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ABSTRACT

PARALLEL PROCESSING A RUBIK’S CUBE

Aslesha Nargolkar, M.S.

The University of Texas at Arlington, 2006

         

Supervising Professor: Dr. Ishfaq Ahmad

                  This thesis investigates parallel processing techniques for solving the 3 x 3 x 3 

Rubik’s Cube. We explore various state-space search based algorithmic approaches to 

optimally solve the Cube. The parallel processing approach is based on IDA* using a 

pattern database as the underlying heuristic because of its well established effectiveness. 

The parallel algorithm is an extension of the Michael Reid algorithm which is sequential. 

The parallel algorithm exhibits good speedup and scalability. Nearly 150 random as well 

as symmetrical cube configurations were tested for the experiments on sequential and 

parallel implementations. The proposed parallel algorithm using master-slave type of 

load balancing proves efficient in terms of time as well as memory resources while 

yielding an optimal solution to find the state of a Rubik’s cube.  Parallel processing helps 

in solving a Cube with initial cube configurations having solutions at a higher depth level 
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in the search tree. Various comparative results are provided to support the efficiency of 

the parallel implementation.
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CHAPTER 1

INTRODUCTION

Improving an algorithm to solve a Rubik’s cube requires a thorough analysis of 

past efforts in both multi-processor algorithms and sequential solutions to the problem. 

With the extensive experimentation carried out, it became clear that Manhattan distance 

heuristic, as was used in our first approach, was not the best approach. During the 

course of the research work and the experimentation done, it became clear that pattern 

databases as modified by Michael Reid [26] is perhaps the best existing heuristic for 

this problem. The use of pruning and symmetry improve the pattern database and hence 

the performance of the algorithm. Also, parallelization of the search would maximize 

the success of the algorithm being used while reducing the time required in finding a 

solution for larger depths (above 18). Hence all the necessary issues related to the 

parallel approach like the load balancing techniques and the task distribution and 

scalability would need to be considered. Although the heuristic used is improved, the 

algorithm used for searching remains the same, IDA*. The experiments carried out 

show the number of nodes generated and the time taken for the most difficult known 

configuration: the super flip configuration. This is a 24-depth configuration.

1.1 The 3x3x 3 Cube

Rubik’s cube is considered to be one of the most famous combinatorial puzzles 

of its time. Erno Rubik of Hungary invented it in the late 1970s. The standard version of 
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this cube consists of a 3 X 3 X 3 cube (Figure 1.1), with a different color on each face:  

red, blue, green, yellow, white and orange. The faces are divided into 9 squares each, 

which can be scrambled by rotating a row (or column) at a time. It is divided into three 

3×3×1 slices along each of x, y, and z axes such that each slice can be rotated a quarter 

turn clockwise or counterclockwise with respect to the rest of the cube.  The slices 

divide each face of the Cube into 9 facelets.  The slices also divide the Cube into 33 = 27 

pieces, or sub cubes, 26 of which are visible.   In its goal state, each of the six sides has 

its own color.   Each visible piece has one, two or three facelets that are a unique subset

of the colors, which makes it distinct from the others.  This preserves the orientation of 

the piece as it changes position as the slices are rotated.

Figure 1.1: The Rubik’s Cube 
(Note the numbers in bracket denote the number of those pieces in a 3x3 Cube)

Edge Cubelet (12)

Cubelet (27)

    Facelet (54)

Corner Cubelet (8)
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1.1.1 Different pieces of the Cube

Of the 27 sub cubes, or cubies, 26 are visible, and of those only 20, the 8 corner 

pieces with three facelets and the 12 edge pieces with two facelets, actually move.  The 

corner pieces only move to other corner positions, or cubicles, and edge pieces only 

move to other edge cubicles.  The center pieces with a single facelet in the center of 

each face merely rotate.  The corner pieces can be twisted any of three ways. Likewise, 

the edge pieces can be flipped either of two ways. Thus, the corner pieces have three 

orientations each, and the edge pieces have two orientations each.  

1.1.2 Singmaster notation

Singmaster notation devised by David Singmaster [2] describes a sequence of 

moves.  Clockwise turns of the six outer layers, or slices, are denoted by the capital 

letters where F is front, B is back, U is up, D is down, L is left and the right face is 

denoted by an R: 

<F, B, U, D, L, R> which are 90 degrees clockwise face moves

<F2, B2, U2, D2, L2, R2> which are 180 degrees clockwise face moves

<F’, B’, U’, D’, L’, R’>which are 270 degrees clockwise i.e. 90 degrees 

anticlockwise face moves

If a subsequence of moves is repeated then it is listed in parenthesis with an 

exponent equal to the number of repetitions. Singmaster notation is also used to label 

each of the cubies and cubicles.  Lowercase italicized letters given in clockwise order of 
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how the two or three sides intersect at a given corner or edge are used to describe a 

cubie. Uppercase is used to denote cubicles. Since there are either two or three 

possibilities depending on which side is listed first, the first letter is given in order of U, 

D, F, B, R, L.  While the cubicles never change orientation, the cubies do.  So this 

precedence in labeling cubies is with respect to the goal state. Thus URF and not RFU

would be used to denote the upper front right-hand cubicle. The cubie corresponding to 

that cubicle would be denoted by urf if its orientation has not changed from the goal 

state and as either rfu or fur if it had.  The orientation is determined by keeping track of 

how the pieces move from cubicle to cubicle with respect to the initial state. If an R 

move was applied to the goal state, then u facelet of the urf cubie would move to the b 

facelet of the UBR cubicle. Thus, with u  b, r  r, and f  u, the corner piece would 

then become fur.

1.1.3 The Metrics

To reach the goal state from any random configuration, a sequence of moves is 

applied. The minimum number of these moves required to solve the Cube is known as 

the distance from the goal state while the maximum distance is the diameter of the 

Cube. These moves or distances are measured using either the Half Turn Metric (HTM) 

or the Quarter Turn Metric (QTM). In the first metric, only half turns are allowed while 

in the quarter turn metric, only quarter turns are allowed. Such a sequence of moves 

used to get to the goal state is known as a macro operator or a macro.

