult using each single feature in isolation, compared to using all five features together.

89

CHAPTER 5

EVALUATING DEPTH-BASED COMPUTER VISION METHODS FOR FALL

DETECTION UNDER OCCLUSIONS

5.1 Introduction

The growing population of seniors would benefit from systems that include fall

detection functionality. To automatically detect falls in a home environment can

help ensure the safety of elderly people living alone. In this work we focus on the

task of vision-based occluded fall detection. An occluded fall occurs when an object,

such as a bed, blocks the sensor’s view of the end of the fall, and thus the entire

fall is not visible. These occlusions frequently occur at a home environment since a

room contains furniture and objects that could be placed between the subject and

the camera. Kinect cameras are used to capture the occluded fall benchmark dataset,

and the detection is thus based on depth videos.

Several sensor-based approaches have been proposed for fall detection, some

recent reviews include [59, 61]. An accelerometer [71, 69, 72] is the most commonly

used sensor, and it is often combined with other devices such as gyroscopes [72]

and microphone [69]. These approaches do not suffer from the occlusion problem.

However, these methods require subjects to actively cooperate by wearing the sensors,

which can be problematic and possibly uncomfortable (e.g., wearing sensors while

sleeping, detecting falls during a night trip to the restroom).

Several vision-based methods have been proposed for fall detection. They can

be broadly classified into two categories: 2D-based and 3D-based. [85, 88, 92, 89]

use 2D appearance-based features to detect falls. These methods use a single camera

90

and are viewpoint-dependent. Moving a camera to a different viewpoint (especially

to a different height from the floor) would require collecting new training data for

that specific viewpoint. The 3D features for fall detection can be extracted from a

calibrated multi-camera system [80, 77, 94] or from depth cameras [6, 3, 4, 5]. Multi-

camera calibrated systems require time-consuming external camera calibration while

depth cameras based systems do not.

Most of these methods did not report any information about the robustness of

the system to occlusions aside from [94] and [5]. Auvinet et al. [94] used multiple

cameras to cover the whole space so that no occlusion occurred for at least one of these

cameras. Thus, the total volume information in the scene can be reconstructed based

on the multiple-cameras network. This solution, however, is expensive and difficult

to set up (multiple calibrated and synchronized cameras are needed). Rougier et al.

[5] classified each frame into two classes: the person is totally occluded or not. If it is

an occluded case, the velocity of the person just before the occlusion occurs is used

to determine whether a fall has occurred. In the non-occluded case, the height of the

person’s top relative to the floor plane is used to make a decision.

The focus of this paper is on the evaluation of existing depth-based computer

vision approaches for fall detection in the case of occlusions. In particular, we make

two contributions:

• A new, extensive and annotated dataset of depth videos, including fall events

performed by several individuals, without occlusions and with occlusions. The

dataset also includes several non-fall events that can lead to false alarms, such

as tying shoelaces or lying on the floor. This dataset is freely available online,

together with annotations marking the beginning and end of each fall event

(http://sites.google.com/site/occlusiondataset).

91

Figure 5.1: Our simulated apartment, seen from the two viewpoints that is used to
collect non-occluded fall videos. For each viewpoint we show a color image and a
depth image. Depth images are color-coded so that: white indicates small depth
values, and yellow, orange, red, green, blue indicate progressively larger depth values.
Black indicates invalid depth.

• An evaluation of four recent methods for fall detection using depth cameras [6, 5,

3, 4] on this new dataset, using a user-independent and viewpoint-independent

experimental protocol (All training data are collected from a specific viewpoint,

and all the test data are collected from another viewpoint). We compare the

performance of these methods separately for unoccluded observations and for

occluded observations.

5.2 Scene Setup

In our experimental setup, two Kinect depth cameras are set up at two corners

of a simulated apartment. The reason for using two Kinects is simply to collect

data from two different viewpoints so that the viewpoint-independent experimental

protocol can be conducted. Figure 5.1 and Figure 5.2 show the scene setups for

recording non-occluded and occluded fall dataset respectively. We can easily see that

the two viewpoints in Figure 5.1 are different from the two viewpoints in Figure 5.2.

92

Figure 5.2: Our simulated apartment, seen from the two viewpoints that is used to
collect occluded fall videos. For each viewpoint we show a color image and a depth
image. Depth images are color-coded so that: white indicates small depth values,
and yellow, orange, red, green, blue indicate progressively larger depth values. Black
indicates invalid depth.

5.3 Four Existing Fall Detection Methods

In this section, we briefly introduce four existing fall detection methods [6, 5, 3,

4] that use a single depth camera. Since the distance of the person’s top relative to

the floor plane is the common feature used in all of these methods, we describe how

to calculate this height first. To compute the distance between the top of the person

and the floor plane, we first need to estimate the equation of the floor plane, and it

can be used to compute the distance between a 3D point of the scene and the floor

plane.

5.3.1 Floor Plane Estimation

The floor plan can be represented as the following equation:

Ax+ By + Cz +D = 0 (5.1)

93

Figure 5.3: Result of floor level detection. Top: a background depth image. Bottom:
the same image as on the top, with an orange color superimposed on pixels with
height value less than 2cm.

