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ABSTRACT

THREE-DIMENSIONAL INDETERMINATE IMPACTS IN

LEGGED ROBOTIC LOCOMOTION

ABHISHEK CHATTERJEE, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Alan P. Bowling

Legged robotic systems undergo a large number of impacts during walking or

running tasks. These impacts occur over the surface of contact between the feet and

the ground. If a rigid body assumption is held, these impacts can be analyzed by

selecting a certain number of points on the impacting bodies. A minimum of three

points are required for analyzing a surface contact on a plane. However, using a

minimum number of points for analyzing surface impact would require an additional

analysis for appropriately selecting these points. On the other hand, if a large number

of evenly distributed impact points are used for the analysis, there wouldn’t be a need

for this additional analysis. However, as more and more impact points are added, the

impact analysis problem can become indeterminate if the number of constraint forces

exceed the number of degrees of freedom of the system.

This work provides a framework for the analysis of indeterminate impacts while

using a large number impact points on the surface of the foot. A comparison is

presented in this work between the results obtained by selecting varying number

vi



of points for impact analysis. This essentially shows that post-impact behavior of

the impacting bodies are independent of the number of points used for the impact

analysis. Finally, this framework has also been implemented in a model of a bipedal

robotic system undergoing a walking task.
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CHAPTER 1

INTRODUCTION

In the past few decades, legged robotic systems have been of great interest in

the robotic research community. One characteristic of legged systems such as bipeds

or quadrupeds is that these are floating base systems, and have no fixed point in the

environment. The position and orientation of the base of such a system is described

with the six degrees-of-freedom in reference to the inertial frame. These floating base

system, having no actuators to directly control the positions and orientations of the

base, can be classified as an under-actuated robotic system. Thus, the generalized

coordinates associated with the floating base needs to be controlled based on the other

actuators in the system. Legged robots constantly interact with the ground such that

the contact constraint forces on the feet of a robot behave as additional actuators,

and indirectly contribute to the control of the position and orientation of the base.

These contact constraint forces become impulsive during walking or running tasks or

whenever the feet surface gets into contact with some amount of velocity. In such

situations, the feet are said to be undergoing impact. Surface contact lasts for a very

small period of time during impacts, and the constraint forces become very large,

resulting in an instantaneous change in velocity.

Impacts on surfaces, such as the once that take place between the robot feet and

the ground, can be analyzed by considering a number of distinct points on the contact

surface. Then the post-impact behavior of the entire surface can be characterized

based on the impact analysis. Three different points are necessary to represent a

flat surface. However, if three points are to be selected for the analysis, an additional
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analysis is required to appropriately select these three points. These points need to be

selected based on the geometry of the impacting body, assuming a perfectly flat(plane)

ground. Based on how these points are selected, a center of pressure is created for

the impact, thus giving a direction to the ground reaction force vector. In order to

accurately analyze an impacting surface, the three points for analysis are required to

be chosen in such a way that ground reaction force through the center of pressure is

always normal to plane of impact [1]. In case, that the ground isn’t perfectly flat,

a further analysis is needed to identify the plane of impact. Therefore, given these

drawbacks related to the selection of the minimum three points to characterize the

surface impacts, a better solution to the problem would be to extend the analysis to

a greater number of evenly distributed points on the surface.

Analysis of a surface impact using a given number of contact points for analysis,

is performed based on the equations of motion for the system. The contact constraint

forces are represented in the equations of motion, in terms of the generalized forces

such that each contact point contributes three constraint force components. Thus,

increasing the number of analysis points effectively means increasing the number

constraint force component terms in the equations of motion. The goal of the impact

analysis is to solve for these constraint forces such that the post-impact velocities

for the impacting bodies can be resolved based on these forces. However, when the

number of analysis points are increased such that the number of constraint forces

exceed the number of degrees of freedom in the system, the impact analysis becomes

an indeterminate problem, as the number of unknowns in the system exceeds the

number of equations available to solve. Thus, addressing this indeterminacy becomes

crucial to extending the number of impact analysis points on the surface of contact.

Many different approaches for analyzing indeterminate impacts can be found

in the literature. One class of methods address the indeterminacy by adding more
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degrees-of-freedom (DOFs) to the problem. This increases the number of equations

available to solve for the extra forces. These approaches may be grouped together

into the class of continuous or compliant methods where material deformations due to

the impac are taken into account [2, 3, 4]. In this work hard impacts are considered

where there is negligible deformation of the colliding bodies. Hard impacts exhibit a

sudden jump in the velocities of the contact points when examined over a larger time

scale, which appears to be a discontinuity in the velocities. This situation is modeled

better using a discrete approach.

The discrete approach is commonly obtained by integrating the equations of

motion over an infinitesimally small time period as is done in classical impulse-

momentum theory. Because of the small time period, it is assumed that the con-

figuration does not change significantly during the collision [5, 6, 7]. The goal is to

find the post-impact velocities given the system’s pre-impact velocities. There are

two main discrete approaches, classified as analytic or iterative methods. The iter-

ative methods establish an optimization problem, which searches for a solution by

minimizing a cost function using standard optimization techniques. This includes

penalty methods, lagrange multiplier approaches, and energy dissipation principles

[8, 9, 10, 11]. Analytic methods use algebraic impulse-velocity relationship and pre-

dicts the post-impact velocities based on parameters such as coefficients of friction

and restitution[12, 13, 14].

For planar two-dimensional problems, there exists no impact-plane and conse-

quently the slip direction is not taken into account, thus the differential equations

describing the impact state could be converted into simple algebraic equations in

terms of the normal impulses, which could be solved analytically[12, 13, 14]. Never-

theless, such an analytical framework doesn’t prove to be useful for three-dimensional

indeterminate impact problems, with the exception of a certain limited set of impact
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configurations (i.e. collinear/central). Complications arise when friction is modelled

due to the non-linearities associated with sliding friction on the slip plane of the

impact point. This further leads to five first-order non-linear ordinary differential

equations in the case of single point impact [15, 16, 17, 18, 19, 20]. The problem

that arises in 3D impact problems with friction is determining the slip direction θ of

the impact after it comes to rest. Note that the slip direction is a result of the the

two tangential velocity components of the sliding point on the slip plane. Stronge

showed that for collinear or central collision of bodies that are axisymmetric about

the common normal direction, the direction of slip θ does not vary [15]. Bhatt et. al

qualitatively classified different sliding behavior using impact induced flow in tangent

velocity space, on the basis of certain invariant and flow change directions that were

found through the analysis[21].

The primary goal of this work is to develop a framework to analyze rigid impacts

using a large number of analysis points in legged robotic systems. This work describes

a general method for modeling indeterminate impacts using the equations of motion.

This method can be applied to different kinds of legged systems, with appropriate

adjustments. In this work it is also shown that if more number of evenly distributed

points are selected for the analysis of impacts, there is no difference in the post impact

behavior as compared to the case where a minimum set of points are appropriately

selected. This would relieve the need for the additional analysis based on the center of

pressure the selection of the points, because with large number of evenly distributed

points on the contact surface, the ground reaction force would always remain normal

to the impact plane.

