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Abstract 

PROPERTY D CYCLIC NEOFIELDS 

 

Scott Lacy, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Minerva Cordero-Epperson 

 

In 1948 L. J. Paige introduced the notion of a neofield (𝑁,⊕,⋅) as a set 𝑁 

with two binary operations, generally referred to as addition ( ⊕ ) and 

multiplication ( ⋅ ) such that (𝑁,⊕) is a loop with identity 0 and (𝑁 − {0},⋅) is a 

group, with both left and right distribution of multiplication over addition. The 

neofield was considered a generalization of a field and its application was for the 

coordinatizing of projective planes and related geometry problems. In 1967 A.D. 

Keedwell introduced the notion of property D cyclic neofields in relation to his 

study of latin squares and their application to projective geometry. In particular, 

the existence of a property D cyclic neofield guarantees the existence of a pair of 

orthogonal latin squares. Keedwell provides a theorem for the existence of 

property D cyclic neofields with a set of conditions on a sequence of integers. 

We provide an alternate condition for Keedwell's existence theorem that 

requires only one criteria for each condition in contrast to Keedwell's two criteria. 



vi 

We then establish a set of conditions for the existence of commutative property D 

cyclic neofields that require a sequence half as long as for Keedwell's existence 

theorem. We also examine subneofields of property D cyclic neofields and 

consider their application to extending known neofields to higher order property 

D cyclic neofields. 
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Chapter 1

Introduction

In Chapter 2 we provide all the background material needed to introduce Keed-

wells existence theorem, which provides us with a powerful tool to determine the

existence of a property D cyclic neofield by a set of conditions on a sequence of in-

tegers. In Chapter 3 we discuss commutative property D neofields. And in chapter

4 we examine subneofields.
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Chapter 2

Background

Our goal in this chapter is to provide a foundation for introducing Keedwell’s

existence theorem which provides us a set of conditions for a sequence of integers to

generate a property D cyclic neofield. We begin in section 1 by defining necessary

structures with a single operation; namely a quasigroup, a loop, and a group, then

finish the section by defining a neofield. In section 2 we discuss special mappings

that determine if a group is what L. J. Paige refers to in [5] as an admissible group;

meaning a group that may the multiplicative structure of a neofield. Then in section

3 we define what it means for a cyclic neofield to have property D and close with

Keedwell’s existence theorem.

2.1 Foundational Structures

In this section we introduce the basic algebraic structures necessary to define a

property D cyclic neofield. Most mathematicians are familiar with the structure of

a group. Typically a group is defined as a set with a closed binary operation on the

set with the associative, identity and inverse properties. An early theorem in most

abstract algebra texts is that equations in a group operation can be solved uniquely.

By this we mean that if x plus y equals z, and we know any two of x,y or z, then we

are able to solve for the third. In this dissertation we will define algebraic structures

slightly differently.

Our most basic structure is a quasigroup. A quasigroup is a set with an oper-

ation such that it satisfies this “solvability” property. A finite quasigroup may be
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commonly thought of as a latin square, or a square array with a set of elements

represented distinctly on every row and every column. To find the result of an op-

eration using the table (say x⊕y = z), cross-reference the row of the first element x

with the column of the second element y to find z. Furthermore, if say x and z are

known, but not y, then use the row of x to find z, and it will be in the y column.

Quasigroups with additional properties define other algebraic structures. We

introduce two of these in this section - loops and groups. We conclude the section

by introducing the neofield. A neofield is an algebraic structure very similar to a

field, except that the addition need not be associative, and the multiplication need

not be commutative. Aside from the structural difference between them, the most

notable difference between finite fields and finite neofields is their orders. Finite

fields exist only for orders that are prime or a power of a prime, and a finite field of

a given order is isomorphically unique for that order. Finite neofields exist for all

orders and with the exception of very small orders, there are a great many for any

particular order.

Definition 2.1. A quasigroup (Q,◦) is a nonempty set Q together with a binary

operation (◦) on Q such that for all a,b ∈ Q there exist unique x,y ∈ Q such that

x◦a = b and a◦ y = b (unique solubility of equations)

A finite quasigroup may be thought of as an n×n array with each element from

a set of n elements represented uniquely on every row and every column of the

array and where the entry in row a and column b corresponds to a ◦ b. An array

such as this is commonly called a latin square. A familiar example is the popular
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Sudoku puzzle game with the numbers 1 through 9 represented on each row and

each column. (Sudoku has a further restriction of numbers within boxes, not so with

latin squares in general). Every completed Sudoku puzzle could be defined as the

operation table for a quasigroup of nine elements. Example 2.2 is of a quasigroup

of order three, while example 2.3 contrasts with a structure that is not a quasigroup.

Example 2.2. Table 2.1 below is an example operation (⊕) table on a quasi-

group of three elements. In this example, a is a right-identity but there is no left-

identity. The operation (⊕) is neither commutative (e.g. a⊕ b = c yet b⊕ a = b)

nor associative (e.g. (b⊕b)⊕b = c yet b⊕ (b⊕b) = b).

Table 2.1: Cayley table of a quasigroup with three elements

⊕ a b c

a a c b

b b a c

c c b a

Example 2.3. Table 2.2 below is an example operation (∗) table on a structure

of three elements that is not a quasigroup. In this example, 1 is a two-sided identity.

The operation (∗) is commutative but not associative (e.g. (2 ∗ 3) ∗ 3 = 1, yet 2 ∗

(3∗3) = 2). More importantly, it does not have the property of unique solubility of

equations (e.g. for 3∗ x = 3, x could be either 1 or 2).
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Table 2.2: Cayley table of a structure with three elements that is not a quasigroup

∗ 1 2 3

1 1 2 3

2 2 1 3

3 3 3 1

Definition 2.4. A loop (Q,◦) is a quasigroup with an element e ∈ Q such that,

for all a ∈ Q, a◦ e = a = e◦a (existence of a two-sided identity)

Example 2.5. Table 2.3 below is an example operation (⊕) table on a loop of

five elements. In this example, 1 is a two-sided identity. The operation ⊕ is neither

commutative (e.g. 2⊕3 = 5 yet 3⊕2 = 4) nor associative (e.g. (2⊕3)⊕4 = 2 yet

2⊕ (3⊕4) = 4).

Table 2.3: Cayley table of a loop with five elements

⊕ 1 2 3 4 5

1 1 2 3 4 5

2 2 1 5 3 4

3 3 4 1 5 2

4 4 5 2 1 3

5 5 3 4 2 1

Definition 2.6. A group (G,◦) is a quasigroup such that, for all a,b,c ∈ G,

a◦ (b◦ c) = (a◦b)◦ c (associative property)
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Groups are typically defined by the properties of associativity, identity and in-

verses. We define a group differently, but these properties still hold for our defini-

tion.

Recall that a group (G,◦) has the following properties:

1. there exists an element e ∈ G such that, for all a ∈ G,

a◦ e = a = e◦a (existence of a two-sided identity)

2. for all a ∈ G there exists an element a−1 ∈ G such that

a−1 ◦a = e = a◦a−1 (existence of a two-sided inverse)

Verifying this is straightforward, and since it quite nicely demonstrates use of the

unique solubility of equations property, it is included here for illustration purposes.

Proof. (1) Let a,b ∈ G. By unique solubility of equations in G, there exists

e,c ∈ G such that e ◦ a = a and a ◦ c = b. Then e ◦ b = e ◦ (a ◦ c) = (e ◦ a) ◦ c =

a◦ c = b. Since b is arbitrary, e is a left identity for all elements in G. Similarly, by

unique solubility of equations in G, there exists er,d ∈ G such that a ◦ er = a and

d ◦a = b. Then b◦er = (d ◦a)◦er = d ◦ (a◦er) = d ◦a = b. So er is a right identity

for all elements in G. Also, because e is a left identity and er is a right identity,

e = e◦ er = er. Thus, e is a two-sided identity for all elements of G.

(2) Let a ∈ G. By unique solubility of equations in G, there exists an element

a−1 ∈ G such that a−1 ◦a = e. Then (a◦a−1)◦a = a◦ (a−1 ◦a) = a◦ e = a, which

implies a◦a−1 = e and therefore a−1is a two-sided inverse.

Modern cryptography is often based on finite fields. A field is usually defined as

a set with two binary operations and a distribution relation between them. A corre-

sponding structure for non-associative algebra is the neofield. There are potentially
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many advantages to neofields over fields, not least of which is the vastly numerous

neofields for any particular order, compared to the unique field for order pk where

p is prime.

Definition 2.7. A left neofield (N,⊕, ·) is a set N together with two binary

operations (⊕) and (·) on N such that (N,⊕) is a loop, (N−{0}, ·) (where 0 is the

identity of (N,⊕)) is a group, and for all a,b,c ∈ N, a · (b⊕c) = (a ·b)⊕ (a ·c) (left

distribution). If (·) also distributes from the right, then N is a neofield.

Often we will require the multiplicative group for the neofield to be cyclic.

These neofields have special properties and so we distinguish them.

Remark 2.8. A cyclic neofield is a neofield such that the multiplicative group is

cyclic.

Example 2.9. Table 2.4 below is an example of a cyclic neofield of order 6. The

operation (⊕) defines a proper loop; It has an identity (x0), has unique solubility of

equations, and is neither commutative nor associative. The operation (·) with the

non-zero elements defines a group isomorphic to Z5.

Table 2.4: Cayley tables of a cyclic neofield with six elements

⊕ 0 x0 x1 x2 x3 x4

0 0 x0 x1 x2 x3 x4

x0 x0 0 x4 x3 x2 x1

x1 x1 x2 0 x0 x4 x3

x2 x2 x4 x3 0 x1 x0

x3 x3 x1 x0 x4 0 x2

x4 x4 x3 x2 x1 x0 0

· 0 x0 x1 x2 x3 x4

0 0 0 0 0 0 0

x0 0 x0 x1 x2 x3 x4

x1 0 x1 x2 x3 x4 x0

x2 0 x2 x3 x4 x0 x1

x3 0 x3 x4 x0 x1 x2

x4 0 x4 x0 x1 x2 x3
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Remark. A neofield without associativity will be said to be a proper neofield.

2.2 Orthomorphisms and Near-Orthomorphisms

Groups are well known structures and less numerous than loops, so it may be

natural to wonder if there is a process by which one may examine a group to deter-

mine if it forms the multiplicative structure of a neofield. In [5] L. J. Paige named

any such group an admissible group and proved that any finite abelian group and

any finite group of odd order are admissible, as well as several less general results.

Definition 2.10. Let (G, ·) be a group. If the mapping θ : G→ G is a bijection

and the mapping φ : G→ G given by φ(g) = g ·θ(g) is also a bijection, then φ is

called an orthomorphism and θ is called the complete mapping associated with φ .

If φ(1) = 1 where 1 is the identity in G, then φ is said to be in canonical form.

Example 2.11. Let G= 〈x〉,x5 = x0 and θ =(x0)(x1x3x4x2). Then φ = g ·θ(g)=

(x0)(x1x4)(x2x3). Both θ and φ are bijections of G, and so φ is an orthomorphism of

G (in canonical form because φ(x0) = x0) and θ is the complete mapping associated

with φ .

Definition 2.12. Let (G, ·) be a group and η , ι ∈ G,η 6= ι . If the mapping

θ : G−{η} → G−{ι} is a bijection and the mapping φ : G−{η} → G−{ι}

given by φ(g) = g ·θ(g) is also a bijection, then φ is called a near-orthomorphism

and θ is called the near-complete mapping associated with φ . If ι = 1 where 1 is

the identity in G, then φ is said to be in canonical form. The element η with no

image under these mappings is called the ex-domain element.

Example 2.13. Let G = 〈x〉,x6 = x0and θ = [x0x4x1x2x5x3] (meaning x0 maps to

x4, etc, while θ(x3) has no image and x0 has no pre-image). Then φ = [x0x4x5x2x1x3].
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Both θ and φ are bijections of G − {x3} → G − {x0}, and so φ is a near-

orthomorphism of G (in canonical form because x0 has no pre-image) with ex-

domain element x3, and θ is the near-complete mapping associated with φ .

Before we draw the connection between orthomorphisms/near-orthomorphisms

and neofields, it’s beneficial for us to make an observation using the properties of a

neofield. If we think of a neofield in terms of its operation tables, we may notice a

peculiar pattern emerge in the additive loop. In particular, it is apparent that there

is an “order” to the diagonals for all non-zero elements. In the additive loop table

from example 2.9 we see that the diagonal directly above the main diagonal has the

values x4,x0,x1,x2. If we then “wrap around” back to the left side of the table, the

next value is x3. Examining the next diagonal above that, we have x3,x4,x0 followed

by x1,x2 after “wrapping around” back to the left hand side. The ascending order of

exponents (modulo n) in the diagonals of an addition table of a cyclic neofield is no

coincidence. In fact, for any left neofield, by applying the left distributive property

we have that x⊕y = x · (1⊕x−1 ·y) for all x 6= 0. For example, in the neofield from

example 2.9 we have that x2⊕ x4 = x2 · (x0⊕ x2) = x2 · x3 = x0.

