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Abstract 

CONSIDERATIONS FOR GENERATING ACCURATE  

LINEAR TRANSFER FUNCTIONS FOR 

LAMINAR FLOW TRANSMISSION 

LINE DYNAMICS  

 

Sina Jasteh, M.S. 

 

The University of Texas at Arlington, 2015 

 
Supervising Professor: David Hullender 

Modeling fluid lines for applications such as hydraulic fracturing has been studied 

for many years, and we know that the inverse frequency method presents very accurate 

solutions for systems with lines in almost all laminar flow cases. However, utilizing this 

method is not easy for all users, and requires experience and understanding of the 

method. In this study a simplified method is introduced for accurately modeling the 

transients in lines which requires minimum experience in utilizing inverse frequency 

methods; the accuracy and limits of this simplified method are studied. Also, alternative 

approaches are presented which improved the accuracy of the final results. 
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Chapter 1  

Introduction 

In this study, the problem of accurately simulating the transients in a fluid line 

with laminar flow is being investigated; Three different methods are introduced to 

describe the flow of fluid through a line. These methods are described for application of 

the line in hydraulic fracturing process. The first method to generate a simulation model 

of a line to be used in hydraulic fracturing analysis is to generate a model using the 

inverse frequency algorithm directly on the frequency response of the total system, which 

is available as a function in MATLAB. This method could be complicated to utilize for 

some users, and also requires the ability to set up the MATLAB function settings and 

data points. The second method is developed by Huang, Hullender and Woods [1] which 

is a simplified method to create models for lines using pre-calculated data; In this method 

the inverse frequency is used on each component of the equation describing the flow of 

fluid in a line used in hydraulic fracturing application, and the results are stored in tables 

which allows users to use these tables to generate models for a broad range of line 

dimensions and fluid properties. Many attempts have been made in order to improve the 

tabulated data, and to improve the models generated by them, such as adding more data 

points, and adjusting the data available in the tables. Also, efficiency of the second 

method is compared to the first method for different line and fluid properties for the time 

response of the overall system. In the end a third method which uses a MATLAB function 

is introduced that uses the overall system transfer function instead of tables but uses 

algorithms to simplifies the process and minimize the settings required to get a low 

approximation of the overall system transfer function. This method simplifies the process 

of direct curve fitting for overall system transfer function frequency response. 
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In order to start with the modeling process, first, we need to have a good 

understanding of the nature of the problem. The problem that is being investigated in this 

study has applications in hydraulic fracturing. In the process of Hydraulic Fracturing fluid 

is pumped into pipes, and at the end of each pipe, fluid penetrates the rock fissures. 

Pumping fluid in these lines with pulses with a frequency equal to the resonant frequency 

of the lines can result in amplification of these pulses, and more penetration of the fluid in 

the fissures. Accurately modeling these lines is crucial in finding the correct resonant 

frequencies of the lines, and amplification of input pulses. 

These lines can be components of a more complex system. To obtain a total 

system linear model all the components in the system have to be linear. Therefore, to 

model a system with fluid lines as components of the system, linear ordinary differential 

equations have to be obtained for each of the fluid lines present in the system. 

 

Figure  1   Schematic of a fluid line 

 

Figure 1 represents a line with fully developed laminar flow input; PIn and QIn are 

pressure and volumetric rate of the flow which enters the line, and  Pout and Qout are 

pressure and volumetric rate of the flow exiting the line. 

The input pulses that enter this line and the output generated by these pulses 

can be describe by changes in P and Q values, ΔP and ΔQ. These pressure and flow 
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perturbations for one-dimensional  laminar flow in a line are described by the infinite 

order model in the equation 1: 

  � ∆PIn
∆Pout

� = �
ZcoshΓ
sinhΓ

− Z
sinhΓ

Z
sinhΓ

− ZcoshΓ
sinhΓ

� � ∆QIn
∆Qout

� (1) 

The  Γ and Z functions are functions of zero and first order Bessel functions. 

From equation 1 we have: 

  ∆Pout = � Z
sinhΓ

� ∆QIn − �ZcoshΓ
sinhΓ

� ∆Qout (2) 

Equation 2 describes the changes in the output pressure as a function of 

changes in output and input flow rates in a fluid line. 

In hydraulic fracturing, the change in the flow rate at the end of the line is a 

function of pressure change at the exit point and resistance of the rock fissures; This 

resistance is not linear, but for simplicity it is assumed to be linear as in Darcy's equation, 

and approximately six times the resistance of the line. 

∆Qout = f(∆Pout) 

∆Pout = 6RL∆Qout 

Plugging this equation into equation 2 we have: 

∆Qb =
Z

sinhΓ

6RL+
ZcoshΓ
sinhΓ

∆Qa (3) 

Equation 3 describes the overall system infinite order transfer function for 

hydraulic fracturing. 

In equation 3: 

   Z(s) = ρc
πr2

1
√1−B

 

   B(s) = 2J1i√s�
i√s�J0i√s�

 

   Γ(s) = Dns�
√1−B

 



 

4 

 

J1 and J0 are Bessel functions of first and zero order 

c is the speed of sound in the fluid which can be found from the following 

 formula: c = �β
ρ
 

β is bulk modulus, and ρ is density of the fluid. 

Dn is the line dissipation number:    Dn = vL
cr2

 

s̅ is the normalized Laplace operator which can be found by this formula:  s̅ = r2

v
 

RL is steady flow resistance in line:  RL = 8µL
πr4

 

L is the length of line in meters. 

µ is absolute viscosity (Ns/m2) 

The equation 3 represents the infinite order model of the system, and the 

frequency response of this infinite order model can be found in the figure 2. 
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Figure 2   Frequency response of the infinite order hydraulic fracturing model 

The plot 2 is generated for a system containing a line with the following 

properties: 

β = 1.8246 × 109 𝑁
𝑚2 ρ = 855.24  𝐾𝑔

𝑚3    

 Kinematic Viscosity = 7.618 × 10−6  𝑚
2

𝑠
 

Radius, r = 0.003175 m  length, L= 5 m 

The aim is to find the time domain approximation of the system for a range of 

frequencies containing the major modes of the hydraulic fracturing example, and 

accurately approximating the lowest resonant frequencies; The time domain analysis of 

this model can be a good representation of the infinite order model of the system in this 

example depending on the application. 
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There are different algorithms that provide linear stable differential equations to 

model a system. The modeling methods presented in this study use the inverse 

frequency algorithm, which is one of the most accurate algorithms to generate transfer 

functions from frequency response data. This method matches the frequency response of 

the true system on a range of frequencies with minimum number of poles and zeros 

needed.  

Inverse frequency algorithm uses least square curve fitting methods on the 

frequency response of the system to acquire an accurate linear model of the system; This 

model approximates the system's frequency response on a range of frequencies which 

the algorithm is used on. In addition, inverse frequency algorithm provides the option to 

choose the order of the model required for the line by the user as well as the frequency 

range of application.  

We know that using inverse frequency algorithm directly on the frequency 

response of an overall system frequency response is one of the most accurate and 

reliable methods to get a linear model for a system. However, using inverse frequency 

algorithm requires experience and knowledge of utilizing the algorithm; For instance, 

generating frequency data points from the infinite order model is one of the most 

important factors in finding a good fit for the frequency response, and getting an accurate 

model for the system. Finding this frequency range involves choosing a good lower and 

upper frequency limits which is only possible through trial and error, and requires 

experience in curve fitting. Also, generating enough number of frequency response data 

points from the infinite order model can be challenging for some users. The other 

difficulty associated with use of inverse frequency method directly is that the settings and 

arrangement of frequencies have to change for each change in a property of the system 

such as a change in fluid or line properties. This means that the settings for lower and 
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upper frequencies of fitting and possibly the number of data points has to be adjusted for 

any alterations in the system transfer function, and this process can be time consuming. 

The method developed by Huang, Hullender and Woods [1] allows the user to 

acquire a reasonably accurate low order linear transfer function fitting the true system's 

transfer function frequency response on the range of the first two resonant frequencies of 

the overall system without using the inverse frequency algorithm directly and complexities 

that comes with it. 