In chapter 2 a detailed discussion is presented on the methods used for mod-

eling three-dimensional, frictional multiple point contacts and impacts. The method

presented in this section relies on a modified version of the equations of motion that
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relates the contact constrained velocities with respect to impulses that occur over

very small period of time. Chapter 3 presents some results on an impacting block,

using the impact analysis methods detailed in chapter 2. Following the details of

the impact analysis method, a few results of impact analysis on a walking bipedal

robotic system are presented. A model of the ATLAS robot is used to demonstrate

the application of impact analysis on legged robotic system. In chapter 4 a discussion

is presented on the methodology used for controlling the bipedal system. Chapter 5

discusses the results obtained by implementing the impact model on a bipedel robotic

system.
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CHAPTER 2

IMPACT MODEL

2.1 Model Description

This section would describe the various parameters that would be used through

out this chapter. The method described in the following sections are very general in

nature and can be applied for different kinds of systems that share certain features

with the bipedal system.

Let, there be an inertial reference frame N ∈ R
3 with the basis N̂1 = [1, 0, 0]T ,

N̂2 = [0, 1, 0]T and N̂3 = [0, 0, 1]T . Then a robot of Nd degrees-of-freedom can be

described using a set of generalized coordinates q ∈ R
Nd such that,

q = [q1, q2, ..., qNd
]T (2.1)

where q1, ...qNd
are the coordinates that can completely describe the positions and

orientation of the robotic system. These coordinates are composed of the position

and orientation components of the free floating base and the various joint angles in

the system. The number of bodies experiencing impact at any given instant is Nb.

Let the number of contact point considered on a body i be ni, where i = 1, .., Nb.

Therefore, the total number of contact points and constraint forces on the system

would be Np =
∑Nb

i=1 ni and Nc = 3
∑Nb

i=1 ni, respectively. The number of actuator

torques in the system is given by Nt.

6
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Figure 2.1. Degrees of freedom.

2.2 Equations of Motion

Based on the model parameters described in the previous section an equations

of motion for the robotic system can be written without any loss of generality,

A q̈ + b(q, q̇) + g(q) = Jc
T F +GTΓ (2.2)

where,

F = [f1, f2, ..., fNc
]T

Γ = [Γ1,Γ2, ...,ΓNt
]T

A ∈ R
Nd×Nd
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b ∈ R
Nd

g ∈ N

Jc ∈ R
Nc×Nd

G ∈ R
Nt×Nd

In equation(2.2) A is the inertia matrix, while b and g are vectors containing

the coriolis and gravity terms respectively. F is a vector containing all the con-

straint forces acting on the system. Jc is a jacobian matrix containing row vectors

corresponding to each coordinate of the contact points. Γ is a vector containing all

the actuator torques in the system, and G is a permutation matrix that selects the

appropriate torques corresponding to each actuated degree of freedom.

2.3 Impact Law

In this and the following section, the equations of motion, as described in (2.2)

would be used to formulate an impact law for resolving the contact constraints during

an impact event. This impact law can be used to analyze impacts that causes the

system to rebound as well as stable contacts. Contacts are considered to be successive

impacts with diminishing energy loss. This recursion is terminated when the energy

loss due to an impact is very close to zero, or the post-impact velocities of the contact

points within a threshold range.

Mechanical systems when subjected to an impact, experience an instantaneous

change in its velocities. These instantaneous changes of velocities are a result of the

energy loses endured by the system due to friction and infinitesimally small material

deformations around the contact region. In this model small scale deformations of the

bodies are going to be ignored, thus maintaining a rigid body assumption. Another

assumption made in this work is that there is no change in the configuration of the

8



entire system during an event, or in other words the generalized coordinates, q of

the system remain constant during the impact event. This assumption follows from

the fact that there instantaneous change in velocity and due to the infinitesimally

small time-period of impact the change in positions of the system can be considered

negligible.

As the robotic system experiences impact there is an instantaneous change in

the velocities of the system, which gives rise to apparent discontinuities in the state

trajectories, on a large time-scale. However, over the infinitesimally small time-period

of the impact event, the state trajectories are continuous. Hence the equations of

motion are integrable during the impact event. Thus, performing an integration over

a small period ǫ gives,

∫ t+ǫ

t

[A q̈ + b(q, q̇) + g(q) ] dt =

∫ t+ǫ

t

[
Jc

T F +GTΓ
]
dt (2.3)

As a result of the assumptions previously stated, the generalized coordinates, q re-

mains constant. The instantaneous change in velocities of the contact points result in

a finite amount of change in generalized velocities, q̇ . However, this also implies that

the change in generalized accelerations q̈ and constraint forces F would tend towards

infinitesimally large values. In (2.3), the jacobian and inertia matrices are functions

of q, and consequently would remain constant during the impact event. Similarly,

the gravity terms being a function of q would remain constant during the impact.

The coriolis terms and the actuator torques would have a finite amount of change

during the impact event. However, since the time period ǫ over which the integration

is being performed is infinitesimally small, all the integrands that have a bounded

or finite magnitude would yield negligible results upon integration, whereas all inte-
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grands tending towards infinitesimally large magnitudes would yield finite/bounded

results upon integration. Therefore,

lim
ǫ→∞

∫ t+ǫ

t

b(q, q̇)dt ≈ 0

lim
ǫ→∞

∫ t+ǫ

t

g(q)dt ≈ 0

lim
ǫ→∞

∫ t+ǫ

t

GTΓdt ≈ 0

Hence the equation (2.3) can be reduced to,

A

∫ t+ǫ

t

q̈dt = Jc
T

∫ t+ǫ

t

Fdt (2.4)

After performing the integration, the above equation can be written in terms of the

velocities of the contact points,

ϑ − ϑo = ϑ(t+ ǫ) − ϑ(t) = JcA
−1Jc

T

︸ ︷︷ ︸

M

p (2.5)

Where ϑo and ϑ are the pre- and post-impact velocities of the contact point, respec-

tively. p is the vector containing all the impact impulses during the impact event.

The goal is to find the impulses, p for a given impact, such that post-impact veloc-

ities could be calculated, and subsequently the integration could be restarted using
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these post-impact velocities as initial condition. Now, the p needs to be such that

the impact is energetically consistent. In order to find the impulses such that the

system is energetically consistent, the first step would be to reduce the equation (2.3)

in terms of one independent variable. Figure (2.3) is taken from [1], shows velocities

of impact points evolving on the basis of one independent impulse. The following two

sections are going to discuss that process.

2.4 Coulomb’s Law of Friction

During an impact event, in addition to the normal forces, tangential forces along

the impact plane are also applied on the system. These tangential forces arise due

to the friction between the contact point and the surface. The tangential frictional

forces acting on the system can be described in terms of the Amonton-Coulomb’s law

of friction in R
3 given by,

‖ft‖ ≤ µfn (2.6)

where, ft = [ft1, ft2]
T is a vector containing the frictional force acting tangential to

the impact plane, such that ft1 and ft2 are the components of the frictional force in

the two tangential directions. µ is the coefficient of limiting(sliding) friction and fn

is the normal force acting on the impact plane.