At first this may seem like an extra step over simply referencing the table, what it

ultimately means is that we may exploit this phenomenon to store the entire additive

loop table in single row. Using this fact, for any calculation we may “factor out” an

appropriate element then reference our chosen row. This could be almost any row,

but it is most convenient to choose the row of the multiplicative identity and “factor

out” the first element of the equation.

Definition 2.14. Let (N,⊕, ·) be a left neofield. A presentation function is a

mapping ψ : N→ N given by ψ(g) = 1⊕g.
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In short, the presentation function (along with defining 0⊕a = a for all a ∈ N)

determines the complete addition table.

Theorem 2.15. (A.D. Keedwell) Let (N,⊕, ·) be a finite left neofield. If 1⊕

1 = 0 in N, then N defines an orthomorphism of (N −{0}, ·) in canonical form.

If for η 6= 1, 1⊕η = 0, then N defines a near orthomorphism of (N−{0}, ·) in

canonical form with η as ex-domain element. Conversely, let (N−{0}, ·) be a finite

group with identity 1 and N−{0} possess an orthomorphism φ in canonical form.

Then (N,⊕, ·) is a left neofield with presentation function ψ defined by ψ(0) = 1,

ψ(1) = 0 and ψ(g) = φ(g) for all g 6= 0,1. Alternately, let N−{0} possess a near

orthomorphism in canonical form. Then (N,⊕, ·) is a left neofield with presentation

function ψ defined by ψ(0) = 1, ψ(η) = 0 and ψ(g) = φ(g) for all g 6= 0,η where

η is the ex-domain element of φ .

Example 2.16. The neofield presented in example 2.9 has presentation func-

tion ψ = (x00)(x1x4)(x2x3) in disjoint cycle form. Using theorem 2.15 we have

φ = (x0)(x1x4)(x2x3) and θ = (x0)(x1x3x4x2) which we see in example 2.11 as

an orthomorphism and complete mapping. Conversely, the orthomorphism from

example 2.11 can be used to define the presentation function for the neofield in

example 2.9.

Example 2.17. The near-orthomorphism from example 2.13 can be used to

define the presentation function ψ = (x0x4x5x2x1x30) of a cyclic neofield of order

7.

For the remainder of this dissertation, we will be almost exclusively concerned

with cyclic neofields. It is therefore beneficial for us to establish that when the

multiplicative group is cyclic (more generally, commutative), then the neofield has
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both left and right distribution.

Remark 2.18. Let (N,⊕, ·) be a left neofield with a · b = b · a for all a,b ∈ N.

Then N is a neofield.

Searching through potential candidates for orthomorphisms and near-

orthomorphisms quickly becomes a large computational problem. The following

two observations eliminate certain combinations from these searches.

Remark 2.19. Let (G, ·) be a group with a · b = b · a for all a,b ∈ G and θ :

G→ G be a bijective mapping with a 2-length cycle. Then φ : G→ G given by

φ(g) = g ·θ(g) is not a bijective mapping.

Proof. Let (g1g2) be a 2-length cycle in θ . Then φ(g1) = g1 ·θ(g1) = g1 ·g2 =

g2 ·g1 = g2 ·θ(g2) = φ(g2). Therefore φ is not a bijective mapping.

Remark 2.20. Let (G, ·) be a group and θ : G→ G be a bijective mapping. If

θ(a) = a−1 for some a 6= 1 ∈ G then φ : G→ G given by φ(g) = g ·θ(g) is not an

orthomorphism in canonical form.

Proof. φ(a) = a ·θ(a) = a · a−1 = 1. If φ is in canonical form, then φ(1) = 1

and so φ is not a bijection.

2.3 Property D Cyclic Neofields

A primary goal for Paige in studying neofields was in the hope of providing

another structure for coordinatizing projective planes. He was partially successful

in this endeavor, but not to the extent that he had hoped. Given that neofields exist

for all orders and the vast number that exist for any order, he hoped to find at

least one example of a coordinatizing structure that was not an order of a prime

power. Keedwell had similar ambitions, but approached the subject from the study

of orthogonal latin squares.
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It is proven that a projective plane of order n exists if and only if there exists

n mutually orthogonal latin squares of order n. Thus if one shows that no pair

of orthogonal latin squares exist for an order (as is the case for order 6), then no

projective plane of that order exists. It is an open question whether there exists

a pair of orthogonal latin squares for every order beyond 6. However, Keedwell

defines a special type of neofield (named property D) and establishes [2] that the

existence of a property D cyclic neofield of some order guarantees the existence of

a pair of orthogonal latin squares of that order.

Definition 2.21. A cyclic neofield (of order m = n+ 1) based on the multi-

plicative cyclic group 〈x〉 where x0 = 1 is the multiplicative identity, is said to have

property D if

(1⊕ xr+1)/(1⊕ xr) = (1⊕ xs+1)/(1⊕ xs) ⇐⇒ r ≡ s modulo n,

where r,s are any positive integers.

In terms of a presentation function as a row of the addition table of a cyclic

neofield, this means that the differences in exponents between consecutive elements

in the row are unique. The following example from our familiar example 2.9 shows

a case where they are not.

Table 2.5: Presentation function in row form for a cyclic neofield with six elements

⊕ 0 x0 x1 x2 x3 x4

x0 x0 0 x4 x3 x2 x1

Example 2.22. Table 2.5 is a presentation function in row form for the cyclic

neofield in example 2.9 above. Notice that the differences in the exponents of each

12



consecutive element are all the same (i.e.−1), so this cyclic neofield does not have

property D. (More specifically, let us choose r and s, say r = 1,s = 3, then (x0⊕

xr+1)/(x0⊕ xr) = (x0⊕ x2)/(x0⊕ x1) = (x0⊕ x2) · (x0⊕ x1)−1 = x3 · x−4 = x4 and

(x0⊕xs+1)/(x0⊕xs) = (x0⊕x4)/(x0⊕x3) = (x0⊕x4) · (x0⊕x3)−1 = x1 ·x−2 = x4

are equal, while r and s are not.)

Table 2.6: Presentation function in row form for a cyclic neofield with seven

elements

⊕ 0 x0 x1 x2 x3 x4 x5

x0 x0 x4 x3 x1 0 x5 x2

Example 2.23. Table 2.6 is a presentation function in row form for the cyclic

neofield in example 2.17 above. This cyclic neofield has property D.

Theorem 2.24. (Keedwell’s Existence Theorem) A necessary and sufficient set

of conditions for a cyclic neofield of order m = n+ 1 to exist is that n− 2 (not

necessarily distinct) residues modulo n from the set {2,3, ...,n−1} can be arranged

in a sequence P such that:

(i) the partial sums of the first one, two, ... , n− 2 terms are all distinct and

non-zero modulo n; and

(ii) when each term of the sequence is reduced by one, the new sequence, P′ say,

also satisfies (i).

Furthermore, the cyclic neofield has property D if and only if the terms of P are

all distinct.

Definition 2.25. An acceptable sequence is a sequence as described above that

meets criteria (i) and (ii), and such that all terms are distinct.
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Below are two applications of Keedwell’s existence theorem. The first example

is a sequence that generates a cyclic neofield that does not have property D; notice

that the terms of the sequence P in this example are not distinct. The second exam-

ple is a sequence that generates a cyclic neofield that does have property D, and all

the terms in this sequence are distinct.

Example 2.26. Let n = 7 and P = {2,2,2,2,2}. Let S be the sequence of partial

sums (modulo n) of P and S′ be the sequence of partial sums (modulo n) of P′. Then

S = {2,4,6,1,3}. All elements of S are distinct and non-zero, thus condition (i) is

met. P′ = {1,1,1,1,1} and so S′ = {1,2,3,4,5}. All elements of S′ are distinct and

non-zero, thus condition (ii) is met. So the sequence P generates a cyclic neofield

of order 8. More generally, for any odd-valued n, a sequence of 2’s will generate

a cyclic neofield. Similarly, for an even-valued n, a sequence of 2’s with a 3 in the

n
2 th position will achieve the same result. In this way, a cyclic neofield of any order

may be generated.

Example 2.27. Let n = 7 and P = {3,2,4,6,5}. Then:

P = {3,2,4,6,5}, S = {3,5,2,1,6}

P′ = {2,1,3,5,4}, S′ = {2,3,6,4,1}

All elements of S and S′ are distinct and non-zero, thus conditions (i) and (ii)

are met respectively. All elements of P are distinct, so the neofield generated by P

is a property D cyclic neofield of order 8. Notice that the neofield generated by P is

the finite field GF(8).
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Chapter 3

Commutative Property D Cyclic Neofields

Keedwell’s existence theorem provides an incredibly useful tool for classifying

property D cyclic neofields by correlating the additive structure of the neofield to

a sequence of integers and applying conditions on the sequence. In the first part

of this chapter we provide an alternate condition to this theorem and in the second

we provide a set of conditions for an abbreviated sequence to classify commutative

property D cyclic neofields.

3.1 An Alternate Condition to Keedwell’s Existence Theorem

The existence of a property D cyclic neofield guarantees the existence of a pair

of mutually orthogonal latin squares. Much of Keedwell’s work is based on latin

squares and many of his proofs involve the use of arrays. In contrast, working

with sequences to generate property D cyclic neofields, the following fact becomes

apparent. Condition (i) of Keedwell’s Existence Theorem requires that all values in

the sequence of partial sums (S) be non-zero and distinct modulo n. If two values

in the sequence are identical, then the sum of the values between them must then

be equal to 0 modulo n. It is therefore possible to alter condition (i) in Keedwell’s

Existence Theorem with the following lemma.

Lemma 3.1. An alternate condition to condition (i) of Keedwell’s existence

theorem is

(iii) the sum of every subsequence of consecutive elements (hereafter simply

referred to as a subsequence) of P is non-zero modulo n.
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Proof. Let P = {p1, p2, ..., pn−2} be a sequence, S = {s1,s2, ...,sn−2} be the

sequence of partial sums, Pι ,κ = {pι+1, pι+2, ..., pι+κ} be a subsequence of κ con-

secutive elements of P and ∑Pι ,κ
be the sum of all elements in Pι ,κ modulo n.

(i) implies (iii) : Let P satisfy condition (i). If ι = 0, then ∑Pι ,κ
= sκ is non-zero.

Otherwise, sι+κ = sι +∑Pι ,κ
and since sι+κ 6= sιby condition (i), ∑Pi,k

is non-zero.

Therefore, every subsequence of P is non-zero satisfying condition (iii).

(iii) implies (i): Let P satisfy condition (iii). Then sk = ∑P0,k
is non-zero and

so all elements of S are non-zero. Also, for si,s j ∈ S with i < j, let k = j− i so

s j = si +∑Pi,k
and since ∑Pi,k

is non-zero, si 6= s j. So all elements of S are distinct.

Therefore, all elements of S are distinct and non-zero satisfying condition (i).

Remark 3.2. A sequence of distinct elements as described in Keedwell’s exis-

tence theorem that meets condition (ii) of the theorem and condition (iii) of lemma

3.1 is an acceptable sequence.

Example 3.3. In light of this lemma, it is easy to see that no property D cyclic

neofield of order 6 exists. Let n = 5, then the sequence P must be an arrangement

from the set {2,3,4}. The subsequence {2,3} has a sum of zero, and there is no

arrangement where this subsequence does not occur in either P or P′. This is a

direct corollary to Euler’s famous thirty-six officer problem.

Many of Keedwell’s results may now be proven using this lemma, in some cases

elegantly and with surprisingly short proofs. Of special importance to us are two

acceptable sequences derived directly from an acceptable sequence.

Definition 3.4. Given a sequence P = {p1, p2, ..., pn−2}, the mirror sequence is

the sequence PM = {pn−2, pn−3, ..., p1}.

The mirror sequence is simply the sequence P in reverse.
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Definition 3.5. Given a sequence P = {p1, p2, ..., pn−2}, the dual sequence is

the sequence PD = {n+1− p1,n+1− p2, ...,n+1− pn−2}.

In Keedwell’s existence theorem we define a sequence P of terms from the

set {2,3, ...,n− 1} and an alteration P′ by subtracting one from the value of each

term in the sequence P. Keedwell could just as easily have defined P from the set

{1,2, ...,n− 2} and P′ by adding one to each value. The theorem itself would be

functionally identical. (In practice, this would then require using P′ to build the

neofield, illustrating a probable reason for Keedwell choosing the method he did).