We obtain parameters A,B,C,D directly using the Microsoft Kinect SDK,

which has built-in floor estimation functionality. Furthermore, the Kinect SDK pro-

vides normalized values for parameters A,B,C,D so that the physical interpretation

of D is the height of the camera from the floor. Figure 5.3 shows two examples of

floor detection. The pixel is classified as floor if its height value is less than 2cm. It

is worth noting that the floor plane detection method in [6] is not fully automatic

and requires the user to click on two points in the depth image to specify the vertical

orientation in world coordinates.

5.3.2 Person Detection and Height Calculation

In our environment, we can assume that the only moving object is the person.

To detect moving objects, we use background subtraction on depth images. The

background depth map B is obtained by using the average of the last few frames

where no significant motion was observed.

Let Dn(x, y) denote the value at pixel coordinates (x, y) for the n-th depth

frame. By comparing Dn(x, y) with the background depth map B(x, y), the moving

parts of the current frame can be easily extracted. In particular, using a system-

94

specific threshold T (T = 200 in our implementation), a pixel is determined to belong

to a moving object if its depth value differs from the corresponding background value

by more than T :

Mn(x, y) =

1 if |Dn(x, y)− B(x, y)| > T

0 otherwise
(5.2)

Once Mn(x, y) has been computed for all pixels of frame n, connected com-

ponent analysis is used to identify the largest connected component with values

Mn(x, y) = 1. We call that component the person region.

To estimate the distance from the top of the person to the floor, we first identify

the top region of the person as seen in the depth image. Once the person region has

been detected in the image, the pixels of that region are sorted based on their row

coordinate, and the value at the highest 5 percentile is selected as the “top row” of the

region. We denote that “top row” as T y
i (n). By examining pixels in the person region

that are located at the “top row”, we identify the median column for those pixels and

denote it as T x
i (n). We can then read the depth value at pixel [T x

i (n), T
y
i (n)] and

denote it as T z(n).

Given [T x
i (n), T

y
i (n), T

z(n)], we compute the Kinect-centered world coordinates

for that point using Equations 5.3, and from those coordinates, we compute the

distance from the top of the person to the ground plane using Equation 5.4, where

[w, h] is the width and height of the depth image in pixels, and mx (1.12032) and

my (0.84024) are fixed parameters specified in the Kinect documentation provided by

Microsoft.

95

Figure 5.4: The left side shows an example of partial occlusion, while the right side
shows the person detection result with a red rectangle indicating the person’s location
in the depth image. It can easily be seen that the centroid of the silhouette is not the
actual centroid of the person.

T x
k (n) = (

T x
i (n)− 1

w − 1
) ∗mx ∗ T z(n)

T
y
k (n) = (

T
y
i (n)− 1

h− 1
) ∗my ∗ T z(n)

T z
k (n) = T z(n)

(5.3)

yw =
|AT x

k (n) + BT
y
k (n) + CT z

k (n) +D|√
A2 + B2 + C2

(5.4)

5.3.3 Fall Detection

The authors of [5, 3, 4] calculate the height as the distance of the centroid of the

person’s silhouette to the floor plane. The height of this centroid, however, might not

be accurate when the person is partially occluded (Figure 5.4). Instead, we calculate

the distance of the person’s top to the floor plane as described in section 5.3.2.

• In method [5], the human height relative to the ground is used to detect (non-

occluded or partially occluded) falls. When the end of an action is totally

occluded by furniture, an analysis of the 3D body velocity prior to occlusion

allows detection of the fall.

• The method of [3] uses two rules to describe a fall: the distance of the top of

the person to the floor plane being lower than a prefixed value; an unchangeable

situation (negligible movements of the person) for at least 4 seconds.

96

• The method of [4] is also based on two rules: the distance of the top of the

person to the floor plane, decreasing 0.40m within a window of about 900ms;

the people’s silhouette movement remaining negligible for a time window of

about 4s.

• Zhang et al. [6] extract five features from a candidate event and use a pre-

trained naive Bayesian classifier on these features to determine whether the

candidate is a fall or not.

5.4 Experiments

5.4.1 Dataset Description

We created a non-occlusion dataset, EDF, and an occlusion dataset, OCCU,

using Kinect cameras for XBOX 360 with the Microsoft Kinect for Windows SDK Beta

at a frame rate of about 30fps. Each of the 5 subjects performed a non-occluded fall

along eight directions in each viewpoint in the EDF dataset. Each of the 5 subjects

performed six occluded falls in each viewpoint in the OCCU dataset. Figure 5.5

shows one fall example in every direction. In the OCCU dataset, the end of the fall

is completely occluded by a bed. Figure 5.6 shows an example of an occluded fall in

each viewpoint.

Figure 5.5: A person falls down along eight different directions

97

Figure 5.6: Examples of the occluded fall. The top row shows an occluded fall in the
first viewpoint while the bottom row shows an occluded fall in the second viewpoint.

The EDF dataset is comprised of 25,881 frames and 40 real falls in videos from

the first viewpoint, and 24,497 frames and 40 real falls in videos from the second

viewpoint. The two viewpoints were recorded at the same time, and thus every event

was recorded simultaneously from both viewpoints. Our subjects also performed a

total of 30 actions that tend to produce features similar to those of a fall event,

namely: 10 examples of picking up something from the floor, 10 cases of sitting on

the floor and 10 examples of lying down on the floor.

