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ABSTRACT

QUERYING MICROARRAY DATABASES

Publication No.

Zoe Alexandra Raja, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Ramez Elmasri

Microarray technology has rapidly taken a key position among bioinformatics
research tools. After the completion of the Human Genome Project, microarray
databases have become particularly important to the management and analysis of
genomic data. These databases are ideal tools for many research areas involving gene
expression patterns under different experimental conditions. This work attempts to
assess the querying capabilities of current public microarray database implementations

by evaluating their data management, query interfaces, and results presentation. We are

il



not aware of any comparative study available to date that evaluates this important class
of biological databases. We examine and evaluate how several of the current existing
implementations handle microarray data so that they can be queried and managed in a
useful, understandable, and efficient manner. Our study identifies some of the
limitations among existing microarray databases that impact querying and results

presentation, leading to suggestions for areas of improvement.
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CHAPTER 1

INTRODUCTION

1.1 Background

Gene expression patterns reflect which proteins are present and at what rate they
are being produced (expressed) within a given cell type. Microarray technology has
become the predominant method of choice for investigation and research involving gene
expression. In parallel with the completion of the human genome project, the number
of public gene expression databases available has risen greatly in recent years.
Increasing from 12 in 2000 [B0OO] to 42 in 2005 [GO05]. Microarray databases are ideal
tools for many research areas including developmental biology, evolution theory,
discovering the function of an individual gene/protein, and in the search for new
pharmaceuticals. They also allow for the identification of genes that have positive
impact, such as which genes are responsible for desired traits in crop plants to improve
yield. Several microarray databases have been established exclusively for plant
genomes. In summary, since microarray technology was first introduced in the late
1990’s it has rapidly taken a key position among molecular research tools. This work
attempts to describe and evaluate publicly available web-based microarray databases as

tools for biological research.



1.2 Contribution of this Work

In this thesis we attempt to assess current public microarray database
implementations. To our knowledge, there is no comparative study available to date
that provides a comprehensive evaluation of this important class of biological databases.
This work compares several of the existing microarray databases in terms of their data
management, querying capabilities, and presentation of query results to the users. For
these implementations, we examine and identify some limitations that impact querying
or results presentation. Based on this identification, we provide suggestions for areas of
improvement. As a look toward the future of these databases appendix D presents a
thorough discussion of recent research efforts toward handling image data from both
microarray and proteomics experiments for improving future implementations.

1.3 Organization of Thesis

This thesis is divided into 8 chapters. Chapter 1 is an overview of the project
and contribution of this work. Chapter 2 provides a general background for
understanding microarray databases. Three different aspects are covered. Firstly, a
description of how microarray data are generated, described, and interpreted. Secondly,
we provide a brief introduction to the basics of microarray database architecture.
Thirdly, other gene expression techniques are reviewed and compared to microarrays.
Because selecting and defining the data types and descriptors is important to effective
querying, Chapter 3 reviews the microarray data type definitions, standards, and data
management techniques. The metadata structures for data exchange between databases

are also described. Six example microarray database implementations are contrasted



and summarized in tables. The background provided in chapter 3 helps the reader to
understand the example queries of chapter 6 run on the same six example databases.
Chapter 4 describes and summarizes the main components of microarray database
interfaces. Software tools for results visualization provide an important extension to the
utility of these databses. An introduction to some of these tools is provided with
graphical illustrations. Chapter 5 explains the importance of microarray databases as a
tool for biological research. To illustrate how querying these databases supports
research, five different study areas of genetics relying on microarray experiments are
defined and examples provided from referenced research publications. Chapter 6
presents illustrated example queries using screenshots from each of the six example
databases whose data management approach was summarized previously in chapter 3.
In chapter 7 we describe and assess the limitations among currently implemented
microarray databases. We then suggest solutions to address these limitations. Finally,

chapter 8 presents the conclusion and future work.



CHAPTER 2

OVERVIEW OF MICROARRAY DATABASES

In order to better understand the design decisions and comparative analysis of
microarray database implementations, this chapter provides background and review of
several important aspects in generating and managing microarray data. Section 2.1
provides terminology background and a basic review of the scientific detection
technique by which the microarray data are generated. Section 2.2 provides an
introduction to the basic architecture of the microarray databases by looking at both the
platforms and object models. In addition, data storage statistics are provided. Section
2.3 describes two other gene expression techniques that result in data often stored in
microarray databases, these are EST and SAGE techniques. Finally, use of SAGE is
compared with microarrays.

2.1 Reviewing Microarrays

Microarray techniques are relatively recent, but have taken a position as one of
the most useful for studying genetic information. This section provides an introduction
to four aspects of microarray techniques. First, we review the important basic
terminology and biological concepts for microarray data. Second, we provide a brief

technical history for the basic design of microarrays. Third, we outline the scientific



process of generating and detecting data using microarrays. Fourth and finally, we
provide an overview of research applications to which microarrays are particularly
suitable.

2.1.1 Terminology

Microarray: also called gene array, or DNA chip; a small solid substrate to
which a known set of DNA sequences is fixed for purposes of identifying unknown
DNA samples based on the pattern of matches.

GeneChip: a registered trademark for a commercial microarray manufactured
by Affymetrix, Inc. that is sometimes informally used to refer to DNA microarrays

Biochip: a set of microarrays, allowing higher throughput and parallel testing

Expression: when a genetic sequence on the DNA is utilized to produce the
protein that it encodes two stages occur, first translation to make an mRNA template
and second transcription to make the protein. These two steps result in a protein
product that is the expression of the gene.

DNA: Deoxy-Ribonucleic Acid, a chain molecule that is the basic unit of
biological information passed from one cell to another during cell division, including
cells involved in reproduction for all forms of life. Two complementary strands exist for
each molecule and form a chromosome. Where the strands are separated a short single
strand sub region serves as the template to produce a temporary complement that
becomes an mRNA molecule. This is the transcription step in expression.

Bases: DNA is made up of four different nucleotides or bases, adenine,

thymadine, guanine, and cytosine commonly seen as A, T, G, and C respectively in



DNA sequence representation. When two complementary DNA strands are paired
together, the A or adenine nucleotides of one strand bond most strongly to the T or
thymadine of the opposite strand. Similarly the G or guanine bases bond most strongly
to C or cytosine. DNA bases between two different strands naturally only pair T-A and
G-C. All microarray technology is based on this rule.

mRNA: These are short single stranded subsections of DNA that are copied into
molecules for temporary use as templates to assemble protein sequences in the
translation step of expression. RNA is similar to DNA except that the thymadine is
represented by a slight chemical variant known as uradine or U in sequences. mRNA
may be an edited version of the RNA copied from the original gene, the sequence can
be shortened or spliced before the protein is made so that one gene may encode several
proteins.

cDNA: also called complementary DNA, is synthesized by researchers under lab
conditions and does not occur in nature. cDNA was used in early microarray designs;
it is now common to use a larger population of sequences shorter than cDNA. Each
cDNA is the complementary strand to an mRNA, therefore at each position having a C,
G, A, or U on the mRNA there will be a G, C, T, or A respectively on the cDNA. The
cDNA population or /ibrary will be fixed to the microarray surface, and then each
particular mRNA from an unknown sample adheres only to a matching cDNA
sequences and forms a tightly bound double stranded complex.  The closer the match,

the tighter it is bound.



MGED: The definition provided on their website http://www.mged.org/
summarizes the organization well, “The Microarray Gene Expression Data (MGED)
Society is an international organization of biologists, computer scientists, and data
analysts that aims to facilitate the sharing of microarray data generated by functional
genomics and proteomics experiments. The current focus is on establishing standards
for microarray data annotation and exchange, facilitating the creation of microarray
databases and related software implementing these standards, and promoting the sharing
of high quality, well-annotated data within the life sciences community. A long-term
goal for the future is to extend the mission to other functional genomics and proteomics
high throughput technologies”.

MAGE: Microarray Gene Expression group. A group within MGED dedicated
to developing standards for microarray data and databases. These standards include
MAGE-ML, an XML based metadata format derived from their Microarray Gene
Expression Object Model (MAGE-OM). MAGE-OM was developed and described
using the Unified Modeling Language (UML) to the specifications of OMG (Object
Management Group, another international consortium that establishes standards for data
modeling. In addition the MGED Ontology Working group is developing an ontology
for microarray data types, details of which are provided at their websites
http://mged.sourceforge.net/ontologies/MGEDontology.php and
http://mged.sourceforge.net/ontologies/MAGEontologies.html. These standards began
development in 2001-2002 and for many microarray databases are now either in use or

planned for future implementations.



Transcriptome: The complete set of mRNA transcripts representing all
expressed genes in a particular cell under a particular set of conditions. Microarray
databases essentially store transcriptomes for analytical comparison. There may be
hundreds of transcriptomes associated to an organism under normal conditions, and
potentially thousands under different experimental conditions.

UniGene: A publicly available system for partitioning and organizing gene
entries from the gene sequence repository GenBank into a nonredundant set of gene
clusters. UniGene is a cDNA array based source of data for searching, mapping, and
describing transcriptomes. UniGene therefore benefits microarray experiment design.
2.1.2 History of Microarray Databases

The concept of commercial array kits consisting of tiny wells for detecting a
particular sequence began in the 1980’s with proteins which bind to a specific antibody
(immunoassays), the antibody molecule being chemically fixed to a small plate. From
these techniques came the goal of a similar DNA-based assay whose main technical
challenge was increasing the assay sensitivity to detect tiny quantities of DNA [EC99].
It was not until the 1990’s that commercially viable DNA microarrays on small silicon
chips became available. A California based company, Affymetrix lead by researcher
Stephen Fodor, developed one of the first chips in 1993 (holding one million
sequences), which they named GeneChip. Affymetrix are the most widely used
microarrays and the company has an important role in development of standards for this

technology.



Since 2000, microarrays have flourished in parallel with the success of the
Human Genome Project as a tool for genetic study and source of high throughput data
resulting in microarray specific searchable databases as well as standards for storing
their data. Microarray databases are a natural extension of earlier gene expression
databases. Because microarray data is high volume and efficient to produce, in the five
years between 2000 and 2005 the majority of gene expression databases predominantly
contain microarray data and many exclusively store microarray data.

Table 1 below illustrates how recently these databases have been developed.
The list contains several important databases, which are the focus of the examples in
chapters 3, 6, and 7 in this work. In the table, the year established is the year of first
listing in the annual publication The Molecular Biology Database Collection: Update from

the journal Nucleic Acids Research. The collection included over 700 public biological

databases by 2005. Among those, the number of databases specializing in expression
data has steadily risen from 12 in 2000 [BOO] to 42 in 2005 [GO5]. Microarray
experiments have been either the major or exclusive source of data for most gene
expression databases since 2002.

2.1.3 Detection Technique

The chip has known sequences of synthetically produced DNA matching those

from genes fixed to its surface and indexed. Affymetrix, Inc provides 60 million probes
for its commercial chip sets, these probes are the short DNA sequences, which are fixed

o the chip. Available chip sets cover several species, and can detect specific subregions



Table 1: Timeline of Recent Microarray Database Implementations

Database
name

Year
established

Comments

SMD

2001

By 2002 only 19 gene expression entries in the Nucleic
Acids Research Collection, of those only 2 are
specifically listed as “microarray”’; SMD and yMGYV for
yeast (at the time of this writing yMGV website exists,
but was not updated since 2003 when it was withdrawn
from the collection).

GEO

2002

One of the first microarray databases to follow formal
data structures recommended by MGED.

Hugelndex

2002

Hugelndex provides data exclusively from the human
genome.

ArrayExpress

2003

Although microarrays were already the main source of
gene expression data in 2002, among new expression
database entries for 2003 only two were specifically
listed as microarray databases; ArrayExpress and
TRANSPATH. (Transpath quickly evolved into a family
of databases and like several other databases at this time
switched from public to commercial status, charging a
license fee for access)

EMAP

2004

EMAP is a graphical platform extension for querying
two mouse gene expression databases, EMAGE and
GXD.

CEBS

2004

This is the Phase 1 of a long-term 10-year goal of
expanding capability through several other phases.
Phase 1 includes microarray gene expression data,
toxicology/

pathology data, and associated analysis tools.

CIBEX

2004/2005

Only a preliminary launch. Well designed, with focus
on compatibility with ArrayExpress and GEO. Very
few data entries stored as of 2005.

within genes. Most interest in microarray technology focuses on gene expression, but

microarrays are also available which look at noncoding DNA, not only the 3% that

encodes genes for proteins.
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All microarray assays are based around five basic experimental steps: 1) design
of the biological query, 2) preparation of the sample, 3) biochemical reaction on the
chip, 4) mechanical detection of the assay, and finally 5) data visualization and
modeling. In a typical experiment sample DNA from a cell culture or other source
representing the query will be prepared, and typically includes chemical attachment of a
small fluorescent molecule for later visualization. Each grid position contains many
copies of the same known sequence and is able to collect either a few or many copies of
the matching sequence if it is present in the sample, therefore important data for relative
amount of a particular sequence present can be detected as the intensity of the signal.
When a sample of DNA is placed in solution over the chip sequences those sequences in
the sample that highly match some on the chip will chemically attract with higher
affinity then those that have a lesser match. This attraction and binding is known as
hybridization of the base pairs. By using precise washing conditions those sequences
with the best matches will remain in place while the weaker held less close matches are
washed away. The matches are then detected by a scanner as spots and the images
captured.

In the following diagram 2.1 taken from MIT (Massachusetts Institute of
Technology) open source internet learning modules, we see the steps of a microarray
experiment. This example correlates to the 5 step definition given above of a
generalized microarray experiment as follows: Step 1 experimental design is complete

before RNA isolation. Step 2 preparation of the sample includes diagrams A, B, and C
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below. Step 3 hybridization is in diagram D. Steps 4 and 5 detection and data analysis

occur in diagram E.
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Figure 1: Illustration of microarray techniques
In order to understand the signal interpretation from figure 1, assume red
represents mRNA from a normal cell of a particular type, green represents mRNA from
the same cell type experimentally exposed to pesticides. Where the array shows red

spots, the normal cell is expressing more of that particular gene than the pesticide-
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exposed cell. Similarly, where the array shows green spots the pesticide-exposed cell is
making more of that gene product than the normal cell. Where the spots are yellow
both the normal and pesticide-exposed cells make the same amount of those genes.
This array tells us which genes are affected (spots that are red or green instead of
yellow), how they are affected (reduced or amplified expression) and how much they
are affected (degree of deviation from normal expression).
Explanation of example experiment in figure 1:
A. Isolate samples of RNA from two cell groups, the control and the experiment
B. Generate more stable two stranded cDNA version of each RNA sequence
C. Label 2 RNA samples with 2 different colors of fluorescent dye; for example the
known control in red vs. the experimental in green
D. Mix two labeled RNAs and hybridize to the chip
E. Make two scans, one for each color. Combine the images to calculate ratios of
amounts of both RNA samples from the control and the experimental
preparations that bind to each spot.
Figure 2 below provides a more detailed example of part of a microarray data grid
image showing the combinations of red and yellow fluorescent light from the signals.
An additional point should be clarified regarding microarray experiments. The presence
of an mRNA molecule does indicate that the protein will be synthesized but the rate of
synthesis and post-synthesis chemical modification are variable. As a result, the

concentration of proteins over time cannot be exactly determined by DNA microarrays.
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Figure 2: Fluorescent signals of a microarray data grid image

Protein microarrays have been developed instead for this purpose. This work focuses
on DNA microarray data, please see appendix D for a discussion of protein analysis.
2.1.4 Applications

Microarrays are able to provide information for an entire genome, equivalent to
a snapshot of all possible genetic expression by a particular cell under a given set of
conditions. Microarrays are important to functional genomics (study of gene product
function) because they allow visualization of how genetic expression patterns change
under different cellular, physiological, and toxicological environments. For example,
how cancer cells differ from normal cells, how cells respond to decreased nutrients, how
cells respond to the presence of trace pesticide (toxicogenomics) or a new medical drug
(pharmacogenomics). Individual genetic profiles can be tested to determine relative
susceptibility to diseases, as nearly all diseases are accompanied by a change in

expression profile.
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Figure 3: Roles of microarray data for medical research

In figure 3 the comparison between normal and disease genetic expression
patterns is shown. Changes to those patterns after cell or tissue exposure to either
potential toxins or pharmaceutical treatments are areas of intense research focus
[SHTKLD9S].

2.2 Basics of Microarray Database Architecture

In this section we provide a brief overview of some architectural choices that are
seen among typical microarray database implementations including choice for platform,
recently developed object models such as the standard recommended object model
designed by the MGED group, typical scale for amount of data stored, and security

issues.
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2.2.1 Platforms

The platforms used for microarray database implementations have considerable
variety. The implementations may be based on traditional relational database design,
object oriented design, or a combination of both. Table 2 below provides a summary of
the platforms used by six example implementations.
2.2.2 Object Models

Development of a single object model for unified data representation is an
important goal in microarray database design. Use of a common model contributes to
achieving integrated data storage and management. The model also simplifies
modification and design of software to analyze and display data sets. The MAGE-OM
(Microarray Gene Expression Object Model) is a data object model that attempts to
define standard objects for gene expression. It was developed in 2003. MAGE-OM
follows OMG (Object Management Group) specifications. It is very large and complex
data driven model, much as the data types and relationships it helps to organize. It is
too large to be reproduced here, but may be found at the following web link
http://www.mged.org/Workgroups/MAGE/mage-om.html. The top level MAGE-OM
view shows a broad outline of the experiment, including the name, description,
associated publications, providers and BioAssays. This object model was developed by
the Microarray Gene Expression Data (MGED) Society who also developed standards

for data exchange and minimal information for submissions (MIAME).
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Table 2: Platforms for Microarray Database Implementations

Database

Description of platform

ArrayExpress

Oracle database with query interface in Java servlets using Tomcat and
Velocity. 1) assuming unix and the Oracle RDBMS, can create the DB
on local computer scripts available on site. 2) J2EE application server
required for software as additional query interface

CEBS

Implemented by NCT (National Center for Toxicogenomics). Server
machines and database management information not available.