In this method the curve fitting using inverse frequency algorithm is being done 

for each individual hyperbolic infinite order transfer functions in the equation 3, Z
sinhΓ

 and 

ZcoshΓ
sinhΓ

. Transfer function coefficients generated using inverse frequency algorithm are 

tabulated and stored to be called later for different applications. Tabulated data will 

provide the coefficients for transfer functions for a broad range of line specifications such 

as diameter and length of the line, fluid properties such as fluid density, viscosity and bulk 

modulus. The coefficients generated by inverse frequency algorithm, are tabulated based 

on "dissipation numbers" which are functions of line and fluid properties. By changing 

dissipation number values in a range from 0.00001 to 0.5, and generating coefficients for 

the tables, a broad range of line and fluid properties is covered. Any other values 

between the values present in the table can be simply interpolated and extracted from 

tables, and plugged into the transfer function to generate the required components of the 

model. 

There are questions about this process to be answered: How many data points in 

each table are required for good interpolation results? Is this method effective and 

accurate for all range of dissipation numbers presented in this study? These are among 

the questions that are investigated in the course of this study. 
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The approach and the tabulated data are presented in the paper by by Huang, 

Hullender and Woods [1]. The first aim in this study, is investigating the accuracy and the 

range that this method is applicable, and secondly, if possible, find a way to improve the 

results. 
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Chapter 2  

Generating Transfer Function Coefficients in Loops 

The first approach was to increase the accuracy by adding more data points 

which was initially assumed to be the reason behind some inaccuracy in the initial table. 

It was assumed that by finding accurate fits up to the frequency of the second pole of 

each component, and adding more data points, the final results are going to be more 

accurate.  

The first attempt to generate an accurate table of coefficients was to generate 

these coefficients in a loop using an algorithm to choose a range of frequencies for the 

fitting and apply inverse frequency algorithm on this range. The focus in this step is on 

generating accurate fit for each of the hyperbolic causality transfer functions which are 

used in the hydraulic fracturing model, equation 3. The benefit of generating coefficient 

data in a loop is that very high number of data points can be generated in loops which 

may be time consuming to generate by running the functions manually. 

There are two hyperbolic components in the hydraulic fracturing equation, 

equation 3. The more challenging component to fit using inverse frequency is the ZcoshΓ
sinhΓ

  

component. In this report the fitting process is explained for this component. But, similar 

process has been applied to Z
sinhΓ

 component. The MATLAB code of the function 

generating ZcoshΓ
sinhΓ

  component transfer function data is available in appendix A. 

A fifth order transfer function is fitted to ZcoshΓ
sinhΓ

 component; the order of fitting is 

assumed to be enough to get an accurate fit for the first two modes of this function. The 

fitting process is done in a loop; first, dissipation value numbers (Dn) generated 

logarithmically for a range of Dn values. The reason that the Dn values are spread 

logarithmically is that the coefficients associated with smaller Dn values tend to be more 
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difficult to interpolate, so the concentration of data points are more focused on the 

smaller Dn values. 

The range of frequencies used in this loop is decided by a function which 

identifies the local maximums on the frequency response magnitude plot of the infinite 

order function, and uses local maximums on the plot to decide the maximum frequency of 

fitting. The MATLAB function that finds the local maximums of a vector is directly applied 

to the frequency response generated from the infinite order transfer function. 

The maximum frequency of the fitting is chosen by the formula presented in 

equation 4 for the range of Dn values between 0.00001 and 0.0001: 

 

maximum frequency of fitting  =  frequency of second local maxima - 0.04 × ( 

frequency of second local maxima - frequency first local maxima)  (4) 

 

 

 

It should be mentioned that the 0.04 value in the equation 4 has been found by 

trial and error. The maximum frequency generated by this formula in the loop for Dn 

values between 0.00001 and 0.0001 will result in a fit that covers the first pole of the 

infinite order model, and up to the second pole.  

In figure 3 the frequency response of ZcoshΓ
sinhΓ

 function, and the fifth order fit to this 

function for the Dn value of 0.00001 can be seen.  
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Figure 3   Fifth order model of  ZcoshΓ
sinhΓ

 component 

The Maximum frequency generated by the formula above for the earlier example 

(Dn=0.00001) is 6.26 × 105. 

Weighting factors could be added to the fitting process, although no significant 

change in the accuracy of the fit on the critical frequencies was observed using weighting 

factors. Choosing a correct maximum frequency for fitting had much more impact in the 

accuracy than weighting factors. 

Since running these loops for high number of iterations can be time consuming, 

the transfer functions generated in the loops is saved, and called separately to generate 

fit objects for each of the transfer function coefficients. A curve is fitted to each coefficient 

value for a range of Dn values. For example, Figure 4 shows the change of one of the 

transfer function coefficients of the ZcoshΓ
sinhΓ

 fifth order model for Dn values between 0.00001 

and 0.0001 
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Figure 4   A fit object for a coefficient of the  ZcoshΓ
sinhΓ

 component 

 

The curve fitted to the coefficient data plot will be the source for extracting new 

coefficient values for a desired new function. For instance, eight curve fit objects, similar 

to the plot above, are generated for ZcoshΓ
sinhΓ

 component. New coefficients can be extracted 

from these fits for new transfer functions. The MATLAB files for the coefficient fittings are 

available in the appendix B. 

In this example there are 20 data points logarithmically spaced form Dn value of 

0.00001 to 0.0001. It is expected that adding data points will result in more accurate final 

transfer functions. However, in the figure 4 it can be seen that this is not the case. Figure 

5 is the frequency response plot of equation 3 which the coefficients of the ZcoshΓ
sinhΓ

 

component of this transfer function is generated using the loop. A fifth order fit for the 

ZcoshΓ
sinhΓ

 component, and a fourth order fit for the Z
sinhΓ

 component are combined using the 
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equation 3 to make a ninth order fit for the equation 3 transfer function. Figure 5 is for Dn 

value of 0.000087 . 

 

 

Figure 5   Magnitude plot comparison of the fits generated using tables and loop data 

 

It is evident from the Figure 5  that there is no significant improvement in fitting 

the first pole using this method, and neither of the fits are matching the first and second 

poles of the true equation 3 transfer function. 

Looking at the results from this method and comparing them with the results from 

the original tables we can conclude that the inaccuracy of the results from the original 

tables were not result of shortage of data points in the table, and using the loop method 

to increase the number of data points didn't result in better final fit. In other words, having 

a large number of Dn values (20 or more) is not necessary, and accurate results can be 
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achieved with fewer numbers of data points using interpolation. Overall, no significant 

improvements has been observed by generating fitted transfer function coefficients using 

a loop with high number of cycles. By looking at the individual fits of the components of 

the hydraulic fracturing equation 3 model it could be conclude that although we have 

good fits for each of the components the combination of these functions to make the final 

transfer function doesn't even match the first pole correctly. 

During the process of fitting I realized that the most important factor in the fitting 

process using inverse frequency algorithm is the maximum frequency of fitting, and this 

frequency decides if we are going to have a good fit for the first pole or not when 

combining transfer functions. Using the right maximum frequency for the fitting process 

was crucial for fitting the first pole, and also the first dip in the magnitude plot of the ZcoshΓ
sinhΓ

 

component. In the next chapter, the process of choosing the right maximum frequency for 

equation 3 will be explained, and the results are compared to the model generated 

directly by inverse frequency algorithm. 
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Chapter 3  

Modifying Tabulated Coefficients 

 

In the second attempt to improve the tabulated coefficients' data, the attention is 

on getting an accurate fit for the combined transfer components in equation 3 instead of 

trying to obtain an accurate fit up to the second pole for each individual component of the 

transfer function. Transfer function coefficients for each of the components of the 

hydraulic fracturing equation were generated, and were plugged directly into the equation 

3. The final transfer function response was compared to the true transfer function 

response. By changing the range of frequency of fitting for each of the components and 

looking at the combined transfer function in equation 3, new frequency ranges have been 

used to obtain a good fit for hydraulic fracturing example equation. 