The Cube can be represented by a graph in which a vertex represents a unique 

state and an edge represents a transition between adjacent states. Since there are 18 
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elementary moves, there are 18 possible adjacent states. The branching factor is 

considered to be the ratio of the number of nodes explored at a given depth (d+1) over 

the number of nodes explored at a depth d. 

1.1.4 The Super flip position

Cube solving has been proven to generally take less than 20 moves. But the 

diameter of the cube is said to be the super flip position which is known to take 24 

moves. [26] It is not maximally distant from the start position. It is also known as 12-

flip, all-flip, all-edges-flipped.

1.1.5 Solving the Cube

This puzzle is challenging to solve because of the large number of different 

states that can be reached from any configuration. The goal state in this puzzle is the 

state with all the squares on each side of the cube having the same color. In addition, 

large memory requirements and computational resources are required to solve this 

problem, which is also the reason why it has been labeled as a very difficult problem. 

Although several algorithms have been successfully developed to solve the Rubik’s 

cube on sequential machines, they all face the same problem of limited memory and 

computational requirements, especially when trying to find an optimal solution and 

when we consider the required amount of time for those algorithms to find a solution. 

Therefore, parallelizing the algorithm seems to be promising in terms of reducing 

execution time and having enough resources to find a solution.

The Rubik’s cube has also been an interesting research problem in the Artificial 

Intelligence area. Researchers had reached a consensus that an informed searching 
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methodology is the most feasible way to find a solution in such a vast search space. The 

fact that finding a solution to this puzzle will require a large memory and better 

computational resources has made it difficult to run efficiently on sequential machines, 

thus parallelizing the search is the next best choice along with reducing the 

computational complexity. It is however true that we need to ensure that we make the 

best of the scalability and all other available resources of the parallel hardware. Since 

each cube configuration leads to a large number of states, the search space unfolds in 

the shape of a tree, so parallelizing can be done by handing over the branches of the tree 

to separate processors for performing search independently. One such architecture that 

could fulfill all our requirements regarding memory and power resources is the cluster 

of workstations. 

1.2 Background

A standard 3 X 3 X 3 Rubik’s cube can have 4.3252 X 1019 different states from 

a given configuration. In our initial approach, to reduce large computational complexity 

involved in finding a solution to this puzzle, we had used a two dimensional flat 

representation obtained by opening the cube along its edges. This representation can 

then be converted into an array representation with each color being represented by a 

numerical value.

The search algorithm used was the Iterative Deepening A* (IDA*) algorithm

which is an optimal, memory bounded heuristic search. A heuristic function provides an 

estimate of the distance of a particular state from a goal state. The heuristic used was 

the one Richard Korf (1997) [1, 5] had suggested. It was a modified version of the 
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Manhattan heuristic used in the sliding puzzle where the Manhattan distance of only the 

edge cubes was calculated. 

The performance of the search can be improved by using parallel hardware. But 

the choice of heuristic is another main factor affecting the performance of the algorithm. 

Heuristics functions should be chosen properly to avoid inherent problems pertaining to 

high time complexity. If there is no overestimation of depth then the proposed method 

is guaranteed to improve the performance of IDA* algorithm.

1.3 Organization of the thesis

The rest of the thesis is organized into different chapters, starting with Chapter 2 

where all the standard optimal algorithms are explained. This same chapter also 

explains the standard IDA* algorithm along with the IDA* algorithm used with pattern 

databases. The actual method of implementation with the experiment results is given in 

Chapters 3, 4, 5. The thesis is concluded with Chapter 6.
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CHAPTER 2

                                     STANDARD ALGORITHMS

Michael Reid’s optimal cube solver [26] is based on ideas developed by Herbert 

Kociemba [24] and Professor Richard Korf [5]. This is supposed to be a practical 

implementation of "God's Algorithm" [7] for Rubik's Cube. He has made some 

improvements in the Korf’s method. 

2.1 God’s Algorithm

God’s algorithm [7] uses a lookup table that is keyed over the various instances 

of the problem.  Rather than giving the solution, it gives the minimum number of moves 

remaining to reach the goal state.  Then to solve a particular instance one simply 

chooses the next move that is one closer to the goal state. The lookup table can be 

further refined to only store the number of moves left modulo 3, which only requires 2 

bits per entry.  This is sufficient in picking the next move since any adjacent move is 

one less, the same or one more towards the solution.

2.2 Basic tree searches

This can be thought of as tree in which the root node is the initial state, and 

each level below is the nodes explored at that given depth.  The nodes in the tree need 

not be unique. Pruning techniques can be used to reduce the likelihood of encountering 

duplicates.
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2.2.1 Uniformed searches

Given the extreme number of state, 4.3  1019, uninformed searches such as BFS 

(breadth first search) or DFS (depth first search) turn out to be impractical.  While BFS 

a slow and methodical search that is guaranteed to produce an optimal solution, it 

doesn’t work since all the states must be kept in memory, which clearly exceeds the 

memory limit of on any conventional computer.  

DFS fails for several reasons.  First of all, there is no guarantee it won’t run into 

some infinite cycle.  To correct this one can limit the depth to which it explores.  

However, then there is no guarantee it will find the goal state.  To further correct the 

problem, one can employ an incremental DFS, in which one incrementally increases the 

depth being explored. But the advantage of DFS over BFS is that it can potentially find 

the solution quite quickly if it happens to select nodes that lead to the solution.  It also 

has the advantage of only having a linear memory complexity that is ( )O b d  where b is 

the asymptotic branching factor and d in this case is the depth of the search.  The 

disadvantage of DFS used without iterative deepening is that it is not optimal in that 

there is no guarantee it will choose the shortest path, nor is it complete in that there is 

no guarantee it will explore the whole graph.  

2.2.2 Informed Searches 

Informed searches like best-first search keeps a queue of the nodes left to 

explore and orders them by some evaluation function that attempts to select the best 
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nodes to search first.  Two versions of best-first search base the evaluation function 

either on the distance incurred or estimated distance remaining.  

2.2.2.1 Greedy Best-First Search

Greedy best-first search orders the nodes in the queue based on an estimate of 

the distance remaining to the goal state. As the greedy estimate becomes accurate, this 

algorithm becomes more similar to God’s algorithm. To increase the likelihood of the 

solution found to be optimal, it helps if the estimate never overestimates the distance 

remaining.  Such an estimate is known as an admissible heuristic. This increases the 

chances that the shortest path will be found.  