GEO

Implemented by NCBI; details not provided for this entry in the NCBI
handbook of their databases located at:
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=handbook.chapter.337
NCBI defines GEO as having a flexible and open design, acting as a
centralized molecular abundance data distribution hub.

EMAP

Important software component in platform for graphics handling:
MAPaint designed to executed on the UNIX operating environment
(MacOSX, PC-Linux, Solaris or Irix).

The program MAPaint and MA3Dview requires X Window
environment with OpenGL and Motif libraries to run. CYGWIN
provides an Xwindow emulator for MSWindows users.

SMD

The SMD database server is currently an eight-processor Sun V880,
which has 32GB of RAM installed. Their web server is an eight-
processor Sun E4500, with 8GB of RAM installed. Oracle Server
Enterprise Edition version 9i. Relational database model. All source
code freely available. Internet access.

Hugelndex

Object relational model implementation. Uses PostgreSQL 7.1
relational DBA and 4 tables for the schema holding data on
experiments, expression levels, experimental protocols, and genes.

Although MAGE-OM is recognized as an important model for new microarray

database, it has limitations. For example, it cannot include modeling for clinical data or

protein data. To address the protein modeling limitation the designers of CEBS

extended MAGE-OM and provide a new object model used in CEBS, the Systems

Biology Object Model (SysBio-OM). SysBio-OM provides integration of proteomics

and metabolomics data with microarray gene expression data.

source and compatible with multiple computer platforms.

The model is open

The UML (universal
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modeling language) description of the complete SysBio-OM is publicly available at
http://cebs.niehs.nih.gov/SysBioOM/. MAGE-OM is implemented in ArrayExpress
and CIBEX (forthcoming from the DNA Data Bank of Japan). It is a component of
SysBio-OM in CEBS. It has been mapped to SMD (Stanford Microarray Database)
despite the difficulties posed by the fact that SMD is not an object-oriented database,
but rather a relational database [HGBDMSO03]. The mapping from the MAGE object
model to a relational model can be difficult. The majority of microarray databases are

relational implementations, which may slow the adoption of MAGE-OM.

Table 3: Data Storage Statistics for Six Example Databases
Database Description
As of November 2004, ArrayExpress contained data from
more than 12,000 hybridizations covering 35 species.
Relative to the content twelve months earlier, ArrayExpress
was reported to have grown more than 10-fold. In 2003 the
data stored represented 400 Gbytes or over 1 billion
microarray data points.
CEBS Statistics not found.
As of mid-2004, GEO contained data from more than 30,000
submissions covering more than 100 species. The GEO
website reported that their records represent results from over

ArrayExpress

GEO 600 research groups. The data are accessed over 15,000 times
each weekday. Bulk FTP downloads average 30,000 per
month.
EMAP Statistics not found.
As of mid-2005, SMD had data from over 57,000
SMD experiments with over 35 organisms represented. SMD

contributed to over 250 publications and stores over 1.6
billion microarray data points.

Published statistics from 2002 state 59 experiments, and

Hugelndex 7,000 genes represented. This number has likely increased

greatly since then. Recent data not readily available.
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2.2.3 Data Storage Statistics

The volume of data stored in microarray databases increases every year. The
values provided in table 3 above should be regarded as a snapshot providing the scale of
data storage requirements for microarray databases.
2.2.4 Security

Security is important as with any database. There are two main areas of
concern, privacy for unpublished data and privacy for sensitive portions of published
data. For the first concern, researchers typically wish to submit unpublished data as
they gather it during an experiment so they are able to use the data storage,
organization, query, and analysis features of the database. To protect this data before
the research is published, it is not accessible to the public and protected by a basic
login/password combination. For the second concern, clinical data may contain
information about individual patients, which must be removed from the data sets before
it is made publicly available.

2.3 Other Gene Expression Techniques

Before microarray technology became the predominant source of gene
expression data, two other techniques were important [MO1]. These began in the 1990s
and still have a role in genetics research, with specialized public databases and
repositories being maintained. The first is the use of expression sequence tags (ESTs)
and the second is SAGE (Serial Analysis of Gene Expression). We provide descriptions

of both in this section, and briefly compare SAGE to gene microarrays.
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2.3.1 EST Technique

An expressed sequence tag or EST is a short sub-sequence of a transcribed DNA
sequence. ESTs can represent both gene encoding and non-coding regions of DNA.
The use of ESTs began as a method to identify gene transcripts, but later has an
important role in gene discovery and sequence determination. Because of efficiency,
microarrays have largely replaced ESTs. The basic EST technique sets up a simple
single pass sequencing of the cDNA sample. This produces a sequence of low quality
short fragments of between 200 to 600 nucleotides. The short fragments usually provide
enough information to serve as “tags” that will uniquely hybridize to the full gene in
chromosomal DNA. This allows detection of the known gene in a sample without the
expense of full high quality sequencing. ESTs can be used to design probes for DNA
microarrays. Some databases are dedicated to EST data including NCBI dbEST (part
of GenBank).
2.3.2 SAGE Technique

Serial analysis of gene expression (SAGE) is a genetics research technique that
provides a snapshot of the messenger RNA population in a particular sample. The
original technique was developed circa 1995 and was important to gene expression
studies in the years preceding the emergence of microarray databases. SAGE is a
variant of the techniques using ESTs (described above), and also results in a set of short
sequence tags. SAGE differs from standard EST techniques in that it records the
abundance of each mRNA in the population. This quantitative data has been reported as

slightly more precise than microarray signal intensity. In cases of very low copy
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number for a particular mRNA this can be important. Additionally, SAGE results are
somewhat more reproducible and serve as a quality control against which microarray
data can be measured.
2.3.3 Comparing SAGE and Microarrays

There are four important distinctions between SAGE and microarrays [PMHO02].
Firstly, SAGE does not require any prior knowledge of the sequences being analyzed
whereas microarrays use hybridization to known sequences on the microarray chips.
Secondly, in SAGE experiments each mRNA sequence undergoes a chemical
processing step that increases the number of copies for that mRNA. As a result, very
low levels of a particular mRNA can be accurately detected and estimated. Microarrays
have no such equivalent way to amplify the quantity of low abundance mRNA
sequences. Thirdly, Microarray experiments are much cheaper to perform. So large-
scale studies do not typically use SAGE unless a transcriptional profile is needed for
poorly characterized genes or species. Fourthly, because SAGE is a well-defined
technique one can readily make direct comparisons between SAGE experiments.
Microarray experiments are more difficult to directly compare because of the variation
in protocols, array design, and probe design. This presents a challenge when attempting

to adjust for random and systematic errors since the error sources differ widely.
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CHAPTER 3

DATA MANAGEMENT FOR EFFECTIVE QUERYING

Effective querying depends to a considerable extent on the choice of data types,
design of the data model, and structure of metadata files. These must be selected
carefully for biological databases to provide the most relevant query results to the users.
In this chapter we describe what information about microarray experiments is stored
and how it is organized. We first identify the important conceptual data types in section
3.1 needed for describing the stored information. Among different implementations
there is considerable variation in what data are required for a complete entry. This has
resulted in a clear need for standards. One solution is the minimum set of standards
MIAME, described in section 3.2. In order to facilitate exchange, suitable metadata
structures are required. Section 3.3 describes the two metadata options in common use,
XML files and text files. Section 3.4 provides a brief introduction to six important
microarray databases as examples of actual implementations. This set of six is
referenced later in chapters 5 and 6 also. Tables in this section provide an outline of the
data types and data models used by these implementations. The tables illustrate the
variation among different microarray databases and reflect the importance of MIAME

and MAGE-ML to achieving future standardization.
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3.1 Need for Standards in Experiment Submission (MIAME)

Although many significant results have been derived from microarray studies,
one limitation has been the lack of standards for presenting and exchanging such data.
Minimum Information About a Microarray Experiment (MIAME) describes the
minimum information required to ensure that microarray data can be easily interpreted
and that results derived from its analysis can be independently verified. It concentrates
on defining the content and structure of the necessary information rather than the
technical format for capturing it. It is platform-independent but includes essential
evidence about how the gene expression level measurements have been obtained.

MIAME is being developed by the Microarray Gene Expression Data society
(http://www.MGED.org) and is widely regarded as the de facto standard for microarray
databases. Most microarray databases either use MIAME already for submissions,
and/or data export, or they have plans to do so in their published future goals. To
illustrate this point, among the six example microarray databases selected for further
discussion, four of them (ArrayExpress, CEBS, GEO, and EMAP) have achieved
MIAME compliance and two of them (SMD and Hugelndex) have compliance as a
future goal.

3.2 Defining Data Types and Parameters

In this section we identify the data types that are most central to a microarray
database. These can be broadly grouped into two classes. First, the signal data is used
to identify and quantify gene expression. Second, the descriptive information for the

experiment and gene provide a meaningful context for interpreting that data.
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3.2.1 Raw and Processed Signal Data Types

There is an important distinction to be made in characterizing the output from a
microarray experiment. That distinction is between 1) the raw data files of fluorescent
signal images from the microarray sample and 2) the processed signal data, which is a
numeric data set from the statistical interpretation of raw data signal values. Raw data
are usually generated as 16-bit TIF images one for each color of the fluorescent tags and
so two TIF images per microarray. One image represents only one set of conditions and
many images result from one experiment. Each image is typically 22-28 MB and as
high as 200 MB in size [LGTC04]. Commonly, microarray databases do not store
images because of space limitations. The processed signal data are the more valuable of
the two because it provides the basis for comparisons in gene expression that answer
research question.

The quality and accuracy of signal data are particularly crucial since it is the key
source of information for researchers querying microarray databases. That quality and
accuracy in turn depends on how carefully the raw data was processed. The best option
is to provide the raw data if possible, so that users may reprocess it using newer and
more accurate tools and techniques as they become available. The importance of raw
image data is universally recognized for quality control even by databases that do not
store them. The database ArrayExpress has chosen not to store the raw images, but
instead requests that contributors keep them on local servers and provide hyperlinks to

the images in their submissions. Although many databases are curated (administrators
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monitor the quality of submissions) and basic standards are generally maintained, the
responsibility for quality and accuracy of processed data mostly falls to the submitter.
3.2.2 Gene, Array, Experiment, and Sample Data Types

In addition to the signal data from the microarrays themselves, it is essential to
provide descriptive data about both the genes that are identified and the experiment for
which the microarrays were run. It is this information that creates the context for
interpreting the signal data. It is also in choosing and presenting the descriptive data
that we find the most variation among database implementations and the type of
querying that can be done.

There are many different variations on selecting and organizing microarray
experiment information in a database. Figure 4 below [WBBCIMO03] shows one

possible way to organize and classify data types from microarray experiments.
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Figure 4: Illustrative diagram for microarray data types

25



In trying to determine a good illustrative classification, the more authoritative
examples will be based on the MGED recommendations for MIAME standards
(described further in section 3.2 and appendix B). The following is a simple
categorization adapted from MIAME standards and reflects the types of information
most important to include in a microarray database: 1) Gene annotation data
(information about the gene, often done as either a hyperlink to a genetics database or
an import of files from such databases for local use). 2) Sample descriptive data
(information regarding the cell type, tissue, organ or species used in the experiment). 3)
Experiment design data (including identification of research group conducting the
experiment, brand of kit used, and physical conditions affecting the experiment such as
temperature and time parameters). 4) Array design data (information regarding the
choice of reporter molecules to generate the signal, whether the basic design was for
spot arrays that use cDNA or Affymetrix arrays that use the short overlapping fragments
of DNA termed oligonucleotides or oligos).

3.3 Metadata Structures for Microarray Data

For biological data in general and microarray data in particular the issues of data
management are challenging. The complex data types and highly specialized nature of
both the data and the user group make it particularly important to determine the best
metadata structures. One of the most important goals for many public microarray
databases is the exchange of data. To maintain the greatest distribution and the most
complete data collection possible is central to the value of these databases as research

tools.
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Metadata structures have three important goals. The first is to represent data in a
way that is scientifically meaningful and valuable to the researcher making the queries.
The second is to represent as much relevant information as possible. The third is to
represent the data in a consistent way so that efficient data exchange and comparisons
can be made. Although these three are achieved to different degrees among
implementations, many have important recognized limitations. In addition, in their
documentation many databases list improved data exchange and increased breadth of
data types as their future goals. At present there are two alternatives for metadata file
format common to microarray databases, customized XML and tab delimited text files.
We now briefly look at the characteristics of each.

3.3.1 XML for Microarrays: MAGE-ML

The nature of microarray data and the queries on that data is such that the data
are easily represented as objects. Experimental results typically require contextual
information in close association with each data entity. Because of this, many
microarray databases are most successfully modeled based on object oriented approach.
In addition to being suited to object encapsulation, XML is also the standard for web
based exchange of data. Public microarray databases are nearly all web based
implementations. Therefore, XML as the standard for metadata has consistently been
regarded as an ideal candidate for microarray metadata storage and exchange.
Published articles dating from 2001 for several microarray databases state use of XML
for this purpose as one of their core future goals. As early as 2002 a strong consensus

emerged to specifically use MAGE-ML rather than slightly older specifications such as
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GEML (gene expression mark up language) and GeneXML. Consistent with this trend,
among the six example microarray databases selected for further discussion, four of
them (ArrayExpress, CEBS, SMD, and EMAP) store metadata in MAGE-ML format
and two of them (GEO and Hugelndex) have storage capability for MAGE-ML as a
future goal.
3.3.2 Tab-Delimited Text file

Flat file or tab-delimited text file structures are used in the earlier and more
basic implementations. They may be used for submissions to the database, or for
download of query results. Flat files offer the advantage of the broadest compatibility
across platforms. Unfortunately, that compatibility is offset by the disadvantage that
they do not provide a common organization for the data. Further, text files present a
more serious limitation, image data from sample annotations and experiment
annotations can not be included.  Although common organization would simplify
information exchange among microarray databases, the limitation regarding image data
is such that text files will in future be replaced by XML where possible. Text based
metadata persists because many microarray database implementations use Oracle
software and are based on a standard relational database model. By contrast, MAGE-
ML is based on the object model MAGE-OM from the same standards group. SMD
(Stanford Microarray Database) for example, by the year 2005 was able to store data in
MAGE-ML format but because it is a relational database rather than object oriented that

capability was not easily achieved.
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3.4 Example Implementations

In this section we review six example microarray database implementations to

determine what approaches are actually in practice for selection of data types and data

management.

management already discussed earlier in this chapter.

The provided tables cover the three important aspects of data

First, we consider the

experimental data types stored. These include raw image data, other image data, and

notes about the stored experiment data. Second, we present the formats used for both

upload of submitted data and download. As discussed earlier, the choice of formats is

important for the efficiency of data exchange not only between researcher and databases

but between different databases.

Table 4: Example Microarray Database Implementations

Database

Description

ArrayExpress

Very large collection. One of the first implementations of a public
microarray gene expression data collection.

CEBS

Chemical Effects in Biological Systems (CEBS) knowledge base.
CEBS will store data from both microarray and proteomics
experiments, it is in the process of being developed. The website is
operational at the first of six phase levels.

GEO

Gene expression omnibus. Provided by the NCBI (National Center for
Biotechnology information). Expression data repository and online
resource for expression data from any organism.

EMAP

Edinburgh mouse atlas: a digital atlas of mouse embryo development
and spatially mapped gene expression.

SMD

Stanford Microarray Database. Stores both raw and normalized data
from microarray experiments. Organized at Stanford University in
California. Primarily stores data from research conducted at Stanford
University.

Hugelndex

Human Gene Expression Index, expression levels of human genes in
normal tissues.
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Third, we look at the data management approaches adopted by these implementations.
The tables provide a summary of two levels of data categorization. Table 4 above
briefly describes the six databases selected as example implementations.
3.4.1 Data Types Stored

As has been discussed in sections 3.1 and 3.2 the choice of what data to store
has some variation. All implementations at the minimum store signal data, some
information about the genes identified, and basic information about the research group
submitting the results.  Table 5 reflects some important differences in the
implementations. For example, ArrayExpress (and, until recently, also GEO) chose not

to store raw image data.

Table 5: Stored Image Formats in Example Databases

DB Raw Other Notes on stored experimental data
name | Images Images
Arra Includes experiments for time series
Y No none responses. Stores data from different
Express .
species.
Antibody arrays, tissue arrays, comparative
Yes; genomic hybridization (arrayCGH), serial
GEO recent none analysis of gene expression (SAGE), and
mass spectrometry proteomic data.
EMAP | Ves voxel Tissue types and subtypes defined using a

(See table 3.4.1) standard ontology.

archives TIF; has | Stores data from different species. Stores
SMD Yes normalized GIF both older cDNA arrays and oligonucleotide

images also arrays such as Affymetrix.
Restricted to gene expression in normal
Huge .
Index Yes none human tissue. Serves as a data store for

normal controls.

