
SOLVING THE RUBIK’S CUBE WITH PARALLEL PROCESSING

By

ASLESHA NARGOLKAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

Of the Requirements

For the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

Copyright © by Aslesha Nargolkar 2006

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my Dr. Ishfaq Ahmad for his

continuous support, guidance and encouragement through out the course of my

research. It was because of him that I was able to do research on this topic and complete

my thesis. I would also like to thank Patrick Mcguian for all his help in running the

experiments on the DPCC cluster.

I also owe my thanks to my mother, father, brother and my family for their

support and encouragement. The same is true for all my friends who remained behind

me and encouraged me throughout my Masters study.

November 21, 2005

iv

ABSTRACT

PARALLEL PROCESSING A RUBIK’S CUBE

Aslesha Nargolkar, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Ishfaq Ahmad

 This thesis investigates parallel processing techniques for solving the 3 x 3 x 3

Rubik’s Cube. We explore various state-space search based algorithmic approaches to

optimally solve the Cube. The parallel processing approach is based on IDA* using a

pattern database as the underlying heuristic because of its well established effectiveness.

The parallel algorithm is an extension of the Michael Reid algorithm which is sequential.

The parallel algorithm exhibits good speedup and scalability. Nearly 150 random as well

as symmetrical cube configurations were tested for the experiments on sequential and

parallel implementations. The proposed parallel algorithm using master-slave type of

load balancing proves efficient in terms of time as well as memory resources while

yielding an optimal solution to find the state of a Rubik’s cube. Parallel processing helps

in solving a Cube with initial cube configurations having solutions at a higher depth level

v

in the search tree. Various comparative results are provided to support the efficiency of

the parallel implementation.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ……………………………………………………… iii

ABSTRACT…………………………………………………………………......... iv

LIST OF ILLUSTRATIONS... ix

LIST OF TABLES... x

Chapter

1. INTRODUCTION…………. .. 1

1.1 The 3x3x3 Cube………………... 1

1.1.1 Different pieces of the Cube…………………......................... 3

1.1.2 Singmaster notation…………………………………………... 3

1.1.3 The Metrics…………………. ... 4

1.1.4 The Super flip position... 5

1.1.5 Solving the Cube……………….. 5

1.2 Background…..…………….. 6

1.3 Organization of the thesis……. ... 7

2. STANDARD ALGORITHMS…… .. 8

2.1 God’s algorithm……………... 8

2.2 Basic tree searches……... 8

2.2.1 Uninformed searches……….. 9

2.2.2 Informed searches……….…………………............................ 9

2.2.2.1 Greedy Best-First Search ……………………………. 10

vii

2.2.2.2 Uniform cost…………………………………………. 10

2.2.2.3 A*……………………………………………………. 11

 2.3 Iterative Deepening A*………………………………………………...… 11

 2.3.1 Standard IDA*……..……. .. 12

 2.3.2 Problem with this approach…… ... 12

 2.3.3 Solution: IDA* with pattern databases…………………………. 14

 2.4 Thistlehwaite’s algorithm ……………………………………………….. 15

 2.5 Kociemba’s algorithm…………………………. 16

 2.6 Korf’s algorithm……………………………. .. 16

 2.7 Reid’s algorithm……………………………. .. 17

3. PARALLEL PROCESSING ……………………………………………………. 19

 3.1 Algorithm………………………………………………....………………. 19

 3.2 Performance metrics ………………………………....………………….. 20

 3.2.1 Execution time ……. ... 21

 3.2.2 Efficiency……..……... 22

 3.2.3 Speedup……………..…….. 22

 3.2.4 Serial Fraction….. 22

 3.3 Performance evaluation of a parallel algorithm………………………… 23

4. IMPLEMENTATION……….. 24

4.1 Use of symmetry……………….. 25

4.2 Creation of pattern database….. .. 26

4.3 Pseudo code for the parallel implementation …………………………… 26

viii

5. EXPERIMENTAL METHODOLOGY.. 28

 5.1 Results Analysis…………………………………………………………. 28

5.1.1 Results for the sequential implementation …………………... 29

5.1.2 Results for the parallel implementation …………………........ 32

5.1.3 Comparisons …………………………………………………... 33

5.1.4 Comparisons of results for the super flip configuration …….. 35

6. CONCLUSIONS……………………………………………………………….. 37

APPENDIX

A. SEARCH TREE SIMULATION…..………………………………………. 39

B. PROGRAM EXECUTION MODULE …………………………………….. 43

C. PATTERNS USED IN EXPERIMENTATION…………………………… 47

 D. PROFILING OUTPUT …………………………………………………….. 50

REFERENCES…...……………………………………………………………….. 52

BIOGRAPHICAL INFORMATION ……………………………………………… 55

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 The Rubik’s Cube……………………………………………………………. 2

2.1 Number of nodes generated Vs Depth….. .. 13

2.2 Execution time Vs Depth……………………. ... 14

4.1 Data Flow Diagram …………………………………………………………. 27

5.1 Average Time Vs Depth (12-18) for Reid’s sequential implementation …… 29

5.2 Average Time Vs Depth (19-22) for Reid’s sequential implementation……. 30

5.3 Average Time Vs Depth for Reid’s sequential algorithm……………………. 31

5.4 Average Time Vs Depth for the parallel implementation with np=8…........... 32

5.5 Comparisons of time in minutes required to solve the cube for 8
 random cubes of depth 21 ………………………………………………….. 34

5.6 Comparisons of time in minutes required to solve the inverse for 8
random cubes of depth 21…………………………………………………… 35

5.7 Time in hours required to solve the super flip position Vs Number of
processors used ………………………………………………………....... 36

x

LIST OF TABLES

Table Page

2.1 Moves per stage in the Thistlethwaite’s algorithm …………………………… 16

5.1 Data for average time Vs depth (12-18) for Reid’s sequential
 implementation……………………………………………………………….. 30

5.2 Data for average time Vs depth (19-22) for Reid’s sequential
 implementation ………………………………………………………………. 31

5.3 Data for average time Vs depth for the parallel implementation using np=8… 32

5.4 Data for Time in hours Vs Number of processors required to solve the
 Super Flip position ……………………………………………….………….. 36

1

CHAPTER 1

INTRODUCTION

Improving an algorithm to solve a Rubik’s cube requires a thorough analysis of

past efforts in both multi-processor algorithms and sequential solutions to the problem.

With the extensive experimentation carried out, it became clear that Manhattan distance

heuristic, as was used in our first approach, was not the best approach. During the

course of the research work and the experimentation done, it became clear that pattern

databases as modified by Michael Reid [26] is perhaps the best existing heuristic for

this problem. The use of pruning and symmetry improve the pattern database and hence

the performance of the algorithm. Also, parallelization of the search would maximize

the success of the algorithm being used while reducing the time required in finding a

solution for larger depths (above 18). Hence all the necessary issues related to the

parallel approach like the load balancing techniques and the task distribution and

scalability would need to be considered. Although the heuristic used is improved, the

algorithm used for searching remains the same, IDA*. The experiments carried out

show the number of nodes generated and the time taken for the most difficult known

configuration: the super flip configuration. This is a 24-depth configuration.