This work deals with the coulomb’s friction that is applied to various contact

points of the bodies. Therefore, the coulomb’s law expressed in (2.6) needs to be

extended for multiple point contact and impact. As opposed to (2.6) which is in

R
3, the coulomb’s law for multiple-point friction needs to be defined in R

Nc . The

constraint force vector defined in section 2.2 can be written as,

F = [fk]Nc×1

11
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Such that k = 1, .., Nc. F is a concatenation of smaller three-element force vectors

associated with each point on the impacting bodies, such that the first and second

elements of these smaller vectors represent the tangential components whereas the

element represents the normal component of the point force. Thus, the frictional

force terms in F can be describe using (2.6) as,
√

f3j−2
2 + f3j−1

2 ≤ µjf3j for j = 1, .., Np (2.7)

Where, Np is the total number of contact points for the entire system, µj is the

coefficient of friction for the jth point. The coulomb’s law stated in (2.6) and (2.7)

is a discontinuous law of friction. The inequality in the equation accounts for the

fact that the magnitude of the maximum frictional force that can act upon a body

during sliding, and is given by µjf3j . The body sticks whenever the magnitude of

the frictional force is less than µjf3j . The development that follows in the current
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and the following section, would consider all frictional forces to be arising due to

sliding friction. In section 2.7, a discussion is provided about the incorporation of

sticking phenomenon in coulomb’s law. Thus, when we consider only sliding friction

the inequality in (2.6) is replaced by an equality, and the frictional force can be broken

into the two planar components,

f3j−2 = −µj cosφjf3j f3j−1 = −µj sinφjf3j (2.8)

where, φj represents the sliding angle on the slip plane. Note, that the each component

of force on the tangent plane has a negative sign. This is because frictional force

always acts in a direction opposite to the direction of slip. The direction of slip for a

given point is a function of the velocities of the point. Therefore, given the velocities

of a point ϑ = [ϑk]Nc×1, expressions for sinφj and cosφj for j = 1, .., Np, can be

written as,

cosφj =
ϑ3j−2

√

ϑ3j−2
2 + ϑ2

3j−1

sinφj =
ϑ3j−1

√

ϑ3j−2
2 + ϑ2

3j−1

From the equation (2.8),

dp3j−2

dt
= −µj cosφj

dp3j
dt

dp3j−1

dt
= −µj sinφj

dp3j
dt

(2.9)

Performing an integration would yield,

p3j−2 = −µj

∫

cos φjdp3j p3j−1 = −µj

∫

sinφjdp3j (2.10)

Therefore, the impulse vector p = [pk]Nc×1 can be substituted in (2.5). However,

since the tangential impulses can be related to the normal impulses, as shown in

equation (2.10), the velocities of the contact point can be defined as,

ϑ − ϑo = M

∫

Hdpn (2.11)
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where, H is a transformation matrix that applies Coulomb’s law on Np contact points

and is given by,

H = [hk,j]Nc×Np
s.t. hkj =







−µj cos φj if k = 3j − 2

−µj sinφj if k = 3j − 1

1 if k = 3j

0 if 3j − 2 > k > 3j

and dpn is a vector containing the normal components of the differential impulses,

dpn = [dpnj]Np×1

Where k = 1, .., Nc and j = 1, .., Np, and dpnj corresponds to the normal im-

pulses of each contact point. Equation (2.11) shows the numerical integration required

to compute the velocities during the impact event. In order to perform the numer-

ical integration with appropriate initial conditions the same equation needs to be

rewritten in a differential form,

dϑ = MHdpn (2.12)

Note that the matrices M , which describes the inertia and configuration proper-

ties of the system and H , which describes the tangential forces in terms of the normal

forces, remain constant during the impact event. Next step would be to describe the

equation (2.12) in terms of one independent normal impulse.

2.5 Rigid Body Constraint

So far in this analysis, the number of independent variables have been reduced

by relating the tangential differential impulses to the normal differential impulses us-

ing coulomb’s law of friction. In this section, all the differential normal impulses would
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Figure 2.4. Relative Velocities of Different Points on a Rigid Body.

be constrained in terms of one independent differential normal impulse. Reducing all

the contact point differential impulses in the system in terms of one independent dif-

ferential normal impulse would help determine the end of the compression phase of

the impact through an estimation of the energy loss in the system.

In [12], the application of the velocity constraints at the force level were derived

using the dual properties of the impact Jacobian. Here, the constraints are found in

differential form to be consistent with the remainder of the numerical framework.

Consider, the system whereNb number of bodies are undergoing impact. Within

an impacting body i, such that i = 1, .., Nb any two impact points be q and r, such that

q, r = 1, .., ni. The body is considered to be non-deformable, due to the rigid body

assumption. Therefore, the relative-velocity component along the direction through

the points q and r must be zero. Let the velocity vector for the impact points, ϑ be

rewritten as a concatenation of smaller vectors Vi representing the velocity vector for

each point within a body,

ϑ =
[
V1

T , ...,VNb

T
]T

And,

Vi =
[
v1

T , ...,vni

T
]T
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where, vq for q = 1, .., ni are smaller three-dimensional vectors containing the velocity

components of the each contact point in a body i, that consists of ni contact points.

Then the relationships for the rigid body constraints between each point can

be written as,

(vq − vr) ·
Pq −Pr

|Pq −Pr|
= 0 for

q, r = 1, ...ni

q 6= r
(2.13)

Where, and the Pq and Pr are the position vectors (not to be confused with the

impulse vectors) of the corresponding contact points with respect to some body at-

tached reference point. The equation (2.13) can be expanded in terms of the inertial

reference frame as follows,

[

(vt1qN̂1 + vt2qN̂2 + vnqN̂3)− (vt1rN̂1 + vt2rN̂2 + vnrN̂3)
]

·
[

XqrN̂1 + YqrN̂2 + ZqrN̂3

]

= 0 (2.14)

where Xqr, Yqr and Zqr are the direction cosines of the position vector Pqr = Pq−Pr.

(vt1q − vt2r )Xqr + (vt2q − vt2r )Yqr + (vnA − vnB)Zqr = 0 (2.15)

Using the velocity-force projection method developed in [13], also developed in the

Appendix for this particular case, (2.15) is equivalently expressed in differential form

as,

(dpt1q − dpt1r )Xqr + (dpt2q − dpt2B )Yqr + (dpnq − dpnr)Zqr = 0 (2.16)

Using (2.10), the tangential components in the above equations can be written as,

(−µq cosφqdpnq + µr cosφrdpnr)Xqr

+(−µq sinφqdpnA + µr sinφrdpnB)Yqr

+ (dpnq − dpnr)Zqr = 0 (2.17)
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Then, a relationship can be expressed between, dpnq and dpnr , when q 6= r,

dpnq =

(
µrcosφr Xqr + µrsinφr Yqr + Zqr

µqcosφq Xqr + µqsinφq Yqr + Zqr

)

︸ ︷︷ ︸

Cqr

dpnr (2.18)

Therefore, a rigid body constraint between two arbitrary points q and r in the ith

body can be describe using the quantity Cqr, such that

Cqr =
µrcosφr Xqr + µrsinφr Yqr + Zqr

µqcosφq Xqr + µqsinφq Yqr + Zqr

if
q, r = 1, ..., ni

q 6= r

Cqr = 1 if q = r (2.19)

which provides a general form of the constraint between two arbitrarily con-

figured impact points. These derived constraints are used in order to express the

differential equations of motion as a function of a single, independent normal impulse

parameter, dpnr , without any loss of generality. Substitution of all the rigid body

constraints into (2.12) yields,

dϑ = MHGdpnr (2.20)

where,

G =
[
G1

T , ...,GNb

T
]T
s.t.Gi = [Cqr]

T

Thus, with the equation in (2.20) multiple pint contacts and impacts can be analyzed

with respect one independent normal impulse variable. In the following section, we

shall explore the effects of stick-slip on the tangential components of the velocities

and the impact forces.