Includes toxicological and chemical effects
CEBS yes none data, including phenotypic profiles for
chemicals. Has proteomics data.
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EMAP uses the concept of a voxel to represent the domain of expression for a particular
single gene at a particular stage in mouse embryo development, and saves each domain
as an independent 3D (three dimensional) image.
This concept of voxel to represent a simple 3D image data point is familiar to spatial
database implementations, but the variation used in EMAP is unique among microarray
databases. The presence of SAGE data in GEO is relevant. As discussed in chapter 2
(section 2.3.2) SAGE provides a way to compare and validate microarray results,
particularly regarding quantity when expression levels are low.
3.4.2 Data Submission and Download Formats

Data upload is usually for submission of experiment results. There is
considerable variation among databases for data uploads. The most common methods
to upload data are web based forms, FTP, email. For downloads we see the importance
of text files (GEO, Hugelndex) despite the limitations discussed earlier in section 3.3.
MAGE-ML is used by ArrayExpress and CEBS, while EMAP and SMD also use
special formats suited to custom graphical visualization tools. Table 6 below outlines
the methods for data uploads and downloads among the six example databases.
3.4.3 Data Management Approaches
The two tables below summarize the data abstractions used for data management across
the six example microarray database implementations. The approaches used are
approximately consistent with the basic outline of MIAME standards. In some cases
such as EMAP the graphical nature of the data storage and indexing requires a

specialized solution using voxels as described previously in section 3.4.1.
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Understanding the approach and terminology for data management will help to clarify

how queries are formed when we discuss them in chapter 5.

Table 6: Methods of Upload and Download in Example Databases

bB Upload (submissions) Download
name
Can use MIAMExpress web | The expression data can be exported as tab-
based tool to generate delimited text, and MAGE-ML format. Electronic
MAGE-ML format or images available in standard .png and .svg format.
Array | directly submit in MAGE- Data from ArrayExpress may be exported into
Express | ML. May also submit Expression Profiler (http://ep.ebi.ac.uk/EP/), an
spreadsheets with associated | online tool set for gene expression analysis.
image files. Files sent via
FTP or email.
Data options are data table GEO data are available for bulk download via
only, or full metadata/data FTP. GEO DataSets and original records may be
GEO table records. Format downloaded in a custom format (known as Simple
options are HTML or SOFT | Omnibus Format in Text (SOFT). Used to
(Simple Omnibus Format in | represent and exchange Gene Expression Data.)
Text). All records and raw data can be downloaded.
Researchers may email or Provides an FTP download area from their
post submissions to their resources weblinks:
EMAP Editorial Office. Or http://genex.hgu.mrc.ac.uk/Resources/intro.html.
spatially map data using Software for EMAP / EMAGE may be installed
MAPaint software, and locally for viewing 3D images and mapped gene
submit electronically. expression patterns.
Requires FTP transfer. All data for an individual microarray can be
Accepts proprietary formats | downloaded. It can be filtered on site first. The
SMD from Stanford University online analysis tools provide pattern detection and
Shareware Scanalyze and clustering; their files can be downloaded and
GenePix for processed viewed in TreeView (Stanford University
microarray data. shareware).
Affymetrix data submissions | Files are standard tab delimited plain text. From
are accepted by contacting interface may download a list of genes. Can only
Huge | the administrators for download the data by performing copy and paste
Index | checklist of required steps. May view and analyze the data using a
information and sending it spreadsheet (e.g. Excel) or comparable program.
via email (no fip).
Set of detailed website Once an experiment is selected, links are provided
forms request information. | for downloading data both as text format and
CEBS | Raw and processed data files | MAGE-ML. Other files may also be present from
uploaded via webform some experiments (microarray sample files).
prompts.
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Table 7: Metadata Approaches in Example Databases

bB Highest leve! of data Second level of data abstraction
name abstraction
Experiment. The ArrayExpress 1) Experiment attributes: parameters of the
documentation defines the experiment, laboratory, experiment type,
experiment as the central high species
Array | level data type. It consists of one | 2) Array attributes: accession number,
Express | or more hybridizations, and manufacturer or lab providing array, array
usually a link to a publication. design name
3) Protocol attributes: protocol accession
number and type (uses MGED ontology for
protocol classification).
Three upper level relational 1) Platform: list of elements assayed (cDNA,
database entity types: probe sets, tags) on an array.
1) Platform 2) Sample: references a platform and
2) Sample describes probe signal for each feature (spot
GEO 3) Series or gene) in the array.
The platform and sample data 3) Series: set of related samples common to
tables are stored as text objects an experiment, may include summary data
rather than fields in tables, to tables and analysis.
permit optimal flexibility.
EMAP uses the concept of a The experimental results for mapping are
voxel to represent the domain of | usually to a single embryo. Hierarchy follows
expression for a particular single | tissue classification schemas. Each node has
gene at a particular stage in component “child” tissues. The end or “leaf”
mouse embryo development, and | nodes represent the smallest tissue
EMAP | saves each domain as an components in the tissue ontology.
independent 3D (three
dimensional) image structure in
a separate file. Each submission
record corresponds to a single
gene.
Experiment. For SMD the An experiment is represented by an image of
experiment is the central high the microarray, experiment category and
SMD . .
level data type. subcategory, researcher, organism, and links
to other databases as sources of annotation.
Uses an object relational model. | 1) Experiment attributes: source and type of
The current schema has four the tissue sample
tables describing the following: | 2) Experimental protocols: data for standard
1) Experiments protocols used on the stored experiments
H 2) Experimental protocols 3) Expression levels: processed signal data
uge : .
Index 3) Expression levels for each gene studied, and data values for

4) Genes

quality of expression-level measurements

4) Gene attributes: organized in rows
corresponding to each probe-set on each type
of chip, includes data for the transcript
targeted by each probe-set

33




Table 7 — Continued

DB Highest leve! of data Second level of data abstraction
name abstraction
For Phase [ main data concept is | Metadata will specify standard
the protocol. All data sets operating procedures, observations, and
(graphs, images, numbers) within | measurements to be recorded. Phase I will
CEBS will be linked by include complete sample annotation on a
reference to an experimental very large range of fields. Domain-specific
CEBS .
protocol number metadata will introduce
and its metadata. experimental data sets in each
analytical domain: transcriptomics,
toxicology,
pathology, etc.
1)Image data Measurement specifications for raw and
MIAME | 2)Expression data normalized signal data, Array design
Standards | 3)Annotation data (for the gene, | includes reporter probes annotation.
sample, array, and experiment) Experiment design, Sample description,
Hybridization procedures.

3.5 Summary Diagram

The database ArrayExpress has an associated publication [BPSMSVO03] that
describes the relationships between the databases, the role of MAGE-ML, the use of
MIAME standards, and the importance of exchange with external databases. The
following diagram summarizes the relationships. Figure 5 represents the ArrayExpress
microarray database [BPSMSVO03] and helps to illustrate the points made in this
chapter. The main implementation is in Oracle. MAGE-ML is the metadata exchange
format used for three purposes: 1) to receive data submissions (via MIAMExpress) 2)
Exchange information with other databases and 3) export results to external data
analysis software. MIAMExpress is an external web based service to help researchers
create MAGE-ML files for their submissions. Expression Profiler is web based

microarray data analysis software closely integrated with ArrayExpress.
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Figure 5: Data management, import, and export in ArrayExpress
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CHAPTER 4

OVERVIEW OF MICROARRAY DATABASE INTERFACES

In this chapter we provide an introduction to microarray database
interface design. These are general categories which we introduce here for background.
Specific examples will be detailed later in chapter 6 with illustrative figures. Section
4.1 describes components used in the interfaces. These may include text boxes,
graphical interactive menus or built in tools. Section 4.2 provides examples of the tools
used for query results and data visualization. Because microarray data requires
visualization to provide the most information from its patterns of gene expression, these
tools are important to making the query results informative. Section 4.3 briefly
describes the variety of results structures.

4.1 Web Based Interfaces

The web-based interface provides an essential first point of access for the users.
The designs are uncluttered and relatively intuitive. Users will typically be able to type
simple text entries, select from lists, or navigate through simple graphical objects. In
this section we summarize the basic design approaches. There are some limitations to a
web based interface which must be considered, we briefly examine these. Locally
installed visualization tools provide additional capabilities to overcome them and are

discussed in the next section.
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4.1.1 Simple Text Box or Web Form

The GEO microarray database provides a good example; it is similar to other
NCBI Entrez databases in that both simple and compound query can be achieved using
simple Boolean phrases that may be either combined with, or restricted to various
supported attribute fields. = For example, the query “Type 1 diabetes AND
apolipoprotein NOT Homo sapiens” will return all apolipoprotein related gene profiles
in Type 1 diabetes-related datasets in all organisms except for human [BSTWNLROS].
4.1.2 Interactive Menus or Graphical Point-and-Click

These options are typically provided as part of navigation through an experiment
result set, allowing drill down to specific details on a single data point or ‘feature’ on a
microarray. The designs are intended to simplify navigation between levels of detail.
The first set of selection options for queries is often on very few parameters, helping the
user to narrow down their selection based on general criteria. It is after this initial
filtering step that the user is then able to select the best result candidate from a summary
list. Each item on the list could be a link to an individual candidate gene in answer to a
query, or to annotation and visual data as noted in section 3.3.4 below.
4.1.3 Built in Tools

Many databases provide specialized tools available from within their website for
both the analysis and display of microarray data. Initial queries are typically met with a
list from which the user may make selections for which he or she wishes to see a
detailed result. Since the result may include a large number of simple data points or

values, these tools usually provide charts or graphs either embedded within the same
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page or as a separate pop-up display. The data provided often summarizes microarray
signal intensities, or shows other types of simple pattern distribution data such as
location of gene expression in a cross section of tissue. Such tools are typically simple
in their function and often implemented as Java applets, or Perl scripts.

4.2 Software Tools for Results Visualization

Beyond the tools that enhance data visualization within a browser, many
microarray databases either provide software programs and packages to be installed on
a local machine or recommend open source programs for visualizing results. Such
programs have been developed for the purposes of microarray data analysis and display.
Since visualization of the patterns is important to interpretation, these visualization tools
are a research necessity and their importance in making full use of the information
provided through the databases should not be under stressed.

4.2.1 Clustering Analysis

A natural basis for organizing gene expression data is to group together genes
with similar patterns of expression. For any series of measurements, a number of
measures of similarity in the behavior of two genes can be used, such as the Euclidean
distance, angle, or dot products of the two n-dimensional vectors representing a series of
n measurements. The standard correlation coefficient (i.e., the dot product of two
normalized vectors) conforms well to the basic biological definition for two genes to be
“coexpressed” (expressed at the same time in the same cell). There are several tools
available as open source platform-independent software to perform clustering analysis

on the microarray data query results including Magictool
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(http://www.bio.davidson.edu/projects/magic/magic.html),

and

TreeView

(http://rana.lbl.gov/EisenSoftware.htm). Additionally, some implementations include

their own customized tools for clustering analysis and other types of data analysis.
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Figure 6: MagicTool clustering analysis dendrogram of query output

The normalization graph in figure 6 shows expression level on the Y-axis and

signal strength of the labels in an arbitrary set of units on the Z-axis. Behind the graph

is a cluster analysis dendrogram showing the relationships within a group of genes

based on expression patterns. This type of information regarding expression level and

co-occurrence of expressed genes is valuable in genomics research.
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4.2.2 EMAGE for EMAP

These java tools have been developed as part of the NIH funded Electronic Atlas of
the Developing Human Brain project. The tools replace and extend some of the
C/X11/Motif tools developed as part of the Mouse Atlas project and use the same
underlying image processing libraries. Each of these has been tested under MS
Windows, Solaris, Linux (Mandrake, Redhat) and Mac OSX.

e JatlasViewer: A 3D volume browser providing section and 3D visualization.
The volume data can include segmentations, for example labeled anatomy. The
viewer provides feedback and navigation through the anatomical nomenclature.
Example data-sets for human and mouse embryo.

e Jconvert: An image format converter for generating volume data suitable for the
Atlas Viewers. This allows conversion from a range of 2D and 3D image
formats to the native Woolz format used in the MRC software.

e Gene Expression Viewer: A prototype viewer for gene-expression data that has
been mapped onto a reference volume, for example as obtained by query on the
EMAGE database.

e JReconstruct: A java version of the Reconstruct program. This implementation
is incomplete and currently only allows simple re-stacking of 2D image files.
Work in progress.

e Jwarp Tools: to support 3D warping of data by defined a series of “tie-points” or
correspondences between two data volumes.

4.2.3 Treemaps

Treemaps are a relatively new data visualization technique developed in the
1990’s for space-constrained display of hierarchies. It is unrelated to the branching tree
menus familiar to web browsers. Treemaps are a space-filling map of differentially

colored squares, clicking on a square permits drill down to the next level detail on the
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data. The technique is used as a Microsoft Excel plugin and as of 2005 was being
evaluated for Oracle database user interfaces. They are well suited to microarrays and
allow users to view and query the data from an experiment on a single computer

monitor screen.
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Figure 7: Treemaps rapidly identify genes of interest

In figure 7 users apply “filters” in the control panel to select genes based on
specific quantitative attributes [BDBS04]. In this example, the “average fold-change”
slider was moved to include values greater than two. Other filters not of interest can be

turned off (image marked with circles on the filter options menu pane).
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4.2.4 List of Visualization Tools

Many query results are either graphical data or large numeric sets requiring data
analysis and visualization as maps, graphs, or charts. To illustrate the importance of
having additional tools available to display results sets, the following table provides a

summary of customized tools provided by several important microarray database

implementations.

Table 8: Customized Tools for Microarray Data Analysis and Visualization

Microarray | Provided Tools integrated with the Description
Database web-based interface
o ArrayExpress is an Expression Profiler is an open,
implementation at the extensible web-based
EMBL-EBI (European collaborative platform for
Bioinformatics institute) microarray gene expression,
ArrayExpress o ArrayExpress recommends | sequence and PPI data analysis,
use of Expression Profiler, | exposing distinct chainable
also developed by and components for clustering,
available at EMBL-EBI pattern discovery, statistics (thru
R), machine-learning algorithms
and visualization.
GEO is an implementation within | GEO uses the NCBI Entrez query
NCBI, and GEO Profiles are fully | system. Entrez has many features
integrated with other NCBI Entrez | including cluster heat maps,
databases such as GenBank, query subsets profiles (for
PubMed, Gene, UniGene, OMIM, | example, a user can locate gene
GEO Homologene, SNP, Taxonomy, expression levels 10-fold higher
SAGEMap and MapViewer. in time point ‘A’ than in time
These databases in turn provide point ‘B”). GEO BLAST
visualization tools and annotation | database contains all GenBank
information. sequences represented in GEO
DataSets and uses NCBI’s
BLAST interface.
o JatlasViewer Visualization tools for 2D and 3D
o Jconvert images. Require Java
EMAP o GeneExpressionViewer environment, may be installed on
o JReconstruct MacOS, MSWindows, or Linux.
o Jwarp
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Table 8 — Continued

o TreeView compatible Clustering and pattern analysis
downloadable files are maps were included in the first
provided for use with a implementation (2001).
separate recommended

SMD TreeView tool. More recent tools have been

o Clustering tools included for

o Pattern analysis maps assessing data quality and

o Data quality tools analysis

o Expression information The current release of the
display tool Hugelndex provides three tools

o Comparison tool with which to access and

o Interactive scatter plot tool | visualize the data stored within

our database. These tools can
Hugelndex . . .
display expression information
about specific genes or compare
multiple tissues or experiments
using Boolean operators or
interactive scatter plots.

o Data Preprocessing Analysis tools for microarray

o Data Comparison signal data and gene expression

o Data Visualization maps; tools are available online

o Identification of through the web site.
Differentially Expressed
Genes

CEBS o Gene Category Analysis
by BioCarta Pathways

o Gene Category Analysis
by KEGG Pathways

o Gene Category Analysis
by Gene Ontology (GO)

4.3 Results Structures

These examples are a brief introduction the results structures for microarray data

queries in web-based interfaces. Separate software programs are available for more

advanced types of visualization including multidimensional representations. The
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software may be integrated into the website or in some cases are separate downloadable
installations.  For many implementations results are simply text, tables, or simple
images. Chapter 6 will provide detailed illustrations of interfaces in current
implementations.

Textual or Annotated: This is the most basic interface type. Data types such as
author, accession number, or other simple typed keywords are used to browse records.
Boxes accepting free text are often restricted by ontology such that only certain words
will be recognized. Misspelled words, or alternate terminology typically yield no
results as spellcheckers and prompts for similar words are not included in most
implementations.

Tabular: Results may be presented as a list containing all relevant genes matching a
query. Data may be provided as a tab delimited downloadable text file, correlating each
feature (positive signal on the microarray) to one row.

Images: Thumbnail images may be provided for browsing, clicking on the thumbnail
will then bring up the complete microarray. Cibex uses this type of navigation, as it
facilitates quick comparison by simple visual inspection.

Navigable Menu: A list may be provided with either the name or other brief
information that the viewer can click and navigate to drill deeper for information.
Some interfaces provide a display of the microarray grid on which a spot may be
clicked to retrieve details.

Graphical Statistics Chart: Visualization of the array data may be presented as simple

line plots, or more detailed graphs. Intensity of expression may be provided as a
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histogram and line chart for each data point, or a scatter plot analysis for s set of points

as in the database Cibex.
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CHAPTER 5

MICROARRAY QUERIES IN RESEACH STUDIES

In this chapter we present a general introduction to the role of gene expression
queries in biological research. Section 5.1 examines in general how querying
microarray databases provides information to help support or refute genetics research
hypotheses. Using references to actual published work, sections 5.2 through 5.6 briefly
describe each of five study areas within genetics. These are organized as general
categories of research to demonstrate the range of genetics studies that benefit from
querying microarray databases. Many different databases and many different queries
may be used for each study area. Because the queries are implemented in part as
predefined field selections to navigate through the data it would not be meaningful to
classify the actual queries. Instead, the data types and data models covered in chapter 3
would serve a good basis for understanding the query constructs (chapter 6) used to
search microarray data.

