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Abstract 

GAIT ANALYSIS ON A SMART FLOOR FOR 

 HEALTH MONITORING 

Oluwatosin Oluwadare, MS 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Manfred Huber 

Gait analysis is the investigation of an individual pattern of walking. Based on 

studies in Psychophysics, it has been shown that the human gait contains unique 

information that is useful for the evaluation of foot and gait pathologies. The goal of this 

project is to use a floor mounted pressure sensor system capable of measuring a 

significant number of parameters relevant to gait to predict and detect anomalous 

behavior. The system consists of an array of pressure sensors mounted under floor tiles 

and computer hardware responsible for data collection. The method used in this project is 

unique since most systems that perform similar functions are “on-body” systems using 

leg attached sensors, body tags or “off-body” systems using vision (camera). Our 

approach uses floor mounted pressure sensor which are designed to collect data 

unobtrusively, over long periods of time, and without interfering with gait or 

inconveniencing the user.  

 The core of this thesis is aimed at the design of algorithms capable of 

differentiating parameter values that could be considered normal or abnormal for an 

individual and from these values draw further conclusions. To achieve this, data obtained 

from the floor mounted pressure sensor were calibrated and analyzed to extract 

information about the gait of a user. From this analyzed data, the center of pressure 

trajectories for each phase of the user’s gait cycle was obtained as well as the user’s 
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weight, and dynamic characteristics of balance and step impact. With this information we 

intend to provide a new way for gait analysis, in order to predict fall risk and health issues 

and to improve elder care by constant monitoring and by reducing the white-coat 

syndrome that inhibits clinical examinations. 
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Chapter 1  

Introduction  

Human's gait refers to an individual style of walking [1]. According to the Oxford 

Dictionary, it is defined as a person’s manner of walking. As clear and simple as these 

definitions are, they do not fully provide us the information about the fundamental facts 

about the human gait. Fundamentally, it is a particular characteristic of a person that is 

influenced by a list of an individual’s body feature among which are; an individual’s 

weight, foot length, height, waist angle, limb length, an individual’s posture combined with 

characteristic motion and external factors such as floor and foot wear among others [2]. 

Gait analysis has gained wide interest in the computing  field in recent years for 

use in human identification [3] , biometric authentication, surveillance systems [4], human 

motion classification [5] and human tracking [6] to mention a few.  Formal studies and 

research of the human gait began largely in 1896 with the invention of the still camera [7], 

and since then researchers have searched for different areas to look out for and exploit 

the useful information that can be extracted from the human gait. The use of gait in 

various fields of science is undoubtedly among other reasons due to the various 

advantages it has. For example, it has found use in surveillance and tracking because it 

allows capture and identification of a subject without the subject’s knowledge.  This is 

possible based on studies in Psycho-physics (“the scientific study of the relationship 

between stimulus and sensation” [8]), it can be concluded that the human gait contains 

unique information that are useful for person identification [9]. Other fields where gait 

analysis has been found useful are; in clinical environment, as well as athletics.  In the 

former, measurement of the pressure distribution during gait is useful for the clinical 

evaluation of foot and gait pathologies [10-13]. Similarly, changes in gait such as slower 

walking or a more variable stride and rhythm, may be early signs of mental impairments 
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that can develop into Alzheimer's before such changes can be seen on 

neuropsychological tests [14]. In athletics, gait analysis can be used to improve 

performance and treatment [15] [16].  These examples illustrate examples of different 

fields that carry out gait analysis using their favored technique to achieve their tasks. 

The question now is how does walking produce unique information for scientific 

analysis? Walking is a complicated motor act that requires the coordinated movement of 

the lower-extremity, the trunk and limb, muscles and crossing joints [18]. This 

coordination is generated by a network of nerve cells referred to as Central pattern 

generator (CPG) producing a specific and patterned cyclic flow of signals.  The patterned 

flow produced by this CPG is responsible for the human’s ability to hop, swim, run and 

walk. Other parts that interact with CPG are the Supraspinal, sensory, and 

neuromodulatory systems, that shape the final motor output.  Movement is actuated as a 

result of the complex interaction between the spinal inter-neurons. Once the pattern flow 

is generated by the CPG, it is modified by higher cortical and reflexive spinal programs 

under the control of several supraspinal centers in the brainstem, cerebellum and cortex 

[19][20]. The Supra-spinal control plays a major role not only in regulating initiated 

automated motor programs but also in adapting the locomotor patterns to environmental 

and motivational conditions [21].  From the relationship drawn above, failure or damage 

of the Supra-spinal control responsible for regulation of interaction with the supra-spinal 

centers in cerebellum, for example, in the case where Cerebellar ataxia occurs [26], 

might lead to some gait abnormality. 

Based on the conclusion by Baezner, H., et al [22], there exists a strong 

association between the severity of age-related white matter changes or cerebrovascular 

disease which primarily affects people who are elderly and the severity of gait and motor 

compromise.  Another disease that can lead to walking dysfunction is Alzheimer’s 
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disease (AD). Previous studies have shown that physical movement abnormalities or 

dysfunction might predict the onset of dementia (a set of conditions described by a group 

of symptoms that occur when the brain is damaged by specific diseases.)[17]. However 

abnormalities are often unlikely be unnoticeable early [23], but are rather diagnosable 

only in mild and severe cases [24] [25].  Consequently, a person’s gait can be 

instrumental in detecting abnormalities in health early in a known individual due to slight 

changes in walking pattern or a variation in gait. 

Motivation 

Despite a rise in the number of health care technology service providers, most of 

them have been unable to tackle some of the lingering problem such as the white coat 

syndrome which inhibits clinical examination, or the problem of providing a suitable 

solution to monitor elderly health in order to detect health changes early on. For 

example, existing technologies which offer excellent tools have no way to change the 

users’ perspective that they are undergoing an examination when they are about to use 

their device. This knowledge of being examined by a medical device can produce a 

psychological effect similar that observed during a doctor’s examination (the white coat 

syndrome). This impairs the ability of the devices to obtain an accurate result. The white 

coat syndrome has undergone many studies as to why it occurs and enquiries are being 

made if it should be treated as a regular health condition  in the case of white coat 

induced hypertension [47][48]. According to these studies, this form of psychologically 

induced hypertension is a situation that can occur in different individuals in different age 

groups, and is not limited to the elderly.  The introduction of monitoring technologies that 

avoid this white coat syndrome (and thus associated white coat hypertensions) could 

thus not only result in more accurate medical results but also reduce the medical risks 

and improve health conditions and outcomes. 
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Rehabilitation and health monitoring technologies today often suffer from inability 

to provide in- door monitoring in cases where the users have to have some device 

attached to their body or have to wear them on their clothes or in the form of gait 

monitoring shoes. Work in [27][28][37][38][39][41][42] show studies where a shoe  or 

body attached monitoring system is used. These systems however have no way to 

provide constant and consistent  unobtrusive monitoring since the user will have to 

remove this device, take off this shoes from time to time and will have to remember to 

recharge them in some cases. In the time period in which, the user has to take off the 

devices to fulfill other duties or to change them; some significant information might be 

lost.  

User convenience is an integral part of any design and, many of the devices 

currently in use require a significant amount of effort and involvement from the user and 

rely heavily on the willingness of the user at any specific time to actually want to use the 

device. This however, can lead to a biased sensor results where data is obtained only in 

specific situations and is thus not representative. For example, an individual might get the 

urge to check there temperature if they feel different, overemphasizing unusual 

temperature readings, or in the case where users have to put on some specially designed 

shoes, they might be reluctant to do so when they feel weaker or ill, thus removing the 

ability of the device to detect changes in health and hence limiting its utility in the 

detection of the health incidents and trends.  One important point to observe here apart 

from user convenience is that, not all illness gives a noticeable signal to the user in order 

for them to take an appropriate measure and thus a more regular means of obtaining 

measurements without the need for the user initiation would be preferable.  