2.6 Transformation to Cylindrical Coordinates

The analysis up to this point has been carried out in Cartesian coordinates,

see [22, 17]. However, as mentioned before, the slip direction in the case of three-

dimensional impacts can be discontinuous, therefore expressing (2.20) in cylindrical
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coordinates would be more appropriate for detecting these discontinuities. A trans-

formation is carried out to describe the velocity components in terms of cylindrical

coordinates, similar to [7, 22]. The following equation shows the velocity in terms of

cylindrical coordinates for points j = 1, ..., Np,

vj =









v3j−2

v3j−1

v3j









=









sj cosφj

sj sinφj

vnj









(2.21)

where sj =
√

v3j−2
2 + v23j−1, φj = tan−1(v3j−1/v3j−2) and vnj are the normal veloc-

ities. Before implementing these relations into (2.20), a differentiation of (2.21) is

needed, which gives,

dvj =









cosφj −sj sin φj 0

sin φj sj cos φj 0

0 0 1

















dsj

dφj

dvnj









= Pj









dsj

dφj

dvnj









(2.22)

Expressions similar to (2.22) can be obtained for all the points with corresponding

terms on the right-hand side. The coefficients are collected in the form of a block

diagonal matrix P ,such that P ∈ RNcXNc ,

P =
















P1 0 · · · · · · 0

0 P2
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . . PNp−1 0

0 · · · · · · 0 PNp
















Solving for the sliding velocity, sliding direction and normal velocity of each impact

point using (2.20) yields,

dϑcyl = P−1MHGdpnr (2.23)

18



The vector dϑcyl is the differential of ϑcyl, which is a vector containing the velocities of

the points in cylindrical coordinates. P is invertible as long as the sliding velocity of

all the impact point are non-zero. Otherwise, a singularity arises and matrix P is no

longer invertible. Also, note that this scenario represents the point during a collision

in which an impact point comes to rest at the stick-slip transition. To overcome this

singularity, an event-based approach is used, similar to the contact detection scheme

[23], to detect when any of the impact points reach the stick-slip transition. The

numerical integration is halted and the stick-slip transition is evaluated to determine if

the impact point will slip-reverse or stick. The numerical integration is then restarted

using the updated slip-state of the impact point until the impact event ends or another

point comes to rest. In the next section, a theory on the rigid body constraints for

the impact points have been developed, such that these constraints would reduce the

number of independent differential impulse variables needed to describe the velocities

of the points.

2.7 Stick-Slip Transition

The development in the preceding sections are based on the condition when the

contact points are in sliding phase, giving rise to tangential velocities on the impact

plane. However, in a real situation there is a possibility when any given contact point

can stick(halt). This feature of an impact problem is captured in the discontinuity of

the coulomb’s law (2.6). When a contact point sticks the magnitude of the frictional

forces becomes less than µjf3j , such that it restricts the motion of the point.

As stated in [15, 16], during the impact event, when a contact point comes to rest

at the stick-slip transition phase,there are two possibilities: slip-reversal or sticking.

If Slip-Reversal occurs the point continues sliding in a new direction, whereas if the

point sticks, the rate of change of the tangential velocities of the point becomes zero.

19



Thus, for a point j = s where j = 1, .., Np that sticks, the tangetial velocities can be

set to zero, using(2.20),






dv3s−2

dv3s−1




 =






0

0




 =






m1

m2














dp3s−2

dp3s−1

...









(2.24)

where the m1 and m2 are the row vectors of the matrix, M and comes from the

following,

M =












m1 1 m1 2 · · · m1Nc

m2 1 m2 2 · · · m2Nc

...
...

. . .
...

mNc 1 mNc 2 · · · mNc Nc












=












m1

m2

...

m12












In addition, the Coulomb friction relation for point j is removed since the slip-state at

the stick-slip transition needs to be determined. Solving for the tangential impulses

yields,





dp3s−2

dp3s−1




 =






m3s−2 3s−2 m3s−2 3s−1

m3s−1 3s−2 m3s−1 3s−1






−1




−n1

−n2




UGdpnr (2.25)

where n1 and n2 are vectors containing elements from the M matrix,











m1 1 · · · m1 3(s−1) m1 3s · · · m1Nc

m2 1 · · · m2 3(s−1) m2 3s · · · m2Nc

...
...

...
...

...
...

mNc 1 · · · mNc 3(s−1) mNc 3s · · · mNc Nc












=












n1

n2

...

n12












and U can be written as,

U = [uk]Nc−2 s.t. uk =







−µk cosφk if k = 3j − 2 & j 6= s

−µk sinφk if k = 3j − 1 & j 6= s

1 if k = 3j

0 if 3k − 2 > j > 3k
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The no-slip condition is used to determine if an impact point will stick or slip-reverse.

√

p3s−2
2 + p3s−1

2 ≤ µk dp3s −→

√

p3s−2
2 + p3s−1

2

dpnr
= µ̄s ≤ µs (2.26)

where µ̄s is the critical coefficient of friction for stick for point j = s. For the

impact point to remain in stick, µs ≥ µ̄s which imposes a lower bound on µs. If this

condition is not met, then the impact point slip-reverses. It is also important to note

that the calculation for this critical coefficient for stick is solely dependent on the

configuration and inertia properties of the system. Whereas, during initial sliding the

sliding direction φs is unpredictable due to the nonlinearities of friction, this is not

the case if an impact point slip-reverses. For a point that slip-reverses, the impact

point slides in a constant, unique direction [24, 15, 16, 22] and determined by,

φs = tan−1

(
m3s−2 3s−2 m3s−1 3s − m3s−2 3s−1 m3s−2 3s

m3s−1 3s−1 m3s−2 3s − m3s−1 3s m3s−2 3s−1

)

(2.27)

by way of example for point j = s. The sliding direction after the stick-slip transition

is a function of the configuration and inertia properties of the system [24, 15, 16, 22],

which is similar to the determinate of the critical coefficient of friction. Otherwise, if

stick prevails, then µ̄s is used instead of µs in the analysis.

2.8 Energy Dissipation

The impact event consists of two phases: compression phase and restitution

phase. The compression phase starts at the beginning of the impact event and ends

when the normal velocity of the point becomes zero. The restitution phase starts when

the normal velocity becomes positive, and ends when the body starts to separate from

the ground. Figure 2.5 is taken from [1], and shows how normal work, which accounts

for all the energy loss in the system, typically evolve during an impact event. In this

section, the work-energy theorem is used to determine the end of the compression
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Figure 2.5. Typical Normal Work Plot during an Impact Event.

phase of the impact event, and subsequently determine the end of the restitution

phase or impact event. The calculation of the work is given as the change in kinetic

energy between the initial and final states of the impact as,

T2 = T1 + W1−2 = T1 + U1 − U2 + (W1−2)d (2.28)

where Ti and Ui are the kinetic and potential energy at state i, and (W1−2)d is the

non-conservative, or dissipative, work done on the system between states 1 and 2.