1.1 The 3x3x 3 Cube

Rubik’s cube is considered to be one of the most famous combinatorial puzzles

of its time. Erno Rubik of Hungary invented it in the late 1970s. The standard version of

2

this cube consists of a 3 X 3 X 3 cube (Figure 1.1), with a different color on each face:

red, blue, green, yellow, white and orange. The faces are divided into 9 squares each,

which can be scrambled by rotating a row (or column) at a time. It is divided into three

3×3×1 slices along each of x, y, and z axes such that each slice can be rotated a quarter

turn clockwise or counterclockwise with respect to the rest of the cube. The slices

divide each face of the Cube into 9 facelets. The slices also divide the Cube into 33 = 27

pieces, or sub cubes, 26 of which are visible. In its goal state, each of the six sides has

its own color. Each visible piece has one, two or three facelets that are a unique subset

of the colors, which makes it distinct from the others. This preserves the orientation of

the piece as it changes position as the slices are rotated.

Figure 1.1: The Rubik’s Cube
(Note the numbers in bracket denote the number of those pieces in a 3x3 Cube)

Edge Cubelet (12)

Cubelet (27)

 Facelet (54)

Corner Cubelet (8)

3

1.1.1 Different pieces of the Cube

Of the 27 sub cubes, or cubies, 26 are visible, and of those only 20, the 8 corner

pieces with three facelets and the 12 edge pieces with two facelets, actually move. The

corner pieces only move to other corner positions, or cubicles, and edge pieces only

move to other edge cubicles. The center pieces with a single facelet in the center of

each face merely rotate. The corner pieces can be twisted any of three ways. Likewise,

the edge pieces can be flipped either of two ways. Thus, the corner pieces have three

orientations each, and the edge pieces have two orientations each.

1.1.2 Singmaster notation

Singmaster notation devised by David Singmaster [2] describes a sequence of

moves. Clockwise turns of the six outer layers, or slices, are denoted by the capital

letters where F is front, B is back, U is up, D is down, L is left and the right face is

denoted by an R:

<F, B, U, D, L, R> which are 90 degrees clockwise face moves

<F2, B2, U2, D2, L2, R2> which are 180 degrees clockwise face moves

<F’, B’, U’, D’, L’, R’>which are 270 degrees clockwise i.e. 90 degrees

anticlockwise face moves

If a subsequence of moves is repeated then it is listed in parenthesis with an

exponent equal to the number of repetitions. Singmaster notation is also used to label

each of the cubies and cubicles. Lowercase italicized letters given in clockwise order of

4

how the two or three sides intersect at a given corner or edge are used to describe a

cubie. Uppercase is used to denote cubicles. Since there are either two or three

possibilities depending on which side is listed first, the first letter is given in order of U,

D, F, B, R, L. While the cubicles never change orientation, the cubies do. So this

precedence in labeling cubies is with respect to the goal state. Thus URF and not RFU

would be used to denote the upper front right-hand cubicle. The cubie corresponding to

that cubicle would be denoted by urf if its orientation has not changed from the goal

state and as either rfu or fur if it had. The orientation is determined by keeping track of

how the pieces move from cubicle to cubicle with respect to the initial state. If an R

move was applied to the goal state, then u facelet of the urf cubie would move to the b

facelet of the UBR cubicle. Thus, with u  b, r  r, and f  u, the corner piece would

then become fur.

1.1.3 The Metrics

To reach the goal state from any random configuration, a sequence of moves is

applied. The minimum number of these moves required to solve the Cube is known as

the distance from the goal state while the maximum distance is the diameter of the

Cube. These moves or distances are measured using either the Half Turn Metric (HTM)

or the Quarter Turn Metric (QTM). In the first metric, only half turns are allowed while

in the quarter turn metric, only quarter turns are allowed. Such a sequence of moves

used to get to the goal state is known as a macro operator or a macro.

The Cube can be represented by a graph in which a vertex represents a unique

state and an edge represents a transition between adjacent states. Since there are 18

5

elementary moves, there are 18 possible adjacent states. The branching factor is

considered to be the ratio of the number of nodes explored at a given depth (d+1) over

the number of nodes explored at a depth d.

1.1.4 The Super flip position

Cube solving has been proven to generally take less than 20 moves. But the

diameter of the cube is said to be the super flip position which is known to take 24

moves. [26] It is not maximally distant from the start position. It is also known as 12-

flip, all-flip, all-edges-flipped.

1.1.5 Solving the Cube

This puzzle is challenging to solve because of the large number of different

states that can be reached from any configuration. The goal state in this puzzle is the

state with all the squares on each side of the cube having the same color. In addition,

large memory requirements and computational resources are required to solve this

problem, which is also the reason why it has been labeled as a very difficult problem.

Although several algorithms have been successfully developed to solve the Rubik’s

cube on sequential machines, they all face the same problem of limited memory and

computational requirements, especially when trying to find an optimal solution and

when we consider the required amount of time for those algorithms to find a solution.

Therefore, parallelizing the algorithm seems to be promising in terms of reducing

execution time and having enough resources to find a solution.

The Rubik’s cube has also been an interesting research problem in the Artificial

Intelligence area. Researchers had reached a consensus that an informed searching

6

methodology is the most feasible way to find a solution in such a vast search space. The

fact that finding a solution to this puzzle will require a large memory and better

computational resources has made it difficult to run efficiently on sequential machines,

thus parallelizing the search is the next best choice along with reducing the

computational complexity. It is however true that we need to ensure that we make the

best of the scalability and all other available resources of the parallel hardware. Since

each cube configuration leads to a large number of states, the search space unfolds in

the shape of a tree, so parallelizing can be done by handing over the branches of the tree

to separate processors for performing search independently. One such architecture that

could fulfill all our requirements regarding memory and power resources is the cluster

of workstations.

1.2 Background

A standard 3 X 3 X 3 Rubik’s cube can have 4.3252 X 1019 different states from

a given configuration. In our initial approach, to reduce large computational complexity

involved in finding a solution to this puzzle, we had used a two dimensional flat

representation obtained by opening the cube along its edges. This representation can

then be converted into an array representation with each color being represented by a

numerical value.

The search algorithm used was the Iterative Deepening A* (IDA*) algorithm

which is an optimal, memory bounded heuristic search. A heuristic function provides an

estimate of the distance of a particular state from a goal state. The heuristic used was

the one Richard Korf (1997) [1, 5] had suggested. It was a modified version of the

7

Manhattan heuristic used in the sliding puzzle where the Manhattan distance of only the

edge cubes was calculated.

The performance of the search can be improved by using parallel hardware. But

the choice of heuristic is another main factor affecting the performance of the algorithm.

Heuristics functions should be chosen properly to avoid inherent problems pertaining to

high time complexity. If there is no overestimation of depth then the proposed method

is guaranteed to improve the performance of IDA* algorithm.

1.3 Organization of the thesis

The rest of the thesis is organized into different chapters, starting with Chapter 2

where all the standard optimal algorithms are explained. This same chapter also

explains the standard IDA* algorithm along with the IDA* algorithm used with pattern

databases. The actual method of implementation with the experiment results is given in

Chapters 3, 4, 5. The thesis is concluded with Chapter 6.

8

CHAPTER 2

 STANDARD ALGORITHMS

Michael Reid’s optimal cube solver [26] is based on ideas developed by Herbert

Kociemba [24] and Professor Richard Korf [5]. This is supposed to be a practical

implementation of "God's Algorithm" [7] for Rubik's Cube. He has made some

improvements in the Korf’s method.