To address this, the Smart-Floor, a new way for health monitoring and 

abnormality detection aims to be used for a wide range of health application for 
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monitoring without inhibiting the user’s convenience and without the need for active user 

intervention to provide measurements. It provides steady, unobstructed data collection 

and has a design that explicitly tackles the challenges of white coat syndrome and user-

introduced measurement bias. 

 

Challenges 

Sensor based monitoring or rehabilitation systems often face noise, bias and 

other limitations. These limitations varies from reliance on battery technology, 

interference common to wireless technologies[50] and  cultural beliefs which associates 

 a stigma with the use of medical devices for home-based clinical monitoring [49]. 

The design of any sensor based monitoring system must incorporate a reliable 

method to zero out the noise and bias trade off. There is no unique right way to do this, 

as different applications might require and prefer a different approach based on the 

device environment and considerations related to other relevant information into 

consideration. 

Approach 

The approach taken here to tackle the existing problems discussed previously is 

centered on the concept of the Smart Floor and based on its ability to obtain data in an 

unobtrusive and largely invisible fashion. The technique used to handle the 

aforementioned challenges in the context of the floor mounted pressure sensor system of 

the smart floor is mentioned and explained in the later chapter. 

 



6 

 

Contributions 

The emphasis of this thesis is on algorithms that extract important gait parameters in a 

personalized fashion from the Smart Floor that can then be used to perform health 

monitoring and anomaly detection. Its main contributions are as follows: 

• Based on Smart Floor sensors, it provides algorithms to extract weight 

• It introduces a means of segmenting floor pressure signals into gait phases 

• It develops a set of algorithms to extract important gait parameters, including 

step length, step width, step frequency, etc. 

• It builds personalized gait parameter models that can be used to monitor walking 

for changes in pattern characteristics 

• With the information extracted from the Smart-Floor, it provides a new way for 

Gait Analysis. 

• Using these contributions, opens up a number of possible areas in health 

monitoring by monitoring the extracted parameter models. These contributions to 

such applications include: 

� The basis for a new way for activity recognition 

� The underlying data processing for a technique for estimation of fall 

prediction risk and changes in health. 

� The foundation for a technology to improve elder care by constant 

monitoring and by reducing the white-coat syndrome that inhibits clinical 

examinations of various age groups. 

 

How to Read this thesis 

The rest of this thesis is organized as follows. Chapter 2 reviews the related work 

involving the use of gait in abnormality detection and provides the review of the existing 
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methods. Chapter 3 gives a technical background about gait analysis and discusses 

notable features about it. Chapter 4 introduces the experimental overview, including tools 

and procedures involved in data collection, the background and the underlying 

characteristics of gait, the experiment setup, parameters that are extractable and the 

possible interpretations. Chapter 5 describes our approach and the analysis techniques 

used to interpret the data. It presents the methods for the construction of our model and 

gives a description of the parameter extraction algorithms and all. Chapter 6 shows the 

experimental results. Finally, Chapter 7 discusses the conclusion and possible future 

work and expansion of this project. 
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Chapter 2  

Related Works 

Over the years, several approaches have been proposed for gait analysis and 

abnormality detection either for diagnostics useful in clinical examination, for biometrics 

or for surveillance applications. Determining abnormalities often requires recognizing and 

modeling an individual’s normal gait pattern and trajectory. This approach is often 

referred to as model based gait recognition. Approaches to gait recognition can be 

classified into two categories, model-based and model free. Model based methods 

described for example in [28, 29, 30] construct a model of the observed gait pattern. In 

vision- based gait analysis for example, a model is built from the observed images with 

the help of extracted image features to observe and derive the gait trajectories. Results 

can then be verified by matching with new image data. Model free approaches [31, 32] 

use a well-defined representation to generalize the whole body motion pattern in the 

absence of a model. There have been several studies in abnormality detection in gait; the 

studies are broken down by the choice of the method used: 

 

Abnormality detection in gait using vision based system  

One of the methods for gait analysis is vision based gait analysis. There is a vast 

spectrum of methods that imbibes the use of vision-based system for gait analysis. A 

comprehensive survey of the recent vision based approaches has been presented in [45, 

46]. In vision based approach of motion analysis, Silhouette based gait recognition is one 

of the most popular method for recognizing moving objects.  Veres et al [27] described 

two types of silhouette, average silhouette obtained by averaging over recorded 

sequence and the second, the use of differencing operations on silhouettes of a full gait 

cycle to obtain a differential silhouette. Some statistical analyses tools were performed on 
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this image information to determine the most characteristic information for gait analysis. 

They concluded that the average silhouette which includes a static component of the 

head and body has the most important cue. BenAbdelkader et al. [33] imbibed the use of 

image self-similarity plots of silhouette images and apply pattern matching approach to 

identify respective individual. Bauckhage et al [34] used a method that allows 

construction of a robust vector space embedding of the observed silhouette image for 

automatic detection of abnormal walking pattern. Lee and Grimson [35] divided the 

silhouette of a walking person into regions by fitting ellipses. Notable features such as the 

centroid, aspect ratio of the minor and major axis of the ellipse, and the orientation of the 

axis of the  ellipse are being extracted from each of the noted region. In their experiment, 

7 regions of the body were considered. This is equivocal to having 7 ellipses that 

describe the average shape of the body.  These features are considered to be robust to 

noise, thus the phases of all region features are been computed relative to one particular 

region feature that is “most stable,” With the knowledge that a good feature should 

minimize within class variance and maximize interclass variance and following the 

assumption that all features are independent from each other, analysis of variance was 

performed on each feature to perform necessary classification. Collins et al[36] proposed 

an algorithm based on  template matching of  2D body silhouettes extracted from “key” 

frames through an entire  gait cycle sequence. Using Nearest neighbor matching using 

correlation score, subject classification is performed after comparison is made between 

key frames and training frames using normalized correlation. Little and Boyd [37] present 

a method, with the underlying assumption that the image of a moving figure contains 

 image flow information called optical flow that varies spatially and temporally,  derives 

shape of motion and from this data. Based on this, they developed unique features 

suitable to recognize individual by their gait. 
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Abnormality detection in gait using body worn tags or markers 

 Another approach used in gait analysis for detection of anomalous gait is the 

use of body-worn tags or sensors for activity recognition. In the experiment performed by 

Luštrek, Mitja, et al [37] with recording s sampled at 10Hz, they varied the number of tags 

from 1 to 12 and varied the tag coordinates of tags worn on shoulders, elbows, wrists, 

hips, knees and ankles. Once they collected the data from these locations, they used 

machine learning algorithms to classify the data and from their classification accuracy 

they pointed out the level of accuracy to which fall detection or changes in health can be 

detected with the appropriate locations. Pogorelc et al [38] in their method used body 

worn tags and wall-mounted sensors. Different from the above, where a brute force 

method was used to find the best coordinate for tag placement, the tag position are here 

acquired by the sensors and the resulting time series of position coordinates are 

analyzed with machine-learning algorithms in order to recognize a specific health 

problem. The method uses 8 to 12 tags with classification made into: 1) normal, 2) with 

hemiplegia, 3) with Parkinson’s disease, 4) with pain in the back and 5) with pain in the 

leg.  Similar to this, the approach used by Pogorelc et al, [39] used 43 body tags sampled 

at rate 30Hz. In order to distinguish between seven activities related to military 

operations. They reported an average classification accuracy of 76.9% using  Support 

Vector Machine (SVM) learning algorithm whose features were the tag coordinates 

belonging to two postures separated by 1/3 second. [40] proposed a method which is 

based on transforming joint motion trajectories using wavelets to extract spatio-temporal 

features which are then fed as input to a vector quantiser to form  a self-organising map 

for classification of walking patterns of individuals with and without pathology. The 

wavelet - transformed gait characteristics include walking speed and stride length. This 

approach uses more tags, thus it has high accuracy to detect and distinguish between 



11 

 

normal and pathological subjects, males and females, different age ranges, different 

pathologies and different categories within a specific pathology. It also has high efficiency 

and reduced noise level. However, the large number of tags and the accuracy required in 

applying them as well as the need for specific viewing angles in order to identify the tags 

makes it difficult to apply in real life world scenarios. 