Also note that modular arithmetic applies just as readily to negative values as it does

to positive, especially when considering that we are mostly concerned with whether

the sum of a subsequence is zero or not. With these two ideas, if we consider the

dual sequence of P to be the negative of P′, then we get a very good idea of why

the dual sequence of an acceptable sequence is also acceptable. The following two

propositions originally proved by Keedwell in [2], here use lemma 3.1 to prove our

claim that these two sequences are acceptable.

Proposition 3.6. If a sequence is acceptable, then the mirror sequence is accept-

able.

Proof. Let P be an acceptable sequence. Then the sum of every subsequence

of P (and P′) is non-zero. Since the sum of every subsequence of PM and P′M

is equal to the sum of a subsequence of P and P′ respectively, then the sum of

every subsequence of PM and P′M is also non-zero. Therefore, PM is an acceptable

sequence.
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Example 3.7. Let n = 11 and P = {3,5,4,6,2,7,10,9,8}. Then:

P = {3,5,4,6,2,7,10,9,8}, S = {3,8,1,7,9,5,4,2,10}

P′ = {2,4,3,5,1,6,9,8,7}, S′ = {2,6,9,3,4,10,8,5,1}

P generates a property D neofield of order 12.

The sequence PM = {8,9,10,7,2,6,4,5,3} with:

PM = {8,9,10,7,2,6,4,5,3}, SM = {8,6,5,1,3,9,2,7,10}

P′M = {7,8,9,6,1,5,3,4,2}, S′M = {7,4,2,8,9,3,6,10,1}

also generates a property D neofield of order 12.

The property D cyclic neofields generated by P and PM are isomorphic [3] by

mapping an element to its multiplicative inverse.

Proposition 3.8. If a sequence is acceptable, then the dual sequence is accept-

able.

Proof. Let P be an acceptable sequence. Then the sum of every subsequence

Pι ,κ = {pι+1, pι+2, ..., pι+κ} of P and P′ι ,κ = {pι+1− 1, pι+2− 1, ..., pι+κ − 1} of

P′ is non-zero. Assume by contradiction that the sum of a subsequence PD
ι ,κ = {n+

1− pι+1,n+1− pι+2, ...,n+1− pι+κ} of PD or P
′D
ι ,κ = {n− pι+1,n− pι+2, ...,n−

pι+κ} of P′D is zero. Then ∑PD
ι ,κ

= (n+ 1− pι+1) + (n+ 1− pι+2) + ...+ (n+

1− pι+κ) = κn+κ − (pι+1 + pι+2 + ...+ pι+κ) ≡ κ −∑Pι ,κ
= 0 or ∑P′Dι ,κ

= (n−

pι+1)+(n− pι+2)+ ...+(n− pι+κ) = κn−(pι+1+ pι+2+ ...+ pι+κ)≡∑Pι ,κ
= 0.

Clearly ∑Pι ,κ
6= 0 and so ∑Pι ,κ

= κ . However, ∑P′ι ,κ = (pι+1−1)+(pι+2−1)+ ...+

(pι+κ −1) = (pι+1 + pι+2 + ...+ pι+κ)−κ = ∑Pι ,κ
−κ 6= 0 implies that ∑Pι ,κ

6= κ
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which leads to our contradiction. Therefore, every subsequence of PD and P′D is

non-zero and PD is an acceptable sequence.

Example 3.9. Using the same sequence as in example 3.7, let n = 11 and P =

{3,5,4,6,2,7,10,9,8}. Then the sequence PD = {9,7,8,6,10,5,2,3,4} with:

PD = {9,7,8,6,10,5,2,3,4}, SD = {9,5,2,8,7,1,3,6,10}

P′D = {8,6,7,5,9,4,1,2,3}, S′D = {8,3,10,4,2,6,7,9,1}

also generates a property D cyclic neofield of order 12.

The property D cyclic neofields generated by P and PD are isomorphic if they

are commutative and anti-isomorphic if they are not commutative [3]. The follow-

ing result gives an important relationship between the dual and mirror sequences

and commutativity. It was first proven by Keedwell in [2]; below we provide a

proof using lemma 3.1.

Theorem 3.10. If P = {p1, p2, ...pn−2} is an acceptable sequence generating a

property D cyclic neofield N, then PM = PD if and only if N is commutative.

Proof. Note that PM = PD⇔ pi = n+1− pn−i−1⇔ pi + pn−i−1 = n+1.

Let S = {s1,s2, ...,sn−2} be the sequence of partial sums of P. By definition,

0⊕α =α =α⊕0 and so 0 commutes with all elements of N for any neofield N. By

construction of a cyclic neofield [?] x0⊕xh = 0, x0⊕xh+1 = xa01 and x0⊕xh+i+1 =

xa01+si . Then xh+i+1⊕ x0 = xh+i+1(x0⊕ xh+(n−i−2)+1) = xa01+sn−i−2+h+i+1.

Let P be an acceptable sequence generating N where PM = PD. For non-zero

xa,xb ∈ N, xa⊕ xb = xa(x0⊕ xb−a) and xb⊕ xa = xa(xb−a⊕ x0), so we need only

show that x0 commutes with all non-zero elements of N. Observe that for any ac-

ceptable sequence, sn−2 = n−h−1. Also, when PM =PD, ∑
i
k=1 pk+∑

n−2
k=n−i−1 pk =
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i(n+1). Then we have sn−i−2 = sn−2−∑
n−2
k=n−i−1 pk = sn−2+∑

i
k=1 pk− i(n+1) =

n−h−1+ si− i. Thus, si = sn−i−2 +h+ i+1. Therefore, x0⊕ xh+i+1 = xa01+si =

xa01+sn−i−2+h+i+1 = xh+i+1⊕ x0 and so x0 commutes with all non-zero elements of

N.

Conversely, let N be commutative. Then for non-zero xa,xb ∈N , xa⊕xb = xb⊕

xa⇒ xa(x0⊕xb−a) = xa(xb−a⊕x0)⇒ x0⊕xb−a = xb−a⊕x0. Thus si = sn−i−2+h+

i+1. And since pi = si− si−1, we have pi+ pn−i−1 = si− si−1+ sn−i−1− sn−i−2 =

(sn−i−2 + h+ i+ 1)− (sn−i−1 + h+ i) + sn−i−1− sn−i−2 = 1 ≡ n+ 1. Therefore

PM = PD.

Example 3.11. Let n = 9 and P = {3,4,8,5,2,6,7}. Then:

P = {3,4,8,5,2,6,7}, S = {3,7,6,2,4,1,8}

P′ = {2,3,7,4,1,5,6}, S′ = {2,5,3,7,8,4,1}

Since PM = {7,6,2,5,8,4,3} = PD, the order 10 property D cyclic neofield

generated by P is commutative under addition.

In early research of this subject a particular pattern emerged in acceptable se-

quences. The sequences {2,3,4,5,6,7} and {2,3,4,5,6,7,8,9,10,11,12,13,14,15}

are both acceptable. Attempts to verify this pattern revealed that {2,3,4, ...,23} is

not acceptable while {2,3,4, ...,31} and {2,3,4, ...,63} both are acceptable. Keed-

well [2] reached the same conclusion and verified the existence of this family of

property D cyclic neofields by a proof using row arrays. The proof given here once

again uses lemma 3.1.

Theorem 3.12. If n = 2k and P = {2,3,4, ...,2k− 1} then P is an acceptable

sequence generating a property D cyclic neofield of order m = 2k +1.
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Proof. Let Pι ,κ be a subsequence of P. If κ is odd, say κ = 2β + 1, then

Pι ,κ = {ι + 1, ι + 2, ..., ι + 2β + 1} = {γ − β , ...,γ − 1,γ,γ + 1, ...,γ + β} where

γ = ι + β + 1 is the middle term of Pι ,κ . Thus ∑Pι ,κ
= κι + κ

κ+1
2 = γ(2β + 1).

Because γ is strictly less than 2k and 2β + 1 is odd, the product is non-zero mod

2k. If κ is even, say 2β , then Pι ,κ = {ι +1, ι +2, ..., ι +2β}= {γ− (β −1), ...,γ−

1,γ,γ + 1,γ + 2, ...,γ +β} where γ = ι +β is the first of the middle two terms of

Pι ,κ . So ∑Pι ,κ
= κι + κ

2 (κ +1) = β (2γ +1). Similar to the above, since β is strictly

less than 2k and 2γ +1 is odd, their product is non-zero mod 2k.

Since the argument rests on the fact that all values of each subsequence are

consecutive, condition (ii) of the theorem is satisfied identically.

Example 3.13. Let n = 23 = 8 and P = {2,3,4,5,6,7}. Then:

P = {2,3,4,5,6,7}, S = {2,5,1,6,4,3}

P′ = {1,2,3,4,5,6}, S′ = {1,3,6,2,7,5}

So P generates a property D cyclic neofield of order 9. This is the lowest order

property D cyclic neofield that is not a field.

Example 3.14. Let n= 24 = 16 and P= {2,3,4,5,6,7,8,9,10,11,12,13,14,15}.

Then:

P = {2,3,4,5,6,7,8,9,10,11,12,13,14,15}

S = {2,5,9,14,4,11,3,12,6,1,13,10,8,7}

P′ = {1,2,3,4,5,6,7,8,9,10,11,12,13,14}

S′ = {1,3,6,10,15,5,12,4,13,7,2,14,11,9}

21



P generates a property D neofield of order 17. As in example 3.13, this ne-

ofield is also not a field. In fact, Keedwell [2] proved that the additive loops of the

corresponding neofields are associative only for the values k = 1 and k = 2.

3.2 Commutative Property D Cyclic Neofield Existence Theorem

Keedwell [3] classified all property D cyclic neofields of order up to 18 and

provided examples up to order 20. He further conjectured that property D cyclic

neofields exist for all orders beyond 20. Searching for examples of property D

cyclic neofields can be cumbersome to say the least. Presently the time for a com-

puter program to find all examples of property D cyclic neofields of an order in the

low twenties is measured in months. The main issue is that each additional term in

the sequence doesn’t simply add to the number of algorithms involved. Since the

mechanical check is examining each subsequence, adding terms to the sequence

adds a corresponding number of algorithms plus lengthens the time it takes to do

each of them.

There are several unique features of commutative property D cyclic neofields

that should give us an advantage in searches. Remembering that there is a correla-

tion of P′ to PD,the mere fact that PM = PD tells us a great deal when considering

conditions (i) and (ii) of Keedwell’s existence theorem.

Lemma 3.15. If PM = PD for a sequence P, then condition (i) (equivalently

(iii) of lemma 3.1) in Keedwell’s existence theorem is sufficient for an acceptable

sequence.

Proof. Let P be a sequence with n− 2 distinct terms such that PM = PD and

satisfying condition (i) of Keedwell’s existence theorem. By contradiction assume

22



the sequence P′ fails to meet condition (ii). Then by lemma 3.1 there exists a sub-

sequence P′ι ,κ of P′ such that ∑P′ι ,κ ≡ 0. Since each element in P′ι ,κ is one less than

the corresponding term in the subsequence Pι ,κ of P, ∑Pι ,κ
≡ 0+ κ = κ . How-

ever, since PM = PD, then there also exists a subsequence P(n−2−ι−κ),κ of P such

that for each p ∈ Pι ,κ there exists an r ∈ P(n−2−ι−κ),κ such that p+ r = n+1. Then

∑Pι ,κ
+∑P(n−2−ι−κ),κ

= κ(n+1)= κn+κ ≡ κ =∑Pι ,κ
, which implies∑P(n−2−ι−κ),κ

≡ 0

contradicting the hypothesis that P satisfies condition (i).

In a sequence that generates a commutative property D cyclic neofield, it is easy

to see that the first term of the sequence determines the last term of the sequence.

Similarly, the second term of the sequence determines the second to last term of

the sequence, and so on. It should therefore be possible to determine whether a

sequence that meets the criteria for a commutative property D cyclic neofield (i.e.

PM = PD) is acceptable or not by examining only the first half of the sequence.

Thus it seems reasonable that searching through potential candidate sequences for

commutative property D cyclic neofields should take a significantly shorter length

of time. Theorem 3.16 below provides the condition for such sequences to be ac-

ceptable.

As we have seen previously, there is a major structural difference in the con-

struction of a property D cyclic neofield depending on whether the order is odd or

even. If the sequence P has an odd number of terms, then we must decide how

to proceed when examining the first “half” of the sequence. By the very nature of

sequences where PM = PD with an odd n, the middle term of the sequence is a fixed

number n+1
2 . Using the criteria that for a sequence to be acceptable, the sum of

all subsequences must be non-zero, it is very easy for us to determine by the first
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“half” of a sequence whether a subsequence that falls entirely in the first half or the

second half is non-zero or not. For a subsequence that straddles the two halves, we

must consider the presence of this middle term when there are an odd number of

terms. Although it is possible to prove the conditions for a commutative property

D cyclic neofield regardless of whether there are an even or odd number of terms in

the sequence, for clarity they are proven here as separate cases.

