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Microarray technology has rapidly taken a key position among bioinformatics 

research tools. After the completion of the Human Genome Project, microarray 

databases have become particularly important to the management and analysis of 

genomic data.  These databases are ideal tools for many research areas involving gene 

expression patterns under different experimental conditions.  This work attempts to 

assess the querying capabilities of current public microarray database implementations 

by evaluating their data management, query interfaces, and results presentation.  We are 
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not aware of any comparative study available to date that evaluates this important class 

of biological databases.   We examine and evaluate how several of the current existing 

implementations handle microarray data so that they can be queried and managed in a 

useful, understandable, and efficient manner.  Our study identifies some of the 

limitations among existing microarray databases that impact querying and results 

presentation, leading to suggestions for areas of improvement. 
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 CHAPTER 1 

 
 INTRODUCTION 

 

 

1.1 Background 

Gene expression patterns reflect which proteins are present and at what rate they 

are being produced (expressed) within a given cell type.  Microarray technology has 

become the predominant method of choice for investigation and research involving gene 

expression.  In parallel with the completion of the human genome project, the number 

of public gene expression databases available has risen greatly in recent years.  

Increasing from 12 in 2000 [B00] to 42 in 2005 [G05]. Microarray databases are ideal 

tools for many research areas including developmental biology, evolution theory, 

discovering the function of an individual gene/protein, and in the search for new 

pharmaceuticals.  They also allow for the identification of genes that have positive 

impact, such as which genes are responsible for desired traits in crop plants to improve 

yield.  Several microarray databases have been established exclusively for plant 

genomes.  In summary, since microarray technology was first introduced in the late 

1990’s it has rapidly taken a key position among molecular research tools.  This work 

attempts to describe and evaluate publicly available web-based microarray databases as 

tools for biological research. 
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1.2 Contribution of this Work 

In this thesis we attempt to assess current public microarray database 

implementations.  To our knowledge, there is no comparative study available to date 

that provides a comprehensive evaluation of this important class of biological databases.   

This work compares several of the existing microarray databases in terms of their data 

management, querying capabilities, and presentation of query results to the users.  For 

these implementations, we examine and identify some limitations that impact querying 

or results presentation.  Based on this identification, we provide suggestions for areas of 

improvement.  As a look toward the future of these databases appendix D presents a 

thorough discussion of recent research efforts toward handling image data from both 

microarray and proteomics experiments for improving future implementations. 

1.3 Organization of Thesis 

This thesis is divided into 8 chapters.  Chapter 1 is an overview of the project 

and contribution of this work.  Chapter 2 provides a general background for 

understanding microarray databases.  Three different aspects are covered.  Firstly, a 

description of how microarray data are generated, described, and interpreted.  Secondly, 

we provide a brief introduction to the basics of microarray database architecture.  

Thirdly, other gene expression techniques are reviewed and compared to microarrays.  

Because selecting and defining the data types and descriptors is important to effective 

querying, Chapter 3 reviews the microarray data type definitions, standards, and data 

management techniques.  The metadata structures for data exchange between databases 

are also described.  Six example microarray database implementations are contrasted 

 2



 

and summarized in tables.  The background provided in chapter 3 helps the reader to 

understand the example queries of chapter 6 run on the same six example databases.  

Chapter 4 describes and summarizes the main components of microarray database 

interfaces.  Software tools for results visualization provide an important extension to the 

utility of these databses.  An introduction to some of these tools is provided with 

graphical illustrations.  Chapter 5 explains the importance of microarray databases as a 

tool for biological research.  To illustrate how querying these databases supports 

research, five different study areas of genetics relying on microarray experiments are 

defined and examples provided from referenced research publications.  Chapter 6 

presents illustrated example queries using screenshots from each of the six example 

databases whose data management approach was summarized previously in chapter 3.  

In chapter 7 we describe and assess the limitations among currently implemented 

microarray databases.   We then suggest solutions to address these limitations.  Finally, 

chapter 8 presents the conclusion and future work. 
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     CHAPTER 2 

2. OVERVIEW OF MICROARRAY DATABASES 
    
    
 
 

In order to better understand the design decisions and comparative analysis of 

microarray database implementations, this chapter provides background and review of 

several important aspects in generating and managing microarray data.  Section 2.1 

provides terminology background and a basic review of the scientific detection 

technique by which the microarray data are generated.  Section 2.2 provides an 

introduction to the basic architecture of the microarray databases by looking at both the 

platforms and object models.  In addition, data storage statistics are provided.  Section 

2.3 describes two other gene expression techniques that result in data often stored in 

microarray databases, these are EST and SAGE techniques.  Finally, use of SAGE is 

compared with microarrays.   

2.1 Reviewing Microarrays 

 Microarray techniques are relatively recent, but have taken a position as one of 

the most useful for studying genetic information.  This section provides an introduction 

to four aspects of microarray techniques.  First, we review the important basic 

terminology and biological concepts for microarray data.  Second, we provide a brief 

technical history for the basic design of microarrays.  Third, we outline the scientific 
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process of generating and detecting data using microarrays.  Fourth and finally, we 

provide an overview of research applications to which microarrays are particularly 

suitable. 

2.1.1 Terminology 

Microarray: also called gene array, or DNA chip; a small solid substrate to 

which a known set of DNA sequences is fixed for purposes of identifying unknown 

DNA samples based on the pattern of matches. 

GeneChip: a registered trademark for a commercial microarray manufactured 

by Affymetrix, Inc. that is sometimes informally used to refer to DNA microarrays 

Biochip: a set of microarrays, allowing higher throughput and parallel testing 

Expression: when a genetic sequence on the DNA is utilized to produce the 

protein that it encodes two stages occur, first translation to make an mRNA template 

and second transcription to make the protein.  These two steps result in a protein 

product that is the expression of the gene. 

DNA: Deoxy-Ribonucleic Acid, a chain molecule that is the basic unit of 

biological information passed from one cell to another during cell division, including 

cells involved in reproduction for all forms of life. Two complementary strands exist for 

each molecule and form a chromosome.  Where the strands are separated a short single 

strand sub region serves as the template to produce a temporary complement that 

becomes an mRNA molecule.  This is the transcription step in expression. 

Bases: DNA is made up of four different nucleotides or bases, adenine, 

thymadine, guanine, and cytosine commonly seen as A, T, G, and C respectively in 
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DNA sequence representation.  When two complementary DNA strands are paired 

together, the A or adenine nucleotides of one strand bond most strongly to the T or 

thymadine of the opposite strand.  Similarly the G or guanine bases bond most strongly 

to C or cytosine.  DNA bases between two different strands naturally only pair T-A and 

G-C.  All microarray technology is based on this rule. 

mRNA: These are short single stranded subsections of DNA that are copied into 

molecules for temporary use as templates to assemble protein sequences in the 

translation step of expression.  RNA is similar to DNA except that the thymadine is 

represented by a slight chemical variant known as uradine or U in sequences.  mRNA 

may be an edited version of the RNA copied from the original gene, the sequence can 

be shortened or spliced before the protein is made so that one gene may encode several 

proteins.   

cDNA: also called complementary DNA, is synthesized by researchers under lab 

conditions and does not occur in nature.    cDNA was used in early microarray designs; 

it is now common to use a larger population of sequences shorter than cDNA.   Each 

cDNA is the complementary strand to an mRNA, therefore at each position having a C, 

G, A, or U on the mRNA there will be a G, C, T, or A respectively on the cDNA.  The 

cDNA population or library will be fixed to the microarray surface, and then each 

particular mRNA from an unknown sample adheres only to a matching cDNA 

sequences and forms a tightly bound double stranded complex.     The closer the match, 

the tighter it is bound. 
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MGED: The definition provided on their website http://www.mged.org/ 

summarizes the organization well, “The Microarray Gene Expression Data (MGED) 

Society is an international organization of biologists, computer scientists, and data 

analysts that aims to facilitate the sharing of microarray data generated by functional 

genomics and proteomics experiments. The current focus is on establishing standards 

for microarray data annotation and exchange, facilitating the creation of microarray 

databases and related software implementing these standards, and promoting the sharing 

of high quality, well-annotated data within the life sciences community. A long-term 

goal for the future is to extend the mission to other functional genomics and proteomics 

high throughput technologies”.  

MAGE: Microarray Gene Expression group.  A group within MGED dedicated 

to developing standards for microarray data and databases.  These standards include 

MAGE-ML, an XML based metadata format derived from their Microarray Gene 

Expression Object Model (MAGE-OM).  MAGE-OM was developed and described 

using the Unified Modeling Language (UML) to the specifications of OMG (Object 

Management Group, another international consortium that establishes standards for data 

modeling.  In addition the MGED Ontology Working group is developing an ontology 

for microarray data types, details of which are provided at their websites 

http://mged.sourceforge.net/ontologies/MGEDontology.php and 

http://mged.sourceforge.net/ontologies/MAGEontologies.html.  These standards began 

development in 2001-2002 and for many microarray databases are now either in use or 

planned for future implementations. 
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Transcriptome: The complete set of mRNA transcripts representing all 

expressed genes in a particular cell under a particular set of conditions.  Microarray 

databases essentially store transcriptomes for analytical comparison.  There may be 

hundreds of transcriptomes associated to an organism under normal conditions, and 

potentially thousands under different experimental conditions. 

UniGene: A publicly available system for  partitioning and organizing gene 

entries from the gene sequence repository GenBank into a nonredundant set of gene 

clusters.  UniGene is a cDNA array based source of data for searching, mapping, and 

describing transcriptomes.  UniGene therefore benefits microarray experiment design.     

2.1.2 History of Microarray Databases 

The concept of commercial array kits consisting of tiny wells for detecting a 

particular sequence began in the 1980’s with proteins which bind to a specific antibody 

(immunoassays), the antibody molecule being chemically fixed to a small plate.  From 

these techniques came the goal of a similar DNA-based assay whose main technical 

challenge was increasing the assay sensitivity to detect tiny quantities of DNA [EC99].  

It was not until the 1990’s that commercially viable DNA microarrays on small silicon 

chips became available.  A California based company, Affymetrix lead by researcher 

Stephen Fodor, developed one of the first chips in 1993 (holding one million 

sequences), which they named GeneChip.  Affymetrix are the most widely used 

microarrays and the company has an important role in development of standards for this 

technology.   
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Since 2000, microarrays have flourished in parallel with the success of the 

Human Genome Project as a tool for genetic study and source of high throughput data 

resulting in microarray specific searchable databases as well as standards for storing 

their data.   Microarray databases are a natural extension of earlier gene expression 

databases.  Because microarray data is high volume and efficient to produce, in the five 

years between 2000 and 2005 the majority of gene expression databases predominantly 

contain microarray data and many exclusively store microarray data.   

Table 1 below illustrates how recently these databases have been developed.  

The list contains several important databases, which are the focus of the examples in 

chapters 3, 6, and 7 in this work.  In the table, the year established is the year of first 

listing in the annual publication The Molecular Biology Database Collection: Update from 

the journal Nucleic Acids Research.  The collection included over 700 public biological 

databases by 2005.  Among those, the number of databases specializing in expression 

data has steadily risen from 12 in 2000 [B00] to 42 in 2005 [G05].  Microarray 

experiments have been either the major or exclusive source of data for most gene 

expression databases since 2002. 

2.1.3 Detection Technique 

The chip has known sequences of synthetically produced DNA matching those 

from genes fixed to its surface and indexed.  Affymetrix, Inc provides 60 million probes 

for its commercial chip sets, these probes are the short DNA sequences, which are fixed 

o the chip.  Available chip sets cover several species, and can detect specific subregions  
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Table 1: Timeline of Recent Microarray Database Implementations 
Database 

name 
Year 

established Comments 

SMD 2001 

By 2002 only 19 gene expression entries in the Nucleic 
Acids Research Collection, of those only 2 are 
specifically listed as “microarray”; SMD and yMGV for 
yeast (at the time of this writing yMGV website exists, 
but was not updated since 2003 when it was withdrawn 
from the collection). 

GEO 2002 One of the first microarray databases to follow formal 
data structures recommended by MGED. 

HugeIndex 2002 HugeIndex provides data exclusively from the human 
genome. 

ArrayExpress 2003 

Although microarrays were already the main source of 
gene expression data in 2002, among new expression 
database entries for 2003 only two were specifically 
listed as microarray databases; ArrayExpress and 
TRANSPATH. (Transpath quickly evolved into a family 
of databases and like several other databases at this time 
switched from public to commercial status, charging a 
license fee for access) 

EMAP 2004 
EMAP is a graphical platform extension for querying 
two mouse gene expression databases, EMAGE and 
GXD. 

CEBS 2004 

This is the Phase 1 of a long-term 10-year goal of 
expanding capability through several other phases.  
Phase 1 includes microarray gene expression data, 
toxicology/ 
pathology data, and associated analysis tools. 

CIBEX 2004/2005 
Only a preliminary launch.  Well designed, with focus 
on compatibility with ArrayExpress and GEO.  Very 
few data entries stored as of 2005. 

 

 

within genes.  Most interest in microarray technology focuses on gene expression, but 

microarrays are also available which look at noncoding DNA, not only the 3% that 

encodes genes for proteins.   
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All microarray assays are based around five basic experimental steps: 1) design 

of the biological query, 2) preparation of the sample, 3) biochemical reaction on the 

chip, 4) mechanical detection of the assay, and finally 5) data visualization and 

modeling.  In a typical experiment sample DNA from a cell culture or other source 

representing the query will be prepared, and typically includes chemical attachment of a 

small fluorescent molecule for later visualization.  Each grid position contains many 

copies of the same known sequence and is able to collect either a few or many copies of 

the matching sequence if it is present in the sample, therefore important data for relative 

amount of a particular sequence present can be detected as the intensity of the signal.  

When a sample of DNA is placed in solution over the chip sequences those sequences in 

the sample that highly match some on the chip will chemically attract with higher 

affinity then those that have a lesser match.  This attraction and binding is known as 

hybridization of the base pairs.  By using precise washing conditions those sequences 

with the best matches will remain in place while the weaker held less close matches are 

washed away.  The matches are then detected by a scanner as spots and the images 

captured.   

In the following diagram 2.1 taken from MIT (Massachusetts Institute of 

Technology) open source internet learning modules, we see the steps of a microarray 

experiment.  This example correlates to the 5 step definition given above of a 

generalized microarray experiment as follows: Step 1 experimental design is complete 

before RNA isolation.  Step 2 preparation of the sample includes diagrams A, B, and C 
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below.  Step 3 hybridization is in diagram D.  Steps 4 and 5 detection and data analysis 

occur in diagram E. 

 
Figure 1: Illustration of microarray techniques 

 
In order to understand the signal interpretation from figure 1, assume red 

represents mRNA from a normal cell of a particular type, green represents mRNA from 

the same cell type experimentally exposed to pesticides.  Where the array shows red 

spots, the normal cell is expressing more of that particular gene than the pesticide- 
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exposed cell.  Similarly, where the array shows green spots the pesticide-exposed cell is 

making more of that gene product than the normal cell.  Where the spots are yellow 

both the normal and pesticide-exposed cells make the same amount of those genes.  

This array tells us which genes are affected (spots that are red or green instead of 

yellow),  how they are affected (reduced or amplified expression) and how much they 

are affected (degree of deviation from normal expression). 

Explanation of example experiment in figure 1: 

A. Isolate samples of RNA from two cell groups, the control and the experiment 

B. Generate more stable two stranded cDNA version of each RNA sequence 

C. Label 2 RNA samples with 2 different colors of fluorescent dye; for example the 

known control in red vs. the experimental in green 

D. Mix two labeled RNAs and hybridize to the chip 

E. Make two scans, one for each color.  Combine the images to calculate ratios of 

amounts of both RNA samples from the control and the experimental 

preparations that bind to each spot. 

Figure 2 below provides a more detailed example of part of a microarray data grid 

image showing the combinations of red and yellow fluorescent light from the signals. 

An additional point should be clarified regarding microarray experiments.  The presence 

of an mRNA molecule does indicate that the protein will be synthesized but the rate of 

synthesis and post-synthesis chemical modification are variable.  As a result, the 

concentration of proteins over time cannot be exactly determined by DNA microarrays. 
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Figure 2: Fluorescent signals of a microarray data grid image 

 
 
Protein microarrays have been developed instead for this purpose.   This work focuses 

on DNA microarray data, please see appendix D for a discussion of protein analysis. 

2.1.4 Applications 

 Microarrays are able to provide information for an entire genome, equivalent to 

a snapshot of all possible genetic expression by a particular cell under a given set of 

conditions.  Microarrays are important to functional genomics (study of gene product 

function) because they allow visualization of how genetic expression patterns change 

under different cellular, physiological, and toxicological environments.  For example, 

how cancer cells differ from normal cells, how cells respond to decreased nutrients, how 

cells respond to the presence of trace pesticide (toxicogenomics) or a new medical drug 

(pharmacogenomics).  Individual genetic profiles can be tested to determine relative 

susceptibility to diseases, as nearly all diseases are accompanied by a change in 

expression profile.   
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Figure 3: Roles of microarray data for medical research  
 

In figure 3 the comparison between normal and disease genetic expression 

patterns is shown.  Changes to those patterns after cell or tissue exposure to either 

potential toxins or pharmaceutical treatments are areas of intense research focus 

[SHTKLD98]. 

2.2 Basics of Microarray Database Architecture 

In this section we provide a brief overview of some architectural choices that are 

seen among typical microarray database implementations including choice for platform, 

recently developed object models such as the standard recommended object model 

designed by the MGED group, typical scale for amount of data stored, and security 

issues. 
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2.2.1 Platforms 

 The platforms used for microarray database implementations have considerable 

variety.  The implementations may be based on traditional relational database design, 

object oriented design, or a combination of both.  Table 2 below provides a summary of 

the platforms used by six example implementations. 