2.1 God’s Algorithm

God’s algorithm [7] uses a lookup table that is keyed over the various instances

of the problem. Rather than giving the solution, it gives the minimum number of moves

remaining to reach the goal state. Then to solve a particular instance one simply

chooses the next move that is one closer to the goal state. The lookup table can be

further refined to only store the number of moves left modulo 3, which only requires 2

bits per entry. This is sufficient in picking the next move since any adjacent move is

one less, the same or one more towards the solution.

2.2 Basic tree searches

This can be thought of as tree in which the root node is the initial state, and

each level below is the nodes explored at that given depth. The nodes in the tree need

not be unique. Pruning techniques can be used to reduce the likelihood of encountering

duplicates.

9

2.2.1 Uniformed searches

Given the extreme number of state, 4.3  1019, uninformed searches such as BFS

(breadth first search) or DFS (depth first search) turn out to be impractical. While BFS

a slow and methodical search that is guaranteed to produce an optimal solution, it

doesn’t work since all the states must be kept in memory, which clearly exceeds the

memory limit of on any conventional computer.

DFS fails for several reasons. First of all, there is no guarantee it won’t run into

some infinite cycle. To correct this one can limit the depth to which it explores.

However, then there is no guarantee it will find the goal state. To further correct the

problem, one can employ an incremental DFS, in which one incrementally increases the

depth being explored. But the advantage of DFS over BFS is that it can potentially find

the solution quite quickly if it happens to select nodes that lead to the solution. It also

has the advantage of only having a linear memory complexity that is ()O b d where b is

the asymptotic branching factor and d in this case is the depth of the search. The

disadvantage of DFS used without iterative deepening is that it is not optimal in that

there is no guarantee it will choose the shortest path, nor is it complete in that there is

no guarantee it will explore the whole graph.

2.2.2 Informed Searches

Informed searches like best-first search keeps a queue of the nodes left to

explore and orders them by some evaluation function that attempts to select the best

10

nodes to search first. Two versions of best-first search base the evaluation function

either on the distance incurred or estimated distance remaining.

2.2.2.1 Greedy Best-First Search

Greedy best-first search orders the nodes in the queue based on an estimate of

the distance remaining to the goal state. As the greedy estimate becomes accurate, this

algorithm becomes more similar to God’s algorithm. To increase the likelihood of the

solution found to be optimal, it helps if the estimate never overestimates the distance

remaining. Such an estimate is known as an admissible heuristic. This increases the

chances that the shortest path will be found.

Greedy search is also a way of directing a standard DFS search. It chooses the

next node to explore based on some greedy estimate of the distance remaining to the

goal state. However, this approach cannot be used in conjunction with iterative

deepening since that would force the tree to be explored up to a given depth. As such it

suffers from the same limitations of DFS in that it is neither optimal nor complete.

However, it is more likely to find the solution before iterative deepening DFS.

2.2.2.2 Uniform cost

 Uniform cost best-first search, known more simply as uniform cost, orders the

elements in the queue by the distance from the initial state. Here the distance for the

Rubik’s Cube is simply based on the number moves from the initial state, which makes

this uniform cost equivalent to BFS. However, if one were to favor some moves over

others and weight them accordingly, then uniform cost would still produce an optimal

solution, i.e. a path to the goal with minimum weight.

11

2.2.2.3 A*

A* combines the two best-first searches of uniform cost with the greedy search

using an admissible heuristic to produce an optimal search that is more efficient than

standard BFS, by setting its heuristic to be the sum of the distance from the initial state

and is admissible estimate of the distance to the goal state. The basic idea behind the

proof of optimality is that by keeping track of distance one has come in addition to how

far one has to go; one will never choose a path longer than necessary.

2.3 Iterative Deepening A*

Iterative-Deepening A*, also known as IDA*, was introduced by Richard Korf

in 1985 [4]. It has since become the dominate method to solve this class of permutation

puzzles to which Rubik’s Cube belongs. Where A* fails, IDA* tends to succeed given

strong enough admissible heuristic.

2.3.1 Standard IDA*

IDA* is simply A* with iterative deepening. This reduces the memory

complexity from ()dO b to ()O b d . It does this by keeping track of the maximum depth

explored from the last iteration and incrementally increases it. By doing so, it no longer

needs to store all the states in memory. The optimality of A* still applies, so IDA* also

gives an optimal solution. The Manhattan distance is less useful as a heuristic for the

Cube since if one were to total the number of moves necessary to place each cubie, one

12

must divide that total by eight since eight cubies are moved for each rotation of a slice

of the Cube. This results in a very low heuristic value.

2.3.2 Problem with this approach

Although IDA* is the best fit to solve the Rubik’s cube, as it was previously

discussed in this paper, the search space size remains one of the main problems to solve

in order to obtain an optimal solution. Therefore, we need to optimize IDA*, by

reducing the search space.

Initially the algorithm was tested for obtaining solutions up to depths 12. But

Korf mentions in his paper “Finding optimal solutions to Rubik’s Cube using pattern

databases” [5], that at depth over 15 are real significant moves and that any problem can

generally be solved in nearly 18 moves. For the same purpose of experimentation of his

approach, he had generated ten solvable instances of Rubik’s Cube, one solvable in 16

moves, three 17 and six requiring 18 moves. For all further studies related to the

Rubik’s Cube solution these 10 instances were used as standard. We also carried out

experiments on our sequential program [6] with these input configurations to get the

time required and the number of nodes generated. These programs were run in the

cluster of workstations at UTA, where every job submitted is assigned a dedicated

processor.

All programs were running for more than 50 hours of processing at depth 14

itself. The programs were writing output every 20 minutes, indicating what depth they

are working on, and the number of the iteration they are in, making sure they were not

stuck in an infinite loop. The program was also modified to reduce the amount of

13

memory needed to store every node and therefore decreasing the possibility of memory

problems. The program was extensively tested with depths up to 13, and the program

reported the optimal solutions for each configuration of the cube that was tested.

However, the results show that the technique used in the program may not be the most

effective. The same is illustrated in the following charts:

NODES GENERATED BY DEPTHS 7 TO 14 FOR
EACH CUBE

0

200000000

400000000

600000000

800000000

1000000000

1200000000

7 8 9 10 11 12 13 14

DEPTH

N
O

D
E

S

Cube # 1

Cube # 2

Cube # 3

Cube # 4

Cube # 5

Cube # 6

Cube # 7

Cube # 8

Cube # 9

Cube # 10

Figure 2.1: Number of nodes generated Vs Depth

14

TIME TAKEN TO START DEPTHS 13 AND 14 AND
CURRENT TOTAL EXECUTION TIME

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

60:00:00

TIME TO 13 TIME TO 14 TOTAL TIME

DEPTH

T
IM

E
S

Cube # 1
Cube # 2
Cube # 3

Cube # 4
Cube # 5
Cube # 6
Cube # 7
Cube # 8
Cube # 9
Cube # 10

Figure 2.2: Execution time Vs Depth

2.3.3 Solution: IDA* with Pattern Databases

The idea of using large tables of precomputed optimal solution lengths for

subparts of a combinatorial problem was first proposed by (Culberson and Schaeffer,

1996) [1]. They studied these pattern databases in the context of the 15-puzzle,

achieving significant performance improvements over simple heuristics like Manhattan

distance [5], and applied it to the Rubik’s cube. The key idea is to take a subset of the

goals of the original problem, precompute and store the exact number of moves needed

to solve these sub goals from all possible initial states. Then the exact solution to the

sub goals is used as a lower bound heuristic for an IDA* search of the original problem.

