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Abstract 

FORECASTING OF WIND, PV GENERATION, AND MARKET PRICE FOR THE 

OPTIMAL OPERATIONS OF THE REGIONAL PEV CHARGING STATIONS 

Piampoom Sarikprueck, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Wei-Jen Lee  

The transition from the conventional spark ignition engine vehicles to the electric 

vehicular technologies helps reduce greenhouse gas (GHG) emissions as well as 

improve the energy efficiency in the transportation sector. In the transformation of the 

electric vehicle, the hybrid electric vehicle (HEV) has evolved into the plug-in electric 

vehicle (PEV) due to the advancement in battery technologies that extend the electric 

driving distance of vehicles; however, this trend also creates concern among PEV users 

about how long or how far they might travel per battery charge.  

 A well-planned charging infrastructure with a fast (level 3) charging station is 

critical to overcome the range anxiety of PEV users, which can then promote the 

deployment and public acceptance of PEV. In addition, the PEV charging station must be 

considered from a regional point of view, especially in terms of operation optimization and 

support for the high penetration of PEVs in metro areas. Integrating renewable energy 

sources such as wind and solar PV power generation with electricity from the grid into 

PEV charging stations is critical for sustainable future development. A PEV charging 

station with a distributed energy storage system will be able to participate in the 

deregulated market to support the power system and optimize its operational cost. 

However, sufficient accuracy in the forecasting of energy sources and market prices are 

prerequisite to achieving the above mentioned benefits and goals. 
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Using the Dallas/Fort Worth (DFW) as an example, this dissertation develops 

novel approaches for the wind/PV generation and market price predictions. These 

predictions are calculated every 15 minutes (15-minute ahead prediction) for the following 

15-minute settlement interval set by the Electric Reliability Council of Texas (ERCOT) 

market. Support Vector Classification (SVC) and Support Vector Regression (SVR) of 

Support Vector Machines (SVMs) are adopted for the prediction of categorical and 

continuous values, respectively.   

SVR is used to predict the wind/PV generation because they are considered 

continuous functions. The validations of the estimation performance for these two 

predictions are illustrated using the wind power data from a wind farm in Oklahoma (a 

virtual wind farm for this study) and the PV generation from Dallas Redbird airport, 

respectively. The proposed method improves the forecasting performance of both 

predictions compared to the persistence model.  

In order to achieve accurate market price predictions in the deregulated market, 

a hybrid market price forecasting method (HMPFM) including SVC and SVR with data 

clustering techniques is proposed. SVC is adopted to predict spike price occurrence, and 

SVR is used for market price magnitude prediction of both non-spike and spike prices. 

Additionally, three clustering techniques including Classification and Regression Trees, 

K-means, and Stratification methods are introduced to mitigate the higher error of spike 

magnitude estimation. The performance of the proposed hybrid method is validated with 

the ERCOT wholesale market price. The results from the proposed method show 

significant improvement over typical approaches.    

To fulfill the comprehensive study, the characteristics of the forecast uncertainty 

have to be investigated to understand their stochastic nature for optimizing the benefits of 

operating PEV charging stations. In this dissertation, the Martingale Model Forecast 
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Evolution (MMFE) is used for the investigation, since it explores the multivariate random 

vector of the forecast change, which can apply to the multivariate case in this problem. 

Finally, the results show the effectiveness of the MMFE to generate the stochastic nature 

of the proposed predictions.   
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Chapter 1  

Introduction 

1.1 Background and Motivation 

Energy is a prime mover of economic growth and is also one of the key factors in 

the development of a country. Over the years, the demand for energy has increased due 

to industrialization, modernization, and the growth of population. However, these issues 

have created environmental concerns about greenhouse gas (GHG) emissions, global 

warming, and climate changes. Considering the increased demand for energy and the 

concerns it creates, considerable attention has been paid to investigating solutions to 

energy and environmental issues.  

In terms of energy, one study from Energy Information Administration (EIA) 

indicates that the transportation sector consumes about 28 % of the total energy 

consumption among various end-use sectors in the U.S., the second highest behind 

electric power, as illustrated in Figure 1-1 [1]. Most of the energy supply for the 

transportation sector is petroleum. Transportation’s dependence on petroleum has led to 

a developing concern in this sector due to the limited availability of crude oil and the 

fluctuations in oil price. Hence, a sustained effort is needed in the transportation sector to 

overcome its dependence on petroleum.            

 

Figure 1-1 U.S. energy source and energy consumption by sector 
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In terms of GHG emissions, the U.S. government pledges to reduce its domestic 

GHG emissions by approximately 17 % by 2020 [2]. According to a report from the 

Environmental Protection Agency (EPA) [3], the transportation sector, as the second 

largest source of emissions, contributes up to 27 % of the U.S. GHG emissions, as 

depicted in Figure 1-2. Consequently, the transportation sector is highly motivated to 

reduce its GHG emissions. 

 

Figure 1-2 U.S. GHG emissions by end-use sector 

As an evolving remedy for both the critical energy supply and environmental 

problems, a fundamental transformation from conventional oil-based vehicles to electrical 

powered ones has been proposed and is being implemented. The electrical powered 

vehicles can be classified into two categories: Hybrid Electric Vehicle (HEV) and Plug-in 

Electric Vehicle (PEV). Developed in the 1990s, the HEV uses a small electric battery to 

supplement a standard internal combustion engine and increase fuel efficiency by about 

25 % over the conventional light-duty vehicles. Currently, the evolution of the electric 

vehicle has rapidly changed from HEV to PEV. The PEV can be categorized into two 

groups consisting of Plug-in Hybrid Electric Vehicle (PHEV) and Battery Electric Vehicle 

(BEV). The PHEV is one stage advanced from the HEV with two additional 

improvements, the increased battery size and the battery recharging capability from the 

power grid by adding a plug. Therefore, the PHEV can be driven using electricity farther 
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than the traditional HEV. In contrast to the PHEV, the BEV has no internal combustion 

engine, so this type of vehicle is fully driven by the electricity and must be plugged into 

the electric power grid for recharging. 

Table 1-1 shows the comparison of the total energy efficiency of several types of 

vehicles [4]. As depicted in this table, the energy efficiency of electric vehicles including 

PHEV and BEV has been improved over the conventional oil-based vehicles. The energy 

efficiency of the BEV is more than double that of the diesel engine vehicle.      

Table 1-1 Total Energy Efficiency of Several Types of Vehicles 

Technology Total Energy Efficiency(km/MJ) 
Diesel engine 0.48 
Gasoline engine 0.51 
PHEV 0.64 
BEV 1.14 

 

According to a study from MIT, by 2035 all electric vehicles should be able to 

significantly reduce their life cycle GHG emissions compared to the traditional spark 

ignition engine (SIE) vehicles [5]. The researchers consider GHG emissions of the 

vehicles in three stages. In the first stage, the emissions are produced from the vehicle’s 

material production process. In the second stage, which is well-to-tank, the emissions are 

released from the energy resource generation. For example, the high GHG emissions of 

the BEV in this stage comes from the electricity power plant that produces the electricity 

for recharging the BEV. In the last stage, which is tank-to-wheel, the emissions are 

generated from the driving engine. The BEV and Fuel Cell vehicle (FCV) have no GHG 

emissions in this stage. This study’s results are illustrated in Figure 1-3.  
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Figure 1-3 Life-cycle GHG emissions of vehicles in 2035 

Currently, the PEV is promoted in the U.S. to improve the energy efficiency and 

reduce the GHG emissions of the transportation sector. The projection from the ISO/RTO 

Council (IRC) on the PEV growth rate under different scenarios and its penetration into 

metro areas are shown in Figure 1-4 [6]. At the target growth rate scenario, the amount of 

PEVs will be more than one million vehicles in the U.S. by 2017.  Based on the same 

projection, there will be approximately 10,000 PEVs in the DFW metro area in this same 

time frame.  

  

 

 

 

 

 

 

 

Figure 1-4 PEV growth rate projections in metro areas 
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To encourage the acceptance of PEVs, PEV users must be able to drive their 

cars without suffering from range anxiety. A well-planned charging infrastructure plays a 

critical role in serving this purpose. For improving the development of the charging 

infrastructure, a study framework for the design of PEV charging stations is proposed in 

[7], as depicted in Figure 1-5. This framework is an integration design of three important 

tasks including system simulation, system design, and dynamic control. However, this 

dissertation only focuses on the system simulation task. The system simulation is a key 

prerequisite task to provide the important information for system design and dynamic 

control. The system design aims to minimize the charging station installation cost. The 

objective of dynamic control is to maximize the operational profit of the charging station. 

In addition, the PEV charging station system is considered from a regional point of view 

for global optimization and support for high PEV penetration. Finally, renewable energy 

resources are incorporated in the charging station system to promote the use of these 

renewable energies and the abatement of GHG emissions in order to create a 

sustainable future.  

 

Figure 1-5 The PEV charging station design framework  

Considering the above factors, it is important for the system simulation task to 

provide the configuration of the regional charging stations with the integration of 

renewable energy resources and the utility grid for the system design. Also, the 

forecasting of renewable energy resources and power market prices as well as the 

stochastic nature of these predictions are the critical outputs of the system simulation 
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task for the dynamic control task. The details of the configuration and critical outputs of 

the system simulation are described in the following sections.  

1.2 The Regional PEV Charging Station Configuration 

Current public charging stations rarely consider the installation of energy storage 

systems or the integration of renewable energy resources. This is because these 

charging stations are small and local due to the current low PEV demand. However, to 

support the increasing penetration of PEV users and to promote sustainable energy, the 

proposed PEV charging station is designed to be equipped with a distributed energy 

storage system charged by wind/solar PV generation and electricity from the power grid, 

which can simultaneously charge multiple PEVs.  

The proposed distributed energy storage system is used as a buffer for the 

charging station to alleviate the load strain due to high numbers of PEVs charging, which 

can defer the need for distribution upgrade if the charging stations have an insufficient 

renewable energy supply. Also, the proposed system can be used to mitigate the 

mismatch between the renewable energy resources and the PEVs’ demand by storing 

excessive wind/solar energy for future demand arriving at the station. In addition and very 

importantly, these proposed systems enable the charging station to participate in the 

deregulated market. 

 The participation of a PEV charging station in the deregulated market highlights 

the benefit of wind and solar energy as well as distributed energy storage systems with 

optimal operational strategies [8]. However, the way the charging station operates should 

be determined from a regional point of view to achieve global optimization of the above 

benefits. In addition, one charging station is insufficient to serve all of the PEV users 

throughout a metro area. Hence, the configuration of a regional PEV charging station 

system with n stations is proposed as shown in Figure 1-6.  
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Figure 1-6 Regional PEV charging stations 

According to Figure 1-6, all of the electricity from various sources is able to be 

directly used for charging PEVs, and the surplus can be either stored in the battery or 

sold back to the power grid. When a PEV arrives at the station, its demands can be 

served from both the direct charge and the battery storage. As proposed in this design, 

the global optimization can be achieved with the optimal operation strategies, which 

highly depend on the available wind/PV energy and the power market price at each 

charging station location. Details of PEV charging levels, wind/solar PV energy 

resources, real-time market prices, and battery technologies are described in the 

following sections.  

1.2.1 PEV Charging Levels 

According to SAE J1772 Std., the PEV charging infrastructure can be classified 

into three levels with two different voltage types, consisting of AC level 1, AC level 2, and 

DC fast charging as shown in Figure 1-7 [9]. PEV users may choose to charge their 

vehicles from any of these three charging levels based on their available time and driving 

needs.  
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Figure 1-7 PEV Charging levels          

1.2.1.1 AC level 1 

The lowest common voltage charging level is AC level 1 using a standard 120 V, 

single phase power with 12 A of continuous maximum current for a 15 A branch circuit 

breaker or 16 A of continuous maximum current for a 20 A branch circuit breaker. This 

means that the PEV can be connected to National Electrical Manufacturers Association 

(NEMA) 5-15 and 5-20 outlets, which are the traditional home plugs in residential and 

commercial buildings in the U.S., as depicted in Figure 1-8 [10]. The maximum power of 

this charging level, which is only 1.7 kW, may take a long time to fully charge a PEV, 

approximately 8 to 15 hours depending on the size of the battery.  

1.2.1.2 AC level 2 

AC level 2 is a single-phase power with the continuous charging current of 16 A 

to 80 A from a 240 V outlet. The supplied voltage can be obtained from high power home 
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appliance voltage sources such as electric clothes driers, electric ovens, or pool pumps. 

Therefore, because of its fast charging time, AC level 2 is the preferred option for PEV 

users at home or at currently operating charging points in public areas. Figure 1-9 

presents a PEV charging with AC level 2 connected to a high power home appliance plug 

[10]. An AC level 2 requires a higher level of safety equipment and an onboard charger 

for charging the PEV. In addition, due to the small onboard charging system in current 

PEVs, the maximum allowance of charging power is 19.2 kW. Based on this charging 

power limit, it takes approximately 2 to 4 hours to fully charge the vehicle depending on 

the size of the battery.  

 

Figure 1-8 AC level 1 charging  

 

Figure 1-9 AC level 2 charging  

1.2.1.3 DC fast charging level 

DC fast charging stations are designed to perform as commercial gasoline filling 

stations. Since DC fast charging uses high levels of voltage and current, a high speed of 
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charging can be achieved. Therefore, it is a suitable technique to be used to establish 

public charging stations. Figure 1-10 demonstrates the conceptual design of a public DC 

fast charging station with roof-topped PV panels [11].  

 DC fast charging includes DC level 1 and DC level 2, and can reach 500 VDC, 

40-100 kW maximum power; therefore, a PEV is able to be fully charged in minutes. DC 

fast charging also requires an off board charger system as AC level 2, but it should be 

supplied by a DC current directly feeding to the PEV high voltage battery bus. The DC 

fast charging connecter follows the SAE J1772 standard, as shown in Figure 1-11 [12]. 

Considering the advantages from the quick charge feature of this charging level, this 

dissertation focuses on DC fast charging for regional PEV charging stations as a way to 

better serve the demand throughout the metro area. However, considering the high 

power consumption of DC fast charging stations, a critical situation in the distribution 

network may exist. Therefore, this dissertation proposes using energy storages devices 

in PEV charging stations to mitigate the high load strain in the distribution system, helping 

to defer the necessity of a distribution upgrade.  

 

Figure 1-10  Public charging station   
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Figure 1-11 DC fast charging connector 

1.2.2 Wind Energy Resource 

Wind power has recently developed into the world’s fastest growing renewable 

energy resource. The global wind power installed capacity exceeded 369 GW in 2014 

[13]. The moderate scenario from the Global Wind Energy Council projects that the global 

cumulative wind power capacity could reach 1500 GW by 2030. Among that, the U.S. 

installed wind power capacity could be as high as 300 GW [14]. This indicates the 

significant potential for using wind power as one of the major energy sources in charging 

stations.  

In this dissertation, the charging station acquires wind energy from a wind farm 

based on an energy procurement. Since the wind farm does not have to be on site, this 

dissertation uses the term “virtual wind farm” to describe the arrangement of purchasing 

the power from a remote wind farm. However, wind power has the characteristic of 

intermittency, as depicted in Figure 1-12, which may result in difficulty balancing the 

supply and demand while maximizing the charging station’s financial benefit. To tackle 

this problem, accurate wind power predictions are necessary for the optimal operation of 

a regional PEV charging station system. Though it is located in a different market, a wind 

farm in Oklahoma with a 74.25 MW installation capacity is selected for the wind energy 

resource in this study. The algorithm proposed in this dissertation is testable because the 

necessary wind power and wind speed data from this wind farm are available. 
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Figure 1-12 Intermittence of wind generation  

1.2.3 Solar PV Energy Resource  

In 2013, solar Photovoltaic (PV) energy ranked second among all of the 

renewable energies in the world with 139 GW installed capacity, and it achieved an 

average annual growth rate of 55 %, the highest of all renewable energies [15]. 

According to the IEA’s highest projection [16], the global solar PV capacity could exceed 

1700 GW installation capacity by 2030. The rapid development of solar energy has 

resulted in a large scale deployment of solar PV in residential, commercial, and utility-

scaled sectors for serving the increased electric demand. 