2.2.2 Object Models 

Development of a single object model for unified data representation is an 

important goal in microarray database design.  Use of a common model contributes to 

achieving integrated data storage and management.  The model also simplifies 

modification and design of software to analyze and display data sets.   The MAGE-OM  

(Microarray Gene Expression Object Model) is a data object model that  attempts to 

define standard objects for gene expression.  It was developed in 2003.  MAGE-OM 

follows OMG (Object Management Group) specifications. It is very large and complex 

data driven model, much as the data types and relationships it helps to organize.  It is 

too large to be reproduced here, but may be found at the following web link 

http://www.mged.org/Workgroups/MAGE/mage-om.html.  The top level MAGE-OM 

view shows a broad outline of the experiment, including the name, description, 

associated publications, providers and BioAssays. This object model was developed by 

the Microarray Gene Expression Data (MGED) Society who also developed standards 

for data exchange and minimal information for submissions (MIAME). 
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Table 2: Platforms for Microarray Database Implementations 
Database Description of platform 

ArrayExpress 

Oracle database with query interface in Java servlets using Tomcat and 
Velocity. 1) assuming unix and the Oracle RDBMS, can create the DB 
on local computer scripts available on site.  2) J2EE application server 
required for software as additional query interface 

CEBS Implemented by NCT (National Center for Toxicogenomics).  Server 
machines and database management information not available. 

GEO 

Implemented by NCBI; details not provided for this entry in the NCBI 
handbook of their databases located at: 
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=handbook.chapter.337 
NCBI defines GEO as having a flexible and open design, acting as a 
centralized molecular abundance data distribution hub. 

EMAP 

Important software component in platform for graphics handling: 
MAPaint designed to executed on the UNIX operating environment 
(MacOSX, PC-Linux, Solaris or Irix). 
The program MAPaint and MA3Dview requires X Window 
environment with OpenGL and Motif libraries to run.  CYGWIN 
provides an Xwindow emulator for MSWindows users. 

SMD 

The SMD database server is currently an eight-processor Sun V880, 
which has 32GB of RAM installed. Their web server is an eight-
processor Sun E4500, with 8GB of RAM installed. Oracle Server 
Enterprise Edition version 9i.  Relational database model.  All source 
code freely available.  Internet access. 

HugeIndex 
Object relational model implementation. Uses PostgreSQL 7.1 
relational DBA and 4 tables for the schema holding data on 
experiments, expression levels, experimental protocols, and genes. 

 
 

 
Although MAGE-OM is recognized as an important model for new microarray 

database, it has limitations.  For example, it cannot include modeling for clinical data or 

protein data. To address the protein modeling limitation the designers of CEBS 

extended MAGE-OM and provide a new object model used in CEBS, the Systems 

Biology Object Model (SysBio-OM).  SysBio-OM provides integration of proteomics 

and metabolomics data with microarray gene expression data.  The model is open 

source and compatible with multiple computer platforms.  The UML (universal 
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modeling language) description of the complete SysBio-OM is publicly available at 

http://cebs.niehs.nih.gov/SysBioOM/.   MAGE-OM is implemented in ArrayExpress 

and CIBEX (forthcoming from the DNA Data Bank of Japan).  It is a component of 

SysBio-OM in CEBS.  It has been mapped to SMD (Stanford Microarray Database) 

despite the difficulties posed by the fact that SMD is not an object-oriented database, 

but rather a relational database [HGBDMS03]. The mapping from the MAGE object 

model to a relational model can be difficult. The majority of microarray databases are 

relational implementations, which may slow the adoption of MAGE-OM.      

 
 

Table 3: Data Storage Statistics for Six Example Databases 
Database Description 

ArrayExpress 

As of November 2004, ArrayExpress contained data from 
more than 12,000 hybridizations covering 35 species.  

Relative to the content twelve months earlier, ArrayExpress 
was reported to have grown more than 10-fold.  In 2003 the 

data stored represented 400 Gbytes or over 1 billion 
microarray data points. 

CEBS Statistics not found. 

GEO 

As of mid-2004, GEO contained data from more than 30,000 
submissions covering more than 100 species.  The GEO 

website reported that their records represent results from over 
600 research groups. The data are accessed over 15,000 times 

each weekday.  Bulk FTP downloads average 30,000 per 
month. 

EMAP Statistics not found. 

SMD 

As of mid-2005, SMD had data from over 57,000 
experiments with over 35 organisms represented.  SMD 
contributed to over 250 publications and stores over 1.6 

billion microarray data points. 

HugeIndex 
Published statistics from 2002 state 59 experiments, and 

7,000 genes represented.  This number has likely increased 
greatly since then.  Recent data not readily available. 
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2.2.3 Data Storage Statistics 

 The volume of data stored in microarray databases increases every year. The 

values provided in table 3 above should be regarded as a snapshot providing the scale of 

data storage requirements for microarray databases. 

2.2.4 Security 

Security is important as with any database.  There are two main areas of 

concern, privacy for unpublished data and privacy for sensitive portions of published 

data.  For the first concern, researchers typically wish to submit unpublished data as 

they gather it during an experiment so they are able to use the data storage, 

organization, query, and analysis features of the database.  To protect this data before 

the research is published, it is not accessible to the public and protected by a basic 

login/password combination.  For the second concern, clinical data may contain 

information about individual patients, which must be removed from the data sets before 

it is made publicly available. 

2.3 Other Gene Expression Techniques 

 Before microarray technology became the predominant source of gene 

expression data, two other techniques were important [M01].  These began in the 1990s 

and still have a role in genetics research, with specialized public databases and 

repositories being maintained.  The first is the use of expression sequence tags (ESTs) 

and the second is SAGE (Serial Analysis of Gene Expression).  We provide descriptions 

of both in this section, and briefly compare SAGE to gene microarrays. 
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2.3.1 EST Technique 

An expressed sequence tag or EST is a short sub-sequence of a transcribed DNA 

sequence.  ESTs can represent both gene encoding and non-coding regions of DNA.  

The use of ESTs began as a method to identify gene transcripts, but later has an 

important role in gene discovery and sequence determination.  Because of efficiency, 

microarrays have largely replaced ESTs.  The basic EST technique sets up a simple 

single pass sequencing of the cDNA sample.  This produces a sequence of low quality 

short fragments of between 200 to 600 nucleotides. The short fragments usually provide 

enough information to serve as “tags” that will uniquely hybridize to the full gene in 

chromosomal DNA.  This allows detection of the known gene in a sample without the 

expense of full high quality sequencing.  ESTs can be used to design probes for DNA 

microarrays.   Some databases are dedicated to EST data including NCBI dbEST (part 

of GenBank).    

2.3.2 SAGE Technique 

Serial analysis of gene expression (SAGE) is a genetics research technique that 

provides a snapshot of the messenger RNA population in a particular sample. The 

original technique was developed circa 1995 and was important to gene expression 

studies in the years preceding the emergence of microarray databases.  SAGE is a 

variant of the techniques using ESTs (described above), and also results in a set of short 

sequence tags.  SAGE differs from standard EST techniques in that it records the 

abundance of each mRNA in the population. This quantitative data has been reported as 

slightly more precise than microarray signal intensity.  In cases of very low copy 
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number for a particular mRNA this can be important.  Additionally, SAGE results are 

somewhat more reproducible and serve as a quality control against which microarray 

data can be measured.   

2.3.3 Comparing SAGE and Microarrays 

There are four important distinctions between SAGE and microarrays [PMH02]. 

Firstly, SAGE does not require any prior knowledge of the sequences being analyzed 

whereas microarrays use hybridization to known sequences on the microarray chips.   

Secondly, in SAGE experiments each mRNA sequence undergoes a chemical 

processing step that increases the number of copies for that mRNA.  As a result, very 

low levels of a particular mRNA can be accurately detected and estimated.  Microarrays 

have no such equivalent way to amplify the quantity of low abundance mRNA 

sequences.  Thirdly, Microarray experiments are much cheaper to perform.  So large-

scale studies do not typically use SAGE unless a transcriptional profile is needed for 

poorly characterized genes or species.  Fourthly, because SAGE is a well-defined 

technique one can readily make direct comparisons between SAGE experiments.  

Microarray experiments are more difficult to directly compare because of the variation 

in protocols, array design, and probe design.  This presents a challenge when attempting 

to adjust for random and systematic errors since the error sources differ widely. 
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CHAPTER 3 

3. DATA MANAGEMENT FOR EFFECTIVE QUERYING 
 
 
 
 

Effective querying depends to a considerable extent on the choice of data types, 

design of the data model, and structure of metadata files.  These must be selected 

carefully for biological databases to provide the most relevant query results to the users.  

In this chapter we describe what information about microarray experiments is stored 

and how it is organized.  We first identify the important conceptual data types in section 

3.1 needed for describing the stored information.  Among different implementations 

there is considerable variation in what data are required for a complete entry. This has 

resulted in a clear need for standards.  One solution is the minimum set of standards 

MIAME, described in section 3.2.  In order to facilitate exchange, suitable metadata 

structures are required.  Section 3.3 describes the two metadata options in common use, 

XML files and text files. Section 3.4 provides a brief introduction to six important 

microarray databases as examples of actual implementations.  This set of six is 

referenced later in chapters 5 and 6 also.  Tables in this section provide an outline of the 

data types and data models used by these implementations.  The tables illustrate the 

variation among different microarray databases and reflect the importance of MIAME 

and MAGE-ML to achieving future standardization.   
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3.1 Need for Standards in Experiment Submission (MIAME) 

Although many significant results have been derived from microarray studies, 

one limitation has been the lack of standards for presenting and exchanging such data. 

Minimum Information About a Microarray Experiment (MIAME) describes the 

minimum information required to ensure that microarray data can be easily interpreted 

and that results derived from its analysis can be independently verified. It concentrates 

on defining the content and structure of the necessary information rather than the 

technical format for capturing it. It is platform-independent but includes essential 

evidence about how the gene expression level measurements have been obtained.    

MIAME is being developed by the Microarray Gene Expression Data society 

(http://www.MGED.org) and is widely regarded as the de facto standard for microarray 

databases.  Most microarray databases either use MIAME already for submissions, 

and/or data export, or they have plans to do so in their published future goals.  To 

illustrate this point, among the six example microarray databases selected for further 

discussion, four of them (ArrayExpress, CEBS, GEO, and EMAP) have achieved 

MIAME compliance and two of them (SMD and HugeIndex) have compliance as a 

future goal. 

3.2 Defining Data Types and Parameters 

In this section we identify the data types that are most central to a microarray 

database. These can be broadly grouped into two classes.  First, the signal data is used 

to identify and quantify gene expression.  Second, the descriptive information for the 

experiment and gene provide a meaningful context for interpreting that data.   
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3.2.1 Raw and Processed Signal Data Types 

There is an important distinction to be made in characterizing the output from a 

microarray experiment.  That distinction is between 1) the raw data files of fluorescent 

signal images from the microarray sample and 2) the processed signal data, which is a 

numeric data set from the statistical interpretation of raw data signal values.  Raw data 

are usually generated as 16-bit TIF images one for each color of the fluorescent tags and 

so two TIF images per microarray.  One image represents only one set of conditions and 

many images result from one experiment.   Each image is typically 22-28 MB and as 

high as 200 MB in size [LGTC04].  Commonly, microarray databases do not store 

images because of space limitations.  The processed signal data are the more valuable of 

the two because it provides the basis for comparisons in gene expression that answer 

research question.   

The quality and accuracy of signal data are particularly crucial since it is the key 

source of information for researchers querying microarray databases.  That quality and 

accuracy in turn depends on how carefully the raw data was processed.  The best option 

is to provide the raw data if possible, so that users may reprocess it using newer and 

more accurate tools and techniques as they become available.  The importance of raw 

image data is universally recognized for quality control even by databases that do not 

store them.  The database ArrayExpress has chosen not to store the raw images, but 

instead requests that contributors keep them on local servers and provide hyperlinks to 

the images in their submissions.  Although many databases are curated (administrators 
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monitor the quality of submissions) and basic standards are generally maintained, the 

responsibility for quality and accuracy of processed data mostly falls to the submitter.   

3.2.2 Gene, Array, Experiment, and Sample Data Types 

In addition to the signal data from the microarrays themselves, it is essential to 

provide descriptive data about both the genes that are identified and the experiment for 

which the microarrays were run.  It is this information that creates the context for 

interpreting the signal data.  It is also in choosing and presenting the descriptive data 

that we find the most variation among database implementations and the type of 

querying that can be done.   

There are many different variations on selecting and organizing microarray 

experiment information in a database. Figure 4 below [WBBCIM03] shows one 

possible way to organize and classify data types from microarray experiments.   

 

Figure 4: Illustrative diagram for microarray data types 
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In trying to determine a good illustrative classification, the more authoritative 

examples will be based on the MGED recommendations for MIAME standards 

(described further in section 3.2 and appendix B).  The following is a simple 

categorization adapted from MIAME standards and reflects the types of information 

most important to include in a microarray database: 1) Gene annotation data 

(information about the gene, often done as either a hyperlink to a genetics database or 

an import of files from such databases for local use). 2) Sample descriptive data 

(information regarding the cell type, tissue, organ or species used in the experiment).  3) 

Experiment design data (including identification of research group conducting the 

experiment, brand of kit used, and physical conditions affecting the experiment such as 

temperature and time parameters).  4) Array design data (information regarding the 

choice of reporter molecules to generate the signal, whether the basic design was for 

spot arrays that use cDNA or Affymetrix arrays that use the short overlapping fragments 

of DNA termed oligonucleotides or oligos).   

3.3 Metadata Structures for Microarray Data 

 For biological data in general and microarray data in particular the issues of data 

management are challenging.  The complex data types and highly specialized nature of 

both the data and the user group make it particularly important to determine the best 

metadata structures.  One of the most important goals for many public microarray 

databases is the exchange of data.  To maintain the greatest distribution and the most 

complete data collection possible is central to the value of these databases as research 

tools.   
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Metadata structures have three important goals.  The first is to represent data in a 

way that is scientifically meaningful and valuable to the researcher making the queries. 

The second is to represent as much relevant information as possible.  The third is to 

represent the data in a consistent way so that efficient data exchange and comparisons 

can be made.   Although these three are achieved to different degrees among 

implementations, many have important recognized limitations.  In addition, in their 

documentation many databases list improved data exchange and increased breadth of 

data types as their future goals.  At present there are two alternatives for metadata file 

format common to microarray databases, customized XML and tab delimited text files.  

We now briefly look at the characteristics of each. 

3.3.1 XML for Microarrays: MAGE-ML 

The nature of microarray data and the queries on that data is such that the data 

are easily represented as objects.  Experimental results typically require contextual 

information in close association with each data entity.  Because of this, many 

microarray databases are most successfully modeled based on object oriented approach.  

In addition to being suited to object encapsulation, XML is also the standard for web 

based exchange of data.  Public microarray databases are nearly all web based 

implementations.  Therefore, XML as the standard for metadata has consistently been 

regarded as an ideal candidate for microarray metadata storage and exchange.  

Published articles dating from 2001 for several microarray databases state use of XML 

for this purpose as one of their core future goals.  As early as 2002 a strong consensus 

emerged to specifically use MAGE-ML rather than slightly older specifications such as 
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GEML (gene expression mark up language) and GeneXML.   Consistent with this trend, 

among the six example microarray databases selected for further discussion, four of 

them (ArrayExpress, CEBS, SMD, and EMAP) store metadata in MAGE-ML format 

and two of them (GEO and HugeIndex) have storage capability for MAGE-ML as a 

future goal. 

3.3.2 Tab-Delimited Text file 

Flat file or tab-delimited text file structures are used in the earlier and more 

basic implementations.  They may be used for submissions to the database, or for 

download of query results.  Flat files offer the advantage of the broadest compatibility 

across platforms.  Unfortunately, that compatibility is offset by the disadvantage that 

they do not provide a common organization for the data.  Further, text files present a 

more serious limitation, image data from sample annotations and experiment 

annotations can not be included.   Although common organization would simplify 

information exchange among microarray databases, the limitation regarding image data 

is such that text files will in future be replaced by XML where possible.  Text based 

metadata persists because many microarray database implementations use Oracle 

software and are based on a standard relational database model.  By contrast, MAGE-

ML is based on the object model MAGE-OM from the same standards group.   SMD 

(Stanford Microarray Database) for example, by the year 2005 was able to store data in 

MAGE-ML format but because it is a relational database rather than object oriented that 

capability was not easily achieved.   
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3.4 Example Implementations 

 In this section we review six example microarray database implementations to 

determine what approaches are actually in practice for selection of data types and data 

management.  The provided tables cover the three important aspects of data 

management already discussed earlier in this chapter.  First, we consider the 

experimental data types stored.  These include raw image data, other image data, and 

notes about the stored experiment data.  Second, we present the formats used for both 

upload of submitted data and download.  As discussed earlier, the choice of formats is 

important for the efficiency of data exchange not only between researcher and databases 

but between different databases.  

 

Table 4: Example Microarray Database Implementations 
Database Description 

ArrayExpress Very large collection.  One of the first implementations of a public 
microarray gene expression data collection. 

CEBS 

Chemical Effects in Biological Systems (CEBS) knowledge base. 
CEBS will store data from both microarray and proteomics 
experiments, it is in the process of being developed.  The website is 
operational at the first of six phase levels. 

GEO 
Gene expression omnibus. Provided by the NCBI (National Center for 
Biotechnology information).  Expression data repository and online 
resource for expression data from any organism. 

EMAP Edinburgh mouse atlas: a digital atlas of mouse embryo development 
and spatially mapped gene expression. 

SMD 

Stanford Microarray Database. Stores both raw and normalized data 
from microarray experiments.  Organized at Stanford University in 
California.  Primarily stores data from research conducted at Stanford 
University. 

HugeIndex Human Gene Expression Index, expression levels of human genes in 
normal tissues. 
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Third, we look at the data management approaches adopted by these implementations.  

The tables provide a summary of two levels of data categorization.  Table 4 above 

briefly describes the six databases selected as example implementations. 

3.4.1 Data Types Stored  

 As has been discussed in sections 3.1 and 3.2 the choice of what data to store 

has some variation.  All implementations at the minimum store signal data, some 

information about the genes identified, and basic information about the research group 

submitting the results.  Table 5 reflects some important differences in the 

implementations.  For example, ArrayExpress (and, until recently, also GEO) chose not 

to store raw image data.   

 

Table 5: Stored Image Formats in Example Databases 
DB 

name 
Raw 

Images 
Other 

Images Notes on stored experimental data 

Array 
Express No none 

Includes experiments for time series 
responses.  Stores data from different 

species. 

GEO Yes; 
recent none 

Antibody arrays, tissue arrays, comparative 
genomic hybridization (arrayCGH), serial 
analysis of gene expression (SAGE), and 

mass spectrometry proteomic data. 

EMAP Yes voxel 
(See table 3.4.1) 

Tissue types and subtypes defined using a 
standard ontology. 