5.1 Role of Querying Microarrays for Research

There are several important areas of biological research that directly benefit
from querying microarray databases. For a researcher studying genetics, the hypothesis
under investigation is usually not answered directly by placing a single query on the

microarray database. Instead, the hypothesis will be partly supported or partly refuted
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based on patterns and correlations in genetic expression profiles. These patterns are
found by analyzing the results of queries on specific genes and particular experiments
relating to the hypothesis under investigation. Therefore, to the non-researcher a
microarray database may be an inappropriate resource to answer general questions
about gene expression. As with other bioinformatics databases, specialized knowledge
and background is needed to effectively use microarray databases as a research tool.
The brief example queries provided in this chapter are intended to be illustrative of how
the interfaces have been implemented. The options chosen for query constructs and
utility of the results generated may be difficult to assess for a non-researcher. We
postpone evaluation and identification of limitations until chapter 7.

When a researcher begins querying a microarray database there is usually some
degree of navigation through the data, and exploration of the question before arriving at
a result. It is important to note that many biological research databases use simple
selection menus and process the user choices through predefined queries in the system.
Predefined queries are in fact the preferred and recommended method for microarray
databases. The process of making the query is therefore that of an interactive session in
which the researcher is guided towards the area of information that he or she is most
interested in. How that data is presented becomes an extremely important component of
how well the query was answered. Presentation is essential to quality of information for
these types of specialized biological data. This is in contrast to traditional relational
databases where results are simple clearly defined sets of information and data values

typically atomic, rather than dependent on each other as part of a large subtle pattern in
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need of analysis and interpretation. It is important to keep these distinctions and special
properties of microarray databases in mind when viewing the example queries.

Broadly, research through microarray databases focuses queries to determine
two kinds of information. First, to learn what is the normal expression pattern to use as
a baseline. The correct baseline is important for meaningful comparisons to identify
subtle changes. Second, what are the changes to the normal expression patterns for a
given set of conditions and particular sample type (the experimental design)?  The
changes may be associated either with exposure to a toxin, a specific disease state, or a
particular genetic variation. Genetic variations or mutations may offer either neutral,
harmful, or beneficial effects to the organism. The term mutation in a biological
research context does not imply only a negative effect. Recall that some mutations in
hybrid plants improve yield and identification of those mechanisms is also an area of
research.

5.2 Queries for Coexpression Studies

Coexpression is the simultaneous expression of different genes in the same cell
or the same tissue site. There is a large area of research into the possible associations
between coexpressed genes and common roles for those gene products, which would
allow predictions of function and help in gene identification. This type of predictive
research also focuses on gene proximity as noted below in 5.1.3. In the study
Coexpression Analysis of Human Genes Across Many Microarray Data Sets
[LHSQPO04] examine a network of 8805 genes connected by 9.7 million coexpression

links using the Stanford Microarray Database (SMD) and Gene Expression Omnibus

48



(GEO). From querying these databases they were able to identify 220,649 (or nearly
2.2%) of the coexpression links to be present in at least three data sets. Their findings
illustrate the use of coexpression studies in the discovery functionally related groups of
genes, “We show that confirmation of coexpression in multiple data sets is correlated
with functional relatedness, and show how cluster analysis of the network can reveal
functionally coherent groups of genes. Our findings demonstrate how the large body of
accumulated microarray data can be exploited to increase the reliability of inferences
about gene function.”

5.3 Queries for Gene Proximity Studies

In bacteria, clusters of genes with related function such as for the same
metabolic pathway are often grouped together physically. They are encoded close
together in the same subsection of a chromosome. There are ongoing studies to find
similar relationships in higher organisms. This type of predictive research also uses
coexpression as noted above in 5.1.2. Querying microarray databases provides data to
correlate whether these grouped genes share similar expression patterns or similar
function. For example, in the research article An Abundance of Bidirectional Promoters
in the Human Genome [TAHSOMO4] the authors were able to identify a class of gene
pairs in which the transcription start positions are extremely close (less than 1000 base
pairs) and positioned on opposite strands of the DNA (bidirectional). This discovery
represents more than 10% of genes in the human genome, a surprisingly high
percentage. An important next question in the article is whether the transcript levels in

a bidirectional gene pair are coordinately regulated. To test that hypothesis the Stanford
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Microarray Database (SMD) was queried. The results sets positively correlated 17% of
the gene pairs as coordinately regulated at a statistically significant level. The results
demonstrate that bidirectional arrangement is an important mechanism for expression
regulation for a significant percentage of human genes.

5.4 Queries for Tissue Localization Studies

Many important questions relate to tissue localization. The expression of a
particular gene may be normal in some tissues, but indicate a disease state or metabolic
problem in others. It should be noted that tissue localization differs from gene
proximity. Whereas gene proximity is in terms of position of the encoded gene on the
chromosome, tissue localization refers to which genes are being transcribed into mRNA
and protein in particular cells or tissues. The presence of certain combinations of
expressed genes in a particular tissue may indicate increased risk for diseases or
reactions to treatment. Being able to distinguish the patterns of gene expression specific
to different tissues and also different to specific types of cells is under active research.
For example, in the article Microarray Technology: A Review of New Strategies to
Discover Candidate Vulnerability Genes in Psychiatric Disorders [BBVTLEO3] the
authors describe how gene location guides research in brain function, “a gene that is
neuronal and is primarily expressed in the extended amygdala may lead us to
hypotheses about a role in emotional reactivity, whereas a gene that is present at all
synapses may lead to hypotheses relating to signaling or synaptic plasticity. The
neuronal site expression pattern will then guide the choice of animal models to be

pursued. For example, a gene highly expressed in emotional circuits will call for studies
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using models of anxiety-like behaviors (the elevated-plus maze, light-dark box, fear
conditioning). By contrast, a gene highly expressed in the hippocampus might suggest a
possible role in learning and memory (e.g., the radialarm maze or Morris water maze).”
The tissue and cell type localization of genes also allows precise development of animal
models in which a particular cell type is genetically modified either by addition of an
altered gene (transgenic models) or deletion of a gene (knockout models), both of
which can provide important confirmation of the metabolic role for candidate genes
indicated by microarray database queries.

5.5 Queries for Toxicity Evaluation Studies

Toxicogenomics studies evaluate the harmful effects of exposing cells or tissues
to chemical compounds. This is a new approach to predicting and regulating many
types of chemical exposure by examining the impact to gene expression profiles. These
include evaluating the safety of new pharmaceutical drugs during the design stage,
predicting drug interactions that may be harmful to a patient, and determining unsafe
levels of trace contaminants in food, and water. This last purpose can be used to set
federal standards and protect public health. The long term harmful effects of chemicals
are also economically important to help manufacturers avoid expensive and unnecessary
development of products that would later fail safety assessments. These same points are
discussed in research articles such as The Use of Toxicogenomic Data in Risk
Assessment: A Regulatory Perspective [CT05]. In addition, the authors note that
although currently several governmental and commercial organizations are actively

building toxicogenomics databases, “regulatory use of the toxicogenomic databases as
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supportive information in the assessment procedure of new drug applications will be on
a case-by-case basis until the predictive value of the databases is firmly established”.
Toxicogenomics has a unique breadth of application because the information impacts
commercial industries and may serve as the legal basis for mandating federal
regulations. By contrast, most genomics research is limited to either improving general
knowledge of molecular biology or has applications to medicine.

5.6 Queries for Data Mining Studies

Data mining is the detection of interesting patterns in large data sets. Therefore
data mining techniques are commonly used with microarray databases. There are two
closely associated versions of this approach used with expression data. One version is
clustering also called cluster analysis, the automated algorithmic generation of
dendrograms based on degree of similarity in expression patterns for a large set of
genes. The other version is class discovery and class prediction which uses cluster
analysis data. These are well established areas of research, and it has been noted that
“cluster analysis has been a standard approach to microarray data since the beginnings
of microarray technology and is the basis of most class discovery efforts.” [O03].
Members of the class may appear in different tissues but share an expression pattern,
that pattern is then discovered or predicted to be associated with the same metabolic
pathway or the same specific disease state. This helps to identify which genes work
together. Cancer researchers use microarray cluster analysis to classify tumors and
target treatments to each tumor class. Cluster analysis can help identify particular

cancers in individuals. For example, in the research article Class Discovery Analysis of
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the Lung Cancer Gene Expression Data [P04] public data is used to build a new
molecular classification which they analyze with a new cluster analysis algorithm. The
authors state that their analysis “reveals many additional details and subtypes of
previously defined types of lung cancer. Large histological cancer types can be further
divided into subclasses with different patterns of gene expression. These subtypes
should be taken into account in diagnostics, drug testing, and treatment development for

lung cancer patients”.

53



CHAPTER 6

QUERY INTERFACES AND EXAMPLE QUERIES

This chapter reviews the query interfaces of six example microarray databases.
Example queries and results are shown to illustrate how users search the database for
gene expression data. The documentation for these databases does not detail indexing
structures, but details regarding data types have been described in chapters 3. Similarly,
the query processing is typically transparent to the user and not described in
documentation since it is not directly related to aspects of bioinformatics data. We
therefore consider the queries from the user perspective in these examples, since that
best reflects the bioinformatics nature of the queries and usability of microarray
database implementations.

6.1 Querying the ArrayExpress Database

The ArrayExpress database is administered as part of the European
Bioinformatics Institute. The data warehouse is based on the BioMart open source
federated query architecture [DMKDDBHOS5]. BioMart supports queries on gene
attributes and sample properties. The query interface presents a simple combination of
text boxes and pull-down menu selection lists for combining parameters. The pull-
down menus are provided where a limited controlled vocabulary is needed for effective
searching. There are three main sections of the database to query, each with its own

subsection of the interface. The three are experiments, arrays, and protocols.
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Figure 8: The main interface for querying ArrayExpress
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The experiment section provides information about both experimental factors
and the actual data. The array section provides information relating to array design.
The protocol section is a simple look up of protocols based on accession number and
type. Figure 8 illustrates the main query interface for ArrayExpress. It should be noted

that ArrayExpress does not provide integrated tools for visualization or comparison.
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It is a searchable database for downloading data files of the query results. Query
results from any of the sections provide links to the other two sections. The
components of the database are easily accessible and navigable for the user. For
example, a result set containing a particular array design will include links in the query
result view to any experiment utilizing that array design.

We now present example query 1: Find all results using arrays from the provider
(manufacturer) Affymetrix. Results: 45 matches in the database, with navigable linked
summaries presented for each. In figure 9 we see the results set for the query “array
provider = Affymetrix”. Note the first summary of all 45 matches is displayed. The
summary includes navigable links to permit data download or to retrieve the list of
“Experiments done with this Array”. Example query 2: Find all results for aging
studies involving the species chimpanzee (select Latin name Pan troglodytes from pull-
down menu). Results set: 1 result in database.

Selecting the MAGE-OM view from the menu in figure 10 retrieves a textual list
of experimental parameters representing the experiment description as meets minimum
requirements. Numeric lists of the samples used are provided as downloadable
spreadsheets. Data may be downloaded in MAGE-ML (XML for microarray data) on
the labeled link as a zip file. The biosamples are also provided as a graphics file for
download. The ArrayExpress implementation does not allow navigation within the
browser and the sample file is too large to be readable if opened in the browser as

shown by figure 11 below.
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Figure 10: The results set of the ArrayExpress query “aging studies”
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Figure 11: Mage-ML of a results set

Visualizing the data is done in external software, by clicking the Export data tab in the

results summary the database presents either the option to see the data matrix as a flat
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text file of numeric codes or upload to another external database Expression Profiler for
visualization. In figure 12 below, The ArrayExpress database offers the option through
a link to an external software package Expression Profiler for data visualization.

In figure 13 Selecting the “see data matrix™ option results in a simple textual

summary of data. The data requires separate software packages for meaningful patterns
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Figure 12: ArrayExpress links to external software
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to be found. Efficient direct inspection of the thousands of numeric entries per result set
is not possible. Certainly the significant patterns in the results set become evident only

when some type of graphical representation is employed.
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Figure 13: Example textual data matrix in ArrayExpress

6.2 Querying the CEBS Database

The CEBS microarray database is in the first phase of a 10-year long multiphase
development. The queries available at the time of this writing are relatively basic
compared with the long-term goals of the designers. In its final form it will be possible

to query CEBS by molecular chemical constructs so that an unknown compound can be
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entered as a query and similar compounds are matched and retrieved. The genetic
effects of the related compounds will then be presented based on microarray research
findings and provide insight into the predicted behavior of the unknown compound. In

common with the other microarray databases in this chapter, CEBS provides a basic

query interface with a set of pull down menu selections for a basic guided search.
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Figure 14: Query interface for CEBS microarray database
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The interface is provided in figure 14 above and shows the six main types of data for
use in basic Boolean query constructs. Query results are returned as a list of record
summaries that can be selected and viewed in detail. Here is an example query: find
experiments involving the species “mouse” and the tissue “forebrain” by selecting these
two from the menu. In the result one record is returned, it is shown below in figure 15.

This example record represents a brief view; a full view would fill multiple pages. In

future implementations the extensive annotation data will be directly searchable.
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Figure 15: Query results in CEBS for “mouse and forebrain”
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Queries based on comparison between different arrays may be done through the
visualization and analysis tools provided with CEBS. After an initial query to locate
and select an experiment such as the one above in figure 15, a series of interfaces
provides options for selection filters on the experimental data. The user is then
provided with a list of all arrays from the chosen experiment and using radio buttons
may select which ones to use for the comparison, as illustrated in figure 16. The

comparisons provide information equivalent to new queries. A further set of menus will
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Figure 16: Navigation menus allow the user to select arrays for comparison
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Figure 17: Expression reports in CEBS using pathway classification schemes
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Figure 18: Expression in the 1,4-Dichlorobenzene degradation pathway
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allow the user to define criteria for differentially expressed genes including statistical
parameters such as t-test and p-value threshold. These menus are omitted from the
examples here because they require specialized knowledge in statistical bioinformatics

to be meaningful.

Comparisons among arrays can be filtered and selected based on whether or not
they appear in particular important pathways. For example, there are standardized
notations for biological pathways that are incorporated in the selection parameters for
data analysis in CEBS. One of these notation systems is known as KEGG (used by the
Kyoto Encyclopedia of Genes and Genomes suite of databases). A researcher may
create a custom expression report using the CEBS database to identify the answer to the
question which differentially expressed genes are not in the KEGG pathways as in
figure 17, or the question which genes are in a particular KEGG pathway such as that
for 1,4-dichlorobenzene degradation as shown in figure 18. CEBS is able to map
microarray experiment results to gene classes based on important pathways that are
affected. The analysis provides this information and is effectively serving as an indirect
query engine for questions that are answered through detailed expression reports.
CEBS is also able to provide classification reports for the genes of a particular
experiment. For example, figure 19 below illustrates the use of GO ontology to
generate a report listing to which GO category each gene in the experiment or selected

subset of genes belongs.
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Expression Report for Genes

KEGG Pathway: 1,4-Dichlorobenzene degradation

Total Number of Records: 7
This Table Is Sorabie by Clicking on a Column Header
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#* #
‘—“I Export Report —', Export
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Feature name. Sene symbol Gene title Change. t;—}_?f Ratio &
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H3061C03 Toal Topoisomerase (DNA) | Unchanged 0.03482 1.02443 0.48257

Figure 19: Go ontology analysis matches expression to GO categories
In the example report summary both the categories “cell communication” (first
row) and “cellular physiological process” (second row) show an entry of “1” under the
attribute down. Therefore there are genes present in these categories that are down
regulated (expression levels are reduced under the conditions of the experiment
compared to normal cells). The degree to which they are down regulated is given by as
numeric values from statistical formulae, the details of which are omitted here.

6.3 Querying the GEO Database

The GEO database is administered as two complementary databases, GEO
Profiles and GEO Datasets. GEO 1is part of the NCBI (National Center for
Biotechnology Information) and the GEO databases use the Entrez life sciences search
engine portal common to other NCBI databases. As previously described in section

3.4.3, GEO organizes data into the three general categories: a) platform, b) sample, and
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Figure 20: The GEO microarray database main query interface
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c) series. These approximately correspond to a) the array design, b) signal data for each
element in the array, and c) record for a group of related samples, respectively. The
GEO Datasets stores collections of samples (datasets) sharing both a common platform
and a common experiment type (single channel, dual channel, or SAGE if not
microarray). The signal values are calculated and normalized the same way and are
comparable across the set. Therefore they can be directly compared.

The GEO Profiles database stores individual gene expression and molecular
abundance profiles. Graphical charts compare numeric data values for the same gene
expressed across different experimental conditions. In brief, GEO Profiles handles the
visualization of the data values while GEO Datasets stores other information. Both
databases allow complex query constructs using Boolean values with optional filters on
well-defined fields. The field options are described in associated documentation. The
main query interface is displayed in the figure 20 below. Users may click on the tabs to
browse the entries or enter search queries directly into the provided free text field. The
figure 21 below shows the GEO Datasets interface with query results from the
following example. GEO Datasets query 1: find all records having keywords “mouse”
and “neurological”. The results retrieved 7 items, consisting of 1 dataset and 6 series.
These are presented as summarized entries as seen in this screenshot.