Theorem 3.16. Commutative Property D Cyclic Neofield Existence Theorem

(Part I)

Let n be odd, O= {o1,o2, ...,o n−3
2
} be a sequence of terms from the set {2,3, ...,n−

1} − {n+1
2 } and Oσ ,λ = {oσ+1,oσ+2, ...,oσ+λ} be a subsequence of O with λ

terms.

(a) For all i 6= j,oi 6= o j and oi +o j 6= n+1.

(b) ∑Oσ ,λ
6≡ 0,λ ,σ +λ +1 or n−σ −1 modulo n.

Let P = {p1, p2, ..., pn−2}, where p n−1
2

= n+1
2 , pi = oi for i < n−1

2 and pi =

n+1−on−i−1 for i > n−1
2 .

Then P is an acceptable sequence generating a commutative property D cyclic

neofield.

(Part II)

Let n be even, E = {e1,e2, ...,e n−2
2
} be a sequence of terms from the set {2,3, ...,n−

1} and Eσ ,λ = {eσ+1,eσ+2, ...,eσ+λ} be a subsequence of E with λ terms.

(a) For all i 6= j,ei 6= e j and ei + e j 6= n+1.

(b) ∑Eσ ,λ
6≡ 0,λ , n−2

2 −σ or σ +λ + n+2
2 modulo n.

Let P = {p1, p2, ..., pn−2}, where pi = ei for i < n
2 and pi = n+ 1− en−i−1 for

i≥ n
2 .
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Then P is an acceptable sequence generating a commutative property D cyclic

neofield.

Proof. (Part I)

By the way we have defined P, pi + pn−i−1 = n+1, so PM = PD; thus we need

only verify condition (iii).

Let Pι ,κ = {pι+1,pι+2, ..., pι+κ} be a subsequence of P with κ terms.

Case 1, ι +κ < n−1
2 (that is, every term in Pι ,κ is before the middle term of P).

Then Pι ,κ = Oι ,κand therefore ∑Pι .κ
6= 0.

Case 2, ι + 1 > n−1
2 (that is, every term in Pι ,κ is after the middle term of P).

Then ∑Pι ,κ
= κ(n+1)−∑O j,κ = κ−∑O j,κ for some j. And since ∑O j,κ 6= κ for all

j, ∑Pι ,κ
6= 0.

Case 3, ι + 1 ≤ n−1
2 ≤ ι + κ (that is, the middle term of P is a term of Pι ,κ ).

Let pγ = p n−1
2

be the middle term of P and 0≤ β < κ

2 such that pγ−β , pγ+β ∈ Pι ,κ .

Then ∑
γ+β

j=γ−β
p j = β (n+1)+ n+1

2 ≡ β + n+1
2 modulo n.

Sub-case a, n− 2 = 2ι +κ (that is, the middle term of P is the middle term of

Pι ,κ ). Then β = n−1
2 − (ι +1) = ι +κ− n−1

2 and ∑Pι ,κ
= β + n+1

2 = ι +κ +1 6= 0

modulo n.

Sub-case b, n−2 < 2ι +κ (that is, the middle term of P is in the first half terms

of Pι ,κ ). Then β = n−1
2 − (ι +1) and ∑Pι ,κ

= ∑
γ+β

j=ι+1 p j +∑
ι+κ

j=γ+β+1 p j. As shown

previously, ∑
γ+β

j=ι+1 p j = β + n+1
2 = n− ι − 1 and since ∑

ι+κ

j=γ+β+1 p j is in the last

half of P, ∑
ι+κ

j=γ+β+1 p j = α −∑
ι
j=ι−α+1 p j where α = (2ι + κ)− (n− 2). Then

∑Pi,k
= n− i−1+2i+ k− (n−2)−∑Oι−α,α

= ι +κ +1−∑O(n−ι−κ−2),(2ι+κ−n+2)
and

since ∑O(n−ι−κ−2),(2ι+κ−n+2)
6= ι +κ +1(= n−σ −1) , ∑Pι ,κ

6= 0.

Sub-case c, n− 2 > 2ι + κ (that is, the middle term of P is in the last half
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terms of Pι ,κ ). Then β = ι + κ − n−1
2 and ∑Pι ,κ

= ∑
γ−β−1
j=ι+1 p j +∑

ι+κ

j=γ−β
p j. As

shown previously, ∑
ι+κ

j=γ−β
p j = β + n+1

2 = ι +κ +1 and since ∑
γ−β−1
j=ι+1 p j is in the

first half of P, ∑
γ−β−1
j=ι+1 p j = ∑Oι ,α

where α = γ−β −1− ι = n−2ι−κ−2. Then

∑Pi,k
= ι+κ+1+∑Oi,(n−2ι−κ−2)

and since ∑Oι ,(n−2ι−κ−2)
6= n−ι−κ−1(=σ +λ +1),

∑Pι ,κ
6= 0.

(Part II)

By the way we have defined P, pi + pn−i−1 = n+1, so PM = PD; thus we need

only verify condition (iii).

Let Pι ,κ = {pι+1,pι+2, ..., pι+κ} be a subsequence of P with κ terms.

Case 1, ι +κ < n
2 (that is, every term in Pι ,κ is before the middle of P). Then

Pι ,κ = Eι ,κand therefore ∑Pι .κ
6= 0.

Case 2, ι + 1 ≥ n
2 (that is, every term in Pι ,κ is after the middle of P). Then

∑Pι ,κ
= κ(n+ 1)−∑E j,κ = κ −∑E j,κ for some j. And since ∑E j,κ 6= κ for all j,

∑Pι ,κ
6= 0.

Case 3, ι +1 < n
2 ≤ ι +κ (that is, the middle of P is in Pι ,κ ). Let pγ = p n

2
be the

second of the middle two terms of P and 0 < β ≤ κ

2 such that pγ−β , pγ+β−1 ∈ Pι ,κ .

Then ∑
γ+β−1
j=γ−β

p j = β (n+1)≡ β modulo n.

Sub-case a, n−2 = 2ι +κ (that is, the middle of P is the middle of Pι ,κ ). Then

β = n
2 − (ι +1) = ι +κ− n−2

2 and ∑Pι ,κ
= β 6= 0 modulo n.

Sub-case b, n− 2 < 2ι + κ (that is, the middle of P is in the first half of

Pι ,κ ). Then β = n
2 − (ι + 1) and ∑Pι ,κ

= ∑
γ+β−1
j=ι+1 p j +∑

ι+κ

j=γ+β
p j. As shown pre-

viously, ∑
γ+β−1
j=ι+1 p j = β = n

2 − (ι + 1) and since ∑
ι+κ

j=γ+β
p j is in the last half of

P, ∑
ι+κ

j=γ+β
p j = α −∑

ι
j=ι−α+1 p j where α = (2ι + κ)− (n− 2). Then ∑Pi,k

=

β +α−∑
ι
j=ι−α+1 p j =

n
2 − (i+1)+(2i+ k)− (n−2)−∑Eι−α,α

= ι +κ− n−2
2 −
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∑E(n−2−ι−κ),(2ι+κ−n+2)
and since ∑E(n−ι−κ−2),(2ι+κ−n+2)

6= ι+κ− n−2
2 (= n−2

2 −σ) , ∑Pι ,κ
6=

0.

Sub-case c, n− 2 > 2ι +κ (that is, the middle of P is in the last half of Pι ,κ ).

Then β = ι +κ − n−2
2 and ∑Pι ,κ

= ∑
γ−β−1
j=ι+1 p j +∑

ι+κ

j=γ−β
p j. As shown previously,

∑
ι+κ

j=γ−β
p j = β = ι+κ− n−2

2 and since ∑
γ−β−1
j=ι+1 p j is in the first half of P, ∑

γ−β−1
j=ι+1 p j =

∑Eι ,α
where α = (n− 2)− (2ι + κ). Then ∑Pi,k

= β + ∑Eι ,α
= ι + κ − n−2

2 +

∑Ei,(n−2ι−κ−2)
and since ∑Eι ,(n−2ι−κ−2)

6=−ι−κ + n−2
2 (= σ +λ + n+2

2 ), ∑Pι ,κ
6= 0.

Using the conditions of this theorem with the aid of a computer we have found

numerous examples (perhaps all examples) of commutative property D cyclic ne-

ofields of orders greater than 2 and less than 33, with the exceptions of orders 6,

12 and 14. As shown in example 3.3, no order 6 property D cyclic neofield exists,

the nonexistence of a commutative property D cyclic neofields of order 12 or 14 is

proven here.

Proposition 3.17. There exists no commutative property D cyclic neofield of

order 12.

Proof. Let n = 11 and O = {o1,o2,,o3,o4} with oi ∈ {2,3,4,5,7,8,9,10}.

We may immediately eliminate some values from certain positions. If we con-

sider the case of λ = 1 then we are examining a subsequence of length 1 with

the position determined by σ . For example, O2,1 is the subsequence {o3}. In

this way, we may show using (c) and (d) that 0i 6= i+ 1 and oi 6= 11− i. Thus

o1 6= 2,10, o2 6= 3,9, o3 6= 4,8 and o4 6= 5,7. We will use the fact that the mirror of

any acceptable sequence is also acceptable, so we need only examine cases where

o1 ∈ {3,4,5}.

• Case O = {3,o2,o3,o4}. By (a),o2 ∈ {2,4,5,7,8,10}.
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– O = {3,2,o3,o4}. By (a), o3 ∈ {5,7}.

∗ O = {3,2,5,o4}⇒ O0,3 = {3,2,5}⇒ ∑O0,3 = 10 = n−σ −1 (e).

∗ O = {3,2,7,o4}⇒ O1,2 = {2,7}⇒ ∑O1,2 = 9 = n−σ −1 (e).

– O = {3,4,o3,o4}. By (a), o3 ∈ {2,5,7,10}.

∗ O = {3,4,2,o4}. By (a), o4 ∈ {5,7} but as shown o4 6= 5,7.

∗ O = {3,4,5,o4}⇒ O1,2 = {4,5}⇒ ∑O1,2 = 9 = n−σ −1 (e).

∗ O = {3,4,7,o4}⇒ O1,2 = {4,7}⇒ ∑O1,2 = 0 (b).

∗ O = {3,4,10,o4}. By (a), o4 ∈ {5,7} but as shown o4 6= 5,7.

– O = {3,5,o3,o4}. By (a), o3 ∈ {2,10}.

∗ O = {3,5,2,o4}⇒ O0,3 = {3,5,2}⇒ ∑O0,3 = 10 = n−σ −1 (e).

∗ O = {3,5,10,o4}⇒ O1,2 = {5,10}⇒ ∑O1,2 = 4 = σ +λ +1 (d).

– O = {3,7,o3,o4}⇒ O0,2 = {3,7}⇒ ∑O0,2 = 10 = n−σ −1 (e).

– O = {3,8,o3,o4}⇒ O0,2 = {3,8}⇒ ∑O0,2 = 0 (b)

– O = {3,10,o3,o4}⇒ O0,2 = {3,10}⇒ ∑O0,2 = 2 = λ (c).

• Case O = {4,o2,o3,o4}. By (a),o2 ∈ {2,5,7,10}.

– O = {4,2,o3,o4}. By (a),o3 ∈ {3,5,7,9}.

∗ O = {4,2,3,o4}. By (a),o4 ∈ {5,7} but as shown o4 6= 5,7.

∗ O = {4,2,5,o4}⇒ O0,3 = {4,2,5}⇒ ∑O0,3 = 0 (b).

∗ O = {4,2,7,o4}⇒ O1,2 = {2,7}⇒ ∑O1,2 = 9 = n−σ −1 (e).

∗ O = {4,2,9,o4}⇒ O1,2 = {2,9}⇒ ∑O1,2 = 0 (b).
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– O = {4,5,o3,o4}. By (a),o3 ∈ {2,3,9,10}.

∗ O = {4,5,2,o4}⇒ O0,3 = {4,5,2}⇒ ∑O0,3 = 0 (b).

∗ O = {4,5,3,o4}. By (a),o4 ∈ {2,10}.

· O = {4,5,3,2}⇒O2,2 = {3,2}⇒∑O2,2 = 5 = σ +λ +1 (d).

· O = {4,5,3,10}⇒ O0,4 = {4,5,3,10}⇒ ∑O0,4 = 0 (b).

∗ O = {4,5,9,o4}. By (a),o4 ∈ {2,10}.