In this dissertation, it is assumed that roof-topped solar PV panels are installed 

on charging stations and supply part of the PEV energy demand. As the highest 

efficiency option among all of the available PV technologies, the single crystalline PV 

module is selected for evaluating the PV generation. The solar PV power output varies 

based on solar radiation and relevant weather. For instance, cloudy skies result in the 

fluctuation of the PV generation, as illustrated in Figure 1-13 . Also, the solar PV 

produces zero energy during the night. These factors highlight the need to accurately 

predict PV generation in order to balance supply and demand so as to optimize the 

operation of the charging station.  
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Figure 1-13 Intermittence and variation of PV generation 

1.2.4 Wholesale Electricity Price in ERCOT Market 

According to the above discussion, the regional PEV charging station system 

should be established in the metro area. The DFW (Dallas Fort-Worth) metroplex, under 

the jurisdiction of the Electric Reliability Council of Texas (ERCOT), is selected for the 

case study in this dissertation. The charging stations are designed to be built nearby the 

power nodes, which can serve as a Point of Interconnection (POI) of DC fast charging to 

the power grid. The power nodes in the DFW area are represented by red circles in 

Figure 1-14. There are 26 power nodes in 11 clusters. The nodal market prices are 

different at different clusters but similar inside each cluster. 

 

Figure 1-14 ERCOT Power nodes in DFW metroplex 
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To further investigate the price scenarios for these clusters, the wholesale market 

prices for each cluster in July 2011 are shown in Figure 1-15. For most of this period, the 

market prices are less than 50 $/MWh. However, their magnitudes can change suddenly 

from less than 50 $/MWh to 2000 $/MWh when the spike prices occur. Moreover, the 

spike prices can occur only once or repeatedly over many periods. Considering all of the 

volatile price scenarios in the ERCOT nodal deregulated market, it is important for the 

regional charging station system to forecast accurate prices in order to optimize its 

operation.   

 

Figure 1-15 DFW Market price in July 2011 

1.2.5 Battery Technologies 

The design of a fast charging station requires its battery storage system to have 

a large capacity and a high charging/discharging rate. The technologies that meet these 

requirements consist of Sodium Sulphur (NaS), Lead Acid (Pbs), Lithium-ion (Li-ion), and 

Nickel-Metal Hydride (NiMH), and their characteristics are reported in Table 1-2 [17, 18].  

According to Table 1-2, considering its long life cycle and high efficiency, NaS is the most 
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suitable battery technology at the present stage of technological development for storing 

the distributed energy in PEV charging stations.   

Table 1-2 Potential Battery Technologies 

Potential 
Technology 

Cycle life  
at 80% 
DOD 

Efficiency Advantages Disadvantages 

NaS 4500  
cycles 

89 % - Good for industrial 
and commercial 
sector 
- High efficiency 

Creates high 
temperatures 

 
Li-ion 

 
3000  

cycles 

 
70-85 % 

 
- High density 
- Low self-discharge 
rate 
- No memory effect 

 
Expensive 

 
NiMH 

 
2000  

cycles 

 
50-80 % 

 
- High density 
- Good abuse 
tolerance 

 
Damage may 
occur with 
complete 
discharge 

 
Lead Acid 

  
Inexpensive 

 
Limited cycling 
capability     Flooded 1500  

cycles 
70-80 % 

 
    VRLA 500  

cycles 
70-80 % 

  
 
1.2.6 Conclusion 

The proposed regional PEV charging station system equipped with distributed 

energy storage can participate in the deregulated market. The energy demand of this 

system can be served by electricity from wind/PV generation and the power grid. The 

charging station system configuration proposed in this dissertation is necessary for 

system design. Furthermore, wind/PV generation and electricity market prices need to be 

accurately forecast due to the intermittence of wind power, the variation of solar 

generation, and the volatility of electricity prices in the deregulated market. With more 

accurate predictions, the dynamic control can optimize the global operation of the 

proposed regional PEV charging stations. For this reason, it is critical to develop effective 
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forecasting techniques for wind/PV generation and electricity market prices to fully 

complete system simulation.   

1.3 The Proposed Method 

In this dissertation, Support Vector Machines (SVMs), effective artificial intelligent 

algorithms that consist of Support Vector Regression (SVR) and Support Vector 

Classification (SVC), are adopted to perform all requisite predictions. SVR is used to 

predict wind/PV generation, and the hybrid of SVR and SVC is used to predict electric 

market prices both in spike and non-spike price conditions. Moreover, this dissertation 

proposes using three well-known data clustering techniques, Classification and 

Regression Tree (CART), K-means, and Stratification methods, to classify the spike 

prices in several ranges for enhancing the market price prediction in the deregulated 

market.  

Input parameters for SVMs are properly selected by correlation analysis 

evaluated with the Pearson correlation coefficient. The various impact parameters 

including historical wind/PV generation and market price as well as multiple weather 

parameters are taken into account. Due to the 15-minute settlement interval in the 

ERCOT deregulated market, all of the predictions are performed in the 15-minute ahead 

time period. The wind power data from a wind farm in Oklahoma, the PV production from 

Dallas Redbird airport, and the ERCOT wholesale electric prices are used to validate the 

prediction performance of the proposed approaches for the wind/PV generation and 

market price forecasting, respectively.   

   To achieve the complete study of the wind/PV power and market price 

prediction for the regional operation of the PEV charging station system, the forecast 

uncertainty also needs to be analyzed to help the charging station system operators 

understand how to optimize system benefits. The Martingale Model Forecast Evolution 
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(MMFE) is adopted to effectively examine the multivariate randomness of the predictions 

in this dissertation. The probability density function of the forecast changes is 

investigated by ARENA in order to confirm the multivariate random normal vector based 

on the MMFE.  

1.4 Study Objectives 

The first part of this dissertation focuses on the modeling of the regional PEV 

charging station system. The configuration of the charging station system is discussed. 

The second part focuses on developing the methods to predict the 15-minute ahead 

wind/PV generation and market price. For each method, different combinations of 

parameters are tested to determine the model of the best prediction performance. Finally, 

the third part investigates the forecast uncertainty by the MMFE to complete this 

comprehensive study of wind/PV generation and market price prediction for a regional 

PEV charging station system.   

1.5 Synopsis of Chapter 

The organizational structure of this dissertation is as follows: 

Chapter 1 introduces the background and motivation for modeling the regional 

operation of the PEV charging station system. The configuration of the charging station is 

also proposed. In addition, Chapter 1 discusses the motivation for the wind/PV 

generation and market price forecasting. The proposed approaches and the objectives of 

this dissertation are presented.   

Chapter 2 presents the wind power forecasting with the proposed SVR method. 

A case study from a selected wind farm in Oklahoma is used to validate the effective 

forecasting performance of the proposed approach.  

Chapter 3 proposes the PV generation forecasting with the SVR, which is the 

same approach as the wind power forecasting. The energy conversion function from 
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solar radiation to electricity in a PV panel is derived. The PV production estimation from 

Dallas Redbird airport is used to verify the prediction accuracy of the proposed method. 

Chapter 4 illustrates the framework of the novel hybrid market price forecasting 

method (HMPFM) with data clustering techniques. Three data clustering techniques, 

Classification and Regression Tree (CART), K-means, and Stratification method, are also 

discussed. Finally, Chapter 4 presents the results of efficacy tests of the proposed 

HMPFM with the ERCOT wholesale electricity price.  

Chapter 5 shows how the Martingale Model Forecast Evolution (MMFE) is used 

to investigate the forecast uncertainty. The probability density function (pdf) of the 

forecast changes is examined to generate new forecast changes of wind/PV generation 

and market price predictions.  

Chapter 6 presents the summary and contributions of this dissertation. The areas 

of possible further research are also discussed.              
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Chapter 2  

Wind Generation Forecasting 

2.1 Literature Review 

Though there are numerous benefits, the integration of wind power into the 

electric power system introduces challenges to balance the supply and demand because 

of the intermittent nature of wind power. Wind power prediction plays an important role to 

overcome these challenges. With more accurate wind power forecasting results, the 

requirement of the system reserve margin can be reduced, thus lowering system 

operation costs. Considering the increasing installed wind power capacity, wind 

generation forecasting has gained more interest in the past few years. 

Wind generation forecasting can be classified into two different techniques: the 

physical and statistical approaches [19]. The physical approach is characterized as a 

conversion model of wind speed and wind power output adopting physical characteristics 

such as the wind turbine power curve, wind condition, hub height, and others. For 

example, a short term wind power prediction with multiple observations implementing the 

wind turbine power curve for the forecasting in Australia has been proposed by [20]. For 

the statistical method, an analyzing time series model and a probability density function 

of the historical data for generating the correlation between the wind speed and the wind 

power output are discussed in [19, 21]. Artificial Intelligent (AI) algorithm, one of the 

statistical methods, is an effective tool to derive the implicit nonlinear complex relation 

between the historical data of the wind power and the relevant parameters. AI has been 

widely adopted to predict wind generation. For instance, Neural Network (NN) is used to 

predict the wind power generation from a wind farm to determine unit commitment [22]. 

Also, a study has proposed the hybrid model consisting of Adaptive Wavelet NN (AWNN) 
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for the wind speed prediction in the first stage, and Feed Forward NN (FFNN) for the 

wind power estimation in the second stage [23].     

In addition to NN, many researchers have used Support Vector Machines 

(SVMs) combined with various techniques such as Bayesian clustering, Wavelet 

transform, and Grey relational analysis for wind power forecasting [24-26]. With 

decomposition based Wavelet transform, the prediction process adopts the combination 

of Particle Swarm Optimization (PSO) and Adaptive Network Fuzzy Inference System 

(ANFIS) to improve the forecast accuracy and to avoid the undesired overtraining 

process  [27]. 

Because all of these studies present different time ahead wind power forecasting 

with different predicting models, choosing the correct model with the best prediction 

performance for 15-minute ahead wind power forecasting presents a challenge for this 

study. The discussions in [19, 25] indicate that SVMs have the best prediction accuracy 

compared to the other AI methods. Because of this and after thorough evaluation and 

comparison, this dissertation uses SVMs as the selected method to find the best 

prediction performance model for 15-minute ahead wind power forecasting.  

2.2 Support Vector Machines (SVMs) 

SVMs are machine learning algorithms that conduct the learning procedure by 

statistical theory. They can be separated into two groups, which are the classification and 

regression methods. A detailed overview of these two approaches [28] are presented in 

the following sections. 

2.2.1 Support Vector Classification (SVC) 

Figure 2-1 (a) illustrates how SVC determines the linear separability of the 

hyperplane 0=+⋅ bxw . The definition of ),...,,( 21 lxxxx =  is the total number of events, 

w  is the vector, and b  is the scalar that defines the characteristics of the hyperplane. 
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Moreover,  and  represent two different classes, respectively. Thus, two 

constraints regarding this two-class separable hyperplane are shown in (2.1) and (2.2). 

         (2.1) 

         (2.2) 

The target of the optimal separable hyperplane is to maximize the margin, so the 

objective function and constraint of this problem become (2.3) and (2.4) 

        (2.3) 

Subject to  

     (2.4) 

where is a regularization parameter defined by the error penalty and  is a 

slack variable determined by the distance between the incorrectly classified  and the 

margin. 

 

Figure 2-1 Support Vector Machine (a) Classification (b) Regression 

The Lagrange multiplier is applied to solve (2.3) and (2.4). By solving the 

minimization problem, becomes a dot product function.  For a nonlinear separable 

hyperplane in high dimensional feature space, can be mapped into , leading to a 
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linearly separable problem. This problem can be efficiently solved by a Kernel function. In 

fact, several Kernel functions can be adopted to solve this problem such as polynomial 

function (2.5), radial basic function (RBF) (2.6), hyperbolic tangent function (2.7), and 

others. In this dissertation, because RBF kernel has the best SVMs prediction 

performance [14, 15], it is used to perform all of the forecasting. 

d
jiii xxxxxxk )()()(),( +=⋅= φφ       (2.5) 

2
2 )

2
exp()()(),(

σ
φφ i

ii
xx

xxxxk
−

−=⋅=       (2.6) 

)tanh()()(),( cxKxxxxxk iii +⋅=⋅= φφ       (2.7) 

2.2.2 Support Vector Regression (SVR) 

The concept of SVR is slightly different from SVC, as shown in Figure 2-1(b). The 

loss function insensitive band ( ε ) and slack variable ( iξ ) are introduced and defined as 

cost of errors. To maximize the margin, equations (2.8) and (2.9) describe the objective 

function and problem constraints regarding ε  and iξ . The techniques to remedy this 

regression problem are similar to the classification solution: applying the Lagrange 

multiplier and Kernel function as explained in the previous section.    
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  Since the wind power is characterized as a continuous value, the SVR is 

suitable for predicting the wind power considering multiple impact parameters.  

2.3 Case Study and Results 

2.3.1 Parameters Selection     

Prior to performing the wind generation forecasting, input parameters for training 

SVR should be properly selected. Several important parameters of the wind power 

generation, historical wind power generation, wind speed, gusty wind, wind direction, and 

temperature, are taken into consideration. The historical wind power is a significant 

parameter to the wind generation itself. In addition, the wind speed directly affects the 

wind power generation according to the wind turbine power curve. As other weather 

parameters, the efficiency of wind turbines can be enhanced by properly facing the wind 

turbine itself in the correct wind direction, and by appropriately considering the gusty wind 

at the wind turbine installation location. Also, different temperatures at the wind turbine 

area for different time periods can indirectly increase the wind speed at the site. Thus, the 

sample Pearson correlation coefficient, a correlation analysis, is used to examine the 

dependence of these parameters and the wind power generation (2.10). 
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where x  and y are the sample mean of the series data of x and y ,  and xs  and 

ys are the sample standard deviation of the series data of x and y , respectively.  
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The wind power generation and wind speed data are obtained from a wind farm 

in Oklahoma, while the other parameters consisting of gusty wind, wind direction, and 

temperature recorded at a station nearby the wind farm location are extracted from the 

National Climate Data Center (NCDC) website[29]. All of these data are from 2011.  

Figure 2-2 presents the evaluation results of the autocorrelation between the 

wind generation and the wind generation at 15-minute prior time from February 2011 to 

December 2011 (not including January 2011 because this month’s collective data are 

incomplete). It can be observed that the t-15 minutes of wind generation shows a strong 

correlation to the wind generation at time t with 0.9 coefficients throughout the entire time 

period.  

 

Figure 2-2 Autocorrelation analysis between wind power at time t and t-15  

Figure 2-3 shows the correlation between wind generation and wind speed. 

Similar to the previous study, one can see that the wind generation also presents a 

strong correlation to the wind speed with correlation coefficients greater than 0.7 for the 

entire time period.  
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Figure 2-3 Correlation analysis between the wind generation and the wind speed 

 For the further evaluation over multiple time lags, Figure 2-4 illustrates the 

correlation between wind generation and historical wind power generation and wind 

speed from t-15 minute and t-24 hour. It can be observed that the correlation coefficients 

decrease steadily when the time lags increase for both the historical wind power 

generation and wind speed. 

       

 

Figure 2-4 Average correlation coefficient for several time lags 
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Furthermore, three potential parameters consisting of wind direction, gusty wind, 

and temperature are used to evaluate the correlation coefficient of the wind power 

generation as reported in Table 2-1. There is a moderate correlation between wind 

generation and gusty wind with 0.494 coefficients, while the wind power generation 

illustrates weak correlation with the other two parameters.  

Table 2-1 Correlation Analysis of the Relevant Weather Parameters and Wind Power 

Parameter Average Correlation Coefficient 
Wind direction 0.103 
Gusty wind 0.494 
Temperature 0.069 

 

Considering all of these correlation analyses, the historical wind generation and 

wind speed, which illustrate strong correlation with the wind power generation, are 

significant input parameters and therefore used first in the training of SVR. Even though 

the other parameters consisting of wind direction, gusty wind, and temperature show less 

significant correlation, they are still used as supplementary input parameters to examine 

the possible improvement of further prediction accuracy without loss of generality.  