In this work, the potential energy terms U1 and U2 are neglected due to the hard

impact assumptions, or negligible deformation, from the strict adherence to rigid

body modeling.

W1−2 = T2 − T1 =
1

2
q̇T (t+ ǫ)M q̇(t+ ǫ)−

1

2
q̇T (t)M q̇(t) (2.29)

Consider the normal work done during a collision to be the integration of the

dot product between the normal force and displacement as,

Wn =

∫

FTdx =
Nc∑

i=1

∫

fidxi

=

Nc∑

i=1

∫

dpi
dxi

dt
=

∫

ϑTdp =

∫

ϑTGdpnr (2.30)
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where the rigid body constraints are implemented and the normal work is determined

as a function of a single, independent normal impulse parameter. And written in

differential form,

dWn

dpnr
= ϑTG (2.31)

Notice that (2.31) is differentiated with respect to dpnr. By equating (2.31) to zero

yields the normal impulse pnc at the end of the compression phase for the system,

which is a function of the normal velocities of the impact points and the constraint

equations derived. Also, pnc and subsequently Wnc may change if the end of the impact

event is not reached if an impact point comes to rest at the stick-slip transition. In

the event that multiple shifts occur in the normal work plot, then the normal work

curve for the latter shift is used with the ECOR to determine the net normal work

Wnf for the impact event.

The set of first order, nonlinear ODE’s in (2.20), the rigid body constraints as

in (2.18), and the normal work in (2.31) are formulated into a state function y as,

dy

dpnr
= f(pnr, {ϑ,Wn})

IC: y(0) (2.32)

where y(0) is a vector of the initial conditions for the variables that appear in (2.32).

Stronge’s energetic coefficient of restitution (ECOR) is applied to determine the

net normal work for an impact event as,

Wnf = (1− e2∗)Wnc (2.33)

where e∗ ∈ [−1, 1] is a global ECOR which accounts for the energy dissipated by

the system in an impact event. In this work, e∗ < 0 means that in a simultaneous,

multiple point collision subsequent impact events may begin while an initial impact

event has not completed its compression phase. The value of e∗ is usually not known
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in a predictive sense, unless a good understanding of the material properties and

physical behavior of the system is accounted for, as in [25, 26], which is not the goal

in this work. Alternately, e∗ functions more as a parameter to estimate the energy

dissipated and its value in the present framework can be selected to correlate with

experimental studies of an equivalent system.
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CHAPTER 3

SIMULATION RESULTS: BLOCK

The method described in the previous chapter can be used for analyzing sur-

face impacts by considering any number of points. This chapter would present some

simulation results on impacting block using the same method. The simulation results

provided in this chapter were generated for two different cases: 1) Block undergoing

central/collinear impact with the ground and 2) Block undergoing non-collinear im-

pact with the ground(rocking block). Two simulation results are provided for either

of the cases. One of them is based on four point analysis and the other one is based on

eight point analysis. These results are then compared to show that the post-impact

behavior of an impacting body is independent of the number of points are considered

for analysis.

3.1 Central/Collinear Impact

This section presents the simulation results for the first case i.e collinear impact.

In order to simulate a collinear impact, the block is dropped from some height in a

flat configuration, such that when the block collides with the ground the direction of

the impact is normal to the impact plane. Figure 3.1(a) and 3.1(b) shows the initial

conditions of the four point block and the eight point block respectively. Figure 3.2(a)

and 3.2(b) shows the motion captured images of the blocks before and after impact.

It can be observed that both blocks rebound back in a flat configuration. A clearer

representation of the pre/post impact behavior is presented in figures 3.3 and 3.4,

which shows the position plots of the contact points w.r.t time.
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Note that plots in 3.3(a), 3.3(b), 3.3(c) and 3.3(d) are identical to the plots

in 3.4(a), 3.4(b), 3.4(c) and 3.4(h) respectively. These plots correspond to the same

contact points (the points at the vertices) that are considered in both cases. This

shows that the post-impact behavior of the block doesn’t change based on the number

of points selected for analysis. Figure 3.5, shows a comparison between the velocities

in four point and eight point impact analysis. In these plots the normal velocities

are drawn in magenta, whereas the sliding direction is drawn in green. Figure 3.5(a)

which is showing a four point impact consists of four normal velocity, four sliding

direction and four sliding velocity plots. Similarly, figure 3.5(b) which is showing an

eight point impact, consists of eight normal velocity, eight sliding direction and eight

sliding velocity plots. However, in either of these plots only one normal velocity and

one sliding direction can be observed. This is because all the normal velocity, sliding

direction and sliding velocity plots are overlayed on one another. Since, the blocks are

undergoing a central/collinear impact and rebounding back with a flat configuration,

all the normal velocities at the contact point increase at the same rate during impact.

The initial sliding direction and sliding velocity is zero, as a result the block remains

sticking through out the impact. Note, that in either case the velocities at the end

of the impact is exactly same, which further proves the fact that the post-impact

behavior of the impacting body doesn’t depend on the number of points chosen for

impact analysis. Figure 3.6 compares the normal work during the impact event for

either cases. It can be observed that the normal work at the end of impact is same

for both the cases, which means that energy loss due to the impact is equal for both

the cases.
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3.2 Non-Collinear Impact

In this section, simulation results for non-collinear impact would be discussed.

Similar to the analysis in the previous section, a block is dropped from some height

so that it undergoes impact. However, unlike the previous case, in this analysis the

block is dropped at an angle such that it lands on one of the edges. In this case,

block would undergo a series of impacts before it settles to a stable contact. Figure

3.7 shows the initial conditions for both the blocks. As the the blocks go through the

series of impacts, the motion capture image as in figure 3.8 shows the block switching

contacts, as it settles down. Figures 3.9 and 3.10 show the position plots of the impact

points. Upon comparison, the plots for the same impact points in the either cases

(3.9(a) - 3.10(a), 3.9(b) - 3.10(b), 3.9(c) - 3.10(c), and 3.9(d) - 3.10(h)), appear to

have identical behavior in both four-point and eight-point analysis cases, as it was

observed in the case of collinear impact. Figure 3.11 shows the velocity plots for the

series of six consecutive four point and eight point impacts that take place between

the block and the ground. Again on these plots, these plots the normal velocities

are represented in magenta, sliding velocities in blue, and the sliding directions in

green. Figures 3.11(a) and 3.11(b) are the velocity plots during the first impact,

which are identical to each other. The first impact occurs at one edge of the block,

as a result of which, we can notice the normal velocities corresponding to the contact

points situated on that particular edge increasing till a positive value, while the

other points continue to have the same normal velocity through the impact. Also,

note that the impact points experience a change in the sliding velocities. The initial

conditions set at the end of the first impact, makes the block rebound, such that

the other points experiences impact. 3.11(c) and 3.11(d) shows the velocity plots

for the second impact. In this case, for the eight point impact the velocities of the

additional points are not identical to the other four, as a result separate plots can
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be seen for these velocities. Again a very similar trend can be observed in this case,

where the normal velocities of some points(the ones that are experiencing impact) are

going from a negative to a positive value, while the normal velocities for remaining

points remain unchanged. Figures 3.11(e), 3.12(a), 3.12(c), and 3.12(e) show the

subsequent impacts for the four point case, while the figures 3.11(f), 3.12(b), 3.12(d)

and 3.12(f) show the subsequent impacts for eight point analysis case. All these plots,

show a trend that is very similar to the one observed in the first two. One of the

key observation over here is that the post-impact velocities for specific points are the

same in both four point as well as eight point analysis. The normal work plots for

all these different impacts are shown in figures 3.13 and 3.14. Once again, similar

amount of energy loss can be observed for both cases, which proves that the energy

loss in the system doesn’t depend on the number of points selected for analysis.