Gene cluster analysis is provided, and linked to the record as a thumbnail icon.
The analysis records are very large and often represent hundreds of genes for a given
experiment. A small portion is visible in the display window. By clicking on it a

navigable view with zoom, plot, and download options opens. Figure 22 below is an

69



A GO5 - GED DataSets &
e (dt Yiew Fpvorites Tooks Help

Qe -

L A, ) g 3 ; .
Ed |_:.] (al | g Search Favorites 5] i wh "i (D
Agddress | 48] hkkp:jjwesme, rcbirim . ni. govientreziguery  Fog?OMD=DisplayFiteregtDB=gds s ﬂ‘?ﬂ
Google - [geo micoaray database (v (] Sesrch - | g T B isstiocked M check = 4 Autolink - - B options
Ervtrass -
" GER DataSets £ip ica
[Sign In] [Regisher]
” ; B selain e m——— - .
Search | GEO DataSets Vil bor fmouze and neurological Save Search
1 | 1
Limits | Previewindex | History | Chpboard I Details
Display | Summary “ | Show | 20 V| Sendto

Al 7 |Datasets: 1 # | series & %

[11: GDETLT record: Huntingtons disease and combination ding thevapy [3us
muzcubis]

GEQ Profles,
Links

Summary: Whole bramn hemsspheres from Huntingtons disease mode] R6/2 transgenic mice
treated wath creatine, tacrme and moclobemide Fom 5 weeks of age. Drug

therapy was amed at boosting neurotransrrotter levels and improve cogntive
functions

Parent Platform: GPLE1, reference Senes: GSE257
smgle channel count

2 agent, 2 strain sets

13

Type
Subsets

Samples:

CEM 3300 Vvl Type

{unireabed) 5241

SN T35T. Witype (triple
freafment) ST

GEWMTXIE0: REZ (untreabed)
5197

GSM 36T FE (untreabed)
270

FSW 3335 Vlldype
(urireated) 5176

GEMA 3358; Witype (bripke
frestmend) S2E7

GENA X351 ; Rl (unbreabed)
£M3

RSN 3364; FEC (riphe
freatment) 5185

Sk 3355 Wil type
(urireated) 5296

SN 33553 Witype (triple
trestment ) 23689

GEN TMEE REZ (unbreabed)
8307

CRSM IS RS (riple
treatment) 5253

Figure 21: The GEO Datasets query interface with query results

example of the data visualization interface using the thumbnail for the record in figure
21. High expression levels are in red and low expression in green. The 13 named genes
are on the X-axis and the information about each sample (approximately 250) is on the
Y-axis. Here only the top portion showing the first 12 samples is visible. We have now
seen an example of querying GEO DataSets. Figure 23 shows the next example query

uses the GEO Profiles interface. Example GEO Profiles query 1: find all experiments
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Figure 22: Data visualization and cluster analysis interface in GEO

studying kinase enzyme in macrophages. Enter the query “kinase AND macrophage”.
The results retrieved 8297 items, each consisting of one sample. A researcher can now
select a particular data set record (GDS77) such as study of kinase activity in
macrophages infected with salmonella for further queries.

Example GEO Profiles query 2: find all profiles that fall into the top 5%
variable molecular abundance profiles in dataset GDS77. Enter the query construct

“GDS77 AND 96[Ranked Standard Deviation]”, this will return records for 241 genes.
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The results are presented as summarized entries as seen in figure 23. Results may be
sorted by the dimensions mean value, deviation, or outliers. Users may query based on
rank or deviation directly to retrieve lists of the most abundant mRNA transcripts under

selected conditions.
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Figure 23: Geo Profiles example query result set

The thumbnail image is linked to a graphical gene signal profile in a
visualization interface. The interface for an example gene is provided in figure 24

below. All the values for an each experiment are sorted and divided into 100 groups.
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The blue rank bars on the left Y-axis of the chart show the approximate rank of where
the expression of that gene is relative to the expression levels for all other genes on that
particular array. The red bar on the right Y-axis of the chart uses arbitrary units of
relative expression intensity to average, after normalization. Thirteen samples are

represented in parallel. The conditions are in the light yellow and light blue blocks

below the chart.
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Figure 24: Visualization of signal values and ranks for a condition set
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6.4 Querying the EMAP Database

The Edinburgh Mouse Atlas Project (EMAP) is a sophisticated graphical
interface for mapping genes to mouse tissue, organs, and structures. EMAP provides a
three dimensional spatial framework to map gene expression to any location within a
virtual mouse embryo. Additionally, the stage of development for the embryo can be
selected. This adds a fourth dimension of time for browsing and visualizing data,
providing in effect a four dimensional atlas for gene expression. The EMAGE (the
Edinburgh Mouse Atlas Gene Expression Database) is an application of the EMAP
framework and provides tools for both data submission and query on stored data.
Additionally, the EMAP has collaborated with the Mouse Genome Informatics (MGI)
gene expression database (GXD) project. The GDX database is text based, and has
been indexed through EMAP to spatially map images to the data stored in GDX.

In figure 25 below we see the query interface for EMAP. The cross sections
may be selected from any of three axes (transverse, frontal, and sagittal as shown in the
buttons of the lower left corner). The age of the embryo is divided into distinct Theiler
stages that are selectable from a pull down menu in the upper right corner. Zoom and
slider functions allow navigation in the tissue map. By simply scrolling over the map
corresponding tissues are highlighted in the tree on the right. Clicking on the tissue
results in the option to search either EMAGE or GDX databases for retrieval of genes
corresponding to the stage and tissue selected for the query. The user may also query
the tissue maps by typing the textual name of a tissue into the provided text box and

clicking on the “find” button in the lower right of the frame.
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Figure 25: The main query interface of EMAP with navigable tree

Example query 1: find all genes for mesenchyme tissue in Theiler stage 14 mouse

embryos. The results set shows 606 matching array results, as displayed in figures 26
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and 27 below. In figure 26 the tissue type mesenchyme (blue structures) has been
selected from the interactive map on the right representing a mouse embryo cross
section. The tree on the left shows by marking in red font which tissue has been
selected. Users may right click on the mouse embryo at the highlighted selected tissue
type. The highlighted portion accesses interactive navigation that allows a search for
genes for the selected tissue type. The star * marking at the end of the selected word
mesenchyme refers to the option of navigating one more level in the tree and refining
the search to just mesenchyme derived from head mesode or just mesenchyme from the

neural crest.
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Figure 26: Tissue mapping portion of EMAP interface for basic querying

Figure 27 displays the first few results retrieved for genes matching the query “find all
genes located in mesenchyme tissue from Theiler stage 14 mouse embryo”, each gene

has navigable links to experiment details and data files for further analysis.
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Figure 27: Emap interface showing first 6 of a large results set
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Figure 28: Gene detail record from the example query result
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Details regarding any particular gene are retrieved within the browser and presented as a

detailed record from the database. A portion of that record is shown in figure 28 above.

The EMAP query interface is a graphical mapping tool built peripherally to the
mouse genome expression database GXD, and using the same data. It should be noted
that the GXD query interface (the database is located at the following weblink
http://www.informatics.jax.org/searches/expression_form_exp.shtml) offers additional
query parameters and options. These include searches by querying with gene name,
gene ontology (GO) classifications, and chromosome location. A portion of the
interface is shown in figure 29 above.

6.5 Querying the SMD Database

Similar to other microarray databases, the Stanford Microarray Database (SMD)
database query interface is designed for the user to narrow down the subset of results by
providing selection criteria. After selecting the criteria and retrieving the results
summaries, the user may look at arrays individually or combine results for final
retrieval and analysis. There are three approaches to querying the database. These are
the basic search, experiment list search, and advanced results search. Each is accessible
from the main interface as shown in figure 30 below. Queries are on high level
classification criteria and result sets contain large complete records. Unlike other
microarray databases, SMD is not yet able to support query constructs to find
information about a particular gene although this is a goal for their future

improvements.
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Figure 31: Query “caenorhabditis elegans” in SMD basic search
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In a basic search, the results may be presented in terms of related publications or
in terms of an experiment category or set. An experiment set is a group of experiments
that have been selected and assigned to that set. The user may customize such a group
as a personal set. Figure 31 presents the basic search interface. Queries on this
interface will retrieve publications, experiment sets, or experiment categories related to
the organism and data identifier of interest. The interface provides selection options
based on the species and experiments currently in the database. Here we see a search
for microarray data on the species “caenorhabditis elegans”.

For the more advanced searches there are three methods for analyzing
the microarray data. In the first method, Boolean operators are used to query on the
three major parameters experimenter, category, and subcategory. In the second method
arrays are simply selected by their print identification, and the third arrays are selected
from a personal directory. The resulting datasets from any of the above methods may
be displayed as array lists by clicking on the “Display Data” button or the “Data
Retrieval and Analysis” button as shown below in figure 32.

Query results in figure 32 are displayed in summary lists with links to other
related array sets. In the example below six arrays are returned from querying the
database for results matching “experimenter = EISEN”. Each experiment is classified
by both category and subcategory with links to other arrays in that same classification.
A set of interactive icons summarizes options for handling the results set including a

clickable image, array details, download, and plot data.
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Figure 32: SMD advanced search interface, links to display or analyze data

Selection of the view and sort data icon results in a menu of options for both
display and application of filters as shown in figure 34 below. Options include sorting,
and display of columns for biological annotation data. Filters allow inclusion of

controls and nulls in experiment results. The resulting adjustments may be saved as a

downloadable file.
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When the user chooses the view array details icon the database provides a record with

navigable links to experimental and sample details. These include signal intensity data

suited to plotting, and statistical analysis. Figure 35 below shows sample details as a

record with links such as data download from the normalization data field. The detailed

record in figure 36 describes one individual signal from one position on the microarray

grid. This represents the hybridization of an individual gene. The record provides
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Figure 35: Example view showing experiment and sample details for an array
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numeric values for the two channels (colors) as well as normalization and other
statistical information about the signal. Chapter 2 provides an overview of how signal

data is interpreted.

6.6 Querying the Hugelndex Database

The Hugelndex microarray database is a repository for normal human tissues. To
improve data analysis capability, each gene is cross-referenced to annotation in the
LocusLink database at NCBI (National Center for Biotechnology Information). The
database can be queried through menus on its web interface. In figure 37 below gene

expression can be queried based on keyword and selection of an organ for the gene.
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Figure 37: Gene specific expression query interface in HugeIndex
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Figure 38: Result set for the query “cathepsin” in tissue “lung”

Example query 1: Find all genes encoding cathepsin proteins for lung. Enter keyword
“cathepsin” and select lung. In the result set is the list of retrieved genes shown in
figure 38 below. Figure 39 displays an individual gene expression profile.
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Figure 39: Individual gene profile for a gene selected from figure 6.6.2
In the above figure, the information regarding the gene is provided, including
averaged signal results from multiple experiments in the same tissue. These are
presented as average and standard deviation values. The Y-axis shows log base 10
average difference of expression (the difference between the sample expression and the
average of expression for all genes in an experiment). Here there are six probes for the

same gene (cathepsin D) providing information to allow normalization for differences
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due to experimental conditions. Average differences range from 705 to 4731 based on
an arbitrary signal intensity scale and corresponding log values range from 2.64 to 3.67.

The options available for composing queries can be viewed by browsing the
database contents through the supplemental tables that link from the main web interface.
Queries can be composed on any of three custom interfaces for each of three purposes.
The first option is shown in figure 37. The query is on gene specific expression for a
single organ of interest. The keyword for the gene of interest may be typed in the text
box and the organ of interest selected from the menu. The second option shown in
figure 40, it shows a query on expression comparison between different organ tissues.
The third option is shown in figures 41, it displays the comparison of tissues or
experiments through scatter plots. The design of the Hugelndex database includes
query capabilities for comparison of global expression patterns among tissues. The user
can query and discover gene coexpression in particular tissues, this leads to detection of
the same expression patterns among related tissues as a system. The implementers
describe Hugelndex in this capacity as “a reference for defining basic organ systems
biology” [HWBAHJGO02]. Scatter plots allow interactive selection of individual genes
and separate plots of gene expression for each gene or selection of links for annotation
data to external sources such as NCBI through LocusLink.

Example query 2: Find genes expressed in liver and lung, but absent from
kidney, selected at organ interface shown in figure 40. In the results set the database
reports that 2215 genes match these conditions, and provides links to download text file

of results provided.
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Figure 40: Interface for searching organ specific expression patterns

Example query 3: What are the differences in gene expression between brain
experiment 7 from the database (pons/medulla tissue) and the average of 10 other brain
tissue experiments? In the results set we are provided a scatter plot with interactive
labels that appear when the cursor moves position over the data points. Each gene is
identified in the label along with its status as present or absent for those selection
conditions. Figures 41 through 43 below show the generated interactive scatter plot for
gene expression data comparisons in brain tissue. In figure 42 the selected point in the
map is for the gene Mac2 binding protein, the corresponding point can be clicked for

interactive plotting options specific to each gene.

91



1 Heupe Inden Dalabase  Siomem &0

B [# Wew Fpobs [sh Hp I
- I A 1 . . .
() o Y m] B g S e retn ) e g F e . YO
-.:_h'!r ik b oo g Huge e hfrpi-Huge e ch g sctiore=sf o S erpicl - ﬂ il
ool = posge waes w| (S ¢ g5 TR D iabioced W Owd ¢ 4, Mok -

[How To SoarchJE  Gane BN  Crgon QR - - o )
Generate a Scatterplot

P 1
Create a Scatterplot Individual Experiments or
Special Links Organ Averages
PFaG - ;
PContact us Organ  oraoyd forai SR [T = —
Average |bealiS jbeain Average | bweas
'“M pe g org08 (orgin g sty
- CETETETI— - : sion -
:i::f::zﬁ . Experiment Experiment —
PBioinformatics e
PSponsors Compare expression patterns of different organs
or single experiments:
Hupplemen{al ing L
Tables This option lets you generate scalterplots to
and Tissue Data compare two different expression patterns Either

pattern may be the pattern from a single experiment

ar the svsrans nadem o all avnenmenis dsne

i e
—

& -

Figure 41: Interface to generate scatter plot for expression comparison query

In figure 43 which follows we will see that plot for expression of the gene for
the Mac-2 binding protein in tissue sample 7. The expression is plotted as log average
expression (Y axis) vs. the average expression of that gene for the set of 11 tissue
samples available in the Hugelndex database. The expression is almost 30 times higher

in sample 7 compared to average expression levels.
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CHAPTER 7

LIMITATIONS AND SUGGESTED SOLUTIONS

In this chapter we consider some of the limitations in the microarray database
implementations we have studied. Our focus is on those identified limitations for which
we are able to propose reasonable solutions. The limitations have been separated into
two categories based on whether they primarily impact querying and quality of results
presentation or primarily impact the microarray database implementation. We define
each limitation and describe its impact. We then provide a suggested solution. This
chapter then considers limitations in a broader context by examining two other
groupings. One group is of inherent limitations for which there are no reasonable
solutions. The other group is of successfully addressed limitations for which a
reasonable solution exists and is agreed upon. These are no longer true limitations
unless current and new databases fail to adopt the solutions in the future.

7.1 Limitations Impacting Microarray Database Querying

In this section we will describe four limitations that impact querying, and
present a suggested solution. These are inconsistencies in feature ontology, lack of
accomodation for free text queries, lack of support for both time-varying image data and

for a consistent system of gene ID numbering.
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7.1.1 Limitation 1: Inconsistencies in Feature Ontology

Impact on querying: When different terminology is used to describe the same

concept about a microarray feature (ontology). This difference poses problems when
exchanging data between different databases. The lack of consistency also imposes

limitations for query formation, particularly for free text searches.

Solution to Limitation 1: A potential solution would be to provide a table that
cross references several ontologies permitting lookup of equivalent terms. Currently
some implementations use GO consortium ontology [HCILAF04] but this is not
sufficient by itself to accommodate all microarray research concepts. It should be noted
that a microarray specific ontology is under development from MGED (Microarray
Gene Expression Data Society at http://www.mged.org).

7.1.2 Limitation 2: Lack of accommodation for free text queries

Impact on querying: It is assumed that the user will not know the exact

terminology or ontology particular to an individual implementation. As a simplifying
solution, many implementations provide pull down menus of all possible selections for
their main data types. These predefined queries are not only universal among
implementations but are also recommended because they simplify the database
structure. However, this lack of accommodation for more sophisticated user-
constructed queries is both a restrictive and unscalable aspect of the query interface
design. There is also an impact on querying by limitations on keyword search in most
implementations that support it. They typically neither have a spellchecker nor the

ability to prompt for a close alternate spelling when a keyword is not found. For
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example, in ArrayExpress the query “affimetrix” retrieves 0 records, but the correct
spelling “affymetrix” retrieves 45 records.

Solution to Limitation 2: All the implementations researched for this work do

not address the need to support user-authored custom queries in free text search.
Instead, they favor the use of pull down menus to view and select predefined options for
combination in each query. Since the documentation and associated publications for
these databases does not describe the use of formal query language, or query
optimization it is difficult to propose a specific solution. By contrast the solution to
supporting approximate keyword search is more obvious. This solution is to employ a
spell check to determine approximate substitutions or suggestions for the query
keywords, similar to what is provided in the Google.com web search tool interface. The
technique known as relaxed queries is a more complex variation. This employs a type
of synonym mapping so that terminology having closely related meanings could be
checked and indexed to find information relevant to the user without imposing a single
ontology.

7.1.3 Limitation 3: Lack of support for time-varying image data

Impact on querying: An important source of information in microarray

experiments is the rate of change in gene expression over a window of time. Most
microarray database implementations lack time interval parameters and time response
data. While a set of expression snapshots at punctuated intervals could be provided
relatively easily, it is not a substitute for the valuable information detailing the response

in gene expression over a time period specified within the query. Such information is
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important in evaluating cellular response to medication, or exposure to toxins.