2.3.2 Results 

Wind power data from a wind farm in Oklahoma with 74.25 MW installed capacity 

is used to validate the SVR performance for the 15-minute ahead wind generation 

forecasting in this dissertation. According to the aforementioned discussion, the wind 

power and wind speed data are acquired from the wind farm site, and the potential 

weather data are obtained from the NCDC website. The training data are 2010 data, 

while the data of February, May, July, and October in 2011, representing the four 

seasons, are used for testing.  
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Typically, the wind generation forecasting performance is evaluated by Mean 

Relative Error (MRE), as shown in (2.11). MRE defines the prediction error related to the 

maximum installed capacity of the wind farm.  

∑
=

×
−

=
N

i

iaip

W
WW

N
MRE

1 max

,, %1001
      (2.11) 

where pW is predicted wind generation, aW is actual wind generation, maxW  is 

the maximum installed capacity of the wind farm, and N is the number of predictions.  

To determine the best prediction performance model for wind generation 

forecasting, historical wind power generation and wind speed, the most impactful 

parameters, are the first used input parameters for SVR. After the best prediction 

performance model is determined, it is combined with the remaining three weather 

parameters to analyze possible improvement in forecasting accuracy. The comparison 

results of the wind generation forecasting from multiple models using SVR and the results 

from a persistence model defined as (2.12) are reported in Table 2-2.  

)1()( −= tWPtWP         (2.12) 

According to Table 2-2, historical wind power generation and wind speed are 

independently used to predict wind power generation. It can be observed that the models 

using historical wind power give better prediction accuracy than the results from the wind 

speed models. Also, the MRE of the three time lags historical wind power model is higher 

than the two time lags historical wind power model. However, the MRE of the three time 

lags historical wind speed model is the same as the two time lags historical wind speed 

model. Because of this, the simulation is tested only up to the three time lags models. 

After testing the prediction accuracy of models with all possible combinations of wind 

power and wind speed, the model WP(t-1&t-2)&WS(t-1) gives the best prediction 

performance with 3.33 % MRE. Next, this best prediction performance model combined 
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with the other potential parameters is evaluated; however, the further combination 

models do not improve the wind generation forecasting accuracy any further. Also, this 

model with the best prediction performance gives better prediction accuracy compared to 

the persistence model. 

     Table 2-2 Wind Power Generation Forecasting Results (% MRE) 

Model Feb May Jul Oct Average 

WP(t-1) 3.68 4.00 3.12 3.20 3.50 
WP(t-1&t-2) 3.41 3.91 3.06 2.98 3.34 
WP(t-1,…,t-3) 3.41 3.95 3.08 2.98 3.35 
WS(t-1)S(t-1) 7.18 7.11 6.64 6.43 6.84 
WS(t-1&t-2) 7.15 7.18 6.62 6.40 6.84 
WS(t-1,…,t-3) 7.14 7.20 6.61 6.39 6.83 
WP(t-1)&WS(t-1) 3.68 3.97 3.10 3.20 3.49 
WP(t-1)&WS(t-1&t-2) 3.55 3.85 3.10 3.13 3.41 
WP(t-1)&WS(t-1,…,t-3) 3.62 3.90 3.11 3.18 3.45 
WP(t-1&t-2)&WS(t-1) 3.41 3.90 3.04 2.99 3.33 
WP(t-1&t-2)&WS(t-1&t-2) 3.44 3.83 3.06 3.03 3.34 
WP(t-1&t-2)&WS(t-1,…,t-3) 3.48 3.86 3.07 3.07 3.37 
WP(t-1,…,t-3)&WS(t-1) 3.43 3.94 3.07 3.00 3.36 
WP(t-1,…,t-3)&WS(t-1&t-2) 3.47 3.87 3.08 3.06 3.37 
WP(t-1,…,t-3)&WS(t-1,…,t-3) 3.51 3.91 3.09 3.08 3.40 
WP(t-1&t-2)&WS(t-1)&G(t-1) 3.41 3.90 3.04 2.99 3.33 
WP(t-1&t-2)&WS(t-1)&WD(t-1) 3.41 3.90 3.04 3.01 3.34 
WP(t-1&t-2)&WS(t-1)&T(t-1) 3.40 3.91 3.03 3.01 3.34 
Persistence 3.62 3.95 3.09 3.13 3.45 

 
The notations in Table 2-2 are defined as follows: WP is wind power; WS is wind 

speed; G is gusty wind; WD is wind direction; T is temperature; and (t-1, t-2, t-3) are 15, 

30, and 45 minutes before the prediction time, respectively.  

To demonstrate the effective wind generation forecasting approach by the 

proposed SVR, Figure 2-5 to Figure 2-8 illustrates the wind power forecasting for four 

months representing four seasons in a year.   
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Figure 2-5 Wind generation forecasting in February  

 
 

Figure 2-6 Wind generation forecasting in May  
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Figure 2-7 Wind generation forecasting in July  

 

Figure 2-8 Wind generation forecasting in October 
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2.4 Summary 

In order to accurately forecast wind generation, Support Vector Regression 

(SVR) is an effective method used to perform the predictions in this dissertation. Wind 

generation, wind speed and the relevant weather parameters including gusty wind, wind 

direction, and temperature are taken into consideration as the input parameters of the 

proposed SVR. The combination model of WP(t-1&t-2)&WS(t-1) yields the most accurate 

wind generation prediction with 3.33 % Mean Relative Error (MRE) evaluated in four 

months representing the four seasons for the entire year. 
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Chapter 3  

PV Generation Forecasting 

3.1 Literature Review 

The PV industry has progressively developed from residential-scaled PV systems 

to utility-scaled PV power stations. However, due to its intermittent and variable nature, 

PV generation creates concern among system operators about how to equalize the 

supply and demand. Many studies address this concern by developing and testing more 

accurate PV generation prediction methods.  

In the existing literature, the PV generation prediction method can be divided into 

two categories: the modeling and statistical approaches [30-46]. The first group, which is 

the modeling approach, develops the prediction model by deriving the PV generation 

from the amount of solar radiation, considering PV panel characteristics and weather 

conditions. Next, this prediction model is used to predict the next time ahead PV 

generation using the Numerical Weather Prediction (NWP) by the weather service 

provider. For example, one study investigates the impact of different weather conditions, 

including sunny, cloudy, rainy, and snowy, for the PV generation estimation [30].  Also, 

the PV generation prediction in [31] is evaluated using solar radiation and sky conditions 

from the European Centre for Medium-Range Weather Forecasts (ECMWF). A study in 

[32] introduces Simulation model of Solar power forecast (SimSol) to predict PV power  

considering NWP combined with the installation details from the PV modules such as the 

tracking system, shadowing effect, and other factors.  

On the other hand, the statistical and artificial intelligent methods with nonlinear 

machine learning have been frequently applied for predicting PV generation. For 

instance, Neural Network (NN) using the historical weather conditions and the solar 

irradiation for multiple time periods ahead is adopted to perform the PV generation 
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forecasting [33, 34]. The NN combined with the time delay function training by 

Levenberg-Marquardt algorithm is also used for predicting the PV generation [35]. A 

study in [36] proposes one type of NN, which is the Recurrent S-Cerebellar Model 

Articulation Controller (RSCMAC), for calculating the PV power forecasting.  

Many PV generation predictions have been calculated using a statistical-based 

method with several regression models such as Auto Regressive Moving Average 

(ARMA) [37, 38] and H-Filtering [39]. In addition, two studies propose the regression 

model with additional complex algorithms including Kalman Filtering ARMA and 

Nonlinear Auto Regressive Model with Exogenous inputs (NARX) [40, 41]. Furthermore, 

several studies use data mining techniques consisting of K-means and Rough test 

methods to select the suitable characteristics for predicting PV generation [42, 43]. 

Support Vector Machines (SVMs) combined with several clustering techniques such as 

similar day approach [44], fuzzy inference method [45]  and weather-based classification 

technique [46] have also been used to forecast PV generation.    

Although these research works attempt to improve the accuracy of PV generation 

prediction, none of them have explicitly specified the forecasting model for very short 

term forecasting. Consequently, determining the most accurate prediction model for the 

15-minute ahead PV generation forecasting is a challenge in this dissertation. Since the 

SVMs show the best prediction performance compared to other methods [45], this 

technique is adopted to calculate the 15-minute ahead PV generation estimation in this 

study. Therefore, because PV generation is considered as a continuous value, SVR can 

be effectively used to predict the PV generation. 

3.2 Solar Radiation and PV Generation 

The National Renewable Energy Laboratory (NREL) provides the hourly 

historical solar radiation and its associate weather data from 1991-2010 [47]. However, 
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prior to calculating the PV generation prediction, the energy conversion model from the 

solar radiation to the PV power output needs to be studied. Furthermore, the energy 

conversion model depends on the amount of solar radiation absorbed by the PV panel, 

the PV panel specification, and the dependent weather. The process of PV generation 

evaluation is described as follows.  

There are three components of the solar radiation absorbed by the PV panel: 

direct radiation, diffuse radiation, and reflected radiation, as depicted in Figure 3-1 [48]. 

To calculate the PV power output, Plane of Array (POA) irradiance )( POAE using these 

three solar radiation components is evaluated by (3.1).   

 

Figure 3-1 The components of solar radiation to PV panel  

dgbPOA EEEE ++=         (3.1) 

where bE is the POA beam component, gE  is the POA ground reflected 

component, and dE is the POA sky diffuse component.  
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The POA beam component can be calculated by (3.2) using the incident angle 

modifier )( BIAM . The POA ground reflected component depends on alberdo , which 

varies based on PV panel installation surface, as formulated in (3.3). There are several 

methods to obtain the POA sky diffuse component such as Isotropic sky diffuse model, 

Perez sky diffuse model, and others. [49]. For simplicity without losing the accuracy of 

evaluation, the Simple Sandia sky diffuse model is adopted to calculate dE  in this 

dissertation, as shown in (3.4).        

)cos(AOIIAMDNIE Bb ××=        (3.2) 
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where DNI , GHI ,and DHI denote the direct normal, global horizontal, and 

diffuse horizontal irradiances, respectively. The hourly data of these three parameters 

can be obtained from the actual measurements recorded by NREL [47].  is 0.35 

for the galvanized steel that acts as the surface for installation of the PV panel. aT  and Z

are the surface tilt angle (the longitude of the PV panel installation) and the sun zenith 

angle, respectively, depicted in Figure 3-2 [50]. The Azimuth angle ( Aθ ) is also shown in 

Figure 3-2. Finally, AOI  is the angle of incident and is calculated using (3.5). 

)]cos()sin()sin()cos()[cos(cos ,
1

arrayAAaa TZTZAOI θθ −+= −    (3.5) 
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Figure 3-2 Zenith and Azimuth angle  

Finally, the formula (3.6) is used to estimate the PV generation output 

considering the POAE , the installation area ( A ), the adjusted PV panel efficiency (η ) 

according to (3.7), and the 0.77 DC to AC conversion factor recommended by NREL.   

77.0×××= ηAEPV POA        (3.6) 

)](1[0 γγηη TTC −−=         (3.7) 

where 0η denotes the PV efficiency at reference temperature, γ is 0.005 for the 

temperature coefficient of the solar battery, and CT  and γT are cell and reference (25 C)  

temperatures, respectively. 

Since the NREL provides hourly historical solar radiation and its associate 

weather data, the linear approximation method is used to convert the hourly data into 15-

minute data corresponding to the PEV operational time period. NREL has recorded the 

solar radiation data for several locations in the DFW area; however, the PV generation 

calculated with this solar radiation data from these different locations is similar throughout 

the metroplex. Therefore, only the Dallas Redbird airport site is selected to calculate the 

PV generation predictions in this dissertation. Figure 3-3 shows an example of the power 
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output profile of a 33.82 kW  single crystalline silicon panel at the Dallas Redbird airport. 

The panels have a 180 m2 installation area (10 charging slots for one charging station) 

and 24.4% conversion efficiency [51]. 

 

Figure 3-3 PV output power evaluated by solar radiation  

3.3 Case Study and Results 

3.3.1 Parameters Selection  

The impact parameters to forecast the solar radiation have been identified using 

data mining techniques [52]. In addition, [52] indicates that the most significant parameter 

to predict the solar radiation is the historical solar radiation from both summer and winter.  

According to the aforementioned discussion, because the PV generation is a direct 

function of the solar radiation absorbed by the PV arrays, either the historical PV 

generation or solar radiation can be selected as an impact parameter for the prediction. 

In this dissertation, the historical PV generation is chosen due to its convenient 

implementation into the PEV charging station without losing the accuracy of the PV 

generation prediction. 

Autocorrelation analysis according to (2.10) between the PV generation at time t 

and the PV generation at 15 minutes before is illustrated in Figure 3-4. The 
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autocorrelation demonstrates a strong dependence for the entire year with a 0.994 

average correlation coefficient. As a result, the historical PV generation is considered as 

a significant input parameter of the forecasting algorithm. 

 

Figure 3-4 Auto correlation analysis between PV generation at time t and t-15 min 

In addition, other parameters including sunshine duration, humidity, temperature, 

and altitude are considered as potential parameters for estimating the PV power output 

[52]. However, this dissertation does not consider altitude because charging stations 

have stationary PV panels. The cloud rating is taken into account for the PV power 

forecasting because PV panels generally produce less energy on cloudy days than on 

sunny days. Since the wind speed affects cloud conditions, it should be considered as 

one of the input parameters for PV generation forecasting.    

Considering all these factors, the correlations between PV generation and the 

potential parameters of humidity, temperature, cloud rating, and wind speed are 

calculated and reported in Table 3-1.  The humidity and cloud rating have inverse 

correlations with PV generation, while the temperature and wind speed show positive 

correlation with PV generation. Although all four of these parameters show lower 

correlation coefficients than the autocorrelation coefficient itself, they are still used as 
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input forecasting parameters to examine the further prediction accuracy improvement. 

However, as Pearson correlation analysis cannot be used to evaluate the correlation 

between sunshine duration from the previous day and PV generation, this parameter is 

not included in Table 3-1, but it is used in this dissertation to analyze the further 

prediction performance improvement of PV generation.  

Table 3-1 Correlation Analysis of the Relevant Parameters and the PV Generation 

Parameter Average Correlation Coefficient 
Humidity -0.496 
Temperature 0.298 
Cloud rating -0.122 
Wind speed 0.188 

 
 
3.3.2 Results 

PV generation is calculated from the solar radiation based on the proposed 

evaluation method in section 3.2. Training data for SVR are 2008 data. To obtain the best 

prediction performance model, the data from the four months of January, April, July, and 

October 2009, representing the four seasons in a year, are used to test the model from 

the training stage.  

The prediction performance evaluation of the PV generation forecasting typically 

adopts Mean Absolute Percentage Error (MAPE), as formulated in (3.8).  
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       (3.8) 

  where true
jPV  is the actual PV generation at time j  , fst

jPV  is the forecasted 

PV generation at time j  , and Ntrue
jPV ,  is the average of the recorded PV generation 

over N  periods.     
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The historical PV generation, the most significant impact parameter according to 

correlation analysis, is the first used input parameter for calculating the PV generation 

prediction by SVR. Then, the other potential parameters, humidity, temperature, cloud 

rating, wind speed, and the previous day of sunshine duration, are used as inputs 

combined with the model of the best prediction performance determined from the first 

step. The results of PV generation estimation from these models are compared with the 

results from the persistence model calculated by (3.9), as reported in Table 3-2. 

)1()( −= tPVtPV         (3.9)  

Table 3-2 PV Generation Forecasting Results  

Model Jan Apr Jul Oct Average 

PV(t-1) 8.24 7.93 7.16 8.77 8.03 
PV(t-1&t-2) 2.61 2.76 2.37 3.29 2.76 
PV(t-1,…,t-3) 2.66 2.76 2.29 3.34 2.76 
PV(t-1&t-2)&H(t-1) 2.91 2.93 2.42 3.70 2.99 
PV(t-1&t-2)&T(t-1) 2.68 2.84 2.48 3.39 2.85 
PV(t-1&t-2)&C(t-1) 2.61 2.76 2.37 3.29 2.76 
PV(t-1&t-2)&WS(t-1) 2.70 2.93 2.41 3.37 2.85 
PV(t-1&t-2)&S(d-1) 2.46 2.69 2.36 3.10 2.65 
Persistence 8.14 7.89 7.07 8.60 7.92 

The notations in Table 3-2 are defined as follows: PV is PV generation; H is 

humidity; T is temperature; C is cloud rating; WS is wind speed; and S is previous day 

sunshine duration.    