The OCCU dataset includes 25,618 frames and 30 totally occluded falls in

videos from the first viewpoint, and 23,703 frames and 30 totally occluded falls in

videos from the second viewpoint performed by the same subjects. Each viewpoint

was recorded at separate times from the other viewpoint, and thus we had no instances

where the same events were recorded simultaneously from both viewpoints. Our

subjects also performed a total of 80 actions that tended to produce features similar

to those of a fall event, namely: 20 examples of picking up something from the floor

(all of them are non-occluded), 20 examples of sitting on the floor (all of them are

non-occluded), 20 examples of tying shoelaces (all of them are non-occluded), and

98

21 examples of lying down on the floor(all of them are totally occluded at the end

frame).

The OCCU1 dataset is a subset of OCCU. To generate the OCCU1 dataset,

we removed all examples of lying down on the floor fromOCCU and createdOCCU1

from the remaining examples. As the primary use of this application is intended for

elderly people, and it is unlikely that an elderly person would all of a sudden lie down

on the floor, we found it is necessary to conduct a separate evaluation on the dataset

by excluding the ”lying down on the floor” events.

5.4.2 Results

As mentioned in Section 5.1, our experiments are both user-independent (to

recognize the actions of a user, no training data from that same user is used) and

viewpoint-independent (to recognize actions observed from a specific viewpoint, no

training data from the same viewpoint is used). Also, because the fall action is a

continuous process, if a fall is detected in the current frame, then no fall would be

reported in the next 250 frames.

Here we evaluate four depth-based fall detection methods on the three datasets

[6, 5, 3, 4]. We have implemented these competitive methods ourselves. Since the

thresholds provided by the authors may not be the best choice for our data, we

searched and identified the best thresholds for them. The methods of [5, 6] need a

training step while the methods of [3, 4] do not, since they are rule based. The exper-

iments using the methods of [5, 6] strictly follow the user-independent and viewpoint-

independent protocols.

The methods of [6, 3, 4] did not discuss how to handle occluded falls. When

the person is totally occluded by the bed in our simulated environment, the height of

the person’s top can not be calculated. For these cases, we simply assign the height

99

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

true falls

fa
ls

e
fa

lls

method of [1]
method of [2]
method of [3]
method of [4]

Figure 5.7: Results of four evaluated methods [6, 5, 3, 4] on EDF dataset.

value of these frames to the last frame where the person is visible. Rougier et al. [5]

classified every frame into two categories: whether the person is visible in the current

frame or not. When the person is visible, the human top height relative to the ground

is used to detect (not occluded or partially occluded) falls. When the end of an action

is totally occluded by the bed, an analysis of the 3D body velocity prior to occlusion

allows detection of the fall.

5.4.2.1 Results on EDF dataset

Five subjects appear in the videos collected from each viewpoint in EDF dataset

and there are two viewpoints in total. To train the classifier that will be used for a

specific subject and viewpoint, we use as training data only videos of other subjects

from the other viewpoint. Thus, to classify a subject’s actions as seen from a specific

viewpoint, the system does not use training data from the same subject or from the

same viewpoint.

Figure 5.7 shows the results on dataset EDF. The method proposed by Zhang

et al. is significantly more accurate than those of the competitors. If we choose

thresholds for each method so as to detect all of the actual falls, the method of

100

Figure 5.8: Example frames from a false alarm, showing a person lying on the floor.

[6] produces zero false positive, compared to ten false positives by the best of the

competitors [4]. A false alarm reported by [4] is shown on Figure 5.8. In Figure 5.8,

the person lies down on the floor.

5.4.2.2 Results on OCCU dataset

We use the EDF dataset to train the models for methods [5, 6] for tests on the

OCCU dataset. We ensure user independence and viewpoint independence by using

different subjects and viewpoints in EDF and OCCU.

Two parameters are used in the method of [5]: a threshold for the height of the

person’s top, T , and a threshold for the body velocity, V . If there is no occlusion, the

height of the person’s top relative to the ground is used to detect a potential fall; if

an occlusion occurs, the body velocity just before the occlusion occurs is analyzed to

try to determine whether a fall has occurred. Since there are no non-occlusion falls

in the OCCU dataset, we set a low enough value for T to eliminate all non-occlusion

false falls caused by such events as sitting down on the floor, tying the shoelaces,

etc., and do not need to worry about missing the detection of any true fall (all of the

true falls are totally occluded and thus would be handled by velocity checking). In

this way, we favor method [5] over other competitive methods, since they treat every

candidate event, either occluded fall or non-occluded fall, equally.

The result is shown in the left side of Figure 5.9. The method of [5] is sig-

nificantly better than other methods. But in detecting all the actual falls, it also

101

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

true falls

fa
ls

e
fa

lls

method of [1]
method of [2]
method of [3]
method of [4]

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

true falls

fa
ls

e
fa

lls

method of [1]
method of [2]
method of [3]
method of [4]

Figure 5.9: Results of four evaluated methods [6, 5, 3, 4] on OCCU dataset and
OCCU1 dataset respectively. The left side is about OCCU dataset while the right
side is for OCCU1 dataset

reports 21 false positives. Most of these false positives are lying down on the floor.

Figure 5.10 shows an example of this action. This action has similar features to a

true occluded fall, and thus it is also hard to be correctly classified by all of other

evaluated methods. The methods of [3, 4, 6] also fail on other actions, like picking

up something from the floor and tying shoelaces (Figure 5.11).