Greedy search is also a way of directing a standard DFS search.  It chooses the 

next node to explore based on some greedy estimate of the distance remaining to the 

goal state.  However, this approach cannot be used in conjunction with iterative 

deepening since that would force the tree to be explored up to a given depth.  As such it 

suffers from the same limitations of DFS in that it is neither optimal nor complete.   

However, it is more likely to find the solution before iterative deepening DFS.  

2.2.2.2 Uniform cost

 Uniform cost best-first search, known more simply as uniform cost, orders the 

elements in the queue by the distance from the initial state.  Here the distance for the 

Rubik’s Cube is simply based on the number moves from the initial state, which makes 

this uniform cost equivalent to BFS.  However, if one were to favor some moves over 

others and weight them accordingly, then uniform cost would still produce an optimal 

solution, i.e. a path to the goal with minimum weight.
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2.2.2.3 A*

A* combines the two best-first searches of uniform cost with the greedy search 

using an admissible heuristic to produce an optimal search that is more efficient than 

standard BFS, by setting its heuristic to be the sum of the distance from the initial state 

and is admissible estimate of the distance to the goal state.  The basic idea behind the 

proof of optimality is that by keeping track of distance one has come in addition to how 

far one has to go; one will never choose a path longer than necessary.

2.3 Iterative Deepening A*

Iterative-Deepening A*, also known as IDA*, was introduced by Richard Korf 

in 1985 [4].  It has since become the dominate method to solve this class of permutation 

puzzles to which Rubik’s Cube belongs.  Where A* fails, IDA* tends to succeed given 

strong enough admissible heuristic.

2.3.1 Standard IDA*

IDA* is simply A* with iterative deepening.  This reduces the memory 

complexity from ( )dO b  to ( )O b d .  It does this by keeping track of the maximum depth 

explored from the last iteration and incrementally increases it.  By doing so, it no longer 

needs to store all the states in memory. The optimality of A* still applies, so IDA* also 

gives an optimal solution.  The Manhattan distance is less useful as a heuristic for the 

Cube since if one were to total the number of moves necessary to place each cubie, one 
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must divide that total by eight since eight cubies are moved for each rotation of a slice 

of the Cube. This results in a very low heuristic value.

2.3.2 Problem with this approach

Although IDA* is the best fit to solve the Rubik’s cube, as it was previously 

discussed in this paper, the search space size remains one of the main problems to solve 

in order to obtain an optimal solution.  Therefore, we need to optimize IDA*, by 

reducing the search space. 

Initially the algorithm was tested for obtaining solutions up to depths 12. But 

Korf mentions in his paper “Finding optimal solutions to Rubik’s Cube using pattern 

databases” [5], that at depth over 15 are real significant moves and that any problem can 

generally be solved in nearly 18 moves. For the same purpose of experimentation of his 

approach, he had generated ten solvable instances of Rubik’s Cube, one solvable in 16 

moves, three 17 and six requiring 18 moves. For all further studies related to the 

Rubik’s Cube solution these 10 instances were used as standard. We also carried out 

experiments on our sequential program [6] with these input configurations to get the 

time required and the number of nodes generated. These programs were run in the 

cluster of workstations at UTA, where every job submitted is assigned a dedicated 

processor. 

All programs were running for more than 50 hours of processing at depth 14 

itself. The programs were writing output every 20 minutes, indicating what depth they 

are working on, and the number of the iteration they are in, making sure they were not 

stuck in an infinite loop. The program was also modified to reduce the amount of 
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memory needed to store every node and therefore decreasing the possibility of memory 

problems. The program was extensively tested with depths up to 13, and the program 

reported the optimal solutions for each configuration of the cube that was tested. 

However, the results show that the technique used in the program may not be the most 

effective. The same is illustrated in the following charts:

      

NODES GENERATED BY DEPTHS 7 TO 14 FOR 
EACH CUBE

0

200000000

400000000

600000000

800000000

1000000000

1200000000

7 8 9 10 11 12 13 14
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D
E
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Cube # 1

Cube # 2

Cube # 3

Cube # 4

Cube # 5

Cube # 6

Cube # 7

Cube # 8

Cube # 9

Cube # 10

Figure 2.1: Number of nodes generated Vs Depth
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TIME TAKEN TO START DEPTHS 13 AND 14 AND 
CURRENT TOTAL EXECUTION TIME

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00
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T
IM
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Cube # 2
Cube # 3
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Cube # 8
Cube # 9
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Figure 2.2: Execution time Vs Depth

2.3.3 Solution: IDA* with Pattern Databases

The idea of using large tables of precomputed optimal solution lengths for 

subparts of a combinatorial problem was first proposed by (Culberson and Schaeffer, 

1996) [1]. They studied these pattern databases in the context of the 15-puzzle, 

achieving significant performance improvements over simple heuristics like Manhattan

distance [5], and applied it to the Rubik’s cube. The key idea is to take a subset of the 

goals of the original problem, precompute and store the exact number of moves needed 

to solve these sub goals from all possible initial states.  Then the exact solution to the 

sub goals is used as a lower bound heuristic for an IDA* search of the original problem. 
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The idea behind the pattern database was to avoid the runtime computation of the 

heuristic, at the expense of the extra memory storage. Since we have a large 

computational engine in the form of a cluster we don’t need to worry about the extra 

runtime computation. 

2.4 Thistlethwaite’s algorithm

By restricting the type of moves used, different subgroups could be formed. If 

only half moves were allowed then the subgroup will be <L2, R2, F2, B2, U2, D2>. 

There could be some more nested subgroups in this, like <L2, R2, F, B, U, D>  formed 

by applying half turns only to the right and the left faces so that no edges can be flipped 

or disoriented. These subgroups help since they have a comparatively smaller order. 

Similarly, the corner orientations can be further fixed by restricting the half turns for the 

front and the back by the subgroup <L2, R2, F2, B2, U, D>. The goal state or the 

identity can be seen as a subgroup of these successively nested subgroups. 