 

Abnormality detection in gait using potable, mobile and custom built sensors 

 Kong et al [41, 42] used customized shoes with pressure sensors built into their 

sole called Smart shoe to measure the ground reaction force during gait. The proposed 

method is based on fuzzy logic and it detects phases in a human gait.  In the proposed 

algorithm, two major abnormalities are detected. In the method proposed by Bamberg et 

al [43],  a sensor suite which include s three orthogonal accelerometers, three orthogonal 

gyroscopes, four force sensors, two bidirectional bend sensors, two dynamic pressure 

sensors, as well as electric field height sensors were built into a shoe,  which they  called 

the Gait Shoe. Data acquired from these sensors are being wirelessly transmitted to a 

base station where the sensor output is analyzed.  For Diabetes patient monitoring, 

Morley et al [44] developed an insole based system to measure temperature, humidity 

and pressure in the shoe in order to predict skin breakdown and also to document the 

high pressures experienced by patients with diabetes mellitus and peripheral neuropathy. 

In contrast to all the methods presented so far, the method presented in this 

thesis uses Floor Mounted Pressure Sensors (FMPS) which are designed to collect data 

unobtrusively, and in any walking environment, over long periods of time without 

interfering with gait or inconveniencing the user. We call it the Smart Floor. The approach 

is intended to create a system to provide gait analysis outside the common shoe or insole 

based approach. The Smart Floor system has been designed with components that in no 
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way affect or change the user’s gait. This, in turn allows the presented method to scale 

more efficiently in real-world problems 
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Chapter 3  

Technical Background 

As defined in the earlier chapters, a gait is a person’s walking pattern. Since a 

gait is a repetitive activity, there are several assumptions that could be made about and 

inferences that can be drawn from its cycle. In addition, there are several parameters that 

can be extracted from a person’s gait. In this chapter, these parameters and other 

characteristic feature of a gait will be examined. 

 

Gait Cycle 

  The gait cycle a repetitive walking pattern of an individual during a walking 

phase, a gait cycle consists of strides and steps. A gait cycle consists of single support 

and double support phases characterized by having one foot or two feet on the floor.  

Further classification of a gait cycle is into swing and stance phase. During a gait cycle, a 

swing and stance for the same leg cannot occur at the same time. A swing, for instance 

of the left foot is followed by the stance of the same foot. It is important to note that while 

the right foot is in a stance phase, the left foot swings and interchangeably during the 

right foot swing phase. 

The gait cycle can be historically classified into 6 phases or using a newer 

classification into 8 phases for an entire gait cycle [51]. These phases are listed in Table 

3.1 and illustrated in Figure 3.1;  
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Table 3.1 Different phases of a gait cycle 

Classic Gait Phases  New (Revised)  Gait Phases 

 

1. Heel Strike 

2. Foot Flat 

3. Mid-Stance 

4. Heel-Off 

5. Toe-Off 

6. Mid-Swing 

 

1. Initial contact 

2. Loading response 

3. Mid stance 

4. Terminal stance 

5. Pre swing 

6. Initial swing 

7. Mid swing 

8. Late swing 

 

 
 
 

 
Figure 3.1 Classic and new gait classification in a gait cycle [51] 

 

The Classic gait terms are generally more detailed in the explanation of the 

transition from one phase to another during a gait cycle. Each phases of the gait cycle 

can be elaborated as follows: 
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Heel Strike 

This is the point of heel contact with the floor. A heel contact phase is also considered as 

the beginning of a double support phase of a gait cycle. This can be seen in Figure 3.1 

above. 

 
Foot Flat 

This is the phase where the entire foot is in contact with the floor. By the beginning of a 

foot flat phase, 20% of the gait cycle will have been covered.  

 
Mid Stance 

This is a phase beginning from the foot flat phase or fore foot loading, here the centre of 

pressure trajectory under the stance foot moves from the posterior to anterior while the 

other foot swings. This covers 35% of the entire gait cycle time. At the beginning of this 

phase, the other foot will be at the toe off point. 

 
Heel off 

This is a transition from the mid stance phase to Heel lift. The heel lift occurs when the 

current foot on the floor just begins to lift off the floor. At this phase the ground reaction 

force shifts to the anterior of the foot. At this phase 55% of the gait cycle will have been 

covered. 

 

 
Toe off 

Sometimes it is hard to define the specific point this occurs in a gait cycle; however, it is 

the part of the cycle that ranges from when the toes just lift off to when it has completely 

lifted off the floor. Here, the toes lift off the floor completely for the foot in the stance 

phase. By the end of this phase 60% of the entire gait cycle will have been covered. Just 
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as noted in the mid-stance phase, during this phase the other foot will be in its mid stance 

phase. This marks the end of the stance phase 

 
Mid Swing 

This is the portion of the gait cycle when the foot is in the air. The swing phase consist of 

the initial, mid and the late swing before the  next heel strike which marks the start of a 

new gait cycle.  

 
 

Phases in a Gait Cycle 

 
Using the above division of the gait cycle, notable partitions of the gait cycle are into 

stance and swing phases or into single support and double support phases. 

  

Stance or swing phase  

Stance Phase: This is the part of the gait cycle when the foot is in contact with the 

ground. This phase covers about 60% of the entire gait cycle 

 

Swing Phase: This consists of 40% of a normal gait cycle and it occurs from the toe off of 

the foot, goes from initial to terminal swing and finally ends at a heel strike. 

 

The relation between the division into stance and swing phases and the classic gait 

phases is shown in Error! Reference source not found. and illustrated in Error! 

Reference source not found..  
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Table 3.2 Division of gait classification into phase 

Stance Phase Swing phase 

1. Heel Strike 

2. Foot Flat 

3. Mid-Stance 

4. Heel-Off 

5. Toe-Off 

  

6. Initial, Mid and Terminal Swing 

 

 

 
 

 
Figure 3.2  Notable Division of a gait cycle and the intersections between different 

phases 

 

Single Support or Double Support 

 
Double Support  

This is the period in a gait cycle when both feet on an individual are on the floor. This 

happens between heel strike when foot is just making contact with the floor and ends on 

toe off when the other foot is lifting off the floor.  
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Single Support  

This is period in a gait cycle when only one foot is on the floor. Within one gait cycle, 

there is a right single support and a left single support.  

 
As shown in the Table 3.2 below, the phases of gait cycle that falls in stance and 

swing phases are as follows; 

 
 
 

Gait Cycle Time Division 

 
The division of the gait cycle into stance and swing phase as well as into single 

and double support phases also divides the total gait cycle length. 

In the partition into swing and stance phases divides the total gait cycle roughly 

in a ratio of 40%:60% as shown in Error! Reference source not found.. 