SMD Yes 
archives TIF; has 
normalized GIF 

images also 

Stores data from different species.  Stores 
both older cDNA arrays and oligonucleotide 
arrays such as Affymetrix. 

Huge 
Index Yes none 

Restricted to gene expression in normal 
human tissue.  Serves as a data store for 
normal controls. 

CEBS yes none 
Includes toxicological and chemical effects 
data, including phenotypic profiles for 
chemicals. Has proteomics data. 
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EMAP uses the concept of a voxel to represent the domain of expression for a particular 

single gene at a particular stage in mouse embryo development, and saves each domain 

as an independent 3D (three dimensional) image.   

This concept of voxel to represent a simple 3D image data point is familiar to spatial 

database implementations, but the variation used in EMAP is unique among microarray 

databases.   The presence of SAGE data in GEO is relevant.  As discussed in chapter 2 

(section 2.3.2) SAGE provides a way to compare and validate microarray results, 

particularly regarding quantity when expression levels are low.    

3.4.2 Data Submission and Download Formats 

 Data upload is usually for submission of experiment results.  There is 

considerable variation among databases for data uploads.  The most common methods 

to upload data are web based forms, FTP, email.  For downloads we see the importance 

of text files (GEO, HugeIndex) despite the limitations discussed earlier in section 3.3.  

MAGE-ML is used by ArrayExpress and CEBS, while EMAP and SMD also use 

special formats suited to custom graphical visualization tools.  Table 6 below outlines 

the methods for data uploads and downloads among the six example databases.   

3.4.3 Data Management Approaches 

The two tables below summarize the data abstractions used for data management across 

the six example microarray database implementations.  The approaches used are 

approximately consistent with the basic outline of MIAME standards.  In some cases 

such as EMAP the graphical nature of the data storage and indexing requires a 

specialized solution using voxels as described previously in section 3.4.1.  
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Understanding the approach and terminology for data management will help to clarify 

how queries are formed when we discuss them in chapter 5. 

 
 

Table 6: Methods of Upload and Download in Example Databases 
DB 

name Upload (submissions) Download 

Array 
Express 

Can use MIAMExpress web 
based tool to generate 
MAGE-ML format or 
directly submit in MAGE-
ML. May also submit 
spreadsheets with associated 
image files.  Files sent via 
FTP or email. 

The expression data can be exported as tab-
delimited text, and MAGE-ML format. Electronic 
images available in standard .png and .svg format.  
Data from ArrayExpress may be exported into 
Expression Profiler (http://ep.ebi.ac.uk/EP/), an 
online tool set for gene expression analysis. 

GEO 

Data options are data table 
only, or full metadata/data 
table records. Format 
options are HTML or SOFT 
(Simple Omnibus Format in 
Text).   

GEO data are available for bulk download via 
FTP. GEO DataSets and original records may be 
downloaded in a custom format (known as Simple 
Omnibus Format in Text (SOFT). Used to 
represent and exchange Gene Expression Data.)  
All records and raw data can be downloaded. 

EMAP 

Researchers may email or 
post submissions to their 
Editorial Office.  Or 
spatially map data using 
MAPaint software, and 
submit electronically. 

Provides an FTP download area from their 
resources weblinks: 
http://genex.hgu.mrc.ac.uk/Resources/intro.html. 
Software for EMAP / EMAGE may be installed 
locally for viewing 3D images and mapped gene 
expression patterns. 

SMD 

Requires FTP transfer.  
Accepts proprietary formats 
from Stanford University 
Shareware Scanalyze and 
GenePix for processed 
microarray data. 

All data for an individual microarray can be 
downloaded.  It can be filtered on site first.   The 
online analysis tools provide pattern detection and 
clustering; their files can be downloaded and 
viewed in TreeView (Stanford University 
shareware). 

Huge 
Index 

Affymetrix data submissions 
are accepted by contacting 
the administrators for 
checklist of required 
information and sending it 
via email (no ftp). 

Files are standard tab delimited plain text.  From 
interface may download a list of genes. Can only 
download the data by performing copy and paste 
steps.  May view and analyze the data using a 
spreadsheet (e.g. Excel) or comparable program.  

CEBS 

Set of detailed website 
forms  request information.  
Raw and processed data files 
uploaded via webform 
prompts. 

Once an experiment is selected, links are provided 
for downloading data both as text format and 
MAGE-ML.  Other files may also be present from 
some experiments (microarray sample files). 
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Table 7: Metadata Approaches in Example Databases 
DB 

name 
Highest level of data 

abstraction Second level of data abstraction 

Array 
Express 

 

Experiment.  The ArrayExpress 
documentation defines the 
experiment as the central high 
level data type.  It consists of one 
or more hybridizations, and 
usually a link to a publication. 

1) Experiment attributes: parameters of the 
experiment, laboratory, experiment type, 
species 
2) Array attributes: accession number, 
manufacturer or lab providing array, array 
design name 
3) Protocol attributes: protocol accession 
number and type (uses MGED ontology for 
protocol classification). 

GEO 

Three upper level relational 
database entity types: 
1) Platform 
2) Sample 
3) Series 
The platform and sample data 
tables are stored as text objects 
rather than fields in tables, to 
permit optimal flexibility. 

1) Platform: list of elements assayed (cDNA, 
probe sets, tags) on an array. 
2) Sample: references a platform and 
describes probe signal for each feature (spot 
or gene) in the array. 
3) Series: set of related samples common to 
an experiment, may include summary data 
tables and analysis. 

EMAP 

EMAP uses the concept of a 
voxel to represent the domain of 
expression for a particular single 
gene at a particular stage in 
mouse embryo development, and 
saves each domain as an 
independent 3D (three 
dimensional) image structure in 
a separate file.  Each submission 
record corresponds to a single 
gene. 

The experimental results for mapping are 
usually to a single embryo. Hierarchy follows 
tissue classification schemas.  Each node has 
component “child” tissues.  The end or “leaf” 
nodes represent the smallest tissue 
components in the tissue ontology. 

SMD 
Experiment.  For SMD the 
experiment is the central high 
level data type. 

An experiment is represented by an image of 
the microarray, experiment category and 
subcategory, researcher, organism, and links 
to other databases as sources of annotation. 

Huge 
Index 

Uses an object relational model. 
The current schema has four 
tables  describing the following: 
1)   Experiments 
2) Experimental protocols 
3) Expression levels 
4)   Genes 

1) Experiment attributes: source and type of 
the tissue sample 
2) Experimental protocols: data for standard 
protocols used on the stored experiments 
3) Expression levels: processed signal data 
for each gene studied, and data values for 
quality of expression-level measurements 
4) Gene attributes: organized in rows 
corresponding  to each probe-set on each type 
of chip, includes data for the transcript 
targeted by each probe-set 
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Table 7 – Continued 

DB 
name 

Highest level of data 
abstraction Second level of data abstraction 

CEBS 

For Phase I main data concept is 
the protocol.  All data sets 
(graphs, images, numbers) within 
CEBS will be linked by 
reference to an experimental 
protocol number 
and its metadata. 

Metadata will specify standard 
operating procedures, observations, and 
measurements to be recorded. Phase I will 
include complete sample annotation on a 
very large range of fields.  Domain-specific 
metadata will introduce 
experimental data sets in each 
analytical domain: transcriptomics, 
toxicology, 
pathology, etc. 

MIAME 
Standards 

 

1)Image data 
2)Expression data 
3)Annotation data (for the gene, 
sample, array, and experiment) 

Measurement specifications for raw and 
normalized signal data, Array design 
includes reporter probes annotation. 
Experiment design, Sample description, 
Hybridization procedures. 

 
 

3.5 Summary Diagram 

The database ArrayExpress has an associated publication [BPSMSV03] that 

describes the relationships between the databases, the role of MAGE-ML, the use of 

MIAME standards, and the importance of exchange with external databases.  The 

following diagram summarizes the relationships.   Figure 5 represents the ArrayExpress 

microarray database [BPSMSV03] and helps to illustrate the points made in this 

chapter.  The main implementation is in Oracle.   MAGE-ML is the metadata exchange 

format used for three purposes: 1) to receive data submissions (via MIAMExpress) 2) 

Exchange information with other databases and 3) export results to external data 

analysis software.  MIAMExpress is an external web based service to help researchers 

create MAGE-ML files for their submissions. Expression Profiler is web based 

microarray data analysis software closely integrated with ArrayExpress. 
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Figure 5: Data management, import, and export in ArrayExpress 
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CHAPTER 4 

4. OVERVIEW OF MICROARRAY DATABASE INTERFACES  
 
 
 

 
 In this chapter we provide an introduction to microarray database 

interface design.  These are general categories which we introduce here for background. 

Specific examples will be detailed later in chapter 6 with illustrative figures.   Section 

4.1 describes components used in the interfaces.  These may include text boxes, 

graphical interactive menus or built in tools.  Section 4.2 provides examples of the tools 

used for query results and data visualization.  Because microarray data requires 

visualization to provide the most information from its patterns of gene expression, these 

tools are important to making the query results informative.  Section 4.3 briefly 

describes the variety of results structures. 

4.1 Web Based Interfaces 

 The web-based interface provides an essential first point of access for the users.  

The designs are uncluttered and relatively intuitive.  Users will typically be able to type 

simple text entries, select from lists, or navigate through simple graphical objects.  In 

this section we summarize the basic design approaches.  There are some limitations to a 

web based interface which must be considered, we briefly examine these.  Locally 

installed visualization tools provide additional capabilities to overcome them and are 

discussed in the next section. 
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4.1.1 Simple Text Box or Web Form 

The GEO microarray database provides a good example; it is similar to other 

NCBI Entrez databases in that both simple and compound query can be achieved using 

simple Boolean phrases that may be either combined with, or restricted to various 

supported attribute fields.  For example, the query “Type 1 diabetes AND 

apolipoprotein NOT Homo sapiens” will return all apolipoprotein related gene profiles 

in Type 1 diabetes-related datasets in all organisms except for human [BSTWNLR05]. 

4.1.2 Interactive Menus or Graphical Point-and-Click  

These options are typically provided as part of navigation through an experiment 

result set, allowing drill down to specific details on a single data point or ‘feature’ on a 

microarray.   The designs are intended to simplify navigation between levels of detail.  

The first set of selection options for queries is often on very few parameters, helping the 

user to narrow down their selection based on general criteria.  It is after this initial 

filtering step that the user is then able to select the best result candidate from a summary 

list.  Each item on the list could be a link to an individual candidate gene in answer to a 

query, or to annotation and visual data as noted in section 3.3.4 below.   

4.1.3 Built in Tools 

 Many databases provide specialized tools available from within their website for 

both the analysis and display of microarray data. Initial queries are typically met with a 

list from which the user may make selections for which he or she wishes to see a 

detailed result.  Since the result may include a large number of simple data points or 

values, these tools usually provide charts or graphs either embedded within the same 
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page or as a separate pop-up display.  The data provided often summarizes microarray 

signal intensities, or shows other types of simple pattern distribution data such as 

location of gene expression in a cross section of tissue.  Such tools are typically simple 

in their function and often implemented as Java applets, or Perl scripts. 

4.2 Software Tools for Results Visualization 

Beyond the tools that enhance data visualization within a browser, many 

microarray databases either provide software programs and packages to be installed on 

a local machine or recommend open source programs for visualizing results. Such 

programs have been developed for the purposes of microarray data analysis and display.  

Since visualization of the patterns is important to interpretation, these visualization tools 

are a research necessity and their importance in making full use of the information 

provided through the databases should not be under stressed.   

4.2.1 Clustering Analysis 

A natural basis for organizing gene expression data is to group together genes 

with similar patterns of expression.  For any series of measurements, a number of 

measures of similarity in the behavior of two genes can be used, such as the Euclidean 

distance, angle, or dot products of the two n-dimensional vectors representing a series of 

n measurements.  The standard correlation coefficient (i.e., the dot product of two 

normalized vectors) conforms well to the basic biological definition for two genes to be 

“coexpressed” (expressed at the same time in the same cell).   There are several tools 

available as open source platform-independent software to perform clustering analysis 

on the microarray data query results including Magictool 
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(http://www.bio.davidson.edu/projects/magic/magic.html), and TreeView  

(http://rana.lbl.gov/EisenSoftware.htm).  Additionally, some implementations include 

their own customized tools for clustering analysis and other types of data analysis. 

 

 
 

Figure 6: MagicTool clustering analysis dendrogram of query output 
 
 

The normalization graph in figure 6 shows expression level on the Y-axis and 

signal strength of the labels in an arbitrary set of units on the Z-axis.  Behind the graph 

is a cluster analysis dendrogram showing the relationships within a group of genes 

based on expression patterns.  This type of information regarding expression level and 

co-occurrence of expressed genes is valuable in genomics research.   
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4.2.2 EMAGE for EMAP 

These java tools have been developed as part of the NIH funded Electronic Atlas of 

the Developing Human Brain project. The tools replace and extend some of the 

C/X11/Motif tools developed as part of the Mouse Atlas project and use the same 

underlying image processing libraries. Each of these has been tested under MS 

Windows, Solaris, Linux (Mandrake, Redhat) and Mac OSX.  

• JatlasViewer: A 3D volume browser providing section and 3D visualization. 

The volume data can include segmentations, for example labeled anatomy.  The 

viewer provides feedback and navigation through the anatomical nomenclature. 

Example data-sets for human and mouse embryo.  

• Jconvert: An image format converter for generating volume data suitable for the 

Atlas Viewers. This allows conversion from a range of 2D and 3D image 

formats to the native Woolz format used in the MRC software.  

• Gene Expression Viewer: A prototype viewer for gene-expression data that has 

been mapped onto a reference volume, for example as obtained by query on the 

EMAGE database.   

• JReconstruct: A java version of the Reconstruct program. This implementation 

is incomplete and currently only allows simple re-stacking of 2D image files. 

Work in progress.  

• Jwarp Tools: to support 3D warping of data by defined a series of “tie-points” or 

correspondences between two data volumes. 

4.2.3 Treemaps 

Treemaps are a relatively new data visualization technique developed in the 

1990’s for space-constrained display of hierarchies.  It is unrelated to the branching tree 

menus familiar to web browsers.  Treemaps are a space-filling map of differentially 

colored squares, clicking on a square permits drill down to the next level detail on the 
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data.  The technique is used as a Microsoft Excel plugin and as of 2005 was being 

evaluated for Oracle database user interfaces.  They are well suited to microarrays and 

allow users to view and query the data from an experiment on a single computer 

monitor screen. 

 
 

Figure 7: Treemaps rapidly identify genes of interest  
 

In figure 7 users apply “filters” in the control panel to select genes based on 

specific quantitative attributes [BDBS04].  In this example, the “average fold-change” 

slider was moved to include values greater than two. Other filters not of interest can be 

turned off (image marked with circles on the filter options menu pane). 

 41



 

4.2.4 List of Visualization Tools 

 Many query results are either graphical data or large numeric sets requiring data 

analysis and visualization as maps, graphs, or charts.  To illustrate the importance of 

having additional tools available to display results sets, the following table provides a 

summary of customized tools provided by several important microarray database 

implementations.  

 
 

Table 8: Customized Tools for Microarray Data Analysis and Visualization 

 42

Microarray 
Database 

Provided Tools integrated with the 
web-based interface 

Description 

ArrayExpress 

o ArrayExpress is an 
implementation at the 
EMBL-EBI (European 
Bioinformatics institute)  

o ArrayExpress recommends 
use of Expression Profiler, 
also developed by and 
available at EMBL-EBI 

Expression Profiler is an open, 
extensible web-based 
collaborative platform for 
microarray gene expression, 
sequence and PPI data analysis, 
exposing distinct chainable 
components for clustering, 
pattern discovery, statistics (thru 
R), machine-learning algorithms 
and visualization. 

GEO 

GEO is an implementation within 
NCBI, and GEO Profiles are fully 
integrated with other NCBI Entrez 
databases such as GenBank, 
PubMed, Gene, UniGene, OMIM, 
Homologene, SNP, Taxonomy, 
SAGEMap and MapViewer.  
These databases in turn provide 
visualization tools and annotation 
information.  

GEO uses the NCBI Entrez query 
system.  Entrez has many features 
including cluster heat maps, 
query subsets profiles (for 
example, a user can locate gene 
expression levels 10-fold higher 
in time point ‘A’ than in time 
point ‘B’).  GEO BLAST 
database contains all GenBank 
sequences represented in GEO 
DataSets and uses NCBI’s 
BLAST interface. 

EMAP 

o JatlasViewer 
o Jconvert 
o GeneExpressionViewer 
o JReconstruct 
o Jwarp 

Visualization tools for 2D and 3D 
images.  Require Java 
environment, may be installed on 
MacOS, MSWindows, or Linux. 



 

 
Table 8 – Continued 

SMD 

o TreeView compatible 
downloadable files are 
provided for use with a 
separate recommended 
TreeView tool. 

o Clustering tools 
o Pattern analysis maps 
o Data quality tools 

 

Clustering and pattern analysis 
maps were included in the first 
implementation (2001).   
 
More recent tools have been 
included for 
assessing data quality and 
analysis 

HugeIndex 

o Expression information 
display tool 

o Comparison tool 
o Interactive scatter plot tool 

The current release of the 
HugeIndex provides three tools 
with which to access and 
visualize the data stored within 
our database. These tools can 
display expression information 
about specific genes or compare 
multiple tissues or experiments 
using Boolean operators or 
interactive scatter plots. 

CEBS 

o Data Preprocessing  
o Data Comparison  
o Data Visualization  
o Identification of 

Differentially Expressed 
Genes  

o Gene Category Analysis 
by BioCarta Pathways  

o Gene Category Analysis 
by KEGG Pathways  

o Gene Category Analysis 
by Gene Ontology (GO)  

Analysis tools for microarray 
signal data and gene expression 
maps; tools are available online 
through the web site. 

 

 

4.3 Results Structures 

These examples are a brief introduction the results structures for microarray data 

queries in web-based interfaces.  Separate software programs are available for more 

advanced types of visualization including multidimensional representations.  The 
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software may be integrated into the website or in some cases are separate downloadable 

installations.   For many implementations results are simply text, tables, or simple 

images.  Chapter 6 will provide detailed illustrations of interfaces in current 

implementations. 

Textual or Annotated: This is the most basic interface type.  Data types such as 

author, accession number, or other simple typed keywords are used to browse records. 