· O = {4,5,9,2}⇒ O2,2 = {9,2}⇒ ∑O2,2 = 0 (b).

· O = {4,5,9,10} ⇒ O2,2 = {9,10} ⇒ ∑O2,2 = 8 = n−σ − 1

(e).

∗ O = {4,5,10,o4}⇒ O1,2 = {5,10}⇒ ∑O1,2 = 4 = σ +λ +1 (d).

– O = {4,7,o3,o4}⇒ O0,2 = {4,7}⇒ ∑O0,2 = 0 (b).

– O = {4,10,o3,o4}⇒ O0,2 = {4,10}⇒ ∑O0,2 = 3 = σ +λ +1 (d).

• Case O = {5,o2,o3,o4}. By (a),o2 ∈ {2,4,8,10}.

– O = {5,2,o3,o4}. By (a),o3 ∈ {3,9}.

∗ O = {5,2,3o4}⇒ O0,3 = {5,2,3}⇒ ∑O0,3 = 10 = n−σ −1 (e).

∗ O = {5,2,9,o4}⇒ O1,2 = {2,9}⇒ ∑O1,2 = 0 (b).

– O = {5,4,o3,o4}. By (a),o3 ∈ {2,3,9,10}.

∗ O = {5,4,2,o4}⇒ O0,3 = {5,4,2}⇒ ∑O0,3 = 0 (b).

∗ O = {5,4,3,o4}. By (a),o3 ∈ {2,10}.

· O = {5,4,3,2}⇒O2,2 = {3,2}⇒∑O2,2 = 5 = σ +λ +1 (d).

· O = {5,4,3,10}⇒ O0,4 = {5,4,3,10}⇒ ∑O0,4 = 0 (b).
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∗ O = {5,4,9,o4}⇒ O1,2 = {4,9}⇒ ∑O1,2 = 2 = λ (c).

∗ O = {5,4,10,o4}. By (a),o4 ∈ {3,9}.

· O = {5,4,10,3}⇒ O0,4 = {5,4,10,3}⇒ ∑O0,4 = 0 (b).

· O = {5,2,10,9} ⇒ O2,2 = {10,9} ⇒ ∑O2,2 = 8 = n−σ − 1

(e).

– O = {5,8,o3,o4}⇒ O0,2 = {5,8}⇒ ∑O0,2 = 2 = λ (c).

– O = {5,10,o3,o4}. By (a),o3 ∈ {3,9}.

∗ O = {5,10,3,o4}⇒ O1,2 = {10,3}⇒ ∑O1,2 = 2 = λ (c).

∗ O = {5,10,9,o4}. By (a),o4 ∈ {4,8}.

· O = {5,10,9,4}⇒ O2,2 = {9,4}⇒ ∑O2,2 = 2 = λ (c).

· O = {5,10,9,8}⇒O1,3 = {10,9,8}⇒∑O1,3 = 5 = σ +λ +1

(d).

Proposition 3.18. There exists no commutative property D cyclic neofield of

order 14.

Proof. Let n= 13, O= {o1,o2,,o3,o4,o5}with oi ∈{2,3,4,5,6,8,9,10,11,12}.

We may immediately eliminate certain values from certain positions. If we

consider the case of λ = 1 then we are examining a subsequence of length 1 with

the position determined by σ . For example, O2,1 is the subsequence {o3}. In this

way, we may show using (c) and (d) that 0i 6= i+1 and oi 6= 11− i. Thus o1 6= 2,12,

o2 6= 3,11, o3 6= 4,10, o4 6= 5,9 and o5 6= 6,8. We may also use the fact that the

mirror of any acceptable sequence is also acceptable, so we need only examine

cases where o1 ∈ {3,4,5,6}.

Case O = {3,o2,o3,o4,o5}. By (a),o2 ∈ {2,4,5,6,8,9,10,12}.
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• O = {3,2,o3,o4,o5}. By (a),o3 ∈ {5,6,8,9}.

– O = {3,2,5,o4,o5}. By (a),o4 ∈ {4,6,8,10}.

∗ O = {3,2,5,4,o5} ⇒ O1,3 = {2,5,4} ⇒ ∑O1,3 = 11 = n−σ − 1

(e).

∗ O = {3,2,5,6,o5}⇒ O1,3 = {2,5,6}⇒ ∑O1,3 = 0 (b).

∗ O = {3,2,5,8,o5}⇒ O2,2 = {5,8}⇒ ∑O2,2 = 0 (b).

∗ O = {3,2,5,10,o5}⇒ O2,2 = {5,10}⇒ ∑O2,2 = 2 = λ (c).

– O = {3,2,6,o4,o5}. By (a),o4 ∈ {4,10}.

∗ O = {3,2,6,4,o5}⇒ O2,2 = {6,4}⇒ ∑O2,2 = 10 = n−σ −1 (e).

∗ O = {3,2,6,10,o5} ⇒ O1,3 = {2,6,10} ⇒ ∑O1,3 = 5 = σ +λ +1

(d).

– O = {3,2,8,o4,o5}⇒ O0,3 = {3,2,8}⇒ ∑O0,3 = 0 (b).

– O = {3,2,9,o4,o5}⇒ O1,2 = {2,9}⇒ ∑O1,2 = 11 = n−σ −1 (e).

• O = {3,4,o3,o4,o5}. By (a),o3 ∈ {2,5,6,8,9,12}.

– O = {3,4,2,o4,o5}. By (a),o4 ∈ {6,8}.

∗ O = {3,4,2,6,o5}. By (a),o5 ∈ {5,9}.

· O = {3,4,2,6,5}⇒ O2,3 = {2,6,5}⇒ ∑O2,3 = 0 (b).

· O = {3,4,2,6,9}⇒ O3,2 = {6,9}⇒ ∑O3,2 = 2 = λ (c).

∗ O = {3,4,2,8,o5}⇒ O0,4 = {3,4,2,8}⇒ ∑O0,4 = 4 = λ (c).

– O = {3,4,5,o4,o5}⇒ O0,3 = {3,4,5}⇒ ∑O0,3 = 12 = n−σ −1 (e).
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– O = {3,4,6,o4,o5}⇒ O0,3 = {3,4,6}⇒ ∑O0,3 = 0 (b).

– O = {3,4,8,o4,o5}. By (a),o4 ∈ {2,12}.

∗ O = {3,4,8,2,o5}⇒ O0,4 = {3,4,8,2}⇒ ∑O0,4 = 4 = λ (c).

∗ O = {3,4,8,12,o5}⇒O1,3 = {4,8,12}⇒∑O1,3 = 11 = n−σ −1

(e).

– O = {3,4,9,o4,o5}⇒ O1,2 = {4,9}⇒ ∑O1,2 = 0 (b).

– O = {3,4,12,o4,o5}. By (a),o4 ∈ {6,8}.

∗ O= {3,4,12,6,o5}⇒O2,2 = {12,6}⇒∑O2,2 = 5=σ +λ +1 (d).

∗ O = {3,4,12,8,o5}⇒O1,3 = {4,12,8}⇒∑O1,3 = 11 = n−σ −1

(e).

• O = {3,5,o3,o4,o5}. By (a),o3 ∈ {2,6,8,12}.

– O = {3,5,2,o4,o5}. By (a),o4 ∈ {4,6,8,10}.

∗ O = {3,5,2,4,o5} ⇒ O1,3 = {5,2,4} ⇒ ∑O1,3 = 11 = n−σ − 1

(e).

∗ O = {3,5,2,6,o5}⇒ O1,3 = {5,2,6}⇒ ∑O1,3 = 0 (b).

∗ O = {3,5,2,8,o5} ⇒ O0,4 = {3,5,2,8} ⇒ ∑O0,4 = 5 = σ +λ + 1

(d).

∗ O = {3,5,2,10,o5}. By (a),o5 ∈ {6,8} but as shown o5 6= 6,8.

– O = {3,5,6,o4,o5}⇒ O1,2 = {5,6}⇒ ∑O1,2 = 11 = n−σ −1 (e).

– O = {3,5,8,o4,o5}⇒ O1,2 = {5,8}⇒ ∑O1,2 = 0 (b).

– O = {3,5,12,o4,o5}⇒ O1,2 = {5,12}⇒ ∑O1,2 = 4 = σ +λ +1 (d).
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• O = {3,6,o3,o4,o5}. By (a),o3 ∈ {2,5,9,12}.

– O = {3,6,2,o4,o5}. By (a),o4 ∈ {4,10}.

∗ O = {3,6,2,4,o5}. By (a),o5 ∈ {5,9}.

· O = {3,6,2,4,5}⇒ O1,4 = {6,2,4,5}⇒ ∑O1,4 = 4 = λ (c).

· O = {3,6,2,4,9}⇒ O3,2 = {4,9}⇒ ∑O3,2 = 0 (b).

∗ O = {3,6,2,10,o5} ⇒ O1,3 = {6,2,10} ⇒ ∑O1,3 = 5 = σ +λ +1

(d).

– O = {3,6,5,o4,o5}⇒ O1,2 = {6,5}⇒ ∑O1,2 = 11 = n−σ −1 (e).

– O = {3,6,9,o4,o5}⇒ O1,2 = {6,9}⇒ ∑O1,2 = 2 = λ (c).

– O = {3,6,12,o4,o5}. By (a),o4 ∈ {4,10}.

∗ O = {3,6,12,4,o5}. By (a),o5 ∈ {5,9}.

· O = {3,6,12,4,5} ⇒ O3,2 = {4,5} ⇒ ∑O3,2 = 9 = n−σ − 1

(e).

· O = {3,6,12,4,9}⇒ O3,2 = {4,9}⇒ ∑O3,2 = 0 (b).

∗ O = {3,6,12,10,o5} ⇒ O0,4 = {3,6,12,10} ⇒ ∑O0,4 = 5 = σ +

λ +1 (d).

• O = {3,8,o3,o4,o5}. By (a),o3 ∈ {2,5,9,12}.

– O = {3,8,2,o4,o5}⇒ O0,3 = {3,8,2}⇒ ∑O0,3 = 0 (b).

– O = {3,8,5,o4,o5}⇒ O1,2 = {8,5}⇒ ∑O1,2 = 0 (b).

– O = {3,8,9,o4,o5}⇒ O1,2 = {8,9}⇒ ∑O1,2 = 4 = σ +λ +1 (d).
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– O = {3,8,12,o4,o5}. By (a),o4 ∈ {4,10}.

∗ O = {3,8,12,4,o5}⇒O1,3 = {8,12,4}⇒∑O1,3 = 11 = n−σ −1

(e).

∗ O = {3,8,12,10,o5}. By (a),o5 ∈ {5,9}.

· O = {3,8,12,10,5}⇒ O3,2 = {10,5}⇒ ∑O3,2 = 2 = λ (c).

· O = {3,8,12,10,9}⇒ O1,4 = {8,12,10,9}⇒ ∑O1,4 = 0 (b).

• O = {3,9,o3,o4,o5}⇒ O0,2 = {3,9}⇒ ∑O0,2 = 12 = n−σ −1 (e).

• O = {3,10,o3,o4,o5}⇒ O0,2 = {3,10}⇒ ∑O0,2 = 0 (b).

• O = {3,12,o3,o4,o5}⇒ O0,2 = {3,12}⇒ ∑O0,2 = 2 = λ (c).

Case O = {4,o2,o3,o4,o5}. By (a),o2 ∈ {2,5,6,8,9,12}.

• O = {4,2,o3,o4,o5}. By (a),o3 ∈ {3,5,6,8,9,11}.

– O = {4,2,3,o4,o5}. By (a),o4 ∈ {6,8}.

∗ O = {4,2,3,6,o5} ⇒ O1,3 = {2,3,6} ⇒ ∑O1,3 = 11 = n−σ − 1

(e).

∗ O = {4,2,3,8,o5}⇒ O1,3 = {2,3,8}⇒ ∑O1,3 = 0 (b).

– O = {4,2,5,o4,o5}. By (a),o4 ∈ {3,6,8,11}.

∗ O = {4,2,5,3,o5}. By (a),o5 ∈ {6,8} but as shown o5 6= 6,8.

∗ O = {4,2,5,6,o5}⇒ O1,3 = {2,5,6}⇒ ∑O1,3 = 0 (b).

∗ O = {4,2,5,8,o5}⇒ O2,2 = {5,8}⇒ ∑O2,2 = 0 (b).

∗ O = {4,2,5,11,o5} ⇒ O1,3 = {2,5,11} ⇒ ∑O1,3 = 5 = σ +λ +1

(d).
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– O = {4,2,6,o4,o5}⇒ O0,3 = {4,2,6}⇒ ∑O0,3 = 12 = n−σ −1 (e).

– O = {4,2,8,o4,o5}. By (a),o4 ∈ {3,11}.