On the other hand, the division into left single stance, double stance, and right 

single stance phase divides the overall gait cycle at a ratio of 40%:20%:40% as shown in 

Error! Reference source not found. 
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Figure 3.3 Chart showing time division between the stance and swing phase of a gait 

cycle 

 
 
 

 
 

Figure 3.4 Chart showing time division during the double support and single support 

phase of a gait cycle 

60%

40%

Swing and Stance Time Division during Gait Cycle  

Stance Phase

Swing Phase

40%

40%

20%

Single Support and Double Support  Time Division

Single Support Left Foot

Single Support  Right Foot

Double Support
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Spatial and Temporal Parameters 

In gait analysis, there are variables that can be used to measure and represent the 

overall walking characteristics and performance of an individual. These variables are 

called the Gait Parameters. They represent aspects of the gait cycle that allow analyzing 

and characterizing of an individual’s walking behavior. These parameters can be 

classified into Temporal Parameters and Spatial parameters.  Spatial gait parameters are 

related to displacement during the gait and the temporal parameters are related to the 

time variables.  

 

Spatial gait parameters  

Spatial variable include but are not limited to step length, stride length, step width, foot 

angle or foot angle. 

 

 Temporal gait parameters 

These variables are used to measure the walking performance in relation to time. They  

include but are not limited to step time, stride time, stance time, swing time, cadence, 

single support time, double support time and speed 

Some of the most important spatial and temporal parameters of gait are:  

 

Walking speed 

This is the displacement from initial position to new position over time taken from initial 

foot contact to the last observable foot contact point during deceleration before a 

complete stop. 
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Step length 

The step foot length of the right foot for instance is defined as the distance between the 

point of the right heel strike and the left heel strike or contact. Likewise for the left foot, 

the left foot step length is the distance from right heel contact to the next left heel contact. 

 

Step frequency/cadence 

This is the number of steps walked in a walking time interval; this is basically how often a 

step is taken in a walking interval. It is measured in steps per time. 

 

Stride length 

The stride is the distance covered in  a whole gait cycle, thus the stride length is the 

length of a whole gait cycle. A stride contains two steps, one for the left and the other for 

the right foot. 

 

Step width  

This is the length of the medio-lateral area between the two feet during each half gait 

cycle. It can be estimated by measuring the how far apart area farthest from each foot 

center are for consecutive foots falls. 

 

Double support time 

This is the amount of time spent in a double support phase during a gait cycle. 

 

Single support Time 

This is the amount of time spent in a single support phase by a foot during a gait cycle. 
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Stance Time 

This is a measure of the time spent before the swing of the foot, a stance time begins 

from initial heel contact to toe off. 

 

Swing Time 

This is the amount of time the foot spends in the air. It begins from toe off and ends at 

heel strike of the foot. 
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Chapter 4  

Experimental Overview  

 

Hardware  

The Smart Floor system consists of an array of pressure sensors mounted under 

floor tiles that collect data continuously throughout the performed trials and a computer 

system responsible for data collection. The sensor used is the Tekscan® Flexiforce 

sensors. The Flexiforce pressure sensor detects and measures pressure applied to 

sensor detects contact and gives a high level of flexibility in their deployment and 

integration. The floor board schematics are shown in later chapter  

The Flexiforce sensors are available in a variety of force ranges, due to the 

pressure sensitivity level required by our experiment. The sensors output pressure value 

equivalent to the force applied by the user.  

A custom built computer hardware (see Figure 4.1) was used for data collection 

from the Flexiforce pressure sensors and for the transfer of the collected data into the 

centralized storage. Due to the Span of the Floor prototype, four of this hardware was 

used. Each of them collects data at 40 Hz from 32 connected Flexiforce sensors. 
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Figure 4.1  Computer hardware used for data collection from sensor 
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Figure 4.2 Illustration of sensor placement underneath the floor 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.1 
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Figure 4.3  Smart floor setup 

 

 
To allow for cross validation, a Microsoft Kinect 360 was used to record the 

walking and balancing exercise performed by the user. The data collected from the 

Kinect was used to segment and match the gait phases with the ones collected and 

extracted from the pressure sensor data. The data collected from the Kinect camera were 

sampled at 20Hz-30Hz. 

An accelerometer was also used to measure each subject’s acceleration data. 

The Actigraph® wGT3X device that was used to record this data can be worn in 6 

different locations; the ankle, thigh, in a pants pocket, on the waist, wrist, or on a lanyard 

around the neck. Given that our experiment is on gait analysis, we asked the subject’s to 

wear it around their waist. The Actigraph was used to keep track of each subject’s linear 
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acceleration and rotational velocities in three dimensions at a rate of 100 Hz.. The data 

collected is known to have an accuracy level of +/-0.5 % and is initially stored directly into 

a non-volatile flash memory in the device before manually transferring it to centralized 

storage 

A weighing scale was also included in our experiment to keep track and validate 

the weight extracted from the floor sensors for the users as they walk across the floor 

 

Software 

Data from the Microsoft Kinect was collected using Modified Kinect Explorer 

D2D, while the Actigraph accelerometer used the Actigraph licenced ActiLife® software. 

The data collection from the sensor runs on C++ with a gtk widget for the Graphical User 

Interface. Data Processing was done exclusively with C++ and Matlab. The prediction 

and analysis program will be presented in the Chapter 5. 

 

Trial Description 

All the participant were volunteers and they were first asked to acknowledge and sign a 

consent form before taking part in the study.  After this, each participant performed 

multiple scripted activities which were designed to generate representative balancing and 

walking gait data for the subject. In this, one activity was specifically designed to obtain 

static balancing data while another was performed to obtain a number of continuous gait 

cycles during a multi-directional walking path.  As part of these activities, a Tinetti 

balance and gait assessment score was also elicited and a corresponding form was filled 

out by 3 trained investigators to assign appropriate gait and balance scores to each 

participant. These can later be used to compare automatic gait and balance assessments 

with the obtained Tinetti scores, which represents the current method of assessment. 
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Experimental Protocol 

Each subject was asked to perform a series of task on the floor.  . These started with the 

standard Tinetti assessment activities and then continued through another set of scripted 

activities. 

 

Tinetti gait and balance assessment 

For the balance Trial and gait assessment , the subject was asked to perform series of 

tasks following the Tinetti Assessment Tool.  These activities were as follows: 

• Subject sits down on a chair 

• Subject  stands up 

• Subject is requested to turn 360 degrees 

• Subject is nudged while standing. 

• Subject walks for a set of steps, turns around, and returns. 

 

Walking Trial 

After completing the TInetti assessment activities, the subject walked from the 

start position to the stop position twice at a steady self-defined normal pace. The subjects 

then walked to the side of the floor to open a side cabinet from the start position and from 

there moved to the stop position. The subjects continued by picking up a cup and went 

back to the start position. Following this, the subjects were instructed by the examiner to 

stand on one foot for a few seconds for both the left and right foot. Then the subjects 

picked the cup back up and walked back to the stop position at a slow pace to drop the 

cup. A complete walking trial lasted for approximately 5 minutes. In total the Consent 

form filling, weight check procedure, blood pressure check, standing and walking tasks 
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took approximately seventeen minutes for each subject. The different aspects of the 

walking Trial are illustrated in Figures 4.4–4.10 below: 

The walking Trial is illustrated below: 

 

Figure 4.4 Smart Floor Experiment Layout 

  

 

Figure 4.5 Initial Straight Line Walking by the Subject: Performed Twice 
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Figure 4.6 Opening Cabinet Door Task by the Subject: Performed Once 

 

 

 

 

Figure 4.7 Walking from the cabinet to pick up the cup 
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Figure 4.8  Walking back to start position after cup pick up task  

 

 

 

 

Figure 4.9  Balance on Each Foot Task by the Subject: Performed Once for Each Leg 
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Figure 4.10  Showing Slow walk Task by the Subject 
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Chapter 5  

Parameter Extraction and Algorithms  

To extract the spatial and temporal parameters of a gait, the gait line for each 

individual has to be analyzed. The first step in this analysis is recognition of the double 

support phase. In this thesis, methods for automatic gait analysis and extraction of 

parameters, as well as for constructing a model for each subject are developed. To do 

this, algorithms to extract the  weight, the centre of pressure speed,  automatic step 

segmentation, single support and double support phases, stride length,  step length 

extraction, foot separation, right and left foot identification, Step Symmetry  assessment 

and  step width extraction have been developed and implemented. Parameters extracted 

using these methods from each subjects gait dataset include: 

� Centre of Pressure (COP) 

� Weight 

� Centre of pressure speed 

� Single support and Double support Detection and Extraction 

� Stride length extraction 

� Step length extraction 

� Foot separation 

�  Right and left foot. 