Boxes accepting free text are often restricted by ontology such that only certain words 

will be recognized.  Misspelled words, or alternate terminology typically yield no 

results as spellcheckers and prompts for similar words are not included in most 

implementations.  

Tabular: Results may be presented as a list containing all relevant genes matching a 

query. Data may be provided as a tab delimited downloadable text file, correlating each 

feature (positive signal on the microarray) to one row.  

Images: Thumbnail images may be provided for browsing, clicking on the thumbnail 

will then bring up the complete microarray.  Cibex uses this type of navigation, as it 

facilitates quick comparison by simple visual inspection. 

Navigable Menu: A list may be provided with either the name or other brief 

information that the viewer can click and navigate to drill deeper for information.   

Some interfaces provide a display of the microarray grid on which a spot may be 

clicked to retrieve details. 

Graphical Statistics Chart: Visualization of the array data may be presented as simple 

line plots, or more detailed graphs.  Intensity of expression may be provided as a 
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histogram and line chart for each data point, or a scatter plot analysis for s set of points 

as in the database Cibex. 
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CHAPTER 5 

5. MICROARRAY QUERIES IN RESEACH STUDIES 
    
 
 

In this chapter we present a general introduction to the role of gene expression 

queries in biological research.  Section 5.1 examines in general how querying 

microarray databases provides information to help support or refute genetics research 

hypotheses.  Using references to actual published work, sections 5.2 through 5.6 briefly 

describe each of five study areas within genetics.  These are organized as general 

categories of research to demonstrate the range of genetics studies that benefit from 

querying microarray databases.  Many different databases and many different queries 

may be used for each study area.  Because the queries are implemented in part as 

predefined field selections to navigate through the data it would not be meaningful to 

classify the actual queries.  Instead, the data types and data models covered in chapter 3 

would serve a good basis for understanding the query constructs (chapter 6) used to 

search microarray data.   

5.1 Role of Querying Microarrays for Research 

There are several important areas of biological research that directly benefit 

from querying microarray databases.   For a researcher studying genetics, the hypothesis 

under investigation is usually not answered directly by placing a single query on the 

microarray database.  Instead, the hypothesis will be partly supported or partly refuted 
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based on patterns and correlations in genetic expression profiles.  These patterns are 

found by analyzing the results of queries on specific genes and particular experiments 

relating to the hypothesis under investigation.  Therefore, to the non-researcher a 

microarray database may be an inappropriate resource to answer general questions 

about gene expression.  As with other bioinformatics databases, specialized knowledge 

and background is needed to effectively use microarray databases as a research tool.  

The brief example queries provided in this chapter are intended to be illustrative of how 

the interfaces have been implemented.   The options chosen for query constructs and 

utility of the results generated may be difficult to assess for a non-researcher.  We 

postpone evaluation and identification of limitations until chapter 7.   

When a researcher begins querying a microarray database there is usually some 

degree of navigation through the data, and exploration of the question before arriving at 

a result.  It is important to note that many biological research databases use simple 

selection menus and process the user choices through predefined queries in the system.  

Predefined queries are in fact the preferred and recommended method for microarray 

databases.   The process of making the query is therefore that of an interactive session in 

which the researcher is guided towards the area of information that he or she is most 

interested in.  How that data is presented becomes an extremely important component of 

how well the query was answered.  Presentation is essential to quality of information for 

these types of specialized biological data.  This is in contrast to traditional relational 

databases where results are simple clearly defined sets of information and data values 

typically atomic, rather than dependent on each other as part of a large subtle pattern in 
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need of analysis and interpretation.  It is important to keep these distinctions and special 

properties of microarray databases in mind when viewing the example queries. 

Broadly, research through microarray databases focuses queries to determine 

two kinds of information.  First, to learn what is the normal expression pattern to use as 

a baseline. The correct baseline is important for meaningful comparisons to identify 

subtle changes.  Second, what are the changes to the normal expression patterns for a 

given set of conditions and particular sample type (the experimental design)?    The 

changes may be associated either with exposure to a toxin, a specific disease state, or a 

particular genetic variation.  Genetic variations or mutations may offer either neutral, 

harmful, or beneficial effects to the organism.  The term mutation in a biological 

research context does not imply only a negative effect.  Recall that some mutations in 

hybrid plants improve yield and identification of those mechanisms is also an area of 

research.   

5.2 Queries for Coexpression Studies 

Coexpression is the simultaneous expression of different genes in the same cell 

or the same tissue site. There is a large area of research into the possible associations 

between coexpressed genes and common roles for those gene products, which would 

allow predictions of function and help in gene identification.  This type of predictive 

research also focuses on gene proximity as noted below in 5.1.3.  In the study 

Coexpression Analysis of Human Genes Across Many Microarray Data Sets 

[LHSQP04] examine a network of 8805 genes connected by 9.7 million coexpression 

links using the Stanford Microarray Database (SMD) and Gene Expression Omnibus 
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(GEO).  From querying these databases they were able to identify 220,649 (or nearly 

2.2%) of the coexpression links to be present in at least three data sets.  Their findings 

illustrate the use of coexpression studies in the discovery functionally related groups of 

genes, “We show that confirmation of coexpression in multiple data sets is correlated 

with functional relatedness, and show how cluster analysis of the network can reveal 

functionally coherent groups of genes. Our findings demonstrate how the large body of 

accumulated microarray data can be exploited to increase the reliability of inferences 

about gene function.”   

5.3 Queries for Gene Proximity Studies 

In bacteria, clusters of genes with related function such as for the same 

metabolic pathway are often grouped together physically.  They are encoded close 

together in the same subsection of a chromosome.  There are ongoing studies to find 

similar relationships in higher organisms.  This type of predictive research also uses 

coexpression as noted above in 5.1.2.  Querying microarray databases provides data to 

correlate whether these grouped genes share similar expression patterns or similar 

function.  For example, in the research article An Abundance of Bidirectional Promoters 

in the Human Genome [TAHSOM04] the authors were able to identify a class of gene 

pairs in which the transcription start positions are extremely close (less than 1000 base 

pairs) and positioned on opposite strands of the DNA (bidirectional).  This discovery 

represents more than 10% of genes in the human genome, a surprisingly high 

percentage.  An important next question in the article is whether the transcript levels in 

a bidirectional gene pair are coordinately regulated.  To test that hypothesis the Stanford 
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Microarray Database (SMD) was queried.  The results sets positively correlated 17% of 

the gene pairs as coordinately regulated at a statistically significant level.  The results 

demonstrate that bidirectional arrangement is an important mechanism for expression 

regulation for a significant percentage of human genes.   

5.4 Queries for Tissue Localization Studies 

Many important questions relate to tissue localization. The expression of a 

particular gene may be normal in some tissues, but indicate a disease state or metabolic 

problem in others.  It should be noted that tissue localization differs from gene 

proximity.  Whereas gene proximity is in terms of position of the encoded gene on the 

chromosome, tissue localization refers to which genes are being transcribed into mRNA 

and protein in particular cells or tissues. The presence of certain combinations of 

expressed genes in a particular tissue may indicate increased risk for diseases or 

reactions to treatment.  Being able to distinguish the patterns of gene expression specific 

to different tissues and also different to specific types of cells is under active research.  

For example, in the article Microarray Technology: A Review of New Strategies to 

Discover Candidate Vulnerability Genes in Psychiatric Disorders [BBVTLE03] the 

authors describe how gene location guides research in brain function, “a gene that is 

neuronal and is primarily expressed in the extended amygdala may lead us to 

hypotheses about a role in emotional reactivity, whereas a gene that is present at all 

synapses may lead to hypotheses relating to signaling or synaptic plasticity. The 

neuronal site expression pattern will then guide the choice of animal models to be 

pursued. For example, a gene highly expressed in emotional circuits will call for studies 
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using models of anxiety-like behaviors (the elevated-plus maze, light-dark box, fear 

conditioning). By contrast, a gene highly expressed in the hippocampus might suggest a 

possible role in learning and memory (e.g., the radialarm maze or Morris water maze).”  

The tissue and cell type localization of genes also allows precise development of animal 

models in which a particular cell type is genetically modified either by addition of an 

altered gene (transgenic models) or deletion of a gene (knockout models),  both of 

which can provide important confirmation of the metabolic role for candidate genes 

indicated by microarray database queries. 

5.5 Queries for Toxicity Evaluation Studies 

Toxicogenomics studies evaluate the harmful effects of exposing cells or tissues 

to chemical compounds.  This is a new approach to predicting and regulating many 

types of chemical exposure by examining the impact to gene expression profiles. These 

include evaluating the safety of new pharmaceutical drugs during the design stage, 

predicting drug interactions that may be harmful to a patient, and determining unsafe 

levels of trace contaminants in food, and water.  This last purpose can be used to set 

federal standards and protect public health.  The long term harmful effects of chemicals 

are also economically important to help manufacturers avoid expensive and unnecessary 

development of products that would later fail safety assessments.  These same points are 

discussed in research articles such as The Use of Toxicogenomic Data in Risk 

Assessment: A Regulatory Perspective [CT05].   In addition, the authors note that 

although currently several governmental and commercial organizations are actively 

building toxicogenomics databases, “regulatory use of the toxicogenomic databases as 
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supportive information in the assessment procedure of new drug applications will be on 

a case-by-case basis until the predictive value of the databases is firmly established”.  

Toxicogenomics has a unique breadth of application because the information impacts 

commercial industries and may serve as the legal basis for mandating federal 

regulations.  By contrast, most genomics research is limited to either improving general 

knowledge of molecular biology or has applications to medicine.   

5.6 Queries for Data Mining Studies 

Data mining is the detection of interesting patterns in large data sets.  Therefore 

data mining techniques are commonly used with microarray databases.  There are two 

closely associated versions of this approach used with expression data.  One version is 

clustering also called cluster analysis, the automated algorithmic generation of 

dendrograms based on degree of similarity in expression patterns for a large set of 

genes.  The other version is class discovery and class prediction which uses cluster 

analysis data.  These are well established areas of research, and it has been noted that 

“cluster analysis has been a standard approach to microarray data since the beginnings 

of microarray technology and is the basis of most class discovery efforts.” [O03].  

Members of the class may appear in different tissues but share an expression pattern, 

that pattern is then discovered or predicted to be associated with the same metabolic 

pathway or the same specific disease state.  This helps to identify which genes work 

together.  Cancer researchers use microarray cluster analysis to classify tumors and 

target treatments to each tumor class.  Cluster analysis can help identify particular 

cancers in individuals.  For example, in the research article Class Discovery Analysis of 
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the Lung Cancer Gene Expression Data [P04] public data is used to build a new 

molecular classification which they analyze with a new cluster analysis algorithm.  The 

authors state that their analysis “reveals many additional details and subtypes of 

previously defined types of lung cancer. Large histological cancer types can be further 

divided into subclasses with different patterns of gene expression. These subtypes 

should be taken into account in diagnostics, drug testing, and treatment development for 

lung cancer patients”. 
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CHAPTER 6 

6. QUERY INTERFACES AND EXAMPLE QUERIES 
 
 

This chapter reviews the query interfaces of six example microarray databases.  

Example queries and results are shown to illustrate how users search the database for 

gene expression data.  The documentation for these databases does not detail indexing 

structures, but details regarding data types have been described in chapters 3.  Similarly, 

the query processing is typically transparent to the user and not described in 

documentation since it is not directly related to aspects of bioinformatics data.  We 

therefore consider the queries from the user perspective in these examples, since that 

best reflects the bioinformatics nature of the queries and usability of microarray 

database implementations.     

6.1 Querying the ArrayExpress Database 

The ArrayExpress database is administered as part of the European 

Bioinformatics Institute. The data warehouse is based on the BioMart open source 

federated query architecture [DMKDDBH05].  BioMart supports queries on gene 

attributes and sample properties.  The query interface presents a simple combination of 

text boxes and pull-down menu selection lists for combining parameters.  The pull-

down menus are provided where a limited controlled vocabulary is needed for effective 

searching.  There are three main sections of the database to query, each with its own 

subsection of the interface.  The three are experiments, arrays, and protocols.   
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Figure 8: The main interface for querying ArrayExpress 
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The experiment section provides information about both experimental factors 

and the actual data.  The array section provides information relating to array design.  

The protocol section is a simple look up of protocols based on accession number and 

type.  Figure 8 illustrates the main query interface for ArrayExpress.  It should be noted 

that ArrayExpress does not provide integrated tools for visualization or comparison. 

 
 

Figure 9: Results of query for “array provider = affymetrix 
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It is a searchable database for downloading data files of the query results.  Query 

results from any of the sections provide links to the other two sections.  The 

components of the database are easily accessible and navigable for the user. For 

example, a result set containing a particular array design will include links in the query 

result view to any experiment utilizing that array design.  

We now present example query 1: Find all results using arrays from the provider  

(manufacturer) Affymetrix.  Results: 45 matches in the database, with navigable linked 

summaries presented for each.   In figure 9 we see the results set for the query “array 

provider = Affymetrix”.  Note the first summary of all 45 matches is displayed.  The 

summary includes navigable links to permit data download or to retrieve the list of 

“Experiments done with this Array”.   Example query 2: Find all results for aging 

studies involving the species chimpanzee (select Latin name Pan troglodytes from pull-

down menu).   Results set: 1 result in database. 

Selecting the MAGE-OM view from the menu in figure 10 retrieves a textual list 

of experimental parameters representing the experiment description as meets minimum 

requirements.  Numeric lists of the samples used are provided as downloadable 

spreadsheets.  Data may be downloaded in MAGE-ML (XML for microarray data) on 

the labeled link as a zip file.  The biosamples are also provided as a graphics file for 

download.  The ArrayExpress implementation does not allow navigation within the 

browser and the sample file is too large to be readable if opened in the browser as 

shown by figure 11 below. 
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Figure 10: The results set of the ArrayExpress query “aging studies” 
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Figure 11: Mage-ML of a results set 
 
Visualizing the data is done in external software, by clicking the Export data tab in the 

results summary the database presents either the option to see the data matrix as a flat 
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text file of numeric codes or upload to another external database Expression Profiler for 

visualization.  In figure 12 below, The ArrayExpress database offers the option through 

a link to an external software package Expression Profiler for data visualization.   

In figure 13 Selecting the “see data matrix” option results in a simple textual 

summary of data.  The data requires separate software packages for meaningful patterns 

 
 

Figure 12: ArrayExpress links to external software 
 

 60



 

 
to be found.  Efficient direct inspection of the thousands of numeric entries per result set 

is not possible.  Certainly the significant patterns in the results set become evident only 

when some type of graphical representation is employed. 

 
 

Figure 13: Example textual data matrix in ArrayExpress 
 

6.2 Querying the CEBS Database 

 The CEBS microarray database is in the first phase of a 10-year long multiphase 

development.  The queries available at the time of this writing are relatively basic 

compared with the long-term goals of the designers.  In its final form it will be possible 

to query CEBS by molecular chemical constructs so that an unknown compound can be 
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entered as a query and similar compounds are matched and retrieved.  The genetic 

effects of the related compounds will then be presented based on microarray research 

findings and provide insight into the predicted behavior of the unknown compound.  In 

common with the other microarray databases in this chapter, CEBS provides a basic 

query interface with a set of pull down menu selections for a basic guided search.   

 
 

 
 

Figure 14: Query interface for CEBS microarray database 
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The interface is provided in figure 14 above and shows the six main types of data for 

use in basic Boolean query constructs. Query results are returned as a list of record 

summaries that can be selected and viewed in detail.  Here is an example query: find 

experiments involving the species “mouse” and the tissue “forebrain” by selecting these 

two from the menu.  In the result one record is returned, it is shown below in figure 15. 

This example record represents a brief view; a full view would fill multiple pages.  In 

future implementations the extensive annotation  data will be directly searchable.   

 

 
 

Figure 15: Query results in CEBS for “mouse and forebrain” 
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Queries based on comparison between different arrays may be done through the 

visualization and analysis tools provided with CEBS.  After an initial query to locate 

and select an experiment such as the one above in figure 15, a series of interfaces 

provides options for selection filters on the experimental data.  The user is then 

provided with a list of all arrays from the chosen experiment and using radio buttons 

may select which ones to use for the comparison, as illustrated in figure 16.  The 

comparisons provide information equivalent to new queries.  A further set of menus will 

 
 

Figure 16: Navigation menus allow the user to select arrays for comparison 
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Figure 17: Expression reports in CEBS using pathway classification schemes 
 

 
 

Figure 18: Expression in the 1,4-Dichlorobenzene degradation pathway 
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allow the user to define criteria for differentially expressed genes including statistical 

parameters such as t-test and p-value threshold.  These menus are omitted from the 

examples here because they require specialized knowledge in statistical bioinformatics 

to be meaningful.  

Comparisons among arrays can be filtered and selected based on whether or not 

they appear in particular important pathways.  For example, there are standardized 

notations for biological pathways that are incorporated in the selection parameters for 

data analysis in CEBS.  One of these notation systems is known as KEGG (used by the 

Kyoto Encyclopedia of Genes and Genomes suite of databases).  A researcher may 

create a custom expression report using the CEBS database to identify the answer to the 

question which differentially expressed genes are not in the KEGG pathways as in 

figure 17, or the question which genes are in a particular KEGG pathway such as that 

for 1,4-dichlorobenzene degradation as shown in figure 18. CEBS is able to map 

microarray experiment results to gene classes based on important pathways that are 

affected.  The analysis provides this information and is effectively serving as an indirect 

query engine for questions that are answered through detailed expression reports.  

CEBS is also able to provide classification reports for the genes of a particular 

experiment.  For example, figure 19 below illustrates the use of GO ontology to 

generate a report listing to which GO category each gene in the experiment or selected 

subset of genes belongs.   
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Figure 19: Go ontology analysis matches expression to GO categories 
 

In the example report summary both the categories “cell communication” (first 

row) and “cellular physiological process” (second row) show an entry of “1” under the 

attribute down.  Therefore there are genes present in these categories that are down 

regulated (expression levels are reduced under the conditions of the experiment 

compared to normal cells). The degree to which they are down regulated is given by as 

numeric values from statistical formulae, the details of which are omitted here. 