∗ O = {4,2,8,3,o5}⇒ O1,3 = {2,8,3}⇒ ∑O1,3 = 0 (b).

∗ O = {4,2,8,11,o5}⇒O0,4 = {4,2,8,11}⇒∑O0,4 = 12 = n−σ−

1 (e).

– O = {4,2,9,o4,o5}⇒ O1,2 = {2,9}⇒ ∑O1,2 = 11 = n−σ −1 (e).

– O = {4,2,11,o4,o5}⇒ O1,2 = {2,11}⇒ ∑O1,2 = 0 (b).

• O = {4,5,o3,o4,o5}. By (a),o3 ∈ {2,3,6,8,11,12}.

– O = {4,5,2,o4,o5}. By (a),o4 ∈ {3,6,8,11}.

∗ O = {4,5,2,3,o5}⇒ O2,2 = {2,3}⇒ ∑O2,2 = 5 = σ +λ +1 (d).

∗ O = {4,5,2,6,o5}⇒ O1,3 = {5,2,6}⇒ ∑O1,3 = 0 (b).

∗ O = {4,5,2,8,o5}⇒ O2,2 = {2,8}⇒ ∑O2,2 = 10 = n−σ −1 (e).

∗ O = {4,5,2,11,o5}⇒ O2,2 = {2,11}⇒ ∑O2,2 = 0 (b).

– O = {4,5,3,o4,o5}⇒ O0,3 = {4,5,3}⇒ ∑O0,3 = 12 = n−σ −1 (e).

– O = {4,5,6,o4,o5}⇒ O1,2 = {5,6}⇒ ∑O1,2 = 11 = n−σ −1 (e).

– O = {4,5,8,o4,o5}⇒ O0,3 = {4,5,8}⇒ ∑O0,3 = 4 = σ +λ +1 (d).

– O = {4,5,11,o4,o5}. By (a),o4 ∈ {2,6,8,12}.

∗ O = {4,5,11,2,o5}⇒ O2,2 = {11,2}⇒ ∑O2,2 = 0 (b).

∗ O = {4,5,11,6,o5}⇒ O0,4 = {4,5,11,6}⇒ ∑O0,4 = 0 (b).

∗ O = {4,5,11,8,o5}⇒O1,3 = {5,11,8}⇒∑O1,3 = 11 = n−σ −1

(e).
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∗ O = {4,5,11,12,o5}⇒O2,2 = {11,12}⇒∑O2,2 = 10 = n−σ−1

(e).

– O = {4,5,12,o4,o5}⇒ O1,2 = {5,12}⇒ ∑O1,2 = 4 = σ +λ +1 (d).

• O = {4,6,o3,o4,o5}. By (a),o3 ∈ {2,3,5,9,11,12}.

– O = {4,6,2,o4,o5}⇒ O0,3 = {4,6,2}⇒ ∑O0,3 = 12 = n−σ −1 (e).

– O = {4,6,3,o4,o5}⇒ O0,3 = {4,6,3}⇒ ∑O0,3 = 0 (b).

– O = {4,6,5,o4,o5}⇒ O1,2 = {6,5}⇒ ∑O1,2 = 11 = n−σ −1 (e).

– O = {4,6,9,o4,o5}⇒ O1,2 = {6,9}⇒ ∑O1,2 = 2 = λ (c).

– O = {4,6,11,o4,o5}⇒ O1,2 = {6,11}⇒ ∑O1,2 = 4 = σ +λ +1 (d).

– O = {4,6,12,o4,o5}. By (a),o4 ∈ {3,11}.

∗ O = {4,6,12,3,o5}⇒ O2,2 = {12,3}⇒ ∑O2,2 = 2 = λ (c).

∗ O = {4,6,12,11,o5}⇒ O1,3 = {6,12,11}⇒ ∑O1,3 = 3 = λ (c).

• O = {4,8,o3,o4,o5}⇒ O0,2 = {4,8}⇒ ∑O0,2 = 12 = n−σ −1 (e).

• O = {4,9,o3,o4,o5}⇒ O0,2 = {4,9}⇒ ∑O0,2 = 0 (b).

• O = {4,12,o3,o4,o5}⇒ O0,2 = {4,12}⇒ ∑O0,2 = 3 = σ +λ +1 (d).

Case O = {5,o2,o3,o4,o5}. By (a),o2 ∈ {2,4,6,8,10,12}.

• O = {5,2,o3,o4,o5}. By (a),o3 ∈ {3,6,8,11}.

– O = {5,2,3,o4,o5}. By (a),o4 ∈ {4,6,8,10}.

∗ O = {5,2,3,4,o5}. By (a),o5 ∈ {6,8} but as shown o5 6= 6,8.
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∗ O = {5,2,3,6,o5} ⇒ O1,3 = {2,3,6} ⇒ ∑O1,3 = 11 = n−σ − 1

(e).

∗ O = {5,2,3,8,o5}⇒ O1,3 = {2,3,8}⇒ ∑O1,3 = 0 (b).

∗ O = {5,2,3,10,o5}⇒ O2,2 = {3,10}⇒ ∑O2,2 = 0 (b).

– O = {5,2,6,o4,o5}⇒ O0,3 = {5,2,6}⇒ ∑O0,3 = 0 (b).

– O = {5,2,8,o4,o5}. By (a),o4 ∈ {3,4,10,11}.

∗ O = {5,2,8,3,o5}⇒ O1,3 = {2,8,3}⇒ ∑O1,3 = 0 (b).

∗ O = {5,2,8,4,o5}. By (a),o5 ∈ {3,11}.

· O = {5,2,8,4,3}⇒ O1,4 = {2,8,4,3}⇒ ∑O1,4 = 4 = λ (c).

· O = {5,2,8,4,11}⇒ O3,2 = {4,11}⇒ ∑O3,2 = 2 = λ (c).

∗ O= {5,2,8,10,o5}⇒O2,2 = {8,10}⇒∑O2,2 = 5=σ +λ +1 (d).

∗ O = {5,2,8,11,o5}⇒ O0,4 = {5,2,8,11}⇒ ∑O0,4 = 0 (b).

– O = {5,2,11,o4,o5}⇒ O1,2 = {2,11}⇒ ∑O1,2 = 0 (b).

• O = {5,4,o3,o4,o5}. By (a),o3 ∈ {2,3,6,8,11,12}.

– O = {5,4,2,o4,o5}. By (a),o4 ∈ {3,6,8,11}.

∗ O = {5,4,2,3,o5}⇒ O2,2 = {2,3}⇒ ∑O2,2 = 5 = σ +λ +1 (d).

∗ O = {5,4,2,6,o5}⇒ O0,4 = {5,4,2,6}⇒ ∑O0,4 = 4 = λ (c).

∗ O = {5,4,2,8,o5}⇒ O2,2 = {2,8}⇒ ∑O2,2 = 10 = n−σ −1 (e).

∗ O = {5,4,2,11,o5}⇒ O2,2 = {2,11}⇒ ∑O2,2 = 0 (b).

– O = {5,4,3,o4,o5}⇒ O0,3 = {5,4,3}⇒ ∑O0,3 = 12 = n−σ −1 (e).

– O = {5,4,6,o4,o5}. By (a),o4 ∈ {2,3,11,12}.
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∗ O = {5,4,6,2,o5}⇒ O0,4 = {5,4,6,2}⇒ ∑O0,4 = 4 = λ (c).

∗ O = {5,4,6,3,o5}⇒ O1,3 = {4,6,3}⇒ ∑O1,3 = 0 (b).

∗ O = {5,4,6,11,o5}⇒ O0,4 = {5,4,6,11}⇒ ∑O0,4 = 0 (b).

∗ O= {5,4,6,12,o5}⇒O2,2 = {6,12}⇒∑O2,2 = 5=σ +λ +1 (d).

– O = {5,4,8,o4,o5}⇒ O0,3 = {5,4,8}⇒ ∑O0,3 = 4 = σ +λ +1 (d).

– O = {5,4,11,o4,o5}⇒ O1,2 = {4,11}⇒ ∑O1,2 = 2 = λ (c).

– O = {5,4,12,o4,o5}. By (a),o4 ∈ {3,6,8,11}.

∗ O = {5,4,12,3,o5}⇒ O2,2 = {12,3}⇒ ∑O2,2 = 2 = λ (c).

∗ O= {5,4,12,6,o5}⇒O2,2 = {12,6}⇒∑O2,2 = 5=σ +λ +1 (d).

∗ O = {5,4,12,8,o5}⇒O1,3 = {4,12,8}⇒∑O1,3 = 11 = n−σ −1

(e).

∗ O = {5,4,12,11,o5}⇒O2,2 = {12,11}⇒∑O2,2 = 10 = n−σ−1

(e).

• O = {5,6,o3,o4,o5}. By (a),o3 ∈ {2,3,11,12}.

– O = {5,6,2,o4,o5}⇒ O0,3 = {5,6,2}⇒ ∑O0,3 = 0 (b).

– O = {5,6,3,o4,o5}. By (a),o4 ∈ {2,4,10,12}.

∗ O = {5,6,3,2,o5}⇒ O2,2 = {3,2}⇒ ∑O2,2 = 5 = σ +λ +1 (d).

∗ O = {5,6,3,4,o5}⇒ O1,3 = {6,3,4}⇒ ∑O1,3 = 0 (b).

∗ O = {5,6,3,10,o5}⇒ O2,2 = {3,10}⇒ ∑O2,2 = 0 (b).

∗ O = {5,6,3,12,o5}⇒ O0,4 = {5,6,3,12}⇒ ∑O0,4 = 0 (b).

– O = {5,6,11,o4,o5}⇒ O1,2 = {6,11}⇒ ∑O1,2 = 4 = σ +λ +1 (d).
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– O = {5,6,12,o4,o5}. By (a),o4 ∈ {3,4,10,11}.

∗ O = {5,6,12,3,o5}⇒ O0,4 = {5,6,12,3}⇒ ∑O0,4 = 0 (b).

∗ O = {5,6,12,4,o5}. By (a),o5 ∈ {3,11}.

· O = {5,6,12,4,3}⇒O2,3 = {12,4,3}⇒∑O2,3 = 6 = σ +λ +

1 (d).

· O = {5,6,12,4,11}⇒ O3,2 = {4,11}⇒ ∑O3,2 = 2 = λ (c).

∗ O = {5,6,12,10,o5}. By (a),o5 ∈ {3,11}.

· O = {5,6,12,10,3}⇒ O3,2 = {10,3}⇒ ∑O3,2 = 0 (b).

· O= {5,6,12,10,11}⇒O1,4 = {6,12,10,11}⇒∑O1,4 = 0 (b).

∗ O = {5,6,12,11,o5}⇒ O1,3 = {6,12,11}⇒ ∑O1,3 = 3 = λ (c).

• O = {5,8,o3,o4,o5}⇒ O0,2 = {5,8}⇒ ∑O0,2 = 0 (b).

• O = {5,10,o3,o4,o5}⇒ O0,2 = {5,10}⇒ ∑O0,2 = 2 = λ (c).

• O = {5,12,o3,o4,o5}. By (a),o3 ∈ {3,6,8,11}.

– O = {5,12,3,o4,o5}⇒ O1,2 = {12,3}⇒ ∑O1,2 = 2 = λ (c).

– O = {5,12,6,o4,o5}. By (a),o4 ∈ {3,4,10,11}.

∗ O = {5,12,6,3,o5}⇒ O0,4 = {5,12,6,3}⇒ ∑O0,4 = 0 (b).

∗ O = {5,12,6,4,o5}⇒O2,2 = {6,4}⇒∑O2,2 = 10 = n−σ−1 (e).

∗ O = {5,12,6,10,o5}. By (a),o5 ∈ {3,11}.

· O = {5,12,6,10,3}⇒ O3,2 = {10,3}⇒ ∑O3,2 = 0 (b).

· O= {5,12,6,10,11}⇒O1,4 = {12,6,10,11}⇒∑O1,4 = 0 (b).
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∗ O = {5,12,6,11,o5}⇒ O1,3 = {12,6,11}⇒ ∑O1,3 = 3 = λ (c).

– O = {5,12,8,o4,o5}⇒O0,3 = {5,12,8}⇒∑O0,3 = 12 = n−σ−1 (e).

– O = {5,12,11,o4,o5}. By (a),o4 ∈ {4,6,8,10}.

∗ O = {5,12,11,4,o5}⇒ O2,2 = {11,4}⇒ ∑O2,2 = 2 = λ (c).

∗ O = {5,12,11,6,o5}⇒ O1,3 = {12,11,6}⇒ ∑O1,3 = 3 = λ (c).

∗ O= {5,12,11,8,o5}⇒O1,3 = {12,11,8}⇒∑O1,3 = 5=σ +λ +1

(d).