In the early 1980’s, the English mathematician Morwen B. Thistlethwaite 

devised an algorithm [7] with the use of these nested subgroups in a lookup table. His 

solution progressed from one nested subgroup to the other until the goal state. There 

were tables for every stage and at every stage to move from one subgroup to the next; 

the properties of the subgroup leading to the factors composing the two nested 

subgroups were used for indexing in the tables. This algorithm gave the first known 

diameter of the Cube as 52. With further improvements, he had improved the best 

known upper bound to 45. 
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Table 2.1 – Moves per stage in the Thistlethwaite’s algorithm

Stage: 1 2 3 4 Total

Original algorithm: 7 13 15 17 52

Improved algorithm: 7 13 15 15 50

Best possible: 7 10 13 15 45

2.5 Kociemba’s algorithm

Herbert Kociemba of Germany [24] developed an algorithm that to date is the 

algorithm that produces the best near optimal solutions in the shortest amount of time.  

It typically runs in a few minutes whereas finding an optimal for the same state may 

take far longer. Kociemba came upon the idea of only using <L2 R2, F2, B2, U, D> as 

an intermediate nested subgroup.  Using IDA* with this sub group for his pattern 

database instead of lookup tables, he then searched for a position in it. By keeping track 

of the maneuvers to get there and subsequently using IDA* again to search from that 

position in the sub group to the goal state, he obtained a near optimal solution by 

combining the two sets of maneuvers.  

2.6 Korf’s algorithm

In his 1997 paper [5], Korf used the eight corners as one sub problem and two 

sets of six of the twelve edges for the two others, which completely covers the Cube in 
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that any of the 20 movable pieces is in one of these three sets.  For his heuristic he 

examined the eight or six cubies in one of these smaller problems (smaller in the sense 

of far fewer states) and looked up the remaining number of moves to solve that sub 

problem.  To create an admissible heuristic, he took the maximum of the three.

Michael Reid [26] improved this approach first suggested by Korf using the 

pattern database to find optimal solutions for the Rubik’s Cube.  This particular pattern 

database produced a better heuristic than the ones based off of corners and edges used 

by Korf.  In fact IDA* ran twenty times faster for Reid on a slower computer using less 

memory.  The main concept here is that pattern databases need not be based off subset 

of puzzle pieces, but more generally, can be based off any subgroup of the appropriate 

order.

2.7 Reid’s algorithm

Michael Reid [26] uses distances to the intermediate position: <U, D, F2, R2, 

B2, L2> for the pattern database. If there is a group G and a subgroup H, then for each 

element g from G the set {a*g | a belongs to H} is called a right coset of H. Each 

scrambled cube can be seen as a permutation with attached orientations. Coordinates 

represent cosets; each coset usually consists of many permutations. Equivalent cubes 

have the same structure but the number of moves necessary to solve them is the same. 

Equivalence is defined with permutations. For each cube there are up to 48 equivalent 

cubes, because the cube has 48 symmetries including reflections. Every closet in the

subgroups is characterized by corner orientation, edge orientation, location of the four

U-D slice edges. Since this gives a lot of configurations, symmetry is used. Also, 2 
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coordinates edge and location are combined into a single coordinate and it is divided by 

the 16 symmetries. A BFS is done in the coset-space to calculate the distances to be 

stored.
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CHAPTER 3

PARALLEL PROCESSING

3.1 Algorithm

The parallel implementation aims to save time as well as memory resources 

while doing the extensive search to the goal state. In the parallel implementation, every 

processor searches separately to get a solution to the cube. Since every processor will 

need a copy of the pattern databases and to avoid communication to pass this whole 

structure to every processor, the initialization part of these databases is done by every 

processor. The communication is further lessened with every processor having its own 

copy of the cube configuration and initial variables to begin the processing. In this 

parallel implementation, every processor searches the same tree but the iterative 

deepening A* algorithm runs on every processor with different search limits. The work 

distribution is done using a master-slave technique where every processor 

communicates with the master, or processor 0, for the current search limit that it has to 

search with. This assures that no processor is left without any work. Though processor 0 

has to communicate with all the remaining processors, it does take part in computation 

too. 

The algorithm terminates when goal state is found by one of the 

processors with an optimal path. When a processor searching along a particular branch 
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of the tree comes across the goal node, it sends the goal found information first to 

processor 0 and then to the others. This goal found declaration is done in an

asynchronous manner. Before beginning the search, every processing element waits for 

the goal found declaration using an asynchronous receive. Once the node is found an 

exit message is sent to all the processors by the processor which finds the goal using a 

non-blocking send call. Upon the receipt of the goal found declaration every processor 

exits the communication world if the goal found is optimal and the processor which 

found the goal prints the goal along with the steps to reach the goal before exiting the 

communication world itself. 

The different search limits help in finding the solution to the configuration faster 

than the serial implementation because an increase in the search limit means more 

pattern subgroup matches from the pruning tables or pattern databases. And these could 

mean a faster and shorter search at most of the times.  Another factor that aids in faster 

search is the symmetry, a symmetrical configuration is observed to be running faster 

than an asymmetrical one.

3.2 Performance metrics

The behavior or performance of a parallel program depends on various 

variables like the number of processors, the size of the data being used for the 

experiments, the interprocessor communications limit and also the available memory 

among the others. We have experimented with different numbers of processors but the 

size of data remains the same for any input given. As far as the memory is concerned, 
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the use of UTA clusters has helped us look over this concern but the communication 

still needs to be taken care of. 

Three different metrics are commonly used to measure performance: 

execution time, efficiency and speedup. A parallel program’s execution time or wall-

clock time as it is referred to is an obvious performance measure. This time is the time 

elapsed from when the first processor starts executing a problem to when the last 

processor completes execution. The relative efficiency and relative speedup are two 

performance metrics which are independent of the problem size. 

3.2.1 Execution time

  The execution time is made up of three components: computation time, 

idle time and communication time. Computation time is the time spent performing 

computations on the data whereas communication time is the time taken for processes 

to send and receive messages and the time spent by process to wait for data from other 

processors is the idle time.  