5.4.2.3 Results on OCCU1 dataset

The training protocol and parameters selection are the same as the experiment

conducted on the OCCU dataset (section 5.4.2.2). The result is shown in the right

side of Figure 5.9. The method of [5] is still significantly better than other methods.

To detect all the actual falls, only one false positive is reported. This verifies the fact

that most of the false positives produced by the method of [5] on the dataset OCCU

come from the event of lying down on the floor. By comparing the experimental

results on OCCU and OCCU1 dataset for other evaluated methods [3, 4, 6], we can

clearly see that methods [3, 4, 6] also fail in most cases of lying down on the floor.

102

Figure 5.10: Example frames from a false alarm, showing a person lying down on the
floor.

Figure 5.11: The left side is an example of tying shoelaces and the right side is an
example of picking up something from the floor.

5.5 Discussion and Conclusion

For the non-occluded falls, the method proposed by Zhang et al. [6] achieves

the best result, while for the occluded falls, the method proposed by Rougier et al.

[5], which first classifies a candidate event into occluded case or non-occluded case

and then checks it using the specific feature of its corresponding class, is better than

other methods. We can conclude that it is necessary to handle occluded and non-

occluded falls separately. Although the method of [5] is significantly better than the

other three methods, we note that the velocity feature adopted by [5] is not adequate

for distinguishing lying down from falling down.

For future work, we plan to explore more representative features, like accelera-

tion, to make the method capable of distinguishing occluded fall from other similar

occluded false events. At the same time, due to the low cost of the Kinect, it is

practical to deploy several depth cameras, so as to cover most or all of the apartment

area. In that scenario, the decisions from all the cameras are aggregated into a final

103

decision for a candidate event. By doing so, we believe that the occluded cases can

be handled more accurately.

104

CHAPTER 6

DISCUSSION AND FUTURE WORK

6.1 Discussion of Contributions

This thesis investigated methods for vision-based ASL recognition and fall de-

tection for assistive environments. First, Chapter 2 introduced a semi-automatic

vision-based ASL recognition system. This system includes two major parts: hand

trajectory extraction and sign search. The hand trajectory extraction is achieved by

the user’s interaction which makes the system semi-automatic. Sign search is for-

mulated as a template matching problem. The hand trajectory of the query sign is

compared with each pre-computed model in a large database of sign videos. The

similarity measure between the hand trajectory of the query sign and the model is

calculated by a well-known similarity measure algorithm, Dynamic Time Warping

(DTW). In Chapter 3, towards making the recognition system more automatic, we

first evaluated four recently published representative hand detectors on three sign

datasets. Experimental results showed that to include real hands, a large number of

false detections are also reported, which means a lot of manual work must be involved

to do the corrections if directly using these hand detection methods as the hand de-

tector for the proposed sign recognition system. A natural improvement is to combine

these four methods. We proposed a two-stage hand detector. The first stage uses

a skin and motion detector to generate hand bounding boxes. Several features are

calculated for each box, and a second stage pre-trained SVM classifier is employed to

compute a final score for each box using these features. Experimental results demon-

105

strate that the combination significantly improved the detection accuracy under the

user-dependent experimental protocol.

On the topic of fall detection for assistive environments, Chapter 4 proposed a

statistical method to detect falls based on depth images captured by a Kinect camera.

Using the depth images, we detect and track the person in both image coordinates and

world coordinates. From every frame, features are extracted based on the position

and velocity of the person. A Bayesian classifier is built on top of these features.

For each frame, the system uses this Bayesian classifier to decide whether a fall event

has just occurred. Modeling fall events using a camera-independent world coordinate

system allows our method to be viewpoint invariant and not to be so sensitive to

the choice of position and viewing direction for the camera. Using observations from

a single camera and requiring minimal effort to adjust the system once the camera

has been moved are key differentiating features from most existing computer vision

methods for fall detection, which are typically either viewpoint-dependent or require

multiple cameras and a careful and time-consuming calibration process. Especially

for calibrated multi-camera systems, we should keep in mind that the calibration

process needs to be repeated every time a single camera is intentionally or accidentally

removed. A key feature of our experiments is that we record all training data from

a specific camera position and all test data from another specific camera position,

different from the position used to record the training data. Experimental results

showed that moving the camera to a new position does not affect accuracy. Several

methods have been proposed in the literature that use 3D features; thus, in theory

such methods are viewpoint invariant. However, we are not aware of other methods

that have been explicitly evaluated using such a protocol, where the viewpoint (or

overall multi-camera setup, for multi-camera systems) for the test data is ensured

to be different than the viewpoint used for the training data. We also contributed

106

several publicly available fall datasets. We showed one non-occlusion fall dataset and

three partial occlusion datasets in Chapter 4. Researchers can use them as benchmark

datasets to develop their own fall detection methods. As far we know, these are the

first publicly available fall datasets captured by Kinect depth cameras.

The fall detection method proposed in Chapter 4 has proven its capability in

handling non-occlusion falls. However, for complete occlusion falls, which refer to

the end of the fall being totally occluded by a certain object, there is no conclusion

yet. Chapter 5 first contributed a complete occlusion fall dataset and made it freely

available online. Then we evaluated the proposed fall detection and three other

related publications on this occlusion dataset. Although the proposed method does

not get the best detection accuracy, the evaluation can serve as a benchmark for other

researchers to assess their own fall detectors. And it should be noted that this work

is one of the earliest works that discuss the complete occlusion falls.