6.3 Querying the GEO Database 

The GEO database is administered as two complementary databases, GEO 

Profiles and GEO Datasets.  GEO is part of the NCBI (National Center for 

Biotechnology Information) and the GEO databases use the Entrez life sciences search 

engine portal common to other NCBI databases.   As previously described in section 

3.4.3, GEO organizes data into the three general categories: a) platform,  b) sample, and 
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    Figure 20: The GEO microarray database main query interface 
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c) series.  These approximately correspond to a) the array design, b) signal data for each 

element in the array, and c) record for a group of related samples, respectively.   The 

GEO Datasets stores collections of samples (datasets) sharing both a common platform 

and a common experiment type (single channel, dual channel, or SAGE if not 

microarray).  The signal values are calculated and normalized the same way and are 

comparable across the set.  Therefore they can be directly compared.   

The GEO Profiles database stores individual gene expression and molecular 

abundance profiles.  Graphical charts compare numeric data values for the same gene 

expressed across different experimental conditions.  In brief, GEO Profiles handles the 

visualization of the data values while GEO Datasets stores other information.  Both 

databases allow complex query constructs using Boolean values with optional filters on 

well-defined fields.  The field options are described in associated documentation.  The 

main query interface is displayed in the figure 20 below.  Users may click on the tabs to 

browse the entries or enter search queries directly into the provided free text field.  The 

figure 21 below shows the GEO Datasets interface with query results from the 

following example.  GEO Datasets query 1:  find all records having keywords “mouse” 

and “neurological”.  The results retrieved 7 items, consisting of 1 dataset and 6 series.  

These are presented as summarized entries as seen in this screenshot.   

Gene cluster analysis is provided, and linked to the record as a thumbnail icon.  

The analysis records are very large and often represent hundreds of genes for a given 

experiment.  A small portion is visible in the display window.  By clicking on it a 

navigable view with zoom,  plot,  and  download  options opens.  Figure 22  below is an  
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Figure 21: The GEO Datasets query interface with query results 
 
example of the data visualization interface using the thumbnail for the record in figure 

21.  High expression levels are in red and low expression in green.  The 13 named genes 

are on the X-axis and the information about each sample (approximately 250) is on the 

Y-axis.  Here only the top portion showing the first 12 samples is visible. We have now 

seen an example of querying GEO DataSets.  Figure 23 shows the next example query 

uses the GEO Profiles interface.   Example GEO Profiles query 1:  find all experiments 
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Figure 22: Data visualization and cluster analysis interface in GEO 
 
studying kinase enzyme in macrophages.  Enter the query “kinase AND macrophage”.   

The results retrieved 8297 items, each consisting of one sample.  A researcher can now 

select a particular data set record (GDS77) such as study of kinase activity in 

macrophages infected with salmonella for further queries.   

Example GEO Profiles query 2:  find all profiles that fall into the top 5% 

variable molecular abundance profiles in dataset GDS77.  Enter the query construct 

“GDS77 AND 96[Ranked Standard Deviation]”, this will return records for 241 genes. 
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The results are presented as summarized entries as seen in figure 23.  Results may be 

sorted by the dimensions mean value, deviation, or outliers.  Users may query based on 

rank or deviation directly to retrieve lists of the most abundant mRNA transcripts under 

selected conditions.   

 
 

Figure 23: Geo Profiles example query result set 
 

The thumbnail image is linked to a graphical gene signal profile in a 

visualization interface.  The interface for an example gene is provided in figure 24 

below.  All the values for an each experiment are sorted and divided into 100 groups. 
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The blue rank bars on the left Y-axis of the chart show the approximate rank of where 

the expression of that gene is relative to the expression levels for all other genes on that 

particular array.  The red bar on the right Y-axis of the chart uses arbitrary units of 

relative expression intensity to average, after normalization.  Thirteen samples are 

represented in parallel.  The conditions are in the light yellow and light blue blocks 

below the chart.   

 

 
 

Figure 24: Visualization of signal values and ranks for a condition set 
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6.4 Querying the EMAP Database 

The Edinburgh Mouse Atlas Project (EMAP) is a sophisticated graphical 

interface for mapping genes to mouse tissue, organs, and structures.  EMAP provides a 

three dimensional spatial framework to map gene expression to any location within a 

virtual mouse embryo.  Additionally, the stage of development for the embryo can be 

selected.  This adds a fourth dimension of time for browsing and visualizing data, 

providing in effect a four dimensional atlas for gene expression.  The EMAGE (the 

Edinburgh Mouse Atlas Gene Expression Database) is an application of the EMAP 

framework and provides tools for both data submission and query on stored data.   

Additionally, the EMAP has collaborated with the Mouse Genome Informatics (MGI) 

gene expression database (GXD) project.   The GDX database is text based, and has 

been indexed through EMAP to spatially map images to the data stored in GDX. 

In figure 25 below we see the query interface for EMAP.  The cross sections 

may be selected from any of three axes (transverse, frontal, and sagittal as shown in the 

buttons of the lower left corner).  The age of the embryo is divided into distinct Theiler 

stages that are selectable from a pull down menu in the upper right corner.  Zoom and 

slider functions allow navigation in the tissue map.  By simply scrolling over the map 

corresponding tissues are highlighted in the tree on the right. Clicking on the tissue 

results in the option to search either EMAGE or GDX databases for retrieval of genes 

corresponding to the stage and tissue selected for the query.  The user may also query 

the tissue maps by typing the textual name of a tissue into the provided text box and 

clicking on the “find” button in the lower right of the frame. 
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Figure 25: The main query interface of EMAP with navigable tree 
 
Example query 1: find all genes for mesenchyme tissue in Theiler stage 14 mouse 

embryos.  The results set shows 606 matching array results, as displayed in figures 26 
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and 27 below.  In figure 26 the tissue type mesenchyme (blue structures) has been 

selected from the interactive map on the right representing a mouse embryo cross 

section.  The tree on the left shows by marking in red font which tissue has been 

selected.  Users may right click on the mouse embryo at the highlighted selected tissue 

type.  The highlighted portion accesses interactive navigation that allows a search for 

genes for the selected tissue type.  The star * marking at the end of the selected word 

mesenchyme refers to the option of navigating one more level in the tree and refining 

the search to just mesenchyme derived from head mesode or just mesenchyme from the 

neural crest.   

 
 

Figure 26: Tissue mapping portion of EMAP interface for basic querying 
 
Figure 27 displays the first few results retrieved for genes matching the query “find all 

genes located in mesenchyme tissue from Theiler stage 14 mouse embryo”, each gene 

has navigable links to experiment details and data files for further analysis. 
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Figure 27: Emap interface showing first 6 of a large results set 
 

 
 

Figure 28: Gene detail record from the example query result 
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Figure 29: Query form of the GDX mouse genome expression database 
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Details regarding any particular gene are retrieved within the browser and presented as a 

detailed record from the database.  A portion of that record is shown in figure 28 above.  

The EMAP query interface is a graphical mapping tool built peripherally to the 

mouse genome expression database GXD, and using the same data.  It should be noted 

that the GXD query interface (the database is located at the following weblink 

http://www.informatics.jax.org/searches/expression_form_exp.shtml) offers additional 

query parameters and options.  These include searches by querying with gene name, 

gene ontology (GO) classifications, and chromosome location.  A portion of the 

interface is shown in figure 29 above. 

6.5 Querying the SMD Database 

Similar to other microarray databases, the Stanford Microarray Database (SMD) 

database query interface is designed for the user to narrow down the subset of results by 

providing selection criteria.  After selecting the criteria and retrieving the results 

summaries, the user may look at arrays individually or combine results for final 

retrieval and analysis.  There are three approaches to querying the database.  These are 

the basic search, experiment list search, and advanced results search.  Each is accessible 

from the main interface as shown in figure 30 below.  Queries are on high level 

classification criteria and result sets contain large complete records.  Unlike other 

microarray databases, SMD is not yet able to support query constructs to find 

information about a particular gene although this is a goal for their future 

improvements. 
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Figure 30: Main interface of the Stanford Microarray database (SMD) 
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Figure 31: Query “caenorhabditis elegans” in SMD basic search 
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In a basic search, the results may be presented in terms of related publications or 

in terms of an experiment category or set.  An experiment set is a group of experiments 

that have been selected and assigned to that set.  The user may customize such a group 

as a personal set.   Figure 31 presents the basic search interface.  Queries on this 

interface will retrieve publications, experiment sets, or experiment categories related to 

the organism and data identifier of interest.  The interface provides selection options 

based on the species and experiments currently in the database.  Here we see a search 

for microarray data on the species “caenorhabditis elegans”. 

 For the more advanced searches there are three methods for analyzing 

the microarray data.  In the first method, Boolean operators are used to query on the 

three major parameters experimenter, category, and subcategory.  In the second method 

arrays are simply selected by their print identification, and the third arrays are selected 

from a personal directory.  The resulting datasets from any of the above methods may 

be displayed as array lists by clicking on the “Display Data” button or the “Data 

Retrieval and Analysis” button as shown below in figure 32.   

Query results in figure 32 are displayed in summary lists with links to other 

related array sets.  In the example below six arrays are returned from querying the 

database for results matching “experimenter = EISEN”.  Each experiment is classified 

by both category and subcategory with links to other arrays in that same classification.  

A set of interactive icons summarizes options for handling the results set including a 

clickable image, array details, download, and plot data. 
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Figure 32: SMD advanced search interface, links to display or analyze data 
 

 

Selection of the view and sort data icon results in a menu of options for both 

display and application of filters as shown in figure 34 below. Options include sorting, 

and display of columns for biological annotation data.  Filters allow inclusion of 

controls and nulls in experiment results.  The resulting adjustments may be saved as a 

downloadable file. 
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Figure 33: Example results set for a query “experimenter = EISEN” 
 
 

 
 

Figure 34: Selection options for data view and sort on a result set row 
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When the user chooses the view array details icon the database provides a record with 

navigable links to experimental and sample details.  These include signal intensity data 

suited to plotting, and statistical analysis.  Figure 35 below shows sample details as a 

record with links such as data download from the normalization data field.  The detailed 

record in figure 36 describes one individual signal from one position on the microarray 

grid.  This represents the hybridization of an individual gene. The record provides 

 

Figure 35: Example view showing experiment and sample details for an array 
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Figure 36: View showing details and signal for an individual grid position 
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numeric values for the two channels (colors) as well as normalization and other 

statistical information about the signal.  Chapter 2 provides an overview of how signal 

data is interpreted. 

6.6 Querying the HugeIndex Database 

The HugeIndex microarray database is a repository for normal human tissues.  To 

improve data analysis capability, each gene is cross-referenced to annotation in the 

LocusLink database at NCBI (National Center for Biotechnology Information).   The 

database can be queried through menus on its web interface.  In figure 37 below gene 

expression can be queried based on keyword and selection of an organ for the gene. 

 

Figure 37: Gene specific expression query interface in HugeIndex 
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Figure 38: Result set for the query “cathepsin” in tissue “lung” 
 

Example query 1: Find all genes encoding cathepsin proteins for lung.  Enter keyword 

“cathepsin” and select lung.  In the result set is the list of retrieved genes shown in 

figure 38 below.  Figure 39 displays an individual gene expression profile. 
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Figure 39: Individual gene profile for a gene selected from figure 6.6.2 
 

In the above figure, the information regarding the gene is provided, including 

averaged signal results from multiple experiments in the same tissue.  These are 

presented as average and standard deviation values.  The Y-axis shows log base 10 

average difference of expression (the difference between the sample expression and the 

average of expression for all genes in an experiment).  Here there are six probes for the 

same gene (cathepsin D) providing information to allow normalization for differences 
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due to experimental conditions.  Average differences range from 705 to 4731 based on 

an arbitrary signal intensity scale and corresponding log values range from 2.64 to 3.67. 

The options available for composing queries can be viewed by browsing the 

database contents through the supplemental tables that link from the main web interface.  

Queries can be composed on any of three custom interfaces for each of three purposes.  

The first option is shown in figure 37.  The query is on gene specific expression for a 

single organ of interest. The keyword for the gene of interest may be typed in the text 

box and the organ of interest selected from the menu. The second option shown in 

figure 40, it shows a query on expression comparison between different organ tissues.  

The third option is shown in figures 41, it displays the comparison of tissues or 

experiments through scatter plots.  The design of the HugeIndex database includes 

query capabilities for comparison of global expression patterns among tissues.  The user 

can query and discover gene coexpression in particular tissues, this leads to detection of 

the same expression patterns among related tissues as a system.  The implementers 

describe HugeIndex in this capacity as “a reference for defining basic organ systems 

biology” [HWBAHJG02].  Scatter plots allow interactive selection of individual genes 

and separate plots of gene expression for each gene or selection of links for annotation 

data to external sources such as NCBI through LocusLink. 

Example query 2: Find genes expressed in liver and lung, but absent from 

kidney, selected at organ interface shown in figure 40.  In the results set the database 

reports that 2215 genes match these conditions, and provides links to download text file 

of results provided. 
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Figure 40: Interface for searching organ specific expression patterns 
 

Example query 3: What are the differences in gene expression between brain 

experiment 7 from the database (pons/medulla tissue) and the average of 10 other brain 

tissue experiments?  In the results set we are provided a scatter plot with interactive 

labels that appear when the cursor moves position over the data points.  Each gene is 

identified in the label along with its status as present or absent for those selection 

conditions.  Figures 41 through 43 below show the generated interactive scatter plot for 

gene expression data comparisons in brain tissue.  In figure 42 the selected point in the 

map is for the gene Mac2 binding protein, the corresponding point can be clicked for 

interactive plotting options specific to each gene.  
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Figure 41: Interface to generate scatter plot for expression comparison query 
 
 

In figure 43 which follows we will see that plot for expression of the gene for 

the Mac-2 binding protein in tissue sample 7.  The expression is plotted as log average 

expression (Y axis) vs. the average expression of that gene for the set of 11 tissue 

samples available in the HugeIndex database.  The expression is almost 30 times higher 

in sample 7 compared to average expression levels. 
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Figure 42: Scatter plot showing Mac2 gene is a result of example query 3 
 
 

 
 

Figure 43: Plot for an individual gene selected from the interactive scatter plot 
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CHAPTER 7 

7. LIMITATIONS AND SUGGESTED SOLUTIONS 
 
 
 

In this chapter  we consider some of the limitations in the microarray database 

implementations we have studied.  Our focus is on those identified limitations for which 

we are able to propose reasonable solutions.  The limitations have been separated into 

two categories based on whether they primarily impact querying and quality of results 

presentation or primarily impact the microarray database implementation. We define 

each limitation and describe its impact. We then provide a suggested solution.  This 

chapter then considers limitations in a broader context by examining two other 

groupings.  One group is of inherent limitations for which there are no reasonable 

solutions.  The other group is of successfully addressed limitations for which a 

reasonable solution exists and is agreed upon.   These are no longer true limitations 

unless current and new databases fail to adopt the solutions in the future.  

7.1 Limitations Impacting Microarray Database Querying 
 

 In this section we will describe four limitations that impact querying, and 

present a suggested solution.  These are inconsistencies in feature ontology, lack of 

accomodation for free text queries, lack of support for both time-varying image data and 

for a consistent system of gene ID numbering. 
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7.1.1 Limitation 1: Inconsistencies in Feature Ontology 

Impact on querying:  When different terminology is used to describe the same 

concept about a microarray feature (ontology).   This difference poses problems when 

exchanging data between different databases.  The lack of consistency also imposes 

limitations for query formation, particularly for free text searches. 

Solution to Limitation 1: A potential solution would be to provide a table that 

cross references several ontologies permitting lookup of equivalent terms.  Currently 

some implementations use GO consortium ontology [HCILAF04] but this is not 

sufficient by itself to accommodate all microarray research concepts.  It should be noted 

that a microarray specific ontology is under development from MGED (Microarray 

Gene Expression Data Society at http://www.mged.org). 

7.1.2 Limitation 2: Lack of accommodation for free text queries 

Impact on querying: It is assumed that the user will not know the exact 

terminology or ontology particular to an individual implementation. As a simplifying 

solution, many implementations provide pull down menus of all possible selections for 

their main data types.  These predefined queries are not only universal among 

implementations but are also recommended because they simplify the database 

structure.  However, this lack of accommodation for more sophisticated user-

constructed queries is both a restrictive and unscalable aspect of the query interface 

design. There is also an impact on querying by limitations on keyword search in most 

implementations that support it.  They typically neither have a spellchecker nor the 

ability to prompt for a close alternate spelling when a keyword is not found.  For 
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example, in ArrayExpress the query “affimetrix” retrieves 0 records, but the correct 

spelling “affymetrix” retrieves 45 records.  

Solution to Limitation 2: All the implementations researched for this work do 

not address the need to support user-authored custom queries in free text search.  

Instead, they favor the use of pull down menus to view and select predefined options for 

combination in each query.   Since the documentation and associated publications for 

these databases does not describe the use of formal query language, or query 

optimization it is difficult to propose a specific solution.  By contrast the solution to 

supporting approximate keyword search is more obvious.  This solution is to employ a 

spell check to determine approximate substitutions or suggestions for the query 

keywords, similar to what is provided in the Google.com web search tool interface.  The 

technique known as relaxed queries is a more complex variation.  This employs a type 

of synonym mapping so that terminology having closely related meanings could be 

checked and indexed to find information relevant to the user without imposing a single 

ontology.   

7.1.3 Limitation 3: Lack of support for time-varying image data 

Impact on querying: An important source of information in microarray 

experiments is the rate of change in gene expression over a window of time.  Most 

microarray database implementations lack time interval parameters and time response 

data.  While a set of expression snapshots at punctuated intervals could be provided 

relatively easily, it is not a substitute for the valuable information detailing the response 

in gene expression over a time period specified within the query.   Such information is 
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important in evaluating cellular response to medication, or exposure to toxins. 

Solution to Limitation 3: An interesting solution is proposed by Craig et al [CK03] in 

which “visual queries are supported by the combination of a traditional value against 

time graph representation of the data with a complementary scatter-plot representation 

of a specified time-period. The multiple views of the visualization are coordinated so 

that the user can formulate and modify queries with rapid reversible display of query 

results in the traditional value against time graph format.  This new visualization 

technique allows the user to perform and combine a number of queries, including 

measurable change in value over a period of time queries, through an intuitive direct 

manipulation interface. The technique also gives the users a unique directly manipulated 

animated view of microarray timeseries hat allows them to explore patterns over time 

for the entire data set and selected subsets.” 