According to Table 3-2, the forecasting results of the PV(t-1&t-2) model is 2.76 % 

MAPE, which is significantly more accurate than the 8.03 % MAPE of the PV(t-1) model. 

However, the study shows that the prediction accuracy of the PV(t-1,…,t-3) model shows 

no improvement from 2.76 % MAPE. Therefore for simplicity, the PV(t-1&t-2) model is 

used to calculate the additional PV generation forecasting and is combined with humidity, 

temperature, cloud rating, wind speed, and the previous day of sunshine duration in the 

next step.  
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After evaluating the PV generation prediction accuracy with different combination 

models of the potential weather parameters, the PV(t-1&t-2)&S(d-1) model is shown to 

have the best estimation performance, and moderately improves the prediction accuracy 

to 2.65 % MAPE. This combination model also gives significantly better PV generation 

forecasting accuracy compared to the prediction accuracy of 7.92 % MAPE from the 

persistence model.  

In order to illustrate the effective forecasting performance of the proposed 

approach with the best prediction model of PV(t-1&t-2)&S(d-1), Figure 3-5 to Figure 3-8 

depict the comparison between the actual and forecasted PV generation for four months 

in 2009. It can be observed that prediction results by the proposed method are highly 

accurate for the PV generation in normal conditions. However, this model results in a few 

prediction errors when the PV generation experiences some fluctuations.   

 

 

Figure 3-5 PV generation forecasting results in January 
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(b) 

Figure 3-6 PV generation forecasting results in April  

 

 

Figure 3-7 PV generation forecasting results in July  
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Figure 3-8 PV generation forecasting results in October 

3.4 Summary 

Either PV generation or solar radiation can be selected to forecast the future 

energy production from a PV system. However, because PEV charging stations directly 

use the amount of energy from PV generation and not from solar radiation, this 

dissertation uses historical PV generation to predict the future energy production from a 

PV system. The amount of energy from PV generation can be calculated using the 

energy conversion model of solar radiation, the PV panel specification, and the 

associated weather data. Historical PV generation, humidity, temperature, cloud rating, 

wind speed, and the previous day of sunshine are taken into consideration for the 

predictors. The model of the historical PV generation at 15 and 30 minutes before the 

prediction time and the previous day of sunshine, [PV(t-1&t-2)&S(d-1)], yields the best 

prediction performance, and demonstrates the effective prediction of the proposed SVR. 

This model significantly improves the forecasting accuracy compared to the persistence 

model from 7.92 to 2.65 % MAPE.     
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Chapter 4  

Market Price Forecasting 

4.1 Literature Review 

In the deregulated electricity market, the interactions among supply, demand, 

constraints, and other market components are taken into account when settling the 

electricity price. The electricity price may experience volatility as these components 

change. This volatility in the deregulated market presents challenges since the 

occurrence and magnitude of the spike prices are difficult to estimate. Accurate market 

price prediction benefits power producers and consumers by optimizing their system 

costs. Consequently, the study of market price forecasting has gained increasing 

attention in recent years.   

The electric price forecasting method in the deregulated market can be 

separated into simulation and statistical approaches[53]. The simulation method 

estimates market price considering generator dispatch patterns with various impact 

parameters. Although the simulation method can predict market price accurately, it needs 

a massive amount of data from actual electrical models for accurate calculation[54]. 

Furthermore, the statistical approach aims to map the connection between market price 

and its related parameters by either Artificial Intelligent (AI) algorithms or time series 

models. Due to the challenges present in the simulation method, the statistical method is 

more commonly used. 

Neural Network (NN), one AI algorithm, combined with fuzzy logic has been 

proposed, considering demand, spinning reserve, and capacity shortfall as input 

parameters [54]. In addition, NN has been combined with Fuzzy c-mean for clustering 

different transaction periods into proper groups before calculating market price 

predictions[55]. Another study shows how Fuzzy inference with Least Square Estimator 
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(LSE) models the correlation between market price and historical predictors [56]. Taking 

demand load into consideration, the Euclidean norm is used to select the day with the 

most similar price characteristics, which is then used to predict market price by NN [57]. 

One study shows how the time series model is derived by Auto Regressive Integrated 

Moving Average (ARIMA) [58], and another shows how it is developed when combined 

with wavelet transform, which improve the forecasting accuracy [59]. All of these 

statistical approaches show sufficient forecasting accuracy for day ahead estimation, but 

they normally can only predict non-spike electric prices.  

Consequently, a few hybrid models with classification algorithms have been 

developed to additionally predict the spike price occurrence. Radial Basic Function NN 

and Support Vector Machines (SVMs) hybrid models have been adopted to estimate the 

electric price both in spike and non-spike prices conditions in the deregulated market [60, 

61].  However, the forecasting timeframes and training input parameters have not been 

clearly identified in these studies. In addition, the spike price forecasting in these hybrid 

models is typically calculated using only an AI method, which may lead to inaccuracies. 

These three important issues can significantly influence the accuracy of electric price 

prediction.  

Therefore, this research proposes a hybrid market price forecasting method 

(HMPFM) with data clustering techniques. The goal of these clustering techniques is to 

dissect spike prices in several ranges before performing the spike price magnitude 

forecasting. This novel technique can improve the accuracy of spike price magnitude 

forecasting to enhance overall market price prediction. Since SVMs have been efficiently 

used for predicting both classification and regression in various applications such as the 

wind/PV generation prediction discussed in the previous chapters, Support Vector 

Classification (SVC) is adopted to predict spike price occurrence, and Support Vector 
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Regression (SVR) is used for market price magnitude prediction of both spike and non-

spike prices. This study implements three clustering algorithms, Classification and 

Regression Trees (CART), K-means, and Stratification methods, because the CART and 

K-means approaches have been successfully used in clustering studies, and the 

Stratification method is the simplest clustering technique [62-65]. 

4.2 Hybrid Market Price Forecasting Method (HMPFM) 

 The framework of HMPFM with data clustering techniques is depicted in Figure 

4-1. There are two main stages of the proposed method: spike price occurrence and 

price magnitude predictions. First, the spike price occurrence prediction is calculated. If 

the result of this prediction is yes, the spike price magnitude prediction will be calculated; 

otherwise, the non-spike price magnitude prediction is processed. The details of each 

prediction are described in the following discussion. 

 

Figure 4-1 Hybrid market price prediction framework  
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4.2.1 Spike Market Price Occurrence Prediction 

According to several previous research works [60, 61], there are three spike price 

definitions:  

1) An abnormal high price is a price that is substantially higher than normal;  

2) An abnormal jump price is the difference between two adjacent prices that is 

greater than a given threshold;  

3) A negative price is when the price falls below zero.  

An abnormal high price is the main focus of this dissertation. The levels of this 

type of spike price can be defined by statistical methods. The studies in [60, 61] show 

that it can be calculated by either one standard deviation threshold or two standard 

deviation thresholds. In order to escalate the spike event number for improving the 

forecasting accuracy, the spike price is defined by a one standard deviation threshold 

and is calculated by (4.1) in this dissertation.    

 σµ ±=spike         (4.1) 

 where µ  and σ  are the mean and standard deviation of the market price, 

respectively (43.59 and 162.32 $/MWh for the DFW market price in 2011). 

SVC is the selected algorithm in this dissertation to predict the spike price 

occurrence and considers several impact parameters such as historical market prices, 

load profiles, and others. The spike price occurrence forecasting is calculated by several 

models in this dissertation to identify the one with the best prediction performance. 

4.2.2 Non-Spike Market Price Prediction 

Due to the inconsequential change of the non-spike price in a 15-minute period, 

the typical AI forecasting method can be adequately adopted to predict the non-spike 

price condition. SVR is selected to estimate the magnitude of the non-spike price and 

considers the same impact parameters as the spike price occurrence prediction. In this 
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process, several models are tested with all spike prices removed prior to calculating the 

non-spike market price predictions to identify the model with the best prediction 

performance.     

4.2.3 Spike Market Price Prediction 

Spike prices in the DFW market fluctuated between less than -120 $/MWh and 

more than 3000 $/MWh in 2011[66]. Since this widespread distribution of spike prices 

can affect the ability to accurately estimate their magnitude by typical AI forecasting 

approaches, clustering methods are introduced in this dissertation to divide spike prices 

into appropriate clusters before SVR calculates their magnitude prediction. This 

dissertation implements three clustering algorithms: CART, K-means, and Stratification 

methods. The model with the best prediction performance considering impact parameters 

is obtained by performing the comprehensive HMPFM with these three proposed data 

clustering techniques. 

4.3 Data Clustering Techniques 

4.3.1 Classification and Regression Tree (CART) 

CART is a binary recursive partitioning clustering technique[67, 68]. Target 

variables can be either categorical or continuous values in classification or regression 

scenarios, respectively. The clustering method in this dissertation focuses on the 

regression technique since the magnitude of the spike price is considered continuous. 

Regarding the regression algorithm itself, two main stages are used to determine the 

optimal clusters including growing and pruning processes. In the former stage, CART 

ultimately enforces maximum possible terminal nodes from their parents using the 

splitting rule as dxi ≤ . Thus, if a predictor value ( ix ) is less than or equal to a setting 

value ( d ), this variable will be a member of the left children node. Conversely, this 

variable will be assigned to the right children node group. This rule is implemented with 
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the least square function and goodness of split as (4.2,4.3) for growing optimal terminal 

nodes. In the latter stage, a minimal cost tree by lowest mean square error is employed 

for pruning the generated tree from the first stage.  

2
)()( )()( ∑ −= tti yytSS         (4.2) 

)()()()( LR tSStSStSSt −−=φ               (4.3) 

where )(tiy  is the target of ix in node t; )(ty  is the mean of target values in node 

t; )(tSS , )( RtSS  , and )( LtSS are the sum square errors of the parent node, right 

children node, and left children node, serially; and )(tφ  is the goodness of split that 

shows the highest value for the best split.  

4.3.2 K-means Clustering     

This algorithm separates the d-dimensional vector space of data point ( ix ), 

{ }NixD i ,...,1==  into k  partitions by minimizing the cost function as (4.4).  
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where jc represents k -centroid clusters in set  { }kjcC j ,...,1==  

To reach the aim of cost minimization, this algorithm iteratively performs two-step 

procedures. First, jc  is initialized randomly, and data points are assigned to the closest 

centroid by implementing a Euclidean distance function. Second, a new jc is computed 

using the assigned data from the first step. This iteration is repeated until jc is stabilized. 

4.3.3 Stratification Method 

Employing this clustering technique is a simple process based on statistical data. 

To have sufficient data in each group, this technique divides d -dimensional vector space  
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{ }NixD i ,...,1==  equally into k  clusters considering different target ranges that are 

different spike price ranges in this dissertation. 

4.4 Case Study and Results  

The regional PEV charging station system is designed to be built near the power 

nodes in the DFW area for DC fast charging. Since ERCOT’s wholesale market prices in 

each cluster are similar, only one set of market prices is used for each cluster. Cluster E, 

which is near Dallas, is used to illustrate the proposed market prices prediction method. 

First, a correlation analysis is conducted to select the input parameters for the SVMs 

process. Then, the HMPFM with data clustering techniques is implemented following the 

framework in section 4.2. Finally, the comprehensive results are presented and analyzed 

to verify the prediction performance. The proposed approach is then applied to other 

power nodes to improve the forecasting accuracy for other PEV charging station 

locations in the DFW area. 

4.4.1 Parameter Selection 

It is possible to obtain historical market prices, temperatures, and load profiles 

before performing a 15-minute ahead market price forecasting, while several factors such 

as generator contingencies and transmission constraints remain unknown prior to 

predicting the market price. Other factors, such as fuel prices and day ahead load 

forecast, have less influence on very-short term market price forecasting. Therefore, 

correlation analyses of historical market prices, temperatures, and load profiles are 

studied. Historical market prices, temperature, and load profile are extracted from the 

National Climatic Data Center (NCDC) [29] and ERCOT websites. Figure 4-2 depicts the 

correlation results between market price and the three impact parameters at 15-minute 

intervals for a 12-hour time period.  
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Figure 4-2 Correlation analyses between market price and three impact parameters  

[(t-1),(t-2),…, (t-n)  are 1,2,…,n prior times in a 15-minute period.] 

According to Figure 4-2, all correlations decrease significantly when prior times 

increase. Historical market prices show a strong autocorrelation with coefficients of 

greater than 0.7 until t-4, so this parameter is identified as one important predictor. 

Moreover, both historical load profiles and temperatures give moderate correlations to 

market price with a coefficient exceeding 0.4. Although these two parameters present 

lower correlation coefficients than that of historical market prices, they are included as 

input parameters for further improving the forecasting accuracy. 

4.4.2 Spike Market Price Occurrence Prediction 

This study introduces )(inP  and )(outP  given by (4.5) and (4.6) in order to 

evaluate the spike occurrence prediction accuracy. These two indices provide 

classification precision of predicted spikes and incorrect classification of predicted non-

spikes. The effective classification forecasting is determined by high )(inP  and low

)(outP .  

 )()( spikepredictedspikepredictedcorrectlyPinP =     (4.5) 
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 )()( nonspikepredictednonspikepredictedyincorrectlPoutP =    (4.6)        

SVC is used to calculate the spike price occurrence prediction in several models 

following these steps. First, due to the most significant impact of historical market prices 

determined by a strong autocorrelation, they are selected to run spike price occurrence 

prediction for four time lag models. Second, the classification calculates the prediction 

separately for three time lags of temperature and load profile combined with the model of 

best prediction performance from the first step. Previous research shows that the 

dependence of temperature and load profile can be either strong or weak. In addition, it 

can have a positive or negative correlation [69]. Because of the different correlations of 

these parameters, the final evaluation step considers all combinations to examine the 

possible further prediction improvement. Two-thirds of the data from each month in 2011 

is employed for training, while the remaining one third is used for testing. The spike price 

occurrence forecasting results are reported in Table 4-1. 

Table 4-1 Spike Market Price Occurrence Prediction Results 

Models P(in) P(out) 
mp(t-1) 0.73 0.0046 
mp(t-1&t-2) 0.78 0.0046 
mp(t-1,…,t-3) 0.77 0.0049 
mp(t-1,…,t-4) 0.75 0.0049 
mp(t-1&t-2)&T(t-1) 0.78 0.0046 
mp(t-1&t-2)&L(t-1) 0.78 0.0052 
mp(t-1&t-2)&T(t-1&t-2) 0.78 0.0046 
mp(t-1&t-2)&L(t-1&t-2) 0.80 0.0048 
mp(t-1&t-2)&T(t-1,…,t-3) 0.78 0.0046 
mp(t-1&t-2)&L(t-1,…,t-3) 0.78 0.0049 
mp(t-1&t-2)&T(t-1)&L(t-1) 0.78 0.0052 
mp(t-1&t-2)&T(t-1)&L(t-1&t-2) 0.80 0.0048 
mp(t-1&t-2)&T(t-1)&L(t-1,…,t-3) 0.78 0.0049 
mp(t-1&t-2)&T(t-1&t-2)&L(t-1) 0.78 0.0052 
mp(t-1&t-2)&T(t-1&t-2)&L(t-1&t-2) 0.80 0.0048 
mp(t-1&t-2)&T(t-1&t-2)&L(t-1,…,t-3) 0.78 0.0049 
mp(t-1&t-2)&T(t-1,…,t-3)&L(t-1) 0.78 0.0052 
mp(t-1&t-2)&T(t-1,…,t-3)&L(t-1&t-2) 0.80 0.0056 
mp(t-1&t-2)&T(t-1,…,t-3)&L(t-1,…,t-3) 0.78 0.0049 
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A significantly low )(outP in Table 4-1 is a result of high non-spike and low spike 

price number compared to the total amount of testing data. Following the aforementioned 

procedure, the model of historical market prices is simulated from mp(t-1) until mp(t-1,..,t-

4). Spike price occurrence prediction by the model mp(t-1&t-2) yields the best results 

compared to other models and has the highest )(inP and lowest )(outP of 0.78 and 

0.0046, respectively. Then, this model combined with L(t-1&t-2) enhances classification 

performance and provides the most accurate model compared to the other combination 

models. This model is selected for spike price occurrence prediction in the HMPFM. 