15

The idea behind the pattern database was to avoid the runtime computation of the

heuristic, at the expense of the extra memory storage. Since we have a large

computational engine in the form of a cluster we don’t need to worry about the extra

runtime computation.

2.4 Thistlethwaite’s algorithm

By restricting the type of moves used, different subgroups could be formed. If

only half moves were allowed then the subgroup will be <L2, R2, F2, B2, U2, D2>.

There could be some more nested subgroups in this, like <L2, R2, F, B, U, D> formed

by applying half turns only to the right and the left faces so that no edges can be flipped

or disoriented. These subgroups help since they have a comparatively smaller order.

Similarly, the corner orientations can be further fixed by restricting the half turns for the

front and the back by the subgroup <L2, R2, F2, B2, U, D>. The goal state or the

identity can be seen as a subgroup of these successively nested subgroups.

In the early 1980’s, the English mathematician Morwen B. Thistlethwaite

devised an algorithm [7] with the use of these nested subgroups in a lookup table. His

solution progressed from one nested subgroup to the other until the goal state. There

were tables for every stage and at every stage to move from one subgroup to the next;

the properties of the subgroup leading to the factors composing the two nested

subgroups were used for indexing in the tables. This algorithm gave the first known

diameter of the Cube as 52. With further improvements, he had improved the best

known upper bound to 45.

16

Table 2.1 – Moves per stage in the Thistlethwaite’s algorithm

Stage: 1 2 3 4 Total

Original algorithm: 7 13 15 17 52

Improved algorithm: 7 13 15 15 50

Best possible: 7 10 13 15 45

2.5 Kociemba’s algorithm

Herbert Kociemba of Germany [24] developed an algorithm that to date is the

algorithm that produces the best near optimal solutions in the shortest amount of time.

It typically runs in a few minutes whereas finding an optimal for the same state may

take far longer. Kociemba came upon the idea of only using <L2 R2, F2, B2, U, D> as

an intermediate nested subgroup. Using IDA* with this sub group for his pattern

database instead of lookup tables, he then searched for a position in it. By keeping track

of the maneuvers to get there and subsequently using IDA* again to search from that

position in the sub group to the goal state, he obtained a near optimal solution by

combining the two sets of maneuvers.

2.6 Korf’s algorithm

In his 1997 paper [5], Korf used the eight corners as one sub problem and two

sets of six of the twelve edges for the two others, which completely covers the Cube in

17

that any of the 20 movable pieces is in one of these three sets. For his heuristic he

examined the eight or six cubies in one of these smaller problems (smaller in the sense

of far fewer states) and looked up the remaining number of moves to solve that sub

problem. To create an admissible heuristic, he took the maximum of the three.

Michael Reid [26] improved this approach first suggested by Korf using the

pattern database to find optimal solutions for the Rubik’s Cube. This particular pattern

database produced a better heuristic than the ones based off of corners and edges used

by Korf. In fact IDA* ran twenty times faster for Reid on a slower computer using less

memory. The main concept here is that pattern databases need not be based off subset

of puzzle pieces, but more generally, can be based off any subgroup of the appropriate

order.

2.7 Reid’s algorithm

Michael Reid [26] uses distances to the intermediate position: <U, D, F2, R2,

B2, L2> for the pattern database. If there is a group G and a subgroup H, then for each

element g from G the set {a*g | a belongs to H} is called a right coset of H. Each

scrambled cube can be seen as a permutation with attached orientations. Coordinates

represent cosets; each coset usually consists of many permutations. Equivalent cubes

have the same structure but the number of moves necessary to solve them is the same.

Equivalence is defined with permutations. For each cube there are up to 48 equivalent

cubes, because the cube has 48 symmetries including reflections. Every closet in the

subgroups is characterized by corner orientation, edge orientation, location of the four

U-D slice edges. Since this gives a lot of configurations, symmetry is used. Also, 2

18

coordinates edge and location are combined into a single coordinate and it is divided by

the 16 symmetries. A BFS is done in the coset-space to calculate the distances to be

stored.

19

CHAPTER 3

PARALLEL PROCESSING

3.1 Algorithm

The parallel implementation aims to save time as well as memory resources

while doing the extensive search to the goal state. In the parallel implementation, every

processor searches separately to get a solution to the cube. Since every processor will

need a copy of the pattern databases and to avoid communication to pass this whole

structure to every processor, the initialization part of these databases is done by every

processor. The communication is further lessened with every processor having its own

copy of the cube configuration and initial variables to begin the processing. In this

parallel implementation, every processor searches the same tree but the iterative

deepening A* algorithm runs on every processor with different search limits. The work

distribution is done using a master-slave technique where every processor

communicates with the master, or processor 0, for the current search limit that it has to

search with. This assures that no processor is left without any work. Though processor 0

has to communicate with all the remaining processors, it does take part in computation

too.

The algorithm terminates when goal state is found by one of the

processors with an optimal path. When a processor searching along a particular branch

20

of the tree comes across the goal node, it sends the goal found information first to

processor 0 and then to the others. This goal found declaration is done in an

asynchronous manner. Before beginning the search, every processing element waits for

the goal found declaration using an asynchronous receive. Once the node is found an

exit message is sent to all the processors by the processor which finds the goal using a

non-blocking send call. Upon the receipt of the goal found declaration every processor

exits the communication world if the goal found is optimal and the processor which

found the goal prints the goal along with the steps to reach the goal before exiting the

communication world itself.

The different search limits help in finding the solution to the configuration faster

than the serial implementation because an increase in the search limit means more

pattern subgroup matches from the pruning tables or pattern databases. And these could

mean a faster and shorter search at most of the times. Another factor that aids in faster

search is the symmetry, a symmetrical configuration is observed to be running faster

than an asymmetrical one.

3.2 Performance metrics

The behavior or performance of a parallel program depends on various

variables like the number of processors, the size of the data being used for the

experiments, the interprocessor communications limit and also the available memory

among the others. We have experimented with different numbers of processors but the

size of data remains the same for any input given. As far as the memory is concerned,

21

the use of UTA clusters has helped us look over this concern but the communication

still needs to be taken care of.

Three different metrics are commonly used to measure performance:

execution time, efficiency and speedup. A parallel program’s execution time or wall-

clock time as it is referred to is an obvious performance measure. This time is the time

elapsed from when the first processor starts executing a problem to when the last

processor completes execution. The relative efficiency and relative speedup are two

performance metrics which are independent of the problem size.

3.2.1 Execution time

 The execution time is made up of three components: computation time,

idle time and communication time. Computation time is the time spent performing

computations on the data whereas communication time is the time taken for processes

to send and receive messages and the time spent by process to wait for data from other

processors is the idle time.