7.1.4 Limitation 4: Lack of consensus on gene ID numbering 

Impact on querying: There are many gene ID (identification number) systems in 

use among different databases.  Examples include UniGene, OMIM, EMBL, Entrez 

Gene, and Affymetrix Probe Set ID.  Since microarray databases access other databases 

for annotation information about the gene it is important that the gene ID systems in 

place for retrieving that annotation are selected carefully. Microarray data generated 

from Affymetrix chips are most easily searched using the Affymetrix Probe Set ID 

system, however trying to use that ID to initiate annotation searches poses problems.  

ID systems differ among different microarray kits and experiments may submit gene 

IDs that only refer to a particular brand of kit creating inconsistencies within a 
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microarray database.  Additionally, some systems such as the UniGene ID system use 

numbers specific to each species and do not allow cross species comparison for the 

same gene.  [CEMKZ05] 

Solution to Limitation 4: A reasonable solution would examine important gene 

ID systems and the correlations between these systems, then provide this information in 

look up tables so that appropriate gene ID codes can be used for external searches for 

gene annotation.  Checks should be in place to account for design differences such as 

the use numbers specific to each species in the UniGene ID system. Table 9 below 

summarizes these four limitations that affect querying. 

 

Table 9: Summary of Limitations and Solutions Affecting Querying 
# Limitation Proposed solution 
1 Inconsistencies in Feature 

Ontology 
Provide a table that cross references several 
ontologies permitting lookup of equivalent 
terms. 

2 Lack of accommodation for free 
text queries 

Use of spell check for keyword searches.  
Use of synonym mapping so that 
terminology having closely related meanings 
could be checked and indexed to find 
information relevant to the user without 
imposing a single ontology. 

3 Many databases are not able to 
provide time-varying image data 

An interesting solution is proposed by Craig 
et al [CK03] in which “visual queries are 
supported by the combination of a traditional 
value against time graph representation of 
the data with a complementary scatter-plot 
representation of a specified time-period”. 

4 Lack of consensus on gene ID 
numbering system 

Examine important gene ID systems and the 
correlations between these systems, then 
provide this information in look up tables so 
that appropriate gene ID codes can be used 
for external searches. 
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They include lack of consistency in terminology, lack of flexibility for writing a free 

text query, inability to query how gene expression changes within a particular range of 

time, and the use of many different gene identification systems causing difficulties if 

using the gene ID to search other databases for annotation data about the gene. 

7.2 Limitations Impacting Microarray Database Implementations 
 

This section describes some important limitations in the implementations.  

These limitations are important to the usability of the database and therefore have an 

indirect impact on querying.  For example, web based remote access to the data and 

query results is subject to slow response time or limitations in display capabilities.  

Many implementations do not have integrated annotation data or original unprocessed 

image data from the experiments.  Further description of these problems and proposed 

solutions are provided below in table 10. 

7.2.1 Limitation 1: Web forms for data retrieval and presentation 

Impact on querying: In some databases which rely on Java applets or require 

large bandwidth to transfer image files there can be a noticeable lack of performance.  

In some designs hyperlinks or pop-up based retrieval of records are in conflict with 

common browser security settings.   An additional basic restriction posed by the 

browser is limitation in their graphics display capability. 

Solution to Limitation 1: Although web based access is important to provide 

efficient public open access and reach the widest community of users some 

implementations also offer the option of setting up the database and downloading the 

entire data store locally to achieve better performance for frequent querying.  Several 
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microarray database websites also offer or recommend separate locally installed 

programs to provide flexible alternatives to the limitations of web browser interfaces for 

data visualization. 

7.2.2 Limitation 2: Use of hyperlinks to external databases      

Impact on querying: Use of hyperlinks to external databases such as GenBank 

are employed as a mechanism for providing annotation data about genes. This is a 

commonly implemented solution, but recognized as insufficient.  Hyperlinks are used 

when annotation data is not compatible with the data structures in the original 

implementation.  Hyperlinks introduce problems with presentation since the annotated 

information is provided only for each gene in a separate browser window as an 

independent search of an external database, rather than integrated in a table of entries 

for efficient comparison.  Secondarily, there are performance issues if many requests 

are made to external data sources. 

Solution to Limitation 2: The solution is to import annotated information and 

integrate it into the records for more effective and efficient presentation.  Adjusting the 

format of the data to accommodate native data structures should be done.  In some cases 

it may be helpful to implement two or more data exchange models to accommodate a 

variety of annotation data.  For example, the MAGE-OM data exchange model has the 

limitation that it can not include clinical data.  Since clinical data is often very relevant 

to gene expression research on human disease it would be helpful to adopt a clinical 

data exchange model in parallel. [CMF03, BEF03] 
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7.2.3 Limitation 3: Database does not store original image 

Impact on querying: When the original data as a large image file is discarded, it 

is replaced with numeric data or other representations of relative signal strengths. The 

original image signals will have been interpolated and processed before the values are 

stored.  This affects how accurately the relative signal strengths are stated in the 

database and therefore interpretation and quality of the query results.  Ideally the users 

should be able to access the original image so they can process the signal data according 

to their own filters and preferences. 

Solution to Limitation 3: Store the original image in a separate database such as 

a BLOB (binary large object) database or similar means of accommodating the file 

outside of the main database implementation.  Provide links to the stored original image 

for each experiment as a key in the relational tables of the main database.  The users 

may then choose to download the file and process it themselves. 

7.2.4 Limitation 4: Lack of centralized and consistent data analysis 

Impact on querying: The overall approach in microarray database 

implementations assumes many independent users performing data visualization and 

analysis using a diverse set of tools and database implementations.  Goncalves et al 

[GW02] identify some important limitations associated with that approach: “No central 

data storage unit and no data version control means that multiple different data files and 

versions of analysis files may be located in different directories or even on different 

computers. Lack of uniform experiment annotation and description of the analytical 

procedures employed means that collaboration and data sharing are severely limited. 
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Lack of integration between the various steps of the analysis makes data validation 

almost impossible (e.g., it is extremely difficult to go from cluster visualization to the 

individual spot images in order to validate the quality of the result).  Last but not least, 

this analysis model is not scalable.” 

Solution to Limitation 4: At the time of this writing the overall solution 

approach remained for the most part academic.  The overall solution is three fold: 1) 

develop and enforce data format and data exchange standards to meet the core need for 

research exchange and collaboration 2) standardize semantics and ontology so that 

descriptions and meaning are readily understandable within the exchanged data sets  

 

Table 10: Design Limitations of Current Implementations 
# Limitation Proposed solution 
1 Use of web based forms for data 

retrieval and presentation  
Several microarray database websites also 
offer or recommend separate locally installed 
programs to provide flexible alternatives to 
the limitations of web browser interfaces for 
data visualization. 

2 Use of hyperlinks to external 
databases such as GenBank as a 
mechanism for providing 
annotation data about genes 

Adjusting the format of the data to 
accommodate native data structures should 
be done.  In some cases it may be helpful to 
implement two or more data exchange 
models to accommodate a variety of 
annotation data. 

3 Database does not store original 
microarray image because of its 
large size 

Store the original image in a separate 
database such as a BLOB (binary large 
object) database. Provide links to the stored 
original image for each experiment as a key 
in the relational tables of the main database. 

4 Lack of centralization and 
consistency in data analysis 

The overall solution is three fold: 1) develop 
and enforce data format and data exchange 
standards 2) standardize semantics and 
ontology and 3) design of a centralized 
repository or public data warehouse.  
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and 3) design of a centralized repository or public microarray data warehouse providing 

integrated raw image data, annotation data, detailed records of tasks performed in data 

analysis, and support for research collaboration. Table 10 provides summary of the 

limitations and solutions covered in this section. 

7.3 Inherent Limitations in Microarray Databases 
 
             Inherent limitations are those that have no simple solution.  Some of these 

limitations are due to the nature of microarray technology and will only be solved by 

advances in the technology.  Other limitations are due to the nature of how these 

microarray database implementations accommodate the needs of their users.  We 

provide an outline of some important examples below. 

1) mRNA is not an exact indicator of protein concentration.  Gene expression is 

only estimated using DNA microarrays, better estimations come from emerging 

protein array technology but such databases are also emergent designs so 

microarray databases are the most important source of expression studies. 

Protein array databases are described in appendix D. 

2) Lower limit on sensitivity of signal detection.  Microarrays are not able to 

identify or detect very low copy number for some mRNA, therefore PCR 

verification needed to identify genes that provide only very low concentrations 

of mRNA. 

3) Fundamental issues for implementations concern both diversity of platforms and 

lack of compatibility.  Microarray database implementations can be relational 

databases using SQL, object-relational, or object oriented databases therefore a 
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query written in a particular language for one database may not be useable in 

many others.  Because many implementations are tailored to the immediate 

needs of particular research groups within an institution, this diversity is 

inherent.  It is difficult to compare data and pool data from different microarray 

databases.  This is one of the most important concerns cited in publications 

discussing microarray databases. Possibly in the future a common architecture 

and data model will be adopted across all implementations, but it is not feasible 

or planned for the near future.  However, improving compatibility for data 

formats and data exchange is being actively addressed.   

4) Must not assume user knowledge of data structures, implementation design, or 

query languages.  The requirement is very important and has been extensively 

addressed in technical literature.  Making query handling transparent to the user 

is considered a core requirement for bioinformatics database design.   Further, 

publications describing these implementations do not describe query handling, 

or optimization and rarely describe relational table structures.    The consensus 

in the bioinformatics community is that since users are typically scientists with 

limited understanding of databases, so it is essential to simplify the user 

interface.  Meeting the requirement restricts query interface design.  Each 

database implementation examined for this work has a set of predefined queries 

and navigational selection of parameters to form the query.  They do not permit 

the user to customize them.   
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7.4 Successfully Addressed Limitations 
 

Our focus in this chapter is on those identified limitations for which we are able 

to propose reasonable solutions.    Inherent limitations or constraints on using 

microarray databases are particularly difficult to address, these have been described in 

section 2.4 already.  Successfully addressed limitations are those for which a reasonable  

 
 

Table 11:  Minimum Data Descriptors Problem and Solution 
Limitation 
7.4.1 Lack of standards for uploading entries and exchanging data 

Impact The lack of standards results in difficulties comparing entries and 

consistency in completeness of minimum information from different 

databases.  Perhaps more important is the need for different databases to 

be able to exchange new data so that they are as complete and current as 

possible.  This is one of the most important areas of concern in 

microarray database implementations and therefore a strong effort has 

gone towards the solution. 

Solution A minimum set of descriptors for a complete experiment data set has 

been defined. These are known as MIAME standards.   MIAME 

compliance is now an important parameter for microarray database 

comparisons, as these standards are being implemented or will be 

implemented in most microarray databases.  See section 3.2 and 

appendix B for more details regarding MIAME standards.  [BHQSS01] 
 
 
 
solution has been identified and made available.  Adoption of the solution is either 

complete or planned in the future by most of the database implementations.   These are 

no longer true limitations unless new databases do not adopt the solutions.  Examples of 
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successfully addressed limitations appear as tables above.  The first example (table 11) 

describes the problem of defining what minimum information to provide for a database 

entry record.  The second example (table 12) describes the problem of determining what 

metadata structure to use for uploading new entries, data storage, and exchange of 

records between databases.   

 
 

Table 12: Summary of Metadata Format Problem and Solution 
Limitation 
7.4.2 Use of tab delimited text files to store and transfer metadata 

Impact Although this is a commonly implemented method for data transfer, it 

poses two key problems: 1) it does not provide a common organization 

for the data which would simplify information exchange among 

microarray databases, and 2) neither image data from sample 

annotations nor experiment annotations can be included in a tab 

delimited text file.  This second problem is the more serious limitation 

of the two. 

Solution  The use of more descriptive metadata structures such as XML provides 

an effective solution to this problem.  Published articles for the earliest 

microarray database implementations in the years 2000 and 2001 regard 

the use of a microarray data specific XML exchange format as one of 

their core future goals.  Since that time MAGE-ML has emerged as the 

standard, and use of MAGE-ML is either currently employed or a future 

goal for many implementations.  See section 3.3 and appendix C of this 

work for more details regarding MAGE-ML format. [SMSTSC02] 
 
 
 
The third table (table 13) is a summary of current status on implementing the solutions 

described in tables 11 and 12. 
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Table 13: Current status for Successfully Addressed Limitations 
Database 
Name 

Array 
Express CEBS GEO EMAP SMD HugeIndex

MIAME 
compliant Yes Yes Yes Yes Future 

goal 
Future 
goal 

Store data 
as  
MAGE-
ML 

Yes Yes Future 
goal Yes Yes Future 

goal 
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CHAPTER 8 

CONCLUSION 

 

In recent years biological databases have gained importance in research.  The 

large volume of biological data generated by high throughput automated processes such 

as the human genome project can only be effectively managed by databases.  The 

earliest biological databases stored DNA sequences, relatively simple data structures.  

Since that time the volume of more complex data such as distribution patterns of 

physical molecules, and structural data of biological entities has also rapidly increased 

in volume. Microarray experiment data is an excellent example. The more complex 

types of biological data require databases able to store representation of graphics and 

images, three dimensional structures, or time dependencies. These requirements makes 

complex biological data types unsuited to classical relational data models. Database 

technology has in recent years begun to catch up with the requirements of molecular 

biology data in general, and of microarray data in particular.  However, no single 

database implementation approach is suited to all needs even within a subdiscipline 

such as microarray research.  Every special area of study presents its own particular 

requirements.   
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As of 2005 over 700 publicly available web-based molecular databases have 

been implemented, representing many diverse subfields.  Among these, we have 

selected microarray databases for the focus of this study. Microarrays represent the 

entire genome, all genes in an organism.  A microarray database is a unique tool for the 

simultaneous study of hundreds of thousands of genes, and exploration of gene function 

and gene interaction on a huge scale.  We have selected these databases for three 

primary reasons.  Firstly, microarray databases are representative of recent technology, 

with most implementations having begun between 1 to 4 years ago.  Since the 

technology is still in its infancy there is need for better understanding and 

improvements.  Secondly, microarrays have had a particularly important role in genetics 

research since the completion of the Human Genome Project in 2003.  Thirdly, 

microarray data types are complex, requiring graphical representation of expression 

patterns, statistical normalization of the raw data, and extensive annotation for the 

identified genes. Because of this complexity, microarray data poses interesting 

challenges for query composition, query interfaces, and results output.  

  In this thesis we have described and identified the important factors required for 

effective querying of microarray data.  Ease of use is a particularly important challenge 

due to the highly specialized nature of the data and the queries.  Making it possible for 

scientists to easily construct useful queries has proven a challenge for two primary 

reasons.  Firstly, the queries placed on microarray data originate from very specialized 

scientific questions.  And secondly, the users cannot be presumed to have any 

knowledge of the implementation, data structures, or understanding of a query 
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language.   Designers and implementers have recognized that the biological researchers 

who use these databases should not be assumed to understand data structures, or formal 

query languages. Among all implementations queries are constructed based on 

predefined selection criteria. Defining and selecting those criteria is achieved by 

identified the requirements for the meaningful characterization of a microarray 

experiment into data that can be searched and queried.  These requirements include 

representing both raw and adjusted image data from fluorescent signals on the array, 

experimental parameter data, and gene annotation data.  Biological researchers query 

microarray databases to find results that either support or refute a scientific hypothesis.  

Those result sets are not always specific answers in themselves but present valuable 

correlating patterns or trends.   We have found that interactive software tools for 

graphical pattern analysis and visualization of the genetic expression pattern output are 

particularly important to improving the value of microarray query results to the user.    

The limitations identified here have been grouped into three major categories.  1. 

Those limitations affecting querying capability directly, such as inconsistencies in data 

identification or lack of support for parameters such as querying rate of change on time-

varying image data.  2. Those limitations affecting the implementation, and therefore 

affect querying indirectly.  For example, lack of centralization and consistency in data 

analysis that inhibits data validation and data exchange.  3. Inherent limitations for 

which there are no practical solutions, such as the limits of the microarray technology 

itself.  We have proposed solutions for each of the limitations we identified.  For 

example, to better accommodate free text queries we suggest synonym mapping so that 
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terminology having closely related concepts could be matched to a likely result of 

interest.   

In our approach we have attempted to understand the characteristics of the data 

to be queried, to identify challenges to effective data management, to understand the 

needs of intended user groups, and the purpose for the query results.  In so doing we 

have been able to assess limitations and suggest solutions.  Although this thesis 

describes and examines the specific case of microarray databases, the approach taken 

could be applied to evaluating and identifying areas of improvement in other categories 

of bioinformatics databases.  For example, protein array databases that facilitate the 

study of entire protein populations (or proteomics, discussed further in appendix D).  

These are still emergent technology and present additional challenges beyond those of 

microarrays.   In future work we would like to examine this and other categories of 

biological databases.  
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APPENDIX A 

LIST OF MICROARRAY DATABASES 
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The following is a list of publicly available microarray databases currently 

available through internet access.  This table is adapted from the 2005 Database 

Collection [G05] published by Nucleic Acids Research.  The journal annually publishes 

a summary list of all publicly accessible internet based implementations of biological 

databases.  