In order to improve classification performance, two adjustable parameters in SVC 

including regularization (C) and bandwidth (B) are tuned. The model from the previous 

step is used to modify both parameters. The initial settings for C and B are 10 and 2, 

respectively. The modification results are shown in Table 4-2 and Table 4-3. The 

modification of regularization and bandwidth significantly improves the classification 

accuracy. The most efficient parameter settings (C = 5000 and B = 20) elevate )(inP  to 

0.85 and stabilize )(outP at 0.0046.    

Table 4-2 Spike Occurrence Prediction Results by Parameter Modification (C=10) 

B 0.4 2 10 20 30 100 

P(in) 0.71 0.80 0.80 0.81 0.79 0.78 
P(out) 0.0061 0.0048 0.0049 0.0048 0.0049 0.0052 

 
Table 4-3 Spike Occurrence Prediction Results by Parameter Modification (B=20) 

C 0.1 10 100 1000 5000 10000 

P(in) 0.78 0.81 0.83 0.84 0.85 0.84 
P(out) 0.0053 0.0048 0.0048 0.0049 0.0046 0.0045 
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4.4.3 Non-spike Market Price Prediction 

SVR is used to estimate the magnitude of non-spike prices in the same 

procedure as the spike occurrence prediction. The prediction performance is evaluated 

by Mean Absolute Percentage Error (MAPE) calculated by (4.7). The forecasting results 

are shown in Table 4-4.  
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1        (4.7) 

where true
jP  is an actual market price at time j  , fst

jP  is a forecasting market 

price at time j  , and Ntrue
jP ,  is an average of recorded market prices over N  period. 

Table 4-4 Non-spike Market Price Prediction Results 

Models MAPE (%) 
mp(t-1) 6.02 
mp(t-1&t-2) 5.94 
mp(t-1,…,t-3) 5.95 
mp(t-1,…,t-4) 6.02 
mp(t-1&t-2)&T(t-1) 5.94 
mp(t-1&t-2)&L(t-1) 6.02 
mp(t-1&t-2)&T(t-1&t-2) 5.93 
mp(t-1&t-2)&L(t-1&t-2) 5.94 
mp(t-1&t-2)&T(t-1,…,t-3) 5.93 
mp(t-1&t-2)&L(t-1,…,t-3) 5.96 
mp(t-1&t-2)&T(t-1)& L(t-1) 6.00 
mp(t-1&t-2)&T(t-1)& L(t-1&t-2) 5.93 
mp(t-1&t-2)&T(t-1)& L(t-1,…,t-3) 5.94 
mp(t-1&t-2)&T(t-1&t-2)&L(t-1) 6.00 
mp(t-1&t-2)&T(t-1&t-2)&L(t-1&t-2) 5.92 
mp(t-1&t-2)&T(t-1&t-2)&L(t-1,…,t-3) 5.93 
mp(t-1&t-2)&T(t-1,…,t-3)&L(t-1) 5.98 
mp(t-1&t-2)&T(t-1,…,t-3)&L(t-1&t-2) 5.92 
mp(t-1&t-2)&T(t-1,…,t-3)&L(t-1,…,t-3) 5.93 

 

The results in Table 4-4 show the prediction performance of SVR. Temperature 

and load profile can slightly enhance the forecasting precision. The model of mp(t-1&t-2) 

including T(t-1&t-2) and L(t-1&t-2) offers the best result with 5.92 % MAPE compared to 
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the results of the other models. This model is selected in the HMPFM for non-spike price 

estimation. 

4.4.4 Spike Market Price Prediction  

Three clustering techniques consisting of CART, K-means, and Stratification 

methods are utilized to enhance market price prediction in the deregulated market. This 

section presents the clustering selection results of three proposed approaches prior to 

performing the comprehensive HMPFM in the next stage. 

4.4.4.1 Classification and Regression Tree (CART) 

CART employs a ten-fold cross validation considering historical market prices, 

temperatures, and load profiles as predictors and market price as a target. The minimum 

number of target values in the parent nodes can vary from 10 to 70, and the number of 

values in the terminal nodes should be one-third the number of their parent node, as 

recommended by the software [70]. The optimal results specify the most efficient number 

of different terminal nodes for each model. CART provides regression tree rules for each 

terminal node to determine the best set of clusters prior to performing spike prediction. 

Example regression tree rules of the model including mp(t-1) and T(t-1,…,t-3) are shown 

in Table 4-5. For instance, the rule for the 6th cluster is mp(t-1), which falls between 

2086.89 and 3000.6 $/MWh. 

 
Table 4-5 Example Regression Tree Rules obtained by CART   

Terminal Nodes Rules 
1 mp(t-1)<=816.95 and T(t-3)<=3.3 
2 mp(t-1)<=816.95 and T(t-3)>3.3               and T(t-3)<=28.05  
3 mp(t-1)<=275.22 and T(t-3)>28.05   
4 mp(t-1)> 275.22  and mp(t-1)<=816.95    and T(t-3)>28.05 
5 mp(t-1)> 816.95  and mp(t-1)<=2086.89 
6 mp(t-1)>2086.89 and mp(t-1)<=3000.66 
7 mp(t-1)>3000.66 
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4.4.4.2 K-means 

K-means clustering is also used to determine the best set of clusters and yields 

different input parameters for each cluster. Then, the averages of input parameters are 

calculated and are used as the decision values in each cluster. The lowest Euclidean 

distance calculated by (4.8) is used to select the best set of clusters prior to predicting the 

magnitude of the spike price. An example result from K-means of the model including 

mp(t-1,…,t-3) is shown in Table 4-6.  

∑
−

−=
−=

T

t
tntpredictingn YXd

1

2
)()( )(       (4.8) 

where nd is a Euclidean distance for thn  cluster, X is an input parameter value, 

Y is an average decision value, and T  is a parameter at each several t  prior times.  

According to Table 4-6, it can be seen that K-means clustering is able to 

separate input parameters for each cluster effectively. All average decision values of the 

input parameters are less than 282.13 and more than 2762.85 $/MWh in clusters 1 and 3, 

respectively. In addition, the average decision values of the input parameters in cluster 2 

show an increasing trend, while they show a decreasing trend in cluster 4. The suitable 

number of clusters is discussed in the comprehensive results. 

Table 4-6 4 Clusters by K-means 

Cluster Cluster 1 Cluster 2  
Average 
decision  
values 

mp(t-3) mp(t-2) mp(t-1) mp(t-3) mp(t-2) mp(t-1) 

169.90 199.05 282.13 520.67 1042.90 2144.89 

Cluster Cluster 3 Cluster 4 
Average 
decision  
values 

mp(t-3) mp(t-2) mp(t-1) mp(t-3) mp(t-2) mp(t-1) 

2762.85 2929.57 2977.58 2655.70 2043.38 1059.57 
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4.4.4.3 Stratification 

The Stratification method equally dissects the number of cluster members based 

on the total spike price number.  According to different levels of spike prices specified by 

dissection, each input parameter is individually used to calculate the averages as the 

decision values at different times, such as mp(t-1), T(t-1), and others. The lowest 

Euclidean distance defined by (4.8) is employed to select the best set of clusters before 

calculating the prediction. Example results of four clusters of models including mp(t-

1,…,t-3) are shown in Table 4-7. The proper number of clusters is discussed in the next 

section. 

Table 4-7 4 clusters by Stratification Method 

Cluster 
(no.of spike 

price) 

Cluster 1 
(66) 

Cluster 2  
(65) 

Range of spike 
price ($/MWh) 

[-250,300) 
 

[300-550) 
 

Average 
decision values 

mp(t-3) mp(t-2) mp(t-1) mp(t-3) mp(t-2) mp(t-1) 
141.66 184.34 250.40 435.48 379.74 371.56 

Group 
(no.of spike) 

Cluster 3 
(69) 

Cluster 4 
(72) 

Range of pike 
price ($/MWh) 

[550,2000) [2000,3500) 

Average 
decision values 

mp(t-3) mp(t-2) mp(t-1) mp(t-3) mp(t-2) mp(t-1) 
634.93 661.46 739.53 2045.60 2270.62 2534.08 

4.4.5 Comprehensive Results 

The selected models from spike occurrence prediction and non-spike market 

price prediction are used to perform the HMPFM combined with the three proposed 

clustering techniques. CART is an algorithm that computationally assigns the optimal 

number of clusters, while the preliminary numbers of clusters for K-means and 

Stratification methods are set at four. Following the similar procedure for spike 

occurrence and non-spike price magnitude prediction, the results of spike price 
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magnitude prediction are obtained from the comprehensive HMPFM tested with several 

models, as reported in Table 4-8. The prediction performance is evaluated by MAPE.  

Table 4-8 Comprehensive Market Prices Forecasting Results (MAPE %) 

Models CART Models K-means Models Stratification 
mp(t-1) 15.65 mp(t-1) 15.86 mp(t-1) 16.00 
mp(t-1&t-2) 15.76 mp(t-1&t-2) 16.69 mp(t-1&t-2) 15.68 
mp(t-1,…,t-3) 15.87 mp(t-1,…,t-3) 15.75 mp(t-1,…,t-3) 16.30 
mp(t-1,…,t-4) 15.87 mp(t-1,…,t-4) 15.83 mp(t-1,…,t-4) 16.17 
mp(t-1) 
&T(t-1) 16.37 mp(t-1,…,t-3) 

&T(t-1) 15.32 mp(t-1&t-2) 
&T(t-1) 16.55 

mp(t-1) 
&L(t-1) 16.63 mp(t-1,…,t-3) 

&L(t-1) 16.28 mp(t-1&t-2) 
&L(t-1) 16.56 

mp(t-1) 
&T(t -1&t-2) 16.09 mp(t-1,…,t-3) 

&T(t-1&t-2) 15.40 mp(t-1&t-2) 
&T(t-1&t-2) 16.45 

mp(t-1) 
&L(t-1&t-2) 16.50 mp(t-1,…,t-3) 

&L(t-1&t-2) 15.17 mp(t-1&t-2) 
&L(t-1&t-2) 16.48 

mp(t-1) 
&T(t-1,…,t-3) 15.86 mp(t-1,…,t-3) 

&T(t-1,…,t-3) 15.32 mp(t-1&t-2) 
&T(t-1,…,t-3) 16.41 

mp(t-1) 
&L(t-1,…,t-3) 15.30 mp(t-1,…,t-3) 

&L(t-1,…,t-3) 15.19 mp(t-1&t-2) 
&L(t-1,…,t-3) 16.43 

mp(t-1) 
&T(t-1)&L(t-1) 15.28 mp(t-1,…,t-3) 

&T(t-1)&L(t-1) 15.21 mp(t-1&t-2) 
&T(t-1)&L(t-1) 16.41 

mp(t-1) 
&T(t-1) 
&L(t-1&t-2) 

15.25 
mp(t-1,…,t-3) 
&T(t-1) 
&L(t-1&t-2) 

15.50 
mp(t-1&t-2) 
&T(t-1) 
&L(t-1&t-2) 

16.37 

mp(t-1) 
&T(t-1) 
&L(t-1,…,t-3) 

15.28 
mp(t-1,…,t-3) 
&T(t-1) 
&L(t-1,…,t-3) 

15.19 
mp(t-1&t-2) 
&T(t-1) 
&L(t-1,…,t-3) 

16.36 

mp(t-1) 
&T(t-1&t-2) 
&L(t-1) 

15.31 
mp(t-1,…,t-3) 
&T(t-1&t-2) 
&L(t-1) 

15.26 
mp(t-1&t-2) 
&T(t-1&t-2) 
&L(t-1) 

16.36 

mp(t-1) 
&T(t-1&t-2) 
&L(t-1&t-2) 

15.42 
mp(t-1,…,t-3) 
&T(t-1&t-2) 
&L(t-1&t-2) 

15.24 
mp(t-1&t-2) 
&T(t-1&t-2) 
&L(t-1&t-2) 

16.34 

mp(t-1) 
&T(t-1&t-2) 
&L(t-1,…,t-3) 

15.35 
mp(t-1,…,t-3) 
&T(t-1&t-2) 
&L(t-1,…,t-3) 

15.86 
mp(t-1&t-2) 
&T(t-1&t-2) 
&L(t-1,…,t-3) 

16.33 

mp(t-1) 
&T(t-1,…,t-3) 
&L(t-1) 

15.32 
mp(t-1,…,t-3) 
&T(t-1,…,t-3) 
&L(t-1) 

15.51 
mp(t-1&t-2) 
&T(t-1,…,t-3) 
&L(t-1) 

16.35 

mp(t-1) 
&T(t-1,…,t-3) 
&L(t-1&t-2) 

15.34 
mp(t-1,…,t-3) 
&T(t-1,…,t-3) 
&L(t-1&t-2) 

15.88 
mp(t-1&t-2) 
&T(t-1,…,t-3) 
&L(t-1&t-2) 

16.34 

mp(t-1) 
&T(t-1,..,t-3) 
&L(t-1,..,t-3) 

15.29 
mp(t-1,…,t-3) 
&T(t-1,..,t-3) 
&L(t-1,..,t-3) 

15.32 
mp(t-1&t-2) 
&T(t-1,..,t-3) 
&L(t-1,..,t-3) 

16.33 
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According to Table 4-8, each model provides similar market price forecasting 

accuracy by the three proposed clustering approaches. The models with the best 

performance of spike price forecasting from the comprehensive HMPFM are mp(t-1)&T(t-

1)&L(t-1&t-2), mp(t-1,…,t-3)&L(t-1&t-2), and mp(t-1&t-2) for the CART, K-means, and 

Stratification methods, respectively. These predictions have the lowest MAPE with 15.25 

%, 15.17 %, and 15.68 %, respectively.  

In addition, the number of clusters is adjusted from two to six with different 

temperature and load profile combinations to compare and select the optimal results from 

the K-means and Stratification methods. These results are illustrated in Figure 4-3 and 

Figure 4-4 . The maximum number of six clusters is chosen for ensuring sufficient data in 

each group. The model with the best prediction performance for K-means is the same as 

previously discussed, while two clusters of the model mp(t-1&t-2)&T(t-1,…,t-3)&L(t-1,…,t-

3) for the Stratification method gives the best prediction performance and improves 

MAPE from 15.68 % to 15.19 %.  

 

 

Figure 4-3 Comparison of market price prediction results with different clusters of K-

means method  

 



 

60 

 

 

Figure 4-4 Comparison of market price prediction results with different clusters of 

Stratification method 

To illustrate the significant improvement of the HMPFM combined with the three 

clustering techniques against other prediction methods, Figure 4-5 depicts the 

comparison results between the best cases of the three proposed approaches and the 

other general prediction methods including normal SVM (NSVM) and typical hybrid SVM 

(THSVM). Considering the same parameters and data as the proposed approaches, 

NSVM is used to forecast the market price with only the traditional SVM algorithm, and 

THSVM is used to forecast the market price with the hybrid of SVC and SVR but without 

the proposed data clustering techniques. These two methods are programmed with 

MATLAB. MAPEs are significantly reduced from 20.59 % and 16.95 % by NSVM and 

THSVM to 15.25 %, 15.17 %, and 15.19 % by the best prediction performance models of 

HMPFM with the CART, K-means, and Stratification methods, respectively 
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Figure 4-5 Market prices forecasting comparison results of various approaches. 

As is also shown in Figure 4-6, since K-means HMPFM with four clusters of mp(t-

1,…,t-3)&L(t-1&t-2) gives the most accurate result compared to the other two proposed 

data clustering techniques, it is selected as the proposed method in this dissertation. 

Figure 4-6 compares the results of this method with NSVM and THSVM. These three 

prediction methods yield comparable and satisfactory results of non-spike price 

estimation. However, Figure 4-6 (a) shows that while the NSVM is not able to predict the 

spike price accurately, the proposed approach can efficiently predict spike price 

occurrence and its magnitude. In addition, spike price magnitude prediction by THSVM 

has more error than the forecasting by K-means HMPFM, as depicted in Figure 4-6 (b).    