Thus, from all the results presented in this chapter it is very evident that the

velocities and energy loss during the impact event and the post-impact behavior after

an impact doesn’t depend upon the number of points selected for analysis. This is

a very crucial result, as this gives us the liberty to analyze large number of points

during impact, and consequently alleviating the need for analysis on how to select

these points. If a large number of points are used for analysis, they could be evenly

spread through out the surface of the impact, similar to a grid or a mesh, such that

impact analysis may cover all possible scenarios.
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Figure 3.1. Blocks with Four and Eight Points Central Impact.

29



−0.5

0

0.5 −0.5
0

0.5

0

0.2

0.4

0.6

0.8

1

N
2N

1

N
3

(a) Block motion capture four point impact

−0.5

0

0.5 −0.5
0

0.5

0

0.2

0.4

0.6

0.8

1

N
2N

1

N
3

(b) Block motion capture eight point impact

Figure 3.2. Motion Capture of the Block undergoing Central Impact.
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Figure 3.3. Four-Point Position Plot for Block undergoing Central Impact.
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Figure 3.4. Eight-Point Position Plot for Block undergoing Central Impact.
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Figure 3.7. Blocks undergoing Four and Eight-Point Non-collinear Impact.
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Figure 3.8. Motion Capture of the Block undergoing Non-collinear Impact.
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Figure 3.9. Four-Point Position Plot for Block undergoing Non-Collinear Impact.
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Figure 3.10. Eight-Point Position Plot for Block undergoing Non-Collinear Impact.
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Figure 3.11. First Three Impacts Velocity Plots for Block undergoing Non-Collinear
Impact.
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Figure 3.12. Last Three Impacts Velocity Plots for Block undergoing Non-Collinear
Impact.
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Figure 3.13. First Three Impacts Normal Work Plots for Block undergoing Non-
Collinear Impact.
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Figure 3.14. Last Three Impacts Normal Work Plots for Block undergoing Non-
Collinear Impact.
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CHAPTER 4

ROBOT CONTROL

4.1 Controller Design

The goal of this chapter is to detail the control techniques implemented in this

work to achieve walking locomotion in a bipedal system. Most of the techniques

discussed in this chapter are based on [27],[28],[29],[30],[31]. A position and velocity

based control strategy has been implemented on this work to achieve the desired

walking motion by the robot.

All robotic manipulation using position based control is essentially a trajectory

tracking problem for a controller. As a result, a reference signal needs to be fed into

the control system. In this case, the reference signals were generated using geometric

body point trajectory generation. A desired state is estimated using the reference

signal and compared with the actual state of the system, to generate an error signal

that is used to drive the system. The system is assumed to be fully observable and

free of noise in this work. Therefore, in the simulation environment the full state of

the system was used for control and no stochastic noise were added to the system.

4.2 Trajectory Generation

Trajectories in the configurational space as a function of time are used for the

purpose of providing guidance(or reference signals) to the controller. For complex

mechanisms like bipedal robots, it is not easy to find configurational space trajectories

for the walking motion directly without performing an inverse map from operational

space of the robot. The approach used in this work deals with generating desired
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Figure 4.1. Feedback Control System Schematic.

geometric trajectories in the operational space of the robot and converting them back

in terms of the configurational space for guidance.

The algorithm used for the trajectory generation can be best represented with

the help of a flowchart, as provided in figure(4.2). Three body points of the robot are

sufficient to generate the trajectories necessary for the walking task. The three body

points that are used in this case are the position of the center of mass and the bases of

the two feet of the robot. The trajectory generation as shown in figure(4.2), considers

the position of each desired ground contact point or walking step as a waypoint in the

overall trajectory. At the beginning of the simulation two waypoints in terms of the

horizontal direction are initialized for each foot, xlwpi, xlwpf , xrwpi and xrwpf . These

waypoints are the horizontal components of the initial and final positions for the first

step. In case of the foot that remains grounded the initial and final waypoints are set
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Figure 4.2. Geometric Trajectory Generation in Operational Space.

equal. Another parameter, gstate is initialized keeps track of the foot that is grounded;

this parameter switches its state after every step and used to update the waypoints

as the robot transitions from one step to another.

A cubic spline function with respect to time t, is used between waypoints to

compute desired horizontal position components xld(t) and xrd(t) for the left and

right feet respectively [31],
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xld(t) = xlwpi

[
2(t− ti)

3 − 3(t− ti)
2 + 1

]
+ xlwpf

[
−2(t− ti)

3 + 3(t− ti)
2]

xrd(t) = xrwpi

[
2(t− ti)

3 − 3(t− ti)
2 + 1

]
+ xrwpf

[
−2(t− ti)

3 + 3(t− ti)
2] (4.1)

The quantity ti in the above equations is the time at the start of every waypoint.

ti is reset every time a waypoint is updated. The parameter gstate keeps track of the

event when the right/left foot reaches a waypoint and updates the waypoints and ti.

if : xld(t) = xlwpf then : gstate = 1

if : xrd(t) = xrwpf then : gstate = 2 (4.2)

Using this framework, whenever gstate changes value, ti is reset to the current value

of time. Similarly, the waypoints are updated using gstate,

if : gstate = 1 then :







xlwpi = xlwpf

xrwpi = xrwpf

xrwpf = xrwpf + xrst

if : gstate = 2 then :







xlwpi = xlwpf

xlwpf = xlwpf + xlst

xrwpf = xrwpf

(4.3)

Where xlst and xrst are the stride lengths of the robot in left and right feet,

respectively. Now, the equations in (4.1) can also be used to determine the desired

horizontal position component of the center of mass of the robot,

xcomd(t) =
xld(t) + xrd(t)

2
(4.4)
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In order to find the desired vertical position components(when in flight) of the legs

a parabolic function can be used, and when a foot is grounded the vertical position

component is set to zero,

if : gstate = 1 then :







zld(t) = 0

zrd(t) = zmax −
zmax

(

xrwpf−xrwpi

2

)2

[

xrd(t)− xrwpi −
xrwpf−xrwpi

2

]2

if : gstate = 2 then :







zld(t) = zmax −
zmax

(

xlwpf−xlwpi

2

)2

[

xld(t)− xlwpi −
xlwpf−xlwpi

2

]2

zrd(t) = 0

(4.5)

In this work, the walking locomotion is restricted to be along a straight path, with-

out any change in direction. However, the method described above could be easily

extended for another horizontal component of the position vector with equations sim-

ilar to (4.1-4.4), and the vertical component can calculated with an equation similar

to (4.3) An advantage of having positions of the control body points as a function

of time is that the relevant equations between the numbers (4.1-4.3) can be differen-

tiated w.r.t time to for the velocities and accelerations. However, in the interest of

space, these equations are not shown in this thesis. Once the desired control point

trajectories for position, velocity and acceleration are obtained, an inverse kinematic

analysis is required for generating the desired joint(configurational) space coordinates,

velocities and accelerations.