∗ O= {5,12,11,10,o5}⇒O0,4 = {5,12,11,10}⇒∑O0,4 = 12= n−

σ −1 (e).

Case O = {6,o2,o3,o4,o5}. By (a),o2 ∈ {2,4,5,9,10,12}.

• O = {6,2,o3,o4,o5}. By (a),o3 ∈ {3,5,9,11}.

– O = {6,2,3,o4,o5}. By (a),o4 ∈ {4,10}.

∗ O = {6,2,3,4,o5}. By (a),o5 ∈ {5,9}.

· O = {6,2,3,4,5} ⇒ O3,2 = {4,5} ⇒ ∑O3,2 = 9 = n− σ − 1

(e).

· O = {6,2,3,4,9,o5}⇒ O3,2 = {4,9}⇒ ∑O3,2 = 0 (b).

∗ O = {6,2,3,10,o5}⇒ O2,2 = {3,10}⇒ ∑O2,2 = 0 (b).

– O = {6,2,5,o4,o5}⇒ O0,3 = {6,2,5}⇒ ∑O0,3 = 0 (b).

– O = {6,2,9,o4,o5}⇒ O1,2 = {2,9}⇒ ∑O1,2 = 11 = n−σ −1 (e).

– O = {6,2,11,o4,o5}⇒ O1,2 = {2,11}⇒ ∑O1,2 = 0 (b).

40



• O = {6,4,o3,o4,o5}. By (a),o3 ∈ {2,3,5,9,11,12}.

– O = {6,4,2,o4,o5}⇒ O0,3 = {6,4,2}⇒ ∑O0,3 = 12 = n−σ −1 (e).

– O = {6,4,3,o4,o5}⇒ O0,3 = {6,4,3}⇒ ∑O0,3 = 0 (b).

– O = {6,4,5,o4,o5}. By (a),o4 ∈ {2,3,11,12}.

∗ O = {6,4,5,2,o5} ⇒ O1,3 = {4,5,2} ⇒ ∑O1,3 = 11 = n−σ − 1

(e).

∗ O = {6,4,5,3,o5} ⇒ O0,4 = {6,4,5,3} ⇒ ∑O0,4 = 5 = σ +λ + 1

(d).

∗ O = {6,4,5,11,o5}⇒ O0,4 = {6,4,5,11}⇒ ∑O0,4 = 0 (b).

∗ O = {6,4,5,12,o5}. By (a),o5 ∈ {3,11}.

· O = {6,4,5,12,3}⇒ O3,2 = {12,3}⇒ ∑O3,2 = 2 = λ (c).

· O= {6,4,5,12,11}⇒O1,4 = {4,5,12,11}⇒∑O1,4 = 6=σ +

λ +1 (d).

– O = {6,4,9,o4,o5}⇒ O1,2 = {4,9}⇒ ∑O1,2 = 0 (b).

– O = {6,4,11,o4,o5}⇒ O1,2 = {4,11}⇒ ∑O1,2 = 2 = λ (c).

– O = {6,4,12,o4,o5}. By (a),o4 ∈ {3,11}.

∗ O = {6,4,12,3,o5}⇒ O2,2 = {12,3}⇒ ∑O2,2 = 2 = λ (c).

∗ O = {6,4,12,11,o5}⇒O2,2 = {12,11}⇒∑O2,2 = 10 = n−σ−1

(e).

• O = {6,5,o3,o4,o5}. By (a),o3 ∈ {2,3,11,12}.

– O = {6,5,2,o4,o5}⇒ O0,3 = {6,5,2}⇒ ∑O0,3 = 0 (b).
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– O = {6,5,3,o4,o5}. By (a),o4 ∈ {2,4,10,12}.

∗ O = {6,5,3,2,o5}⇒ O2,2 = {3,2}⇒ ∑O2,2 = 5 = σ +λ +1 (d).

∗ O = {6,5,3,4,o5} ⇒ O0,4 = {6,5,3,4} ⇒ ∑O0,4 = 5 = σ +λ + 1

(d).

∗ O = {6,5,3,10,o5}⇒ O2,2 = {3,10}⇒ ∑O2,2 = 0 (b).

∗ O = {6,5,3,12,o5}⇒ O2,2 = {3,12}⇒ ∑O2,2 = 2 = λ (c).

– O = {6,5,11,o4,o5}. By (a),o4 ∈ {2,4,10,12}.

∗ O = {6,5,11,2,o5}⇒ O2,2 = {11,2}⇒ ∑O2,2 = 0 (b).

∗ O = {6,5,11,4,o5}⇒ O2,2 = {11,4}⇒ ∑O2,2 = 2 = λ (c).

∗ O = {6,5,11,10,o5}⇒ O1,3 = {5,11,10}⇒ ∑O1,3 = 0 (b).

∗ O = {6,5,11,12,o5}⇒O2,2 = {11,12}⇒∑O2,2 = 10 = n−σ−1

(e).

– O = {6,5,12,o4,o5}⇒ O1,2 = {5,12}⇒ ∑O1,2 = 4 = σ +λ +1 (d).

• O = {6,9,o3,o4,o5}⇒ O0,2 = {6,9}⇒ ∑O0,2 = 2 = λ (c).

• O = {6,10,o3,o4,o5}⇒ O0,2 = {6,10}⇒ ∑O0,2 = 3 = σ +λ +1 (d).

• O = {6,12,o3,o4,o5}. By (a),o3 ∈ {3,5,9,11}.

– O = {6,12,3,o4,o5}⇒ O1,2 = {12,3}⇒ ∑O1,2 = 2 = λ (c).

– O = {6,12,5,o4,o5}⇒ O1,2 = {12,5}⇒ ∑O1,2 = 4 = σ +λ +1 (d).

– O = {6,12,9,o4,o5}. By (a),o4 ∈ {3,4,10,11}.

∗ O = {6,12,9,3,o5}⇒O1,3 = {12,9,3}⇒∑O1,3 = 11 = n−σ −1

(e).
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∗ O = {6,12,9,4,o5}⇒ O2,2 = {9,4}⇒ ∑O2,2 = 0 (b).

∗ O= {6,12,9,10,o5}⇒O1,3 = {12,9,10}⇒∑O1,3 = 5=σ +λ +1

(d).

∗ O = {6,12,9,11,o5} ⇒ O0,4 = {6,12,9,11} ⇒ ∑O0,4 = 12 = n−

σ −1 (e).

– O = {6,12,11,o4,o5}⇒ O0,3 = {6,12,11}⇒ ∑O0,3 = 3 = λ (c).

As mentioned above, we prove theorem 3.16 for odd and even values of n sep-

arately for clarity, but the statement of the theorem need not be segregated. In

theorem 3.16, value conditions appear different for odd and even cases. However,

in [1] Keedwell defines a value h by whether n is odd or even. In light of this, the

conditions for odd or even n may be combined into the following statement.

Corollary 3.19. Let A be as either E or O in theorem 3.16, depending on whether

n is odd or even. Define h = 0 if n is odd or h = n
2 if n is even. Then,

(a) For all i 6= j,ai 6= a j and ai +a j 6= n+1.

(b) ∑Aσ ,λ
6≡ 0,λ ,σ +λ +h+1,n−σ −h−1. modulo n.

Construct P as described in 3.16 replacing E or O with A, depending on whether

n is odd or even. Then P is an acceptable sequence generating a commutative

property D cyclic neofield.

Proof. Case n is odd. Then h= 0, σ +λ +h+1= σ +λ +1 and n−σ−h−1=

n−σ −1.

Case n is even. Then h = n
2 , σ +λ +h+1 = σ +λ + n

2 +1 = σ +λ + n+2
2 and

n−σ −h−1 = n− n
2 −σ −1 = n−2

2 −σ .

This corollary is especially helpful when conducting searches with the aid of a
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computer, as we may now define h in our program and use one set of criteria rather

than program two different sets of criteria for odd or even cases.

44



Chapter 4

Subneofields of Property D Cyclic Neofields

Keedwell conjectured that property D cyclic neofields exist for all orders greater

than 20. A program to find all commutative property D cyclic neofields generates

92 examples for order 21 (this accounts for mirrors/duals, but not other possible

isomorphisms) and 34 examples of order 22. These numbers climb rapidly to over

50,000 examples for order 31 and over 20,000 examples for order 32. This still does

not prove Keedwell’s conjecture, but it does a great deal to support it. But even

with modern computer processors, the extremely high volume of numbers involved

in checking each possible combination make thorough examination and brute force

computing of higher order examples prohibitive. It may therefore be beneficial to

search for alternative ways to find high order property D cyclic neofields. It may

be even more beneficial to find ways to construct them. For finite fields there is an

intimate connection between the ideas of subfields and field extensions. If a field

has a subfield, then it is always possible to extend the subfield to reconstruct the

field. It is therefore worth examining subneofields for ideas in extending known

(property D cyclic) neofields to even larger property D cyclic neofields.

Definition 4.1. Given a neofield (N,⊕, ·), a subset N′ ⊆ N is a subneofield if

(N′,⊕, ·) is a neofield.

Certain basic facts must be established to properly talk about subneofields. For

fields, since each structure (additive and multiplicative) is a group and groups are

very well studied, certain notions may seem obvious or trivial. Since the additive

structure of a neofield is a proper loop, these particular trivialities are not quite so
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trivial. For example, are the identities of each structure included in the substructure?

Is it conceivable for a substructure to be constructed in such a way that some other

element (other than the identity) is carrying out duties to form a loop? The answer

is no.

Proposition 4.2. A subneofield of a neofield contains the multiplicative and

additive identities.

Proof. Let (N,⊕, ·) be a neofield with additive identity of (N,⊕) as 0 and mul-

tiplicative identity of (N−{0}, ·) as 1. Let N′ be a subneofield of N. Then (N′,⊕)

is a loop with identity, say 0′. Since the identity element of a loop is unique and

since 0′ ∈ N, then 0′ = 0 and so 0 ∈ N′. Similarly (N′−{0}, ·) is a group and since

the identity element of a group is unique, 1 ∈ H−{0}.

4.1 Cycle Representation

Recall from chapter 2 that the entire additive loop structure may be stored

in a single row of its Cayley table by use of the fact that for all (left) neofields

x⊕ y = x · (1⊕ x−1 · y). We choose the row with the multiplicative identity and de-

fined a presentation function ψ : N → N by this row, giving us ψ(g) = 1⊕ g. As

an automorphism from N to N, it is acceptable (and often very useful) to display

ψ in disjoint cycle form. In particular, by closure of the operations (⊕) and (·), it

should be clear that a subneofield that contains any element of a cycle will contain

every element of the cycle. Being already aware of at least two elements that must

be present in a subneofield provides an excellent foundation for examining presen-

tation functions of a neofield for the existence or non-existence of subneofields.

Definition 4.3. The lead cycle of a presentation function of a neofield in disjoint

cycle form is the cycle containing the multiplicative identity of the neofield.
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Example 4.4. Let ψ = (x00)(x1x4)(x2x3) be the presentation function of a ne-

ofield N. Then the cycle (x00) is the lead cycle.

It will also be beneficial to identify the cycle that contains the additive identity,

but as we show next, it is the lead cycle. (In fact it would be identically useful for

us to define the lead cycle by the inclusion of the additive identity and prove the

inclusion of the multiplicative).

Proposition 4.5. A lead cycle contains the additive identity of the neofield.

Proof. By definition, x0⊕ 0 = x0 and therefore 0 is in the same cycle as x0.

Furthermore, if x0 is listed first in the cycle, then 0 is listed last.

Example 4.6. The sequence P = {2,4,3,6,5,7} generates a property D neofield

of order 9 (in this case GF(9)) with presentation function

ψ = (x0x40)(x1x2x7)(x3x6x5)

in disjoint cycle form. The cycle (x0x40) is the lead cycle with multiplicative

identity listed first, and consequently the additive identity listed last.

4.2 Examples of Subfields of Small Order

On the subject of subneofields, a most natural first question is if there exists

any subneofields for proper property D cyclic neofields. The following theorem

provides an entire family of property D cyclic neofields with substructures.

Proposition 4.7. A property D cyclic neofield of even order contains a subfield

isomorphic to GF(2).

Proof. Let (N,⊕, ·) be a property D cyclic neofield of even order m = n+ 1.

Then n is odd. By construction, 1⊕ xh = 0 where h = 0 if n is odd.
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So for the set N′ = {0,x0} we have 0⊕0 = x0⊕x0 = 0 and x0⊕0 = 0⊕x0 = x0

for (N′,⊕), and 0 · 0 = 0 · x0 = x0 · 0 = 0 and x0 · x0 = x0 for (N′, ·). Therefore

(N′,⊕, ·) is isomorphic to GF(2).