In the paper by Huang, Hullender and Woods [1] "Baseline models" which are 

high order models are generated for comparison purposes. In the example below, an 

11th order model for the baseline model for the  ZcoshΓ
sinhΓ

 component for Dn value of 0.001 

was used as a baseline model, which fits the infinite order model very well through the 

first two poles of the function. This baseline model gives us an accurate estimation of the 

first two poles of the function. The first pole is at 3100 rad/sec and the second pole is at 

6230 rad/sec. 

In the figure 6 and figure 7 the  ZcoshΓ
sinhΓ

 component's fit using the coefficients 

available in the old table of coefficients, and a fit with alternative maximum frequency of 

fitting are compared. Note that the maximum frequency of fitting in the figure 6 is 6100 

rad/sec; this frequency is very close to the frequency of the second pole of the infinite 

order function which is at 6230 rad/sec. 
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Figure 6   Fifth order model of  ZcoshΓ
sinhΓ

 component using data available in old tables 

 

The position of the poles and the frequencies of the poles for this fifth order fit is 

available in the table below: 

 

Table 1   poles and nat. freq. of  ZcoshΓ
sinhΓ

 component using the old table coefficient data 

Eigenvalue Damping Frequency (rad/s) 

-4.00e+001 + 3.10e+003i 1.29e-002 3.10e+003 

-4.00e+001 - 3.10e+003i 1.29e-002 3.10e+003 

-9.04e+001 + 6.38e+003i 1.42e-002 6.38e+003 

-9.04e+001 - 6.38e+003i 1.42e-002 6.38e+003 
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looking at the Figure 6 and Table 1 we can see that the fifth order model is 

matching the first pole very accurately, and the fitting estimation for the second pole is 

very close to the original second pole but not as accurate as the first pole. Figure 7 

shows the magnitude response of a model generated using the method which focuses on 

the accuracy of the overall system fit instead of individual fits. In this fit the maximum 

frequency of fitting is 5000 rad/sec, which is after the second dip in the plot but way 

before the second pole. The position of the poles and the frequencies for this fifth order fit 

is available in Table 2. 

 

 

Figure 7   Fifth order model of  ZcoshΓ
sinhΓ

 component using new maximum frequency of fitting 
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Table 2   poles and nat. freq. of  ZcoshΓ
sinhΓ

 component using new maximum frequency 

Eigenvalue Damping Frequency (rad/s) 

-4.02e+001 + 3.10e+003i 1.30e-002 3.10e+003 

-4.02e+001 - 3.10e+003i 1.30e-002 3.10e+003 

-1.18e+002 + 7.48e+003i 1.58e-002 7.48e+003 

-1.18e+002 - 7.48e+003i 1.58e-002 7.48e+003 

 
 

It can be seen in the figure 7 that the first pole is matching very accurately, while 

the second pole is not matching. However, note that the fifth order fit is matching the 

infinite order function all the way after the second dip in the plot. 

Now we look at the plot for the Z
sinhΓ

 component which is generated by the values 

from the old table, and the range of fitting used for this component. 
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Figure 8   Fifth order model of  Z
sinhΓ

 generated by the values from the old table 

 

By looking at the graphs and using different maximum frequencies for the fitting 

of the Z
sinhΓ

 component, and by trial and error, it could be conclude that the fitting of the 

second pole of both of the components is not significant in the combined transfer function 

result for equation 3, as long as the first pole is fitting well throughout the middle of the 

dip in the magnitude plot for each component. In the Figure 8 the frequency range is 

chosen in a way that the first pole fits accurately throughout the maximum frequency 

chosen. Extending the maximum frequency of fitting more than this will result in 

inaccuracy in the first pole fitting.  

The results are analyzed in order to observe how combining these transfer 

functions will affect the final transfer function in equation 3. Note that in the Figure 9, the 
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Z
sinhΓ

 component transfer function is generated using the old available tables, and only the  

ZcoshΓ
sinhΓ

 component coefficients are different between two fits. 

 

Figure 9   Magnitude plot comparison of fits generated using different methods 

 

Figure 9 shows that even though the fit for individual components at their 

frequency of the second pole is not fitting particularly well the overall combined functions 

fits the true transfer function frequency response of hydraulic fracturing example equation 

very well up to the second pole. To compare the accuracy of the fits generated by the 

table values, a fifth order model is fitted to the true frequency response. In the Table 3 the 

frequency of the poles of these models are compared: 
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Table 3   poles of overall system using different system models 

Fifth order direct fit Fit using New table Fit using Old table 

-5.87e+001 + 1.16e+003i -5.66e+001 + 1.17e+003i -3.83e+001 + 1.23e+003i 

-5.87e+001 - 1.16e+003i -5.66e+001 - 1.17e+003i -3.83e+001 - 1.23e+003i 

-6.03e+001 +3.52e+003i -3.08e+001 + 2.34e+003i -3.08e+001 + 2.34e+003i 

-6.03e+001 - 3.52e+003i -3.08e+001 - 2.34e+003i -3.08e+001 - 2.34e+003i 

-5.43e+014 -7.75e+001 + 3.52e+003i -5.45e+001 + 3.66e+003i 

 -7.75e+001 - 3.52e+003i -5.45e+001 - 3.66e+003i 

 -1.71e+001 + 4.54e+003i -1.71e+001 + 4.54e+003i 

 -1.71e+001 - 4.54e+003i -1.71e+001 - 4.54e+003i 

 -1.62e+005 -9.48e+004 

 

 
In the Table 3 it can be seen that the first pole of the new table's model is 

matching the first pole of the fifth order direct fit's model. The pole at 2340 rad/sec has 

failed to be canceled in the new and old tables' models. The third pole of the new table's 

model which is at 3520 rad/sec is matching the second pole of the direct fit.  

For time response comparison, time response of these two transfer functions are 

compared with the time response of the 5th order direct inverse frequency fit. The time 

response of the system is generated for a unit pulse series with a frequency equal to the 

true frequency of the first pole of the system. The Figure 10 shows the time response of 

the three models explained above for Dn value of 0.001, the frequency of pulses are at 

1170 rad/sec, the first resonant frequency of the system. 
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Figure 10   Time response comparison of system models 

 
It is evident from Figure 10 that using the model generated by the new table's 

coefficients up to 92% of the amplification of the fifth order model can be achieved This is 

significantly higher that only 55% for the model generated using the old tables. 

It should be mentioned that the amplification we see in the plot above is only for 

the first two modes of the system, and adding more modes will result in higher 

amplification. However, the first two modes of the system have the highest impact in the 

amplification of the pulse series. 

By looking at the accuracy of the fits using tabulated data, and comparing them 

to direct fit, one may conclude that this is a good alternative to using inverse frequency 

directly. This is true, however, the same quality of fitting couldn't be achieved for the very 

low Dn values. Specifically, the fifth order model for the ZcoshΓ
sinhΓ

 component wouldn't match 
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the infinite order model well enough no matter what frequency range or weighting factors 

are chosen for the fitting process. 

For the low values of dissipation number the order of changes in the frequency 

response plot are 105, and at high frequencies a small inaccuracy in the fitting can result 

in inefficiency of the method. 

In the Figure 11 the frequency range of the fit for the ZcoshΓ
sinhΓ

 component is also 

decided by the combined transfer function results for hydraulic fracturing example similar 

to the previous example for the dissipation number value of 0.001, but it can be seen that 

the model is not fitting the first dip in the magnitude plot as well as the previous example. 