� Step width  

� Step symmetry ratio  

 

Weight 

A subject’s weight can be best extracted while the subject is standing. Periods of 

standing in place within the gait dataset for an individual can easily be segmented out by 
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the automatic gait segmentation algorithm. In our experiment, the weight can easily be 

extracted since we asked each subject to stand still before the walking sections. At this 

point, the weight of a subject is extracted by summing up the values of the pressure 

sensors. Thus the weight is a cumulative sum of the Pressure sensor values activated 

during the frames in which the subject is standing. Error! Reference source not found. 

shows the weight estimate during an entire trial with the initial standing phase used for 

weight extraction circled in the beginning. 

 

Figure 5.1 Weight estimate over entire experiment with initial standing phase used for 

weight extraction circled 

. 
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 Centre of Pressure Speed (COP Speed) 

The COP speed is the rate of change of the COP over time. It is directly 

proportional to the coordinates of the COP. Hence, if the displacement of the COP from 

its initial position is high, there is an increase in the COP speed and vice versa when 

there is a low displacement. Let TN be the time of the last COP point for a subject in their 

data set, ti be the ith time step, and d(xi, yi) be the corresponding COP  coordinate. Using 

these, the COP speed can be extracted using the algorithm shown in Algorithm 5.1. The 

resulting COP speed extracted for one subject’s experiment is shown in Error! 

Reference source not found.. 

 

   Algorithm 5.1 COP Speed Algorithm 

 
1:  for t = 2 to TN do 

2:  Obtain the COP coordinate (xt-1, yt-1) at Time t-1 

3: Obtain the COP coordinate (xt, yt) at Time t 

4: Distance:  � = �(X(t − 1	 − Y(t − 1		 +  (Y(t	 − X(t		  

5:  Compute change in time (T) = 
� = Tt – Tt-1 

6: COPspeed = 
�
�� 

7: end for 
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Figure 5.2 Shows the COP speed plot over time for a subject 

 
Double Support (DS) and Single Support (SS) Detection (DS-SD) Algorithm 

Segmentation of the walking data into different gait phases is essential for gait 

parameter extraction. In order to provide more intuition about the double support phase 

and how the segmentation points at the beginning and end of this phase have been 

detected, the gait cycle figure in the technical background (Error! Reference source not 

found.) shows these points. Since the double support phase is the part of the gait where 

the two feet are on the floor, their beginning and end points are characterized by the point 

of heel strike where the first heel contact is made and the point of toe off where the toe of 

the other foot is just about to loose contact with the floor. At the former point, a sharp 

increase will be observed in the centre of pressure value which is the result of the 
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pressure exerted by the heel on initial contact. Another indicator for this point of heel 

strike is an increase in the COP speed at this point. Ultimately, the heel strike for a foot 

occurs at the peaks of the COP speed over time. This step is called the DS detection 

step/ Heel Strike (HS) detection step. The subsequent single support phase starts when 

the toe lifts off the floor, thus it starts from toe lift off to the next heel contact. Hence, it is 

of paramount importance to be a be to detect the double support and single support 

transition points. 

In our algorithm, shown in Algorithm 5.2, we first deal with smoothing the COP 

speed estimates (COPspeed). This is done using an appropriate smoothing algorithm 

that ensures that the relevant information in the original data is kept. From this operation, 

we generate an updated version of COPspeed, called COPsmoothspeed. After this (in 

Line 2), maxima and Minima are detected in the smoothed dataset. The maxima 

represent the points of highest displacement of the COP which occur during double 

support while the minima signify the beginning of the single support phases identified by 

a drop in COP speed. Since one foot is on the floor, the COP only moves from the 

posterior to anterior part of the foot. As a result, there is little displacement of the COP as 

it progresses.  In Line 3 and 4, the selected maxima and minima are combined and 

sorted with the knowledge that maxima and minima always alternate. We select the first 

element of the combined list as the first maximum, resulting in a list called MaxMin. 

Following this, in Line 5 a max and a min are paired and the difference in their speed and 

time are found. After doing this for all the pairs, the number of differences found for the 

speed and time list will be half of the entire MaxMin List. The average of the found speed 

change and time changes is then computed in Line 6. Setting this average as the 

threshold in Line 7, the valid Maxima and Minima pairs that correspond to actual walking 

and are not due to person sway or local, non-walking activities were identified and In Line 
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8, the Maxima were grouped to a separate list Valid Maxima which signifies the times at 

which double support starts for a subject. The Valid_Minima list is similarly a 

corresponding list of all the times at which a single support phase starts for a subject. 

 The algorithm to segment the double and single support phases is as follows: 

 
 

  Algorithm 5.2 DS-SSD Algorithm 

 
1:  Smooth the Computed COPspeed Data 

• COPsmoothspeed  = Smooth_Speed(COPspeed) 

2:  Select the local Maxima and Minima Times from the smooth speed Data 

• Maxima = Select_Maxima (COPsmoothspeed ) 

• Minima = Select_Minima (COPsmoothspeed ) 

3: Combine the Maxima and Minima: MaxMin 

MaxMin = Combine (Maxima, Minima) 

4: Sort MaxMin 

• MaxMin = Update_MaxMin(MaxMin) 

5:  Find the difference between successive maxima and minima in speed and time 

      for i = 2 to N_MaxMin  do 

  (si, ti) = Diff (MaxMin) 

6: Calculate the Average of the difference found 

• Ave_si  = Average(si) 

• Ave_ti = Average(ti) 

7: Get Rid of Noise and false Maxima and Minima 

for i = 1 to N_(si, ti) do  

      Valid (si, ti) = (si, ti) > (Ave_si & Ave_ti ) 
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8: Select Valid Maxima and Minima 

• Valid_Maxima = Maxima with Valid(si, ti) 

• Valid_Minima = Minima with Valid(si, ti) 

 

Segmenting Walking and Non Walking Data 

Using the DS-SSD Algorithm, the walking segments can be extracted based on 

the time they occurred. This extraction can be done in two ways. One approach is to feed 

the time ranges where walking is suspected to the algorithm and the walking time will be 

extracted into Heel strike and Toe off. An alternative is to feed in the entire data which is 

a combination of the walking and non-walking data to the algorithm. This gives a list of all 

the valid Heel strike and Toe off points in the entire data. This is a better approach as it is 

more automated. However, the results from doing this will need to be further segmented 

into groups or aggregated into time frames in which walking is performed in a time 

window so that previous gait cycles  obtained in the initial pass are not mixed together 

with those obtained later. The segmentation of the entire trial is shown in Error! 