The computation time depends on the problem size and the specifics of the

processor. Ideally it is the ratio of time required for the serial algorithm and the number

of processing elements but might be different for different algorithms. The

communication time includes the latency which is the time required for initialization of

the communication. The other time included in the communication time is the actual

time taken to send a message of a particular length. This time depends on the message

length and the physical bandwidth. The idle time is the time when the processor is

neither communicating nor is it computing. This is the reason we always try to

22

minimize the processors idle time with proper load balancing and efficient co ordination

of processor computation and communication.

The performance of the parallel algorithm with respect to this metric is

mentioned in the chapter of results.

3.2.2 Efficiency

 The relative efficiency is defined as

T1/ (P*Tp),

Where T1 is the execution time on one processor and Tp is the execution time on P

processors whereas the absolute efficiency is defined by making the time T1 as the

execution time on a processor of the fastest sequential algorithm. It is sometimes

possible to get efficiencies greater than 1. The efficiency values are calculated with

varying numbers of processors for comparison purposes.

3.2.3 Speedup

 Relative speedup is defined as T1 / Tp, where T1 is the execution time on one

processor and Tp is the execution time on P processors whereas the absolute speedup is

defined by making the time T1 the execution time on a processor of the fastest

sequential algorithm. In certain conditions, a speedup of greater than P can be achieved.

3.2.4 Serial fraction

According to the Amdahl’s Law, the speedup of a parallel program is effectively

limited by the number of operations which must be performed sequentially; this is

known as the serial fraction, F. This serial fraction is calculated as:

F = (1/Speedup -1/P)/ (1-1/P)

23

Amdahl’s law tells that the serial fraction F places a severe constraint on the speedup as

the number of processors increase. Since most parallel programs contain a certain

amount of sequential code, a possible conclusion of Amdahl’s Law is that it is not cost

effective to build systems with large numbers of processors. It is expected that the

parallel implementation has a small serial fraction. A larger load imbalance results in a

larger F and thus problems not apparent from speedup or efficiency can be identified.

Communication and synchronisation overhead tends to increase as the number of

processors increases. An increasing serial fraction may suggest a smaller grain size. A

serial fraction tending to zero would help in achieving an ideal speedup while a value

towards 1 will suggest hardly any speedup.

4.3 Performance evaluation of a parallel algorithm

When the actual performance of a parallel program differs from the predictions, it is

necessary to check for the unaccounted overhead and speedup anomalies. The reasons

for unaccounted-for overhead are as follows:

 Load imbalances: Computation and communication imbalances among the

processors can affect the performance of the algorithm.

 Replicated computation: The deficiencies in the implementation can be pointed

out by the disparities between the observed and predicted times.

 Tool/Algorithm mismatch: Inefficiencies can be introduced in the code due to

incorrect tool or libraries used in the implementation.

 Competition for bandwidth: The total communication costs may be increased by

concurrent communications, competing for bandwidth.

24

CHAPTER 4

IMPLEMENTATION

A solved cube is represented as (12 edges, 8 corners)

 UF UR UB UL DF DR DB DL FR FL BR BL UFR URB UBL ULF DRF DFL DLB DBR

An example of scrambled cube is:

UL BD LB UF FL FD UR RF DR BU LD BR BDL FRU BRD RFD BLU URB FUL FLD

Reid [26] uses "0" if the twist does not change, "1" for a clockwise twist and "2" for an

anti-clockwise twist. In this way we can add orientations in a simple way. For example,

F(URF).c = UFL and F(URF).o = 1 in the table above tells us that the corner at position

URF is replaced by the corner at position UFL and that the orientation of the corner

which moves to the position URF is increased by 1 when performing a F move. A

coordinate or also a tuple of several coordinates represent cosets corresponding to some

subgroup H (if we use a tuple of coordinates, the corresponding subgroup H is the

intersection of the subgroups defining the single coordinates). A coordinate itself or an

index computed from two or three coordinates define the position in the pruning table.

25

In this position Reid stores the number of moves which are necessary to bring the cube

back to the subgroup H. Because the goal state is always included in H, the number of

moves stored in the pruning table is always a lower bound for the number of moves to

bring the cube back to the goal state. This is essential to make the algorithm work

 To reduce memory size, Reid actually does not store the number of moves but only the

number of moves modulo 3. This is possible because each face turn changes the number

of moves only by -1, 0 or 1. So when a face turn is applied it is easy to keep track of the

number of moves, this number for the initial state also can be reconstructed with the

table mod 3: From the initial state try which one of the 18 face turns decreases the

number modulo 3. Repeat this until you have reached the goal state and count the

number of moves you needed to do so.

4.1 Use of Symmetry

In terms of three dimensional geometry, symmetry performs a transformation

upon some solid figure, in this case a cube, using rotation, reflection or inversion, such

that the resulting solid occupies the same space it did before the transformation. This

transformation may correspond to an actual physical movement of the solid as is the

case with rotation or it may not as is the case with reflection and inversion. These

symmetries do help in improving the algorithm by reducing the number of nodes

generated. This observation is evident form the results.

26

4.2 Creation of pattern database

The table is generated in a breadth-first "forward-search" manner. Depth 0 is

stored at the position of the goal state and all 18 moves are applied to this state. At the

corresponding positions depth 1 is stored. In the next pass the 18 moves are applied to

all states corresponding to those positions in the pruning table which have an entry 1.

And the process continues. If there are not many empty entries left in the pruning table,

we flip to "backward search". We apply the 18 moves to all permutations which belong

to empty entries and look if the result is a permutation which has a entry corresponding

to the depth d of the last pass. In this case we fill the entry with d+1. In this way we

save a considerable amount of time when generating the tables.

4.3 Pseudo Code for the parallel implementation

1) Initialization of the cube
2) Initialization of the pattern databases
3) Expand the initial node
4) if(master)
5) distribute the initial search limit to each of the processor
6) Repeat
7) Receive request from one of the processors
8) Check if goal reached
9) If(goal reached)
10) Send termination message to other processors and stop
11) Else
12) Send next work to the requesting processor
13) End if
14) Search tree with the current search limit
15) Until solution found or end of tree
16) Else
17) Receive the search limit from the master
18) Check for the Exit tag
19) If (exit tag)
20) Stop
21) End if

27

22) Search the tree with the new search limit
23) If (goal reached)
24) Send termination message to the master
25) Else
26) Request for new search limit.

Initialize the
Cube

Initialize the
tables

Search the treeSearch the treeSearch the tree

……………..

search limit
n processors

If goal
found?

Go back to search
tree.

Communicate and
Stop.

No Yes

Fig 4.1 Data Flow Diagram

28

CHAPTER 5

EXPERIMENTAL METHODOLOGY

We ran several experiments in the pursuit of our research. We wanted to

confirm that the algorithm we have chosen is the best fit. The program was executed for

several randomly generated test cases at varied depths. The graphs below for sequential

as well as parallel implementation are drawn for the average times of five

configurations of every depth.

5.1 Results Analysis

The aim was to carry out to extensive experimentations for different cube

configurations at various depths. The plots for the same are plotted in this chapter. All

these programs were submitted as batch programs on the UTA DPCC cluster using MPI

with C. For the sequential algorithm, configurations of depth 12-22 are tested while

results for parallel implementations are from depth 19 onwards because such higher

depths require more time and hence we need to parallelize them.

Section 5.1.1 shows graphs of execution times for the sequential implementation, and

section 5.1.2 for the parallel implementation and the comparison of the two is done in

section 5.1.3.