6.2 Future Work

On the topic of hand detection, hand tracking is especially useful when two

hands interact with each other. Figure 6.1 shows two sign examples where one hand

interacts with the other hand. In such cases, the hand detection method based on a

single frame really does not work since the features cannot even be extracted for the

occluded hand. A possible solution is to “guess” the occluded hand’s location based

on the results of the previous frames and the following frames, which is exactly what

tracking methods do.

On the topic of fall detection, the proposed method is not quite good enough

to serve as a standalone system for fall detection. The overall fall detection system

can contain additional modules, both to improve accuracy and to include additional

functionality, such as actually sending an alert about the detected fall to someone

107

Figure 6.1: Two sign examples where one hand interacts with the other hand.

who cares. Sound processing and speech recognition modules, which would help

significantly towards obtaining a robust system, remain as future work. Additional

features, which are extracted from sound processing, can be used for classifying a

candidate fall event. Speech recognition can be used so that the system initiates a

dialogue with the subject in the case when a fall has been detected. For example, the

system can ask “Are you okay?” and the user can respond to indicate that there was

no actual fall and no need to issue an alert.

108

REFERENCES

[1] P. Buehler, M. Everingham, D. P. Huttenlocher, and A. Zisserman, “Upper body

detection and tracking in extended signing sequences,” International Journal of

Computer Vision, vol. 95, no. 2, pp. 180–197, 2011.

[2] A. Mittal, A. Zisserman, and P. H. S. Torr, “Hand detection using multiple

proposals,” in British Machine Vision Conference, 2011.

[3] G. Diraco, A. Leone, and P. Siciliano, “An active vision system for fall detection

and posture recognition in elderly healthcare,” in Design, Automation & Test in

Europe Conference & Exhibition, March 2010.

[4] A. Leone, G. Diraco, and P. Siciliano, “Detecting falls with 3d range camera in

ambient assisted living applications: A preliminary study,” Medical Engineering

& Physics, vol. 33, pp. 770–781, 2011.

[5] C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, and J. Meunier, “Fall de-

tection from depth map video sequences,” in International Conference on Smart

Homes and Health Telematics, 2011.

[6] Z. Zhang, W. Liu, V. Metsis, and V. Athitsos, “A viewpoint-independent sta-

tistical method for fall detection,” in Pattern Recognition (ICPR), 2012 21st

International Conference on. IEEE, 2012, pp. 3626–3630.

[7] H. L. R. Hoffmeister and B. Bahan, A Journey into the Deaf-World. San Diego,

CA: DawnSign Press, 1996.

[8] J. Schein, At home among strangers. Washington, DC: Gallaudet U. Press,

1989.

109

[9] V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan, Q. Yuan, and A. Thangali,

“The american sign language lexicon video dataset,” in Computer Vision and

Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer Society

Conference on. IEEE, 2008, pp. 1–8.

[10] [Online]. Available: http://www.who.int/ageing/publications/Falls

prevention7March.pdf

[11] Q. Yuan, S. Sclaroff, and V. Athitsos, “Automatic 2d hand tracking in video

sequences.” in IEEE Workshop on Applications of Computer Vision, 2005, pp.

250–256.

[12] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for gesture

recognition and spatiotemporal gesture segmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), vol. 31, no. 9, pp. 1685–

1699, 2009.

[13] L. Karlinsky, M. Dinerstein, D. Harari, and S. Ullman, “The chains model for de-

tecting parts by their context,” in IEEE International Conference on Computer

Vision and Pattern Recognition(CVPR), 2010, pp. 25–32.

[14] e. Clayton Valli, The Gallaudet Dictionary of American Sign Language. Wash-

ington, DC: Gallaudet U. Press, 2006.

[15] R. A. Tennant and M. G. Brown, The American Sign Language Handshape Dic-

tionary. Gallaudet U. Press, 2010.

[16] Z. Zhang, R. Alonzo, and V. Athitsos, “Experiments with computer vision meth-

ods for hand detection,” in Proceedings of the 4th International Conference on

PErvasive Technologies Related to Assistive Environments, 2011, p. 21.

[17] Z. Zhang, C. Conly, and V. Athitsos, “Hand detection on sign language videos,”

in Proceedings of the 7th International Conference on PErvasive Technologies

Related to Assistive Environments. ACM, 2014, p. 26.

110

[18] W. Liu, Y. Fan, T. Lei, and Z. Zhang, “Human gesture recognition using ori-

entation segmentation feature on random rorest,” in Signal and Information

Processing (ChinaSIP), 2014 IEEE China Summit & International Conference

on. IEEE, 2014, pp. 480–484.

[19] C. Conly, Z. Zhang, and V. Athitsos, “An evaluation of rgb-d skeleton track-

ing for use in large vocabulary complex gesture recognition,” in Proceedings of

the 7th International Conference on PErvasive Technologies Related to Assistive

Environments. ACM, 2014, p. 13.

[20] W. Liu, Y. Fan, Z. Zhang, and Z. Li, “Rgbd video based human hand trajectory

tracking and gesture recognition system,” Mathematical Problems in Engineer-

ing, 2015.

[21] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warp-

ing,” Knowledge and information systems, vol. 7, no. 3, pp. 358–386, 2005.