Note that the frequency range chosen for this fitting is the best frequency range possible 

to match the first mode of the final infinite order model of the overall system, and 

reducing and increasing the maximum frequency of fitting didn't improve the results. For 

the frequencies in the order of 105, this method cannot deliver the same relative accuracy 

as with low Dn values such as 0.0000123; In the Figure 11 the frequency response of the 

model of the component for this Dn value can be seen. 
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Figure 11   Fifth order model of  ZcoshΓ
sinhΓ

 component for a low Dn value 

 
The frequency response magnitude plot of the combined transfer functions for 

the Dn value of 0.0000123 for both new and old tables, and also the fifth order direct fit is 

available in the Figure 12. 
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Figure 12   Magnitude plot comparison of fits generated using different methods for a low 

Dn value 

 

Figure 12 shows the failure of the fifth order model of the ZcoshΓ
sinhΓ

 component to fit 

the infinite order model with an accuracy suitable for the order changes in the frequency 

response (In this case, 105 rad/sec). The result of this inaccuracy can be seen clearly in 

the pulse series time response of the model in the Figure 13. 
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Figure 13   Time response comparison of system models for a low Dn value 

 

From Figure 13 it is clear that the model generated using the new table value is 

not working efficiently, and the efficiency of the method using tabulated data compared to 

the direct fit method has dropped to 50%. This value was above 90% for higher Dn 

values. 

To ensure accurate interpolated coefficients from tables, several data points 

were added to the tables. The new tables are available in the appendix C and D. 

 

right maximum frequency will be explained, and the results are compared to the 

model generated directly by inverse frequency algorithm. 
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Chapter 4  

Direct Overall System Approximation 

 

The difficulties associated with the choice of maximum frequency used with the 

inverse frequency in the method that combines low order linear transfer functions to get 

the total transfer functions were explained in the chapter 3. Lacking a practical guide line 

for choosing maximum frequency of fitting for components in the method explained in 

chapter 3 makes this method inefficient and impractical. In other words one needs to look 

at the frequency response of the combined transfer function and compare it to the true 

frequency response of the infinite order transfer function, and change the maximum 

frequency of fitting for components accordingly to get a good combined fit. This method is 

impractical, and the coefficient tables generated with this method are not useful for new 

equations with different arrangement of components. For instance, the plots in the 

chapter 2 and 3 are generated for the hydraulic fracturing equation, and respectively the 

fitting process and maximum frequency of fitting for each component in these two 

chapters are generated exclusively for this equation. Although, tables generated for the 

hydraulic fracturing equation components can be used for different resistances in the rock 

fissures simplified model. 

The complications and the restrictions associated with this method reinforced the 

idea that one would be better off using the inverse frequency method directly on the 

overall system transfer function, and get a fit for the whole system instead of the 

components like the method in the chapters 2 and 3. This method is more accurate and 

is applicable to any system transfer function. However, the direct use of inverse 
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frequency should be facilitated in a way that applying the method becomes easy for 

inexperienced users;  therefore, therein lies the motivation for this third approach.  

A MATLAB file is developed to provide a simplified way to acquire low order 

transfer function approximation of an overall system. This MATLAB file has the name 

"linfn". The code for "linfn" M-file and instruction on how to use this function is available in 

the appendix E. linfn takes a function as an input which contains the equation in for the 

overall system and all the variables and values associated with them expressed in 

frequency domain. The MATLAB input function which has the overall system equation 

should take a frequency as an input, and returns the response to that frequency as an 

output. The user specifies the name of the function in string format, and the order of 

approximation needed for the output linear transfer function when calling the linfn 

function. The input function being in a separate function rather than combined in the body 

of the main MATLAB function, linfn, brings the advantage of changing the input without 

the need of changing the settings in the linfn. With every change in the input equation 

such as lines and fluids property changes the user does not need to change the settings 

in the linfn function. Therefore, the process is faster and more convenient for users which 

is one of the major motivations in developing this M-file. 

 The linfn M-file automatically generates frequency data points by calling the 

input function in a loop. An algorithm decides the maximum frequency needed to be used 

with the inverse frequency function based on the order of approximation needed. The 

frequency of the modes and the order of the approximation is the deciding factors while 

selecting the maximum frequency of fitting. The algorithm that decides the maximum 

frequency uses a function that finds the local maximums in the frequency responses' 

vector with the respective frequency vector indices. Based on the number of the modes 
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needed in the approximation the respective local maximum will be used in the process of 

choosing maximum frequency of fitting. 

Figure 14 shows the frequency response and a fourth order approximation of the 

equation 3 generated using the linfn M-file. The M-file used as an input function to the 

"linfn" function for the hydraulic fracturing example is available in appendix F. The 

maximum frequency required for the fitting is decided in a way that covers the first two 

modes of the equation 3 transfer function. The fourth order fit is matching the frequency 

response of the infinite order model perfectly through the first two modes of the infinite 

order transfer function. If the user chooses a higher order approximation, for example a 

sixth order approximation, the algorithm will choose the maximum frequency of the fitting 

in a way that covers the first three modes. The following MATLAB command was used to 

utilize the "linfn" function for the hydraulic fracturing example to generate the plot in the 

figure 14: 

>> linfn('FrackingTF',0.1,10000,4) 

The "FrackingTF" input file example is available in appendix F. 
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Figure 14   hydraulic fracturing example fourth order direct fit using linfn MATLAB 

function 

 

In another example, the input function is the hydraulic brake system example 

equation in the paper by Huang, Hullender and Woods. Figure 15 shows the schematic 

for the hydraulic brake example.  
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Figure 15   Brake example schematic 

 

The equation 5 describes the pressure change in the brake cylinder with respect 

to changes in pressure at the start of the brake line due to an opening of a valve or 

changes in the brake fluid supply system. 

∆𝑃𝑏 =
1

𝑍𝑠𝑖𝑛ℎ𝛤
𝑉𝑐
𝛽 +

𝑐𝑜𝑠ℎ𝛤
𝑍𝑠𝑖𝑛ℎ𝛤

∆𝑃𝑎 (5) 

In equation 5,  𝑉𝑐 is the volume of the cylinder, and 𝛽 is the bulk modulus. Using 

the equation 5 as a part of the input function for the M-file linfn, a fifth order 

approximation is generated for the equation 5. The M-file used as an input function to the 

"linfn" function for the hydraulic fracturing example is available in appendix G. Figure 16 

shows the plot for the fifth order fit for the brake example. The following MATLAB 

command was used to utilize the "linfn" function for the hydraulic brake example to 

generate the plot in the figure 16: 

>> linfn('BrakeTF',0.1,5000,5) 

The "BrakeTF" input file example is available in appendix G. 
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Figure 16   Brake example fifth order direct fit using linfn MATLAB function 

 

Conclusion: 

The method and the results in the chapter 2 and 3 of this study reveals the 

complication and difficulties associated with generating tables and choosing maximum 

frequency of fitting for components of the hydraulic fracturing example equation. 

Moreover, the results in chapter 3 revealed that the tables generated for hydraulic 

fracturing example equation components are only applicable for that form of equation, 

and these tables cannot be used for other equations with the same components but 

different arrangements. These limits were the motivation to develop a simple method to 

use the inverse frequency algorithm directly on the overall system transfer function 

instead of the components of the transfer function. The MATLAB function introduced in 

chapter 4 only requires the user to specify the order of approximation needed, and 

provides the name of the function to be approximated. An inexperienced user who 
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doesn't have knowledge of choosing the maximum frequency of fitting and distribution of 

frequency data points can easily utilize this MATLAB function, and get a lower order 

approximation of the input function very easily.
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Appendix A 

The MATLAB Code of the Function Generating ZcoshΓ
sinhΓ

  Component's Transfer Function's 

Data 
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lo=20; % loop iterations  
Dnv=logspace(log10(0.00001),log10(0.0001),lo);   % data point distribution  
for v=1:lo 
  
Dn=Dnv(v); 
  
Bulk=1.8246e9;Den=855.24;KVis=7.6179e-6; 
Wmin=0.001; 
Wmax=960000; 
c=sqrt(Bulk/Den);    % Speed of sound, m/sec 
DVis=KVis*Den;   % Dynamic (/Absolute) viscosity 
  
r=0.0254/8; 
D=2*r;A=pi*r^2; 
L=c*Dn*r^2/KVis; %calculate L to get the desired Dn 
  