 
Table 14: List of Microarray and Gene Expression Databases in 2005 

 NAME DESCRIPTION WEBSITE 
1 5’SAGE 5’-end serial analysis of gene expression http://5sage.gi.k.u-tokyo.ac.jp/
 
2 ArrayExpress Public collection of microarray gene 

expression data http://www.ebi.ac.uk/arrayexpress 

3 Axeldb Gene expression in Xenopus laevis http://www.dkfz-heidelberg.de/abt0135/axeldb.htm 
4 BodyMap Human and mouse gene expression data http://bodymap.ims.u-tokyo.ac.jp/ 
5 BGED Brain gene expression database http://love2.aist-nara.ac.jp/BGED 
 
 
6 

CleanEx 
Expression reference database, linking 
heterogeneous expression data to 
facilitate cross-dataset comparisons 

http://www.cleanex.isb-sib.ch/ 

 
 
7 

dbERGEII 
Database of experimental results on 
gene expression: genomic alignment, 
annotation and experimental data 

http://dberge.cse.psu.edu/menu.html 

 
8 EICO DB 

Expression-based imprint candidate 
organiser: a database for discovery of 
novel imprinted genes 

http://fantom2.gsc.riken.jp/EICODB/ 

 
 
9 

emap Atlas 
Edinburgh mouse atlas: a digital atlas of 
mouse embryo development and 
spatially mapped gene expression 

http://genex.hgu.mrc.ac.uk/ 

10 EPConDB Endocrine pancreas consortium database http://www.cbil.upenn.edu/EPConDB 
11 EpoDB Genes expressed during human 

erythropoiesis http://www.cbil.upenn.edu/EpoDB/ 

12 FlyView Drosophila development and genetics http://pbio07.uni-muenster.de/ 
 
13 GeneAnnot Revised annotation of Affymetrix 

human gene probe sets http://genecards.weizmann.ac.il/geneannot/ 

14 GeneNote Human genes expression profiles in 
healthy tissues http://genecards.weizmann.ac.il/genenote/ 

15 GenePaint Gene expression patterns in the mouse http://www.genepaint.org/Frameset.html 
 
16 GeneTide A transcriptome-focused member of the 

GeneCards suite http://genecards.weizmann.ac.il/genetide/ 

 
17 GeneTrap Expression patterns in an embryonic 

stem library of gene trap insertions http://www.cmhd.ca/sub/genetrap.asp 

18 GEO Gene expression omnibus: gene 
expression profiles http://www.ncbi.nlm.nih.gov/geo/ 

19 GermOnline Gene expression in mitotic and meiotic 
cell cycle http://www.germonline.org/ 

20 GXD Mouse gene expression database http://www.informatics.jax.org/menus/expression_menu.shtml 
21 H-ANGEL Human anatomic gene expression 

library http://www.jbirc.aist.go.jp/hinv/index.jsp 

 
22 HemBase Genes expressed in differentiating 

human erythroid cells http://hembase.niddk.nih.gov/ 

 

http://5sage.gi.k.u-tokyo.ac.jp/
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Table 14 – Continued 
 NAME DESCRIPTION WEBSITE 
23 HugeIndex Expression levels of human genes in 

normal tissues http://hugeindex.org/ 

24 Kidney 
Development 

Database 
Kidney development and gene expression http://golgi.ana.ed.ac.uk/kidhome.html 

 
25 LOLA 

List of lists annotated: a comparison of 
gene sets identified in different microarray 
experiments 

http://www.lola.gwu.edu/ 

 
26 MAGEST Ascidian (Halocynthia roretzi) gene 

expression patterns http://www.genome.ad.jp/magest 

 
27 MAMEP 

Molecular anatomy of the mouse embryo 
project: gene expression data on mouse 
embryos 

http://mamep.molgen.mpg.de/ 

 
28 MEPD Medaka (freshwater fish Oryzias latipes) 

gene expression pattern database http://www.embl.de/mepd/ 

29 MethDB DNA methylation data, patterns and 
profiles http://www.methdb.de/ 

 
30 Mouse SAGE SAGE libraries from various mouse tissues 

and cell lines http://mouse.biomed.cas.cz/sage 

 
31 NASCarrays Nottingham Arabidopsis Stock Centre 

microarray database http://affymetrix.arabidopsis.info 

32 NetAffx Public Affymetrix probesets and 
annotations http://www.affymetrix.com/ 

 
33 

Osteo-Promoter 
Database 

Genes in osteogenic proliferation and 
differentiation http://www.opd.tau.ac.il 

 
34 PEDB 

Prostate expression database: ESTs from 
prostate tissue and cell type-specific cDNA 
libraries 

http://www.pedb.org/ 

 
35 PEPR 

Public expression profiling resource: 
expression profiles in a variety of diseases 
and conditions 

http://microarray.cnmcresearch.org/pgadatatable.asp 

 
36 RECODE Genes using programmed translational 

recoding in their expression http://recode.genetics.utah.edu/ 

 
37 RefExA Reference database for human gene 

expression analysis http://www.lsbm.org/db/index_e.html 

38 rOGED Rat ovarian gene expression database http://web5.mccs.uky.edu/kolab/rogedendo.aspx 
 
39 SAGEmap NCBI's resource for SAGE data from 

various organisms http://www.ncbi.nlm.nih.gov/SAGE 

40 SIEGE Smoking Induced Epithelial Gene 
Expression http://pulm.bumc.bu.edu/siegeDB 

 
41 

Stanford 
Microarray 
Database 

Raw and normalized data from microarray 
experiments http://genome-www.stanford.edu/microarray 

42 Tooth 
Development 

Database 
Gene expression in dental tissue http://bite-it.helsinki.fi/ 
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MIAME STANDARDS FOR MICROARRAY DATA 
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The Microarray Gene Expression Data (MGED) Society is an international 

organization of molecular biology researchers, computer scientists, and data analysts 

whose main goal is to facilitate sharing of microarray data for the study of functional 

genomics and proteomics.   MIAME is one of six standardization projects being 

pursued by researchers in the group. Provided below are the MIAME Standards for 

Microarray data as proposed by the EBI at their July 1999 conference meetings and 

released in July 2000.  The standards document which follows is also publicly available 

from the following link: http://www.mged.org/Workgroups/MIAME/. 

The meeting discussed draft recommendations to the microarray community proposed 

by the EBI and established a general consensus detailed below. These recommendations 

should not be regarded as an official view of the meeting, but as a starting point for 

wider discussions in the microarray community.  

• Establishing a well-organized public repository for gene expression data will 
provide the bioinformatics community with a powerful tool. Establishing such a 
repository would be facilitated by:  

• accepting a standard for the minimum information that laboratories should be 
encouraged to provide about microarray based experiments, to ensure 
reproducibility of the results;  

• defining the data communication standards for such experiments;  

• developing ontologies for sample description;  

• developing standards for normalization, quality control, and cross-platform data 
comparison for microarray based experiments;  
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The minimum information about a published microarray based gene expression 
experiment should include:  

1. expression level measurement results, in particular:  

a. the TIFF image file from the hybridized microarray scanning;  

b. the image analysis output (of the particular image analysis software) for 
each spot, for each channel;  

c. a derived value summarizing each spot in the authors interpretation (e.g., 
a background subtracted intensity typically used for Stanford or Incyte 
technologies);  

2. the following annotations: 

a. array (e.g., platform type, substrate, number of spots, provider),  

b. each element (spot) on the array (e.g., sequence or clone and relevant 
accession numbers),  

c. sample source and treatment (e.g., organism, development stage, tissue, 
drug treatment),  

d. controls in the sample and on the array,  

e. hybridization extract preparation (e.g., cell rupture method, nucleic acid 
extraction and labeling protocol),  

f. hybridization procedure (e.g., time, concentration, volumes, washes),  

g. scanning procedure (e.g., hardware, output TIFF file header),  

h. image analysis and quantification (e.g., software, version, parameters),  

• Also, MGED would like to encourage the image analysis 
software developers to try to design methods for standard ways of 
summarizing spot quality.  

i. description of the experiment as a whole (e.g., set of related samples and 
hybridizations submitted together and their relationships [time series, 
comparative hybridizations], reference if published).  

The meeting accepted the items 1a) –c) and 2a) – i) by consensus. There were 

two general opinions about the detailed specifications of each of the subitems. A clear 

majority considered the level of detail given in the "Details of the minimum 
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information" document is close to the minimum that has to be provided about any 

published experiment. Nevertheless, there were a considerable number of participants, 

who considered the proposed details excessive. It was agreed that the details will be 

specified by working groups and by e-mail discussion and proposed for discussion at a 

follow-up meeting.  

It was agreed by consensus, that once the definition of the minimal information 

about a public experiment is accepted by the community and public repositories 

supporting this specification are established, journals should be encouraged to require 

data submissions to a public repository, where the information can be confidential until 

the publication. 

Data storage and communication standards  

1. A standard XML-based flat-file format for microarray data description and 

exchange, compatible with the minimum information definition discussed 

above, should be developed and accepted by the community. This will formalize 

the definition of the minimum information, as well as open a way to populate 

public repositories directly from laboratory databases and LIMS systems.  

2. It was proposed that:  

• the flat-file format should support simultaneous submission of data from 
multiple experiments (i.e., unrelated hybridizations), to facilitate the 
uploading of data from laboratory databases into public repositories;  

• the working group for data communication standards consider ways that 
might allow the standards developed for data from microarray expression 
experiments to be extended to cover data from other kinds of microarray 
experiments;  
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• ideally, the format should support a possibility of back-referencing to 
items submitted to a public repository earlier.  

3. A working group for developing XML standard was established at the meeting. 

The standard will be reviewed and accepted in a follow-up meeting.  

Ontologies for sample source and treatment description. 

Ontologies should be used for sample source and treatment description (e.g., 

organism, development stage, tissue, cell line type, cell line, treatment type) where 

possible. In particular, MGED use collections of categories, each of which have their 

own controlled vocabularies, where the categories are themselves organized, e.g., as a 

tree.  

1. Universally accepted ontologies or standard vocabularies currently do not exist, 

except for description of species (Taxonomy database). Ontologies for 

developmental stages and tissues are relatively well described for some 

organisms, mouse and fruit fly in particular.  

2. A working group was established to consider where introduction of an ontology 

is possible, and ways achieving this. It is not feasible for the working group to 

develop the final ontology for any new category of sample description, but 

rather to: 

• identify categories which should be included in sample source and 
treatment description;  

• identify and review relevant ontologies developed by independent 
groups;  
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• identify the subset of required categories that can be covered by 
incorporating and adapting available ontologies, and identify provisional 
means of handling remaining categories;  

• document issues pertinent to use of other ontologies, and issues and 
possible approaches for fuller treatment of provisionally handled 
categories. The identification of high level categories and nodes where 
controlled vocabularies are possible will be considered for these latter 
categories.  

3. Recommendations from the working-group will reflect on the minimum 

information definition and on data exchange standard.  

Data normalization and cross-platform comparison  

1. The microarray community should determine common controls for their arrays 

and experiments. In particular there may be two types of controls:  

• normalization controls  

• quality controls  

2. Experiments in the public domain comparing different platforms for designing 

cross-platform normalization procedures should be encouraged;  

3. The meeting established a working group that will develop detailed 

recommendations for normalization, quality control and cross-platform 

comparison, which will develop more detailed recommendations before the next 

meeting.  

Database population and data submission issues.  

1. XML based flat-file format will be a relatively straightforward and easy way of 

submission by e-mail or ftp download, enabling direct submissions from 

laboratory databases and LIMS systems.  
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2. Client side data submission tools (either Web-based or stand alone) would 

complement such flat-file based submissions. Ease of use and the ability to 

back-reference objects from the database will be essential.  

3. Information about experiments and arrays may be submitted separately, with the 

array description being within the same or prior submission from experiments 

using them;  

4. Use of standard protocols for hybridization extract preparation, hybridization, 

scanning, and image analysis should be considered. Scanning hardware and 

image analysis software producers should be encouraged to accept relevant 

standards.  

5. Ideally, the database should support the reuse of objects submitted in earlier 

experiments (e.g., extraction and hybridization protocols), which would 

facilitate standardization of these categories. The XML data exchange format 

should support such "back-references".  

6. The minimal information specified in the first section of this document should 

be provided by the submitter and supported by a public repository.  

Data curation, quality, and ownership in a public repository 

Database administrators, submitters, and users should take steps to assure the quality of 

data on the database.  
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1. Administrators of an open public database cannot police quality data, but can 

and should: 

• verify that data meets the minimal information requirements given above 
and meets obvious data consistency checks. Where possible this should 
be done through automated checking at the time of data submission;  

• flag database entries based on appropriately defined and accepted 
experimental quality assessment indicators. Possible bases for such 
indicators might include replication of experiments, use of recommended 
controls, publication of experiment in a peer-reviewed journal;  

• reserve the right to remove from the database entries that have turned out 
to be obviously wrong. To work out formal criteria for making such 
conclusions may be difficult, however; 

2. Submitters of data to the database should be willing and able to update data that 

have proved to be in error on later analysis. For instance, if, after an experiment 

using an array has been loaded on the database, DNA sequencing proves a spot 

on the array to be unreliable, the submitter should be able to update this on the 

database;  

3. Users of the database should be able to submit annotations. These should be 

identifiable as third-party annotations; 

4. To ensure quality control in the early stages of the database development, 

administrators may at first accept data from selected collaborators. When the 

database reaches development stability, data submissions will be made open and 

public. Database submissions should be open to the whole community before 

they can be made obligatory prerequisite by journals.  
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 Microarray Gene Expression Markup Language (MAGE-ML) "is a language 

designed to describe and communicate information about microarray based 

experiments. MAGE-ML is based on XML and can describe microarray designs, 

microarray manufacturing information, microarray experiment setup and execution 

information, gene expression data and data analysis results. MAGE-ML has been 

automatically derived from Microarray Gene Expression Object Model (MAGE-OM), 

which is developed and described using the Unified Modelling Language (UML) -- a 

standard language for describing object models.  

Descriptions using UML have an advantage over direct XML document type 

definitions (DTDs), in many respects. First they use graphical representation depicting 

the relationships between different entities in a way which is much easier to follow than 

DTDs. Second, the UML diagrams are primarily meant for humans, while DTDs are 

meant for computers. Therefore MAGE-OM should be considered as the primary 

model, and  [the MGED committee report authors] will explain MAGE-ML by 

providing simplified fragments of MAGE-OM, rather then XML DTD or XML 

Schema." (from the description by Ugis Sarkans, [SMSTSC02]).  The standards 

description that follows is an excerpt from the documentation publicly available from 

this link: http://www.mged.org/Workgroups/MAGE/mage.html.  

The Minimum Information About a Microarray Experiment, also known as 

MIAME, was developed to specify which microarray experiment data and metadata 

should be reported to enable others to understand and interpret the experiment 

unambiguously. This is a data content standard, not a format standard. 
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Microarray Gene Expression Markup Language (MAGE-ML) is a formal language 

designed to describe and communicate information about microarray based 

experiments. MAGE-ML is an XML language; it can be used to describe microarray 

designs, microarray manufacturing information, microarray experiment setup and 

execution information, gene expression data and data analysis results. 

MAGE-ML has been automatically derived from Microarray Gene Expression 

Object Model (MAGE-OM), which is developed and described using the Unified 

Modelling Language (UML) – a standard language for describing object models. 

Models described using UML have advantages over pure XML technologies (DTDs or 

XML Schemas) in many respects, especially for didactic purposes. They use graphical 

representation depicting the relationships between different entities in a way which is 

much easier to follow for a human than DTDs. The idea behind UML diagrams is to 

provide a way of describe models that is both human readable and has strict semantics, 

while DTDs and XML Schemas are meant primarily for computers. Also, complex 

models (also MAGE) involve many different types of relationships between model 

elements, while in XML by definition information is encoded in a hierarchical manner 

and relationships that break the hierarchy need to be encoded in some special ways. 

MIAME requires detailed annotation about experimental conditions, materials 

and procedures to be captured. MAGE-ML is a rich format.  By using it one can encode 

MIAME-required information and more. The purpose of this document is to provide 

guidance for encoding MIAME-required information in MAGE-ML.  
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MIAME consists of 5 sections, [the MGED committee report authors] will follow that 

structure here. For each MIAME section the following is presented: 

1) one or more UML class diagrams containing a subset of classes and associations 
from the corresponding MAGE-OM package(s) needed for MIAME-compliant data 
encoding; 

2) a fragment of the simplified MAGE-ML DTD (MGED will call this here MAGE-
ML-Lite) that is sufficient for encoding MIAME; 

3) an informal object diagram that illustrates the structure needed for MIAME 
encoding in MAGE objects; 

4) a sample MAGE-ML document template that corresponds to the object diagram. 

 

On the class diagrams [the MGED committee report authors] have only deleted some 

classes and associations that are less relevant for MIAME encoding, but [the MGED 

committee on MAGE-ML] haven't made any structural changes. In fact, the diagram 

layout is the same as in the formal MAGE-OM specification. 

The object identifiers for MAGE objects should have the form: 

<authority>:[<namespace>]:<object>[:<revision>] where ":" is the 

field separator, "<...>" is a string and "[...]" represents an optional elements. 

Syntactically none of strings used in 'authority', 'namespace', 'object' and 'revision' is 

allowed to contain':'.  For the time being <authority>:<object> also is 

acceptable from current MAGE-ML exporters, but [the MGED committee on MAGE-

ML] would recommend that submitters strive to conform to the specified format with 

null namespace, e.g. <authority>::<object>. If submitters don't have a 

meaningful namespace then the recommended format is 

<authority>::<object>. 
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<authority> is assigned by the data provider. [The MGED committee on MAGE-

ML] recommend that this is done in a way that minimises the possibility of clashes, for 

instance following the DNS model with the providers giving names like "ebi.ac.uk", 

"umich.edu", "genetics.umich.edu" or "lab23.genetics.umich.edu".   

[The MGED committee on MAGE-ML] recommend that the software 

manufacturers include the assignment of the authority during the installation of each 

particular copy of their software.  The defaults should be set in a way that minimise the 

clashes.  If there is a 'authority' clash during the submission to a public database (e.g., 

ArrayExpress), [the MGED committee on MAGE-ML] will try to resolve this via 

MGED. The mass software should ideally have an option which allows to change the 

'authority' after the installation.  

Regarding [<namespace>]:<object>[:<revision>], the only 

requirement at the moment is that objects should be guaranteed to be unique within the 

authority. 
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A) INTRODUCTION 
 

Just as genomic microarray data has a more complex and newer counterpart to 

protein microarray data, the graphical databases that store genomic microarray data 

have multimedia database counterparts to store protein microarray data.   In this 

appendix we will review the newest type of microarray technology, for protein 

microarrays.   

Microarray databases are among the first bioinformatics implementations to use 

searchable graphics.  Queries are on the scale of a complete genetic profile for an entire 

cell or entire collection of cell types within an organism.  The next step in visualization 

is to be able to search not just representations of images but the images themselves.  In 

this regard multimedia databases are highly suited to bioinformatics.  The next step in 

studies of an entire genetic expression profile is to not only look at which genes are 

expressed but look at the proteins those genes encode.  A complete protein population 

or proteome is not exactly equivalent to a population of expressed genes.  Protein 

interactions, distribution, and regulation differ from those of the expressed genes or 

mRNA transcripts which encode them. In appendix D we provide a detailed look at the 

importance of proteomics next steps in the field of genetic expression studies and the 

use of multimendia databases that support that research. In section B) we will first 

identify the relevance of multimedia databases to bioinformatics data.   Then in section 

C) we identify some of the biological research questions that are suited to multimedia 

databases.  From recent research efforts, we focus on location proteomics as an 

excellent example of how to construct an automated searchable Bioinformatic image 
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database.  The research group lead by Robert Murphy at Carnegie-Mellon University 

provides the well studied case of fluorescent microscopy location proteomics.  