[22] D. Zhang, S. Han, J. Zhao, Z. Zhang, C. Qu, Y. Ke, and X. Chen, “Image

based forest fire detection using dynamic characteristics with artificial neural

networks,” in Artificial Intelligence, 2009. JCAI’09. International Joint Confer-

ence on. IEEE, 2009, pp. 290–293.

[23] D. Zhang, J. Zhao, J. Zhao, S. Han, Z. Zhang, C. Qu, and Y. Ke, “A new

color-based segmentation method for forest fire from video image,” in Future

BioMedical Information Engineering, 2008. FBIE’08. International Seminar on.

IEEE, 2008, pp. 41–44.

[24] Z. Zhang, J. Zhao, Z. Yuan, D. Zhang, S. Han, and C. Qu, “Color based seg-

mentation and shape based matching of forest flames from monocular images,”

in Multimedia Information Networking and Security, 2009. MINES’09. Interna-

tional Conference on, vol. 1. IEEE, 2009, pp. 625–628.

111

[25] H. Cooper and R. Bowden, “Large lexicon detection of sign language,” in Proceed-

ings of the 2007 IEEE international conference on Human-computer interaction,

ser. HCI’07, 2007, pp. 88–97.

[26] A. Farhadi, D. A. Forsyth, and R. White, “Transfer learning in sign language,”

in CVPR’07, 2007.

[27] M. Kölsch and M. Turk, “Robust hand detection,” in IEEE International Con-

ference on Automatic Face and Gesture Recognition(AFGR), 2004, pp. 614–619.

[28] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), vol. 1, 2001, pp. 511–518.

[29] E. J. Ong and R. Bowden, “A boosted classifier tree for hand shape detection,”

in Face and Gesture Recognition, 2004, pp. 889–894.

[30] Z. Zhang, R. Alonzo, and V. Athitsos, “Experiments with computer vision meth-

ods for hand detection,” in Proceedings of the 4th International Conference on

PErvasive Technologies Related to Assistive Environments. ACM, 2011, p. 21.

[31] M. A. Fischler and R. A. Elschlager, “The representation and matching of pic-

torial structures,” IEEE Transactions on Computers, vol. 22, no. 1, pp. 67–92,

1973.

[32] P. Buehler, M. Everingham, D. P. Huttenlocher, and A. Zisserman, “Long term

arm and hand tracking for continuous sign language TV broadcasts,” in British

Machine Vision Conference(BMVC), 2008.

[33] M. P. Kumar, A. Zisserman, and P. H. S. Torr, “Efficient discriminative learning

of parts-based models,” in ICCV, 2009, pp. 552–559.

[34] T. Pfister, J. Charles, M. Everingham, and A. Zisserman, “Automatic and effi-

cient long term arm and hand tracking for continuous sign language tv broad-

casts,” in British Machine Vision Conference (BMVC), 2012.

112

[35] H. Trinh, Q. Fan, P. Gabbur, and S. Pankanti, “Hand tracking by binary

quadratic programming and its application to retail activity recognition,” in

CVPR, 2012, pp. 1902–1909.

[36] V. I. Morariu, D. Harwood, and L. S. Davis, “Tracking people’s hands and feet

using mixed network and/or search,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 99, no. PrePrints, p. 1, 2012.

[37] H. Zhou and T. S. Huang, “Tracking articulated hand motion with eigen dy-

namics analysis,” in Proceedings of the Ninth IEEE International Conference on

Computer Vision - Volume 2, ser. ICCV ’03, 2003.

[38] M. de La Gorce, N. Paragios, and D. J. Fleet, “Model-based hand tracking with

texture, shading and self-occlusions,” in CVPR, 2008.

[39] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla, “Model-based hand

tracking using a hierarchical bayesian filter,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 28, no. 9, pp. 1372–1384, 2006.

[40] B.-J. Chen, C.-M. Huang, T.-E. Tseng, and L.-C. Fu, “Robust head and hands

tracking with occlusion handling for human machine interaction,” in IROS, 2012,

pp. 2141–2146.

[41] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Efficient Model-based 3D Track-

ing of Hand Articulations using Kinect,” in British Machine Vision Conference,

Dundee, UK, 2011.

[42] E. B. Sudderth, M. I. M, W. T. Freeman, and A. S. Willsky, “Visual hand track-

ing using nonparametric belief propagation,” in Propagation, IEEE Workshop

on Generative Model Based Vision, 2004, p. 189.

[43] R. Y. Wang and J. Popović, “Real-time hand-tracking with a color glove,” ACM

Trans. Graph., vol. 28, no. 3, pp. 63:1–63:8, July 2009.

113

[44] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Tracking the articulated motion

of two strongly interacting hands,” in CVPR 2012. IEEE, June 2012.

[45] Z. Zhang, J. Zhao, D. Zhang, C. Qu, Y. Ke, and B. Cai, “Contour based forest fire

detection using fft and wavelet,” in Computer Science and Software Engineering,

2008 International Conference on, vol. 1. IEEE, 2008, pp. 760–763.

[46] D. Zhang, C. Qu, J. Zhao, Z. Zhang, Y. Ke, B. Cai, M. Qiao, and H. Zhang,

“Eye contour extraction method from monocular image with monkey face,” in

Intelligent Information Technology Application Workshops, 2008. IITAW’08. In-

ternational Symposium on. IEEE, 2008, pp. 636–639.