Solution to Limitation 3: An interesting solution is proposed by Craig et al [CK03] in

which “visual queries are supported by the combination of a traditional value against
time graph representation of the data with a complementary scatter-plot representation
of a specified time-period. The multiple views of the visualization are coordinated so
that the user can formulate and modify queries with rapid reversible display of query
results in the traditional value against time graph format. This new visualization
technique allows the user to perform and combine a number of queries, including
measurable change in value over a period of time queries, through an intuitive direct
manipulation interface. The technique also gives the users a unique directly manipulated
animated view of microarray timeseries hat allows them to explore patterns over time
for the entire data set and selected subsets.”

7.1.4 Limitation 4: Lack of consensus on gene ID numbering

Impact on querying: There are many gene ID (identification number) systems in

use among different databases. Examples include UniGene, OMIM, EMBL, Entrez
Gene, and Affymetrix Probe Set ID. Since microarray databases access other databases
for annotation information about the gene it is important that the gene ID systems in
place for retrieving that annotation are selected carefully. Microarray data generated
from Affymetrix chips are most easily searched using the Affymetrix Probe Set ID
system, however trying to use that ID to initiate annotation searches poses problems.
ID systems differ among different microarray kits and experiments may submit gene

IDs that only refer to a particular brand of kit creating inconsistencies within a
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microarray database. Additionally, some systems such as the UniGene ID system use
numbers specific to each species and do not allow cross species comparison for the

same gene. [CEMKZ05]

Solution to Limitation 4: A reasonable solution would examine important gene
ID systems and the correlations between these systems, then provide this information in
look up tables so that appropriate gene ID codes can be used for external searches for
gene annotation. Checks should be in place to account for design differences such as
the use numbers specific to each species in the UniGene ID system. Table 9 below

summarizes these four limitations that affect querying.

Table 9: Summary of Limitations and Solutions Affecting Querying

# Limitation Proposed solution
1 | Inconsistencies in Feature Provide a table that cross references several
Ontology ontologies permitting lookup of equivalent
terms.
2 | Lack of accommodation for free Use of spell check for keyword searches.
text queries Use of synonym mapping so that

terminology having closely related meanings
could be checked and indexed to find
information relevant to the user without
imposing a single ontology.

3 | Many databases are not able to An interesting solution is proposed by Craig
provide time-varying image data et al [CKO03] in which “visual queries are
supported by the combination of a traditional
value against time graph representation of
the data with a complementary scatter-plot
representation of a specified time-period”.

4 | Lack of consensus on gene ID Examine important gene ID systems and the
numbering system correlations between these systems, then
provide this information in look up tables so
that appropriate gene ID codes can be used
for external searches.
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They include lack of consistency in terminology, lack of flexibility for writing a free
text query, inability to query how gene expression changes within a particular range of
time, and the use of many different gene identification systems causing difficulties if
using the gene ID to search other databases for annotation data about the gene.

7.2 Limitations Impacting Microarray Database Implementations

This section describes some important limitations in the implementations.
These limitations are important to the usability of the database and therefore have an
indirect impact on querying. For example, web based remote access to the data and
query results is subject to slow response time or limitations in display capabilities.
Many implementations do not have integrated annotation data or original unprocessed
image data from the experiments. Further description of these problems and proposed
solutions are provided below in table 10.
7.2.1 Limitation 1: Web forms for data retrieval and presentation

Impact on querying: In some databases which rely on Java applets or require

large bandwidth to transfer image files there can be a noticeable lack of performance.
In some designs hyperlinks or pop-up based retrieval of records are in conflict with
common browser security settings.  An additional basic restriction posed by the
browser is limitation in their graphics display capability.

Solution to Limitation 1: Although web based access is important to provide

efficient public open access and reach the widest community of users some
implementations also offer the option of setting up the database and downloading the

entire data store locally to achieve better performance for frequent querying. Several

99



microarray database websites also offer or recommend separate locally installed
programs to provide flexible alternatives to the limitations of web browser interfaces for
data visualization.

7.2.2 Limitation 2: Use of hyperlinks to external databases

Impact on querying: Use of hyperlinks to external databases such as GenBank
are employed as a mechanism for providing annotation data about genes. This is a
commonly implemented solution, but recognized as insufficient. Hyperlinks are used
when annotation data is not compatible with the data structures in the original
implementation. Hyperlinks introduce problems with presentation since the annotated
information is provided only for each gene in a separate browser window as an
independent search of an external database, rather than integrated in a table of entries
for efficient comparison. Secondarily, there are performance issues if many requests
are made to external data sources.

Solution to Limitation 2: The solution is to import annotated information and

integrate it into the records for more effective and efficient presentation. Adjusting the
format of the data to accommodate native data structures should be done. In some cases
it may be helpful to implement two or more data exchange models to accommodate a
variety of annotation data. For example, the MAGE-OM data exchange model has the
limitation that it can not include clinical data. Since clinical data is often very relevant
to gene expression research on human disease it would be helpful to adopt a clinical

data exchange model in parallel. [CMF03, BEF03]
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7.2.3 Limitation 3: Database does not store original image

Impact on querying: When the original data as a large image file is discarded, it

is replaced with numeric data or other representations of relative signal strengths. The
original image signals will have been interpolated and processed before the values are
stored. This affects how accurately the relative signal strengths are stated in the
database and therefore interpretation and quality of the query results. Ideally the users
should be able to access the original image so they can process the signal data according
to their own filters and preferences.

Solution to Limitation 3: Store the original image in a separate database such as

a BLOB (binary large object) database or similar means of accommodating the file
outside of the main database implementation. Provide links to the stored original image
for each experiment as a key in the relational tables of the main database. The users
may then choose to download the file and process it themselves.

7.2.4 Limitation 4: Lack of centralized and consistent data analysis

Impact on querying: The overall approach in microarray database

implementations assumes many independent users performing data visualization and
analysis using a diverse set of tools and database implementations. Goncalves et al
[GWO02] identify some important limitations associated with that approach: “No central
data storage unit and no data version control means that multiple different data files and
versions of analysis files may be located in different directories or even on different
computers. Lack of uniform experiment annotation and description of the analytical

procedures employed means that collaboration and data sharing are severely limited.
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Lack of integration between the various steps of the analysis makes data validation
almost impossible (e.g., it is extremely difficult to go from cluster visualization to the
individual spot images in order to validate the quality of the result). Last but not least,

this analysis model is not scalable.”

Solution to Limitation 4: At the time of this writing the overall solution
approach remained for the most part academic. The overall solution is three fold: 1)
develop and enforce data format and data exchange standards to meet the core need for
research exchange and collaboration 2) standardize semantics and ontology so that

descriptions and meaning are readily understandable within the exchanged data sets

Table 10: Design Limitations of Current Implementations

# Limitation Proposed solution
1 | Use of web based forms for data Several microarray database websites also
retrieval and presentation offer or recommend separate locally installed

programs to provide flexible alternatives to
the limitations of web browser interfaces for
data visualization.

2 | Use of hyperlinks to external Adjusting the format of the data to
databases such as GenBank as a accommodate native data structures should
mechanism for providing be done. In some cases it may be helpful to
annotation data about genes implement two or more data exchange

models to accommodate a variety of
annotation data.

3 | Database does not store original Store the original image in a separate
microarray image because of its database such as a BLOB (binary large
large size object) database. Provide links to the stored

original image for each experiment as a key
in the relational tables of the main database.

4 | Lack of centralization and The overall solution is three fold: 1) develop
consistency in data analysis and enforce data format and data exchange
standards 2) standardize semantics and
ontology and 3) design of a centralized
repository or public data warehouse.
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and 3) design of a centralized repository or public microarray data warehouse providing
integrated raw image data, annotation data, detailed records of tasks performed in data
analysis, and support for research collaboration. Table 10 provides summary of the
limitations and solutions covered in this section.

7.3 Inherent Limitations in Microarray Databases

Inherent limitations are those that have no simple solution. Some of these
limitations are due to the nature of microarray technology and will only be solved by
advances in the technology. Other limitations are due to the nature of how these
microarray database implementations accommodate the needs of their users. We
provide an outline of some important examples below.

1) mRNA is not an exact indicator of protein concentration. Gene expression is
only estimated using DNA microarrays, better estimations come from emerging
protein array technology but such databases are also emergent designs so
microarray databases are the most important source of expression studies.
Protein array databases are described in appendix D.

2) Lower limit on sensitivity of signal detection. Microarrays are not able to
identify or detect very low copy number for some mRNA, therefore PCR
verification needed to identify genes that provide only very low concentrations
of mRNA.

3) Fundamental issues for implementations concern both diversity of platforms and
lack of compatibility. Microarray database implementations can be relational

databases using SQL, object-relational, or object oriented databases therefore a
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4)

query written in a particular language for one database may not be useable in
many others. Because many implementations are tailored to the immediate
needs of particular research groups within an institution, this diversity is
inherent. It is difficult to compare data and pool data from different microarray
databases. This is one of the most important concerns cited in publications
discussing microarray databases. Possibly in the future a common architecture
and data model will be adopted across all implementations, but it is not feasible
or planned for the near future. However, improving compatibility for data
formats and data exchange is being actively addressed.

Must not assume user knowledge of data structures, implementation design, or
query languages. The requirement is very important and has been extensively
addressed in technical literature. Making query handling transparent to the user
is considered a core requirement for bioinformatics database design. Further,
publications describing these implementations do not describe query handling,
or optimization and rarely describe relational table structures. The consensus
in the bioinformatics community is that since users are typically scientists with
limited understanding of databases, so it is essential to simplify the user
interface. Meeting the requirement restricts query interface design. Each
database implementation examined for this work has a set of predefined queries
and navigational selection of parameters to form the query. They do not permit

the user to customize them.
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7.4 Successfully Addressed Limitations

Our focus in this chapter is on those identified limitations for which we are able
to propose reasonable solutions. Inherent limitations or constraints on using
microarray databases are particularly difficult to address, these have been described in

section 2.4 already. Successfully addressed limitations are those for which a reasonable

Table 11: Minimum Data Descriptors Problem and Solution

Limitation

741 Lack of standards for uploading entries and exchanging data

Impact The lack of standards results in difficulties comparing entries and
consistency in completeness of minimum information from different
databases. Perhaps more important is the need for different databases to
be able to exchange new data so that they are as complete and current as
possible. This is one of the most important areas of concern in
microarray database implementations and therefore a strong effort has

gone towards the solution.

Solution A minimum set of descriptors for a complete experiment data set has
been defined. These are known as MIAME standards. MIAME
compliance is now an important parameter for microarray database
comparisons, as these standards are being implemented or will be
implemented in most microarray databases. See section 3.2 and

appendix B for more details regarding MIAME standards. [BHQSSO01]

solution has been identified and made available. Adoption of the solution is either
complete or planned in the future by most of the database implementations. These are

no longer true limitations unless new databases do not adopt the solutions. Examples of
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successfully addressed limitations appear as tables above. The first example (table 11)
describes the problem of defining what minimum information to provide for a database
entry record. The second example (table 12) describes the problem of determining what
metadata structure to use for uploading new entries, data storage, and exchange of

records between databases.

Table 12: Summary of Metadata Format Problem and Solution

Limitation

740 Use of tab delimited text files to store and transfer metadata

Impact Although this is a commonly implemented method for data transfer, it
poses two key problems: 1) it does not provide a common organization
for the data which would simplify information exchange among
microarray databases, and 2) neither image data from sample
annotations nor experiment annotations can be included in a tab
delimited text file. This second problem is the more serious limitation

of the two.

Solution The use of more descriptive metadata structures such as XML provides
an effective solution to this problem. Published articles for the earliest
microarray database implementations in the years 2000 and 2001 regard
the use of a microarray data specific XML exchange format as one of
their core future goals. Since that time MAGE-ML has emerged as the
standard, and use of MAGE-ML is either currently employed or a future
goal for many implementations. See section 3.3 and appendix C of this

work for more details regarding MAGE-ML format. [SMSTSCO02]

The third table (table 13) is a summary of current status on implementing the solutions

described in tables 11 and 12.
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Table 13: Current status for Successfully Addressed Limitations

Database

Array

CEBS GEO EMAP SMD Hugelndex
Name Express
MIAME Future Future
compliant Yes Yes Yes Yes soal s0al
Store data
as Future Future
MAGE- Yes Yes goal Yes Yes goal
ML
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CHAPTER 8

CONCLUSION

In recent years biological databases have gained importance in research. The
large volume of biological data generated by high throughput automated processes such
as the human genome project can only be effectively managed by databases. The
earliest biological databases stored DNA sequences, relatively simple data structures.
Since that time the volume of more complex data such as distribution patterns of
physical molecules, and structural data of biological entities has also rapidly increased
in volume. Microarray experiment data is an excellent example. The more complex
types of biological data require databases able to store representation of graphics and
images, three dimensional structures, or time dependencies. These requirements makes
complex biological data types unsuited to classical relational data models. Database
technology has in recent years begun to catch up with the requirements of molecular
biology data in general, and of microarray data in particular. However, no single
database implementation approach is suited to all needs even within a subdiscipline
such as microarray research. Every special area of study presents its own particular

requirements.
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As of 2005 over 700 publicly available web-based molecular databases have
been implemented, representing many diverse subfields. Among these, we have
selected microarray databases for the focus of this study. Microarrays represent the
entire genome, all genes in an organism. A microarray database is a unique tool for the
simultaneous study of hundreds of thousands of genes, and exploration of gene function
and gene interaction on a huge scale. We have selected these databases for three
primary reasons. Firstly, microarray databases are representative of recent technology,
with most implementations having begun between 1 to 4 years ago. Since the
technology is still in its infancy there is need for better understanding and
improvements. Secondly, microarrays have had a particularly important role in genetics
research since the completion of the Human Genome Project in 2003. Thirdly,
microarray data types are complex, requiring graphical representation of expression
patterns, statistical normalization of the raw data, and extensive annotation for the
identified genes. Because of this complexity, microarray data poses interesting
challenges for query composition, query interfaces, and results output.

In this thesis we have described and identified the important factors required for
effective querying of microarray data. Ease of use is a particularly important challenge
due to the highly specialized nature of the data and the queries. Making it possible for
scientists to easily construct useful queries has proven a challenge for two primary
reasons. Firstly, the queries placed on microarray data originate from very specialized
scientific questions. And secondly, the users cannot be presumed to have any

knowledge of the implementation, data structures, or understanding of a query
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language. Designers and implementers have recognized that the biological researchers
who use these databases should not be assumed to understand data structures, or formal
query languages. Among all implementations queries are constructed based on
predefined selection criteria. Defining and selecting those criteria is achieved by
identified the requirements for the meaningful characterization of a microarray
experiment into data that can be searched and queried. These requirements include
representing both raw and adjusted image data from fluorescent signals on the array,
experimental parameter data, and gene annotation data. Biological researchers query
microarray databases to find results that either support or refute a scientific hypothesis.
Those result sets are not always specific answers in themselves but present valuable
correlating patterns or trends. We have found that interactive software tools for
graphical pattern analysis and visualization of the genetic expression pattern output are
particularly important to improving the value of microarray query results to the user.
The limitations identified here have been grouped into three major categories. 1.
Those limitations affecting querying capability directly, such as inconsistencies in data
identification or lack of support for parameters such as querying rate of change on time-
varying image data. 2. Those limitations affecting the implementation, and therefore
affect querying indirectly. For example, lack of centralization and consistency in data
analysis that inhibits data validation and data exchange. 3. Inherent limitations for
which there are no practical solutions, such as the limits of the microarray technology
itself. We have proposed solutions for each of the limitations we identified. For

example, to better accommodate free text queries we suggest synonym mapping so that
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terminology having closely related concepts could be matched to a likely result of
interest.