4.3 Configurational Space Computed Torque Control

In this section, the method used for performing the inverse kinematic analysis

is discussed. Then a discussion is provided about the control technique implemented

on the robot simulation, to generate a walking trajectory. The inverse kinematic

analysis is performed using an iterative damped leastsquare method(also known as
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Figure 4.3. Desired Trajectory.

the Levenberg-Marquard Method) [28],[27],[29]. Recursive methods usually make use

of the jacobian matrix to estimate a change in the joint space variables, such that

this change corresponds to a desired change in operational space variable,

∇x = Jp∇q (4.6)

where, ∇x is the desired change in the operational space variables. ∇x in this case

would be the difference between actual position of a control body point and the

would be the difference between actual position of a control body point and the

desired position, as computed through the methods described in the section (4.2).

Jp is a block of the jacobian matrix containing the jacobian row vectors of the body
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points corresponding to the ones being controlled. ∇q is the change in joint space

coordinates that needs to be optimized such that, ∇x → 0. In the damped least

square method, (4.6), is reformulated as the following optimization problem,

min
∇q

‖Jp∇q−∇q‖2 + λ2‖∇q‖2 (4.7)

where λ is a damping coefficient.

Thus, for a given tolerance tol, initial set of generalized coordinates qin, initial

body point positions xin and a desired body point positions xd, a set of generalized

coordinates can be computed that correspond to the set of desired body point posi-

tions, using the Levenberg-Marquard method, as stated in (4.7). The first step in this

computation is to set the initial set of generalized coordinates equal to the desired

generalized coordinate.

qd = qin (4.8)

This process can be performed recursively by first computing an operational space

error correction vector,

∇x = xd − xin (4.9)

Then using this error correction vector to compute the corresponding change in gen-

eralized coordinates,

∇q = Jp
T
(
Jp

TJp + λI
)−1

∇x (4.10)

Note, that Jp
T
(
Jp

TJp + λI
)−1

may not be a square matrix, and so a generalized

inverse needs to be performed. A variety of methods exist for performing generalized

inverse on over- and under-constrained system of equations, any of which could be

chosen as appropriate for the specific problem. The change in generalized coordinates

∇q is then used to update the desired generalized coordinates,

qd = qd +∇q (4.11)
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These steps are repeated until,

‖∇q‖ ≤ tol (4.12)

The body point jacobian matrix Jp can again be used for computation of the desired

configurational space velocities. The desired operational space velocities generated

by taking the time-derivative of the equations (4.1-4.4), can be related to the desired

configurational space velocities using the following equation,

ẋd = Jpq̇d (4.13)

Taking the time derivative of the above equation gives,

ẍd = J̇pq̇d + Jpq̈d (4.14)

Therefore, the configurational space velocities and accelerations can be obtained with

the help of a pseudoinverse,

q̇d = Jp
†ẋ (4.15)

and,

q̈d = Jp
†
(

ẍd − J̇pq̇d

)

(4.16)

where Jp
† =

(
Jp

TJp

)−1
Jp. Note, that the equations (4.15) and (4.16) can also be com-

puted through SVD or recursive methods like least squares or damped least squares,

and appropriate method should be employed based upon specific case.

After the desired joint space positions qd, desired joint space velocities q̇d

and the desired joint space acceleration q̈ are computed, it is possible to implement

control methods on the mechanism. The control method used in this work is known

as computed torque control. Since, a bipedal robot is an under-actuated system, with

more degrees of freedom and less number of actuator torque (more number of state

variables compared to the number of inputs in the plant), it is not possible to use
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the tracking errors directly to determine the control input for the plant. An inverse

dynamics computation needs to be performed on the state variable to generate the

actuator torques, which can then be used as the control input to the system.

In the computed torque control system consists of two components: (1) an inner

feedforward subsystem and (2) a feedback outer loop [30]. In this work a Proportional-

Derivative controller is used for computing the torques inputs to the system. The

inner feedforward subsystem takes an input of the error in joint space accelerations

and generates actuator torques. Whereas the outer feedback loop computes the error

in joint space accelerations based on the position and velocity tracking errors. The

position and velocity tracking errors in the system are given by,

e = qd − q (4.17)

and,

ė = q̇d − q̇ (4.18)

Then, a proportional-derivative (PD) control law for the outer feedback loop can be

written for the system,

u = −Kvė−Kpe (4.19)

Where Kv = diag {kvi} and Kp = diag {kpi} are the diagonal matrices containing

the derivative kvi, and the proportional gains kpi respectively, corresponding to each

degree of freedom. In order to have a critically damped system the control gains can

be selected such that,

kvi = 2
√

kpi (4.20)

The error between the outer loop feedback input u and the desired joint space ac-

celerations q̈d, is then used as an input to the inner feedforward subsystem. Thus,
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the feedforward subsystem generates the actuator torques, that are used as control

inputs to the plant,

Γ =
(
GT

)−1
[A (q̈d − u) + b(q, q̇) + g(q)] (4.21)

Expanding this gives us,

Γ =
(
GT

)−1
[A (q̈d +Kvė +Kpe) + b(q, q̇) + g(q)] (4.22)
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CHAPTER 5

SIMULATION RESULTS: ATLAS ROBOT

At this point, all the key elements of this work have been discussed in the

preceding chapters. In this chapter, results are presented for the simulation of the

bipedal robot, Atlas. In this simulation, the feet of the robot are considered to be

undergoing impacts during the walking task. The impacts between the feet and the

ground are analyzed using the methods discussed in chapter 2. The actuator torques

for the robot model are generated using position and velocity feedback with the help

of computed torque control method, as discussed in chapter 4. Figure 5 shows the

image of the atlas robot model in the simulation environment.

Two cases of the simulation result are presented. The first set of results corre-

spond to the case when four points are considered for impact between the feet and

the ground. The impact analysis would be determinate when four points are consid-

ered, this is because the number of degrees of freedom for the robot(in this case its
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Figure 5.1. Robot Standing in Simulation.
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34) would exceed the number of ground constraint forces being considered with four

points of contact in either foot. The second result however, would be for an indeter-

minate situation where eight different contact points are being considered, where the

number of ground constraint forces exceed the number of degrees of freedom available

to solve for the impulses.

The figure 5.2(a) and 5.2(b) show the motion capture of the walking simulation

of the Atlas robot with four point and eight point impact analysis. Figure 5.3 shows

the motion capture for the four point and eight point cases from the front and side

view. Looking at these images it becomes evident that there is no observable difference

in the gait of the robot, as a result of selecting different number of points for analyzing

the impacts.

Since the robot model undergoes a large number of impacts during the walking

task, it only a few representative impacts are being shown and discussed in this

thesis. In the case of walking, whenever a foot of the robot comes into contact with

the ground, a series of impact occurs before the foot settles down to a stable contact.