Reference source not found. and a more detailed view of the segmentation of one 

walking pass is shown in Error! Reference source not found. 
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Figure 5.3  Segmented COP Speed Plot Overlayed with Weight distribution 
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Figure 5.4 One of the Walking Passes With Corresponding Segmentation 

 

Gait Cycle Extraction 

Given the segmentation derived previously, it is now possible to extract gait 

cycles and phases. A gait cycle starts from the beginning of a double support phase and 

ends at the beginning of the second double support phase after this one.  Since the DS-

SSD algorithm detects the Heel contact point, the gait cycle for a walking subject can 

easily be extracted. To get the picture of a gait cycle, it is shown in Error! Reference 

source not found. in the technical background in Error! Reference source not found.. 

For a subject, the gait cycle was extracted using the gait cycle extraction algorithm below 
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in Algorithm 5.3. Let the time window, which is a time range from walk start to walk end 

for a given frame be represented as TW. 

   

 Algorithm 5.3 Gait Cycle Extraction Algorithm 

 
 
1: for i = 1 to No of TW do 

While (t < end of  TW(i) ) do 

Heel strike Footx: Identify Double Support point: DS (i) 

Heel strike of Footx: Identify next 2 Double Support point: DS (i+2) 

  end while  

end for 

 
 
 

Foot Roll Extraction 

Foot roll occurs during the stance phase of a gait cycle. The foot roll pattern can 

be extracted during the single support phase where it is evident for an individual as the   

foot COP gait line progresses from the point the toe of the other foot lifts off the floor to 

the point just before heel strike of the other foot. In essence, one foot’s COP progression 

from posterior to anterior is a representation of the pattern of the foot rolling pattern. 

 
Stride Length Extraction 

The stride length extraction becomes straight forward once the gait cycle 

extraction has been completed. Since the HS points are known, the cadence can easily 

be found for each gait cycle extracted from the walking data for the subject. The 

algorithm for this is shown in Algorithm 5.4. 
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 Algorithm 5.4 Stride Length Extraction 

 
1:  for each gait cycle (GC) out of TotalGC extracted  

for i = 1 to TotalGC  do 

     Get the coordinate (xt, yt) at DS (i) 

     Get the coordinate (xt, yt) at DS (i+2) 

      Find the Stride Length   

end for 

 
 
 

Step Length Extraction 

Step length was extracted using the stride length and the vector of the line 

connecting the initial point of the gait cycle (the initial heel strike) with the other two heel 

strike points. Extraction of the step length, L, from the stride length, S, is illustrated below 

and summarized in Algorithm 5.5. 

Stride length = S 

Step length = L 

Stride Vector = S_Vector = ��(�	� �(�	
�(�	� �(�	� 

Step Vector = Sp_Vector = ��(�	� �(�	
�(�	� �(�	� 

L = ( 
�

������_�� !�"  . S_Vector   ) T .  Sp_Vector 
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Figure 5.5 Step Length Estimation 

 
 

   Algorithm 5.5 Step Length Extraction Algorithm 

 
1:  Find the Stride Sride_L using Stride Length Extraction Algorithm 

2: Find the Stride Vector: 

 〈+〉  = ��(�	� �(�	
�(�	� �(�	� 

3: Find the Step Vector  

 〈-〉   =  = ��(�	� �(�	
�(�	� �(�	� 

4: Compute the Step Length 

  L =   (
�

�_�� !�"  . 〈+〉) T. 〈-〉    
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Foot Separation 

Separating the feet into left and right is necessary for recognition of the 

differences in step length made by the left and right foot during a gait cycle. Determining 

the foot can again be accomplished using the step vectors and the stride vector in a gait 

cycle. Using these and considering the stride vector as the walking direction, the foot can 

be identified based on the side in which the step vector deviates from the stride vector 

direction. Computing this involves determining the offset of the step vector in the normal 

direction to the stride direction. This process is summarized in Algorithm 5.6. 

 

 Algorithm 5.6 Foot Separation Algorithm 

 
1: Find the Stride Vector: 

 〈+〉  = ��(�	� �(�	
�(�	� �(�	� 

2: Find the Step Vector  

 〈-〉    = ��(�	� �(�	
�(�	� �(�	� 

3: Rotate the Stride Vector 900 to obtain Normal Vector 

 〈+〉  =  �� ( �(�	� �(�	 	
�(�	� �(�	 � 

4: Multiply the Stride Vector and Step Vector 

• Detect_Foot = 〈-〉  T   .  〈+〉   

5: Detect if it is < or > 0 

• Left Foot ≡ < 0, Right Foot  ≡ > 0 
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Step Symmetry 

Once the step length has been obtained and the left and right feet have been 

identified for a subject, the next step is to obtain the step symmetry which is the ratio of 

the step length of the left vs. right step cycle. The sum of the step lengths is equivalent to 

the stride length.  
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Chapter 6  

Experiment and Results 

 

Data Collection 

The experiment involves the capturing of walking data using floor mounted 

pressure sensors. We had 35 volunteer participants from within and outside the 

academic community. We collected data from 11 males and 24 females with ages 

ranging from 17 to 72. See Table 6.1 below regarding further information about the 

participants. From each of this participant we collected both balance and walking data 

following our experimental protocol described in Chapter 4. 

Table 6.1 Subject Information 

Subject  Age Height (in) Weight(lbs) Gender Dominant 

Foot 

1 58 69 156 Female Left 

2 34 66 186 Female Left 

3 59 63 200 Female Right 

4 69  67 184 Female Left 

5 59 64 189 Male Right 

6 18 72 171 Male Left 

7 51 65 146 Female Left 

8 62 68 215 Female Left 

9 30 70 176 Male Right 

10 49 67 146 Female Left 

11 19 66 191 Male Left 
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12 66 65 176 Female Right 

13 67 65 170 Female Left 

14 43 66 171 Female Left 

15 42 64 151 Male Left 

16 68 64 144 Female Left 

17 31 63 114 Female Left 

18 29 66 134 Female Left 

19 71 63 153 Female Left 

20 18 64 144 Female Left 

21 25 67 153 Male Left 

22 31 73 224 Male Left 

23 24 63 190 Female Right 

24 31 72 252 Female Right 

25 27 71 220 Male Left 

26 72 62 200 Female Right 

27 24 60 128 Female Right 

28 32 60 128 Female Right 

29 52 63 166 Female Left 

30 25 68 150 Male Left 

31 29 70 148 Male Right 

32 62 69 161 Female Left 

33 60 60 181 Female  Left 

34 58 70 164 Male Left 

35 60 57 112 Female Left 

 

Table 6.1 - continued 
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From the entire data collected for each subject we were able to divide the data 

into two types; 

 

i. The walking data: the part where the subject was walking on the Smart Floor. All 

subjects were asked to walk as normal as possible during the entire experiment 

until the last walking phase where they were asked to walk slowly in order to 

variation from the walking phases exhibited earlier. 

ii. The Non-Walking data: The Non-walking data is the segment in the entire data in 

which the subject is not actively walking but performing other parts of the 

experimental protocol such as balancing, standing, opening the door, etc.  

Floor Calibration 

The data obtained from the floor was obtained with approximately pre-calibrated 

sensors in order to ensure that sensor values in different floor regions are providing 

pressure information in terms of a uniform measurement unit. There are a total of 128 

sensors on the experimental floor. Each sensor can output a value from 0-1023. Since 

the Tekscan FlexiForce A401 Sensors behave linearly, we can represent each sensor in 

the standard slope-intercept form of a linear equation: w = ax + b,   

where  

w is the weight in pounds we want to calculate 

 x is the “raw” output from the sensor (0 – 1023), 

a is the x’s coefficient, and b is a constant (offset). 
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Calibration of the slope and intercept was performed using a set of standard weights that 

were place on the sensor locations. A linear least square fit was then applied to obtain 

the calibration parameters for each sensor. 