In our approach we have attempted to understand the characteristics of the data
to be queried, to identify challenges to effective data management, to understand the
needs of intended user groups, and the purpose for the query results. In so doing we
have been able to assess limitations and suggest solutions. Although this thesis
describes and examines the specific case of microarray databases, the approach taken
could be applied to evaluating and identifying areas of improvement in other categories
of bioinformatics databases. For example, protein array databases that facilitate the
study of entire protein populations (or proteomics, discussed further in appendix D).
These are still emergent technology and present additional challenges beyond those of
microarrays. In future work we would like to examine this and other categories of

biological databases.
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APPENDIX A

LIST OF MICROARRAY DATABASES
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The following is a list of publicly available microarray databases currently
available through internet access. This table is adapted from the 2005 Database
Collection [GO05] published by Nucleic Acids Research. The journal annually publishes

a summary list of all publicly accessible internet based implementations of biological

databases.
Table 14: List of Microarray and Gene Expression Databases in 2005
NAME DESCRIPTION WEBSITE
1 5’SAGE 5’-end serial analysis of gene expression | http://Ssage.gi.k.u-tokyo.ac.jp/
Public collection of microarray gene . .
2 ArrayExpress expression data http://www.ebi.ac.uk/arrayexpress
3 Axeldb Gene expression in Xenopus laevis http://www.dkfz-heidelberg.de/abt0135/axeldb.htm
4 BodyMap Human and mouse gene expression data | http://bodymap.ims.u-tokyo.ac.jp/
5 BGED Brain gene expression database http://love2.aist-nara.ac.jp/BGED
Expression reference database, linking
CleanEx heterogeneous expression data to http://www.cleanex.isb-sib.ch/
6 facilitate cross-dataset comparisons
Database of experimental results on
dbERGEII gene expression: genomic alignment, http://dberge.cse.psu.edu/menu.html
7 annotation and experimental data
Expression-based imprint candidate
8 EICO DB organiser: a database for discovery of http://fantom2.gsc.riken.jp/EICODB/
novel imprinted genes
Edinburgh mouse atlas: a digital atlas of
emap Atlas mouse embryo development and http://genex.hgu.mrc.ac.uk/
9 spatially mapped gene expression
10 EPConDB Endocrine pancreas consortium database | http://www.cbil.upenn.edu/EPConDB
1 EpoDB Genes expressed during human http://www.cbil.upenn.edu/EpoDB/
erythropoiesis
12 FlyView Drosophila development and genetics http://pbio07.uni-muenster.de/
GeneAnnot Revised annotation of Affymetrix http://genecards.weizmann.ac.il/geneannot/
13 human gene probe sets
14 GeneNote Human genes expression profiles in http://genecards.weizmann.ac.il/genenote/
healthy tissues
15 GenePaint Gene expression patterns in the mouse http://www.genepaint.org/Frameset.html
. A transcriptome-focused member of the . . . .
16 GeneTide GeneCards suite http://genecards.weizmann.ac.il/genetide/
Expression patterns in an embryonic .
17 GeneTrap stem library of gene trap insertions http://www.cmhd.ca/sub/genetrap.asp
18 GEO Gene gxpression omnibus: gene http://www.ncbi.nlm.nih.gov/geo/
expression profiles
19 GermOnline Gene expression in mitotic and meiotic hitp://www.germonline.org/
cell cycle
20 GXD Mouse gene expression database http://www.informatics.jax.org/menus/expression_menu.shtml
21 H.ANGEL Et‘)‘rr;ay“ anatomic gene expression hitp://www jbirc.aist.go jp/hinv/index jsp
Genes expressed in differentiating . . .
9 HemBase human erythroid cells http://hembase.niddk.nih.gov/
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http://5sage.gi.k.u-tokyo.ac.jp/

Table 14 — Continued

NAME DESCRIPTION WEBSITE
23 Hugelndex Expresm_on levels of human genes in hitp:/hugeindex.org/
normal tissues
24 Kidney
Development Kidney development and gene expression http://golgi.ana.ed.ac.uk/kidhome.html
Database
List of lists annotated: a comparison of
25 LOLA gene sets identified in different microarray | http://www.lola.gwu.edu/
experiments
Ascidian (Halocynthia roretzi) gene . .
26 MAGEST expression patterns http://www.genome.ad.jp/magest
Molecular anatomy of the mouse embryo
27 MAMEP project: gene expression data on mouse http://mamep.molgen.mpg.de/
embryos
MEPD Medaka (fres_hwater fish Oryzias latipes) hitp://www.cmbl.de/mepd/
28 gene expression pattern database
2 MethDB DNA methylation data, patterns and hitp://www.methdb.de/
profiles
Mouse SAGE SAGE hb_rarles from various mouse tissues http://mouse.biomed.cas.cz/sage
30 and cell lines
NASCarrays ﬁf)ttmgham Arabidopsis Stock Centre http://affymetrix.arabidopsis.info
31 microarray database
32 NetAffx Public Affymetrix probesets and http://www.affymetrix.com/
annotations
Osteo-Promoter | Genes in osteogenic proliferation and . .
33 Database differentiation http://www.opd.tau.ac.il
Prostate expression database: ESTs from
34 PEDB prostate tissue and cell type-specific cDNA | http://www.pedb.org/
libraries
Public expression profiling resource:
35 PEPR expression profiles in a variety of diseases http://microarray.cnmcresearch.org/pgadatatable.asp
and conditions
RECODE Gene§ using prpgrammeq translational http://recode.genetics.utah.edu/
36 recoding in their expression
RefExXA R_eferenpe databa;e for human gene http://www.lsbm.org/db/index e.html
37 expression analysis
38 rOGED Rat ovarian gene expression database http://web5.mccs.uky.edu/kolab/rogedendo.aspx
SAGEmap NC.B I's resource for SAGE data from http://www.ncbi.nlm.nih.gov/SAGE
39 various organisms
40 SIEGE Smoklng Induced Epithelial Gene http://pulm.bumc.bu.edu/siegeDB
Expression
Stanford Raw and normalized data from microarra
41 Microarray . Y http://genome-www.stanford.edu/microarray
experiments
Database
42 Tooth e S
Development Gene expression in dental tissue http://bite-it helsinki.fi/
Database
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MIAME STANDARDS FOR MICROARRAY DATA
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The Microarray Gene Expression Data (MGED) Society is an international
organization of molecular biology researchers, computer scientists, and data analysts
whose main goal is to facilitate sharing of microarray data for the study of functional
genomics and proteomics. MIAME is one of six standardization projects being
pursued by researchers in the group. Provided below are the MIAME Standards for
Microarray data as proposed by the EBI at their July 1999 conference meetings and
released in July 2000. The standards document which follows is also publicly available

from the following link: http://www.mged.org/Workgroups/MIAME/.

The meeting discussed draft recommendations to the microarray community proposed
by the EBI and established a general consensus detailed below. These recommendations
should not be regarded as an official view of the meeting, but as a starting point for

wider discussions in the microarray community.

o Establishing a well-organized public repository for gene expression data will
provide the bioinformatics community with a powerful tool. Establishing such a
repository would be facilitated by:

e accepting a standard for the minimum information that laboratories should be
encouraged to provide about microarray based experiments, to ensure
reproducibility of the results;

e defining the data communication standards for such experiments;
e developing ontologies for sample description;

e developing standards for normalization, quality control, and cross-platform data
comparison for microarray based experiments;
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The minimum information about a published microarray based gene expression
experiment should include:

1. expression level measurement results, in particular:
a. the TIFF image file from the hybridized microarray scanning;

b. the image analysis output (of the particular image analysis software) for
each spot, for each channel,

c. aderived value summarizing each spot in the authors interpretation (e.g.,
a background subtracted intensity typically used for Stanford or Incyte
technologies);

2. the following annotations:
a. array (e.g., platform type, substrate, number of spots, provider),

b. each element (spot) on the array (e.g., sequence or clone and relevant
accession numbers),

c. sample source and treatment (e.g., organism, development stage, tissue,
drug treatment),

d. controls in the sample and on the array,

e. hybridization extract preparation (e.g., cell rupture method, nucleic acid
extraction and labeling protocol),

f. hybridization procedure (e.g., time, concentration, volumes, washes),
g. scanning procedure (e.g., hardware, output TIFF file header),
h. image analysis and quantification (e.g., software, version, parameters),

e Also, MGED would like to encourage the image analysis
software developers to try to design methods for standard ways of
summarizing spot quality.

i. description of the experiment as a whole (e.g., set of related samples and
hybridizations submitted together and their relationships [time series,
comparative hybridizations], reference if published).

The meeting accepted the items la) —c) and 2a) — i) by consensus. There were
two general opinions about the detailed specifications of each of the subitems. A clear

majority considered the level of detail given in the "Details of the minimum

117



information" document is close to the minimum that has to be provided about any
published experiment. Nevertheless, there were a considerable number of participants,
who considered the proposed details excessive. It was agreed that the details will be
specified by working groups and by e-mail discussion and proposed for discussion at a

follow-up meeting.

It was agreed by consensus, that once the definition of the minimal information
about a public experiment is accepted by the community and public repositories
supporting this specification are established, journals should be encouraged to require
data submissions to a public repository, where the information can be confidential until

the publication.

Data storage and communication standards

1. A standard XML-based flat-file format for microarray data description and
exchange, compatible with the minimum information definition discussed
above, should be developed and accepted by the community. This will formalize
the definition of the minimum information, as well as open a way to populate

public repositories directly from laboratory databases and LIMS systems.

2. It was proposed that:

o the flat-file format should support simultaneous submission of data from
multiple experiments (i.e., unrelated hybridizations), to facilitate the
uploading of data from laboratory databases into public repositories;

o the working group for data communication standards consider ways that
might allow the standards developed for data from microarray expression
experiments to be extended to cover data from other kinds of microarray
experiments;
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e ideally, the format should support a possibility of back-referencing to
items submitted to a public repository earlier.

3. A working group for developing XML standard was established at the meeting.

The standard will be reviewed and accepted in a follow-up meeting.

Ontologies for sample source and treatment description.

Ontologies should be used for sample source and treatment description (e.g.,
organism, development stage, tissue, cell line type, cell line, treatment type) where
possible. In particular, MGED use collections of categories, each of which have their
own controlled vocabularies, where the categories are themselves organized, e.g., as a

tree.

1. Universally accepted ontologies or standard vocabularies currently do not exist,
except for description of species (Taxonomy database). Ontologies for
developmental stages and tissues are relatively well described for some

organisms, mouse and fruit fly in particular.

2. A working group was established to consider where introduction of an ontology
is possible, and ways achieving this. It is not feasible for the working group to
develop the final ontology for any new category of sample description, but

rather to:

e identify categories which should be included in sample source and
treatment description;

e identify and review relevant ontologies developed by independent
groups;
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e identify the subset of required categories that can be covered by
incorporating and adapting available ontologies, and identify provisional
means of handling remaining categories;

e document issues pertinent to use of other ontologies, and issues and
possible approaches for fuller treatment of provisionally handled
categories. The identification of high level categories and nodes where
controlled vocabularies are possible will be considered for these latter
categories.

3. Recommendations from the working-group will reflect on the minimum

information definition and on data exchange standard.

Data normalization and cross-platform comparison

1.

The microarray community should determine common controls for their arrays

and experiments. In particular there may be two types of controls:

e normalization controls
e quality controls

Experiments in the public domain comparing different platforms for designing

cross-platform normalization procedures should be encouraged;

The meeting established a working group that will develop detailed
recommendations for normalization, quality control and cross-platform
comparison, which will develop more detailed recommendations before the next

meeting.

Database population and data submission issues.

1.

XML based flat-file format will be a relatively straightforward and easy way of
submission by e-mail or ftp download, enabling direct submissions from

laboratory databases and LIMS systems.
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2. Client side data submission tools (either Web-based or stand alone) would
complement such flat-file based submissions. Ease of use and the ability to

back-reference objects from the database will be essential.

3. Information about experiments and arrays may be submitted separately, with the
array description being within the same or prior submission from experiments

using them;

4. Use of standard protocols for hybridization extract preparation, hybridization,
scanning, and image analysis should be considered. Scanning hardware and
image analysis software producers should be encouraged to accept relevant

standards.

5. Ideally, the database should support the reuse of objects submitted in earlier
experiments (e.g., extraction and hybridization protocols), which would
facilitate standardization of these categories. The XML data exchange format

should support such "back-references".

6. The minimal information specified in the first section of this document should

be provided by the submitter and supported by a public repository.

Data curation, quality, and ownership in a public repository

Database administrators, submitters, and users should take steps to assure the quality of

data on the database.
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1. Administrators of an open public database cannot police quality data, but can

and should:

o verify that data meets the minimal information requirements given above
and meets obvious data consistency checks. Where possible this should
be done through automated checking at the time of data submission;

o flag database entries based on appropriately defined and accepted
experimental quality assessment indicators. Possible bases for such
indicators might include replication of experiments, use of recommended
controls, publication of experiment in a peer-reviewed journal;

e reserve the right to remove from the database entries that have turned out
to be obviously wrong. To work out formal criteria for making such
conclusions may be difficult, however;

2. Submitters of data to the database should be willing and able to update data that
have proved to be in error on later analysis. For instance, if, after an experiment
using an array has been loaded on the database, DNA sequencing proves a spot
on the array to be unreliable, the submitter should be able to update this on the

database;

3. Users of the database should be able to submit annotations. These should be

identifiable as third-party annotations;

4. To ensure quality control in the early stages of the database development,
administrators may at first accept data from selected collaborators. When the
database reaches development stability, data submissions will be made open and
public. Database submissions should be open to the whole community before

they can be made obligatory prerequisite by journals.
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MAGE-ML: XML FOR MICROARRAY DATA
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Microarray Gene Expression Markup Language (MAGE-ML) "is a language
designed to describe and communicate information about microarray based
experiments. MAGE-ML is based on XML and can describe microarray designs,
microarray manufacturing information, microarray experiment setup and execution
information, gene expression data and data analysis results. MAGE-ML has been
automatically derived from Microarray Gene Expression Object Model (MAGE-OM),
which is developed and described using the Unified Modelling Language (UML) -- a
standard language for describing object models.

Descriptions using UML have an advantage over direct XML document type
definitions (DTDs), in many respects. First they use graphical representation depicting
the relationships between different entities in a way which is much easier to follow than
DTDs. Second, the UML diagrams are primarily meant for humans, while DTDs are
meant for computers. Therefore MAGE-OM should be considered as the primary
model, and [the MGED committee report authors] will explain MAGE-ML by
providing simplified fragments of MAGE-OM, rather then XML DTD or XML
Schema." (from the description by Ugis Sarkans, [SMSTSCO02]). The standards
description that follows is an excerpt from the documentation publicly available from
this link: http://www.mged.org/Workgroups/MAGE/mage.html.

The Minimum Information About a Microarray Experiment, also known as
MIAME, was developed to specify which microarray experiment data and metadata
should be reported to enable others to understand and interpret the experiment

unambiguously. This is a data content standard, not a format standard.
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Microarray Gene Expression Markup Language (MAGE-ML) is a formal language
designed to describe and communicate information about microarray based
experiments. MAGE-ML is an XML language; it can be used to describe microarray
designs, microarray manufacturing information, microarray experiment setup and

execution information, gene expression data and data analysis results.

MAGE-ML has been automatically derived from Microarray Gene Expression
Object Model (MAGE-OM), which is developed and described using the Unified
Modelling Language (UML) — a standard language for describing object models.
Models described using UML have advantages over pure XML technologies (DTDs or
XML Schemas) in many respects, especially for didactic purposes. They use graphical
representation depicting the relationships between different entities in a way which is
much easier to follow for a human than DTDs. The idea behind UML diagrams is to
provide a way of describe models that is both human readable and has strict semantics,
while DTDs and XML Schemas are meant primarily for computers. Also, complex
models (also MAGE) involve many different types of relationships between model
elements, while in XML by definition information is encoded in a hierarchical manner

and relationships that break the hierarchy need to be encoded in some special ways.

MIAME requires detailed annotation about experimental conditions, materials
and procedures to be captured. MAGE-ML is a rich format. By using it one can encode
MIAME-required information and more. The purpose of this document is to provide

guidance for encoding MIAME-required information in MAGE-ML.
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MIAME consists of 5 sections, [the MGED committee report authors] will follow that

structure here. For each MIAME section the following is presented:

1) one or more UML class diagrams containing a subset of classes and associations
from the corresponding MAGE-OM package(s) needed for MIAME-compliant data
encoding;

2) a fragment of the simplified MAGE-ML DTD (MGED will call this here MAGE-
ML-Lite) that is sufficient for encoding MIAME;

3) an informal object diagram that illustrates the structure needed for MIAME
encoding in MAGE objects;

4) asample MAGE-ML document template that corresponds to the object diagram.

On the class diagrams [the MGED committee report authors] have only deleted some
classes and associations that are less relevant for MIAME encoding, but [the MGED
committee on MAGE-ML] haven't made any structural changes. In fact, the diagram

layout is the same as in the formal MAGE-OM specification.

The object identifiers for MAGE objects should have the form:

<authority>: [<namespace>] :<object>[:<revision>] where":" is the
field separator, "<...>" is a string and "[...]" represents an optional elements.
Syntactically none of strings used in 'authority', 'namespace’, 'object’ and 'revision' is
allowed to contain':'. For the time being <authority>:<object> also is
acceptable from current MAGE-ML exporters, but [the MGED committee on MAGE-
ML] would recommend that submitters strive to conform to the specified format with
null namespace, e.g. <authority>::<object>. If submitters don't have a
meaningful namespace then the recommended format is

<authority>::<object>.
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<authority> is assigned by the data provider. [The MGED committee on MAGE-
ML] recommend that this is done in a way that minimises the possibility of clashes, for
instance following the DNS model with the providers giving names like "ebi.ac.uk",

nn

"umich.edu", "genetics.umich.edu" or "lab23.genetics.umich.edu".

[The MGED committee on MAGE-ML] recommend that the software
manufacturers include the assignment of the authority during the installation of each
particular copy of their software. The defaults should be set in a way that minimise the
clashes. If there is a 'authority' clash during the submission to a public database (e.g.,
ArrayExpress), [the MGED committee on MAGE-ML] will try to resolve this via
MGED. The mass software should ideally have an option which allows to change the

'authority' after the installation.

Regarding [<namespace>]:<object>[:<revision>], the only
requirement at the moment is that objects should be guaranteed to be unique within the

authority.

127



APPENDIX D

PROTEIN MICROARRAY DATABASES

128



A) INTRODUCTION

Just as genomic microarray data has a more complex and newer counterpart to
protein microarray data, the graphical databases that store genomic microarray data
have multimedia database counterparts to store protein microarray data. In this
appendix we will review the newest type of microarray technology, for protein
microarrays.