RR=128*DVis*L/(pi*D^4);  % Resistance (Laminar flow) 
  
syms s C1 
  
B=2*besselj(1,1i*sqrt(s))/(1i*sqrt(s)*... 
    besselj(0,1i*sqrt(s)));      % s here is normalized, s_bar=r^2*s/KVis 
Zo=Den*c/(pi*r^2);  Z=Zo/sqrt(1-B); 
  
Gamma=Dn*(s)/sqrt(1-B);         % s here is normalized, s_bar 
  
% Transfer function to be approximated: normalized Zcosh/sinh 
% Pa=[Zcosh/sinh]Qa-[Z/sinh]Qb 
H=C1*8*Dn^2/RR;% zero freq gain of sZcosh/sinh is RR/8Dn^2       
H=subs(H,'C1',s*Z*cosh(Gamma)/sinh(Gamma));% multiplied by s to cancel s in denominator 
%% Generating frequency points 
NP=300; 
w=genfreqs2(Wmin,Wmax,NP);  % sub m-file, genfreqs.m, is used 
N=length(w); 
%NC=length(wc); 
TF=[];TFc=[]; 
for k=1:N 
    sw=1i*w(k); % Generate values for s. 
    TF(k)=subs(H,s,sw); % Generate tf data points for the curve fit. 
end 
  
MTF=20*log10(abs(TF)); 
  
MTF1=smooth(MTF);   %smoothing the data 
  
  
  
   %% local maximum 
%MTF2=20*log10(abs(TF1)); 
%MTF3=smooth(MTF2); 
[maxval,indmax]=lmax(MTF1,2); 
frmax= w(indmax); 
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pp=1; 
for q=1:length(frmax) 
    if frmax(q) >= 10*Wmin 
       frmax2(pp)=frmax(q); 
       pp=pp+1; 
    end 
end 
if length(frmax2) == 1 
        maxi2=frmax2(1); 
    else  
        maxi2=frmax2(2) 
        maxi2=(frmax2(2)-0.04*(frmax2(2)-frmax2(1)));  %the maximum %frequency is decided by 
percentage of difference between first and %second local maximum of frequency response 
magnitude 
end 
  
  
 %% Frequency points for inver 
  
 Wmina=.001; 
 w2=genfreqs2(Wmina,maxi2,NP); 
N2=length(w2); 
  
TF2=[];TFc2=[]; 
for k=1:N2 
    sw2=1i*w2(k); % Generate values for s. 
    TF2(k)=subs(H,s,sw2); % Generate tf data points for the curve fit. 
end 
  
%% 
  
wt2=ones(N2,1); 
wt2=getInvFreqWeight(w2,TF2);  % Weighting factors 
  
  
%% 
NO=5; %order 
[num2,den2]=invfreqs(TF2,w2,NO-1,NO,wt2,100); 
ZCHt1(v)=tf(num2,den2); 
DCgainHt1(v)=dcgain(ZCHt1(v)); 
% adjust dc gain to 1 
num2=num2/DCgainHt1(v); 
ZCHt1(v)=tf(num2,den2); 
n=length(den2); 
  
P=pole(ZCHt1(v)); 
Mnum2=num2/(-P(1)); 
Mden2=conv([1 -P(2)],conv([1 -P(3)],conv([1 -P(4)],[1 -P(5)]))); 
Mnum2=Mnum2/real(Mden2(n-1)); 
Mden2=real(Mden2)/real(Mden2(n-1)); 
fittedZC(v)=tf(Mnum2,Mden2); % The transfer functions are saved here  
 end 
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Appendix B 

Fit Objects For the Transfer Function Coefficients 
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function [NGZCoshOverSinh, GZCoshOverSinh] = 
TFdataZCoshOverSinh(Den,Beta,Vis,d,L) 
%% part 1 
%clear all 
%close all 
r=d/2; 
Mu=Vis*Den; 
DVis=Vis; 
Dnin=Vis*L*sqrt(Den/Beta)/r^2; 
D=2*r; 
RL=128*Mu*L/(pi*d^4); 
Wv=Vis/r^2; 
%% 
load('Zcosh1e-5to1e-4.mat')  %Saved transfer Function data values are %loaded here 
tf1=fittedZC; 
 
Dnv=logspace(log10(0.00001),log10(0.0001),20); 
   
n=length(tf1); 
        for lo= 1: n 
  
        [num,den]=tfdata(tf1(lo),'v'); 
  
        A4(lo)=num(1); 
        A3(lo)=num(2); 
        A2(lo)=num(3); 
        A1(lo)=num(4); 
        B4(lo)=den(1); 
        B3(lo)=den(2); 
        B2(lo)=den(3); 
        B1(lo)=den(4); 
  
        end 
  
 %% fit objects are created in this section 
fA11=fit(Dnv',A1','smoothingspline'); A11O=fA11(Dnin); 
fA21=fit(Dnv',A2','smoothingspline'); A21O=fA21(Dnin); 
fA31=fit(Dnv',A3','smoothingspline'); A31O=fA31(Dnin); 
fA41=fit(Dnv',A4','smoothingspline'); A41O=fA41(Dnin); 
fB11=fit(Dnv',B1','smoothingspline'); B11O=fB11(Dnin); 
fB21=fit(Dnv',B2','smoothingspline'); B21O=fB21(Dnin); 
fB31=fit(Dnv',B3','smoothingspline'); B31O=fB31(Dnin); 
fB41=fit(Dnv',B4','smoothingspline'); B41O=fB41(Dnin); 
  
NGZCoshOverSinh=tf([A41O A31O A21O A11O 1],[B41O B31O B21O B11O 1 0]); 
  
GZCoshOverSinh=tf([A41O/Wv^4 A31O/Wv^3 A21O/Wv^2 A11O/Wv 1]*RL/... 
    (8*Dnin^2),[B41O/Wv^5 B31O/Wv^4 B21O/Wv^3 B11O/Wv^2 1/Wv 0]); 
  
en 
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Appendix C 

New Tables for the ZcoshΓ
sinhΓ

  Component's Transfer Function's Coefficients
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function [NGZCoshOverSinh,GZCoshOverSinh] = ZCoshOverSinhTF(Den,Beta,Vis,d,L) 
% NGZCoshOverSinh=[]; 
% GZCoshOverSinh=[]; 
format shortg 
  
r=d/2; 
Mu=Vis*Den; 
Dn=Vis*L*sqrt(Den/Beta)/r^2; 
  
RL=128*Mu*L/(pi*d^4); 
Wv=Vis/r^2; 
  
if Dn>0.5 
    error('Dn is greater than 0.5 which is outside the range for the tabulated coefficients'); 
end 
if Dn<=0.999999999e-5 
    error('Dn is less than or equal to 1e-5 which is outside the range for the tabulated 
coefficients'); 
end 
  