Example 4.8. The sequence P = {3,4,8,5,2,6,7} generates a commutative

property D cyclic neofield of order 10 with presentation function

ψ = (x00)(x1x4)(x2x7x5x6x8x3)

in disjoint cycle form. The elements in the cycle (x00) form a subfield isomor-

phic to GF(2).

Thus every even order property D neofield includes a subneofield. But this is

identically true for fields as every even order field contains GF(2) as a subfield. So

this result may not be very enlightening. However, we see a much more surprising

result for many odd order property D cyclic neofields.

Proposition 4.9. A property D cyclic neofield of odd order with a lead cycle of

length 3 contains a subfield isomorphic to GF(3).

Proof. Let N be a property D cyclic neofield of odd order m = n+ 1 and lead

cycle (x0a b). Then n is even. By construction, x0⊕xh = 0 where h = n
2 if n is even.

As shown previously, the lead cycle contains 0 and it is listed last if x0 is listed first,

so b = 0 implying that a = xh.

Then xh⊕x0 = xh · (x0⊕xh) = 0 and xh⊕xh = xh · (x0⊕x0) = x0. So for the set

N′= {0,x0,xh}we have 0⊕0= x0⊕xh = xh⊕x0 = 0, x0⊕0= 0⊕x0 = xh⊕xh = x0

and 0⊕ xh = xh⊕0 = x0⊕ x0 = xh for (N′,⊕). And we have 0 ·g = g ·0 = 0 for all

g ∈ N′, x0 · xh = xh · x0 = xh and x0 · x0 = xh · xh = x0 for (N′, ·). Therefore (N′,⊕, ·)

is isomorphic to GF(3).
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Example 4.10. The (non-commutative) property D cyclic neofield of order 17

with presentation function (in disjoint cycle form)

ψ = (x0x80)(x1x2x9x13x12x6)(x3x5)(x4x10x15x11x14x7)

has a subfield isomorphic to GF(3).

Example 4.11. The (commutative) property D cyclic neofield of order 25 with

presentation function

ψ = (x0x120)(x1x8x14x17x21x19x13x15x11x2)(x3x22x23x7x4x9x20x5x18x10)(x6x16)

has a subfield isomorphic to GF(3).

Both of these examples illustrate that the order of a subneofield does not nec-

essarily divide the order of the neofield, in contrast to the theorem of Lagrange for

groups.

4.3 Subneofields

For a finite field of order, say pk, the possible order of a subfield is restricted not

just by p but also by k. For example, GF(16) has both GF(2) and GF(4) as sub-

fields, but not GF(8). Examples 4.10 and 4.11 above illustrate that for neofields we

should not take restrictions such as these for granted. Fortunately, the multiplica-

tive structure of a neofield is a group so we have an established basis for studying

subneofields. For example, Paige [5] proved that the center of any admissible group

is admissible. For any group, the order of a subgroup must divide the order of the

group, and this leads us to some foundational results.

Proposition 4.12. A subneofield of a neofield of even order is of even order.
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Proof. Let N be a neofield of even order m = n+ 1 and subneofield N′. Then

N−{0} is a group of order n with N′−{0} a subgroup of order, say k. By Theorem

of Lagrange for groups, k must divide n, and since n is odd, so is k. Therefore, the

order of N′ is k+1 which is even.

Proposition 4.13. A subneofield of a cyclic neofield of odd order is of odd order.

Proof. Let N be a cyclic neofield of odd order m = n+ 1 and subneofield N′

with order m′ = n′+1. Then n is even and n′ divides n (by Lagrange). Let xr be a

generator of N′−{0}where r is the lowest value such that n′r≡ 0 mod n, so n′r = n.

By construction of a cyclic neofield, 1⊕xh = 0 where h = n
2 if n is even. By unique

solubility of equations in the additive loop, and since 0∈N′, we have x
n
2 ∈N′. Then

there must be some k such that kr = n
2 ⇒ 2kr = n = n′r⇒ 2k = n′ ⇒ n′ is even.

Since n′ is even, m′ = |N′| is odd.

Example 4.14. For a cyclic neofield of order 25, any subneofield must be of

orders 3,5,7,9 or 13. There is no subneofield of order 4, even though 3 divides 24.

We have established that examining cycles is important in determining the pres-

ence of a subneofield. By necessity, if a subneofield exists, then every element in

the lead cycle is an element in the subneofield. But there exists the possibility of

more interesting cases where the subneofield may be composed of more than one

cycle.

Proposition 4.15. A cyclic neofield of order 4k+1 does not contain a subneofield

of order 5 with presentation function disjoint cycles of length 3 and 2.

Proof. Let N be a cyclic neofield of order 4k + 1. Suppose by contradiction

that N has a subneofield of order 5 with disjoint cycles of length 3 and 2, say

(x0 x
n
2 0)(a b). Because (N−{0}, ·) is a cyclic group, a,b ∈ {x n

4 ,x
3n
4 }. Regardless
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of which is which, by the presentation function we have that x0⊕x
n
4 = x

3n
4 . But then

we have x
n
4 ⊕x

n
4 = x

n
4 · (x0⊕x0) = x

n
4 ·x n

2 = x
3n
4 . This indicates that (N,⊕) does not

have unique solubility of equations and so is not a loop.

Example 4.16. The (commutative) property D cyclic neofield of order 21 with

presentation function

ψ = (x0x100)(x1x6)(x2x15x11x18x19x3x17x8x14x13x16x5)(x4x12)(x7x9)

has no subneofield of order 5. Aside from the more obvious lack of an (x5x15)

or (x15x5) cycle, proposition 4.15 ensures that no such example exists.

There are also other indicators in the presentation function that a subneofield is

not present.

Proposition 4.17. For any cyclic neofield, a subneofield that contains x1 (the

generator of the cyclic group) as an element is the entire cyclic neofield.

Proof. Let N be a cyclic neofield with subneofield N′ and x1 ∈ N′. Because

N′−{0} is a group, any nonzero element xk ∈ N is (x1)k which is also in N′ by

closure..

Example 4.18. The (commutative) property D cyclic neofield of order 25 with

presentation function

ψ = (x0x120)(x1x4x22x15)(x2x17x6x8x7x13x9x10x5x21x11x20x18)(x3x14x19x16x23)

has no subneofield of order 7. The presence of x1 in the cycle (x1x4x22x15)

indicates that if this cycle is part of a subneofield, then the subneofield is the entire

neofield.

Proposition 4.19. For any cyclic neofield, a subneofield that contains consecu-

tive elements of the multiplicative group is the entire cyclic neofield.
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Proof. Let N be a cyclic neofield with subneofield N′ and xk,xk+1 ∈ N′. By

closure of the group (N′−{0}, ·), xk+1 ·x−k = x1 is also in N′. As shown previously,

this implies that N′ = N.

Example 4.20. The (commutative) property D cyclic neofield of order 25 with

presentation function

ψ = (x0x6x7x9x120)(x1x21x11x15x3x14x13x4x22x17x2x19x5x10x23x20x18)(x8x16)

has no proper subneofield. The presence of x6 and x7 in the lead cycle indicates

that if this cycle is part of a subneofield, then the subneofield is the entire neofield.

Proposition 4.21. For any cyclic neofield of order m = n+1, a subneofield that

contains xp as an element, where p is relatively prime to n, is the entire cyclic

neofield.

Proof. Let N be a cyclic neofield with subneofield N′ and xp ∈ N′. Because

N−{0} is a cyclic group of order n, and p is relatively prime to n, any nonzero

element xq ∈ N can be expressed as (xp)k for some integer k. And since xp ∈ N′

and N′−{0} is a cyclic group, xq = (xp)k ∈ N′ by closure. Therefore N ⊆ N′ and

so N = N′.

Example 4.22. The (commutative) property D cyclic neofield of order 21 with

presentation function

ψ = (x0x7x12x18x100)(x1x2x16x9x17)(x3x19x14x5x4x6x15x13)(x8x11)

has no proper subneofield. Because 7 is relatively prime to 20, the presence of

x7 in the lead cycle prohibits the possibility of a proper subneofield.
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Often while searching for examples of subneofields of property D cyclic ne-

ofields of order 25, there were lead cycles of length 5 that were different in appear-

ance - specifically (x0x6x18x120) and (x0x18x6x120). Both generate subneofields of

order 5, and as we show below, they are in fact both subfields isomorphic to GF(5).

Proposition 4.23. If (N,⊕, ·) is a cyclic neofield of order 4k+1 with a length 5

lead cycle that generates a subneofield N′, then N′ is isomorphic to GF(5).

Proof. Let N be a cyclic neofield of order 4k + 1 (n = 4k) with lead cycle

(1 a b c 0) that generates a subneofield N′. Then the Cayley table for (N′,⊕) is as

follows

⊕ 0 1 a b c

0 0 1 a b c

1 1 a b c 0

a a a · (1⊕ 1/a) a · (1⊕1) a · (1⊕ b/a) a · (1⊕ c/a)

b b b · (1⊕ 1/b) b · (1⊕ a/b) b · (1⊕1) b · (1⊕ c/b)

c c c · (1⊕ 1/c) c · (1⊕ a/c) c · (1⊕ b/c) c · (1⊕1)

Since 1⊕ x
n
2 = 0, we have that c = x

n
2 and since N′−{0} is a cyclic group

of four elements we have that a,b ∈ {x n
4 ,x

3n
4 }. Reducing these expressions (for

example a · (1⊕ c/a) = a · (1⊕ a) = a · b = 1), then the Cayley table simplifies as

follows
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⊕ 0 1 a b c

0 0 1 a b c

1 1 a b c 0

a a b c 0 1

b b c 0 1 a

c c 0 1 a b

This is clearly isomorphic of Z5. Since (N′,⊕) is a cyclic group of order 5 and

(N′−{0}, ·) is a cyclic group of order 4 with distribution inherited from N, N′ is a

field of order 5 isomorphic to GF(5).

4.4 The Goal of Embedding Property D Cyclic Neofields into Larger Property D

Cyclic Neofields.

In searching for substructures of property D cyclic neofields, no examples of

subneofields of order greater than 5 emerged. The search of commutative prop-

erty D cyclic neofields of order 25 was exhaustive, but the search through non-

commutative was far from it. (Roughly estimated to take multiple years on a single

computer). It therefore might be more beneficial to attempt to construct one rather

than searching through thousands of examples. However, in attempting to construct

an order 25 property D cyclic neofield with an order 13 subneofield an impossibility

surfaces. More generally, we have this result.

Proposition 4.24. A property D cyclic neofield of order 2k+1 has no subneofield

of order k+1.

Proof. By contradiction, let (N,⊕, ·) be a property D cyclic neofield of order

2k+ 1with a subneofield N′ of order k+ 1. Let x be the generator of (N, ·); so the
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elements of N′ are precisely the k elements of N of the form x2h for 0≤ h≤ k−1. By

closure of N′ we have x0⊕ x2h = x2i for some 0≤ i≤ k−1. This means that every

even value exponent from x0 through x2k−2 is mapped to an even value exponent

by the presentation function. Consequently, the odd value exponents map to odd

value exponents, so x0⊕x2h+1 = x2 j+1. Thus, for every 0≤ r,s≤ 2k, the difference

x0⊕xr+1

x0⊕xr is an odd valued exponent and the difference x0⊕xs+1

x0⊕xs is also an odd valued

exponent. Then there are 2k odd differences, yet only k possible odd values, so

there must exist some r 6= s such that x0⊕xr+1

x0⊕xr = x0⊕xs+1

x0⊕xs and therefore N does not

have property D.

Example 4.25. Suppose there exists a property D cyclic neofield (N,⊕, ·) of

order 17 with a subneofield (N′,⊕, ·) of order 9 generated by the sequence P =

{2,3,4,5,6,7}(example 3.13). Then the presentation function of N′ is ψ ′(y) =

(y0y2y5y1y7y6y3y40). The multiplicative group of N′ is a cyclic subgroup of the

cyclic multiplicative group of N, so the corresponding (y= x2) exponents in the lead

cycle of N will be even valued exponents (x0x4x10x2x14x12x6x80). This accounts

for all even exponents, indicating that evens map to evens, and so odds must map

to odds. Looking at the difference in exponents, we have that ψ(x1) has an odd

exponent and ψ(x0) has an even exponent, thus ψ(x1)
ψ(x0)

must have an odd exponent.

Similarly, ψ(x2) has an even exponent, thus ψ(x2)
ψ(x1)

has an odd exponent, and so on.

This illustrates that all differences (16 in total) must have an odd exponent, but there

are only eight odd values available. So the difference in exponents between some

consecutive elements must be duplicates, and this contradicts the requirement for a

property D cyclic neofield.
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