Microarray databases are among the first bioinformatics implementations to use
searchable graphics. Queries are on the scale of a complete genetic profile for an entire
cell or entire collection of cell types within an organism. The next step in visualization
is to be able to search not just representations of images but the images themselves. In
this regard multimedia databases are highly suited to bioinformatics. The next step in
studies of an entire genetic expression profile is to not only look at which genes are
expressed but look at the proteins those genes encode. A complete protein population
or proteome is not exactly equivalent to a population of expressed genes. Protein
interactions, distribution, and regulation differ from those of the expressed genes or
mRNA transcripts which encode them. In appendix D we provide a detailed look at the
importance of proteomics next steps in the field of genetic expression studies and the
use of multimendia databases that support that research. In section B) we will first
identify the relevance of multimedia databases to bioinformatics data. Then in section
C) we identify some of the biological research questions that are suited to multimedia
databases. From recent research efforts, we focus on location proteomics as an

excellent example of how to construct an automated searchable Bioinformatic image
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database. The research group lead by Robert Murphy at Carnegie-Mellon University
provides the well studied case of fluorescent microscopy location proteomics.
Exploring their work in sections D) and E) we examine (1) data type identification, (2)
basic approach to indexing, (3) identification of query types, (4) implementation of a
search tool, and (5) future goals. Section F) provides a summary.

B) ROLE OF MULTIMEDIA DATABASES FOR BIOLOGICAL DATA

Multimedia databases contain diverse data types including images, video, and
audio. The Internet is an archetypical distributed multimedia database. Large variation
in file size and complexity of the data is handled through the appropriate metadata
structures. A typical metadata structure used for Internet files is XML. Because the
data types are complex, traditional relational query techniques are not suitable. New
query techniques are being developed suited to the high dimension spaces of
multimedia, and multimedia content based retrieval. Two examples of recent research
in querying and retrieval for multimedia are 1) developing distance metrics for nearest
neighbor queries in high dimensions, and 2) the use of natural language to search for an
object by name through indexing the features of an image.

Broadly, there are two areas of multimedia database technology particularly
relevant to biological data, 1) static image databases (two-dimensional or 2D) and 2)
virtual reality (three dimensional or 3D) which may include animation. There are many
open questions related to indexing of complex image data, and how to construct queries
for this type of data. Analysis of image data is important in biological research. Within

the last few years advancements in multimedia database technology have been
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accompanied by interest in its application for biological databases. Virtual Reality
implementations are few and query techniques are largely confined to simple
navigation, they are used as visualization tools for the content of well established
relational databases. Virtual Reality graphics may have a significant role for improved
usability of the most widely accessed databases which are presently limited to simple
flat file and textual data retrieval. Image databases clearly have important roles and
complex querying techniques have been developed for detecting patterns in both
individual molecules and localization of particular proteins at the subcellular level.

Biological databases traditionally provide textual descriptions of data. A classic
example are the DNA sequence databases. Even storage of images is relatively new.
The concept of queries based on comparison of images is now an area of current
research. Many areas of biological research depend on information from images. For
image data, the manual mode of analysis has been the only option until very recently. It
is limited in its efficiency and scale. Using multimedia databases with new techniques
for handling image features would overcome that limitation.
C) BIOLOGICAL DATATYPES SUITED TO MULTIMEDIA DATABASES

What are some of the areas in biological research that would benefit from
automated comparative image analysis, indexing, and query capability?
C1. Cell populations

As a first example, considere patterns of cell populations. Many diseases are
related to protein interactions resulting in cell death. Comparing images of the cells

answers whether the cells die in patches, or as a wave, and at which layers. Image
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analysis also reveals what patterns of cellular migration, cell type association, and cell
division occur in different disease states. Studies in biomolecular research ranging from
cancer and autoimmune disorders, to physiology, and drug discovery all require these
types of image pattern comparisons. Yet these are queries that conventional databases
are not able to support.
C2. Location proteomics

In additional to comparison analysis, querying image patterns is important to the
study of a new area in molecular biology known as location proteomics. A proteome is
the complete protein profile, or the complete protein population. This will not represent
all genes (the genome), since only a small subset of genes are used to make proteins at
any one time. This may be in reference to either a cell, or an organism. Location
proteomics is the study of the distribution properties and statistics on features of
proteins in their cellular context. This type of information provides an understanding of
the normal spatial and temporal patterns of protein distribution, to which a comparison
can be made and therefore guides both experimental design and results interpretation.
These types of information can be analyzed effectively only through image data.
C3. Whole genome analysis

A related area in image based queries, is the 3D or Virtual Reality technology
for visualizing large data sets, entire existing databases, or complete systems. Again,
these provide a unique and important supplement for researchers to learn from large
bioinformatics databases. Through this new technology a global view of large scale

patterns in comparison of DNA which textual queries are unable to accomplish.
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D) OVERVIEW OF LOCATION PROTEOMICS

Murphy [MF05] makes the observation that “the focus of most biochemical
research is now shifting from simply identifying gene sequences to determining the
properties and functions of the proteins encoded by those genes.” From this shift we
have the emerging field of proteomics which is a subfield in the wider arena of
genomics. The suffix -omics refers to study of the complete system, for example the set
of all proteins needed by a cell or by an organism. Location proteomics is an important
area of research for mapping proteins to where they are localized in a cell. The cell is
compartmentalized into different distinct subregions with specific unique tasks for cell
maintenance. For example in eukaryotes (all non-bacterial cells) these structures
include nucleus, mitochondria, lysosomes, Golgi apparatus, cytoskeleton, and the
endoplasmic reticulum. Of fundamental importance to the adaptability and diversity of
cell types is this compartmentalization.

The diversity of cell types results in specialized functions in particular tissues.
Note that pancreatic cells, muscle cells, skin cells, nerve cells are all very distinct in
their functions, shape, and capabilities. The ability to locate where a particular protein
is found within a cell and also which cells use that protein in different types of tissue or
organs is important to biologists. Additionally, researchers are interested in when the
proteins are required and synthesized, which combinations are synthesized and at what
concentrations. Medical problems can result from incorrect concentrations, incorrect
timing or synchronization in synthesis, or incorrect location as well as from improper

shape or improper function of a particular protein. Proteomics as a field is dependent
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upon genomics. It is only in the last 5 years that, along with the rapid elucidation of
genetic sequences, proteomics data has exploded into a huge amount of information,
new technology and large volumes of data. The number of proteins exceeds the number
of genes. In humans 30,000 genes are estimated to encode approximately 100,000
proteins. This is simply because the intermediate step in gene to protein (mRNA
strands) can be biologically edited, with sections being deleted before it is used as a
template for protein production. Similarly proteins themselves are often shortened,
chemically modified, or consist of multiple independent protein strands.

Understanding the patterns of protein begins with the raw data, in contrast to
other types of data on proteins such as sequence, binding partners in pathways, or
metabolic activities, subcellular location has received little attention in the past partly
because information and data was restricted to unstructured text in journal articles. An
additional limitation of text is the lack of consistent terminology for subcellular
location, despite efforts such as the GO Cellular Component Ontology vocabulary from
the Gene Ontology (GO) Consortium. Query processing and query results retrieval

become dependent upon qualitative terms, the table below provides an example of

Table D1: Example comparison of variation in terminology for protein location

Protein giantin Gpp130
Accession Swiss-Prot Q14789 TrEMBL 000461
Comments: Subcellular | Golgi; membrane- (none)
location associated
GO Cellular component | 0000139, Golgi membrane; | 0030139, endocytic vesicle;
terms 0005795, Golgi stack; 0005801, Golgi cis-face;

0016021, integral to 0005796, Golgi lumen;
membrane 0016021, integral to
membrane
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textual descriptors for two proteins found in the cellular structure Golgi from which it
can not readily be determined if the patterns overlap if so to what degree and what are
the relative concentrations. The variation in terminology used to describe subcellular
location in protein databases is illustrated by table D1 below [M04].

Other types of proteome queries can not be easily answered without image
databases, for example do proteins found in the lysosome have similar distribution and
concentration patterns as for endosomes? Image databases provide quantitative answers
rather than qualitative. Further, by interpreting and mapping protein families at the
level of a complete proteome, errors can be recognized and corrected. For example, a
protein found in the mitochondria may be incorrectly assigned to another organelle and
this mistake may be identifiable by its distinctive location pattern.

D.1) PROTEOMICS DATA TYPES

The most current technology typically generates proteomics data from the following
five techniques:

1) high performance liquid chromatography (HPLC) for separation, a technique
well established in chemistry

2) mass spectrometers for identifying individual proteins by weight and
composition by each type of atom

3) protein microarrays (protein biochips) for measuring concentrations and
interactions between proteins these were introduced commercially in 2002 as the
BioPlex chip by Bio-Rad and are still actively researched.

4) two-hybrid systems both yeast for eukaryotes and bacterial for prokaryotes.
These are genetically recombinant cell lines which enable study of protein
binding and biochemical pathway elucidation in a living cell. In these systems
GFP (green fluorescent protein) is synthesized attached to a protein of interest in
a living cell. The protein of interest is then observed in real time within the
living cell, it is assumed the fluorescent component of the hybrid protein has
minimal or no impact on the biological activity of the protein.
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5) atomic force microscopy (AFM) in which an electrode tip probes the surface of

a cell or sample. The tip detects surface properties including ionic charge

gradient or charge density, magnetic field, temperature, and topography

[SMMO04], this is one of the most recent developments in protein research.

Regarding protein microarrays it is important to note that unlike DNA, proteins are

very sensitive to slight changes in their chemical surroundings which impact their
ability to bind, therefore protein microarrays are still facing many challenges compared
to the corresponding DNA microarray technology. This technique is based on
fluorescent molecules attached to antibody proteins which are synthesized to
specifically bind a protein of interest, these fluorescent antibodies are known as probes.
A z-series of images taken at different positions in the z-axis of a cell allows three
dimensional mapping of protein location in the entire cell, known as laser-scanning
confocal microscopy. In some cases more than one protein may be observed
simultaneously, each having a unique color for its fluorescent marker. Additionally,
some antibodies are specific to a protein in a particular conformation or shape from a
biochemical interaction.
D.2) PROTEIN IMAGE DATA INDEXING

Murphy et al [MF05, HM04, M04, MKHJC04] consider how the microscopy
images of cells can form a multimedia bioinformatics database for proteomics research.
Specifically, their research has developed an automated systematic analysis of the
images so the image data can be classified and retrieved from an image database.

Current practice in Biological Research assumes visual inspection of these images.

Comparisons are made between known locations of markers and locations of the protein
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being studied. Automated classification technology would replace the currently used
manual system of visually inspecting images then assigning descriptions to them from a
small vocabulary. The manual approach is time consuming and will not scale well.
The automated system developed by the Murphy group was reported to distinguish
similar images of proteins giantin and gp130 at 97% accuracy where a human observer
was unable to distinguish them [M04].

An important first step to building queries on microscopy images is the data
structure for such images. Murphy et al have addressed how to automatically recognize
features of cell structure from the images. Previous research in this area required either
special additional labeling steps for cellular structures such as the nucleus or plasma
membrane or required model assumptions making them more restrictive than the
approach for Murphy [HMO04]. Using ten major subcellular structures they were able to

achieve 92% average accuracy for 2D single cell images and 96% average accuracy for

Table D2: Descriptions of multicell morphological features

SLF Multicell Morphological Feature Description
Index

SLF1.3 | The average number of pixels per object

SLF1.4 | The variance of the number of pixels per object

SLF1.5 | The ratio of the size of the largest object to the smallest

SLF7.9 | The fraction of the non-zero pixels in a cell that are along an edge
SLF7.10 | The fraction of all values in first two bins of the edge intensity histogram
SLF7.11 | The ratio of the largest to the smallest value in the edge intenity histogram
SLF7.12 | The ratio of the largest to next largest value in the edge intensity histogram
SLF7.13 | The edge direction difference

SLF7.80 | The average length of the morphological skeleton of objects

SLF7.81 | The average ratio of object skeleton length to skeletal convex hull area
SLF7.82 | The fraction of object pixels contained within the skeleton

SLF7.83 | The fraction of object fluorescence contained within the skeleton

SLF7.84 | The ratio of the number of branch points in the skeleton to skeletal length
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3D single cell images. Significantly, they report better results from multicellular
images than single cell partially due to a greater amount of pattern information. This
eliminates the need to segment the images into individual cells. Additionally, the set of
cell morphological features they selected are independent of cell rotation, eliminating
the need for image orientation before processing. Figure 2 [HMO04] lists thirteen of
these features that describe properties of the cellular objects, these serve as examples of

query parameters in a microscopy database.

D.3) QUERY TYPES FOR PROTEOMICS

Among the feature selection methods they examined, stepwise discrimination
analysis (SDA) was reported as the best for subcellular pattern classification. Mapping
the dataset from the images to a high dimension data structure will not be considered in
detail here since this work is focused on query techniques. The automated classification
techniques of Murphy et al provide data enabling queries that could include the

following as output:

1) ranked images to provide the most representative or typical image

2) comparisons of sets of images whose subject matter is a specific protein under
different conditions to detect changes as a result of those conditions for example
in the absence of presence of a toxin or a pharmaceutical drug

3) grouping of proteins in a particular location within the cell and from this provide
a tree hierarchy or dendrogram

4) content based retrieval for microscopy images from articles in online research

journals or offline databases and collections
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D.4) IMPLEMENTATION

The Murphy lab has created a prototype agent based service SLIF (Subcellular Location
Image Finder) which can locate fluorescent micrographs by searching for articles and
processing them. The SLIF service accepts text based queries, which were used to
identify relevant PDF format articles from one of the largest publicly available web-
based research databases NCBI PubMed Central and in a separate experiment against a
single collection of 15,000 indexed articles from Proceedings of the National Academy

of Sciences in XML format which can be searched using standard SQL queries.

Murphy lab SLIF Service
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Figure D2: Results set for a serial query using the SLIF web interface. The first query was
made on the a PNAS test set [MKHJCO04] and is for figures in which caption contained
“microtubule,” “mt,” or “tubulin.” A second query on the output from the first query retrieved
figures containing a fluorescence microscope image (FMI). Only the first of several figures
matching both queries is displayed here.
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Figure D3: Dendrogram showing location patterns for 46 different proteins as arranged
along the X axis by their Z-scored Euclidean Distance. Z-scores appear along the
vertical axis. These distance values are determined by subtraction of mean and division
by the standard deviation.
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SLIF automatically retrieves the matching files, parses the image into meaningful
subparts known as “panels”, identifies panels containing a fluorescent microscope

image, and ranks these panels by the degree to which they match a specific query

pattern. The system uses a neural network trained by using known patterns from tagged
antibodies to reference proteins in images of a particular well researched cell line
[MKHIJICO04].
D.5) OUTPUT

SQL queries utilizing Java Server Pages have been tested for the following
searches: (a) particular protein name in a figure or panel, (b) specific subcellular
pattern, (c) particular spatial resolution in pixel size for an individual image. The SLIF
service interface is shown above in figure D2. Subcellular location trees can be
generated from this type of information. Patterns vary slightly based on which cellular
feature set (sample feature set described above) is used. The dendrogram in figure D3
from the research of the Murphy group appears in [CVWIMO03].
E) FUTURE ISSUES
E.1) EXPANDING SLIF

Additional capabilities which are under research include providing summary
reports with confidence intervals related to each query retrieval, and combining SLIF
query output with other information about the proteins retrieved from annotated

databases.
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E.2) NEED FOR FIGURE STANDARDS

An important issue identified in this research is the lack of conventions or
standards in placement and format of labels on figures for journal articles posed some
difficulties in query processing which could be resolved easily by supplementing XML
structures for research articles so that their content may be parsed more consistently.
Examples of such standards include coordinates of each panel as pixel numbers,
inclusion of a URL for an uncompressed figure, number of microns per pixel for each
panel, scoping markup to match captions to panels, and database links for annotation of
individual proteins.
E.3) DISTRIBUTED BIO-MOLECULAR IMAGE DATABASE

While SLIF provides an interface to collect and process images from web based
journal databases, and the Murphy group have researched problems and solutions to
improve image retrieval and image queries, it is restricted to fluorescent microscope
images. The need is apparent for databases specifically designed to store diverse types
of image data and facilitate image queries and searches. This should include time-
lapsed images to show how protein activity and distribution responds to changes due to
stress, pharmaceutical drugs, environmental toxins, or aging. Unfortunately, these types
of data are contained within images of the figures in journal articles which, as has been
previously covered this chapter, have query processing limitations. Singh et al have
noted “there is currently no home for this vast amount of data, and no method readily
available to discover knowledge in such a database were it available” [SMMO04]. Their

research toward a fully searchable distributed biomolecular image database is in its
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early stages. They have defined and classified the types of queries which would be
supported in the database as a set of four classes:

1) Metadata queries

2) Spatial queries

3) Semantic queries

4) Spatio-temporal queries
Feature extraction for the image database is also discussed by Singh et al [SMMO04]. Of
particular note is the role of a well defined distance metric to allow similarity
comparisons. Equally essential is an appropriate feature set. Texture feature analysis
can be adapted from aerial image processing to molecular images as both characterize
region properties. At low-level resolution similarity retrieval queries can be answered.
More highly structured patterns can be analyzed through statistical shape features,
which would enable queries to detect specific proteins. Hierarchical techniques are
needed for these high dimension datasets. ~ Locating a specific protein may require a
feature vector with hundreds of dimensions posing challenges for data clustering
requiring further research both in data indexing and query retrieval.
F) SUMMARY

Challenges lie ahead for this emerging area in the field of bioinformatics.

Firstly, detecting spatial and temporal patterns requires complex advanced database
techniques, and the ability to handle high-dimension data indexing for the queries. The
images must be analyzed and their descriptive features defined to a specified standard to

allow for meaningful metadata extraction. Secondly, image databases are extremely
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demanding of memory and storage resources. For example, a single image from a cell
can be 4 MB, a three dimensional profile composed of 50 z-axis slices through the cell
requires 200 MB, a time series of the cell to record dynamic response could be 10 GB, a
single experiment contains many cells under several condition sets resulting in 100s
GB. The review of location proteomics research has included some proposed solutions,

but more investigation is needed.
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