[47] D. Zhang, C. Qu, J. Zhao, Z. Zhang, Y. Ke, S. Han, M. Qiao, and H. Zhang,

“Extraction and parameterization of eye contour from monkey face in monocular

image,” in Advancing Computing, Communication, Control and Management.

Springer, 2010, pp. 182–189.

[48] V. Athitsos, J. Wang, S. Sclaroff, and M. Betke, “Detecting instances of shape

classes that exhibit variable structure,” in European Conference on Computer

Vision (ECCV), 2006, pp. 121–134.

[49] A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla, “Shape context and

chamfer matching in cluttered scenes,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2003, pp. 127–133.

[50] M. Jones and J. Rehg, “Statistical color models with application to skin de-

tection,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 1999, pp. I:274–280.

[51] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for

real-time tracking,” in Computer Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on., vol. 2, 1999.

114

[52] P. KaewTraKulPong and R. Bowden, “An improved adaptive background mix-

ture model for real-time tracking with shadow detection,” in Video-Based Surveil-

lance Systems, 2002, pp. 135–144.

[53] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object

detection with discriminatively trained part-based models,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 32, no. 9, pp. 1627–1645,

2010.

[54] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-

puter Society Conference on, vol. 1, 2005, pp. 886–893.

[55] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From contours to regions:

An empirical evaluation,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2009.

[56] J. Zhao, Z. Zhang, S. Han, C. Qu, Z. Yuan, and D. Zhang, “Svm based forest fire

detection using static and dynamic features,” Computer Science and Information

Systems, vol. 8, no. 3, pp. 821–841, 2011.

[57] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “Simultaneous localization and

recognition of dynamic hand gestures,” in Application of Computer Vision, 2005.

WACV/MOTIONS’05 Volume 1. Seventh IEEE Workshops on, vol. 2. IEEE,

2005, pp. 254–260.

[58] W. Liu, Y. Fan, Z. Zhong, and T. Lei, “A new method for calibrating depth and

color camera pair based on kinect,” in Audio, Language and Image Processing

(ICALIP), 2012 International Conference on. IEEE, 2012, pp. 212–217.

[59] M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and T. Jamsa, “Comparison

of low-complexity fall detection algorithms for body attached accelerometers,”

Gait & Posture, vol. 28, pp. 285–291, 2008.

115

[60] N. Noury, A. Fleury, P. Pumeau, A. K. Bourke, G. O. Laighin, V. Rialle, and

J. E. Lundy, “Fall detection - principles and methods,” in IEEE Conference on

Engineering in Medicine and Biology Society, 2007, pp. 1663–1666.

[61] T. Shany, S. J. Redmond, M. R. Narayanan, and N. H. Lovell, “Sensors-based

werable systems for monitoring of human movement and falls,” IEEE Sensors

Journal, vol. pp, pp. 1–13, 2011.

[62] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection: Principles and

approaches,” Neurocomputing, vol. 100, pp. 144–152, January 2013.

[63] A. Bourke and G. Lyons, “A threshold-based fall-detection algorithm using a

bi-axial gyroscope sensor,” Medical Engineering & Physics, vol. 30, pp. 84–90,

January 2007.

[64] A. Bourke, J. O’Brien, and G. Lyons, “Evaluation of a threshold-based tri-axial

accelerometer fall detection algorithm,” Gait & Posture, vol. 26, pp. 194–199,

July 2006.

[65] U. Lindemann, A. Hock, M. Stuber, W. Keck, and C. Becker, “Evaluation of

a fall detector based on accelerometers: A pilot study,” Medical and Biological

Engineering and Computing, vol. 43, no. 5, pp. 548–551, October 2005.

[66] N. Noury, P. Barralon, G. Virone, P. Boissy, M. Hamel, and P. Rumeau, “A smart

sensor based on rules and its evaluation in daily routines,” in IEEE conference

on Engineering in Medicine and Biology Society, 2003.

[67] T. Zhang, J. Wang, P. Liu, and J. Hou, “Fall detection by embedding an ac-

celerometer in cellphone and using kfd algorithm,” International Journal of Com-

puter Science and Network Security, vol. 6, no. 10, pp. 277–284, October 2006.

[68] J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, “Wearable sensors for

reliable fall detection,” in IEEE Conference on Engineering in Medicine and

Biology Society, 2005, pp. 3551–3554.

116

[69] A.Leone, G.Diraco, C.Distance, P.Siciliano, M.Malfatti, L.Gonzo, M.Grassi,

A.Lombardi, G.Rescio, P.Malcovati, V.Libal, J.Huang, and G.Potamianos, “A

multi-sensor approach for people fall detection in home environment,” in IEEE

Workshop on European Conference Computer Vision for Multi-camera and

Multi-modal Sensor Fusioin Algorithms and Applications, 2008.

[70] S. Luo and Q. Hu, “A dynamic motion pattern analysis approach to fall detec-

tion,” in Biomedical Circuits and Systems, 2004.

[71] C.-F. Lai, S.-Y. Chang, H.-C. Chao, and Y.-M. Huang, “Detection of cognitive

injured body region using multiple triaxial accelerometers for elderly falling,”

IEEE Sensors Journal, vol. 11, pp. 763–770, 2011.

[72] Q. Li, J. A. Stankovic, M. A. Hanson, T. Barth, J. Lach, and G. Zhou, “Ac-

curate, fast fall detection using gyroscopes and accelerometer-derived posture

information,” in Werable and Implantable Body Sensor Networks, 2009.