 
Features Extraction 

In order to clearly identify changes in gait pattern for a user walking over the 

floor, we need to extract the user’s gait line and from this gait line perform some pattern 

distinction. The steps taken for the extraction of walking patterns are presented here. 

Using the calibrated sensor data, the Center of Pressure (COP) for each user on 

the floor was calculated. With the center of pressure, a subject’s balance as a measure of 

postural sway while a person is standing can be measured. Other useful pattern 

information/parameters that we extracted were the user’s weight, dynamic characteristics 

of balance and step impact, foot roll pattern, step length, step width, cadence, and step 

velocity. Each of these parameters contains significant information that allows us to 

identify certain deviations from a user’s usual pattern information. 

The COP position varies in time along a foot (in single stance where the Cop 

corresponds approximately to the point of the impact force) and between the feet (in 

double support where the COP moves between the feet as weight is shifted from one 

side of the body to the other) during walking and results in what is commonly known as 

the gait line (the co-ordinates of the progression of the point of application of the vertical 

ground reaction force). The COP is calculated by weighting each pressure measurement 

by its magnitude and position so as to be able to resolve all pressures into one point.  

Considering the center of pressure’s on  x coordinate, COP(x,). It can be 

calculated using the formula: 
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 where Fi is the  pressure at a sensor location xi relative 

to a reference point in the x-direction. Computation of the y position of the COP is 

performed in the same way. 

The extraction module for extracting a user’s gait line was written in C++ and 

MATLAB.  This module is divided into three parts: 

 

i. Foot pressure point extraction. 

ii. COP extraction.  

iii. Gait line extraction. 

Foot Pressure point extraction  

This module marks the starting point of the analysis and is responsible for 

identifying pressure sensors that had a value when a user was on the floor. It performs 

two functions, namely it extracts the pressure sensor value and pressure sensor 

coordinates. Ultimately, it extracts the pressure map formed by the user when walking on 

the floor. Data was transmitted at 25Hz which amounts to one pressure reading every 

40ms. The information extracted from the Smart Floor every 40ms is referred to as a 

frame. Activated pressure sensor refers to a sensor that has a value that is above the 

noise level of the sensor system at a particular frame. When a pressure sensor is 

activated it gives a value and that value is represented in the Graphical User Interface as 

a circle in the sensor’s location with a radius that is proportional to the sensor reading. 

Thus, the bigger the radius the higher the pressure value applied to the sensor. Error! 
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Reference source not found. shows an example of the GUI with an activated sensor 

frame. 

 

 
  

Figure 6.1 An example of frame’s activated sensor 

COP extraction  

This module is responsible for the extraction of the center of pressure and its 

value. Given the number of activated sensors at a frame, the center of pressure is 

computed using the X and Y coordinates and the pressure sensors and the 

corresponding pressure readings, F(i),  in those directions. The position is the average of 

the activated sensors and thus the COP value computation is computed as 

COP(X) = 
∑ /(�	.0(�	1

∑ 0(�	1
      

COP(Y) = 
∑ 2(�	.0(�	1   

∑ 0(�	1    

Error! Reference source not found. shows an example of the COP extracted from a set 

of pressure readings with Table below describing the symbols used in the figure. 
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Figure 6.2 An example of an activated sensor with COP 

 
 

Gait Line Extraction 

The center of pressure gait line shows a visual representation of the center of 

pressure progression during the phases in which the foot is making a contact with the 

ground. Since the gait line shows the COP progression, it is thus a combined 

representation of a user’s COP over time depending on the number of samples obtained 

per time step. Here we obtained approximately 40 samples per second. There could be 

several representations of the gait line. The first representation is for a single step which 

is from a double support to a second double support and the second is a complete 
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representation for the entire walking period. The software module for the gait line 

extraction was implemented in Matlab. From this gait line several other parameters can 

be extracted. This will be elaborated in the results. Using a combination of the frames 

COP, Error! Reference source not found. shows a representation of one subject 

walking across the Smart Floor.  

 

 
 

Figure 6.3 An example of a gait line extracted Gait line for Subject walking across the 

Smart Floor. 

 

Similarly, Error! Reference source not found. and Error! Reference source 

not found. show gait line plots for an entire trial, including all parts of the experiment. 
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Figure 6.4 A complete gait line 2D plot extracted for a Subject 
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Figure 6.5 A complete gait line 3D plot extracted for a Subject 

 

 
 
 



57 

 

 

Experimental Results 

Based on the parameters explained in the previous chapters, some relationships 

have been drawn from them to draw out a pattern that is distinguishable for different 

individuals during gait. 

Using the extraction algorithms explained earlier, observation can be made about 

parameters that are generic for all subjects and about relationships that do not satisfy the 

norm for most subjects. The relationship between stride length and COP speed, between 

stride length and step frequency, and between COP speed and step frequency were 

determined to be of interest for modeling and and a polynomial equation was derived to 

model these relationships for some subjects. From these, it can be shown that the 

relationships follow a particular pattern that varies across individuals. In addition, the 

choice of this parameter relationship allows to investigate whether individuals’ expressly 

requested slow walking pass falls within the same model relation (and thus looks like 

other walking passes) or if it falls outside the normal envelope due to participants over-

emphasizing the slow walking (thus resulting in “slow motion walking” rather than a 

regular slow walk). To build this model and test this question, for all data with the 

exception of the slow walking gait cycle for a subject, the stride length and COP Speed 

relationships are considered to reflect normal walking with the slow walking data to be 

tested whether it deviates from their normal walking data.  

With the main focus being the stride length and COP Speed here, we were able 

to draw a relationship using the polynomial regression fit for each subject. 

Due to the absence of known abnormal data, we started an analysis of the 

relationship between the slow and normal walking data in order to check if the same 
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model walking for normal walking as well as slow walking and to see if the model would 

be able to detect which individuals were walking “abnormally” slow in the slow passage 

 

Deciding on the best model for each subject 

As earlier stated, each subject will have a defined model that will represent their 

parameter relationship for normal walking. So that any deviation from it could be easily 

noted, we performed some test on the data obtained from each subject to determine the 

best model for them. 

The steps taken to reach a clear conclusion about the preferable model for each 

subjects as well as to assess whether the slow walking data fits into the same model as 

the normal walking data, the best model was developed as follows: 

Step 1: Split the Data set into two groups: 

a. Normal Dataset 

b. Combined Dataset Including 

i. Normal Walking Dataset 

ii. Slow Walking Dataset 

Step 2: Select the Normal walking Dataset 

Step 3: Since we have only limited data, building a model over this dataset might result 

in over fitting. To avoid this perform steps A – H below 

A. Split the dataset ‘DS’ into two (training and test ) dataset randomly in a 

preferable ratio where training data is more than the test dataset (ratio 4:1 

for instance) 

B. Using polynomials of order 1 – 6, create six models 6, ‘ M6’, of different 

complexity for the Training Dataset using best least squares fit.  
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C. Use these models ‘M6’ on the test dataset to determine the root mean 

squared error (RMSE) of ‘M6’ on the test data. 

D. Perform steps “A-C” above N times where N > 20, resulting in  N X 6 

RMSE values 

E. Find the Mean RMSE for each model in ‘M6’ resulting in 6 RMSE values 

F. Select the Model ‘LM’ with the Lowest Mean RMSE 

G. Select the Order O of the Model ‘LM’ 

H. Finally, Build a new Model ‘NM’ in the Order ‘O’ above using the Entire 

Dataset ‘DS’ 

Step 4: Select the combined dataset 

Step 5: Perform step 3, using the selected combined walking dataset 

Status: Now, there is a model ‘NM’ from the normal walking dataset and a model ‘CM’ 

from the combined dataset 

Step 6: Use both models ‘NM’ and ‘CM’ on the normal walking dataset. 