DN=[.9999999e-5 0.0000123 0.0000149 1.75e-5 2.0e-5 2.5e-5 2.8e-5 3e-5 4e-5 5e-5 
7.5e-5 1e-4 1.2e-4 1.4e-4 2e-4 2.4e-4 3e-4 4e-4 5e-4 5.3125e-4... 
    5.625e-4 6.25e-4 7.5e-4 1e-3 1.25e-3 1.75e-3 2.5e-3 3e-3 4e-3 5e-3 ... 
    6e-3 7.5e-3 0.01 0.012 .015 0.0175 0.02 0.025 0.03 0.0325 0.035 0.0375 0.05 0.075 
0.1 0.15 0.2 0.25 0.3 0.4 0.5]; 
A4=[1.8074e-022 4.1756e-022 8.7942e-022 1.6466e-021 2.9027e-021 6.9859e-021 
1.1026e-020 1.0938e-20 4.6605e-020 1.136e-019 ... 
    5.4988e-019 1.815e-018 3.8148e-018 7.0248e-018 2.8676e-017 6.155e-017 1.5251e-
16 4.7601e-16 1.1385e-015 1.2767E-15 ... 
    1.5923E-15 2.8746e-015 5.9527e-015 1.9116e-014 4.6013e-014 1.8032e-013 
7.6724e-013 1.5933e-012 5.1472e-012 1.2358e-11 ... 
    2.5926e-011 6.5288e-011 2.1507e-010 4.5246e-010 1.1185e-009 ... 
    2.1299e-009 3.6698e-009 9.2666e-009 1.9641e-008 2.7259e-008 3.7217e-008 
4.9587e-008 1.6276e-007 8.9504e-007 ... 
    3.0102e-006 1.9115e-5 7.8567e-5 2.6864e-4 5.4481e-4 2.3728e-3 8.8698e-5]; 
A3=[2.7258e-019 6.0004e-019 1.0687e-018 1.7827e-018 3.4022e-018 6.45e-018 
9.6533e-018 -8.8215e-20 3.8249e-017 7.6277e-017 ... 
    2.6869e-016 8.579e-016 1.7956e-015 2.8816e-015 9.1331e-015 2.0073e-014 
4.3461e-14 1.1169e-13 2.2812e-013 1.0472E-13 ... 
    1.2077E-13 5.5569e-013 1.0428e-012 3.0902e-012 6.0864e-012 2.0737e-011 7.51e-
011 1.5842e-010 4.1532e-010 8.0502e-010 ... 
    1.545e-009 3.6385e-009 1.115e-008 2.0836e-008 4.5113e-008 ... 
    8.2156e-008 1.3797e-007 3.1743e-007 5.7555e-007 7.7427e-007 1.0552e-006 
1.3608e-006 4.3462e-006 1.8694e-005 ... 
    5.4184e-005 2.0882e-4 7.2327e-4 0.0025004 0.0051553 0.019135 1.5492e-2]; 
A2=[4.4177e-011 6.7864e-011 9.7003e-011 1.3251e-010 1.801e-010 2.7322e-010 
3.4327e-010 3.5557e-10 7.2067e-010 1.1043e-009 ... 
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    2.4294e-009 4.4142e-009 6.5158e-009 8.8876e-009 1.751e-008 2.6095e-008 
4.0525e-8 7.1059e-8 1.1073e-007 1.1842E-07 ... 
    1.3304E-07 1.767e-007 2.5435e-007 4.6156e-007 7.0653e-007 1.3985e-006 2.8998e-
006 4.2643e-006 7.5964e-006 1.163e-005 ... 
    1.6867e-005 2.6852e-005 4.9502e-005 7.1427e-005 0.00011213 0.00015586 
0.00020656 0.0003303 0.00047601 ... 
    0.00056271 0.0006624 0.00076578 0.0014244 0.0033527 0.0061812 0.015975 ... 
    0.033723 0.062404 0.09418 0.22309 6.66695e-2]; 
A1=[2.5057e-008 3.7192e-008 4.3021e-008 5.0778e-008 7.8134e-008 9.0283e-008 
1.0796e-007 -2.4709e-8 2.2128e-007 2.7366e-007 ... 
    4.0246e-007 7.6443e-007 1.1544e-006 1.4018e-006 1.934e-006 3.2487e-006 
4.3372e-6 5.7452e-6 7.8966e-006 1.0854E-06 ... 
    1.4457E-06 1.2868e-005 1.6777e-005 2.831e-005 3.4368e-005 5.9545e-005 
0.00010749 0.00015448 0.00023421 0.00027334 ... 
    0.00036317 0.00055865 0.00097063 0.0012555 0.0017092 ... 
    0.0022953 0.0029347 0.0042345 0.0052973 0.0060726 0.0071491 0.0080001 
0.013505 0.026248 ... 
    0.042584 0.077152 0.14023 0.25631 0.36907 0.71874 0.81392]; 
B4=[2.1075e-023 4.1965e-023 1.1061e-022 2.1994e-022 2.719e-022 8.9385e-022 
1.4006e-021 2.0945e-21 4.4543e-021 1.3793e-020 ... 
    7.6218e-020 2.2402e-019 3.6719e-019 6.4252e-019 3.7888e-018 6.184e-018 
1.7679e-17 6.2297e-17 1.4512e-016 2.1464E-16 ... 
    2.6359E-16 3.3115e-016 6.8866e-016 1.8562e-015 5.5703e-015 2.1531e-014 
8.5756e-014 1.3813e-013 5.0556e-013 1.5639e-012 ... 
    3.269e-012 7.6715e-012 2.0057e-011 4.6816e-011 1.2488e-010 ... 
    2.1368e-010 3.2677e-010 7.7656e-010 2.0647e-009 2.7721e-009 3.3963e-009 
4.5139e-009 1.0723e-008 6.8218e-008 ... 
    2.5271e-007 1.8734E-06 0.000006021 0.000011108 0.000023639 ... 
    0.000051464 1.8294e-9]; 
B3=[5.621e-020 1.1389e-019 2.3552e-019 4.3132e-019 6.568e-019 1.4997e-018 
2.2294e-018 7.2692e-018 1.6542e-017 7.1217e-017 ... 
    1.8726e-016 3.4084e-016 2.2287e-015 1.3683e-016 1.8311e-15 3.7676e-015 
9.0157e-15 2.7959e-14 5.3584e-014 7.1986E-14 ... 
    8.0956e-14 1.1397e-013 2.1414e-013 5.8789e-013 1.322e-012 4.427e-012 1.5112e-
011 3.0471e-011 7.752e-011 1.8936e-010 ... 
    3.631e-010 7.7731e-010 2.1284e-009 4.0805e-009 9.3764e-009 1.5968e-008 
2.5451e-008 5.9637e-008 1.1651e-007 ... 
    1.51e-007 1.9466e-007 2.5081e-007 7.9861e-007 3.189e-006 9.1577e-006 ... 
    0.000066712 0.00024507 0.00078121 0.0013009 0.0045048 4.9083e-4]; 
B2=[1.2233e-011 1.8102e-011 2.7466e-011 3.8198e-011 4.7359e-011 7.7639e-011 
9.7331e-011 1.1446e-10 1.9027e-010 3.0889e-010 ... 
    7.067e-010 1.2407e-009 1.7214e-009 2.3252e-009 5.0237e-009 6.9557e-009 
1.1159e-8 2.0257e-8 3.142e-008 3.6505E-08 ... 
    4.0748E-08 4.8587e-008 7.009e-008 1.2181e-007 1.9713e-007 3.8815e-007 7.8972e-
007 1.0987e-006 2.0038e-006 3.269e-006 ... 
    4.7321e-006 7.3803e-006 1.2839e-005 1.8929e-005 3.0244e-005 ... 
    4.089e-005 5.2887e-005 8.33e-005 0.00012554 0.00014745 0.00016943 0.00019561 
0.0003447 0.00082421 ... 
    0.0015395 0.0038347 0.0072286 0.012104 0.018575 0.03882 2.2687e-2]; 
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B1=[1.1955e-008 1.646e-008 2.191e-008 2.829e-008 3.5234e-008 4.8494e-008 
5.7505e-008 5.6917e-8 9.85e-008 1.3633e-007 ... 
    2.526e-007 3.8537e-007 5.1256e-007 4.2681e-007 1.1094e-006 1.4295e-006 
2.0446e-6 3.3012e-6 4.3588e-006 4.8277E-06 ... 
    7.9791e-006 6.0856e-006 8.1879e-6 1.2573e-005 1.7376e-005 2.9293e-005 5.0043e-
005 6.9797e-005 0.00010285 0.00014785 ... 
    0.00019603 0.00027384 0.00043389 0.00056945 0.00081238 ... 
    0.0010345 0.0012815 0.0018691 0.0024528 0.0027547 0.0031105 0.0034769 
0.0059298 0.010797 0.017047 ... 
    0.044685 0.083234 0.13742 0.17392 0.32726 8.9281e-2]; 
  
a4=interp1(DN,A4,Dn);a3=interp1(DN,A3,Dn);a2=interp1(DN,A2,Dn);a1=interp1(DN,A1,
Dn); 
b4=interp1(DN,B4,Dn);b3=interp1(DN,B3,Dn);b2=interp1(DN,B2,Dn);b1=interp1(DN,B1,
Dn); 
  