Since ERCOT wholesale market prices of different clusters are different, it is 

necessary to verify the prediction performance of K-means HMPFM for all power nodes 

in the DFW area where PEV charging station systems will be built. The market prices for 

all power nodes are predicted by the proposed method and the prediction results are 

shown in Figure 4-7. The proposed method yields similar results for all power nodes with 

an average MAPE of 16.11 %.  
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(a) 

 

(b) 

 

Figure 4-6 Comparison of market price prediction results from  

the proposed K-means hybrid SVM (a) with normal SVM (b) with typical hybrid SVM 
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Figure 4-7 Market price prediction results from K-means HMPFM for all power nodes  

in the DFW area. 

4.5 Summary 

This study presents a novel HMPFM with three data clustering techniques, 

CART, K-means, and Stratification, to improve the accuracy of the wholesale electric 

price prediction in the deregulated market. The selected input models for SVMs in spike 

price occurrence and non-spike and spike price magnitude estimations consider three 

historical impact parameters consisting of market price, temperature, and load profile. 

The proposed K-means HMPFM shows the most effective prediction performance 

validated by the ERCOT wholesale market prices in the DFW area. This proposed 

approach significantly improves the prediction accuracy compared to general market 

price prediction approaches. 
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Chapter 5  

Forecast Uncertainty Analysis 

5.1 Literature Review 

Although the proposed wind/PV generation and market price predictions in this 

dissertation yield satisfactory forecasting accuracy, the presence of prediction error is 

inevitable. The investigation of the prediction error can help the charging station system 

operators improve the optimal operation of charging station systems. In the recent years, 

many studies have investigated forecast uncertainty modeling for different applications.  

In the literature, the forecast uncertainty analysis can be classified into two 

categories: the typical approach and the Martingale Model Forecast Evolution 

(MMFE)[71-76]. The typical approach uses the probability density function (pdf) analysis 

and then generates the randomness of forecast error by the Monte-Carlo simulation 

based on that analysis.  For example, a study using this approach to evaluate the wind 

power forecast uncertainty is presented in [71]. This method is also implemented in [72] 

to characterize the stochastic nature of the wind power generation and electrical load 

predictions.  

As introduced by [73], MMFE is applied to a safety stock analysis in production 

and distribution applications. Also, reservoir operations utilize MMFE to generate the 

steam flow forecast uncertainty [74, 75]. To solve the problem of stochastic dynamic 

programming for inventory, the demand forecast uncertainty can be characterized by 

MMFE [76].  

The Monte-Carlo simulation based on the pdf analysis approach cannot 

investigate multiple related forecast uncertainties, while the advantage of the MMFE 

approach is the consideration of multivariate random vectors for the forecast changes 

with the exploration of their correlations. Due to the advantage of its multivariate 
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consideration, the MMFE is adopted for investigating the uncertainty of the proposed 

forecasting in this dissertation.  

5.2 MMFE Framework 

The MMFE framework is illustrated in Figure 5-1. There are five steps to analyze 

the forecast error and generate the randomness of the forecast uncertainty based on that 

analysis. The details of these five steps are described as follows.  

 

Figure 5-1 MMFE framework 

5.2.1 Multiple Times Ahead Forecasting Selection 

 To select the suitable multiple time ahead predictions for investigating the 

correlation of the multiple time ahead forecast changes, this dissertation assumes the 
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initial number of multiple time ahead predictions is the same as the number of time lags 

of the best prediction performance model proposed in the previous chapters. However, 

although the number of these multiple time ahead predictions can be modified, the MMFE 

process still functions in the same framework.   

More specifically, the best prediction model for the wind power forecasting is 

WS(t-1)&WP(t-1&t-2), which is two time lags of wind power, so one-period and two-

period ahead estimations for the wind power generation are calculated. In addition, 

regarding the best prediction model identified in the previous chapters, one and two time 

ahead PV generation predictions are calculated, as well as one, two, and three time 

ahead market price predictions. 

Actual historical data of wind/PV generation and market price are used to obtain 

the multiple time ahead predictions, defined as ],...,,,[ ,1,,,1 nsssssssss DDDDD +++= .  

where ssD ,1+ is an actual value realized for time period s+1 (the end of time 

period s) from the beginning of time period s,  

         ssD , is a forecasting value for the end of time period s made at the 

beginning of time period s (One time ahead forecasting),   

         1, +ssD is a forecasting value for time period s+1 made at the beginning of 

time period s (Two time ahead forecasting), and  

         nssD +,  is a forecasting value for time period s+n made at the beginning of 

time period s (n+1 time ahead forecasting).  

5.2.2 ns+µ  Evaluation 

ns+µ is the mean initial forecast at time s+n in the MMFE process. In this 

dissertation, the process for obtaining ns+µ  is by calculating the one time ahead 
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predictions repeatedly until  is obtained. For example, the calculation of  is 

shown in Figure 5-2. First, one time ahead prediction is calculated. Then, the next one 

time ahead prediction is calculated with the dynamical forecast update from the first 

prediction ( ). This process is performed iteratively until obtaining .   

 

 

Figure 5-2  calculation 

5.2.3 Forecast Change Matrix  

Due to the associated forecast changes in the MMFE, the correlation between 

the variables for evaluating these forecast changes needs to be analyzed in order to 

construct an appropriate forecast change matrix. Considering the variables for the 

predictions of the regional PEV charging station application in this dissertation, the 

wind/PV generation and market price correlations are calculated by (2.10). Figure 5-3 

depicts three scatter plots of these three parameters. It can be observed that these three 

parameters demonstrate weak correlations, as reported in Table 5-1. Consequently, the 

forecast change matrices for these three predictions are characterized separately.       
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Table 5-1 Correlation analysis between wind/PV generation and market price 

Parameter Correlation Coefficients 

Wind generation - PV generation -0.105 
Wind generation - Market price -0.054 
PV generation - Market price 0.103 

 

 

 

Figure 5-3 Scatter plot of Wind generation-PV generation  

 

Figure 5-4 Scatter plot of Wind generation-Market price  
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Figure 5-5 Scatter plot of PV generation-Market price 

Because the forecast changes in each prediction have obvious strong 

correlations with each other, the construction of the forecast change matrix is

],...,,[ ,1,, nsssssss ++= εεεε . Each forecast change vector can be formulated by the log 

normal function and adjusting factors (5.1). The adjusting factor is a number that corrects 

the mean of forecast changes to 1, following MMFE requirements [77].   
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Based on the formulas (5.1), two time ahead predictions have three forecast 

changes ],,[ 2,1,, ++ ssssss εεε , and three time ahead predictions have four forecast 

changes ],,,[ 3,2,1,, +++ ssssssss εεεε . The wind/PV generation predictions are calculated 

at only one location in the DFW metroplex, and market price forecasting is executed for 

11 power nodes at 11 different locations in this metro area. Therefore, the forecast 
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change matrices of wind, PV generation, and market price according to the multiple time 

ahead predictions in the first step are shown as follows: 

],,[ 2,1,,
W

ss
W

ss
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ss
W
s ++= εεεε , ],,[ 2,1,,

PV
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PV
ss
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ss

MP
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MP
s ++++++= εεεεεεεεε  

5.2.4 Variance Covariance Matrix (VCV) 

After modeling the forecast change matrices, their VCV matrices can be 

obtained. Then, the eigenvalues ( ],..,,.[ 21 nU λλλ= ) and eigenvectors (

],...,,[ 21 nuuuD = ) of these VCV matrices are calculated by the principle component 

analysis. The dimensions of the VCV matrices are 3 by 3 for wind/PV generation and 44 

by 44 for market price, according to the forecast change matrices from the previous step. 

Finally, C , the multivariate coefficient, is calculated by (5.2) such that VCVCC =' . 

],...,,[ 2211
2/1

nn uuuUDC λλλ==       (5.2)  

5.2.5 New Forecast Change Matrix Generation 

The probability density function (pdf) of the forecast changes has to be analyzed 

to generate the randomness of the forecast changes based on MMFE. This dissertation 

uses ARENA [78] to investigate the pdf of the forecast changes because of its ease of 

use with comprehensive distribution models. The results of W
sε and PV

sε for the pdf 

evaluated by the square error are reported in Table 5-2. In addition, Table 5-3 to Table 

5-8 report the results of the pdf analysis of MP
sε  for 11 power nodes.  
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Table 5-2 Probability Density Function Analysis of W
sε  and PV

sε  

Distribution function W
ss,ε  W

ss 1, +ε  W
ss 2, +ε  PV

ss,ε  PV
ss 1, +ε  PV

ss 2, +ε  
Normal 0.1 0.23 0.05 0.393 0.234 0.068 
Lognormal  0.154 0.29 0.058 0.453 0.234 0.087 
Weibull 0.502 0.428 0.081 0.399 0.325 0.091 
Beta 0.101 0.438 0.051 0.397 0.235 0.07 
Erlang 0.206 0.486 0.11 0.532 0.338 0.161 
Gamma 0.206 0.486 0.11 0.532 0.338 0.161 
Triangular 0.273 0.533 0.169 0.604 0.455 0.209 
Uniform 0.309 0.572 0.2 0.642 0.492 0.245 
Exponential 0.32 0.585 0.212 0.653 0.498 0.258 

 

Table 5-3 Probability Density Function Analysis of 1MP
sε  and 2MP

sε  

Distribution 
function 

1
,

MP
ssε  1

1,
MP

ss +ε  1
2,

MP
ss +ε  1

3,
MP

ss +ε  2
,

MP
ssε  2

1,
MP

ss +ε  2
2,

MP
ss +ε  2

3,
MP

ss +ε  

Normal 0.334 0.201 0.114 0.076 0.328 0.265 0.18 0.059 
Lognormal  0.357 0.218 0.147 0.195 0.351 0.291 0.22 0.171 
Weibull 1.06 0.925 0.157 0.22 1.09 1.04 0.875 0.056 
Beta 0.661 0.457 0.372 0.306 0.648 0.534 0.459 0.453 
Erlang 0.635 0.505 0.42 0.331 0.622 0.581 0.507 0.316 
Gamma 0.635 0.505 0.42 0.331 0.622 0.581 0.507 0.316 
Triangular 0.686 0.567 0.482 0.405 0.673 0.644 0.57 0.39 
Uniform 0.725 0.606 0.521 0.444 0.712 0.683 0.609 0.428 
Exponential 0.739 0.618 0.534 0.455 0.725 0.696 0.621 0.44 

 

Table 5-4 Probability Density Function Analysis of 3MP
sε  and 4MP

sε  

Distribution 
function 

3
,

MP
ssε  3

1,
MP

ss +ε  3
2,

MP
ss +ε  3

3,
MP

ss +ε  4
,

MP
ssε  4

1,
MP

ss +ε  4
2,

MP
ss +ε  4

3,
MP

ss +ε  

Normal 0.334 0.159 0.142 0.096 0.337 0.273 0.165 0.072 
Lognormal  0.358 0.183 0.179 0.218 0.356 0.307 0.201 0.134 
Weibull 1.05 0.762 0.87 0.681 1.05 0.916 0.86 0.252 
Beta 0.657 0.39 0.41 0.323 0.654 0.547 0.426 0.316 
Erlang 0.631 0.438 0.459 0.346 0.627 0.593 0.474 0.366 
Gamma 0.631 0.438 0.459 0.347 0.628 0.593 0.474 0.366 
Triangular 0.682 0.5 0.521 0.421 0.679 0.656 0.536 0.426 
Uniform 0.721 0.539 0.56 0.46 0.718 0.695 0.575 0.464 
Exponential 0.734 0.551 0.573 0.471 0.731 0.708 0.588 0.477 
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Table 5-5 Probability Density Function Analysis of 5MP
sε  and 6MP

sε  

Distribution 
function 

5
,

MP
ssε  5

1,
MP

ss +ε  5
2,

MP
ss +ε  5

3,
MP

ss +ε  6
,

MP
ssε  6

1,
MP

ss +ε  6
2,

MP
ss +ε  6

3,
MP

ss +ε  

Normal 0.331 0.219 0.124 0.066 0.338 0.211 0.116 0.076 
Lognormal  0.353 0.237 0.16 0.182 0.363 0.229 0.149 0.193 
Weibull 1.02 0.25 0.875 0.045 1.05 0.843 0.85 0.788 
Beta 0.657 0.471 0.379 0.303 0.663 0.465 0.373 0.307 
Erlang 0.63 0.519 0.428 0.33 0.636 0.513 0.421 0.332 
Gamma 0.63 0.519 0.428 0.33 0.636 0.513 0.422 0.332 
Triangular 0.681 0.581 0.49 0.405 0.687 0.575 0.483 0.407 
Uniform 0.72 0.621 0.529 0.443 0.727 0.614 0.523 0.445 
Exponential 0.734 0.633 0.541 0.455 0.74 0.627 0.535 0.457 

 
Table 5-6 Probability Density Function Analysis of 7MP

sε  and 8MP
sε  

Distribution 
function 

7
,

MP
ssε  7

1,
MP

ss +ε  7
2,

MP
ss +ε  7

3,
MP

ss +ε  8
,

MP
ssε  8

1,
MP

ss +ε  8
2,

MP
ss +ε  8

3,
MP

ss +ε  

Normal 0.344 0.22 0.128 0.063 0.336 0.21 0.103 0.054 
Lognormal  0.366 0.243 0.166 0.17 0.355 0.23 0.141 0.169 
Weibull 1.05 0.856 0.882 0.468 1.04 0.854 0.845 0.511 
Beta 0.663 0.477 0.4 0.784 0.66 0.469 0.367 0.291 
Erlang 0.638 0.525 0.449 0.33 0.633 0.517 0.416 0.32 
Gamma 0.638 0.525 0.449 0.33 0.634 0.518 0.416 0.32 
Triangular 0.689 0.588 0.511 0.405 0.685 0.58 0.478 0.394 
Uniform 0.728 0.627 0.55 0.443 0.724 0.619 0.517 0.433 
Exponential 0.741 0.639 0.562 0.455 0.737 0.631 0.53 0.444 

 

Table 5-7 Probability Density Function Analysis of 9MP
sε  and 10MP

sε  

Distribution 
function 

9
,

MP
ssε  9

1,
MP

ss +ε  9
2,

MP
ss +ε  9

3,
MP

ss +ε  10
,

MP
ssε  10

1,
MP

ss +ε  10
2,

MP
ss +ε  10

3,
MP

ss +ε  

Normal 0.39 0.228 0.197 0.102 0.331 0.252 0.242 0.28 
Lognormal  0.395 0.262 0.231 0.189 0.36 0.313 0.336 0.356 
Weibull 0.904 0.744 0.85 0.232 1.13 0.441 0.86 0.928 
Beta 0.678 0.436 0.442 0.307 0.6 0.492 0.494 0.589 
Erlang 0.654 0.483 0.49 0.356 0.647 0.539 0.541 0.631 
Gamma 0.655 0.484 0.49 0.356 0.647 0.54 0.542 0.631 
Triangular 0.706 0.545 0.553 0.417 0.71 0.602 0.604 0.695 
Uniform 0.745 0.584 0.592 0.456 0.749 0.641 0.644 0.735 
Exponential 0.758 0.597 0.604 0.468 0.762 0.654 0.656 0.747 
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Table 5-8 Probability Density Function Analysis of 11MP
sε  

Distribution 
function 

11
,

MP
ssε  11

1,
MP

ss +ε  11
2,

MP
ss +ε  11

3,
MP

ss +ε  

Normal 0.335 0.216 0.117 0.084 
Lognormal  0.361 0.233 0.151 0.202 
Weibull 1.05 0.858 0.881 0.816 
Beta 0.66 0.469 0.375 0.314 
Erlang 0.634 0.517 0.424 0.337 
Gamma 0.634 0.517 0.424 0.337 
Triangular 0.685 0.58 0.486 0.412 
Uniform 0.724 0.619 0.525 0.451 
Exponential 0.737 0.631 0.537 0.462 

 

According to the results, most of the forecast changes are fit to the normal 

distribution function with the lowest square errors. Only 2
3,

MP
ss +ε

 
and 5

3,
MP

ss +ε  have the best fit 

with the Weibull distribution function; however, the square errors of the Weibull 

distribution function for these two forecast changes are close to those of the normal 

distribution function. Figure 5-6, Figure 5-7, and Figure 5-8 illustrate the fitting results for 

the normal distribution of W
sε  , PV

sε and 5MP
sε  from ARENA. 