The computation time depends on the problem size and the specifics of the 

processor. Ideally it is the ratio of time required for the serial algorithm and the number 

of processing elements but might be different for different algorithms. The 

communication time includes the latency which is the time required for initialization of 

the communication. The other time included in the communication time is the actual 

time taken to send a message of a particular length. This time depends on the message 

length and the physical bandwidth. The idle time is the time when the processor is 

neither communicating nor is it computing. This is the reason we always try to 
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minimize the processors idle time with proper load balancing and efficient co ordination 

of processor computation and communication.

The performance of the parallel algorithm with respect to this metric is 

mentioned in the chapter of results.

3.2.2 Efficiency

      The relative efficiency is defined as 

T1/ (P*Tp),

Where T1 is the execution time on one processor and Tp is the execution time on P

processors whereas the absolute efficiency is defined by making the time T1 as the 

execution time on a processor of the fastest sequential algorithm. It is sometimes 

possible to get efficiencies greater than 1. The efficiency values are calculated with 

varying numbers of processors for comparison purposes.

3.2.3 Speedup

    Relative speedup is defined as T1 / Tp, where T1 is the execution time on one 

processor and Tp is the execution time on P processors whereas the absolute speedup is 

defined by making the time T1 the execution time on a processor of the fastest 

sequential algorithm. In certain conditions, a speedup of greater than P can be achieved.

3.2.4 Serial fraction

According to the Amdahl’s Law, the speedup of a parallel program is effectively 

limited by the number of operations which must be performed sequentially; this is 

known as the serial fraction, F. This serial fraction is calculated as:

F = (1/Speedup -1/P)/ (1-1/P)



23

Amdahl’s law tells that the serial fraction F places a severe constraint on the speedup as 

the number of processors increase. Since most parallel programs contain a certain 

amount of sequential code, a possible conclusion of Amdahl’s Law is that it is not cost 

effective to build systems with large numbers of processors. It is expected that the 

parallel implementation has a small serial fraction. A larger load imbalance results in a 

larger F and thus problems not apparent from speedup or efficiency can be identified.

Communication and synchronisation overhead tends to increase as the number of 

processors increases. An increasing serial fraction may suggest a smaller grain size. A 

serial fraction tending to zero would help in achieving an ideal speedup while a value 

towards 1 will suggest hardly any speedup.

4.3 Performance evaluation of a parallel algorithm

When the actual performance of a parallel program differs from the predictions, it is 

necessary to check for the unaccounted overhead and speedup anomalies. The reasons 

for unaccounted-for overhead are as follows:

 Load imbalances: Computation and communication imbalances among the 

processors can affect the performance of the algorithm.

 Replicated computation: The deficiencies in the implementation can be pointed 

out by the disparities between the observed and predicted times.

 Tool/Algorithm mismatch: Inefficiencies can be introduced in the code due to 

incorrect tool or libraries used in the implementation.

 Competition for bandwidth: The total communication costs may be increased by 

concurrent communications, competing for bandwidth.     
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CHAPTER 4

IMPLEMENTATION

A solved cube is represented as (12 edges, 8 corners)

      UF UR UB UL DF DR DB DL FR FL BR BL UFR URB UBL ULF DRF DFL DLB DBR

An example of scrambled cube is:

UL BD LB UF FL FD UR RF DR BU LD BR BDL FRU BRD RFD BLU URB FUL FLD

Reid [26] uses "0" if the twist does not change, "1" for a clockwise twist and "2" for an 

anti-clockwise twist. In this way we can add orientations in a simple way. For example, 

F(URF).c = UFL and F(URF).o = 1 in the table above tells us that the corner at position 

URF is replaced by the corner at position UFL and that the orientation of the corner 

which moves to the position URF is increased by 1 when performing a F move. A 

coordinate or also a tuple of several coordinates represent cosets corresponding to some 

subgroup H (if we use a tuple of coordinates, the corresponding subgroup H is the 

intersection of the subgroups defining the single coordinates). A coordinate itself or an 

index computed from two or three coordinates define the position in the pruning table. 
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In this position Reid stores the number of moves which are necessary to bring the cube 

back to the subgroup H. Because the goal state is always included in H, the number of 

moves stored in the pruning table is always a lower bound for the number of moves to 

bring the cube back to the goal state. This is essential to make the algorithm work

 To reduce memory size, Reid actually does not store the number of moves but only the 

number of moves modulo 3. This is possible because each face turn changes the number 

of moves only by -1, 0 or 1. So when a face turn is applied it is easy to keep track of the 

number of moves, this number for the initial state also can be reconstructed with the 

table mod 3: From the initial state try which one of the 18 face turns decreases the 

number modulo 3. Repeat this until you have reached the goal state and count the 

number of moves you needed to do so.

4.1 Use of Symmetry

In terms of three dimensional geometry, symmetry performs a transformation 

upon some solid figure, in this case a cube, using rotation, reflection or inversion, such 

that the resulting solid occupies the same space it did before the transformation.  This 

transformation may correspond to an actual physical movement of the solid as is the 

case with rotation or it may not as is the case with reflection and inversion. These 

symmetries do help in improving the algorithm by reducing the number of nodes 

generated. This observation is evident form the results.
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4.2 Creation of pattern database

The table is generated in a breadth-first "forward-search" manner. Depth 0 is 

stored at the position of the goal state and all 18 moves are applied to this state. At the 

corresponding positions depth 1 is stored. In the next pass the 18 moves are applied to 

all states corresponding to those positions in the pruning table which have an entry 1. 

And the process continues. If there are not many empty entries left in the pruning table, 

we flip to "backward search". We apply the 18 moves to all permutations which belong 

to empty entries and look if the result is a permutation which has a entry corresponding 

to the depth d of the last pass. In this case we fill the entry with d+1. In this way we 

save a considerable amount of time when generating the tables.

4.3 Pseudo Code for the parallel implementation

1) Initialization of the cube
2) Initialization of the pattern databases
3) Expand the initial node
4) if(master)
5)          distribute the initial search limit to each of the processor
6)           Repeat 
7)           Receive request from one of the processors
8)           Check if goal reached 
9)            If(goal reached)
10)                         Send termination message to other processors and stop
11)             Else
12)                         Send next work to the requesting processor
13)             End if
14)             Search tree with the current search limit
15)            Until solution found or end of tree
16) Else
17)            Receive the search limit from the master
18)            Check for the Exit tag
19)             If (exit tag)
20)                  Stop
21) End if
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22) Search the tree with the new search limit
23) If (goal reached)
24) Send termination message to the master
25) Else
26) Request for new search limit.