% fprintf('Normalized Transfer Function, 8Dn^2ZCosh/[RLSinh]') 
NGZCoshOverSinh=tf([a4 a3 a2 a1 1],[b4 b3 b2 b1 1 0]); 
 
GZCoshOverSinh=tf([a4/Wv^4 a3/Wv^3 a2/Wv^2 a1/Wv 1]*RL/... 
    (8*Dn^2),[b4/Wv^5 b3/Wv^4 b2/Wv^3 b1/Wv^2 1/Wv 0]); 
end 
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Appendix D 

New Tables for the Z
sinhΓ

  Component's Transfer Function's Coefficients 
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function [NGZoverSinh,GZoverSinh] = ZoverSinhTF(Den,Beta,Vis,d,L ) 
% NGZoverSinh=[];GZoverSinh=[]; 
format short g 
r=d/2;Mu=Vis*Den;Dn=Vis*L*sqrt(Den/Beta)/r^2 ; % Dissipation number 
RL=128*Mu*L/(pi*d^4);  % Steady state flow resistance 
Wv=Vis/r^2 ; % Normalizing frequency, rad/sec 
   
if Dn>0.5 
    error('Dn is greater than 0.5 which is outside the range for the tabulated coefficients'); 
end 
if Dn<=0.999999999e-5 
    error('Dn is less than or equal to 1e-5 which is outside the range for the tabulated 
coefficients'); 
end 
  
DN=[.99999999e-5 0.0000123 0.0000149 1.75e-5 0.000025 0.000028 0.00004 0.00005 
0.000075 0.0001 ... 
    0.00012 0.00014 0.0002 0.00024 .0003 .0004 .0005 .000625 .00075 .000875 ... 
    0.001 .00125 .002 0.0025 .003 .004 0.005 .006 0.0075 .008 ... 
    .009 0.01 0.012 0.015 .0175 0.02 0.025 0.03 0.0325 0.035 .0375 0.05 0.075 0.0875 
0.094 0.1 ... 
    0.1125 0.125 0.1375 0.15 0.175 0.2 0.215 0.225 0.25 0.275 0.3 0.4 0.45 0.5]; 
A3=[1.312e-019 1.945e-019 3.827e-019 1.013e-018 1.8628e-018 2.2231e-018 7.8934e-
018 1.717e-017 8.7531e-017 2.8628e-016 ... 
    4.7039e-016 8.7249e-016 5.241e-15 6.2725e-015 1.6043e-014 2.8178e-14 1.0464e-
013 1.7212e-013 3.8587e-013 5.086e-14 ... 
    9.5279e-13 3.2871e-12 1.423e-11 3.0054e-11 4.949e-11 8.3464e-011 1.8781e-010 
8.5115e-10 1.3224e-9 1.9478e-9 ... 
    3.1992e-9 3.9679e-9 7.7303e-009 1.6198e-008 2.7117e-008 2.5888e-008 5.8571e-
008 1.4473e-007 1.7595e-007 2.1629e-007 2.8267e-007 6.7532e-007 2.9045e-006 
7.9063e-6 ... 
    1.0449e-5 1.2583e-5 1.9094e-5 2.7134e-5 3.7502e-5 5.185e-5 9.851e-5 ... 
    1.6846e-4 0.00015593 0.00029794 2.9e-4 1.5898e-4 0.00053852 8.848e-4 .0011349 
.0011513]; 
A2=[-6e-012 -7.754e-012 -1.2e-011 -3.574e-011 -3.1923e-011 -3.2667e-011 -6.9201e-
011 -1.054e-010 -3.0003e-010 -5.5151e-010 ... 
    -7.4237e-010 -1.0655e-009 -2.7155e-9 -3.2592e-009 -5.6473e-9 -8.2351e-9 -1.6437e-
008 -2.2607e-008 -3.6843e-008 -4.1006e-8 ... 
    -5.8649e-8 -1.2826e-7 -2.7098e-7 -4.2738e-7 -5.2434e-7 -7.4136e-007 -1.2071e-006 -
2.3246e-006 -3.977e-6 -5.1135e-6 ... 
    -6.9593e-6 -7.5531e-6 -1.0009e-005 -1.669e-005 -2.272e-005 -2.1424e-005 -3.5605e-
005 -6.1517e-005  -6.9438e-005 -7.7788e-005 ... 
    -9.2056e-005 -0.00014948 -0.00036778 -6.7473e-4 -7.9662e-4 -8.9249e-4 -1.1419e-3 
... 
    -1.4011e-3 -1.6821e-3 -1.9974e-3 -2.7501e-3 -3.5422e-3 -0.0035806 -0.0045154 -
4.6697e-3 ... 
    -3.625e-3 -0.0058645 -6.5903e-3 -.0050703 -.0020768]; 
A1=[8.66e-009 6.641e-009 9.783e-009 3.226e-008 1.3122e-008 6.6813e-009 1.3417e-
008 1.72e-008 7.116e-008 1.5057e-007 ... 
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1.46e-007 8.9978e-7 2.216e-007 5.8478e-007 1.0929e-6 6.7799e-7 2.7178e-006 
2.2591e-006 4.1618e-006 2.9032e-6 ... 
    5.1312e-6 1.6212e-5 2.2747e-5 2.9428e-5 2.8521e-5 1.1455e-005 1.8303e-005 
9.1169e-005 1.3856e-4 2.0799e-4 ... 
    2.8644e-4 2.4907e-4 0.00029946 0.00039067 0.00046459 0.00012807 0.00021186 
0.00060269 0.00053345 0.0004802 0.00058165 ... 
    0.00041565 0.00076965 4.2226e-3 4.8285e-3 4.6969e-3 5.085e-3 ... 
    4.9452e-3 4.6868e-3 4.7561e-3 6.5592e-3 8.8334e-3 -0.00031767 0.018141 ... 
    -2.5887e-3 -.021021 -0.0085529 -.046738 -.070166 -.10371]; 
B4=[2.666e-023 6.299e-023 1.341e-022 2.424e-022 1.0974e-021 1.9086e-021 7.802e-
021 1.933e-020 8.9638e-020 2.7555e-019 ... 
    5.8511e-019 1.0688e-018 4.2483e-18 9.1911e-018 2.2125e-017 7.4651e-17 1.7093e-
016 4.3044e-016 8.7683e-016 1.7293e-15 ... 
    2.884e-15 6.6938e-15 4.5115e-14 1.1038e-13 2.3097e-13 8.5528e-013 2.0764e-012 
3.7182e-12 9.5737e-12 1.2135e-11 ... 
    1.9468e-11 3.0411e-11 6.334e-011 1.5729e-010 2.96e-010 5.8258e-010 1.4218e-009 
2.8063e-009 3.9607e-009 5.4662e-009 7.1898e-009 2.4982e-008 1.3065e-007 ... 
    2.2412e-7 3.0012e-7 3.8894e-7 6.3074e-7 9.7325e-7 1.4378e-6 ... 
    2.0407e-6 3.7506e-6 6.3872e-6 9.144e-006 1.0259e-005 1.6248e-5 3.0509e-5 ... 
    3.3921e-5 1.1688e-4 .00018201 .00027347]; 
B3=[3.478e-020 6.939e-020 1.412e-019 3.342e-019 8.6052e-019 1.1902e-018 4.2614e-
018 9.165e-018 4.0875e-017 1.1097e-016 ... 
    2.0938e-016 3.6384e-016 1.3706e-15 2.4115e-015 5.3697e-015 1.458e-14 3.2492e-
014 7.0632e-014 1.3712e-013 2.2546e-13 ... 
    3.659e-13 9.1883e-13 4.4724e-12 9.9672e-12 1.7938e-11 4.7498e-011 1.0694e-010 
2.5474e-10 4.9855e-10 6.6092e-10 ... 
    1.0407e-9 1.4443e-9 2.6536e-009 6.2065e-009 1.0815e-008 1.5838e-008 3.6794e-
008 7.3905e-008 9.8811e-008 1.2811e-007 1.6725e-007 4.7206e-007 2.2178e-006 ... 
    4.2328e-6 5.5882e-6 7.0208e-6 1.0997e-5 1.6355e-5 2.3429e-5 ... 
    3.2655e-5 5.9464e-5 9.953e-5 0.00012604 0.00015899 2.2156e-4 3.3114e-4 ... 
    4.4059e-4 1.3172e-3 .0019912 .0028388]; 
B2=[1.278e-011 1.947e-011 2.85e-011 3.892e-011 8.084e-011 1.037e-010 2.1082e-010 
3.306e-010 7.3007e-010 1.2911e-009 ... 
    1.8694e-009 2.5379e-009 5.1406e-9 7.4642e-009 1.1639e-8 2.1005e-8 3.2416e-008 
5.104e-008 7.3312e-008 1.0121e-7 ... 
    1.3166e-7 2.0404e-7 5.2748e-7 8.2579e-7 1.1952e-6 2.2069e-006 3.4554e-006 
4.8686e-006 7.6805e-6 8.7167e-6 ... 
    1.1069e-5 1.3762e-5 1.9916e-005 3.1431e-005 4.3126e-005 5.8249e-005 ... 
    9.1726e-005 0.00013174 0.00015589 0.00018233 0.00020993 0.00038607 
0.00089666 1.2217e-3 1.4202e-3 ... 
    1.6178e-3 2.0719e-3 2.584e-3 3.1538e-3 3.7793e-3 5.2043e-3 6.8943e-3 0.0081137 
... 
    0.0089566 .011056 .014172 .016313 .030686 .038805 .04767]; 
B1=[9.536e-009 1.264e-008 1.728e-008 2.75e-008 3.6898e-008 4.1448e-008 7.1898e-
008 9.959e-008 1.9317e-007 2.9841e-007 ... 
    3.8973e-007 4.9673e-007 9.1115e-7 1.1204e-006 1.5877e-6 2.3973e-6 3.4437e-006 
4.7776e-006 6.3977e-006 7.8248e-6 ... 
    9.7332e-6 1.5169e-5 2.935e-5 4.1522e-5 5.2255e-5 7.6888e-005 0.00010964 
0.00015583 2.244e-4 2.5832e-4 ... 
    3.1857e-4 3.6119e-4 0.00046417 0.00068213 0.00086707 0.00096219 ... 
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Appendix E 