Though the study in [79] indicates that the forecast error has a better distribution 

fit with the Cauchy distribution function, the simulation in R confirms the null-hypothesis 

of the Cauchy distribution function for all of the forecast changes in this dissertation. As a 

result, it can be concluded that all of the forecast changes for the wind/PV generation and 

market price in this dissertation correspond to the normal distribution function; therefore, 

they follow the multivariate random normal vector based on MMFE. Hence, the new 

forecast change matrices ( ) can be generated by (5.3).    

      (5.3) 

tε

innt zCzCzC µε ++++= ...2211
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where is a multivariate coefficient from the fourth step, is an independent 

standard random normal variable, and is the mean value of historical . 

 
(a)  

 

(b)  

 

(c)  

Figure 5-6 Fitting results of wind generation forecast change W
sε    

C z

iµ sε

W
ss,ε

W
ss 1, +ε

W
ss 2, +ε
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(a)
 

 

 

 

(b)
 

 

 

 

(c)
 

 

Figure 5-7 Fitting results of PV generation forecast change PV
sε  
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(a)

 
 

 
(b)

 
 

 
(c)

 
 

 
 

(d)
 

 

Figure 5-8 Fitting results of market price forecast change 5MP
sε  

 
 

MP
ss,ε

MP
ss 1, +ε

MP
ss 2, +ε

MP
ss 3, +ε



 

77 

 
To show the effectiveness of the MMFE approach, Table 5-9 reports the mean 

and standard deviations of the normal distribution function comparisons between W
sε ,

PV
sε  and W

tε , PV
tε . Also, the comparisons of the mean and standard deviations 

between the actual forecast changes and the new forecast changes using this proposed 

method for the 11 locations of market price predictions are reported in Table 5-10 to 

Table 5-15. It can be observed that the mean and standard deviations of the normal 

distribution function of the actual forecast changes and the new forecast changes using 

the MMFE approach are similar for all of the predictions. These results demonstrate the 

effectiveness of the proposed method for investigating forecast uncertainty by analyzing 

the correlations between wind/PV generation and market price, and for generating the 

randomness of forecast change based on this investigation.     

Table 5-9 Characteristics Comparison between W
sε , PV

sε and W
tε , PV

tε  

Actual Forecast 
Changes 

W
ss,ε  W

ss 1, +ε  W
ss 2, +ε  PV

ss,ε  PV
ss 1, +ε  PV

ss 2, +ε  

Mean -0.128 -0.017 -0.292 -0.112 -0.136 -0.567 
Standard deviation  0.461 0.190 0.609 0.358 0.501 0.646 
New Forecast 
Changes by MMFE 

W
tt ,ε  W

tt 1, +ε  W
tt 2, +ε  PV

tt ,ε  PV
tt 1, +ε  PV

tt 2, +ε  

Mean -0.128 -0.018 -0.298 -0.098 -0.134 -0.566 
Standard deviation 0.455 0.191 0.612 0.328 0.495 0.642 

 
Table 5-10 Characteristics Comparison between 1MP

sε , 2MP
sε and 1MP

tε , 2MP
tε  

Actual Forecast 
Changes 

1
,

MP
ssε  1

1,
MP

ss +ε  1
2,

MP
ss +ε  1

3,
MP

ss +ε  2
,

MP
ssε  2

1,
MP

ss +ε  2
2,

MP
ss +ε  2

3,
MP

ss +ε  

Mean -0.055 -0.059 -0.051 -0.042 -0.057 -0.068 -0.056 -0.041 
Standard deviation  0.233 0.231 0.218 0.221 0.237 0.242 0.219 0.213 
New Forecast 
Changes by MMFE 

1
,
MP
ttε  1

1,
MP
tt +ε  1

2,
MP
tt +ε  1

3,
MP
tt +ε  2

,
MP
ttε  2

1,
MP
tt +ε  2

2,
MP
tt +ε  2

3,
MP
tt +ε  

Mean -0.055 -0.059 -0.050 -0.041 -0.057 -0.068 -0.054 -0.038 
Standard deviation 0.235 0.232 0.218 0.221 0.239 0.243 0.220 0.212 
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Table 5-11 Characteristics Comparison between 3MP
sε , 4MP

sε and 3MP
tε , 4MP

tε  

Actual Forecast 
Changes 

3
,

MP
ssε  3

1,
MP

ss +ε  3
2,

MP
ss +ε  3

3,
MP

ss +ε  4
,

MP
ssε  4

1,
MP

ss +ε  4
2,

MP
ss +ε  4

3,
MP

ss +ε  

Mean -0.055 -0.064 -0.051 -0.044 -0.059 -0.065 -0.056 -0.042 
Standard deviation  0.235 0.243 0.217 0.226 0.240 0.241 0.224 0.218 
New Forecast 
Changes by MMFE 

3
,
MP
ttε  3

1,
MP
tt +ε  3

2,
MP
tt +ε  3

3,
MP
tt +ε  4

,
MP
ttε  4

1,
MP
tt +ε  4

2,
MP
tt +ε  4

3,
MP
tt +ε  

Mean -0.055 -0.063 -0.050 -0.042 -0.059 -0.065 -0.055 -0.039 
Standard deviation 0.237 0.246 0.218 0.227 0.243 0.243 0.224 0.217 

Table 5-12 Characteristics Comparison between 5MP
sε , 6MP

sε and 5MP
tε , 6MP

tε  

Actual Forecast 
Changes 

5
,

MP
ssε  5

1,
MP

ss +ε  5
2,

MP
ss +ε  5

3,
MP

ss +ε  6
,

MP
ssε  6

1,
MP

ss +ε  6
2,

MP
ss +ε  6

3,
MP

ss +ε  

Mean -0.053 -0.063 -0.053 -0.037 -0.055 -0.061 -0.052 -0.043 
Standard deviation  0.233 0.237 0.221 0.211 0.235 0.234 0.218 0.220 
New Forecast 
Changes by MMFE 

5
,
MP
ttε  5

1,
MP
tt +ε  5

2,
MP
tt +ε  5

3,
MP
tt +ε  6

,
MP
ttε  6

1,
MP
tt +ε  6

2,
MP
tt +ε  6

3,
MP
tt +ε  

Mean -0.053 -0.058 -0.051 -0.037 -0.056 -0.061 -0.051 -0.042 
Standard deviation 0.234 0.234 0.217 0.212 0.237 0.237 0.219 0.219 

 
Table 5-13 Characteristics Comparison between 7MP

sε , 8MP
sε and 7MP

tε , 8MP
tε  

Actual Forecast 
Changes 

7
,

MP
ssε  7

1,
MP

ss +ε  7
2,

MP
ss +ε  7

3,
MP

ss +ε  8
,

MP
ssε  8

1,
MP

ss +ε  8
2,

MP
ss +ε  8

3,
MP

ss +ε  

Mean -0.059 -0.067 -0.050 -0.039 -0.056 -0.059 -0.047 -0.039 
Standard deviation  0.239 0.236 0.212 0.204 0.236 0.231 0.210 0.207 
New Forecast 
Changes by MMFE 

7
,
MP
ttε  7

1,
MP
tt +ε  7

2,
MP
tt +ε  7

3,
MP
tt +ε  8

,
MP
ttε  8

1,
MP
tt +ε  8

2,
MP
tt +ε  8

3,
MP
tt +ε  

Mean -0.058 -0.066 -0.050 -0.038 -0.055 -0.059 -0.047 -0.037 
Standard deviation 0.241 0.237 0.211 0.203 0.237 0.232 0.211 0.207 

 
Table 5-14 Characteristics Comparison between 9MP

sε , 10MP
sε and 9MP

tε , 10MP
tε  

Actual Forecast 
Changes 

9
,

MP
ssε  9

1,
MP

ss +ε  9
2,

MP
ss +ε  9

3,
MP

ss +ε  10
,

MP
ssε  10

1,
MP

ss +ε  10
2,

MP
ss +ε  10

3,
MP

ss +ε  

Mean -0.089 -0.079 -0.071 -0.054 -0.068 -0.069 -0.075 -0.065 
Standard deviation  0.266 0.272 0.243 0.264 0.244 0.256 0.250 0.228 
New Forecast 
Changes by MMFE 

9
,
MP
ttε  9

1,
MP
tt +ε  9

2,
MP
tt +ε  9

3,
MP
tt +ε  10

,
MP
ttε  10

1,
MP
tt +ε  10

2,
MP
tt +ε  10

3,
MP
tt +ε  

Mean -0.087 -0.078 -0.069 -0.052 -0.067 -0.070 -0.076 -0.063 
Standard deviation 0.268 0.275 0.243 0.262 0.245 0.256 0.251 0.230 
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Table 5-15 Characteristics Comparison between 11MP
sε and 11MP

tε  

Actual Forecast 
Changes 

11
,

MP
ssε  11

1,
MP

ss +ε  11
2,

MP
ss +ε  11

3,
MP

ss +ε  

Mean -0.054 -0.062 -0.052 -0.043 
Standard deviation  0.234 0.235 0.218 0.222 
New Forecast 
Changes by MMFE 

11
,
MP
ttε  11

1,
MP
tt +ε  11

2,
MP
tt +ε  11

3,
MP
tt +ε  

Mean -0.055 -0.061 -0.050 -0.042 
Standard deviation 0.236 0.237 0.219 0.221 

 

5.4 Summary 

This chapter presents the forecast uncertainty analysis using Martingale Model 

Forecast Evolution (MMFE). MMFE considers the multivariate random normal vector of 

the forecast changes evaluated from the Variance Covariance matrix, which offers the 

benefit of analyzing the correlations of the forecast changes. Based on this correlation 

analysis, the forecast change matrices are constructed independently for wind/PV 

generation and market price with the same number of multiple time period estimations as 

the number of time lags models from the best prediction performance model of the three 

proposed predictions. The actual forecast uncertainty of wind/PV generation and market 

price fit well with the normal distribution function, which satisfies MMFE requirements. 

The similar means and standard deviations of the actual forecast changes and the new 

forecast changes generated based on MMFE illustrate the effectiveness of the proposed 

approach.          
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Chapter 6  

Conclusions and Future Research 

6.1 Conclusions 

To reduce/mitigate greenhouse gas (GHG) emissions and improve the energy 

efficiency of the transportation sector, the transition from conventional oil-based fleets to 

Plug-in Electric Vehicles (PEV) has attracted more attention and shows high acceptance 

in metro areas. A well-planned charging infrastructure plays a critical role for supporting 

this developing transition. The charging infrastructure should be considered from a 

regional point of view to optimize operations and support PEV users driving their cars 

without range concerns.  

Virtual wind farms, roof-topped solar panels, and utility grids are three main 

energy resources in the proposed fast charging station equipped with a NaS battery that 

acts as the distributed energy storage system. This proposed charging station can also 

participate in the deregulated market.  

Due to the intermittence of wind energy, the variations in PV generation, and the 

volatility of electricity prices in the deregulated market, the wind/PV generation and 

electricity market price forecasting need to be calculated. The purpose of these 

predictions is to address the variances of energy resources and price so that optimal 

operation of the proposed regional charging station system can be achieved.  

 This dissertation proposes a regional charging station to be built in the DFW 

metro area. Due to the 15-minute settlement interval of the ERCOT deregulated market 

in this metroplex, the 15-minute ahead predictions are calculated for all forecasting. 

Support Vector Machines (SVMs), effective machine learning algorithms, are used to 

calculate the predictions considering various relevant parameters. The best prediction 
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performance models for wind/PV generation and market price are derived in this 

dissertation.  

In wind power forecasting, the best prediction performance model from the 

proposed Support Vector Regression (SVR) considerably improves the forecasting 

accuracy compared to the results from the persistence model, which is verified by data 

from a sample wind farm in Oklahoma. Furthermore, the PV generation at Dallas Redbird 

airport is used to examine the PV generation prediction accuracy. The corresponding 

forecasting via the proposed SVR significantly enhances the prediction performance 

compared to the estimation from the persistence model.  

A novel Hybrid Market Price Forecasting Method (HMPFM) with three data 

clustering techniques, Classification and Regression Tree (CART), K-means, and 

Stratification methods, is proposed to improve the accuracy of the wholesale electric 

price prediction in the deregulated market. After calculating the predictions considering 

the significant dependent parameters, the proposed K-means HMPFM gives the best 

prediction performance among these three data clustering techniques. The proposed K-

means HMPFM also shows significant improvement in prediction accuracy compared to 

typical forecasting approaches. 

 Finally, the forecast uncertainty is investigated to help charging station operators 

better understand its stochastic nature for optimal system benefit. The Martingale Model 

Forecast Evolution (MMFE) is used to characterize prediction uncertainties because of its 

ability to analyze multivariate problems. The probability density function of the forecast 

change is investigated by ARENA. Based on the best fit of the forecast changes to the 

normal distribution function, the forecast uncertainty can be modeled by the multivariate 

random normal vector for all of the wind/PV generation and market price predictions 

following the MMFE technique. New forecast changes generated by MMFE show similar 
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means and standard deviations with the actual forecast, which illustrates the 

effectiveness of the proposed approach.  

6.2 Dissertation Contributions 

This comprehensive study describes the critical components for configuring a 

regional PEV charging station, develops novel approaches for wind/PV generation and 

market price predictions, and analyzes the forecast uncertainty of these predictions. 

These novel forecasting methods demonstrate efficient prediction performance, 

improving the forecasting accuracy as compared to typical estimation approaches. The 

major contributions of this dissertation are as follows: 

• Establish an efficient configuration of the regional PEV charging station 

system based on the studies of a virtual wind farm concept, solar PV energy, wholesale 

deregulated market price, and battery storage technology;  

• Identify the most significant parameters for predicting wind/PV generation 

and electricity market price through analysis of the correlations of these parameters;     

• Determine the best prediction performance models by calculating the 15-

minute ahead wind/PV generation forecasting using SVR;  

• Propose a novel hybrid market price forecasting method (HMPFM) with data 

clustering techniques to accurately predict the electricity prices in both non-spike and 

spike conditions in the deregulated market; 

• Derive the models of best prediction performance for spike price occurrence, 

spike price magnitude, and non-spike price magnitude of the proposed HMPFM;  

• Use the MMFE process to determine the best fit for the probability density 

function (pdf) of the forecast uncertainty;  

• Characterize the MMFE with the multivariate random normal vector based on 

the pdf analysis.       
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6.3 Possible Future Research 

As mentioned in the review of literature, numerous methods for wind/PV 

generation and electricity market price forecasting have been proposed. This dissertation 

aims to improve upon these proposed methods and obtain the models of the best 

prediction accuracy by SVMs. Although the forecasting approaches presented in this 

dissertation demonstrate effective prediction accuracy, there remain possibilities for the 

further improvement. For instance, the accuracy of the spike price occurrence prediction 

may be further improved by using a hybrid model instead of the sole SVC algorithm. 

In addition, the market price prediction in this dissertation uses ERCOT 

wholesale market prices in 2011 which the high system-wide offer cap (HCAP) is 3000 

$/MWh. However, ERCOT will raise the HCAP to 9000 $/MWh in June 2015 and will 

continuously increase its value. This presents a challenge for a further study to accurately 

predict the market price for higher HCAP levels.        

Moreover, the probability density functions of forecast changes derived in this 

dissertation may not be applicable in different forecast scenarios, for example, with 

different prediction time frames or locations of PV generation. Therefore, the forecast 

uncertainty should be investigated in each scenario to find that scenario’s specific best fit 

function. Also, the various types of multivariate random vectors based on the results of 

these investigations into probability density functions may present a challenging and 

interesting topic for further examination. 