Initialize the 
Cube

Initialize the 
tables

Search the treeSearch the treeSearch the tree

……………..

search limit
n processors

If goal 
found?

Go back to search 
tree.

Communicate and 
Stop.

No Yes

Fig 4.1 Data Flow Diagram
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CHAPTER 5

EXPERIMENTAL METHODOLOGY

We ran several experiments in the pursuit of our research.  We wanted to 

confirm that the algorithm we have chosen is the best fit. The program was executed for 

several randomly generated test cases at varied depths. The graphs below for sequential 

as well as parallel implementation are drawn for the average times of five 

configurations of every depth.

5.1 Results Analysis

The aim was to carry out to extensive experimentations for different cube 

configurations at various depths. The plots for the same are plotted in this chapter. All 

these programs were submitted as batch programs on the UTA DPCC cluster using MPI 

with C. For the sequential algorithm, configurations of depth 12-22 are tested while 

results for parallel implementations are from depth 19 onwards because such higher 

depths require more time and hence we need to parallelize them. 

Section 5.1.1 shows graphs of execution times for the sequential implementation, and 

section 5.1.2 for the parallel implementation and the comparison of the two is done in 

section 5.1.3.
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5.1.1 Results for the sequential implementation

Figures 5.1, 5.2, 5.3 are plotted to show the average time spent to get to a 

solution of that particular depth. The average time is calculated for five configurations 

of each depth, the times for which are listed in the corresponding tables. Figure 5.3 

presents the average time Vs depth plot for all the depth from 12-22 whereas figures 5.1 

and 5.2 are two parts of figure 5.3. 

              

Average time required Vs Depth (12-18) for Reid's Sequential algorithm
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     Fig 5.1: Average time Vs Depth (12-18) for Reid’s sequential implementation
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Table 5.1- Data for average time Vs depth (12-18) for Reid’s sequential implementation

Average time Vs Depth (19-22) for Reid's sequential algorithm
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Fig 5.2: Average time Vs Depth (19-22) for Reid’s sequential implementation

Time in seconds for five configurationsDepth

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5

Average 
time in 
seconds

12 103 101 101 102 100 101.3
14 100 103 104 100 100 101.4
15 103 104 100 100 101 101.6
16 99 101 100 99 100 99.8
17 315 104 104 118 114 151
18 379 166 157 155 142 199.8



31

Table 5.2- Data for average time Vs depth (19-22) for Reid’s sequential implementation

Average time Vs Depth for Reid's sequential algorithm
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   Fig 5.3: Average time Vs Depth for Reid’s sequential implementation

Time in minutes for five configurationsDepth

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5

Average 
time in 
minutes

19 17.38 5.28 3.71 9.56 3.95 7.12
20 3.23 36.48 88.53 255 236 123.85
21 32.51 223.6 27.05 277.36 464.61 205.03
22 97.66 676.16 - - - 386.91
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5.1.2 Results for the parallel implementation

The configurations tested for serial implementation were all tested for the 

parallel implementation too. Table 6.3 presents the times for five configurations for 

every depth form 19-22 and the average time in minutes.

Table 5.3- Data for average time Vs depth (19-22) for the parallel implementation using 
np=8

Average time Vs Depth for the parallel implementation
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Fig 5.4: Average time Vs Depth for the parallel implementation with np=8

Time in minutes for five configurationsDepth

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5

Average 
time in 
minutes

19 8.38 2.36 2.08 1.68 3.86 3.38
20 1.93 19.48 47.2 124.93 107.5 60.24
21 24.2 160.64 3.13 180.06 213.93 116.39
22 307.5 - - - - 307.05
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5.1.3 Comparisons

It can be observed that out of the depths for which the program was run, it has 

started taking considerable time after depth equal to 19. A parallel programs execution 

time or wall-clock time as it is referred to be an obvious performance measure. This 

time is the time elapsed from when the first processor starts executing a problem to 

when the last processor completes execution. The graphs show some unpredictable 

results as far as the relation between time taken and the number of processors is 

concerned. One of the reasons for this peculiarity is the solution found by that particular 

processor for the given configuration being different. As mentioned above since the 

processors search the tree with different search limits for the IDA*, the solution found 

could be different. But the most important factor here is the time gained while doing a 

parallel search and hence the speedup achieved, which is considerable in most of the 

cases.

The behavior or performance of a parallel program depends on various 

variables like the number of processors, the size of the data being used for the 

experiments, the interprocessor communications limit and also the available memory 

among others. We have experimented with different numbers of processors but the size 

of data remains the same for any input given. As far as the memory is concerned, the 

use of UTA cluster has helped us look over this concern but the communication still 

needs to be taken care of. 
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Time required in minutes to solve the Cube
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Fig 5.5: Comparisons of time in minutes required to solve the cube for 8 random 

cubes of depth 21

The chart in fig.5.5 shows comparisons for execution times in solving a position created 

by applying a sequence of moves to a solved cube. These times are as required in 

obtaining an optimal solution to solve the Cube whereas the chart in fig.5.6 is a similar 

graph but showing execution times in solving the inverse of the configurations used in 

the fig 5.5. Both the graphs show that there is a definite time efficiency obtained in 

solving the Cube or inverse in a parallel manner. The speedup achieved is even better 

when the number of processors being as large as 8.
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Time in minutes to solve the inverse 
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Fig 5.6: Comparisons of time in minutes required to solve the inverse for 8 
random cubes of depth 21

5.1.4 Comparisons of results for the super flip configuration

Another challenge in solving Rubik’s cube is the “Super flip” configuration, in 

which the edges are flipped in place. This configuration is said to provide a solution 

after 24 moves and is supposedly the hardest one. Below is the comparison of times 

required to solve this configuration using the sequential approach and the amount of 

time saved by using the parallel implementation.
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Time in HOURS Vs Number of processors for the Superflip Configuration
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Fig 5.7: Time in hours required to solve the super flip position Vs Number of processors 
used

Table 5.4- Data for Time in hours Vs Number of processors required to solve the Super 
Flip position

Algorithm Time required to solve the Cube in 
hours

Sequential 51.94972
np=2 43.63417
np=4 40.55639
np=6 27.87778
np=8 22.23417

Note: np= Number of processors used in the parallel implementation.
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CHAPTER 6

         CONCLUSIONS

Although a lot of work has been done in order to achieve an optimal solution for 

the Rubik’s cube, finding an optimal solution has been a difficult task.   After 

researching the Rubik’s puzzle and its solutions using heuristics search, it is clear that 

along with speed, memory efficiency is the most important factor to be looked at. IDA* 

fits the criteria of a search algorithm providing an optimal solution without larger space 

complexity. However in searching for the best heuristic to solve the cube, we 

incorporated the pattern database approach to achieve an optimized solution to the 

Rubik’s cube in the shortest time.