29

5.1.1 Results for the sequential implementation

Figures 5.1, 5.2, 5.3 are plotted to show the average time spent to get to a

solution of that particular depth. The average time is calculated for five configurations

of each depth, the times for which are listed in the corresponding tables. Figure 5.3

presents the average time Vs depth plot for all the depth from 12-22 whereas figures 5.1

and 5.2 are two parts of figure 5.3.

Average time required Vs Depth (12-18) for Reid's Sequential algorithm

0

50

100

150

200

250

10 11 12 13 14 15 16 17 18 19

Depth (12-17)

T
im

e
in

 s
e

co
n

d
s

Series1

 Fig 5.1: Average time Vs Depth (12-18) for Reid’s sequential implementation

30

Table 5.1- Data for average time Vs depth (12-18) for Reid’s sequential implementation

Average time Vs Depth (19-22) for Reid's sequential algorithm

0

50

100

150

200

250

300

350

400

450

18 19 20 21 22 23

Depth (19-22)

T
im

e
 in

 m
in

u
te

s

Series1

Fig 5.2: Average time Vs Depth (19-22) for Reid’s sequential implementation

Time in seconds for five configurationsDepth

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5

Average
time in
seconds

12 103 101 101 102 100 101.3
14 100 103 104 100 100 101.4
15 103 104 100 100 101 101.6
16 99 101 100 99 100 99.8
17 315 104 104 118 114 151
18 379 166 157 155 142 199.8

31

Table 5.2- Data for average time Vs depth (19-22) for Reid’s sequential implementation

Average time Vs Depth for Reid's sequential algorithm

0

5

10

15

20

25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
h

o
u

s
an

d
s

Depth

T
im

e
in

 s
e

co
n

d
s

Series1

 Fig 5.3: Average time Vs Depth for Reid’s sequential implementation

Time in minutes for five configurationsDepth

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5

Average
time in
minutes

19 17.38 5.28 3.71 9.56 3.95 7.12
20 3.23 36.48 88.53 255 236 123.85
21 32.51 223.6 27.05 277.36 464.61 205.03
22 97.66 676.16 - - - 386.91

32

5.1.2 Results for the parallel implementation

The configurations tested for serial implementation were all tested for the

parallel implementation too. Table 6.3 presents the times for five configurations for

every depth form 19-22 and the average time in minutes.

Table 5.3- Data for average time Vs depth (19-22) for the parallel implementation using
np=8

Average time Vs Depth for the parallel implementation

0

50

100

150

200

250

300

350

18 19 20 21 22 23

Depth

A
ve

ra
g

e
ti

m
e

 in
 m

in
u

te
s

Series1

Fig 5.4: Average time Vs Depth for the parallel implementation with np=8

Time in minutes for five configurationsDepth

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5

Average
time in
minutes

19 8.38 2.36 2.08 1.68 3.86 3.38
20 1.93 19.48 47.2 124.93 107.5 60.24
21 24.2 160.64 3.13 180.06 213.93 116.39
22 307.5 - - - - 307.05

33

5.1.3 Comparisons

It can be observed that out of the depths for which the program was run, it has

started taking considerable time after depth equal to 19. A parallel programs execution

time or wall-clock time as it is referred to be an obvious performance measure. This

time is the time elapsed from when the first processor starts executing a problem to

when the last processor completes execution. The graphs show some unpredictable

results as far as the relation between time taken and the number of processors is

concerned. One of the reasons for this peculiarity is the solution found by that particular

processor for the given configuration being different. As mentioned above since the

processors search the tree with different search limits for the IDA*, the solution found

could be different. But the most important factor here is the time gained while doing a

parallel search and hence the speedup achieved, which is considerable in most of the

cases.

The behavior or performance of a parallel program depends on various

variables like the number of processors, the size of the data being used for the

experiments, the interprocessor communications limit and also the available memory

among others. We have experimented with different numbers of processors but the size

of data remains the same for any input given. As far as the memory is concerned, the

use of UTA cluster has helped us look over this concern but the communication still

needs to be taken care of.

34

Time required in minutes to solve the Cube

1

10

100

1000

1 2 3 4 5 6 7 8

8 configurations of depth 21

T
im

e
in

 m
in

u
te

s

Sequential

np=2

np-4

np=6

np=8

Fig 5.5: Comparisons of time in minutes required to solve the cube for 8 random

cubes of depth 21

The chart in fig.5.5 shows comparisons for execution times in solving a position created

by applying a sequence of moves to a solved cube. These times are as required in

obtaining an optimal solution to solve the Cube whereas the chart in fig.5.6 is a similar

graph but showing execution times in solving the inverse of the configurations used in

the fig 5.5. Both the graphs show that there is a definite time efficiency obtained in

solving the Cube or inverse in a parallel manner. The speedup achieved is even better

when the number of processors being as large as 8.

35

Time in minutes to solve the inverse

1

10

100

1000

10000

1 2 3 4 5 6 7 8

Configurations

T
im

e
in

 m
in

u
te

s

Sequential

np=2

np=4

np=6

np=8

Fig 5.6: Comparisons of time in minutes required to solve the inverse for 8
random cubes of depth 21

5.1.4 Comparisons of results for the super flip configuration

Another challenge in solving Rubik’s cube is the “Super flip” configuration, in

which the edges are flipped in place. This configuration is said to provide a solution

after 24 moves and is supposedly the hardest one. Below is the comparison of times

required to solve this configuration using the sequential approach and the amount of

time saved by using the parallel implementation.

36

Time in HOURS Vs Number of processors for the Superflip Configuration

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

Number of processors (np)

T
im

e
 in

 h
o

u
rs

Series1

Fig 5.7: Time in hours required to solve the super flip position Vs Number of processors
used

Table 5.4- Data for Time in hours Vs Number of processors required to solve the Super
Flip position

Algorithm Time required to solve the Cube in
hours

Sequential 51.94972
np=2 43.63417
np=4 40.55639
np=6 27.87778
np=8 22.23417

Note: np= Number of processors used in the parallel implementation.

37

CHAPTER 6

 CONCLUSIONS

Although a lot of work has been done in order to achieve an optimal solution for

the Rubik’s cube, finding an optimal solution has been a difficult task. After

researching the Rubik’s puzzle and its solutions using heuristics search, it is clear that

along with speed, memory efficiency is the most important factor to be looked at. IDA*

fits the criteria of a search algorithm providing an optimal solution without larger space

complexity. However in searching for the best heuristic to solve the cube, we

incorporated the pattern database approach to achieve an optimized solution to the

Rubik’s cube in the shortest time.

But this approach uses a static pattern database; improvement can be done to

this algorithm by using disk storage for the database. This will eliminate the time for

initializing the pattern database for every run. Its performance is inversely proportional

to the memory requirements. Thus populating the pattern database with numerous

patterns would help in improving the performance. Also the symmetry factor does seem

to help pruning since the results show that the number of nodes generated for any depth

are large in case of asymmetry.

38

Along with these improvements that we plane to make in this algorithm, the

other main challenge in solving Rubik’s cube is the “Super flip” configuration, in which

the edges are flipped in place. This configuration is said to provide a solution after 24

moves and is supposedly the hardest one. We plan to solve this configuration using the

improved pattern database approach.

Parallel processing is used to address the high computation effort required by

this particular problem at greater depths. This will further help in boosting the

performance. The long term objective of this project is to use a grid for any other puzzle

solving problem including the Rubik’s Cube.