linfn MATLAB function



 

47 

function linfn(funName,wmin,wmax,order) 
% 
% linfn(funName,wmin,wmax,order) 
% Generates a transfer function approximation of a function, funName; 
% The input function is in frequency domain format and is generated in a separate M-file   
% the name of transfer function has to be 
% specified in string format, for example: 'BrakeTF' 
% The approximation is achieved by curve fitting the original transfer 
% function frequency response over the specified frequency range. 
% The user has to specify a range of wmin rad/sec to wmax rad/sec  
% rage of frequency initially. 
% The maximum frequency needs to be specified as an input for generating frequency  
% response of the original function. 
% The program will produce an error if the maximum frequency is too low 
% for the order of approximation specified. 
% Once a maximum frequency is specified the program will decide on the maximum 
% frequency needed for curve fitting based on the order of approximation.  
% The user needs to choose a min frequency initially, and base on the  
% output results, choose a lower min frequency if the approximation 
% fails to fit the original function at low frequencies. 
% 
%file name "linfn.m" 
%funName= input transfer function in string format 
%wmin=minimum frequency (rad/sec) for a good approximation 
%wmax=maximum frequency (rad/sec) for generating frequency response 
%order=desired order of the approximation 
 
 
func=str2func(funName);  % converts the string function name to function format 
  
  
mm=floor(order/2);  %modes 
  
%% 
  
  
w=logspace(log10(wmin),log10(wmax),10000); 
N=length(w); 
H = zeros(N,1); 
for k=1:N 
    s=w(k)*1i; 
    H(k) = func(s); % Generate tf data points for the curve fit.; 
end 
  
MTF=20*log10(abs(H)); 
  
MTF1=smooth(MTF);   %smoothing the data 
%% 
%the maximum frequency is decided here. 
%there is no need to specify the maximum frequency accurately; This part 
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%calculates the maximum frequency of the fitting using the order of 
%approximation 
[maxval,indmax]=lmax(MTF1,2); 
frmax= w(indmax); 
pp=1; 
frmax2=[]; 
for q=1:length(frmax) 
    if frmax(q) >= 10*wmin 
       frmax2(pp)=frmax(q); 
       pp=pp+1; 
    end 
end 
  
if isempty(frmax2) 
    error('The maximum frequency is too low.') 
    RETURN 
end 
  
if length(frmax2) == 1 
        maxi2=frmax2(1); 
    else  
        maxi2=frmax2(mm) 
        maxi2=(frmax2(mm)+0.1*(frmax2(mm)-frmax2(mm-1)));   
end 
  
  
%% 
w2=logspace(log10(wmin),log10(maxi2),100*order); 
N2=length(w2); 
for k=1:N2 
    s=w2(k)*1i; 
    H2(k) = func(s); % Generate tf data points for the curve fit.; 
end 
weight=ones(N2,1); 
[numa,dena]=invfreqs(H2,w2,order-1,order,weight,30);    %30 iterations 
Ht1=tf(numa,dena) 
figure 
semilogx(w,MTF1,'k','LineWidth',2) 
hold on;bodemag(Ht1,'r--') 
legend('Input Function','Lower Order Approximation') 
h = findobj(gcf,'type','line'); 
set(h,'linewidth',2); 
grid on 
grid minor 
damp(Ht1) 
end 
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Appendix F 

FrackingTF input example function for linfn MATLAB function
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function resp = FrackingTF(s) 
% This function takes one frequency as an input 
% and returns a response to that frequency. 
  
Beta=1.8246e9; %buld modulus N/m^2 
Den=855.24; %density Kg/m^3 
KVis=7.6179e-6; %kinematic viscosity m^2/s 
DVis=KVis*Den; % absolute or dynamic viscosity Ns/m^2 
r = 0.003175; 
c = sqrt(Beta/Den);        % Speed of sound, m/sec 
  
%Dn=0.001; 
%L=c*Dn*r^2/KVis; 
L=1.9328; 
RL = 8*DVis*L / (pi*r^4);  % Resistance (Laminar flow) 
Dn = KVis * L / (c * r^2); 
  
s_bar = r^2 * s / KVis; 
B = 2*besselj(1, 1i*sqrt(s_bar)) / (1i*sqrt(s_bar) * besselj(0, 1i*sqrt(s_bar))); 
Zo = Den*c / (pi*r^2);   
Z = Zo / sqrt(1-B); 
Gamma = Dn*s_bar / sqrt(1-B); 
  
resp = Z / (6*RL*sinh(Gamma) + Z*cosh(Gamma)); 
end 
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Appendix G 

BrakeTF input example function for linfn MATLAB function
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function resp = BrakeTF(s) 
% This function takes one frequency as an input 
% and returns a response to that frequency. 
  
Beta = 1.8246e9;% bulk modulus N/m^2 
Den = 855.24; % density Kg/m^3 
r = 0.0015875; 
KVis = 7.6179e-6; % kinematic viscosity m^2/s 
L = 20; 
Vc = L*pi*r^2;   % Assume capacitance volume is equal to line volume 
c = sqrt(Beta/Den);     % Speed of sound, m/sec 
  
Dn = KVis * L / (c * r^2); 
  
s_bar = r^2 * s / KVis; 
B = 2*besselj(1,1i*sqrt(s_bar))/(1i*sqrt(s_bar)*besselj(0,1i*sqrt(s_bar))); 
Zo = Den*c/(pi*r^2);   
Z = Zo/sqrt(1-B); 
Gamma = Dn*(s_bar)/sqrt(1-B); 
  
resp = 1 / (Vc*s/Beta * Z*sinh(Gamma) + cosh(Gamma)); 
end
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