Finally, the operational optimization of the regional PEV charging station system 

implementing the forecast uncertainty by MMFE is an important topic that should be 

studied in future research. The results of this research may increase the ability to develop 

and build regional PEV charging station systems, which could lead to a significant 

increase in the number of PEV users in the future.             
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Appendix A 

Matlab Training SVMs Code 
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%%%%% This code for training Wind/PV generation and market price 
prediction %%%%% 
%%%%% Coding by Piampoom Sarikprueck updated on 1/30/15 %%%%% 
  
   tic; 
    [m_x1,n_x1]=size(n1); 
    [m_x2,n_x2]=size(x1); 
    %[m_y1,n_y1]=size(n2); 
    %[m_y2,n_y2]=size(x2); 
    nMax=max(max(n1)); 
    nMin=min(min(n1)); 
    n1=(n1-nMin)/(nMax-nMin); 
    %n2=(n2-nMin)/(nMax-nMin); 
     xMax=max(max(x1)); 
    xMin=min(min(x1)); 
    x1=(x1-xMin)/(xMax-xMin); 
    %x2=(x2-xMin)/(xMax-xMin); 
  
 trnX = n1;          %  
 trnY = x1;          %  
 %tstX = n2;           %  
 %tstY = x2;           %  
  
%--------------------------------------------------- 
% Coefficient Setting 
  
e = 0.001;             %     - insensitivity 
p1=2; % 20 for market price occurence predition 
C=10; % 500 for market price occurence prediction 
%--------------------------------------------------- 
type='function approximation'; 
[alpha,b]=trainlssvm({trnX,trnY,type,C,p1,'RBF_kernel'});  
  
  
toc; 
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Appendix B 

Matlab Testing SVMs Code 
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%%%%% This code for testing Wind/PV generation and market price 
prediction %%%%% 
%%%%% Coding by Piampoom Sarikprueck updated on 1/30/15 %%%%% 
  
  
   
   clearvars -except alpha b n1 x1      
     
   [m_y1,n_y1]=size(n2); 
    nMax=max(max(n1)); 
    nMin=min(min(n1)); 
    n1_nor=(n1-nMin)/(nMax-nMin); 
    n2_nor=(n2-nMin)/(nMax-nMin); 
     xMax=max(max(x1)); 
    xMin=min(min(x1)); 
    x1_nor=(x1-xMin)/(xMax-xMin); 
    x2=(x2-xMin)/(xMax-xMin);  
     
 trnX = n1_nor;          %  
 trnY = x1_nor;          %  
 tstX = n2_nor;           %  
 tstY = x2;           %  
  
%--------------------------------------------------- 
% Coefficient Setting 
  
e = 0.001;             %     - insensitivity 
p1=2; 
C=10; 
%--------------------------------------------------- 
type='function approximation'; 
tstY1 = 
simlssvm({trnX,trnY,type,C,p1,'RBF_kernel','preprocess'},{alpha,b
},tstX);  % ²âÊÔ 
finalY1=tstY1*(xMax-xMin)+xMin; 
finalY=tstY*(xMax-xMin)+xMin; 
  
%% MRE for Wind power forecasting performance evaluation 
err=(finalY1-finalY)*100/(74.25); 
MRE=abs(err); 
err2=sum(MRE)/m_y1; 
  
%% MAPE for PV power forecasting performance evaluation 
MAPE_err=(finalY-finalY1); 
avgfinalY=sum(finalY)/m_y1; 
MAPE_err1= abs(MAPE_err)*100/avgfinalY; 
MAPE= sum(MAPE_err1)/m_y1; 
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%%%% Start of Market price forecasting %%%% 
%%%% Market price forecasting by hybrid SVM with predicted spike 
occurrance 
%%%% the spike level prediction has been dissected into 4 ranges 
by 
%%%% stratification and k-mean methods.  
     
%data=xlsread('D:\Ph.D Project\PHEV\Forecasting\wind 
forecasting\BlueCanyon\reforecasting\results\4monthstrain\4months
','wst-3sc-3');   
  
  %%% XXX_c is for classification 
  %%% XXX_n is for normal SVM forecasting 
  %%% XXX_s is for spike SVM forecasting 
    
  
  for i=0:11 
   clearvars -except alpha_c b_c n1_c x1_c alpha_n b_n n1_n x1_n 
data_c data_n data_s i E m1 m2 m3 m4 m5 m6 m7... 
       alpha_s_1 b_s_1 n1_s_1 x1_s_1 alpha_s_2 b_s_2 n1_s_2 
x1_s_2 ... 
       alpha_s_3 b_s_3 n1_s_3 x1_s_3 alpha_s_4 b_s_4 n1_s_4 
x1_s_4 alpha_s_5 b_s_5 n1_s_5 x1_s_5 alpha_s_6 b_s_6 n1_s_6 
x1_s_6 ... 
       %alpha_s_7 b_s_7 n1_s_7 x1_s_7  
   if i==0 ||i==2 || i==4 ||i==6 || i==7 ||i==9 || i==11 
       n2_c=data_c(1:1051,8*i+1:8*i+4); 
       x2=data_c(1:1051,8*i+6); 
       n2_n=data_n(1:1051,10*i+1:10*i+6); 
       n2_s=data_s(1:1051,9*i+1:9*i+5); 
   end 
   if i==3 ||i==5 || i==8 || i==10  
       n2_c=data_c(1:955,8*i+1:8*i+4); 
       x2=data_c(1:955,8*i+6); 
       n2_n=data_n(1:955,10*i+1:10*i+6); 
       n2_s=data_s(1:955,9*i+1:9*i+5); 
   end 
    if i==1 
       n2_c=data_c(1:763,8*i+1:8*i+4); 
       x2=data_c(1:763,8*i+6); 
       n2_n=data_n(1:763,10*i+1:10*i+6); 
       n2_s=data_s(1:763,9*i+1:9*i+5); 
    end 
    
  
        m=42.5896; % mean of market price in 2011 
        s=162.3179; % standard deviation of market price in 2011 
        t1=m+(s); % threshold prices = m+s 
        t2=m-(s); 
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%%% set up output to be 1 if nonspike and -1 if spike for result 
comparison 
    x2_c=x2; 
      [o,p]=size(x2_c); 
    
for k=1:o 
    if x2_c(k)>t1 || x2_c(k)<t2 
        x2_c(k)=-1; 
    else x2_c(k)= 1; 
    end 
end 
  
x2_c=reshape(x2_c,o*p,1);    
  
if i==0  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EB
2'); 
  
end 
if i==1  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EC
2'); 
  
end 
if i==2  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','ED
2'); 
  
end 
if i==3  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EE
2'); 
    
end 
if i==4  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EF
2'); 
  
end 
if i==5  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EG
2'); 
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end 
if i==6  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EH
2'); 
  
end 
if i==7  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EI
2'); 
  
end 
if i==8  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EJ
2'); 
  
end 
if i==9  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EK
2'); 
  
end 
if i==10  
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EL
2'); 
  
end 
if i==11 
   
xlswrite('C:\PHEV\classification_PM_64',x2_c,'classification','EM
2'); 
  
end 
  
  
%%% starting 2 stages method 
    
   [m_y1_c,n_y1_c]=size(n2_c); 
    nMax_c=max(max(n1_c)); 
    nMin_c=min(min(n1_c)); 
    n1_nor_c=(n1_c-nMin_c)/(nMax_c-nMin_c); 
    n2_nor_c=(n2_c-nMin_c)/(nMax_c-nMin_c); 
    xMax_c=max(max(x1_c)); 
    xMin_c=min(min(x1_c)); 
    x1_nor_c=(x1_c-xMin_c)/(xMax_c-xMin_c); 
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    x2_c=(x2_c-xMin_c)/(xMax_c-xMin_c); 
     
     trnX_c = n1_nor_c;          
     trnY_c = x1_nor_c;                
     tstY_c = x2_c;        
    
      %%%% SVM Classification for predicted spike occurance    
   for k=1:m_y1_c 
       tstX_c=n2_nor_c(k,:); 
       e = 0.001;             %     - insensitivity 
       p1=20; 
       C=5000; 
  
       type='function approximation'; 
       tstY1_c(k) = 
simlssvm({trnX_c,trnY_c,type,C,p1,'RBF_kernel','preprocess'},{alp
ha_c,b_c},tstX_c);  % ²âÊÔ 
       finalY1_c(k)=tstY1_c(k)*(xMax_c-xMin_c)+xMin_c; 
       if finalY1_c(k)==1 %%% normal marketprice forecasting  
          
           n2_nn=n2_n(k,:); 
    [m_y1_n,n_y1_n]=size(n2_nn); 
    nMax_n=max(max(n1_n)); 
    nMin_n=min(min(n1_n)); 
    n1_nor_n=(n1_n-nMin_n)/(nMax_n-nMin_n); 
    n2_nor_n=(n2_nn-nMin_n)/(nMax_n-nMin_n); 
    xMax_n=max(max(x1_n)); 
    xMin_n=min(min(x1_n)); 
    x1_nor_n=(x1_n-xMin_n)/(xMax_n-xMin_n); 
  
     trnX_n = n1_nor_n;          
     trnY_n = x1_nor_n;           
     tstX_n = n2_nor_n;       
  
     p1_n=2; 
     C_n=10; 
     type='function approximation'; 
      
       tstY1_n(k) = 
simlssvm({trnX_n,trnY_n,type,C_n,p1_n,'RBF_kernel','preprocess'},
{alpha_n,b_n},tstX_n);  % ²âÊÔ 
       finalY1(k)=tstY1_n(k)*(xMax_n-xMin_n)+xMin_n; 
       else               %%% market prices spike forecasting   
      % starting disect with finding the nearest neighbor by 
Euclidean norm 
        E(k,1)=sqrt((m1(1)-n2_s(k,1))^2+(m1(2)-
n2_s(k,2))^2+(m1(3)-n2_s(k,3))^2+(m1(4)-n2_s(k,4))^2+(m1(5)-
n2_s(k,5))^2);%+(m1(6)-n2_s(k,6))^2+(m1(7)-n2_s(k,7))^2+(m1(8)-
n2_s(k,8))^2); 
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        E(k,2)=sqrt((m2(1)-n2_s(k,1))^2+(m2(2)-
n2_s(k,2))^2+(m2(3)-n2_s(k,3))^2+(m2(4)-n2_s(k,4))^2+(m2(5)-
n2_s(k,5))^2);%+(m2(6)-n2_s(k,6))^2+(m2(7)-n2_s(k,7))^2+(m2(8)-
n2_s(k,8))^2); 
        E(k,3)=sqrt((m3(1)-n2_s(k,1))^2+(m3(2)-
n2_s(k,2))^2+(m3(3)-n2_s(k,3))^2+(m3(4)-n2_s(k,4))^2+(m3(5)-
n2_s(k,5))^2);%+(m3(6)-n2_s(k,6))^2+(m3(7)-n2_s(k,7))^2+(m3(8)-
n2_s(k,8))^2); 
        E(k,4)=sqrt((m4(1)-n2_s(k,1))^2+(m4(2)-
n2_s(k,2))^2+(m4(3)-n2_s(k,3))^2+(m4(4)-n2_s(k,4))^2+(m4(5)-
n2_s(k,5))^2);%+(m4(6)-n2_s(k,6))^2+(m4(7)-n2_s(k,7))^2+(m4(8)-
n2_s(k,8))^2); 
        %E(k,5)=sqrt((m5(1)-n2_s(k,1))^2+(m5(2)-
n2_s(k,2))^2);%+(m5(3)-n2_s(k,3))^2+(m5(4)-n2_s(k,4))^2+(m5(5)-
n2_s(k,5))^2 
        %E(k,6)=sqrt((m6(1)-n2_s(k,1))^2+(m6(2)-
n2_s(k,2))^2);%+(m6(3)-n2_s(k,3))^2+(m6(4)-n2_s(k,4))^2+(m6(5)-
n2_s(k,5))^2 
        %E(k,7)=sqrt((m7(1)-n2_s(k,1))^2+(m7(2)-
n2_s(k,2))^2+(m7(3)-n2_s(k,3))^2); 
         
          [minimum,I]=min(E(k,:)); 
   % select cluster  
   if I==1;  n1_s=n1_s_1; x1_s=x1_s_1; alpha_s=alpha_s_1; 
b_s=b_s_1; end 
   if I==2;  n1_s=n1_s_2; x1_s=x1_s_2; alpha_s=alpha_s_2; 
b_s=b_s_2; end 
   if I==3;  n1_s=n1_s_3; x1_s=x1_s_3; alpha_s=alpha_s_3; 
b_s=b_s_3; end 
   if I==4;  n1_s=n1_s_4; x1_s=x1_s_4; alpha_s=alpha_s_4; 
b_s=b_s_4; end  
   %if I==5;  n1_s=n1_s_5; x1_s=x1_s_5; alpha_s=alpha_s_5; 
b_s=b_s_5; end 
   %if I==6;  n1_s=n1_s_6; x1_s=x1_s_6; alpha_s=alpha_s_6; 
b_s=b_s_6; end 
   %if I==7;  n1_s=n1_s_7; x1_s=x1_s_7; alpha_s=alpha_s_7; 
b_s=b_s_7; end       
            
    
   % start spike price forecasting 
           n2_sn=n2_s(k,:); 
           [m_y1_s,n_y1_s]=size(n2_sn); 
    nMax_s=max(max(n1_s)); 
    nMin_s=min(min(n1_s)); 
    n1_nor_s=(n1_s-nMin_s)/(nMax_s-nMin_s); 
    n2_nor_s=(n2_sn-nMin_s)/(nMax_s-nMin_s); 
    xMax_s=max(max(x1_s)); 
    xMin_s=min(min(x1_s)); 
    x1_nor_s=(x1_s-xMin_s)/(xMax_s-xMin_s); 
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     trnX_s = n1_nor_s;          
     trnY_s = x1_nor_s;           
     tstX_s = n2_nor_s;       
       p1_s=2; 
       C_s=10; 
      
     type='function approximation'; 
       tstY1_s(k) = 
simlssvm({trnX_s,trnY_s,type,C_s,p1_s,'RBF_kernel','preprocess'},
{alpha_s,b_s},tstX_s);  % ²âÊÔ 
       finalY1(k)=tstY1_s(k)*(xMax_s-xMin_s)+xMin_s; 
       end  
   end 
finalY1_c=reshape(finalY1_c,m_y1_c,1);    
finalY=x2; 
finalY1=reshape(finalY1,m_y1_c,1); 
  
MAPE_err=(finalY-finalY1); 
avgfinalY=sum(finalY)/m_y1_c; 
MAPE_err1= abs(MAPE_err)*100/avgfinalY; 
MAPE= sum(MAPE_err1)/m_y1_c; 
  
%% record data for 12 month  
if i==0  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IB2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','B2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BB2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AB2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','B3'); 
end 
if i==1  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IC2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','C2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BC2'); 
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xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AC2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','C3'); 
end 
if i==2  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','ID2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','D2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BD2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AD2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','D3'); 
end 
if i==3  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IE2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','E2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BE2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AE2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','E3'); 
end 
if i==4  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IF2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','F2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BF2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AF2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','F3'); 
end 
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if i==5  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IG2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','G2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BG2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AG2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','G3'); 
end 
if i==6  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IH2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','H2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BH2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AH2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','H3'); 
end 
if i==7 
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','II2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','I2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BI2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AI2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','I3'); 
end 
if i==8  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IJ2');  
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xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','J2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BJ2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AJ2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','J3'); 
end 
  
if i==9  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IK2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','K2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BK2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AK2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','K3'); 
end 
if i==10  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IL2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','L2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BL2'); 
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xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AL2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','L3'); 
end 
if i==11 
   
xlswrite('C:\PHEV\classification_PM_64',finalY1_c,'classification
','IM2');  
   
xlswrite('C:\PHEV\classification_PM_64',finalY1,'hybrid_kmean_Inp
_GL','M2'); 
   
xlswrite('C:\PHEV\classification_PM_64',MAPE_err1,'hybrid_kmean_I
np_GL','BM2'); 
   
xlswrite('C:\PHEV\classification_PM_64',finalY,'hybrid_kmean_Inp_
GL','AM2'); 
   xlswrite('C:\PHEV\classification_PM_64',MAPE,'summary','M3'); 
end 
  end 
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