39

APPENDIX A

SEARCH TREE SIMULAITON

40

Depth ‘10’ processor‘0’

…...

Depth ‘9’ processor ‘1’

Depth ‘8’ processor ‘0’

Depth ‘7’ processor ‘3’

Depth ‘6’ processor ‘0’

Depth ‘5’ processor ‘1’

Depth ‘4’ processor ‘3’

Depth ‘3’ processor ‘3’

Depth ‘2’ processor ‘2’

Depth ‘1’ processor ‘1’

X Initial configuration

F(X) B(X) L’(X) D2(X)…... ….. U2(X)

F(Y) Z=U(Y) L’(Y) R’(Y) D2(Y)

U2 (Z)

…... …... U2(Y)

D2 (Z)L’ (Z)B (Z)A=F(Z) …... …...

B (A)F (A) U2 (A) D2 (A)…... …...L’ (A)

F (C) B (C) L’ (C) E=R’ (C) U2 (C) D2 (C)

F (E) G=U (E) L’ (E) D2 (E)…... ….. U2 (E)

F (G) D2 (G)

U2 (H)

…... …... U2 (G)

D2 (H)B (H)F (H) …... …...

B (I)J=F (I) U2 (I) D2 (I)…... …...L’ (I)

F (J) B (J) U2 (J) D2 (J)

L’ (G)

I=L’ (H)

B’ (I)

R’ (H)

R’ (G)

R’ (E)

C=B’(A)

R’ (Z)

Y=R’(X)

…... L’ (J)

H=D (G)

K=B’ (J)

41

In the following tree simulation assume:

Initial configuration:
X = RB RD FD FR BU BL LF LU BD UR DL FU FUL FLD FDR FRU BLU BUR
BRD BDL

The path to the goal node comprises of the following intermediate configurations be:

Depth 1:
Y=DB RD FD FR RU BL LF LU UB BR DL FU LUB FLD FDR LFU RBU RUF BRD
BDL
Depth 2:
Z= DL FD FR RB BU BD LF LU RD UR BL FU DLB FDR FRU DFL ULF BUR
BRD UBL
Depth 3:
A= RU FD FR RB DR BD LF LU LD UB BL FU FLD FDR FRU RBU BDL LFU
BRD UBL
Depth 4:
C= RU FD UF RB DR BD LB LU LD UB RF FL FLD UFR RDB RBU BDL LFU
LUB DRF
Depth 5:
E= RU RF UF RB DR LD LB LU FD UB BD FL RUF RFD RDB RBU LDF LFU
LUB LBD
Depth 6:
G= RF UF RB RU DR LD LB LU FD UB BD FL RFD RDB RBU RUF LDF LFU
LUB LBD
Depth 7:
H= RF UF RB RU LU DR LD LB FD UB BD FL RFD RDB RBU RUF LFU LUB
LBD LDF
Depth 8:
I= RF UF RB UB LU DR LD FL FD LB BD RU RFD RDB FRU UBL LFU DLB BUR
LDF

Depth 9:
J= BL UF RB UB DF DR LD FL FR UL BD RU BLU RDB FRU BDL DRF FUL BUR
LDF
Depth 10:

F (K) U2 (K) D2 (K)…... …...L’ (K)

F (M) B (M) B’ (M) D2 (M)

B’ (K)M=U (K)

…... N=L’ (M) …... U2 (M)

 Depth ‘11’ processor‘3’

Depth ‘12’ processor‘0’

42

K= BL UF UR UB DF DR DB FL FR UL BR DL BLU UFR URB BDL DRF FUL
FLD DBR
Depth 11:
M= UF UR UB BL DF DR DB FL FR UL BR DL UFR URB BDL BLU DRF FUL
FLD DBR
Depth 12:
N= UF UR UB UL DF DR DB DL FR FL BR BL UFR URB UBL ULF DRF DFL
DLB DBR = Goal State

43

APPENDIX B

PROGRAM EXECUTION MODULE

44

Processors received = 4
Script running on host node9.cluster
PBS NODE FILE
node9.cluster
node8.cluster
node7.cluster
node6.cluster
Start time: 0.158430 secs
using quarter turn metric
using symmetry reductions
only finding one solution

initializing transformation tables
initializing distance table ... this will take several minutes
distance positions (quotient)
 0q 1 (1)
 1q 4 (1)
 2q 34 (3)
 3q 312 (24)
 4q 2772 (185)
 5q 24996 (1633)
 6q 225949 (14708)
 7q 2017078 (130032)
 8q 17554890 (1124165)
 9q 139132730 (8868078)
 10q 758147361 (48182278)
 switching to backwards searching
 11q 1182378518 (75087495)
 12q 117594403 (7498528)
 13q 14072 (1279)

Getting cube (Ctrl-D to exit):
RU UF LF LU RB RD LB DB FR BU FD DL RUF LDF LFU LUB RDB RBU LBD
RFD
asymmetric position

Hello world from node: process 0 of 4
depth 4q completed (18 nodes, 0 tests)
solfoud:0
 Start time: 0.107394 secs)

Hello world from node: process 1 of 4

45

depth 1q completed (12 nodes, 0 tests)
 (time: 108.921634 secs)solfoud:0
 Start time: 0.056627 secs)

Hello world from node: process 2 of 4
depth 2q completed (18 nodes, 0 tests)
 (time: 108.921944 secs)solfoud:0

Hello world from node: process 0 of 4
depth 6q completed (18 nodes, 0 tests)

Hello world from node: process 0 of 4
depth 8q completed (18 nodes, 0 tests)

Hello world from node: process 1 of 4
depth 5q completed (18 nodes, 0 tests)
 (time: 108.922071 secs)solfoud:0

Hello world from node: process 0 of 4
depth 10q completed (45 nodes, 0 tests)

Hello world from node: process 1 of 4
depth 9q completed (18 nodes, 0 tests)
 (time: 108.922195 secs)solfoud:0

Hello world from node: process 2 of 4
depth 7q completed (18 nodes, 0 tests)
 (time: 108.922364 secs)solfoud:0

Hello world from node: process 1 of 4
depth 11q completed (126 nodes, 0 tests)
 (time: 108.922577 secs)solfoud:0

Hello world from node: process 0 of 4
depth 12q completed (1,693 nodes, 2 tests)
solfoud:0
 Start time: 0.006165 secs)

Hello world from node: process 3 of 4
depth 3q completed (18 nodes, 0 tests)
 (time: 108.930303 secs)solfoud:0

Hello world from node: process 1 of 4
depth 13q completed (12,513 nodes, 10 tests)

46

 (time: 108.932165 secs)solfoud:0

Hello world from node: process 0 of 4
depth 14q completed (101,902 nodes, 96 tests)

Hello world from node: process 1 of 4
depth 15q completed (778,574 nodes, 446 tests)
 (time: 109.466568 secs)solfoud:0

Hello world from node: process 0 of 4
depth 16q completed (6,192,097 nodes, 3,280 tests)

Hello world from node: process 1 of 4
depth 17q completed (50,023,079 nodes, 21,866 tests)
 (time: 143.674447 secs)solfoud:0

Hello world from node: process 0 of 4
depth 18q completed (413,618,183 nodes, 153,812 tests)
solfoud:0