But this approach uses a static pattern database; improvement can be done to 

this algorithm by using disk storage for the database. This will eliminate the time for 

initializing the pattern database for every run. Its performance is inversely proportional 

to the memory requirements. Thus populating the pattern database with numerous 

patterns would help in improving the performance. Also the symmetry factor does seem 

to help pruning since the results show that the number of nodes generated for any depth 

are large in case of asymmetry.
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Along with these improvements that we plane to make in this algorithm, the 

other main challenge in solving Rubik’s cube is the “Super flip” configuration, in which 

the edges are flipped in place. This configuration is said to provide a solution after 24 

moves and is supposedly the hardest one. We plan to solve this configuration using the 

improved pattern database approach.

Parallel processing is used to address the high computation effort required by 

this particular problem at greater depths. This will further help in boosting the 

performance. The long term objective of this project is to use a grid for any other puzzle 

solving problem including the Rubik’s Cube.
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APPENDIX A

SEARCH TREE SIMULAITON



40

Depth ‘10’ processor‘0’ 

…...

Depth ‘9’ processor ‘1’ 

Depth ‘8’ processor ‘0’ 

Depth ‘7’ processor ‘3’ 

Depth ‘6’ processor ‘0’ 

Depth ‘5’ processor ‘1’ 

Depth ‘4’ processor ‘3’ 

Depth ‘3’ processor ‘3’ 

Depth ‘2’ processor ‘2’ 

Depth ‘1’ processor ‘1’ 

X Initial configuration

F(X) B(X) L’(X) D2(X)…... ….. U2(X)

F(Y) Z=U(Y) L’(Y) R’(Y) D2(Y)

U2 (Z)

…... …... U2(Y)

D2 (Z)L’ (Z)B (Z)A=F(Z) …... …...

B (A)F (A) U2 (A) D2 (A)…... …...L’ (A)

F (C) B (C) L’ (C) E=R’ (C) U2 (C) D2 (C)

F (E) G=U (E) L’ (E) D2 (E)…... ….. U2 (E)

F (G) D2 (G)

U2 (H)

…... …... U2 (G)

D2 (H)B (H)F (H) …... …...

B (I)J=F (I) U2 (I) D2 (I)…... …...L’ (I)

F (J) B (J) U2 (J) D2 (J)

L’ (G)

I=L’ (H)

B’ (I)

R’ (H)

R’ (G)

R’ (E)

C=B’(A)

R’ (Z)

Y=R’(X)

…... L’ (J)

H=D (G)

K=B’ (J)



41

In the following tree simulation assume: 

Initial configuration: 
X = RB RD FD FR BU BL LF LU BD UR DL FU FUL FLD FDR FRU BLU BUR 
BRD BDL

The path to the goal node comprises of the following intermediate configurations be:

Depth 1:
Y=DB RD FD FR RU BL LF LU UB BR DL FU LUB FLD FDR LFU RBU RUF BRD 
BDL
Depth 2: 
Z=  DL FD FR RB BU BD LF LU RD UR BL FU DLB FDR FRU DFL ULF BUR 
BRD UBL
Depth 3: 
A=  RU FD FR RB DR BD LF LU LD UB BL FU FLD FDR FRU RBU BDL LFU 
BRD UBL
Depth 4: 
C= RU FD UF RB DR BD LB LU LD UB RF FL FLD UFR RDB RBU BDL LFU 
LUB DRF 
Depth 5: 
E= RU RF UF RB DR LD LB LU FD UB BD FL RUF RFD RDB RBU LDF LFU 
LUB LBD 
Depth 6: 
G=  RF UF RB RU DR LD LB LU FD UB BD FL RFD RDB RBU RUF LDF LFU 
LUB LBD
Depth 7: 
H= RF UF RB RU LU DR LD LB FD UB BD FL RFD RDB RBU RUF LFU LUB 
LBD LDF
Depth 8: 
I= RF UF RB UB LU DR LD FL FD LB BD RU RFD RDB FRU UBL LFU DLB BUR 
LDF

Depth 9: 
J= BL UF RB UB DF DR LD FL FR UL BD RU BLU RDB FRU BDL DRF FUL BUR 
LDF
Depth 10: 

F (K) U2 (K) D2 (K)…... …...L’ (K)

F (M) B (M) B’ (M)  D2 (M)

B’ (K)M=U (K)

…... N=L’ (M) …... U2 (M)

 Depth ‘11’ processor‘3’ 

Depth ‘12’ processor‘0’ 



42

K= BL UF UR UB DF DR DB FL FR UL BR DL BLU UFR URB BDL DRF FUL 
FLD DBR
Depth 11:
M=  UF UR UB BL DF DR DB FL FR UL BR DL UFR URB BDL BLU DRF FUL 
FLD DBR
Depth 12: 
N= UF UR UB UL DF DR DB DL FR FL BR BL UFR URB UBL ULF DRF DFL 
DLB DBR = Goal State
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APPENDIX B