Figure 5.4 shows the velocity plots of the left foot of the robot as it takes the first

step. In the figure the velocity plots are compared between the four-point and the

eight point case. As it was observed in the case of the block in chapter 3, there

doesn’t seem to be much difference in the velocity plots between the two cases. Note

that the normal velocity, shown in magenta, and the sliding velocity, shown in blue,

are hovering around zero value, and this could be explained based on the trajectory

generation algorithm as explained in chapter 4. Due to the time based cubic spline

trajectories, the horizontal component of the desired velocity of the foot control point

becomes close to zero as the robot finishes a step. Also, since the vertical component

of the desired position is parameterized using the horizontal component, that becomes

zero as well. As a result of this, both the normal velocity and the sliding velocities
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are close to zero at the beginning of the impact, and only changes slightly before a

new impact event takes place. Figure 5.5 shows the normal work during the impact

event. Again, we notice a lot of similarity between the four and eight point cases.

Note for the first impact, in the four point case the end of restitution phase work is

slightly above −4×10−5 and also for the eight point case the restitution phase ends at

slightly above −4×10−5, which shows that similar amount of energy loss is occurring

in both the cases. Therefore, based on the results of this chapter and chapter

3, it can be concluded that the increasing the number of points for analysis on the

feet of legged robotic system doesn’t change the overall post-impact behavior of the

legged system in a simulation environment. This result, as stated before, can enable

us to completely ignore the additional analysis required for appropriate placement of

the points on the surface for analysis, as a large number of evenly distributed points

could be analyzed using the methods discussed in this work.
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Figure 5.2. Motion Capture of the Atlas Robot Performing a Walking Task.
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Figure 5.4. Feet Velocities during Impact.
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APPENDIX A

RIGID BODY CONSTRAINT USING VELOCITY-PROJECTION METHOD
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In order to demonstrate the procedure for deriving the rigid body constraints,

lets consider the example of two impacting points, which are denoted as A and B,

in this case. The velocity constraint equation that can be obtained by setting the

relative velocities of the points A and B, can be written as,

(vt1A − vt1B) + (vt2A − vt2B)α + (vnA − vnB)β = 0 (A.1)

where, α and β are the direction cosines of the points A and B. Then the velocity

vector can be rewritten as,

ϑ =








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
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


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
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
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vt1B − (vt2A − vt2B)α− (vnA − vnB)β

vt2A

vnA

vt1B

vt2B

vnB

vt1C

vt2C

vnC

vt1D

vt2D
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
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
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



= Qϑ
∗ (A.2)
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where,

Q =







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1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0
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0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0
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

and

ϑ
∗ = [vt2A vnA vt1B vt2B vnB vt1C vt2C vnC vt1D vt2D vnD]

T

The Q matrix contains all the velocity constraints and ϑ
∗ contains the independent

velocities. The dual nature of the jacobian expresses relationships between velocities

as well as forces. Therefore, the constraint matrix can be used along with the jacobian

matrix to derive constraint relationships between the impact forces,

ϑ
∗ = Q+

ϑ = Q+J q̇ (A.3)

and,

Γ = JTF = JT (Q+)
T
F∗ (A.4)

where Q+ = (QTQ)−1QT is the left-inverse of Q, and F∗ is a vector containing all the

independent impact forces. Expression (A.4) further yields,

F = (Q+)TF∗ F∗ = QTF (A.5)
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Using (A.5), F∗ is first computed using QT ,

F∗ = QTF =






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(A.6)

Next, the vector F∗, derived in (A.6), would be used derive the constraint equations

for the impact forces. The following step was performed with the help of a symbolic

computation software, due to its lengthy and tedious nature.

F− (Q+)TF∗ = 0 (A.7)
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Yields,
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The first equation among these can be rewritten as,

ft1 A − ft1 B + α(ft2 A − ft2 B) + β(fn A − fn B) = 0 (A.8)

Multiplying both sides with an infinitesimal small time interval dt, converts the whole

equation in terms of impulses, thus essentially describing the velocity based rigid body

constraint equations in terms of impulses,

(dpt1 A − dpt1 B) + (dpt2 A − dpt2 B )α + (dpn A − dpn B )β = 0 (A.9)
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APPENDIX B

SIMULATION TECHNIQUE

64



Pre-Impact Phase Post-Impact PhaseImpact Event

Figure B.1. Event Based Approach.

The simulation technique discussed in this section are based on the example

problem of three-dimensional block without any loss of generality, and thus could

also be implemented in a full model of a legged robot. The entire simulation can be

divided into three phases: pre-impact simulation, impact-event simulation, and post-

impact simulation. The pre- and post-impact simulation are the simulations of the

same equations of motion of the block or robot without the contact constraint forces

(or with F set as a zero vector). The difference between the pre- and the post-impact

simulation arise due to the different initial conditions considered for each. The impact-

event simulation is based on the method presented thus far in this paper. The

simulation begins by setting up the equations of motion without the forcing terms in

a numerical integrator with some desired initial conditions. For this research, an open

source C++ function called rkevent, which is based on the Kutta-Merson Algorithm,

was used as an integrator and numerical derivative values based on the equations
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of motion was generated with the help of Rigid Body Dynamics Library, which is

based on Roy Featherstone’s multibody dynamics algorithm [32]. The simulation is

stopped as soon as an impact with the ground is detected, which also marks the end

of pre-impact simulation. The q̇ at end of the pre-impact and the jacobian for the

impacting point(s), are used to calculate the Cartesian space velocities, which are

subsequently transformed into cylindrical coordinates and used as initial conditions

for (2.20). Another numerical integration is performed to simulate (2.20). Conditions

for the stick-slip transition is checked at every integration step during the integration.

If any of the impact point reaches the stick-slip transition, µ̄j is evaluated using (2.26).

µ̄j is compared with µj to determine whether the point sticks or slip-reverses, using

the relation stated in (2.26). If the point slip-reverses, then the sliding direction

becomes constant and unique as in (2.27). The µj is replaced by µ̄j in the entire

evaluation of (2.20) if the point is in stick-slip transition.

The normal work, Wn as given in, (2.30) is calculated along with the velocities

using the numerical integrator. Wnc, which corresponds to the work at the end of

the compression phase, can be determined by finding the minimum normal work.

After Wnc is determined, Wnf , which is the work at the end of restitution phase or

impact, is calculated using Stronge’s energetic coefficient of restitution(ECOR), as

shown in (2.33). The simulation is stopped when Wn reaches Wnf ,which marks the

end of an impact event. At the end of the impact-event the normal component of the

post-impact velocities are checked. If any of the normal velocity components is/are

negative, the points corresponding to those normal velocities proceed for another im-

pact event in which the entire procedure is repeated using those points. If none of

the normal velocities are negative at the end of the impact-event phase, the simula-

tion proceeds to the post-impact phase. In the post-impact phase, the post-impact

velocities, obtained at the end of the impact event, are used with the inverse of the
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Jacobian matrix to transform the post impact velocities in terms of the generalized

coordinates, q̇. Finally, the unforced equations of motion is numerically integrated

using the post-impact velocities (in terms of generalized coordinates) as the initial

condition.
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