[73] M. Kangas, A. Konttila, I. Winblad, and T. Jamsa, “Determination of simple

thresholds for accelerometry-based parameters for fall detection,” in IEEE En-

gineering in Medicine and Biology Society, 2007.

[74] J.Y.Hwang, J.M.Kang, Y.W.Jang, and H.C.Kim, “Development of novel algo-

rithm and real-time monitoring ambulatory system using bluetooth module for

fall detection in elderly,” in Engineering in Medicine and Biology Society, 2004.

[75] Y. Lee, J. Kim, M. Son, and M. Lee, “Implementation of accelerometer sensor

module and fall detection monitoring system based on wireless sensor network,”

in Engineering in Medicine and Biology Society, 2007.

[76] H. Rimminen, J. Liindstrom, M. Linnavuo, and R. Sepponen, “Detection of

falls among the elderly by a floor sensor using the electric near field,” IEEE

Transactions on Information Technology in Biomedicine, vol. 14, pp. 1475–1476,

2010.

117

[77] R. Cucchiara, A. Prati, and R. Vezzani, “A multi-camera vision system for fall

detection and alarm generation,” Expert Systems, vol. 24, pp. 334–345, 2007.

[78] E. Auvinet, F. Multon, A. St-Arnaud, J. Rousseau, and J. Meunier, “Fall de-

tection using body volume recontruction and vertical repartition analysis,” in

Proceedings of the 4th international conference on Image and signal processing,

2010, pp. 376–383.

[79] ——, “Fall detection with multiple cameras: An occlusion-resistant method

based on 3-d silhouette vertical distribution,” Information Technology in Bio-

medicine, vol. 15, pp. 290–300, 2011.

[80] D. Anderson, R. H. Luke, J. M. Keller, M. Skubic, M. Rantz, and M. Aud,

“Linguistic summarization of video for fall detection using voxel person and

fuzzy logic,” Computer Vision and Image Understanding, vol. 113, pp. 80–89,

January 2009.

[81] D. Hung and H. Saito, “The estimation of heights and occupied areas of humans

from two orthogonal views for fall detection,” IEEJ Transactions on Electronics

and Information and Systems, vol. 133, January 2013.

[82] H. Nait-Charif and S. J. McKenna, “Activity summarisation and fall detection in

a supportive home environment,” in Internation Conference on Pattern Recog-

nition(ICPR), 2004.

[83] S.-G. Miaou, P.-H. Sung, and C.-Y. Huang, “A customized human fall detec-

tion system using omni-camera images and personal information,” in Distributed

Diagnosis and Home Healthcare, 2006.

[84] J. Tao, M. Turjo, M.-F. Wong, M. Wang, and Y.-P. Tan, “Fall incidents detection

for intelligent video surveillance,” in Information, Communications and Signal

Processing, 2005.

118

[85] F. Nater, H. Grabner, T. Jaeggli, and L. V. Gool, “Tracker trees for unusual

event detection,” in ICCV Workshop on Visual Surveillance, 2009.

[86] B. Mirmahboub, S. Samavi, N. Karimi, and S. Shirani, “Automatic monocular

system for human fall detection based on variations in silhouette area,” IEEE

Transactions on Biomedical Engineering, vol. 60, pp. 427–436, February 2013.

[87] K. Tra and T. Pham, “Human fall detection based on adaptive background

mixture model and hmm,” in International Conference on Advanced Technologies

for Communications, Oct 2013, pp. 95–100.

[88] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust video surveil-

lance for fall detection based on human shape deformation,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 21, pp. 611–622, 2011.

[89] A. Zweng, S. Zambanini, and M. Kampel, “Introducing a statistical behavior

model into camera-based fall detection,” in Proceedings of the 6th international

conference on Advances in visual computing - Volume Part I, 2010.

[90] Z. Fu, E. Culurciello, P. Lichtsteiner, and T. Delbruck, “Fall detection using an

address-event temporal contrast vision sensor,” in Circuits and systems, 2008.

[91] M. Lustrek and B. Kaluza, “Fall detection and activity recognition with machine

learning,” Informatica, vol. 33, pp. 205–212, 2009.

[92] Z. Zhang, E. Becker, R. Arora, and V. Athitsos, “Experiments with computer vi-

sion methods for fall detection,” in Conference on Pervasive Technologies Related

to Assistive Environments (PETRA), 2010.

[93] Z. Zhang, C. Conly, and V. Athitsos, “Evaluating depth-based computer vision

methods for fall detection under occlusions,” in Advances in Visual Computing.

Springer, 2014, pp. 196–207.

[94] E. Auvinet, F. Multon, A. Saint-Arnaud, J. Rousseau, and J. Meunier, “Fall

detection with multiple cameras: An occlusion-resistant method based on 3-d

119

silhouette vertical distribution,” Information Technology in Biomedicine, IEEE

Transactions on, vol. 15, no. 2, pp. 290–300, 2011.

120

BIOGRAPHICAL STATEMENT

Zhong Zhang was born in Hubei, China, in 1987. He received his B.S. degree

from Chongqing University, China, in 2007, his M.S. degree from Wuhan University,

China, in 2009 and his Ph.D. degrees from The University of Texas at Arlington in

2015, all in Computer Science. His current research interest includes computer vision

and machine learning. His recent work has focused on gesture and sign language

recognition, human motion analysis and object detection.

121