Hello world from node: process 1 of 4
 F U R U' L' U' R2 U' R F' R' F B' R U' L D' L' (19q*, 18f)

Rank 1 found the solution after time2: 414.972172

Fri Oct 28 15:33:51 CDT 2005

47

APPENDIX C

PATTERNS USED FOR EXPERIMENTATION

48

Depth Patterns

12 F2 D F2 D2 L2 U L2 U' L2 B D2 R2

12 D' L' R' B F D' U' L' R' B' F' U'

12 L U' B F' L D' U' R B F' U' R

12 F2 D F2 D2 L2 U L2 U' L2 B D2 R2

13 F' U' L' B' F' R' U' D B R2 U B R

13 F R D F2 R' U' D B L' R' F' D' R'

14 D2 L D' B' D L' D2 U2 R' U F' U' R U2

14 R2 U' R2 F' R U R' F' L' D' B' L2 F U

14 F' U' F2 L' U B' L F U' R' F' L F2 R2

14 L B2 D R B' F D' L' R D' U F' R2 U'

14 U' R' F R D2 F D2 R F' R U' R2 F' U2

14 F2 U' R2 F2 R F D2 U L B2 D2 B' D' L'

14 B' R' D F' D2 F R2 D2 F' U2 F R' D F

15 U' R2 F2 U2 L' D2 B' L2 U' L2 D2 L U2 F' U2

16 F2 D' R2 D' L' U' L' R B D' U B L F2 L U2

16 B2 D B U L R' B' F' R' B' R' D U' L' U' L

16 L U B2 L2 D2 B U B' D' R' B' F' U2 B2 U R

16 D' L' F2 L2 B F D R F L' F' R2 U2 F2 L' U'

16 R2 B2 U' R U2 B' R B' L F D F2 L2 D' L B

17 U B2 F2 D' R L U' R L D B' F' U' R L B F

49

17 L2 D' F D F' R2 D' U' F' L R B D2 L' D' L U

17 R2 D B2 R U' F L' R2 D U' B' R F2 L' U' B' U'

17 D' F D' L B D2 F2 U R B' U R2 F D' R F U2

18 U L2 U R2 B R' B2 L2 F D' B' L U2 B R' U B' U2

18 U L2 U R2 B R' B2 L2 F D' B' L U2 B R' U B' U2

19 U' R2 U2 B2 D' R2 F2 U' R' F' U2 L' B F' R L2 F D' U'

19 U' L2 D' B2 D L2 U' L' B' D U' R' B' U F D F2 R' U

19 B2 F2 U B2 F2 L2 R2 U' L2 R F L' F' R B R' F D U'

19 L' U2 R B2 R' F2 R B' F D' F' D U' B2 U2 R F2 U2 R

19 D2 L2 D U' F2 U L' F2 D' L B' R' U' F' R D B L2 R2

50

APPENDIX D

PROFILING OUTPUT

51

The profiles of the MPI program is obtained using a profiling software named

upshots. To see the profile, an alog file is created and is then displayed using the

logviewer program. The profiles show the time distribution and the communication

across the processors.

52

REFERENCES

[1] Culberson, J.C., and Schaeffer, J., “Searching with Pattern Databases,”

Proceedings of the 11th conference of the Canadian society for the

computational study of intelligence, Springer Verlag, 1996.

[2] David Singmaster Notes on Rubik’s magic cub, Hillside, New Jersey, 1980.

[3] Keith, H.R., “Solving Rubik’s Cube,” NE, pp. 43-207.

[4] Korf, R.E., “Depth-First Iterative-Deepening: An Optimal Admissible Tree

Search,” Artificial Intelligence, 1985, Vol. 27, pp. 97-109.

[5] Korf, Richard. “Finding optimal solutions to Rubik's Cube using pattern

databases”, Proceedings of the Fourteenth National Conference on Artificial

Intelligence (AAAI-97), Providence, RI, pp. 700-705, July 1997

[6] Study Report titled “Implementing an IDA* search on a cluster of workstations

to solve a Rubik’s cube” by Sameer Abhyankar and Bimal Tandel. University

of Texas at Arlington.

[7] Thesis report by Joe Fowler, University of Colorado in Boulder,1995

[8] Culberson, Joseph C. and Schaeffer, Jonathan. Searching with Pattern

Databases. Canadian Conference on AI, 1996, pp. 402-416.

53

[9] Culberson, Joseph C. and Schaeffer, Jonathan.. Efficiently searching the 15-

puzzle. Technical report, Department of Computer Science, University of

Alberta, 1994.

[10] Hecker, David and Banerji, Ranan. The Slice Group in Rubik's Cube.

Mathematics Magazine, Vol. 58, No. 4, pp. 211-218, September 1985.

[11] Joyner, David. Adventures in group theory: Rubik's Cube, Merlin's Machine,

and Other Mathematical Toys. Johns Hopkins University Press, April 2002.

[12] Korf, Richard; Reid, Michael; and Edelkamp, Stefan. Time complexity of

Iterative-Deepening A*, Artificial Intelligence, Vol. 129, No. 1-2, pp. 199-218,

June 2001.

[13] Singmaster, David. Notes of the Rubik’s Magic Cube. Enslow, 1981.

[14] Butler, Gregory. Fundamental Algorithms for Permutation Groups. Springer-

Verlag, 1991.

[15] Egner, Sebastian and Püschel, Markus. Solving Puzzles related to

Permutation Groups. Proceedings of the International Symposium on Symbolic

and Algebraic Computing (ISSAC), 1998

[16] Korf, Richard. Sliding-tile puzzles and Rubik's Cube in AI research, IEEE

Intelligent Systems, pp. 8-12, November 1999.

54

[17] Korf, Richard. Depth-first iterative-deepening: An optimal admissible tree

search, Artificial Intelligence, Vol. 27, No. 1, pp. 97-109, 1985

[18] Rotman, Joseph J. An Introduction to the Theory of Groups, 4th Edition.

Springer-Verlag, 1995.

[19] Russell, Stuart and Norvig, Peter. Artificial Intelligence, A Modern Approach.

Prentice-Hall, 1995.

[20] Schönert, Martin et. al. Cube Lover’s Index by Date. http://www.math.rwth-

aachen.de/~Martin.Schoenert/Cube-Lovers/

[21] http://jeays.net/rubiks.htm

[22] http://www.cs.princeton.edu/~amitc/Rubik/solution.html

[23] http://www.rubiks.com, Rubik/ Seven towns, 1998

[24] http://home.t-online.de/home/kociemba/cube.htm

[25] http://www.math.ucf.edu/~reid/Rubik/

[26] http://www.math.rwthachen.de/~Martin.Schoenert/CubeLovers/Mark_Longri

dge__Superflip_24q.html

55

BIOGRAPHICAL INFORMATION

Miss.Aslesha Nargolkar is born on 26th April 1982 in the city of Pune, Maharashtra in

India. She completed her high school education in Muktangan English School in 1997

and in 2003 she graduated with a Bachelors degree in Computer Engineering from the

Pine University in Maharashtra, India with a first class. She started pursuing her

Masters degree in Computer Science and Engineering in fall’2003. She did research in

“Paralllel Processing the Rubik’s Cube “under the supervision of Dr. Ahmad. In future

she plans to pursue a PhD degree.