PROGRAM EXECUTION MODULE
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Processors received  =  4
Script running on host node9.cluster
PBS NODE FILE
node9.cluster
node8.cluster
node7.cluster
node6.cluster
Start time: 0.158430 secs
using quarter turn metric
using symmetry reductions
only finding one solution

initializing transformation tables
initializing distance table ... this will take several minutes
distance     positions     (quotient)
      0q             1     (       1)
      1q             4     (       1)
      2q            34     (       3)
      3q           312     (      24)
      4q          2772     (     185)
      5q         24996     (    1633)
      6q        225949     (   14708)
      7q       2017078     (  130032)
      8q      17554890     ( 1124165)
      9q     139132730     ( 8868078)
     10q     758147361     (48182278)
     switching to backwards searching
     11q    1182378518     (75087495)
     12q     117594403     ( 7498528)
     13q         14072     (    1279)

Getting cube (Ctrl-D to exit):
RU UF LF LU RB RD LB DB FR BU FD DL RUF LDF LFU LUB RDB RBU LBD 
RFD
asymmetric position

Hello world from node: process 0 of 4
depth  4q completed  (             18 nodes,               0 tests)
solfoud:0
  Start time: 0.107394 secs)

Hello world from node: process 1 of 4
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depth  1q completed  (             12 nodes,               0 tests)
   (time: 108.921634 secs)solfoud:0
  Start time: 0.056627 secs)

Hello world from node: process 2 of 4
depth  2q completed  (             18 nodes,               0 tests)
   (time: 108.921944 secs)solfoud:0

Hello world from node: process 0 of 4
depth  6q completed  (             18 nodes,               0 tests)

Hello world from node: process 0 of 4
depth  8q completed  (             18 nodes,               0 tests)

Hello world from node: process 1 of 4
depth  5q completed  (             18 nodes,               0 tests)
   (time: 108.922071 secs)solfoud:0

Hello world from node: process 0 of 4
depth 10q completed  (             45 nodes,               0 tests)

Hello world from node: process 1 of 4
depth  9q completed  (             18 nodes,               0 tests)
   (time: 108.922195 secs)solfoud:0

Hello world from node: process 2 of 4
depth  7q completed  (             18 nodes,               0 tests)
   (time: 108.922364 secs)solfoud:0

Hello world from node: process 1 of 4
depth 11q completed  (            126 nodes,               0 tests)
   (time: 108.922577 secs)solfoud:0

Hello world from node: process 0 of 4
depth 12q completed  (          1,693 nodes,               2 tests)
solfoud:0
  Start time: 0.006165 secs)

Hello world from node: process 3 of 4
depth  3q completed  (             18 nodes,               0 tests)
   (time: 108.930303 secs)solfoud:0

Hello world from node: process 1 of 4
depth 13q completed  (         12,513 nodes,              10 tests)
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   (time: 108.932165 secs)solfoud:0

Hello world from node: process 0 of 4
depth 14q completed  (        101,902 nodes,              96 tests)

Hello world from node: process 1 of 4
depth 15q completed  (        778,574 nodes,             446 tests)
   (time: 109.466568 secs)solfoud:0

Hello world from node: process 0 of 4
depth 16q completed  (      6,192,097 nodes,           3,280 tests)

Hello world from node: process 1 of 4
depth 17q completed  (     50,023,079 nodes,          21,866 tests)
   (time: 143.674447 secs)solfoud:0

Hello world from node: process 0 of 4
depth 18q completed  (    413,618,183 nodes,         153,812 tests)
solfoud:0

Hello world from node: process 1 of 4
 F  U  R  U' L' U' R2 U' R  F' R' F  B' R  U' L  D' L'  (19q*, 18f)

Rank 1 found the solution after time2: 414.972172 

Fri Oct 28 15:33:51 CDT 2005
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APPENDIX C

PATTERNS USED FOR EXPERIMENTATION
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Depth Patterns

12 F2 D F2 D2 L2 U L2 U' L2 B D2 R2

12 D' L' R' B F D' U' L' R' B' F' U'

12 L U' B F' L D' U' R B F' U' R

12 F2 D F2 D2 L2 U L2 U' L2 B D2 R2

13 F' U' L' B' F' R' U' D B R2 U B R

13 F R D F2 R' U' D B L' R' F' D' R'

14 D2 L D' B' D L' D2 U2 R' U F' U' R U2

14 R2 U' R2 F' R U R' F' L' D' B' L2 F U

14 F' U' F2 L' U B' L F U' R' F' L F2 R2

14 L B2 D R B' F D' L' R D' U F' R2 U'

14 U' R' F R D2 F D2 R F' R U' R2 F' U2

14 F2 U' R2 F2 R F D2 U L B2 D2 B' D' L'

14 B' R' D F' D2 F R2 D2 F' U2 F R' D F

15 U' R2 F2 U2 L' D2 B' L2 U' L2 D2 L U2 F' U2

16 F2 D' R2 D' L' U' L' R B D' U B L F2 L U2

16 B2 D B U L R' B' F' R' B' R' D U' L' U' L

16 L U B2 L2 D2 B U B' D' R' B' F' U2 B2 U R

16 D' L' F2 L2 B F D R F L' F' R2 U2 F2 L' U'

16 R2 B2 U' R U2 B' R B' L F D F2 L2 D' L B

17 U B2 F2 D' R L U' R L D B' F' U' R L B F
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17 L2 D' F D F' R2 D' U' F' L R B D2 L' D' L U

17 R2 D B2 R U' F L' R2 D U' B' R F2 L' U' B' U'

17 D' F D' L B D2 F2 U R B' U R2 F D' R F U2

18 U L2 U R2 B R' B2 L2 F D' B' L U2 B R' U B' U2

18 U L2 U R2 B R' B2 L2 F D' B' L U2 B R' U B' U2

19 U' R2 U2 B2 D' R2 F2 U' R' F' U2 L' B F' R L2 F D' U'

19 U' L2 D' B2 D L2 U' L' B' D U' R' B' U F D F2 R' U

19 B2 F2 U B2 F2 L2 R2 U' L2 R F L' F' R B R' F D U'

19 L' U2 R B2 R' F2 R B' F D' F' D U' B2 U2 R F2 U2 R

19 D2 L2 D U' F2 U L' F2 D' L B' R' U' F' R D B L2 R2
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APPENDIX D

PROFILING OUTPUT
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The profiles of the MPI program is obtained using a profiling software named 

upshots. To see the profile, an alog file is created and is then displayed using the 

logviewer program. The profiles show the time distribution and the communication

across the processors.
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