Step 8: Compute the squared residual error of each of the models  

Status: There are now two squared errors: 

a) SENM(Squared Error NM): For the model ‘NM’ 

b) SECM(Squared Error CM): For the model ‘CM’ 

Step 9: Perform a paired sample t- test using SENM and SECM 

Step 10: State the Hypothesis: 

� Null Hypothesis: Both Models are not significantly different 

� Alternate Hypothesis: Normal Model is better 

� Significance Level: 0.1 

� Two Tailed Test 



60 

 

Step 11: Based on the result obtained from here, we decide on the model representative 

of the subject’s normal walking dataset. 

 

If we do not reject the null hypothesis, it does mean that the combined model is 

representative of the entire model. On the other hand, if we do reject the null hypothesis, 

then the data from the slow walking pass significantly deteriorated the model and thus a 

combined model is significantly less representative of the normal data as a model built 

only on known normal walking data. As a result, this would support that for these 

individuals slow walking was not within their normal range and they thus likely over-

emphasized the slow component.  As a result, it could also be an indication that the slow 

walking dataset is not the same as the normal walking dataset for the subject. 

 
  
 

Based on the results derived following the process described above, we can 

show using the t-test that the normal walking data and combined data set for at least 

some of the subjects does not follow the same model. While this does not consequently 

mean that one model is better than the other, Occam’s razor would indicate that, it is 

advisable to use a simpler model for the subject. For some subjects, we observed that 

the combined model, that is the model built from the slow walking data set was equally as 

good as the Model from the Normal walking data set under those circumstances the 

combined model is preferable in general as it covers a larger range of the individual’s gait 

patterns. These decisions were made from paired sampled tests of the squared error 

obtained from the normal data set using each model. The result from the algorithm to 

decide on the appropriate model for each subject is presented in the table below.  
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Table 6.2 Table showing the paired sample test results 

Subject 

No 

T- Score Degree 

of 

Freedom 

P- 

Value 

Accept T- Value Accept 

1 0.71533 12 0.4669 Null 1.782 Null 

2 -1.6085 14 0.13 Null 1.761 Null 

3 -4.353 15 0.0006 Alternate 1.753 Alternate 

4 -1.0113 9 0.3383 Null 1.833 Null 

5 -0.42889 7 0.6809 Null 1.895 Null 

6 -1.1251 11 0.2845 Null 1.796 Null 

7 -2.3789 13 0.0334 Alternate 1.771 Alternate 

8 -0.53694 12 0.6011 Null 1.782 Null 

9 -0.10153 10 0.9211 Null 1.812 Null 

10 -2.5508 12 0.0254 Alternate 1.782 Alternate 

11 -2.0769 15 0.0554 Alternate 1.753 Alternate 

12 -1.2673 13 0.2273 Null 1.771 Null 

13 -2.274 10 0.0463 Alternate 1.812 Alternate 

14 -0.98263 12 0.3452 Null 1.782 Null 

15 -4.1752 7 0.0042 Alternate 1.895 Alternate 

16 -2.4978 11 0.0296 Alternate 1.796 Alternate 

17 -0.16736 13 0.8697 Null 1.771 Null 

18 -2.5173 11 0.0286 Alternate 1.796 Alternate 

19 1.785 10 0.1046 Null 1.812 Null 

20 -2.2841 13 0.0398 Alternate 1.771 Alternate 
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21 -2.1327 11 0.0563 Alternate 1.796 Alternate 

22 -0.58799 11 0.5684 Null 1.796 Null 

23 -2.1807 10 0.0542 Alternate 1.812 Alternate 

24 -1.327 13 0.2073 Null 1.771 Null 

25 1.7451 10 0.1116 Null 1.812 Null 

26 -0.05603 11 0.9563 Null 1.796 Null 

27 -1.4675 10 0.173 Null 1.812 Null 

28 -1.1463 11 0.276 Null 1.796 Null 

 

 

 
 Data Plots Comparing the Use of Normal Model and Combined Model  

To examine the models and their fit, the polynomial fit models for a number of 

subjects were visually inspected and compared. In particular, five subjects were selected 

and their models plotted. The goal here is to show how the regression fits match the 

recorded points and to demonstrate the differences in the models between individuals. 

 

 
Subject 1  

Subject 1 was one of the subjects for whom the two models were not significantly 

different in terms of being able to describe the normal walking parameters and thus slow 

walking appeared to follow the pattern of normal walking. Error! Reference source not 

found.3 shows the regression fits for the two models. 

 

 

Table 6.2 - continued 
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Table 6.3 Comparism of the Plot of Normal Model Regression and the combined Model 

Regression Fit for Subject 1 

Normal  Model Regression Fit  Combined Model Regression Fit 

  

 

 
 
Subject 2 

Subject 2 was another subject for whom the two models were not significantly 

different in terms of being able to describe the normal walking parameters and thus slow 

walking appeared to follow the pattern of normal walking. Error! Reference source not 

found.4 shows the regression fits for the two models. 
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Table 6.4 Comparism of the  Plot of Normal Model Regression and the combined 

Model Regression Fit for Subject 2 

 
Normal  Model Regression Fit  Combined Model Regression Fit 

  

 
 
 

Subject 3 

Subject 3 is the first individual for whom the two models showed significantly 

different ability to represent the normal walking data and for whom thus the slow walking 

data did not seem to fit the pattern described by normal walking data. Error! Reference 

source not found.5 shows the regression fits for the two models. 
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Table 6.5 Comparism of the  Plot of Normal Model Regression and the combined Model 

Regression Fit for Subject 3 

 
Normal  Model Regression Fit  Combined Model Regression Fit 

  

 

 
Subject 4 

Subject 4 is again a subject for whom the two models were not significantly 

different thus slow walking appeared to follow the pattern of normal walking. Error! 

Reference source not found. shows the regression fits for the two models. 
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Table 6.6 Comparism of the  Plot of Normal Model Regression and the combined Model 

Regression Fit for Subject 4 

Normal  Model Regression Fit  Combined Model Regression Fit 

 
 

 

 
 

Subject 5 

Subject 5 is also a subject for whom the two models were not significantly 

different thus slow walking appeared to follow the pattern of normal walking. Error! 

Reference source not found.shows the regression fits for the two models. 
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Table 6.7 Comparism of the  Plot of Normal Model Regression and the combined Model 

Regression Fit for Subject 5 

 
Normal  Model Regression Fit  Combined Model Regression Fit 
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Chapter 7  

Conclusion and Future Works 

With the further processed data obtained from the Smart Floor, a subject’s 

Center of Pressure (COP) trajectories was calculated. From a close study of the 

extracted COP, other dynamic characteristics of balance and step impact necessary for 

anomalous gait detection were extracted.  In this thesis, we were able to recognize and 

detect differences in a person’s gait based on some of the extracted parameters. We 

showed formally that separation of gait features is possible using the COP gait line and 

from it deviations can be observed.  A better understanding of center of pressure 

movement and (pressure distribution) during walking will facilitate clinicians’ assessment 

and enhance treatment and can provide information about postural control in both normal 

and pathological situations to further detect anomalous health situations.  In future work, 

we want to further expand our study by analyzing the balance data to extract the level of 

sway by each subject while taking into account the tile coupling and how these can relate 

to the subject’s gait. Furthermore, we will precisely recalibrate the floor sensors in this 

study and also acquire more abnormal gait data in order to have a full software system 

that analyzes changes in balance and gait patterns.  
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