Exploring their work in sections D) and E) we examine (1) data type identification, (2) 

basic approach to indexing, (3) identification of query types, (4) implementation of a 

search tool, and (5) future goals.  Section F) provides a summary. 

B) ROLE OF MULTIMEDIA DATABASES FOR BIOLOGICAL DATA 
  

Multimedia databases contain diverse data types including images, video, and 

audio. The Internet is an archetypical distributed multimedia database.  Large variation 

in file size and complexity of the data is handled through the appropriate metadata 

structures.  A typical metadata structure used for Internet files is XML.    Because the 

data types are complex, traditional relational query techniques are not suitable.  New 

query techniques are being developed suited to the high dimension spaces of 

multimedia, and multimedia content based retrieval.  Two examples of recent research 

in querying and retrieval for multimedia are 1) developing distance metrics for nearest 

neighbor queries in high dimensions, and 2) the use of natural language to search for an 

object by name through indexing the features of an image.  

Broadly, there are two areas of multimedia database technology particularly 

relevant to biological data, 1) static image databases (two-dimensional or 2D) and 2) 

virtual reality (three dimensional or 3D) which may include animation.  There are many 

open questions related to indexing of complex image data, and how to construct queries 

for this type of data.  Analysis of image data is important in biological research.  Within 

the last few years advancements in multimedia database technology have been 



 

 131

accompanied by interest in its application for biological databases.   Virtual Reality 

implementations are few and query techniques are largely confined to simple 

navigation, they are used as visualization tools for the content of well established 

relational databases.  Virtual Reality graphics may have a significant role for improved 

usability of the most widely accessed databases which are presently limited to simple 

flat file and textual data retrieval.  Image databases clearly have important roles and 

complex querying techniques have been developed for detecting patterns in both 

individual molecules and localization of particular proteins at the subcellular level.   

Biological databases traditionally provide textual descriptions of data.  A classic 

example are the DNA sequence databases.  Even storage of images is relatively new.  

The concept of queries based on comparison of images is now an area of current 

research. Many areas of biological research depend on information from images.  For 

image data, the manual mode of analysis has been the only option until very recently. It 

is limited in its efficiency and scale. Using multimedia databases with new techniques 

for handling image features would overcome that limitation. 

C) BIOLOGICAL DATATYPES SUITED TO MULTIMEDIA DATABASES 
 

What are some of the areas in biological research that would benefit from 

automated comparative image analysis, indexing, and query capability?   

C1. Cell populations 

As a first example, considere patterns of cell populations.  Many diseases are 

related to protein interactions resulting in cell death.  Comparing images of the cells 

answers whether the cells die in patches, or as a wave, and at which layers.   Image 
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analysis also reveals what patterns of cellular migration, cell type association, and cell 

division occur in different disease states. Studies in biomolecular research ranging from 

cancer and autoimmune disorders, to physiology, and drug discovery all require these 

types of image pattern comparisons.  Yet these are queries that conventional databases 

are not able to support. 

C2. Location proteomics 

In additional to comparison analysis, querying image patterns is important to the 

study of a new area in molecular biology known as location proteomics.   A proteome is 

the complete protein profile, or the complete protein population.  This will not represent 

all genes (the genome), since only a small subset of genes are used to make proteins at 

any one time.  This may be in reference to either a cell, or an organism.  Location 

proteomics is the study of the distribution properties and statistics on features of 

proteins in their cellular context.  This type of information provides an understanding of 

the normal spatial and temporal patterns of protein distribution, to which a comparison 

can be made and therefore guides both experimental design and results interpretation.  

These types of information can be analyzed effectively only through image data.   

C3. Whole genome analysis 

A related area in image based queries, is the 3D or Virtual Reality technology 

for visualizing large data sets, entire existing databases, or complete systems. Again, 

these provide a unique and important supplement for researchers to learn from large 

bioinformatics databases.  Through this new technology a global view of large scale 

patterns in comparison of DNA which textual queries are unable to accomplish. 
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D) OVERVIEW OF LOCATION PROTEOMICS 
 

Murphy [MF05] makes the observation that “the focus of most biochemical 

research is now shifting from simply identifying gene sequences to determining the 

properties and functions of the proteins encoded by those genes.”  From this shift we 

have the emerging field of proteomics which is a subfield in the wider arena of 

genomics.  The suffix -omics refers to study of the complete system, for example the set 

of all proteins needed by a cell or by an organism.  Location proteomics is an important 

area of research for mapping proteins to where they are localized in a cell.  The cell is 

compartmentalized into different distinct subregions with specific unique tasks for cell 

maintenance.  For example in eukaryotes (all non-bacterial cells) these structures 

include nucleus, mitochondria, lysosomes, Golgi apparatus, cytoskeleton, and the 

endoplasmic reticulum.  Of fundamental importance to the adaptability and diversity of 

cell types is this compartmentalization.  

The diversity of cell types results in specialized functions in particular tissues.  

Note that pancreatic cells, muscle cells, skin cells, nerve cells are all very distinct in 

their functions, shape, and capabilities.  The ability to locate where a particular protein 

is found within a cell and also which cells use that protein in different types of tissue or 

organs is important to biologists.  Additionally, researchers are interested in when the 

proteins are required and synthesized, which combinations are synthesized and at what 

concentrations.  Medical problems can result from incorrect concentrations, incorrect 

timing or synchronization in synthesis, or incorrect location as well as from improper 

shape or improper function of a particular protein.   Proteomics as a field is dependent 
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upon genomics.  It is only in the last 5 years that, along with the rapid elucidation of 

genetic sequences, proteomics data has exploded into a huge amount of information, 

new technology and large volumes of data.  The number of proteins exceeds the number 

of genes.  In humans 30,000 genes are estimated to encode approximately 100,000 

proteins.  This is simply because the intermediate step in gene to protein (mRNA 

strands) can be biologically edited, with sections being deleted before it is used as a 

template for protein production.  Similarly proteins themselves are often shortened, 

chemically modified, or consist of multiple independent protein strands.   

Understanding the patterns of protein begins with the raw data, in contrast to 

other types of data on proteins such as sequence, binding partners in pathways, or 

metabolic activities, subcellular location has received little attention in the past partly 

because information and data was restricted to unstructured text in journal articles.  An 

additional limitation of text is the lack of consistent terminology for subcellular 

location, despite efforts such as the GO Cellular Component Ontology vocabulary from 

the Gene Ontology (GO) Consortium.   Query processing and query results retrieval 

become dependent upon qualitative terms, the table below provides an example of  

 

Table D1: Example comparison of variation in terminology for protein location 
Protein giantin Gpp130 

Accession Swiss-Prot Q14789 TrEMBL o00461 
Comments: Subcellular 
location 

Golgi; membrane-
associated 

(none) 

GO Cellular component 
terms 

0000139, Golgi membrane; 
0005795, Golgi stack; 
0016021, integral to 
membrane 

0030139, endocytic vesicle;
0005801, Golgi cis-face; 
0005796, Golgi lumen; 
0016021, integral to 
membrane 
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textual descriptors for two proteins found in the cellular structure Golgi from which it 

can not readily be determined if the patterns overlap if so to what degree and what are 

the relative concentrations.  The variation in terminology used to describe subcellular 

location in protein databases  is illustrated by table D1 below [M04]. 

Other types of proteome queries can not be easily answered without image 

databases, for example do proteins found in the lysosome have similar distribution and 

concentration patterns as for endosomes?  Image databases provide quantitative answers 

rather than qualitative.  Further, by interpreting and mapping protein families at the 

level of a complete proteome, errors can be recognized and corrected.  For example, a 

protein found in the mitochondria may be incorrectly assigned to another organelle and 

this mistake may be identifiable by its distinctive location pattern.   

D.1) PROTEOMICS DATA TYPES 
 

The most current technology typically generates proteomics data from the following 
five techniques:  
 

1) high performance liquid chromatography (HPLC) for separation, a technique 
well established in chemistry  

 
2) mass spectrometers for identifying individual proteins by weight and 

composition by each type of atom  
 

3) protein microarrays (protein biochips) for measuring concentrations and 
interactions between proteins these were introduced commercially in 2002 as the 
BioPlex chip by Bio-Rad and are still actively researched.   

 
4) two-hybrid systems both yeast for eukaryotes and bacterial for prokaryotes. 

These are genetically recombinant cell lines which enable study of protein 
binding and biochemical pathway elucidation in a living cell.  In these systems 
GFP (green fluorescent protein) is synthesized attached to a protein of interest in 
a living cell.  The protein of interest is then observed in real time within the 
living cell, it is assumed the fluorescent component of the hybrid protein has 
minimal or no impact on the biological activity of the protein.  
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5) atomic force microscopy (AFM) in which an electrode tip probes the surface of 

a cell or sample.  The tip detects surface properties including ionic charge 
gradient or charge density, magnetic field, temperature, and topography 
[SMM04], this is one of the most recent developments in protein research. 

 
Regarding protein microarrays it is important to note that unlike DNA, proteins are 

very sensitive to slight changes in their chemical surroundings which impact their 

ability to bind, therefore protein microarrays are still facing many challenges compared 

to the corresponding DNA microarray technology.  This technique is based on 

fluorescent molecules attached to antibody proteins which are synthesized to 

specifically bind a protein of interest, these fluorescent antibodies are known as probes.  

A z-series of images taken at different positions in the z-axis of a cell allows three 

dimensional mapping of protein location in the entire cell, known as laser-scanning 

confocal microscopy. In some cases more than one protein may be observed 

simultaneously, each having a unique color for its fluorescent marker. Additionally, 

some antibodies are specific to a protein in a particular conformation or shape from a 

biochemical interaction. 

D.2) PROTEIN IMAGE DATA INDEXING  
 

Murphy et al [MF05, HM04, M04, MKHJC04] consider how the microscopy 

images of cells can form a multimedia bioinformatics database for proteomics research.  

Specifically, their research has developed an automated systematic analysis of the 

images so the image data can be classified and retrieved from an image database.  

Current practice in Biological Research assumes visual inspection of these images.  

Comparisons are made between known locations of markers and locations of the protein 
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being studied.  Automated classification technology would replace the currently used 

manual system of visually inspecting images then assigning descriptions to them from a 

small vocabulary.  The manual approach is time consuming and will not scale well.  

The automated system developed by the Murphy group was reported to distinguish 

similar images of proteins giantin and gp130 at 97% accuracy where a human observer 

was unable to distinguish them [M04].   

An important first step to building queries on microscopy images is the data 

structure for such images.  Murphy et al have addressed how to automatically recognize 

features of cell structure from the images.  Previous research in this area required either 

special additional labeling steps for cellular structures such as the nucleus or plasma 

membrane or required model assumptions making them more restrictive than the 

approach for Murphy [HM04].  Using ten major subcellular structures they were able to 

achieve 92% average accuracy for 2D single cell images and 96% average accuracy for  

 

Table D2: Descriptions of multicell morphological features 
SLF 
Index 

Multicell Morphological Feature Description 

SLF1.3 
SLF1.4 
SLF1.5 
SLF7.9 
SLF7.10 
SLF7.11 
SLF7.12 
SLF7.13 
SLF7.80 
SLF7.81 
SLF7.82 
SLF7.83 
SLF7.84 

The average number of pixels per object 
The variance of the number of pixels per object 
The ratio of the size of the largest object to the smallest 
The fraction of the non-zero pixels in a cell that are along an edge 
The fraction of all values in first two bins of the edge intensity histogram 
The ratio of the largest to the smallest value in the edge intenity histogram 
The ratio of the largest to next largest value in the edge intensity histogram
The edge direction difference 
The average length of the morphological skeleton of objects 
The average ratio of object skeleton length to skeletal convex hull area 
The fraction of object pixels contained within the skeleton 
The fraction of object fluorescence contained within the skeleton 
The ratio of the number of branch points in the skeleton to skeletal length 
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3D single cell images.  Significantly, they report better results from multicellular 

images than single cell partially due to a greater amount of pattern information.  This 

eliminates the need to segment the images into individual cells.  Additionally, the set of 

cell morphological features they selected are independent of cell rotation, eliminating 

the need for image orientation before processing.  Figure 2 [HM04] lists thirteen of 

these features that describe properties of the cellular objects, these serve as examples of 

query parameters in a microscopy database.   

 
D.3) QUERY TYPES FOR PROTEOMICS 
 

Among the feature selection methods they examined, stepwise discrimination 

analysis (SDA) was reported as the best for subcellular pattern classification.  Mapping 

the dataset from the images to a high dimension data structure will not be considered in 

detail here since this work is focused on query techniques.  The automated classification 

techniques of Murphy et al provide data enabling queries that could include the 

following as output:  

 
1) ranked images to provide the most representative or typical image 

2) comparisons of sets of images whose subject matter is a specific protein under 

different conditions to detect changes as a result of those conditions for example 

in the absence of presence of a toxin or a pharmaceutical drug 

3) grouping of proteins in a particular location within the cell and from this provide 

a tree hierarchy or dendrogram 

4) content based retrieval for microscopy images from articles in online research 

journals or offline databases and collections 

 
 



 

D.4) IMPLEMENTATION 
 
The Murphy lab has created a prototype agent based service SLIF (Subcellular Location 

Image Finder) which can locate fluorescent micrographs by searching for articles and 

processing them.  The SLIF service accepts text based queries, which were used to 

identify relevant PDF format articles from one of the largest publicly available web-

based research databases NCBI PubMed Central and in a separate experiment against a 

single collection of 15,000 indexed articles from Proceedings of the National Academy 

of Sciences in XML format which can be searched using standard SQL queries.   

 
 

 
Figure D2: Results set for a serial query using the SLIF web interface.   The first query was 
made on the a PNAS test set [MKHJC04] and is for figures in which caption contained 
“microtubule,” “mt,” or “tubulin.” A second query on the output from the first query retrieved 
figures containing a fluorescence microscope image (FMI).  Only the first of several figures 
matching both queries is displayed here.  
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Figure D3: Dendrogram showing location patterns for 46 different proteins as arranged 
along the X axis by their Z-scored Euclidean Distance.  Z-scores appear along the 
vertical axis. These distance values are determined by subtraction of mean and division 
by the standard deviation.  
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SLIF automatically retrieves the matching files, parses the image into meaningful 

subparts known as “panels”, identifies panels containing a fluorescent microscope 

image, and ranks these panels by the degree to which they match a specific query 

pattern.  The system uses a neural network trained by using known patterns from tagged 

antibodies to reference proteins in images of a particular well researched cell line 

[MKHJC04]. 

D.5) OUTPUT 
 

SQL queries utilizing Java Server Pages have been tested for the following 

searches: (a) particular protein name in a figure or panel, (b) specific subcellular 

pattern, (c) particular spatial resolution in pixel size for an individual image.  The SLIF 

service interface is shown above in figure D2.  Subcellular location trees can be 

generated from this type of information.  Patterns vary slightly based on which cellular 

feature set (sample feature set described above) is used.  The dendrogram in figure D3 

from the research of the Murphy group appears in [CVWJM03]. 

E) FUTURE ISSUES 
 
E.1) EXPANDING SLIF 

Additional capabilities which are under research include providing summary 

reports with confidence intervals related to each query retrieval, and combining SLIF 

query output with other information about the proteins retrieved from annotated 

databases. 
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E.2) NEED FOR FIGURE STANDARDS 

An important issue identified in this research is the lack of conventions or 

standards in placement and format of labels on figures for journal articles posed some 

difficulties in query processing which could be resolved easily by supplementing XML 

structures for research articles so that their content may be parsed more consistently.  

Examples of such standards include coordinates of each panel as pixel numbers, 

inclusion of a URL for an uncompressed figure, number of microns per pixel for each 

panel, scoping markup to match captions to panels, and database links for annotation of 

individual proteins. 

E.3) DISTRIBUTED BIO-MOLECULAR IMAGE DATABASE  

While SLIF provides an interface to collect and process images from web based 

journal databases, and the Murphy group have researched problems and solutions to 

improve image retrieval and image queries, it is restricted to fluorescent microscope 

images.  The need is apparent for databases specifically designed to store diverse types 

of image data and facilitate image queries and searches.  This should include time-

lapsed images to show how protein activity and distribution responds to changes due to 

stress, pharmaceutical drugs, environmental toxins, or aging.  Unfortunately, these types 

of data are contained within images of the figures in journal articles which, as has been 

previously covered this chapter, have query processing limitations. Singh et al have 

noted “there is currently no home for this vast amount of data, and no method readily 

available to discover knowledge in such a database were it available” [SMM04].  Their 

research toward a fully searchable distributed biomolecular image database is in its 
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early stages.  They have defined and classified the types of queries which would be 

supported in the database as a set of four classes: 

1) Metadata queries  
 

2) Spatial queries 
 

3) Semantic queries 
 

4) Spatio-temporal queries 
 
Feature extraction for the image database is also discussed by Singh et al [SMM04]. Of 

particular note is the role of a well defined distance metric to allow similarity 

comparisons.  Equally essential is an appropriate feature set.  Texture feature analysis 

can be adapted from aerial image processing to molecular images as both characterize 

region properties.  At low-level resolution similarity retrieval queries can be answered.  

More highly structured patterns can be analyzed through statistical shape features, 

which would enable queries to detect specific proteins.  Hierarchical techniques are 

needed for these high dimension datasets.     Locating a specific protein may require a 

feature vector with hundreds of dimensions posing challenges for data clustering 

requiring further research both in data indexing and query retrieval. 

F) SUMMARY  
 

Challenges lie ahead for this emerging area in the field of bioinformatics.  

Firstly, detecting spatial and temporal patterns requires complex advanced database 

techniques, and the ability to handle high-dimension data indexing for the queries.  The 

images must be analyzed and their descriptive features defined to a specified standard to 

allow for meaningful metadata extraction.   Secondly, image databases are extremely 
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demanding of memory and storage resources.  For example, a single image from a cell 

can be 4 MB, a three dimensional profile composed of 50 z-axis slices through the cell 

requires 200 MB, a time series of the cell to record dynamic response could be 10 GB, a 

single experiment contains many cells under several condition sets resulting in 100s 

GB.  The review of location proteomics research has included some proposed solutions, 

but more investigation is needed. 
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